Science.gov

Sample records for ahr airway inflammation

  1. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection. PMID:27329138

  2. Molecular Mechanisms of Airway Hyperresponsiveness in a Murine Model of Steroid-Resistant Airway Inflammation.

    PubMed

    Manni, Michelle L; Mandalapu, Sivanarayana; McHugh, Kevin J; Elloso, M Merle; Dudas, Paul L; Alcorn, John F

    2016-02-01

    IL-13 and IL-17A, produced mainly by Th2 and Th17 cells, respectively, have an influential role in asthma pathogenesis. We examined the role of IL-13 and IL-17A in mediating airway hyperresponsiveness (AHR), lung inflammation, and mucus metaplasia in a dual Th2/Th17 model of asthma. IL-13 and/or IL-17A were neutralized using mAbs. Th2/Th17 adoptive transfer induced a mixed asthma phenotype characterized by elevated eosinophilia and neutrophilia, tissue inflammation, mucus metaplasia, and AHR that were partially reversible with steroid treatment. Pulmonary inflammation and quasi-static lung compliance were largely unaffected by neutralization of IL-13 and/or IL-17A. However, neutralization of IL-13 alone or in combination with IL-17A significantly attenuated AHR and mucus metaplasia. Further, STAT6 activation was attenuated following IL-13 and IL-13/IL-17A Ab treatment. We next assessed the role of STAT6 in Th2/Th17-mediated allergic airway disease using STAT6(-/-) mice. STAT6(-/-) mice adoptively transferred with Th2/Th17 cells had decreased AHR compared with controls. These data suggest that IL-13 drives AHR and mucus metaplasia in a STAT6-dependent manner, without directly contributing to airway or tissue inflammation. IL-17A independently contributes to AHR, but it only partially mediates inflammation and mucus metaplasia in a mixed Th2/Th17 model of steroid-resistant asthma. PMID:26729801

  3. Early interleukin 4-dependent response can induce airway hyperreactivity before development of airway inflammation in a mouse model of asthma.

    PubMed

    To, Y; Dohi, M; Tanaka, R; Sato, A; Nakagome, K; Yamamoto, K

    2001-10-01

    In experimental models of bronchial asthma with mice, airway inflammation and increase in airway hyperreactivity (AHR) are induced by a combination of systemic sensitization and airway challenge with allergens. In this report, we present another possibility: that systemic antigen-specific sensitization alone can induce AHR before the development of inflammation in the airway. Male BALB/c mice were sensitized with ovalbumin (OVA) by a combination of intraperitoneal injection and aerosol inhalation, and various parameters for airway inflammation and hyperreactivity were sequentially analyzed. Bronchial response measured by a noninvasive method (enhanced pause) and the eosinophil count and interleukin (IL)-5 concentration in bronchoalveolar lavage fluid (BALF) gradually increased following the sensitization, and significant increase was achieved after repeated OVA aerosol inhalation along with development of histologic changes of the airway. In contrast, AHR was already significantly increased by systemic sensitization alone, although airway inflammation hardly developed at that time point. BALF IL-4 concentration and the expression of IL-4 mRNA in the lung reached maximal values after the systemic sensitization, then subsequently decreased. Treatment of mice with anti-IL-4 neutralizing antibody during systemic sensitization significantly suppressed this early increase in AHR. In addition, IL-4 gene-targeted mice did not reveal this early increase in AHR by systemic sensitization. These results suggest that an immune response in the lung in an early stage of sensitization can induce airway hyperreactivity before development of an eosinophilic airway inflammation in BALB/c mice and that IL-4 plays an essential role in this process. If this early increase in AHR does occur in sensitized human infants, it could be another therapeutic target for early prevention of the future onset of asthma. PMID:11598151

  4. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation.

    PubMed

    Takeda, Katsuyuki; Miyahara, Nobuaki; Matsubara, Shigeki; Taube, Christian; Kitamura, Kenichi; Hirano, Astushi; Tanimoto, Mitsune; Gelfand, Erwin W

    2016-06-01

    Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways. PMID:27340385

  5. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation

    PubMed Central

    Miyahara, Nobuaki; Matsubara, Shigeki; Taube, Christian; Kitamura, Kenichi; Hirano, Astushi; Tanimoto, Mitsune; Gelfand, Erwin W.

    2016-01-01

    Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways. PMID:27340385

  6. Increased Th2 cytokine secretion, eosinophilic airway inflammation, and airway hyperresponsiveness in neurturin-deficient mice.

    PubMed

    Michel, Tatiana; Thérésine, Maud; Poli, Aurélie; Domingues, Olivia; Ammerlaan, Wim; Brons, Nicolaas H C; Hentges, François; Zimmer, Jacques

    2011-06-01

    Neurotrophins such as nerve growth factor and brain-derived neurotrophic factor have been described to be involved in the pathogenesis of asthma. Neurturin (NTN), another neurotrophin from the glial cell line-derived neurotrophic factor family, was shown to be produced by human immune cells: monocytes, B cells, and T cells. Furthermore, it was previously described that the secretion of inflammatory cytokines was dramatically stimulated in NTN knockout (NTN(-/-)) mice. NTN is structurally similar to TGF-β, a protective cytokine in airway inflammation. This study investigates the implication of NTN in a model of allergic airway inflammation using NTN(-/-) mice. The bronchial inflammatory response of OVA-sensitized NTN(-/-) mice was compared with wild-type mice. Airway inflammation, Th2 cytokines, and airway hyperresponsiveness (AHR) were examined. NTN(-/-) mice showed an increase of OVA-specific serum IgE and a pronounced worsening of inflammatory features. Eosinophil number and IL-4 and IL-5 concentration in the bronchoalveolar lavage fluid and lung tissue were increased. In parallel, Th2 cytokine secretion of lung draining lymph node cells was also augmented when stimulated by OVA in vitro. Furthermore, AHR was markedly enhanced in NTN(-/-) mice after sensitization and challenge when compared with wild-type mice. Administration of NTN before challenge with OVA partially rescues the phenotype of NTN(-/-) mice. These findings provide evidence for a dampening role of NTN on allergic inflammation and AHR in a murine model of asthma. PMID:21508262

  7. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  8. Dendritic cells and alveolar macrophages mediate IL-13–induced airway inflammation and chemokine production

    PubMed Central

    Crapster-Pregont, Margaret; Yeo, Janice; Sanchez, Raquel L.; Kuperman, Douglas A.

    2013-01-01

    Background IL-13 in the airway induces pathologies that are highly characteristic of asthma, including mucus metaplasia, airway hyperreactivity (AHR), and airway inflammation. As such, it is important to identify the IL-13–responding cell types that mediate each of the above pathologies. For example, IL-13’s effects on epithelium contribute to mucus metaplasia and AHR. IL-13’s effects on smooth muscle also contribute to AHR. However, it has been difficult to identify the cell types that mediate IL-13–induced airway inflammation. Objective We sought to determine which cell types mediate IL-13–induced airway inflammation. Methods We treated the airways of mice with IL-13 alone or in combination with IFN-γ. We associated the inhibitory effect of IFN-γ on IL-13–induced airway inflammation and chemokine production with cell types in the lung that coexpress IL-13 and IFN-γ receptors. We then evaluated IL-13–induced responses in CD11c promoter–directed diphtheria toxin receptor–expressing mice that were depleted of both dendritic cells and alveolar macrophages and in CD11b promoter–directed diphtheria toxin receptor– expressing mice that were depleted of dendritic cells. Results Dendritic cell and alveolar macrophage depletion protected mice from IL-13–induced airway inflammation and CCL11, CCL24, CCL22, and CCL17 chemokine production. Preferential depletion of dendritic cells protected mice from IL-13–induced airway inflammation and CCL22 and CCL17 chemokine production but not from IL-13–induced CCL11 and CCL24 chemokine production. In either case mice were not protected from IL-13–induced AHR and mucus metaplasia. Conclusions Pulmonary dendritic cells and alveolar macrophages mediate IL-13–induced airway inflammation and chemokine production. (J Allergy Clin Immunol 2012;129:1621-7.) PMID:22365581

  9. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness.

    PubMed

    McGovern, Toby K; Chen, Michael; Allard, Benoit; Larsson, Kjell; Martin, James G; Adner, Mikael

    2016-01-15

    Airway exposure to organic dust (OD) from swine confinement facilities induces airway inflammation dominated by neutrophils and airway hyperresponsiveness (AHR). One important neutrophilic innate defense mechanism is the induction of oxidative stress. Therefore, we hypothesized that neutrophils exacerbate airway dysfunction following OD exposure by increasing oxidant burden. BALB/C mice were given intranasal challenges with OD or PBS (1/day for 3 days). Mice were untreated or treated with a neutrophil-depleting antibody, anti-Ly6G, or the antioxidant dimethylthiourea (DMTU) prior to OD exposure. Twenty-four hours after the final exposure, we measured airway responsiveness in response to methacholine (MCh) and collected bronchoalveolar lavage fluid to assess pulmonary inflammation and total antioxidant capacity. Lung tissue was harvested to examine the effect of OD-induced antioxidant gene expression and the effect of anti-Ly6G or DMTU. OD exposure induced a dose-dependent increase of airway responsiveness, a neutrophilic pulmonary inflammation, and secretion of keratinocyte cytokine. Depletion of neutrophils reduced OD-induced AHR. DMTU prevented pulmonary inflammation involving macrophages and neutrophils. Neutrophil depletion and DMTU were highly effective in preventing OD-induced AHR affecting large, conducting airways and tissue elastance. OD induced an increase in total antioxidant capacity and mRNA levels of NRF-2-dependent antioxidant genes, effects that are prevented by administration of DMTU and neutrophil depletion. We conclude that an increase in oxidative stress and neutrophilia is critical in the induction of OD-induced AHR. Prevention of oxidative stress diminishes neutrophil influx and AHR, suggesting that mechanisms driving OD-induced AHR may be dependent on neutrophil-mediated oxidant pathways. PMID:26545900

  10. Natural killer T cells are dispensable in the development of allergen-induced airway hyperresponsiveness, inflammation and remodelling in a mouse model of chronic asthma.

    PubMed

    Koh, Y-I; Shim, J-U; Lee, J-H; Chung, I-J; Min, J-J; Rhee, J H; Lee, H C; Chung, D H; Wi, J-O

    2010-07-01

    Natural killer T (NK T) cells have been shown to play an essential role in the development of allergen-induced airway hyperresponsiveness (AHR) and/or airway inflammation in mouse models of acute asthma. Recently, NK T cells have been reported to be required for the development of AHR in a virus induced chronic asthma model. We investigated whether NK T cells were required for the development of allergen-induced AHR, airway inflammation and airway remodelling in a mouse model of chronic asthma. CD1d-/- mice that lack NK T cells were used for the experiments. In the chronic model, AHR, eosinophilic inflammation, remodelling characteristics including mucus metaplasia, subepithelial fibrosis and increased mass of the airway smooth muscle, T helper type 2 (Th2) immune response and immunoglobulin (Ig)E production were equally increased in both CD1d-/- mice and wild-type mice. However, in the acute model, AHR, eosinophilic inflammation, Th2 immune response and IgE production were significantly decreased in the CD1d-/- mice compared to wild-type. CD1d-dependent NK T cells may not be required for the development of allergen-induced AHR, eosinophilic airway inflammation and airway remodelling in chronic asthma model, although they play a role in the development of AHR and eosinophilic inflammation in acute asthma model. PMID:20456411

  11. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma

    PubMed Central

    Gu, Wen; Guo, Xue-jun

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation. PMID:26938767

  12. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma.

    PubMed

    Li, Xiao-ming; Peng, Juan; Gu, Wen; Guo, Xue-jun

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation. PMID:26938767

  13. Vehicular Exhaust Particles Promote Allergic Airway Inflammation via an Aryl Hydrocarbon Receptor-Notch Signaling Cascade

    PubMed Central

    Xia, Mingcan; Viera-Hutchins, Loida; Garcia-Lloret, Maria; Rivas, Magali Noval; Wise, Petra; MGhee, Sean A.; Chatila, Zena K.; Daher, Nancy; Sioutas, Constantinos; Chatila, Talal A.

    2015-01-01

    Background Traffic-related particulate matter (PM) has been linked to heightened incidence of asthma and allergic diseases. However, molecular mechanisms by which PM exposure promote allergic diseases remain elusive. Objective We sought to determine the expression, function and regulation of pathways involved in the promotion by PM of allergic airway inflammation. Methods We employed gene expression transcriptional profiling, in vitro culture assays, and vivo murine models of allergic airway inflammation. Results We identified genes of the Notch pathway, most notably Jagged 1 (Jag1), as targets of PM induction in human monocytes and murine dendritic cells (DCs). PM, especially ultrafine particles (UFP), upregulated T helper cytokine, IgE production and allergic airway inflammation in mice in a Jag1 and Notch-dependent manner especially in the context of the pro-asthmatic IL-4 receptor allele Il4raR576. PM-induced Jag1 expression was mediated by the aryl hydrocarbon receptor (AhR), which bound to and activated AhR response elements in the Jag1 promoter. Pharmacological antagonism of AhR or its lineage-specific deletion in CD11c+ cells abrogated the augmentation of airway inflammation by PM. Conclusion PM activate an AhR-Jag1-Notch cascade to promote allergic airway inflammation in concert with pro-asthmatic alleles. PMID:25825216

  14. Lipopolysaccharide exposure makes allergic airway inflammation and hyper-responsiveness less responsive to dexamethasone and inhibition of iNOS.

    PubMed

    Komlósi, Z I; Pozsonyi, E; Tábi, T; Szöko, E; Nagy, A; Bartos, B; Kozma, G T; Tamási, L; Orosz, M; Magyar, P; Losonczy, G

    2006-07-01

    Allergic airway disease can be refractory to anti-inflammatory treatment, whose cause is unclarified. Therefore, in the present experiment, we have tested the hypothesis that co-exposure to lipopolysacharide (Lps) and allergen results in glucocorticoid-resistant eosinophil airway inflammation and hyper-responsiveness (AHR). Ovalbumin (Ova)-sensitized BALB/c mice were primed with 10 microg intranasal Lps 24 h before the start of Ova challenges (20 min on 3 consecutive days). Dexamethasone (5 mg/kg/day) was given on the last 2 days of Ova challenges. AHR, cellular build-up, cytokine and nitrite concentrations of bronchoalveolar lavage fluid (BALF) and lung histology were examined. To assess the role of iNOS-derived NO in airway responsiveness, mice were treated with a selective inhibitor of this enzyme (1400W) 2 h before AHR measurements. More severe eosinophil inflammation and higher nitrite formation were found in Lps-primed than in non-primed allergized mice. After Lps priming, AHR and concentrations of T-helper type 2 cytokines in BALF were decreased, but still remained significantly higher than in controls. Eosinophil inflammation was partially, while nitrite production and AHR were observed to be largely dexamethasone resistant in Lps-primed allergized animals. 1400W effectively and rapidly diminished the AHR in Ova-sensitized and challenged mice, but failed to affect it after Lps priming plus allergization. In conclusion, Lps inhalation may exaggerate eosinophil inflammation and reduce responsiveness to anti-inflammatory treatment in allergic airway disease. PMID:16839411

  15. Interaction between haemopoietic regulation and airway inflammation.

    PubMed

    O'Byrne, P M; Gauvreau, G M; Wood, L J

    1999-06-01

    Asthma is characterized by reversible airway narrowing, by airway hyperresponsiveness, and by airway inflammation. Inhaled allergens are the most important of the stimuli known to cause asthma. Methods for studying inhaled allergen in the laboratory have been well standardized and extensively used for the investigation of the pathophysiology and the pharmacological modulation of allergen-induced airway responses. Allergen inhalation by a sensitized subject results in an early asthmatic response, and, in the majority of subjects, a late asthmatic response and airway hyperresponsiveness. The late response and airway hyperresponsiveness are associated with increases in airway eosinophils and metachromatic cells. Allergen-induced airway inflammation in dogs (predominantly neutrophilic) is associated with increased granulocyte-macrophage progenitors in bone marrow, which is dependent on the effects of a circulating serum factor stimulating the bone marrow. The newly formed cells traffic to the airways. These increases in granulocyte-macrophage progenitors are blocked by inhaled corticosteroids. In human subjects, allergen-induced eosinophilic inflammation is associated with increases in Eo/B progenitors, mediated through up-regulation if the IL-5 receptor on progenitors and increases responsiveness to IL-5. Inhaled corticosteroids also attenuate all allergen-induced physiological responses and airway inflammation, an effect possibly mediated, in part, through inhibition of eosinophil and basophil maturation or release from the bone marrow. PMID:10421819

  16. Aryl Hydrocarbon Receptor (AhR) Regulates Silica-Induced Inflammation But Not Fibrosis

    PubMed Central

    Beamer, Celine A.; Seaver, Benjamin P.; Shepherd, David M.

    2012-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is responsible for mediating a variety of pharmacological and toxicological effects caused by halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, recent evidence has revealed that the AhR also has numerous physiological roles aside from xenobiotic metabolism, including regulation of immune and inflammatory signaling as well as normal development and homeostasis of several organs. To investigate the role of the AhR in crystalline silica (SiO2)–induced inflammation and fibrosis, C57Bl/6 and AhR−/− mice were exposed to SiO2 or vehicle. Similarly, C57Bl/6 mice were exposed to SiO2 and TCDD either simultaneously or sequentially to assess whether AhR activation alters inflammation and fibrosis. SiO2-induced acute lung inflammation was more severe in AhR−/− mice; however, the fibrotic response of AhR−/− mice was attenuated compared with C57Bl/6 mice. In a model of chronic SiO2 exposure, AhR activation by TCDD in C57Bl/6 mice resulted in reduced inflammation; however, the fibrotic response was not affected. Bone marrow–derived macrophages (BMM) from AhR−/− mice also produced higher levels of cytokines and chemokines in response to SiO2. Analysis of gene expression revealed that BMM derived from AhR−/− mice exhibit increased levels of pro-interleukin (IL)-1β, IL-6, and Bcl-2, yet decreased levels of signal transducers and activators of transcription (STAT)2, STAT5a, and serpin B2 (Pai-2) in response to SiO2. PMID:22273745

  17. The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice.

    PubMed

    Cui, Wei; Zhang, Shufang; Cai, Zhijian; Hu, Xinlei; Zhang, Ruifeng; Wang, Yong; Li, Na; Chen, Zhihua; Zhang, Gensheng

    2015-04-01

    Glibenclamide has a newly discovered role in inflammation regulation besides its antidiabetic effect. As an inhibitor of ATP-sensitive potassium (KATP) channel, glibenclamide antagonizes the relaxation of the tracheal smooth muscle. This indicates that glibenclamide might attenuate airway inflammation while aggravate airway hyperresponsiveness (AHR) in asthmatics. Clinically, many diabetics with asthma are prescribed with glibenclamide to control blood glucose. However, whether glibenclamide could exert any effects on asthmatic inflammation remains unknown. Using an ovalbumin (OVA)-induced mouse model of asthma, we evaluated the effects of glibenclamide on the AHR and inflammation. Interestingly, glibenclamide reduced all the cardinal features of asthma in OVA-challenged mice, including AHR, airway inflammation, and T-helper type 2 (Th2) cytokines. Glibenclamide also downregulated OVA-induced expressions of vascular cell adhesion molecule 1 (VCAM-1) and phosphorylated signal transducer and activator of transcription 6 (p-STAT6) in the lung. In addition, increased sulfonylurea receptor 1 (SUR1) expression in the lung was observed after the OVA challenge. These findings suggest that the classic sulfonylurea glibenclamide plays an important protective role in the development of asthma, which not only provides the evidence for the safety of prescribed glibenclamide in diabetics combined with asthma but also indicates a possible new therapeutic for asthma via targeting glibenclamide-related pathways. PMID:25113133

  18. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  19. Anti-CD69 monoclonal antibody treatment inhibits airway inflammation in a mouse model of asthma*

    PubMed Central

    Wang, Hui-ying; Dai, Yu; Wang, Jiao-li; Yang, Xu-yan; Jiang, Xin-guo

    2015-01-01

    Objective: Airway inflammation and airway hyper-responsiveness (AHR) are principle pathological manifestations of asthma. Cluster of differentiation 69 (CD69) is a well-known co-stimulatory factor associated with the activation, proliferation as well as apoptosis of immune cells. This study aims to examine the effect of anti-CD69 monoclonal antibody (mAb) on the pathophysiology of a mouse model of asthma. Methods: A murine model of ovalbumin (OVA)-induced allergic airway inflammation was used in this study. Briefly, mice were injected with 20 μg chicken OVA intraperitoneally on Days 0 and 14, followed by aerosol provocation with 1% (0.01 g/ml) OVA on Days 24, 25, and 26. Anti-CD69 mAb or isotype IgG was injected intraperitoneally after OVA challenge; dexamethasone (DXM) was administrated either before or after OVA challenge. AHR, mucus production, and eosinophil infiltration in the peribronchial area were examined. The levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-5 (IL-5) in bronchoalveolar lavage fluid (BALF) were also assayed as indices of airway inflammation on Day 28 following OVA injection. Results: Pretreatment with DXM together with anti-CD69 mAb treatment after OVA provocation completely inhibited AHR, eosinophil infiltration and mucus overproduction, and significantly reduced BALF IL-5. However, treatment with DXM alone after OVA challenge only partially inhibited AHR, eosinophil infiltration and mucus overproduction, and did not diminish BALF IL-5. Treatment with either DXM or anti-CD69 mAb did not alter the concentration of BALF GM-CSF. Conclusions: Anti-CD69 mAb treatment inhibits established airway inflammation as effectively as DXM pretreatment. This study provides a potential alternative therapeutic opportunity for the clinical management of asthma and its exacerbation. PMID:26160720

  20. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production.

    PubMed

    Chiba, Takahito; Uchi, Hiroshi; Tsuji, Gaku; Gondo, Hisaki; Moroi, Yoichi; Furue, Masutaka

    2011-02-01

    The dioxins and dioxin-like compounds in cigarette smoke regulate various immunological responses via the arylhydrocarbon receptor (AhR). These environmental toxicants are known to cause bronchitis, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have demonstrated that AhR activation upregulates the expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) in the airway epithelial cell line. However, the mechanism for the production of mucin has not been clarified. In this study, we investigated the role and pathway of AhR in airway epithelial cells by using selective agonists and antagonists. After stimulation with or without benzopyrene (B[a]P), an AhR agonist, MUC5AC expression was measured by real-time RT-PCR. The mechanism of AhR-induced MUC5AC expression in airway epithelial cells was studied in terms of the production of cytokine and reactive oxygen species (ROS). Treatment with B[a]P increased ROS generation in NCI-H₂₉₂ cells. Furthermore, B[a]P-induced MUC5AC upregulation and mucin production were inhibited by AhR siRNA or the use of an antioxidative agent. These results suggest that the AhR-induced increase of mucin production is partially mediated by ROS generation. An antioxidant therapy approach may help to cure AhR-induced mucus hypersecretory diseases. PMID:20709182

  1. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling. PMID:26780233

  2. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice.

    PubMed

    Duong, Khang M; Arikkatt, Jaisy; Ullah, M Ashik; Lynch, Jason P; Zhang, Vivian; Atkinson, Kerry; Sly, Peter D; Phipps, Simon

    2015-11-01

    Allergic asthma is underpinned by T helper 2 (Th2) inflammation. Redundancy in Th2 cytokine function and production by innate and adaptive immune cells suggests that strategies aimed at immunomodulation may prove more beneficial. Hence, we sought to determine whether administration of mesenchymal stromal cells (MSCs) to house dust mite (HDM) (Dermatophagoides pteronyssinus)-sensitized mice would suppress the development of Th2 inflammation and airway hyperresponsiveness (AHR) after HDM challenge. We report that the intravenous administration of allogeneic donor MSCs 1 hour before allergen challenge significantly attenuated the features of allergic asthma, including tissue eosinophilia, Th2 cytokine (IL-5 and IL-13) levels in bronchoalveolar lavage fluid, and AHR. The number of infiltrating type 2 innate lymphoid cells was not affected by MSC transfer, suggesting that MSCs may modulate the adaptive arm of Th2 immunity. The effect of MSC administration was long lasting; all features of allergic airway disease were significantly suppressed in response to a second round of HDM challenge 4 weeks after MSC administration. Further, we observed that MSCs decreased the release of epithelial cell-derived alarmins IL-1α and high mobility group box-1 in an IL-1 receptor antagonist-dependent manner. This significantly decreased the expression of the pro-Th2 cytokine IL-25 and reduced the number of activated and antigen-acquiring CD11c(+)CD11b(+) dendritic cells in the lung and mediastinal lymph nodes. Our findings suggest that MSC administration can ameliorate allergic airway inflammation by blunting the amplification of epithelial-derived inflammatory cytokines induced by HDM exposure and may offer long-term protection against Th2-mediated allergic airway inflammation and AHR. PMID:25789608

  3. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  4. Chronic Low Dose Chlorine Exposure Aggravates Allergic Inflammation and Airway Hyperresponsiveness and Activates Inflammasome Pathway

    PubMed Central

    Kim, Sae-Hoon; Park, Da-Eun; Lee, Hyun-Seung; Kang, Hye-Ryun; Cho, Sang-Heon

    2014-01-01

    Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways. PMID:25202911

  5. Lower airway inflammation and hyperresponsiveness in non-asthmatic patients with non-allergic rhinitis

    PubMed Central

    Wang, Qiuping; Ji, Junfeng; Xie, Yanqing; Guan, Weijie; Zhang, Yong; Wang, Zhiyi; Wu, Kunmin

    2015-01-01

    Background Potential associations between non-allergic rhinitis (NAR) and asthma have been verified epidemiologically, but these associations remain not very clear. It is necessary to further explore the possible implication of lower airway abnormities in NAR patients but without asthma. This study aims to determine lower airway hyperresponsiveness (AHR), inflammation and lung function in non-asthmatic patients with NAR. Methods We recruited 262 non-asthmatic patients with NAR, 377 with AR and 264 healthy subjects. All subjects were non-smokers who underwent meticulous history taking, nasal examination, allergen skin prick test (SPT), blood routine test, measurement of fractional exhaled nitric oxide (FeNO), methacholine bronchial challenge test and induced sputum eosinophil count, in this order. Results Compared with healthy subjects, non-asthmatic patients with NAR yielded markedly lower FEV1/FVC, maximal mid-expiratory flow (MMEF), mid-expiratory flow when 50% of FVC has been expired (MEF50%) and mid-expiratory flow when 75% of FVC has been expired (MEF25%) (P<0.05). Differences in spirometry between group AR and NAR were unremarkable (P>0.05). Patients with NAR yielded higher rate of AHR and higher FeNO levels than healthy subjects but lower than those with AR. The proportion of lower airways disorders (sputum eosinophilia, high FeNO levels or AHR) was highest in group AR (70.8%), followed by NAR (53.4%) and healthy subjects (24.2%) (P<0.01). However, sputum eosinophils in NAR patients were not higher compared with healthy subjects (P>0.05). Sputum eosinophils and FeNO had significant correlation with positive AHR and MMEF in group AR but not in NAR. Conclusions Non-asthmatic patients with NAR harbor lower AHR, small airways dysfunction and inflammation, despite being less significant than those with AR. This offers clues to unravel the link between NAR and asthma. PMID:26623098

  6. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation

    PubMed Central

    Ryu, Min H.; Jha, Aruni; Ojo, Oluwaseun O.; Mahood, Thomas H.; Basu, Sujata; Detillieux, Karen A.; Nikoobakht, Neda; Wong, Charles S.; Loewen, Mark; Becker, Allan B.

    2014-01-01

    Emerging epidemiological evidence reveals a link between lung disease and exposure to indoor pollutants such as perfluorinated compounds (PFCs). PFC exposure during critical developmental stages may increase asthma susceptibility. Thus, in a murine model, we tested the hypothesis that early life and continued exposure to two ubiquitous household PFCs, perfluorooctanoic acid (PFOA) and perflurooctanesulfonic acid (PFOS), can induce lung dysfunction that exacerbates allergen-induced airway hyperresponsiveness (AHR) and inflammation. Balb/c mice were exposed to PFOA or PFOS (4 mg/kg chow) from gestation day 2 to 12 wk of age by feeding pregnant and nursing dams, and weaned pups. Some pups were also sensitized and challenged with ovalbumin (OVA). We assessed lung function and inflammatory cell and cytokine expression in the lung and examined bronchial goblet cell number. PFOA, but not PFOS, without the OVA sensitization/challenge induced AHR concomitant with a 25-fold increase of lung macrophages. PFOA exposure did not affect OVA-induced lung inflammatory cell number. In contrast, PFOS exposure inhibited OVA-induced lung inflammation, decreasing total cell number in lung lavage by 68.7%. Interferon-γ mRNA in the lung was elevated in all PFC-exposed groups. Despite these effects, neither PFOA nor PFOS affected OVA-induced AHR. Our data do not reveal PFOA or PFOS exposure as a risk factor for more severe allergic asthma-like symptoms, but PFOA alone can induce airway inflammation and alter airway function. PMID:25217661

  7. Role of platelets in allergic airway inflammation.

    PubMed

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  8. ROLE OF THE ARYL HYDROCARBON RECEPTOR (AHR) IN LUNG INFLAMMATION1

    PubMed Central

    Beamer, Celine A.; Shepherd, David M.

    2013-01-01

    Millions of individuals worldwide are afflicted with acute and chronic respiratory diseases, causing temporary and permanent disabilities and even death. Oftentimes, these diseases occur as a result of altered immune responses. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acts as a regulator of mucosal barrier function and may influence immune responsiveness in the lungs through changes in gene expression, cell-cell adhesion, mucin production, and cytokine expression. This review updates the basic immunobiology of the AhR signaling pathway with regards to inflammatory lung diseases such as asthma, chronic obstructive pulmonary disorder, and silicosis following data in rodent models and humans. Finally, we address the therapeutic potential of targeting the in regulating inflammation during acute and chronic respiratory diseases. PMID:23963493

  9. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma

    PubMed Central

    Lei, Ying; Adner, Mikael; Hellman, Lars; Nilsson, Gunnar

    2015-01-01

    In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM) allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR) in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF) and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma. PMID:26214807

  10. Contrasting roles for the receptor for advanced glycation end-products on structural cells in allergic airway inflammation vs. airway hyperresponsiveness.

    PubMed

    Taniguchi, Akihiko; Miyahara, Nobuaki; Waseda, Koichi; Kurimoto, Etsuko; Fujii, Utako; Tanimoto, Yasushi; Kataoka, Mikio; Yamamoto, Yasuhiko; Gelfand, Erwin W; Yamamoto, Hiroshi; Tanimoto, Mitsune; Kanehiro, Arihiko

    2015-10-15

    The receptor for advanced glycation end-products (RAGE) is a multiligand receptor that belongs to the immunoglobulin superfamily. RAGE is reported to be involved in various inflammatory disorders; however, studies that address the role of RAGE in allergic airway disease are inconclusive. RAGE-sufficient (RAGE+/+) and RAGE-deficient (RAGE-/-) mice were sensitized to ovalbumin, and airway responses were monitored after ovalbumin challenge. RAGE-/- mice showed reduced eosinophilic inflammation and goblet cell metaplasia, lower T helper type 2 (Th2) cytokine production from spleen and peribronchial lymph node mononuclear cells, and lower numbers of group 2 innate lymphoid cells in the lung compared with RAGE+/+ mice following sensitization and challenge. Experiments using irradiated, chimeric mice showed that the mice expressing RAGE on radio-resistant structural cells but not hematopoietic cells developed allergic airway inflammation; however, the mice expressing RAGE on hematopoietic cells but not structural cells showed reduced airway inflammation. In contrast, absence of RAGE expression on structural cells enhanced innate airway hyperresponsiveness (AHR). In the absence of RAGE, increased interleukin (IL)-33 levels in the lung were detected, and blockade of IL-33 receptor ST2 suppressed innate AHR in RAGE-/- mice. These data identify the importance of RAGE expressed on lung structural cells in the development of allergic airway inflammation, T helper type 2 cell activation, and group 2 innate lymphoid cell accumulation in the airways. RAGE on lung structural cells also regulated innate AHR, likely through the IL-33-ST2 pathway. Thus manipulating RAGE represents a novel therapeutic target in controlling allergic airway responses. PMID:26472810

  11. Influenza A infection enhances antigen-induced airway inflammation and hyper-responsiveness in young but not aged mice

    PubMed Central

    Birmingham, Janette M.; Gillespie, Virginia L.; Srivastava, Kamal; Li, Xiu-Min; Busse, Paula J.

    2015-01-01

    Background Although morbidity and mortality rates from asthma are highest in patients > 65 years of age, the effect of older age on airway inflammation in asthma is not well established. Objective To investigate age-related differences in the promotion of allergic inflammation after influenza A viral respiratory infection on antigen specific IgE production, antigen-induced airway inflammation and airway hyper-responsiveness in mice. Methods To accomplish this objective, the following model system was used. Young (six-week) and aged (18-month) BALB/c mice were first infected with a non-lethal dose of influenza virus A (H/HK×31). Mice were then ovalbumin (OVA) sensitized during the acute-infection (3-days post inoculation) and then chronically underwent challenge to the airways with OVA. Forty-eight hours after the final OVA-challenge, airway hyperresponsiveness (AHR), bronchoalveolar fluid (BALF) cellular and cytokine profile, antigen-specific IgE and IgG1, and lung tissue inflammation were measured. Results Age-specific differences were noted on the effect of a viral infection, allergic sensitization, airway inflammation and airway hyperresponsiveness. Serum OVA-specific IgE was significantly increased in only the aged mice infected with influenza virus. Despite greater morbidity (e.g. weight loss and sickness scores) during the acute infection in the 18-month old mice that were OVA-sensitized there was little effect on the AHR and BALF cellular differential. In contrast, BALF neutrophils and AHR increased, but eosinophils decreased in 6-week mice that were OVA-sensitized during an acute influenza infection. Conclusion With increased age in a mouse model, viral infection prior to antigen sensitization affects the airway and systemic allergic response differently. These differences may reflect distinct phenotypic features of allergic inflammation in older patients with asthma PMID:25039815

  12. Bronchial hyperresponsiveness to mannitol, airway inflammation and Asthma Control Test in atopic asthmatic children

    PubMed Central

    Consilvio, Nicola P.; Rapino, Daniele; Nicola, Marta Di; Scaparrotta, Alessandra; Cingolani, Anna; Petrosino, Marianna I.; Filippo, Paola Di; Pillo, Sabrina Di; Chiarelli, Francesco

    2016-01-01

    Introduction The aim of this study was to evaluate the relationship between airway hyperresponsiveness (AHR) to mannitol and bronchial inflammation measured as exhaled nitric oxide (FeNO) and to assess whether asthma control correlates with AHR to mannitol and FeNO in atopic asthmatic children. Material and methods Allergy evaluation, the mannitol challenge test, FeNO levels and the Asthma Control Test (ACT) questionnaire were assessed in 40 children with intermittent and mild persistent allergic asthma. Results All the subjects showed positive AHR to mannitol. Pearson's correlation test revealed a significant inverse correlation between AHR (mannitol PD15) and FeNO (p = 0.020). There was also a significant positive correlation between ACT and PD15 (p = 0.020) and a significant negative correlation between ACT and FeNO levels (p = 0.003). The study population was divided into two groups according to FeNO levels (group A ≥ 16 ppb vs. group B < 16 ppb). In group A mannitol PD15 was significantly lower (p = 0.040) and ACT score values were significantly lower (p = 0.001) compared to group B. In group A, the ACT showed that 13.3% of subjects had well-controlled asthma, 80% had partially controlled asthma and 6.7% had uncontrolled asthma. In group B, the ACT showed that 72% of subjects had well-controlled asthma and 28% had partially controlled asthma. Conclusions Our findings indicate that the degree of AHR to mannitol correlates with the degree of airway inflammation in asthmatic atopic children; moreover, better control of asthma correlates with a lower degree of AHR to both mannitol and FeNO. PMID:26925129

  13. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  14. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway.

    PubMed

    Lathrop, Melissa J; Brooks, Elice M; Bonenfant, Nick R; Sokocevic, Dino; Borg, Zachary D; Goodwin, Meagan; Loi, Roberto; Cruz, Fernanda; Dunaway, Chad W; Steele, Chad; Weiss, Daniel J

    2014-02-01

    Systemic administration of mesenchymal stromal cells (MSCs) suppresses airway inflammation and methacholine-induced airway hyper-responsiveness (AHR) in mouse models of T helper cell (Th) type 2-mediated eosinophilic allergic airway inflammation (AAI); however, the efficacy of MSCs in mouse models of severe Th17-mediated neutrophilic AAI has not yet been demonstrated. We assessed MSC effects in a mouse model of mixed Th2/Th17 AAI produced by mucosal exposure to Aspergillus fumigatus hyphal extract (AHE). Following sensitization produced by oropharyngeal AHE administration, systemic (tail vein) administration of syngeneic MSCs on the first day of challenge significantly reduced acute AHR predominantly through reduction of Th17-mediated airway inflammation. In parallel experiments, MSCs also mitigated AHR when administered during recurrent challenge 10 weeks after initial sensitization and challenge through reduction in systemic Th17-mediated inflammation. Investigation into potential mechanistic actions of MSCs in this model demonstrated that although T regulatory cells were increased in all AHE-treated mice, MSC administration did not alter T regulatory cell numbers in either the acute or recurrent model. Differential induction of interleukin-17a secretion was observed in ex vivo restimulation of mediastinal lymph node mixed-cell cytokine analyses. Although the mechanisms by which MSCs act to decrease inflammation and AHR in this model are not yet fully elucidated, decrease in Th17-mediated airway inflammation appears to play a significant role. These results provide a basis for further investigations of MSC administration as a potential therapeutic approach for severe refractory neutrophilic asthma. PMID:24436442

  15. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  16. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    PubMed Central

    Aoki, Haruka; Mogi, Chihiro; Okajima, Fumikazu

    2014-01-01

    An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases. PMID:25197168

  17. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma

    PubMed Central

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  18. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma.

    PubMed

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  19. Intratracheal myriocin enhances allergen‐induced Th2 inflammation and airway hyper‐responsiveness

    PubMed Central

    Edukulla, Ramakrishna; Rehn, Kira Lee; Liu, Bo; McAlees, Jaclyn W.; Hershey, Gurjit K.; Wang, Yui Hsi; Lewkowich, Ian

    2016-01-01

    Introduction Ceramide is the central substrate of sphingolipid metabolism and plays a key role in cellular signal transduction pathways, regulating apoptosis, differentiation, and chemotaxis. Alterations in airway ceramide levels are observed in multiple pulmonary diseases and recent human genetic association studies have linked dysregulation of sphingolipid regulatory genes with asthma pathogenesis. Methods Utilizing myriocin, a potent inhibitor of sphingolipid synthesis, we evaluated the immune regulatory role of de novo ceramide generation in vitro and in vivo. Intratracheal myriocin was administered alone or during house dust mite sensitization (HDM) of BALB/C mice and airway hyper‐responsiveness (AHR) was evaluated by invasive plethysmography followed by bronchial lavage (BAL) cytology and cytokine quantification. Results Myriocin inhibits and HDM exposure activates de novo ceramide synthesis in bone marrow‐derived dendritic cells. Mice receiving intratracheal myriocin developed a mild airway neutrophilic infiltrate without inducing a significant increase in AHR. CXCL1 was elevated in the BAL fluid of myriocin‐treated mice while the neutrophilic chemotactic factors anaphylatoxin C5a, leukotriene B4, and IL‐17 were unaffected. HDM treatment combined with myriocin led to a dramatic enhancement of AHR (63% increase over HDM alone, p < 0.001) and increased granulocyte pulmonary infiltrates versus HDM or myriocin alone. Elevated Th2 T cell counts and Th2 cytokines/chemokines (IL5, IL13, CCL17) were observed in mice treated with combined HDM/myriocin compared to HDM alone. Myriocin‐treated pulmonary CD11c+ cells stimulated with HDM secreted significantly more CXCL1 than cells stimulated with HDM alone while HDM stimulated airway epithelial cells showed no change in CXCL1 secretion following myriocin treatment. Conclusions Intratracheal myriocin, likely acting via ceramide synthesis inhibition, enhances allergen‐induced airway inflammation

  20. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  1. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease.

    PubMed

    Han, Bing; Poppinga, Wilfred J; Zuo, Haoxiao; Zuidhof, Annet B; Bos, I Sophie T; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H; Maarsingh, Harm; Halayko, Andrew J; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  2. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids

    SciTech Connect

    Jonasson, Sofia; Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders

    2013-09-01

    Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in

  3. Recent insights into the relationship between airway inflammation and asthma.

    PubMed

    Siva, R; Berry, M; Pavord, I D

    2003-01-01

    There have been important recent advances in our understanding of the relationship between eosinophilic airway inflammation and airway dysfunction. Observational studies have shown that eosinophilic airway inflammation is not always present in asthma nor is it an exclusive feature of asthma. Its presence seems to be more closely linked to the presence of corticosteroid responsive airways disease and the occurrence of severe exacerbations than the presence of symptoms or the extent of airway dysfunction--indeed recent evidence suggests that in asthma these features may be more closely linked to the site of localisation of mast cells in the airway wall. One implication of this new understanding of the significance of eosinophilic airway inflammation is that it predicts that measuring airway inflammation might provide information that it is not readily available from a more traditional clinical assessment, and that patients might do better if this information is available. Recent studies support this view, showing a marked reduction in asthma exacerbation in patients with moderate to severe disease who are managed with reference to markers of airway inflammation as well as symptoms and simple tests of airway function. The development of new agents that have the potential to modulate specific aspects of airway inflammation, together with refinements in non-invasive techniques to assess the efficacy of these agents offers the prospect of further refining our understanding of the role of this aspect of the inflammatory response in asthma and other airway diseases. PMID:15148839

  4. Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse.

    PubMed

    Poynter, Matthew E; Persinger, Rebecca L; Irvin, Charles G; Butnor, Kelly J; van Hirtum, Hans; Blay, Wendy; Heintz, Nicholas H; Robbins, Justin; Hemenway, David; Taatjes, Douglas J; Janssen-Heininger, Yvonne

    2006-01-01

    In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase. In these studies, we sought to determine the effects of NO2 exposure on mice with ongoing allergic airway disease pathology. Mice were sensitized and challenged with the antigen ovalbumin (OVA) to generate airway inflammation and subsequently exposed to 5 or 25 ppm NO2 for 3 days or 5 days followed by a 20-day recovery period. Whereas 5 ppm NO2 elicited no pathological changes, inhalation of 25 ppm NO2 alone induced acute lung injury, which peaked after 3 days and was characterized by increases in protein, LDH, and neutrophils recovered by BAL, as well as lesions within terminal bronchioles. Importantly, 25 ppm NO2 was also sufficient to cause AHR in mice, a cardinal feature of asthma. The inflammatory changes were ameliorated after 5 days of inhalation and completely resolved after 20 days of recovery after the 5-day inhalation. In contrast, in mice immunized and challenged with OVA, inhalation of 25 ppm NO2 caused a marked augmentation of eosinophilic inflammation and terminal bronchiolar lesions, which extended significantly into the alveoli. Moreover, 20 days postcessation of the 5-day 25 ppm NO2 inhalation regimen, eosinophilic and neutrophilic inflammation, pulmonary lesions, and AHR were still present in mice immunized and challenged with OVA. Collectively, these observations suggest an important role for NO2 in airway pathologies associated with asthma, both in modulation of degree and duration of inflammatory response, as well as in induction of AHR. PMID:16085673

  5. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma.

    PubMed

    Piyadasa, Hadeesha; Altieri, Anthony; Basu, Sujata; Schwartz, Jacquie; Halayko, Andrew J; Mookherjee, Neeloffer

    2016-01-01

    House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for

  6. Effect of acute airway inflammation on the pulmonary antioxidant status.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Harris, Patricia A; Dagleish, Mark P; Schroter, Robert C; Kelly, Frank J

    2005-09-01

    Effects of acute airway inflammation induced by organic dust inhalation on pulmonary antioxidant status were investigated in healthy horses and horses affected by recurrent airway obstruction. Exposure to organic dust induced acute airway neutrophilia, which was associated with increases in elastase and decreases in ascorbic acid concentrations in bronchoalveolar lavage fluid. However, markers of oxidative stress were unaffected, as was hydrogen peroxide in breath condensate. Decreases in ascorbic acid correlated with increased respiratory resistance (P = .001) when both groups were combined. In conclusion, acute neutrophilic airway inflammation does not result in significant evidence of oxidative stress in horses affected by recurrent airway obstruction. PMID:16203621

  7. Protease inhibitor reduces airway response and underlying inflammation in cockroach allergen-induced murine model.

    PubMed

    Saw, Sanjay; Arora, Naveen

    2015-04-01

    Protease(s) enhances airway inflammation and allergic cascade. In the present study, effect of a serine protease inhibitor was evaluated in mouse model of airway disease. Mice were sensitized with cockroach extract (CE) or Per a 10 and treated with 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) 1 h before or after challenge to measure airway response. Mice were euthanized to collect bronchoalveolar lavage fluid (BALF), blood, and lung to evaluate inflammation. AEBSF treatment significantly reduced the AHR in allergen-challenged mice in dose-dependent manner (p≤ 0.01). IgE (p≤0.05) and Th2 cytokines (p≤0.05) were significantly reduced in treated mice. AEBSF treatment lowered total cell (p≤0.05), eosinophil (p≤0.05), and neutrophil (p≤0.05) in BALF and lung tissue. Oxidative stress parameters were impaired on treatment in allergen-challenged mice (p≤0.05). AEBSF had therapeutic effect in allergen-induced airway resistance and underling inflammation and had potential for combination or as add-on therapy for respiratory diseases. PMID:25052477

  8. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  9. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  10. ADAM8 in asthma. Friend or foe to airway inflammation?

    PubMed

    Chen, Jun; Jiang, Xuemei; Duan, Yiyuan; Long, Jiaoyue; Bartsch, Jörg W; Deng, Linhong

    2013-12-01

    Airway inflammation has been suggested as the pathological basis in asthma pathogenesis. Recruitment of leukocytes from the vasculature into airway sites is essential for induction of airway inflammation, a process thought to be mediated by a disintegrin and metalloprotease 8 (ADAM8). However, there is an apparent controversy about whether ADAM8 helps or hampers transmigration of leukocytes through endothelium in airway inflammation of asthma. This review outlines the current contradictory concepts concerning the role of ADAM8 in airway inflammation, particularly focusing on the recruitment of leukocytes during asthma, and attempts to bridge the existing experimental data on the basis of the functional analysis of different domains of ADAM8 and their endogenous processing in vivo. We suggest a possible hypothesis for the specific mechanism by which ADAM8 regulates the transmigration of leukocytes to explain the disparity existing in current studies, and we also raise some questions that require future investigations. PMID:23837412

  11. Importance of airway inflammation for hyperresponsiveness induced by ozone. [Dogs

    SciTech Connect

    Holtzman, M.J.; Fabbri, L.M.; O'Byrne, P.M.; Gold, B.D.; Aizawa, H.; Walters, E.H.; Alpert, S.E.; Nadel, J.A.

    1983-06-01

    We studied whether ozone-induced airway hyperresponsiveness correlates with the development of airway inflammation in dogs. To assess airway responsiveness, we determined increases in pulmonary resistance produced by delivering acetylcholine aerosol to the airways. To assess airway inflammation, we biopsied the airway mucosa and counted the number of neutrophils present in the epithelium. Airway responsiveness and inflammation were assessed in anesthetized dogs before ozone exposure and then 1 h and 1 wk after ozone (2.1 ppm, 2 h). Airway responsiveness increased markedly at 1 h after ozone and returned to control levels 1 wk later in each of 6 dogs, but it did not change after ozone in another 4 dogs. Furthermore, dogs that became hyperresponsive also developed a marked and reversible increase in the number of neutrophils in the epithelium, whereas dogs that did not become hyperresponsive had no change in the number of neutrophils. For the group of dogs, the level of airway responsiveness before and after ozone exposure correlated closely with the number of epithelial neutrophils. The results suggest that ozone-induced airway hyperresponsiveness may depend on the development of an acute inflammatory response in the airways.

  12. Regulation of airway neurogenic inflammation by neutral endopeptidase.

    PubMed

    Di Maria, G U; Bellofiore, S; Geppetti, P

    1998-12-01

    Airway neurogenic inflammation is caused by tachykinins released from peripheral nerve endings of sensory neurons within the airways, and is characterized by plasma protein extravasation, airway smooth muscle contraction and increased secretion of mucus. Tachykinins are degraded and inactivated by neutral endopeptidase (NEP), a membrane-bound metallopeptidase, which is located mainly at the surface of airway epithelial cells, but is also present in airway smooth muscle cells, submucosal gland cells and fibroblasts. The key role of NEP in limiting and regulating the neurogenic inflammation provoked by different stimuli has been demonstrated in a large series of studies published in recent years. It has also been shown that a variety of factors, which are relevant for airway diseases, including viral infections, allergen exposure, inhalation of cigarette smoke and other respiratory irritants, is able to reduce NEP activity, thus enhancing the effects of tachykinins within the airways. On the basis of these observations, the reduction of neutral endopeptidase activity may be regarded as a factor that switches neurogenic airway responses from their physiological and protective functions to a detrimental role that increases and perpetuates airway inflammation. However, further studies are needed to assess the role of neutral endopeptidase down regulation in the pathogenesis of asthma and other inflammatory airway diseases. PMID:9877509

  13. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling.

    PubMed

    Park, Ji-Won; Lee, In-Chul; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Ko, Je-Won; Kim, Jong-Choon; Oh, Sei-Ryang; Shin, In-Sik; Ahn, Kyung-Seop

    2016-05-01

    Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease. PMID:26472121

  14. Microvascular remodelling in chronic airway inflammation in mice.

    PubMed

    Thurston, G; Maas, K; Labarbara, A; Mclean, J W; McDonald, D M

    2000-10-01

    1. Chronic inflammation is associated with blood vessel remodelling, including vessel proliferation and enlargement, and changes in vessel phenotype. We sought to characterize these changes in chronic airway inflammation and to determine whether corticosteroids that inhibit inflammation, such as dexamethasone, can also reduce microvascular remodelling. 2. Chronic airway inflammation was induced in C3H mice by infection with Mycoplasmapulmonis and the tracheal vessels treatment also decreased the immunoreactivity for P-selectin and the number of adherent leucocytes (595 +/- 203 vs 2,024 +/- 393 cells/ mm2 in treated and non-treated infected mice, respectively). 6. We conclude that microvascular enlargement and changes in vessel phenotype are features of some types of chronic inflammation and, furthermore, that dexamethasone reverses the microvascular enlargement, changes in vessel phenotype and leucocyte influx associated with chronic inflammatory airway disease. PMID:11022979

  15. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells.

    PubMed

    Awji, Elias G; Chand, Hitendra; Bruse, Shannon; Smith, Kevin R; Colby, Jennifer K; Mebratu, Yohannes; Levy, Bruce D; Tesfaigzi, Yohannes

    2015-03-01

    Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m(3) WS for 2 h/d, to 250 mg/m(3) cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation. PMID:25137396

  16. Wood Smoke Enhances Cigarette Smoke–Induced Inflammation by Inducing the Aryl Hydrocarbon Receptor Repressor in Airway Epithelial Cells

    PubMed Central

    Awji, Elias G.; Chand, Hitendra; Bruse, Shannon; Smith, Kevin R.; Colby, Jennifer K.; Mebratu, Yohannes; Levy, Bruce D.

    2015-01-01

    Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m3 WS for 2 h/d, to 250 mg/m3 cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation. PMID:25137396

  17. Long-term exposure to house dust mite leads to suppression of allergic airway disease despite persistent lung inflammation

    PubMed Central

    Bracken, Sonali J.; Adami, Alexander J.; Szczepanek, Steven M.; Ehsan, Mohsin; Natarajan, Prabitha; Guernsey, Linda A.; Shahriari, Neda; Rafti, Ektor; Matson, Adam P.; Schramm, Craig M.; Thrall, Roger S.

    2015-01-01

    Background Allergic asthma is a major cause of worldwide morbidity and results from inadequate immune regulation in response to innocuous, environmental antigens. The need exists to understand the mechanisms that promote non-reactivity to human-relevant allergens such as house dust mite (HDM) in order to develop curative therapies for asthma. The aim of our study was to compare the effects of short-, intermediate- and long-term HDM administration in a murine asthma model and determine the ability of long-term HDM exposure to suppress allergic inflammation. Methods C57BL/6 mice were intranasally instilled with HDM for short-term (2 weeks), intermediate-term (5 weeks) and long-term (11 weeks) periods to induce allergic airway disease (AAD). Severity of AAD was compared across all stages of the model via both immunologic and pulmonary parameters. Results Short- and intermediate-term HDM exposure stimulated development of AAD that included eosinophilia in the bronchoalveolar lavage fluid (BAL), pronounced airway hyper-reactivity (AHR), and evidence of lung inflammation. Long-term HDM exposure promoted suppression of AAD, with loss of BAL eosinophilia and AHR despite persistent mononuclear inflammation in the lungs. Suppression of AAD with long-term HDM exposure was associated with an increase in both Foxp3+ regulatory T cells and IL-10+ alveolar macrophages at the site of inflammation. Conclusions This model recapitulates key features of human asthma and may facilitate investigation into the mechanisms that promote immunological tolerance against clinically relevant aeroallergens. PMID:25924733

  18. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice.

    PubMed

    Hirota, Ryoji; Nakamura, Hiroyuki; Bhatti, Sabah Asif; Ngatu, Nlandu Roger; Muzembo, Basilua Andre; Dumavibhat, Narongpon; Eitoku, Masamitsu; Sawamura, Masayoshi; Suganuma, Narufumi

    2012-05-01

    Limonene is one of the main flavonoids which is reported to inhibit the inflammatory response by suppressing the production of reactive oxygen species. The aim of this study was to evaluate whether limonene can inhibit Dermatophagoides farinae-induced airway hyperresponsiveness (AHR), eosinophilic infiltration and other histological changes in the lung, T helper (Th) 2 cytokine production and airway remodeling in a mice model of asthma. Treatment with limonene significantly reduced the levels of IL-5, IL-13, eotaxin, MCP-1, and TGF-β₁ in bronchoalveolar lavage fluid. The goblet cell metaplasia, thickness of airway smooth muscle, and airway fibrosis were markedly decreased in limonene-treated mice. Furthermore, AHR to acetylcholine was significantly abrogated in limonene-treated mice. These results indicate that limonene has a potential to reduce airway remodeling and AHR in asthma model. PMID:22564095

  19. Adoptive transfer of allergen-specific CD4+ T cells induces airway inflammation and hyperresponsiveness in brown-Norway rats.

    PubMed

    Haczku, A; Macary, P; Huang, T J; Tsukagoshi, H; Barnes, P J; Kay, A B; Kemeny, D M; Chung, K F; Moqbel, R

    1997-06-01

    Following allergen exposure, sensitized Brown-Norway rats develop airway hyperresponsiveness (AHR) and eosinophilic inflammation together with an increase in activated T cells (CD25+) in the airways. We tested the hypothesis that CD4+ T cells are involved directly in the acquisition of AHR. Spleen T cells from animals that were injected intraperitoneally on three consecutive days with ovalbumin/Al(OH)3, showed a dose-dependent proliferative response in vitro to ovalbumin, but not to bovine serum albumin, as measured by [3H]thymidine uptake. For total T-cell transfer, spleen cells obtained from donor rats 4 days after sensitization were depleted of adherent cells by a nylon wool column separation. CD4+ and CD8+ T cells were purified by immunomagnetic beads cell separation. Recipient naive rats were injected intravenously with 50 x 10(6) total T cells, 20 x 10(6) and 5 x 10(6) CD4+ cells, and 5 x 10(6) CD8+ cells, and were exposed to ovalbumin aerosol 24 hr afterwards. After a further 24 hr, airway responsiveness to acetylcholine (ACh) was measured and provocative concentration (PC) values PC100, PC200 and PC300) (the ACh concentration needed to achieve 100, 200 and 300% increase in lung resistance above baseline) were calculated. Airway responsiveness was significantly increased in recipients of sensitized total T cells compared with recipients of cells from saline-injected donor rats (P < 0.05). There were significantly increased eosinophil major basic protein (MBP)+ cell counts/mm2 in airway submucosal tissue in the hyperreactive rats and a significant correlation was found between the number of MBP+ cells and PC100 (r = 0.75; P < 0.03) in recipients of sensitized total T cells. Purified CD4+ T cells from sensitized donors induced AHR in naive recipients (P < 0.05), while sensitized CD8+ and naive CD4+ cells failed to do so. Our data indicate that T cells may induce AHR through an eosinophilic airway inflammation and that CD4+ T cells may have a direct effect in

  20. Rosmarinic Acid Attenuates Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma.

    PubMed

    Liang, Zhengmin; Xu, Yangfeng; Wen, Xuemei; Nie, Haiying; Hu, Tingjun; Yang, Xiaofeng; Chu, Xiao; Yang, Jian; Deng, Xuming; He, Jiakang

    2016-01-01

    Rosmarinic acid (RA) has numerous pharmacologic effects, including anti-oxidant, anti-inflammatory, and analgesic effects. This study aimed to evaluate the preventive activity of RA in a murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice sensitized and challenged with ovalbumin (Ova) were pretreated with RA (5, 10 or 20 mg/kg) at 1 h before Ova challenge. The results demonstrated that RA markedly inhibited increases in inflammatory cells and Th2 cytokines in the bronchoalveolar lavage fluid (BALF), significantly reduced the total IgE and Ova-specific IgE concentrations, and greatly ameliorated airway hyperresponsiveness (AHR) compared with the control Ova-induced mice. Histological analyses showed that RA substantially decreased the number of inflammatory cells and mucus hypersecretion in the airway. In addition, our results suggested that the protective effects of RA might be mediated by the suppression of ERK, JNK and p38 phosphorylation and activation of nuclear factor-κB (NF-κB). Furthermore, RA pretreatment resulted in a noticeable reduction in AMCase, CCL11, CCR3, Ym2 and E-selectin mRNA expression in lung tissues. These findings suggest that RA may effectively delay the progression of airway inflammation. PMID:27304950

  1. Markers of airway inflammation and airway hyperresponsiveness in patients with well-controlled asthma.

    PubMed

    Leuppi, J D; Salome, C M; Jenkins, C R; Koskela, H; Brannan, J D; Anderson, S D; Andersson, M; Chan, H K; Woolcock, A J

    2001-09-01

    In steroid-naive asthmatics, airway hyperresponsiveness correlates with noninvasive markers of airway inflammation. Whether this is also true in steroid-treated asthmatics, is unknown. In 31 stable asthmatics (mean age 45.4 yrs, range 22-69; 17 females) taking a median dose of 1,000 microg inhaled corticosteroids (ICS) per day (range 100-3,600 microg x day(-1)), airway responsiveness to the "direct" agent histamine and to the "indirect" agent mannitol, lung function (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF)), exhaled nitric oxide (eNO), and number of inflammatory cells in induced sputum as a percentage of total cell count were measured. Of the 31 subjects, 16 were hyperresponsive to mannitol and 11 to histamine. The dose-response ratio (DRR: % fall in FEV1/cumulative dose) to both challenge tests was correlated (r=0.59, p=0.0004). However, DRR for histamine and DRR for mannitol were not related to basic lung function, eNO, per cent sputum eosinophils and ICS dose. In addition, NO was not related to basic lung function and per cent sputum eosinophils. In clinically well-controlled asthmatics taking inhaled corticosteroids, there is no relationship between markers of airway inflammation (such as exhaled nitric oxide and sputum eosinophils) and airway responsiveness to either direct (histamine) or indirect (mannitol) challenge. Airway hyperresponsiveness in clinically well-controlled asthmatics appears to be independent of eosinophilic airway inflammation. PMID:11589340

  2. Galectin-10, a Potential Biomarker of Eosinophilic Airway Inflammation

    PubMed Central

    Chua, Justin C.; Douglass, Jo A.; Gillman, Andrew; O'Hehir, Robyn E.; Meeusen, Els N.

    2012-01-01

    Measurement of eosinophilic airway inflammation can assist in the diagnosis of allergic asthma and in the management of exacerbations, however its clinical implementation remains difficult. Galectin-10 has been associated with eosinophilic inflammation and has the potential to be used as a surrogate biomarker. This study aimed to assess the relationship between galectin-10 in sputum with sputum eosinophil counts, the current gold standard of eosinophil inflammation in the lung. Thirty-eight sputum samples were processed for both eosinophil counts by cytospins and semi-quantitative measurements of galectin-10 by western blots. A strong association was observed between galectin-10 levels in sputum and sputum eosinophil measurements, and they accurately determined sputum eosinophilia. The results support the potential for galectin-10 to be used as a surrogate biomarker of eosinophilic airway inflammation. PMID:22880030

  3. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    EPA Science Inventory

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  4. Maternal exposure to secondhand cigarette smoke primes the lung for induction of phosphodiesterase-4D5 isozyme and exacerbated Th2 responses: rolipram attenuates the airway hyperreactivity and muscarinic receptor expression but not lung inflammation and atopy.

    PubMed

    Singh, Shashi P; Mishra, Neerad C; Rir-Sima-Ah, Jules; Campen, Mathew; Kurup, Viswanath; Razani-Boroujerdi, Seddigheh; Sopori, Mohan L

    2009-08-01

    Airway hyperreactivity (AHR), lung inflammation, and atopy are clinical signs of allergic asthma. Gestational exposure to cigarette smoke (CS) markedly increases the risk for childhood allergic asthma. Muscarinic receptors regulate airway smooth muscle tone, and asthmatics exhibit increased AHR to muscarinic agonists. We have previously reported that in a murine model of bronchopulmonary aspergillosis, maternal exposure to mainstream CS increases AHR after acute intratracheal administration of Aspergillus fumigatus extract. However, the mechanism by which gestational CS induces allergic asthma is unclear. We now show for the first time that, compared with controls, mice exposed prenatally to secondhand CS exhibit increased lung inflammation (predominant infiltration by eosinophils and polymorphs), atopy, and airway resistance, and produce proinflammatory cytokines (IL-4, IL-5, IL-6, and IL-13, but not IL-2 or IFN-gamma). These changes, which occur only after an allergen (A. fumigatus extract) treatment, are correlated with marked up-regulated lung expression of M1, M2, and M3 muscarinic receptors and phosphodiesterase (PDE)4D5 isozyme. Interestingly, the PDE4-selective inhibitor rolipram attenuates the increase in AHR, muscarinic receptors, and PDE4D5, but fails to down-regulate lung inflammation, Th2 cytokines, or serum IgE levels. Thus, the fetus is extraordinarily sensitive to CS, inducing allergic asthma after postnatal exposure to allergens. Although the increased AHR might reflect increased PDE4D5 and muscarinic receptor expression, the mechanisms underlying atopy and lung inflammation are unrelated to the PDE4 activity. Thus, PDE4 inhibitors might ease AHR, but are unlikely to attenuate lung inflammation and atopy associated with childhood allergic asthma. PMID:19596983

  5. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma.

    PubMed

    Ge, Xiahui; Bai, Chong; Yang, Jianming; Lou, Guoliang; Li, Qiang; Chen, Ruohua

    2013-07-01

    Previous studies proved that bone marrow-derived mesenchymal stem cells (BMSCs) could improve a variety of immune-mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty-eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. The number of CD4(+) CD25(+) regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin-eosin, immunofluorescence staining, periodic-acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL-12 and high levels of IL-13, IL-4, OVA-specific IgG1, IgE, and IgG2a and the fewer number of CD4(+) CD25(+) regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL-4, OVA-specific IgE, and OVA-specific IgG1, but elevated level of IL-12 and the number of CD4 + CD25 + regulatory T cells in asthma (P < 0.05). However, BMSCs did not contribute to lung regeneration and had no significant effect on levels of IL-10, IFN-Y, and IL-13. In our study, BMSCs engraftment prohibited airway inflammation and airway remodeling in chronic asthmatic group. The beneficial effect of BMSCs might involved the modulation imbalance cytokine toward a new balance Th1-Th2 profiles and up-regulation of protective CD4 + CD25 + regulatory T cells in asthma, but not contribution to lung regeneration. PMID:23334934

  6. SUSCEPTIBILITY TO POLLUTANT-INDUCED AIRWAY INFLAMMATION IS NEUROGENICALLY MEDIATED.

    EPA Science Inventory

    Neurogenic inflammation in the airways involves the activation of sensory irritant receptors (capsaicin, VR1) by noxious stimuli and the subsequent release of neuropeptides (e.g., SP, CGRP, NKA) from these fibers. Once released, these peptides initiate and sustain symptoms of ...

  7. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  8. Mucociliary clearance, airway inflammation and nasal symptoms in urban motorcyclists

    PubMed Central

    Brant, Tereza C S; Yoshida, Carolina T; de S. Carvalho, Tomas; Nicola, Marina L; Martins, Jocimar A; Braga, Lays M; de Oliveira, Regiani C; Leyton, Vilma; de André, Carmen S; Saldiva, Paulo H N; Rubin, Bruce K; Nakagawa, Naomi K

    2014-01-01

    OBJECTIVES: There is evidence that outdoor workers exposed to high levels of air pollution exhibit airway inflammation and increased airway symptoms. We hypothesized that these workers would experience increased airway symptoms and decreased nasal mucociliary clearance associated with their exposure to air pollution. METHODS: In total, 25 non-smoking commercial motorcyclists, aged 18-44 years, were included in this study. These drivers work 8-12 hours per day, 5 days per week, driving on urban streets. Nasal mucociliary clearance was measured by the saccharine transit test; airway acidification was measured by assessing the pH of exhaled breath condensate; and airway symptoms were measured by the Sino-nasal Outcome Test-20 questionnaire. To assess personal air pollution exposure, the subjects used a passive-diffusion nitrogen dioxide (NO2) concentration-monitoring system during the 14 days before each assessment. The associations between NO2 and the airway outcomes were analyzed using the Mann-Whitney test and the Chi-Square test. Clinicaltrials.gov: NCT01976039. RESULTS: Compared with clearance in healthy adult males, mucociliary clearance was decreased in 32% of the motorcyclists. Additionally, 64% of the motorcyclists had airway acidification and 92% experienced airway symptoms. The median personal NO2 exposure level was 75 mg/m3 for these subjects and a significant association was observed between NO2 and impaired mucociliary clearance (p = 0.036). CONCLUSION: Non-smoking commercial motorcyclists exhibit increased airway symptoms and airway acidification as well as decreased nasal mucociliary clearance, all of which are significantly associated with the amount of exposure to air pollution. PMID:25628001

  9. Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma.

    PubMed

    Martínez-González, Itziar; Cruz, Maria-Jesús; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier; Aran, Josep M

    2014-10-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 × 10(6) cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA. PMID:24798370

  10. Alveolar macrophage-derived vascular endothelial growth factor contributes to allergic airway inflammation in a mouse asthma model.

    PubMed

    Song, C; Ma, H; Yao, C; Tao, X; Gan, H

    2012-06-01

    Vascular endothelial growth factor (VEGF) is a potent proangiogenic factor that correlates with vascular permeability and remodelling in asthma. Recently, alveolar macrophages (AM) were shown to be an important source of VEGF during lung injury. Our previous studies demonstrated that AM are an important subset of macrophages in the initiation of asthmatic symptoms. Here, we further investigated whether AM-derived VEGF was required for allergic airway inflammation in asthma. In this study, we reported that the expression of VEGF in AM was significantly increased after allergen challenge. Depleting AM or neutralizing VEGF in alveolus prevented ovalbumin (OVA)-induced asthma-related inflammation by inhibiting the infiltration of inflammatory cells in the lung, reduced the level of the cytokines, IL-4, IL-5, and IL-13, in the bronchoalveolar lavage fluid (BALF) and decreased airway hyperresponsiveness (AHR). Moreover, the inhibition of miR-20b increased the protein level of VEGF in normal AM; conversely, increasing miR-20b in asthmatic AM resulted in decreased VEGF protein levels. These findings suggest that AM-derived VEGF is necessary for allergic airway inflammation in asthmatic mice and miR-20b negatively regulates this expression. PMID:22324377

  11. Pulmonary CD103 expression regulates airway inflammation in asthma.

    PubMed

    Bernatchez, Emilie; Gold, Matthew J; Langlois, Anick; Lemay, Anne-Marie; Brassard, Julyanne; Flamand, Nicolas; Marsolais, David; McNagny, Kelly M; Blanchet, Marie-Renee

    2015-04-15

    Although CD103(+) cells recently emerged as key regulatory cells in the gut, the role of CD103 ubiquitous expression in the lung and development of allergic airway disease has never been studied. To answer this important question, we evaluated the response of Cd103(-/-) mice in two separate well-described mouse models of asthma (ovalbumin and house dust mite extract). Pulmonary inflammation was assessed by analysis of bronchoalveolar lavage content, histology, and cytokine response. CD103 expression was analyzed on lung dendritic cells and T cell subsets by flow cytometry. Cd103(-/-) mice exposed to antigens developed exacerbated lung inflammation, characterized by increased eosinophilic infiltration, severe tissue inflammation, and altered cytokine response. In wild-type mice exposed to house dust mite, CD103(+) dendritic cells are increased in the lung and an important subset of CD4(+) T cells, CD8(+) T cells, and T regulatory cells express CD103. Importantly, Cd103(-/-) mice presented a deficiency in the resolution phase of inflammation, which supports an important role for this molecule in the control of inflammation severity. These results suggest an important role for CD103 in the control of airway inflammation in asthma. PMID:25681437

  12. Intranasal administration of CpG oligodeoxynucleotides reduces lower airway inflammation in a murine model of combined allergic rhinitis and asthma syndrome.

    PubMed

    Li, Hong-Tao; Zhang, Tian-Tuo; Chen, Zhuang-Gui; Ye, Jin; Liu, Hui; Zou, Xiao-Ling; Wang, Yan-Hong; Yang, Hai-Ling

    2015-09-01

    Given the relationship between allergic rhinitis (AR) and asthma, it can be hypothesized that reducing upper airway inflammation by targeting oligodeoxynucleotides with CpG motifs (CpG-ODN) specifically to the upper airway via intranasal administration in a small volume (10 μL) might improve lower airway (asthma) outcomes. The goal of this study was to investigate the therapeutic efficacy of 10 μL of intranasal versus intradermal administration of CpG-ODN in suppressing lower airway inflammation and methacholine-induced airway hyperreactivity (AHR) in mice subjected to ovalbumin (OVA)-induced combined allergic rhinitis and asthma syndrome (CARAS). OVA-sensitized BALB/c mice were subjected to upper-airway intranasal OVA exposure three times per week for 3 weeks. Then, CpG-ODN was administered to a subset of these mice 1h after intranasal OVA exposure, followed by five days of OVA aerosol challenges, thereby targeting OVA to the lower airways. Immunologic variables and nasal symptoms were evaluated. The results showed that the CARAS mice exhibited significant increases in bronchoalveolar lavage fluid (BALF) and splenocytes Th2-associated cytokine production, OVA-specific serum IgE, and AHR, as well as nose and lung pathologies. Intranasal administration of CpG-ODN significantly reduced Th2-associated cytokine production, the percentage of eosinophils in the BALF, the IL-4 and IL-5 concentrations in the supernatants of cultured OVA-challenged splenic lymphocytes, the serum OVA-specific IgE levels, the peribronchial inflammation score in the lungs, and the severity of nose pathology and nasal symptoms. However, intradermal administration of CpG-ODN did not significantly reduce the aforementioned parameters. In conclusion, intranasal treatment with CpG-ODN attenuated AR and significantly alleviated lower airway inflammation and AHR in the CARAS model. CpG-ODN therapy was more effective when administered intranasally than when administered intradermally. The current

  13. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice.

    PubMed

    Huang, Kuo-Liang; Lee, Yi-Hsin; Chen, Hau-Inh; Liao, Huang-Shen; Chiang, Bor-Luen; Cheng, Tsun-Jen

    2015-10-30

    Zinc oxide nanoparticles (ZnO NPs) have been widely used in industry. The metal composition of PM2.5 might contribute to the higher prevalence of asthma. To investigate the effects of ZnO NPs on allergic airway inflammation, mice were first exposed to different concentrations of ZnO NPs (0.1 mg/kg, 0.5 mg/kg) or to a combination of ZnO NPs and chicken egg ovalbumin (OVA) by oropharyngeal aspiration on day 0 and day 7 and then were sacrificed 5 days later. The subsequent time course of airway inflammation in the mice after ZnO NPs exposure was evaluated on days 1, 7, and 14. To further determine the role of zinc ions, ZnCl2 was also administered. The inflammatory cell count, cytokine levels in the bronchoalveolar lavage fluid (BALF), and lung histopathology were examined. We found significant neutrophilia after exposure to high-dose ZnO NPs on day 1 and significant eosinophilia in the BALF at 7 days. However, the expression levels of the T helper 2 (Th2) cytokines IL-4, IL-5, and IL-13 increased significantly after 24h of exposure to only ZnO NPs and then decreased gradually. These results suggested that ZnO NPs could cause eosinophilic airway inflammation in the absence of allergens. PMID:26010476

  14. Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model

    PubMed Central

    Kim, Byeong-Gon; Lee, Pureun-Haneul; Lee, Shin-Hwa; Kim, Young-En; Shin, Mee-Yong; Kang, Yena; Bae, Seong-Hwan; Kim, Min-Jung; Rhim, TaiYoun; Park, Choon-Sik

    2016-01-01

    Purpose Diesel exhaust particles (DEPs) can induce and trigger airway hyperresponsiveness (AHR) and inflammation. The aim of this study was to investigate the effect of long-term DEP exposure on AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. Methods BALB/c mice were exposed to DEPs 1 hour a day for 5 days a week for 3 months in a closed-system chamber attached to a ultrasonic nebulizer (low dose: 100 µg/m3 DEPs, high dose: 3 mg/m3 DEPs). The control group was exposed to saline. Enhanced pause was measured as an indicator of AHR. Animals were subjected to whole-body plethysmography and then sacrificed to determine the performance of bronchoalveolar lavage and histology. Results AHR was higher in the DEP group than in the control group, and higher in the high-dose DEP than in the low-dose DEP groups at 4, 8, and 12 weeks. The numbers of neutrophils and lymphocytes were higher in the high-dose DEP group than in the low-dose DEP group and control group at 4, 8, and 12 weeks. The levels of interleukin (IL)-5, IL-13, and interferon-γ were higher in the low-dose DEP group than in the control group at 12 weeks. The level of IL-10 was higher in the high-dose DEP group than in the control group at 12 weeks. The level of vascular endothelial growth factor was higher in the low-dose and high-dose DEP groups than in the control group at 12 weeks. The level of IL-6 was higher in the low-dose DEP group than in the control group at 12 weeks. The level of transforming growth factor-β was higher in the high-dose DEP group than in the control group at 4, 8, and 12 weeks. The collagen content and lung fibrosis in lung tissue was higher in the high-dose DEP group at 8 and 12 weeks. Conclusions These results suggest that long-term DEP exposure may increase AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. PMID:26922935

  15. Mechanisms to Suppress ILC2-induced Airway Inflammation.

    PubMed

    Kabata, Hiroki; Moro, Kazuyo; Koyasu, Shigeo; Fukunaga, Koichi; Asano, Koichiro; Betsuyaku, Tomoko

    2016-03-01

    Epithelial cell-derived cytokines such as IL-33 and IL-25 activate group 2 innate lymphoid cells (ILC2s), which are known to be important sources of type 2 cytokines such as IL-5 and IL-13 in a variety of asthma mouse models. Recently, human studies have also reported the involvement of ILC2s in asthma, as ILC2s are increased in peripheral blood and bronchoalveolar lavage fluid in patients with asthma. Compared with positive regulators such as IL-25 and IL-33, the mechanisms to suppress the ILC2s-induced inflammation remain unclear. Because ILC2s express various cytokine receptors, the function of ILC2s would likely be influenced by cytokines present around ILC2s in the lungs. We reported that IL-2, IL-7, and thymic stromal lymphopoietin (TSLP) induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) and promoted the proliferation of ILC2s and type 2 cytokine production when combined with IL-33. TSLP enhanced the expression of Bcl-xL, an antiapoptotic molecule, and caused corticosteroid-resistant airway inflammation via ILC2s in mice. Furthermore, pimozide, a STAT5 inhibitor, counteracted the TSLP-induced corticosteroid resistance and suppressed airway inflammation. As a negative regulator, we have found that IFN-γ and IL-27 suppressed the proliferation and type 2 cytokine production of ILC2s in vitro and in vivo. Interestingly, ILC2s-induced eosinophilic inflammation was more severe in IFN-γ receptor-deficient mice than in control mice. These findings suggest the importance of environmental cytokines for the regulation of ILC2s, and this would lead to a new approach to control airway inflammation in asthma. PMID:27027961

  16. Does airway colonization cause systemic inflammation in bronchiectasis?

    PubMed

    Ergan Arsava, Begüm; Cöplü, Lütfi

    2011-01-01

    Recent evidence suggests the presence of accompanying systemic inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease and asthma; however little is known regarding the presence of systemic inflammation in bronchiectasis. Although bronchiectasis was initially considered a stationary process, chronic bacterial colonization causes airway inflammation and progressive airway damage. The aim of this study was to determine the level of systemic inflammation in bronchiectasis patients and identify its relationship with colonization. White blood cell (WBC) count, erythrocyte sedimentation rate, serum C-reactive protein (CRP), plasma fibrinogen, interleukin-8, tumor necrosis factor-α and leptin levels were determined in clinically stable bronchiectasis patients (n= 50), and age- and sex-matched controls. Bronchiectasis patients were also analyzed according to colonization in sputum samples. There was no significant difference between bronchiectasis and control groups with respect to inflammatory markers but median (interquartile range-IQR) WBC count, CRP and fibrinogen levels were significantly higher in colonized patients (n= 14) when compared to non-colonized patients [8.2 (6.4-9.5) vs. 6.4 (5.8-7.7) x 103/mm3, 0.91 (0.45-1.29) vs. 0.42 (0.30-0.77) mg/dL, 433.5 (390.3-490.3) vs. 392.0 (327.0-416.0) mg/dL, respectively; p< 0.05]. There was no evidence supporting the presence of systemic inflammation in the overall bronchiectasis group when compared to controls. However, elevated WBC count, CRP and fibrinogen levels in patients with colonization suggest the presence of a systemic inflammatory response in clinically stable bronchiectasis patients with colonization. PMID:22233303

  17. Chrysin attenuates allergic airway inflammation by modulating the transcription factors T-bet and GATA-3 in mice.

    PubMed

    Du, Qiang; Gu, Xiaoyan; Cai, Jiankang; Huang, Mao; Su, Mei

    2012-07-01

    Chrysin, a flavonoid obtained from various natural sources, has been reported to possess anti-inflammatory, antitumor, antioxidant and anti-allergic activities. However, its anti-inflammatory and immunoregulatory activities in asthma animal models are poorly understood. In the present study, we examined the effects of chrysin on airway inflammation and the possible mechanisms through which it acts in a murine model of allergic asthma. BALB/c mice sensitized and challenged to ovalbumin (OVA) were administered intragastrically with chrysin at a dose of 50 mg/kg daily. Chrysin significantly suppressed OVA-induced airway hyperresponsiveness (AHR) to acetylcholine chloride (Ach). Chrysin administration significantly inhibited the total inflammatory cell and eosinophil counts in bronchoalveolar lavage fluid (BALF) and total immunoglobulin E (IgE) levels in serum. Histological examination of lung tissue demonstrated that chrysin significantly attenuated allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells in the airway. In addition, chrysin triggered a switch of the immune response to allergens towards a T-helper type 1 (Th1) profile by modulating the transcription factors T-bet and GATA-3 in allergic mice. These data suggest that chrysin exhibits anti-inflammatory and immunoregulatory properties and provides new insights into the immunopharmacological role of chrysin in terms of its effects in a murine model of asthma. PMID:22552848

  18. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    PubMed Central

    Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  19. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  20. Inhalation of chlorine causes long-standing lung inflammation and airway hyperresponsiveness in a murine model of chemical-induced lung injury.

    PubMed

    Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2013-01-01

    Chlorine is highly irritating when inhaled, and is a common toxic industrial gas causing tissue damage in the airways followed by an acute inflammatory response. In this study, we investigated mechanisms by which chlorine exposure may cause reactive airways dysfunction syndrome (RADS) and we examined the dose-dependency of the development of symptoms. Mice were exposed to 50 or 200 ppm Cl(2) during a single 15 min exposure in a nose-only container. The experiment terminated 2, 6, 12, 24, 48, 72 h and 7, 14, 28 and 90 days post exposure. Inflammatory cell counts in bronchoalveolar lavage (BAL), secretion of inflammatory mediators in BAL, occurrence of lung edema and histopathological changes in lung tissue was analyzed at each time-point. Airway hyperresponsiveness (AHR) was studied after 24 and 48 h and 7, 14, 28 and 90 days. The results showed a marked acute response at 6h (50 ppm) and 12h (200 ppm) post exposure as indicated by induced lung edema, increased airway reactivity in both central and peripheral airways, and an airway inflammation dominated by macrophages and neutrophils. The inflammatory response declined rapidly in airways, being normalized after 48 h, but inflammatory cells were sustained in lung tissue for at least seven days. In addition, a sustained AHR was observed for at least 28 days. In summary, this mouse model of chlorine exposure shows delayed symptoms of hyperreactive airways similar to human RADS. We conclude that the model can be used for studies aimed at improved understanding of adverse long-term responses following inhalation of chlorine. PMID:23146759

  1. CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation.

    PubMed

    Lukacs, Nicholas W; Berlin, Aaron A; Franz-Bacon, Karin; Sásik, Roman; Sprague, L James; Ly, Tai Wei; Hardiman, Gary; Boehme, Stefen A; Bacon, Kevin B

    2008-11-01

    Prostaglandin D(2), the ligand for the G protein-coupled receptors DP1 and CRTH2, has been implicated in the pathogenesis of the allergic response in diseases such as asthma, rhinitis, and atopic dermatitis. This prostanoid also fulfills a number of physiological, anti-inflammatory roles through its receptor DP1. We investigated the role of PGD(2) and CRTH2 in allergic pulmonary inflammation by using a highly potent and specific antagonist of CRTH2. Administration of this antagonist ameliorated inflammation caused by either acute or subchronic sensitization using the cockroach egg antigen. Gene expression and ELISA analysis revealed that there was reduced proinflammatory cytokine mRNA or protein produced, as well as a wide array of genes associated with the Th2-type proinflammatory response. Importantly, the CRTH2 antagonist reduced antigen-specific IgE, IgG1, and IgG2a antibody levels as well as decreased mucus deposition and leukocyte infiltration in the large airways. Collectively, these findings suggest that the PGD(2)-CRTH2 activation axis has a pivotal role in mediating the inflammation and the underlying immune response in a T cell-driven model of allergic airway inflammation. PMID:18757520

  2. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions.

    PubMed

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naïve T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and helminth infection. PMID:21440530

  3. Airway inflammation, airway responsiveness and cough before and after inhaled budesonide in patients with eosinophilic bronchitis.

    PubMed

    Brightling, C E; Ward, R; Wardlaw, A J; Pavord, I D

    2000-04-01

    Eosinophilic bronchitis is a common cause of chronic cough, characterized by sputum eosinophilia similar to that seen in asthma, but unlike asthma the patients have no objective evidence of variable airflow obstruction or airway hyperresponsiveness. The reason for the different functional associations is unclear. The authors have tested the hypothesis that in eosinophilic bronchitis the inflammation is mainly localized in the upper airway. In an open study the authors measured the lower (provocative concentration causing a 20% fall in forced expiratory volume in one second (PC20)) and upper (PC25 MIF50) airway responsiveness to histamine, lower and upper airway inflammation using induced sputum and nasal lavage, in II patients with eosinophilic bronchitis. The authors assessed changes in these measures and in cough reflex sensitivity to capsaicin and cough severity after 400 microg of inhaled budesonide for 4 weeks. A nasal eosinophilia was present in only three patients with one having upper airway hyperresponsiveness. Following treatment with inhaled corticosteroids the geometric mean sputum eosinophil count decreased from 12.8% to 2.9% (mean difference 4.4-fold, 95% confidence interval (CI) 2.14-10.02), the mean +/- sem cough visual analogue score on a 100 mm scale decreased from 27.2 +/- 6.6 mm to 12.6 +/- 5.7 mm (mean difference 14.6, 95% CI 9.1-20.1) and the cough sensitivity assessed as the capsaicin concentration required to cause two coughs (C2) and five coughs (C5) improved (C2 mean difference 0.75 doubling concentrations, 95% CI 0.36-1.1; C5 mean difference 1.3 doubling concentration, 95% CI 0.6-2.1). There was a significant positive correlation between the fold change in sputum eosinophil count and doubling dose change in C5 after inhaled budesonide (r=0.61). It is concluded that upper airway inflammation is not prominent in eosinophilic bronchitis and that inhaled budesonide improves the sputum eosinophilia, cough severity and sensitivity suggesting a

  4. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    SciTech Connect

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  5. Protective Effects of the Polyphenol Sesamin on Allergen-Induced TH2 Responses and Airway Inflammation in Mice

    PubMed Central

    Lin, Ching-Huei; Shen, Mei-Lin; Zhou, Ning; Lee, Chen-Chen; Kao, Shung-Te; Wu, Dong Chuan

    2014-01-01

    Allergic asthma is a lifelong airway condition that affects people of all ages. In recent decades, asthma prevalence continues to increase globally, with an estimated number of 250,000 annual deaths attributed to the disease. Although inhaled corticosteroids and β-adrenergic receptor agonists are the primary therapeutic avenues that effectively reduce asthma symptoms, profound side effects may occur in patients with long-term treatments. Therefore, development of new therapeutic strategies is needed as alternative or supplement to current asthma treatments. Sesamin is a natural polyphenolic compound with strong anti-oxidative effects. Several studies have reported that sesamin is effective in preventing hypertension, thrombotic tendency, and neuroinflammation. However, it is still unknown whether sesamin can reduce asthma-induced allergic inflammation and airway hyperresponsiveness (AHR). Our study has revealed that sesamin exhibited significant anti-inflammatory effects in ovalbumin (OVA)-induced murine asthma model. We found that treatments with sesamin after OVA sensitization and challenge significantly decreased expression levels of interleukin-4 (IL-4), IL-5, IL-13, and serum IgE. The numbers of total inflammatory cells and eosinophils in BALF were also reduced in the sesamin-treated animals. Histological results demonstrated that sesamin attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, mucus occlusion, and MUC5AC expression in the lung tissue. Mice administered with sesamin showed limited increases in AHR compared with mice receiving vehicle after OVA challenge. OVA increased phosphorylation levels of IκB-α and nuclear expression levels of NF-κB, both of which were reversed by sesamin treatments. These data indicate that sesamin is effective in treating allergic asthma responses induced by OVA in mice. PMID:24755955

  6. Ambient ozone causes upper airways inflammation in children

    SciTech Connect

    Frischer, T.M.; Kuehr, J.; Pullwitt, A.; Meinert, R.; Forster, J.; Studnicka, M.; Koren, H. )

    1993-10-01

    Ozone constitutes a major air pollutant in Western Europe. During the summer national air quality standards are frequently exceeded, which justifies concern about the health effects of ozone at ambient concentrations. We studied upper airways inflammation after ozone exposure in 44 children by repeated nasal lavages from May to October 1991. During this time period five to eight lavages were performed for each child. On 14 days following high ozone exposure (daily maximum > or = 180 micrograms/m3) 148 nasal lavages were performed, and on 10 days following low ozone exposure (daily maximum < or = 140 micrograms/m3) 106 nasal lavages were performed. A significant increase of intra-individual mean polymorphonuclear leukocytes (PMN) counts from low ozone days (median, 20.27 x 10(3)) to high ozone days (median, 27.38 x 10(3); p < 0.01) was observed. Concomitant with a decrease of ozone concentrations in the fall mean PMN counts showed a downward trend. Linear regression analysis of log-PMN counts yielded a significant effect for ozone (p = 0.017). In a subsample humoral markers of inflammation were measured for each child's highest and lowest exposure. A significant increase was observed for eosinophilic cationic protein (median, 77.39 micrograms/L on low ozone days versus 138.6 micrograms/L on high ozone days; p < 0.05). Thus we conclude that ozone at ambient concentrations initiates a reversible inflammatory response of the upper airways in normal children.

  7. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  8. Myeloid Differentiation Factor 88–Dependent Signaling Is Critical for Acute Organic Dust–Induced Airway Inflammation in Mice

    PubMed Central

    Bauer, Christopher; Kielian, Tammy; Wyatt, Todd A.; Romberger, Debra J.; West, William W.; Gleason, Angela M.

    2013-01-01

    Organic dust exposure within agricultural environments results in airway diseases. Toll-like receptor 2 (TLR2) and TLR4 only partly account for the innate response to these complex dust exposures. To determine the central pathway in mediating complex organic dust–induced airway inflammation, this study targeted the common adaptor protein, myeloid differentiation factor 88 (MyD88), and investigated the relative contributions of receptors upstream from this adaptor. Wild-type, MyD88, TLR9, TLR4, IL-1 receptor I (RI), and IL-18R knockout (KO) mice were challenged intranasally with organic dust extract (ODE) or saline, according to an established protocol. Airway hyperresponsiveness (AHR) was assessed by invasive pulmonary measurements. Bronchoalveolar lavage fluid was collected to quantitate leukocyte influx and cytokine/chemokine (TNF-α, IL-6, chemokine [C-X-C motif] ligands [CXCL1 and CXCL2]) concentrations. Lung tissue was collected for histopathology. Lung cell apoptosis was determined by a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and lymphocyte influx and intercellular adhesion molecule–1 (ICAM-1) expression were assessed by immunohistochemistry. ODE-induced AHR was significantly attenuated in MyD88 KO mice, and neutrophil influx and cytokine/chemokine production were nearly absent in MyD88 KO animals after ODE challenges. Despite a near-absent airspace inflammatory response, lung parenchymal inflammation was increased in MyD88 KO mice after repeated ODE exposures. ODE-induced epithelial-cell ICAM-1 expression was diminished in MyD88 KO mice. No difference was evident in the small degree of ODE-induced lung-cell apoptosis. Mice deficient in TLR9, TLR4, and IL-18R, but not IL-1IR, demonstrated partial protection against ODE-induced neutrophil influx and cytokine/chemokine production. Collectively, the acute organic dust–induced airway inflammatory response is highly dependent on MyD88 signaling, and is dictated, in part, by

  9. Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late-phase airway obstruction in monkeys.

    PubMed Central

    Gundel, R H; Wegner, C D; Torcellini, C A; Clarke, C C; Haynes, N; Rothlein, R; Smith, C W; Letts, L G

    1991-01-01

    This study examines the role of endothelial leukocyte adhesion molecule-1 (ELAM-1) in the development of the acute airway inflammation (cell influx) and late-phase airway obstruction in a primate model of extrinsic asthma. In animals sensitive to antigen, a single inhalation exposure induced the rapid expression of ELAM-1 (6 h) exclusively on vascular endothelium that correlated with the influx of neutrophils into the lungs and the onset of late-phase airway obstruction. In contrast, basal levels of ICAM-1 was constitutively expressed on vascular endothelium and airway epithelium before antigen challenge. After the single antigen exposure, changes in ICAM-1 expression did not correlate with neutrophil influx or the change in airway caliber. This was confirmed by showing that pretreatment with a monoclonal antibody to ICAM-1 did not inhibit the acute influx of neutrophils associated with late-phase airway obstruction, whereas a monoclonal antibody to ELAM-1 blocked both the influx of neutrophils and the late-phase airway obstruction. This study demonstrates a functional role for ELAM-1 in the development of acute airway inflammation in vivo. We conclude that, in primates, the late-phase response is the result of an ELAM-1 dependent influx of neutrophils. Therefore, the regulation of ELAM-1 expression may provide a novel approach to controlling the acute inflammatory response, and thereby, affecting airway function associated with inflammatory disorders, including asthma. Images PMID:1717514

  10. Assessment of Airway Microbiota and Inflammation in Cystic Fibrosis Using Multiple Sampling Methods

    PubMed Central

    Wagner, Brandie D.; Robertson, Charles E.; Stevens, Mark J.; Szefler, Stanley J.; Accurso, Frank J.; Sagel, Scott D.; Harris, J. Kirk

    2015-01-01

    Rationale: Oropharyngeal (OP) swabs and induced sputum (IS) are used for airway bacteria surveillance in nonexpectorating children with cystic fibrosis (CF). Molecular analyses of these airway samples detect complex microbial communities. However, the optimal noninvasive sampling approach for microbiota analyses and the clinical relevance of microbiota, particularly its relationship to airway inflammation, is not well characterized. Objectives: The goals of this study were to compare molecular analyses of concurrently collected saliva, OP swabs, IS, and expectorated sputum (ES) from children with CF and to determine the association between microbiota, lung function, and airway inflammation. Methods: Saliva, OP swabs, IS, and ES were collected from 16 children with CF. Spirometry was performed. Measurements and Main Results: Respiratory and saliva samples (n = 61) were sequenced for bacterial microbial communities, and total and CF-specific bacterial quantitative PCR assays were performed. Airway samples underwent conventional culture for CF-specific pathogens. Neutrophil elastase, IL-1β, IL-1ra, IL-6, Il-8, TNF-α, and vascular endothelial growth factor were measured in ES and IS. Sequencing results from individual subjects were similar across samples, with greater between-subject than within-subject variation. However, Pseudomonas and Staphylococcus were detected in higher relative abundance from lower airways (ES and IS) compared with paired upper airway samples (OP and saliva). Pseudomonas, Staphylococcus, and Enterobacteriaceae correlated with increased airway inflammation. Divergence between microbiota in upper airway compared with lower airway samples, indicating greater differences between communities, was associated with increased sputum neutrophil elastase. Conclusions: Bacteria detected in IS samples resemble ES samples, whereas OP samples may underrepresent bacteria associated with airway inflammation. Divergence of lower airway communities from

  11. Pristimerin attenuates ovalbumin-induced allergic airway inflammation in mice.

    PubMed

    Jin, Yingli; Wang, Yujia; Zhao, Danning; Ma, Sitong; Lu, Jing; Shuang, Guan

    2016-06-01

    Pristimerin has been shown to possess antiinflammatory activity. However, its potential use for asthma induced by airway inflammation has not yet been studied. First, we established a ovalbumin (OVA)-induced allergic asthma mice model. BALB/c mice were immunized and challenged by OVA. Treatment with pristimerin caused a marked reduction in the levels of OVA-specific IgE, immune cells, and IL-4, IL-5, IL-13 secretion. Histological studies using H&E staining were used to study the alterations in lung tissue. These results were similar to those obtained with dexamethasone treatment. We then investigated which signal transduction mechanisms could be implicated in pristimerin activity by Western blot. The data showed that pristimerin could inhibit MAPKs and NF-κB inflammatory pathways. PMID:27098091

  12. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  13. Immunolocalization of NLRP3 Inflammasome in Normal Murine Airway Epithelium and Changes following Induction of Ovalbumin-Induced Airway Inflammation.

    PubMed

    Tran, Hai B; Lewis, Martin D; Tan, Lor Wai; Lester, Susan E; Baker, Leonie M; Ng, Jia; Hamilton-Bruce, Monica A; Hill, Catherine L; Koblar, Simon A; Rischmueller, Maureen; Ruffin, Richard E; Wormald, Peter J; Zalewski, Peter D; Lang, Carol J

    2012-01-01

    Little is known about innate immunity and components of inflammasomes in airway epithelium. This study evaluated immunohistological evidence for NLRP3 inflammasomes in normal and inflamed murine (Balb/c) airway epithelium in a model of ovalbumin (OVA) induced allergic airway inflammation. The airway epithelium of control mice exhibited strong cytoplasmic staining for total caspase-1, ASC, and NLRP3, whereas the OVA mice exhibited strong staining for active caspase-1, with redistribution of caspase-1, IL-1β and IL-18, indicating possible activation of the NLRP3 inflammasome. Active caspase-1, NLRP3, and other inflammasome components were also detected in tissue eosinophils from OVA mice, and may potentially contribute to IL-1β and IL-18 production. In whole lung, inRNA expression of NAIP and procaspase-1 was increased in OVA mice, whereas NLRP3, IL-1β and IL-18 decreased. Some OVA-treated mice also had significantly elevated and tightly correlated serum levels of IL-1β and TNFα. In cultured normal human bronchial epithelial cells, LPS priming resulted in a significant increase in NLRP3 and II-lp protein expression. This study is the first to demonstrate NLRP3 inflammasome components in normal airway epithelium and changes with inflammation. We propose activation and/or luminal release of the inflammasome is a feature of allergic airway inflammation which may contribute to disease pathogenesis. PMID:22523501

  14. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy E.; Coffey, Amy; Antunes, Mariana; Robinson, Kristen L.; Mitsialis, S. Alex; Kourembanas, Stella; Thane, Kristen; Hoffman, Andrew M.; McKenna, David H.; Rocco, Patricia R.M.

    2015-01-01

    An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. Significance There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the

  15. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  16. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel and Neurogenic Inflammation in Pathogenesis of Asthma

    PubMed Central

    Yang, Hang; Li, ShuZhuang

    2016-01-01

    Asthma is characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR), and it affects 300 million people worldwide. However, our current understanding of the molecular mechanisms that underlie asthma remains limited. Recent studies have suggested that transient receptor potential ankyrin 1 (TRPA1), one of the transient receptor potential cation channels, may be involved in airway inflammation in asthma. The present review discusses the relationship between TRPA1 and neurogenic inflammation in asthma, hoping to enhance our understanding of the mechanisms of airway inflammation in asthma. PMID:27539812

  17. Effect of endothelin antagonism on the production of cytokines in eosinophilic airway inflammation.

    PubMed

    Finsnes, F; Lyberg, T; Christensen, G; Skjønsberg, O H

    2001-04-01

    Endothelin (ET)-1 has been launched as an important mediator in bronchial asthma, which is an eosinophilic airway inflammation. However, the interplay between ET-1 and other proinflammatory mediators during the development of airway inflammation has not been elucidated. We wanted to study 1) whether the production of ET-1 precedes the production of other proinflammatory mediators and 2) whether ET-1 stimulates the production of these mediators within the airways. These hypotheses were studied during the development of an eosinophilic airway inflammation in rats. The increase in ET-1 mRNA level in lung tissue preceded the increase in mRNA levels of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-8. Treatment of the animals with the ET receptor antagonist bosentan resulted in a substantial decrease in the concentrations of tumor necrosis factor-alpha, IL-4, IL-1beta, interferon-gamma, and ET-1 in bronchoalveolar lavage fluid. In conclusion, the synthesis of ET-1 as measured by increased mRNA level precedes the synthesis of other proinflammatory cytokines of importance for the development of an eosinophilic airway inflammation, and ET antagonism inhibits the production of these mediators within the airways. Whether treatment with ET antagonists will prove beneficial for patients with eosinophilic airway inflammations like bronchial asthma is not yet known. PMID:11238005

  18. Inflammation-induced plasticity of the afferent innervation of the airways.

    PubMed Central

    Carr, M J; Undem, B J

    2001-01-01

    The activation of primary afferent neurons that innervate the airways leads to homeostatic and defensive reflexes. The anatomic and physiologic characteristics of these afferent fibers do not appear to be static properties but rather appear to change rapidly in response to inflammation. The threshold for activation of airway afferent neurons to various stimuli, for example, is not fixed; these fibers can be become sensitized during inflammation. A subset of nociceptive-like (C-fibers) airway afferent neurons not only participates in centrally mediated reflexes but is also thought to release neuropeptides at their peripheral terminals, leading to neurogenic inflammation. An increase in the content of tachykinins is commonly seen in inflamed tissues, and there is accumulating evidence that irritation and inflammation of the airways is associated with the induction of tachykinin synthesis in non-nociceptive airway afferent fibers that under normal conditions do not contain neuropeptides. The release of neurokinins from the peripheral terminals in the airways and their central terminals in the brain stem may contribute to the symptoms of inflammatory airway diseases. Elevated release of neurokinins from peripheral terminals may promote local inflammatory responses, and the release of neurokinins in the brainstem, together with inflammation-induced increases in the excitability of afferent fibers, may culminate in altered visceral autonomic reflex activity, changes in breathing pattern, and cough. PMID:11544165

  19. Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model.

    PubMed

    Wei, Ying; Liu, Baojun; Sun, Jing; Lv, Yubao; Luo, Qingli; Liu, Feng; Dong, Jingcheng

    2015-06-01

    Icariin which is a flavonoid glucoside isolated from Epimedium brevicornu Maxim, has been reported to have anti-osteoporotic, anti-inflammatory and anti-depressant-like activities. In this study, we observed the effect of icariin on airway inflammation of ovalbumin (OVA)-induced murine asthma model and the associated regulatory mode on T-helper (Th)17 and regulatory T (Treg) cell function. Our data revealed that chronic OVA inhalation induced a dramatic increase in airway resistance (RL) and decrease in the lung dynamic compliance (Cdyn), and icariin and DEX treatment caused significant attenuation of such airway hyperresponsiveness (AHR). BALF cell counts demonstrated that icariin and DEX led to a prominent reduction in total leukocyte as well as lymphocyte, eosinophil, neutrophil, basophil and monocyte counts. Histological analysis results indicated that icariin and DEX alleviated the inflammatory cells infiltrating into the peribronchial tissues and goblet cells hyperplasia and mucus hyper-production. Flow cytometry test demonstrated that icariin or DEX administration resulted in a significant percentage reduction in CD4+RORγt+ T cells and elevation of CD4+Foxp3+ T cells in BALF. Furthermore, icariin or DEX caused a significant reduction in IL-6, IL-17 and TGF-β level in BALF. Unfortunately, icariin had no effect on IL-10 level in BALF. Western blot assay found that icariin or DEX suppressed RORγt and promoted Foxp3 expression in the lung tissue. qPCR analysis revealed that icariin and DEX resulted in a notable decrease in RORγt and increase in Foxp3 mRNA expression in isolated spleen CD4+ T cell. In conclusion, our results suggested that icariin was effective in the attenuation of AHR and chronic airway inflammatory changes in OVA-induced murine asthma model, and this effect was associated with regulation of Th17/Treg responses, which indicated that icariin may be used as a potential therapeutic method to treat asthma with Th17/Treg imbalance phenotype

  20. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation. PMID:26086549

  1. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma.

    PubMed

    Caceres, Ana I; Brackmann, Marian; Elia, Maxwell D; Bessac, Bret F; del Camino, Donato; D'Amours, Marc; Witek, JoAnn S; Fanger, Chistopher M; Chong, Jayhong A; Hayward, Neil J; Homer, Robert J; Cohn, Lauren; Huang, Xiaozhu; Moran, Magdalene M; Jordt, Sven-Eric

    2009-06-01

    Asthma is an inflammatory disorder caused by airway exposures to allergens and chemical irritants. Studies focusing on immune, smooth muscle, and airway epithelial function revealed many aspects of the disease mechanism of asthma. However, the limited efficacies of immune-directed therapies suggest the involvement of additional mechanisms in asthmatic airway inflammation. TRPA1 is an irritant-sensing ion channel expressed in airway chemosensory nerves. TRPA1-activating stimuli such as cigarette smoke, chlorine, aldehydes, and scents are among the most prevalent triggers of asthma. Endogenous TRPA1 agonists, including reactive oxygen species and lipid peroxidation products, are potent drivers of allergen-induced airway inflammation in asthma. Here, we examined the role of TRPA1 in allergic asthma in the murine ovalbumin model. Strikingly, genetic ablation of TRPA1 inhibited allergen-induced leukocyte infiltration in the airways, reduced cytokine and mucus production, and almost completely abolished airway hyperreactivity to contractile stimuli. This phenotype is recapitulated by treatment of wild-type mice with HC-030031, a TRPA1 antagonist. HC-030031, when administered during airway allergen challenge, inhibited eosinophil infiltration and prevented the development of airway hyperreactivity. Trpa1(-/-) mice displayed deficiencies in chemically and allergen-induced neuropeptide release in the airways, providing a potential explanation for the impaired inflammatory response. Our data suggest that TRPA1 is a key integrator of interactions between the immune and nervous systems in the airways, driving asthmatic airway inflammation following inhaled allergen challenge. TRPA1 may represent a promising pharmacological target for the treatment of asthma and other allergic inflammatory conditions. PMID:19458046

  2. Bystander immunotherapy as a strategy to control allergen-driven airway inflammation.

    PubMed

    Navarro, S; Lazzari, A; Kanda, A; Fleury, S; Dombrowicz, D; Glaichenhaus, N; Julia, V

    2015-07-01

    Allergic asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), lung infiltration of Th2 cells, and high levels of IgE. To date, allergen-specific immunotherapy (SIT) is the only treatment that effectively alleviates clinical symptoms and has a long-term effect after termination. Unfortunately, SIT is unsuitable for plurisensitized patients, and highly immunogenic allergens cannot be used. To overcome these hurdles, we sought to induce regulatory CD4(+) T cells (Treg) specific to an exogenous antigen that could be later activated as needed in vivo to control allergic responses. We have established an experimental approach in which mice tolerized to ovalbumin (OVA) were sensitized to the Leishmania homolog of receptors for activated c kinase (LACK) antigen, and subsequently challenged with aerosols of LACK alone or LACK and OVA together. Upon OVA administration, AHR and allergic airway responses were strongly reduced. OVA-induced suppression was mediated by CD25(+) Treg, required CTLA-4 and ICOS signaling and resulted in decreased numbers of migrating airway dendritic cells leading to a strong impairment in the proliferation of allergen-specific Th2 cells. Therefore, inducing Treg specific to a therapeutic antigen that could be further activated in vivo may represent a safe and novel curative approach for allergic asthma. PMID:25425267

  3. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice.

    PubMed

    Kasahara, David I; Mathews, Joel A; Park, Chan Y; Cho, Youngji; Hunt, Gabrielle; Wurmbrand, Allison P; Liao, James K; Shore, Stephanie A

    2015-10-01

    Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction. PMID:26276827

  4. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  5. Hyperresponsiveness in the human nasal airway: new targets for the treatment of allergic airway disease.

    PubMed Central

    Turner, P J; Foreman, J C

    1999-01-01

    Allergic rhinitis is a condition which affects over 15% of the population in the United Kingdom. The pathological process involves two stages: nasal inflammation, and the development of nasal airway hyperresponsiveness (AHR) to allergen and a number of other stimuli. This results in the amplification of any subsequent allergic reaction, contributing to the chronic allergic state. A number of different hypotheses have been proposed to explain the underlying mechanism of AHR, including a role for eosinophil-derived proteins, free radicals and neuropeptides. While there may be a number of independent pathways which can result in AHR, evidence obtained from both animal models and in vivo experiments in humans indicate that some mediators may interact with one another, resulting in AHR. Further research into these interactions may open new avenues for the pharmacological treatment of chronic allergic rhinitis, and possibly other allergic airway diseases. PMID:10704051

  6. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    PubMed

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  7. JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis.

    PubMed

    Wu, Hui-Mei; Shen, Qi-Ying; Fang, Lei; Zhang, Shi-Hai; Shen, Pei-Ting; Liu, Ya-Jing; Liu, Rong-Yu

    2016-05-01

    Toll-like receptors (TLRs) play pivotal role in the pathogenesis of allergic airway diseases such as asthma. TLR9 is one of the most extensively studied TLRs as an approach to treat asthma. In this study, we investigated the role of TLR9 in the allergic airway inflammation and the underlying mechanism. Wild-type (WT) mice and TLR9(-/-) mice were sensitized and challenged with OVA to establish allergic airway disease model. We found that the expression of TLR9 was elevated concomitantly with airway inflammation post-OVA challenge, and TLR9 deficiency effectively inhibited airway inflammation, including serum OVA-specific immunoglobulin E (IgE), pulmonary inflammatory cell recruitment, mucus secretion, and bronchoalveolar lavage fluid (BALF) inflammatory cytokine production. Meanwhile, the protein expression of hydroxyindole-o-methyltransferase (HIOMT) in lung tissues, the level of melatonin in serum, and BALF were reduced in OVA-challenged WT mice, while these reductions were significantly restored by TLR9 deficiency. Additionally, we showed that although TLR9 deficiency had no effect on OVA-induced phosphorylation of JNK, inhibition of JNK by specific inhibitor SP600125 significantly decreased OVA-induced expression of TLR9, suggesting that JNK is the upstream signal molecular of TLR9. Furthermore, SP600125 treatment promoted resolution of allergic airway inflammation in OVA-challenged WT mice, but not further ameliorated allergic airway inflammation in OVA-challenged TLR9(-/-) mice. Similarly, SP600125 significantly restored the protein expression of HIOMT and the level of melatonin in OVA-challenged WT mice, while such effect was not further enhanced by TLR9 deficiency. Collectively, our results indicated that JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis. PMID:26914888

  8. The impact of vitamin D on asthmatic human airway smooth muscle.

    PubMed

    Hall, Sannette C; Fischer, Kimberly D; Agrawal, Devendra K

    2016-02-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624

  9. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men. PMID:26872295

  10. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology

    PubMed Central

    Ozier, Annaïg; Allard, Benoit; Bara, Imane; Girodet, Pierre-Olivier; Trian, Thomas; Marthan, Roger; Berger, Patrick

    2011-01-01

    Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function. PMID:22220184

  11. CRAC ion channels and airway defense reflexes in experimental allergic inflammation.

    PubMed

    Sutovska, M; Adamkov, M; Kocmalova, M; Mesarosova, L; Oravec, M; Franova, S

    2013-01-01

    Calcium release-activated calcium channels (CRAC) play unambiguous role in secretory functions of mast cells, T cells, and eosinophils. Less knowledge exists about the role of CRAC, widely distributed in airway smooth muscle (ASM) cells, in airway contractility. The presented study seeks to determine the possible participation of CRAC in ASM-based inflammatory airway disorders in guinea pigs. The acute and long-term administration (14 days) of the CRAC antagonist 3-fluoropyridine-4-carboxylic acid was used to examine the ASM contractility and associated reflexes in the guinea pig model of allergic airway inflammation by the following methods: (i) evaluation of specific airway resistance in vivo; (ii) evaluation of the contractile response of isolated ASM strips in vitro; and (iii) citric acid-induced cough reflex; (iv) measurement of exhaled NO levels (E(NO)). Allergic airway inflammation was induced by repetitive exposure of guinea pigs to ovalbumin (10(-6) M). The CRAC antagonist administered in a single dose to guinea pigs with confirmed allergic inflammation significantly reduced the cough response and the airway resistance, which corresponded with the findings in vitro. Long-term application of the CRAC antagonist had more strongly expressed effects. The results confirm the role of CRAC in the pathophysiology of experimental animal asthma and have a potential meaning for anti-asthma therapy. PMID:22836617

  12. S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity

    PubMed Central

    Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina

    2013-01-01

    Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192

  13. Strain-dependent activation of NF-kappaB in the airway epithelium and its role in allergic airway inflammation.

    PubMed

    Alcorn, John F; Ckless, Karina; Brown, Amy L; Guala, Amy S; Kolls, Jay K; Poynter, Matthew E; Irvin, Charles G; van der Vliet, Albert; Janssen-Heininger, Yvonne M W

    2010-01-01

    NF-kappaB activation in the airway epithelium has been established as a critical pathway in ovalbumin (Ova)-induced airway inflammation in BALB/c mice (Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YM. J Immunol 173: 7003-7009, 2004). BALB/c mice are susceptible to the development of allergic airway disease, whereas other strains of mice, such as C57BL/6, are considered more resistant. The goal of the present study was to determine the proximal signals required for NF-kappaB activation in the airway epithelium in allergic airway disease and to unravel whether these signals are strain-dependent. Our previous studies, conducted in the BALB/c mouse background, demonstrated that transgenic mice expressing a dominant-negative version of IkappaBalpha in the airway epithelium (CC10-IkappaBalpha(SR)) were protected from Ova-induced inflammation. In contrast to these earlier observations, we demonstrate here that CC10-IkappaBalpha(SR) transgenic mice on the C57BL/6 background were not protected from Ova-induced allergic airway inflammation. Consistent with this finding, Ova-induced nuclear localization of the RelA subunit of NF-kappaB was not observed in C57BL/6 mice, in contrast to the marked nuclear presence of RelA in BALB/c mice. Evaluation of cytokine profiles in bronchoalveolar lavage demonstrated elevated expression of TNF-alpha in BALB/c mice compared with C57BL/6 mice after an acute challenge with Ova. Finally, neutralization of TNF-alpha by a blocking antibody prevented nuclear localization of RelA in BALB/c mice after Ova challenge. These data suggest that the mechanism of response of the airway epithelium of immunized C57BL/6 mice to antigen challenge is fundamentally different from that of immunized BALB/c mice and highlight the potential importance of TNF-alpha in regulating epithelial NF-kappaB activation in allergic airway disease. PMID:19897746

  14. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes

    SciTech Connect

    Han, Sung Gu; Han, Seong-Su; Toborek, Michal; Hennig, Bernhard

    2012-06-01

    Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCB 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants. ► We

  15. Acute exposure to silica nanoparticles aggravate airway inflammation: different effects according to surface characteristics

    PubMed Central

    Park, Hye Jung; Sohn, Jung-Ho; Kim, Yoon-Ju; Park, Yoon Hee; Han, Heejae; Park, Kyung Hee; Lee, Kangtaek; Choi, Hoon; Um, Kiju; Choi, In-Hong; Park, Jung-Won; Lee, Jae-Hyun

    2015-01-01

    Silica nanoparticles (SNPs) are widely used in many scientific and industrial fields despite the lack of proper evaluation of their potential toxicity. This study examined the effects of acute exposure to SNPs, either alone or in conjunction with ovalbumin (OVA), by studying the respiratory systems in exposed mouse models. Three types of SNPs were used: spherical SNPs (S-SNPs), mesoporous SNPs (M-SNPs), and PEGylated SNPs (P-SNPs). In the acute SNP exposure model performed, 6-week-old BALB/c female mice were intranasally inoculated with SNPs for 3 consecutive days. In the OVA/SNPs asthma model, the mice were sensitized two times via the peritoneal route with OVA. Additionally, the mice endured OVA with or without SNP challenges intranasally. Acute SNP exposure induced significant airway inflammation and airway hyper-responsiveness, particularly in the S-SNP group. In OVA/SNPs asthma models, OVA with SNP-treated group showed significant airway inflammation, more than those treated with only OVA and without SNPs. In these models, the P-SNP group induced lower levels of inflammation on airways than both the S-SNP or M-SNP groups. Interleukin (IL)-5, IL-13, IL-1β and interferon-γ levels correlated with airway inflammation in the tested models, without statistical significance. In the mouse models studied, increased airway inflammation was associated with acute SNPs exposure, whether exposed solely to SNPs or SNPs in conjunction with OVA. P-SNPs appear to be relatively safer for clinical use than S-SNPs and M-SNPs, as determined by lower observed toxicity and airway system inflammation. PMID:26183169

  16. Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma

    PubMed Central

    Lee, Hwa Young; Rhee, Chin Kook; Kang, Ji Young; Park, Chan Kwon; Lee, Sook Young; Kwon, Soon Suk; Kim, Young Kyoon; Yoon, Hyoung Kyu

    2016-01-01

    Background/Aims: Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. Methods: We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. Results: Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-κB. Conclusions: These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-κB pathways. PMID:26767862

  17. Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation.

    PubMed

    McAlees, J W; Whitehead, G S; Harley, I T W; Cappelletti, M; Rewerts, C L; Holdcroft, A M; Divanovic, S; Wills-Karp, M; Finkelman, F D; Karp, C L; Cook, D N

    2015-07-01

    Allergic asthma is a chronic, inflammatory lung disease. Some forms of allergic asthma are characterized by T helper type 2 (Th2)-driven eosinophilia, whereas others are distinguished by Th17-driven neutrophilia. Stimulation of Toll-like receptor 4 (TLR4) on hematopoietic and airway epithelial cells (AECs) contributes to the inflammatory response to lipopolysaccharide (LPS) and allergens, but the specific contribution of TLR4 in these cell compartments to airway inflammatory responses remains poorly understood. We used novel, conditionally mutant Tlr4(fl/fl) mice to define the relative contributions of AEC and hematopoietic cell Tlr4 expression to LPS- and allergen-induced airway inflammation. We found that Tlr4 expression by hematopoietic cells is critical for neutrophilic airway inflammation following LPS exposure and for Th17-driven neutrophilic responses to the house dust mite (HDM) lysates and ovalbumin (OVA). Conversely, Tlr4 expression by AECs was found to be important for robust eosinophilic airway inflammation following sensitization and challenge with these same allergens. Thus, Tlr4 expression by hematopoietic and airway epithelial cells controls distinct arms of the immune response to inhaled allergens. PMID:25465099

  18. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  19. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling.

    PubMed

    Johnson, Jill R; Wiley, Ryan E; Fattouh, Ramzi; Swirski, Filip K; Gajewska, Beata U; Coyle, Anthony J; Gutierrez-Ramos, José-Carlos; Ellis, Russ; Inman, Mark D; Jordana, Manel

    2004-02-01

    It is now fully appreciated that asthma is a disease of a chronic nature resulting from intermittent or continued aeroallergen exposure leading to airway inflammation. To investigate responses to continuous antigen exposure, mice were exposed to either house dust mite extract (HDM) or ovalbumin intranasally for five consecutive days, followed by 2 days of rest, for up to seven consecutive weeks. Continuous exposure to HDM, unlike ovalbumin, elicited severe and persistent eosinophilic airway inflammation. Flow cytometric analysis demonstrated an accumulation of CD4+ lymphocytes in the lung with elevated expression of inducible costimulator a marker of T cell activation, and of T1/ST2, a marker of helper T Type 2 effector cells. We also detected increased and sustained production of helper T cell Type 2-associated cytokines by splenocytes of HDM-exposed mice on in vitro HDM recall. Histologic analysis of the lung showed evidence of airway remodeling in mice exposed to HDM, with goblet cell hyperplasia, collagen deposition, and peribronchial accumulation of contractile tissue. In addition, HDM-exposed mice demonstrated severe airway hyperreactivity to methacholine. Finally, these responses were studied for up to 9 weeks after cessation of HDM exposure. We observed that whereas airway inflammation resolved fully, the remodeling changes did not resolve and airway hyperreactivity resolved only partly. PMID:14597485

  20. IL-17RA Signaling in Airway Inflammation and Bronchial Hyperreactivity in Allergic Asthma.

    PubMed

    Willis, Cynthia R; Siegel, Lori; Leith, Anh; Mohn, Deanna; Escobar, Sabine; Wannberg, Sharon; Misura, Kira; Rickel, Erika; Rottman, James B; Comeau, Michael R; Sullivan, John K; Metz, Daniela P; Tocker, Joel; Budelsky, Alison L

    2015-12-01

    Asthma is a heterogeneous disease characterized by airway inflammation and hyperreactivity. IL-17 receptor A (IL-17RA) is a shared receptor subunit required for activity of IL-17 family cytokines, including IL-17A and IL-25. IL-17A and IL-25 induce different proinflammatory responses, and concentrations are elevated in subjects with asthma. However, the individual contributions of IL-17A and IL-25 to disease pathogenesis are unclear. We explored proinflammatory activities of the IL-17 pathway in models of pulmonary inflammation and assessed its effects on contractility of human bronchial airway smooth muscle. In two mouse models, IL-17RA, IL-17RB, or IL-25 blockade reduced airway inflammation and airway hyperreactivity. Individually, IL-17A and IL-25 enhanced contractility of human bronchial smooth muscle induced by methacholine or carbachol. IL-17A had more pronounced effects on methacholine-induced contractility in bronchial rings from donors with asthma compared with donors without asthma. Blocking the IL-17 pathway via IL-17RA may be a useful therapy for some patients with asthma by reducing pulmonary inflammation and airway hyperreactivity. PMID:25919006

  1. Measurement of airway function using invasive and non-invasive methods in mild and severe models for allergic airway inflammation in mice

    PubMed Central

    Verheijden, Kim A. T.; Henricks, Paul A. J.; Redegeld, Frank A.; Garssen, Johan; Folkerts, Gert

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intranasal challenges with IgE-allergen complexes. A significant increase in airway responsiveness to methacholine was observed in the mild inflammation group when RL was measured. Significant changes in both RL and Penh were observed in the severe inflammation groups. There was a significant increase in the number of inflammatory cells in the Broncho-Alveolar Lavage Fluid (BALF) in both the mild and severe inflammation animals. The enforced ventilation of the animals during the RL measurement further increased the number of cells in the BALF. IL-2 and RANTES levels in the BALF were higher in the severe inflammation groups compared to the mild inflammation groups. Penh gave only reliable measurements during severe airway inflammation. Measuring RL gave consistent results in both mild and severe allergic airway inflammation models however, ventilation induced an additional cell influx into the airways. PMID:25161620

  2. An α4β1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice

    PubMed Central

    Kenyon, Nicholas J.; Liu, Ruiwu; O’Roark, Erin M.; Huang, Wenzhe; Peng, Li; Lam, Kit S.

    2008-01-01

    Inhibition of the α4 subunit of both the α4β1 and α4β7 integrins has shown promise in decreasing airway inflammation and airway hyperresponsiveness in various animal models. We hypothesized that a novel, high-affinity α4β1 antagonist (LLP2A) would decrease the migration of eosinophils to the lung and ameliorate the airway hyperresponsiveness in a mouse model of ovalbumin-induced airway inflammation. To test this hypothesis, we administered LLP2A, or scrambled LLP2A (a negative control), prior to exposure of sensitized BALB/c mice to ovalbumin aerosol. We can partially prevent, or reverse, the airway inflammatory response, but not airways hyperresponsiveness, by treatment of mice with LLP2A, a synthetic peptidomimetic α4β1 antagonist LLP2A. Specifically engineered, PEGylated (PEG) formulations of this antagonist further reduce the airway inflammatory response to ovalbumin lbumin, presumably by improving the circulating half-life of the drug. PMID:19103195

  3. Airway Fibrinogenolysis and the Initiation of Allergic Inflammation

    PubMed Central

    Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah

    2014-01-01

    The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732

  4. Allergic airway inflammation disrupts interleukin-17 mediated host defense against streptococcus pneumoniae infection.

    PubMed

    Guo, Sheng; Wu, Liang-Xia; Jones, Can-Xin; Chen, Ling; Hao, Chun-Li; He, Li; Zhang, Jian-Hua

    2016-02-01

    Despite decreasing rates of invasive pneumococcal disease caused by vaccine serotypes, the prevalence of invasive pneumococcal pneumonia in asthmatic patients remains high. However, little is known about the mechanisms underlying the susceptibility of the asthmatic airway to bacterial infections. In this study, we used a combined model of allergic airway inflammation and Streptococcus pneumoniae lung infection to investigate the association between persistent allergic inflammation in the airway and antibacterial host defenses against S. pneumoniae. When challenged with S. pneumoniae, allergic mice exhibited higher airway bacterial burdens, greater eosinophil infiltration, lower neutrophil infiltration, and more severe structural damage than non-allergic mice. In sensitized mice, S. pneumoniae infection elicited higher IL-4 but lower IFN-γ, IL-17 and defensin-β2 expression than in control mice. These results indicate that persistent allergic inflammation impaired airway host defense against S. pneumoniae is associated with the insufficient IL-17 responses. To elicit IL-17 induced-anti-bacterial immune responses, mice were intranasally immunized with rIL-17. Immunized mice exhibited fewer bacterial colonies in the respiratory tract and less severe lung pathology than unimmunized mice. rIL-17 contributed to airway host defense enhancement and innate immune response promotion, which was associated with increased IL-23, MIP-2 and defensin-β2 expression. Administration of exogenous IL-17 (2μg/mouse) suppressed eosinophil-related immune responses. The results demonstrate IL-17 plays a key role in host defenses against bacterial infection in allergic airways and suggest that exogenous IL-17 administration promotes the anti-becterial immune responses and attenuates the existed allergic inflammation. PMID:26699848

  5. Neuro-immune interactions in chemical-induced airway hyperreactivity.

    PubMed

    Devos, Fien C; Boonen, Brett; Alpizar, Yeranddy A; Maes, Tania; Hox, Valérie; Seys, Sven; Pollaris, Lore; Liston, Adrian; Nemery, Benoit; Talavera, Karel; Hoet, Peter H M; Vanoirbeek, Jeroen A J

    2016-08-01

    Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR. PMID:27126687

  6. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells

    NASA Astrophysics Data System (ADS)

    Marsland, Benjamin J.; Harris, Nicola L.; Camberis, Mali; Kopf, Manfred; Hook, Sarah M.; Le Gros, Graham

    2004-04-01

    CD8+ memory T cells have recently been recognized as playing a key role in natural immunity against unrelated viral infections, a phenomenon referred to as "heterologous antiviral immunity." We now provide data that the cellular immunological interactions that underlie such heterologous immunity can play an equally important role in regulating T helper 2 immune responses and protecting mucosal surfaces from allergen-induced inflammation. Our data show that CD8+ T cells, either retained in the lung after infection with influenza virus, or adoptively transferred via the intranasal route can suppress allergic airway inflammation. The suppression is mediated by IFN-, which acts to reduce the activation level, T helper 2 cytokine production, airways hyperresponsiveness, and migration of allergen-specific CD4+ T cells into the lung, whereas the systemic and draining lymph node responses remain unchanged. Of note, adoptive transfer of previously activated transgenic CD8+ T cells conferred protection against allergic airway inflammation, even in the absence of specific-antigen. Airway resident CD8+ T cells produced IFN- when directly exposed to conditioned media from activated dendritic cells or the proinflammatory cytokines IL-12 and IL-18. Taken together these data indicate that effector/memory CD8+ T cells present in the airways produce IFN- after inflammatory stimuli, independent of specific-antigen, and as a consequence play a key role in modifying the degree and frequency of allergic responses in the lung.

  7. Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells.

    PubMed

    Ou-Yang, Hai-Feng; Huang, Yun; Hu, Xing-Bin; Wu, Chang-Gui

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant immunomodulatory effects in the development of acute lung inflammation and fibrosis. However, it is still unclear as to whether MSCs could attenuate allergic airway inflammation in a mouse model of asthma. We firstly investigated whether exogenous MSCs can relocate to lung tissues in asthmatic mice and analyzed the chemotactic mechanism. Then, we evaluated the in vivo immunomodulatory effect of exogenous MSCs in asthma. MSCs (2 × 10(6)) were administered through the tail vein to mice one day before the first airway challenge. Migration of MSCs was evaluated by flow cytometry. The immunomodulatory effect of MSCs was evaluated by cell counting in bronchoalveolar lavage fluid (BALF), histology, mast cell degranulation, airway hyperreactivity and cytokine profile in BALF. Exogenous MSCs can migrate to sites of inflammation in asthmatic mice through a stromal cell-derived factor-1α/CXCR4-dependent mechanism. MSCs can protect mice against a range of allergic airway inflammatory pathologies, including the infiltration of inflammatory cells, mast cell degranulation and airway hyperreactivity partly via shifting to a T-helper 1 (Th1) from a Th2 immune response to allergens. So, immunotherapy based on MSCs may be a feasible, efficient therapy for asthma. PMID:22114062

  8. The active contribution of Toll-like receptors to allergic airway inflammation.

    PubMed

    Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming

    2011-10-01

    Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. PMID:21624504

  9. O/sub 3/-induced change in bronchial reactivity to methacholine and airway inflammation in humans

    SciTech Connect

    Seltzer, J.; Bigby, B.G.; Stulbarg, M.; Holtzman, M.J.; Nadel, J.A.; Ueki, I.F.; Leikauf, G.D.; Goetzl, E.J.; Boushey, H.A.

    1986-04-01

    The increase in airway responsiveness induced by O/sub 3/ exposure in dogs is associated with airway epithelial inflammation, as evidenced by an increase in the number of neutrophils (polymorphonuclear leukocytes) found in epithelial biopsies and in bronchoalveolar lavage fluid. We investigated in 10 healthy, human subjects whether O/sub 3/-induced hyperresponsiveness was similarly associated with airway inflammation by examining changes in the types of cells recovered in bronchoalveolar lavage fluid obtained after exposure to air or to O/sub 3/ (0.4 or 0.6 ppm). We also measured the concentrations of cyclooxygenase and lipoxygenase metabolites of arachidonic acid in lavage fluid. We measured airway responsiveness to inhaled methacholine aerosol before and after each exposure and performed bronchoalveolar lavage 3 h later. We found more neutrophils in the lavage fluid from O/sub 3/-exposed subjects, especially in those in whom O/sub 3/ exposure produced an increase in airway responsiveness. We also found significant increases in the concentrations of prostaglandins E2, F2 alpha, and thromboxane B2 in lavage fluid from O/sub 3/-exposed subjects. These results show that in human subjects O/sub 3/-induced hyperresponsiveness to methacholine is associated with an influx of neutrophils into the airways and with changes in the levels of some cyclooxygenase metabolites of arachidonic acid.

  10. IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation

    PubMed Central

    Peng, Juan; Yang, Xuexian O.; Chang, Seon Hee; Yang, Jiong; Dong, Chen

    2009-01-01

    IL-23/IL-17 axis is an important regulator in various inflammatory diseases. However, the role of IL-23 in allergic airway inflammation is not well understood. In this study, we show that in an allergen-induced asthma model, mice with transgenic overexpression of IL-23R exhibited increased airway infiltration of eosinophils and Th2 cytokine production, whereas those deficient in IL-23 displayed reduced airway inflammation. In vitro, IL-23-IL-23R signaling promoted GATA-3 expression and enhanced Th2 cytokine expression. Conversely, in the absence of this signal, Th2 cell differentiation was partially inhibited. Therefore, IL-23 signaling may regulate allergic asthma through modulation of Th2 cell differentiation. PMID:19935773

  11. Selective depletion of Foxp3+ Treg during sensitization phase aggravates experimental allergic airway inflammation.

    PubMed

    Baru, Abdul Mannan; Hartl, Andrea; Lahl, Katharina; Krishnaswamy, Jayendra Kumar; Fehrenbach, Heinz; Yildirim, Ali O; Garn, Holger; Renz, Harald; Behrens, Georg M N; Sparwasser, Tim

    2010-08-01

    Recent studies highlight the role of Treg in preventing unnecessary responses to allergens and maintaining functional immune tolerance in the lung. We investigated the role of Treg during the sensitization phase in a murine model of experimental allergic airway inflammation by selectively depleting the Treg population in vivo. DEpletion of REGulatory T cells (DEREG) mice were depleted of Treg by diphtheria toxin injection. Allergic airway inflammation was induced using OVA as a model allergen. Pathology was assessed by scoring for differential cellular infiltration in bronchoalveolar lavage, IgE and IgG1 levels in serum, cytokine secretion analysis of lymphocytes from lung draining lymph nodes and lung histology. Use of DEREG mice allowed us for the first time to track and specifically deplete both CD25(+) and CD25(-) Foxp3(+) Treg, and to analyze their significance in limiting pathology in allergic airway inflammation. We observed that depletion of Treg during the priming phase of an active immune response led to a dramatic exacerbation of allergic airway inflammation in mice, suggesting an essential role played by Treg in regulating immune responses against allergens as early as the sensitization phase via maintenance of functional tolerance. PMID:20544727

  12. Allergic rhinitis and asthma: inflammation in a one-airway condition

    PubMed Central

    Jeffery, Peter K; Haahtela, Tari

    2006-01-01

    Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria). Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli). Structural alterations (that is, remodeling) of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. Conclusion Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites. PMID:17140423

  13. Effect of physical training on airway inflammation in bronchial asthma: a systematic review

    PubMed Central

    2013-01-01

    Background The majority of the global population cannot afford existing asthma pharmacotherapy. Physical training as an airway anti-inflammatory therapy for asthma could potentially be a non-invasive, easily available, affordable, and healthy treatment modality. However, effects of physical training on airway inflammation in asthma are currently inconclusive. The main objective of this review is to summarize the effects of physical training on airway inflammation in asthmatics. Methods A peer reviewed search was applied to Medline, Embase, Web of Science, Cochrane, and DARE databases. We included all observational epidemiological research studies and RCTs. Studies evaluating at least one marker of airway inflammation in asthmatics after a period of physical training were selected. Data extraction was performed in a blinded fashion. We decided a priori to avoid pooling of the data in anticipation of heterogeneity of the studies, specifically heterogeneity of airway inflammatory markers studied as outcome measures. Results From the initial 2635 studies; 23 studies (16 RCTs and 7 prospective cohort studies) were included. Study sizes were generally small (median sample size = 30). There was a reduction in C-reactive protein, malondialdehyde, nitric oxide, sputum cell counts and IgE in asthmatics with physical training. Mixed results were observed after training for fractional excretion of nitric oxide and bronchial hyperresponsiveness. The data was not pooled owing to significant heterogeneity between studies, and a funnel plot tests for publication bias were not performed because there were less than 10 studies for almost all outcome measures. Physical training intervention type, duration, intensity, frequency, primary outcome measures, methods of assessing outcome measures, and study designs were heterogeneous. Conclusion Due to reporting issues, lack of information and heterogeneity there was no definite conclusion; however, some findings suggest physical

  14. Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin.

    PubMed

    Florsheim, Esther; Yu, Shuang; Bragatto, Ivan; Faustino, Lucas; Gomes, Eliane; Ramos, Rodrigo N; Barbuto, José Alexandre M; Medzhitov, Ruslan; Russo, Momtchilo

    2015-05-15

    Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined in this study that s.c. or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokine release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor-2, IL-33R ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the proallergic cytokines IL-1α, IL-33, thymic stromal lymphopoietin, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required protease-activated receptor-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne Ag-promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease. PMID:25876764

  15. Fenofibrate Attenuates Neutrophilic Inflammation in Airway Epithelia: Potential Drug Repurposing for Cystic Fibrosis.

    PubMed

    Stolarz, Amanda J; Farris, Ryan A; Wiley, Charla A; O'Brien, Catherine E; Price, Elvin T

    2015-12-01

    A hallmark of cystic fibrosis (CF) lung disease is neutrophilic airway inflammation. Elevated neutrophil counts have been associated with decreased forced expiratory volume in 1 second and poor clinical measures in patients with CF. Interleukin 8 (IL-8), epithelial neutrophil activating protein 78 (ENA-78), tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) contribute to neutrophil activation and disease pathogenesis in the airways of patients with CF. Drugs that modify the production of these chemokines in the airways could potentially benefit CF patients. Thus, we determined the effects of fenofibrate on their production in cell populations obtained from the airways. Human small airway epithelial cells and CF bronchial epithelial cells were treated with IL-1β to induce inflammation. We cotreated the cells with fenofibrate at concentrations ranging from 10 to 50 μM to determine if this drug could attenuate the inflammation. IL-8, ENA-78, TNF-α, GM-CSF, and G-CSF production were measured from the cell culture supernates by ELISA. ANOVA statistical testing was conducted using SPSS 17.0. IL-1β increased the production of each of the chemokines by several fold. Fenofibrate reduced IL-1β induced production of each of these neutrophilic chemokines at the concentrations used. IL-1β increases the production of neutrophilic chemokines in airway epithelial cells. Cotreatment with fenofibrate blunts these processes. Fenofibrate should be explored as a therapeutic option to modulate the abundant neutrophilic inflammation observed in CF. PMID:26258991

  16. Airway hyperresponsiveness and inflammation induced by toluene diisocyanate in guinea pigs

    SciTech Connect

    Gordon, T.; Sheppard, D.; McDonald, D.M.; Distefano, S.; Scypinski, L.

    1985-11-01

    The authors examined the changes in airway responsiveness to increasing doses of an acetylcholine aerosol in anesthetized and ventilated guinea pigs 2, 6, or 24 h after exposure to 2 ppm toluene diisocyanate (TDI) or 2 h after exposure to air or 1 ppm TDI. The concentration of acetylcholine calculated to cause a 200% increase in RL was significantly lower for animals studied at 2 h (0.68%) or at 6 h (0.77%), but not at 24 h (2.39%), after TDI than for air animals (3.07%). The increase in airway responsiveness in the TDI-exposed animals was associated with histologic changes in the trachea and intrapulmonary airways. Exposure to 2 ppm TDI caused a patchy loss of cilia, shedding of epithelial cells into the airway lumen, and an influx of inflammatory cells into the trachea and other airways. In the lamina propria of the trachea, the concentration of extravascular polymorphonuclear leukocytes (PMN) was 13- to 26-fold greater in animals studied 2 or 6 h after exposure to 2 ppm TDI or at 2 h after 1 ppm TDI than in animals exposed to air. The concentration of PMN in the epithelium was significantly increased only in animals examined 2 h after 2 ppm TDI. These results indicate that a single exposure to TDI can cause an increase in airway responsiveness that is associated with epithelial injury and acute airway inflammation.

  17. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease.

    PubMed

    Siddesha, Jalahalli M; Nakada, Emily M; Mihavics, Bethany R; Hoffman, Sidra M; Rattu, Gurkiranjit K; Chamberlain, Nicolas; Cahoon, Jonathon M; Lahue, Karolyn G; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G; Desai, Dhimant H; Poynter, Matthew E; Anathy, Vikas

    2016-06-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  18. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury

    PubMed Central

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H.; Barnes, Peter J.; Adcock, Ian M.; Huang, Mao

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  19. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  20. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities. PMID:26667977

  1. Colonization of CF patients' upper airways with S. aureus contributes more decisively to upper airway inflammation than P. aeruginosa.

    PubMed

    Janhsen, Wibke Katharina; Arnold, Christin; Hentschel, Julia; Lehmann, Thomas; Pfister, Wolfgang; Baier, Michael; Böer, Klas; Hünniger, Kerstin; Kurzai, Oliver; Hipler, Uta-Christina; Mainz, Jochen Georg

    2016-10-01

    In cystic fibrosis (CF) patients' airways, inflammatory processes decisively contribute to remodeling and pulmonary destruction. The aims of this study were to compare upper airway (UAW) inflammation in the context of Staphylococcus aureus and Pseudomonas aeruginosa colonization in a longitudinal setting, and to examine further factors influencing UAW inflammation. Therefore, we analyzed soluble inflammatory mediators in noninvasively obtained nasal lavage (NL) of CF patients together with microbiology, medication, and relevant clinical parameters. NL, applying 10 mL of isotonic saline per nostril, was serially performed in 74 CF patients (326 samples). Concentrations of the inflammatory mediators' interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-9, and its anti-protease TIMP-1 were quantified by bead-based multiplexed assay, neutrophil elastase (NE) via ELISA. Culture-based microbiology of the upper and lower airways (LAW), as well as serological and clinical findings, were compiled. Our results indicate that UAW colonization with S. aureus significantly impacts the concentration of all measured inflammatory mediators in NL fluid except TIMP-1, whereas these effects were not significant for P. aeruginosa. Patients with S. aureus colonization of both the UAW and LAW showed significantly increased concentrations of IL-1β, IL-6, IL-8, MMP-9, and slightly elevated concentrations of NE in NL fluid compared to non-colonized patients. This work elaborates a survey on S. aureus' virulence factors that may contribute to this underestimated pathology. Serial assessment of epithelial lining fluid by NL reveals that colonization of the UAW with S. aureus contributes more to CF airway inflammatory processes than hitherto expected. PMID:27377929

  2. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  3. Is Health-Related Quality of Life Associated with Upper and Lower Airway Inflammation in Asthmatics?

    PubMed Central

    Scichilone, Nicola; Taormina, Salvatore; Pozzecco, Elena; Paternò, Alessandra; Baiardini, Ilaria; Canonica, Giorgio Walter; Bellia, Vincenzo

    2013-01-01

    Background. Allergic diseases impair health-related quality of life (HR-QoL). However, the relationship between airway inflammation and HR-QoL in patients with asthma and rhinitis has not been fully investigated. We explored whether the inflammation of upper and lower airways is associated with HR-QoL. Methods. Twenty-two mild allergic asthmatics with concomitant rhinitis (10 males, 38 ± 17 years) were recruited. The Rhinasthma was used to identify HR-QoL, and the Asthma Control Test (ACT) was used to assess asthma control. Subjects underwent lung function and exhaled nitric oxide (eNO) test, collection of exhaled breath condensate (EBC), and nasal wash. Results. The Rhinasthma Global Summary score (GS) was 25 ± 11. No relationships were found between GS and markers of nasal allergic inflammation (% eosinophils: r = 0.34, P = 0.24; ECP: r = 0.06, P = 0.87) or bronchial inflammation (pH of the EBC: r = 0.12, P = 0.44; bronchial NO: r = 0.27, P = 0.22; alveolar NO: r = 0.38, P = 0.10). The mean ACT score was 18. When subjects were divided into controlled (ACT ≥ 20) and uncontrolled (ACT < 20), the alveolar NO significantly correlated with GS in uncontrolled asthmatics (r = 0.60, P = 0.04). Conclusions. Upper and lower airways inflammation appears unrelated to HR-QoL associated with respiratory symptoms. These preliminary findings suggest that, in uncontrolled asthma, peripheral airway inflammation could be responsible for impaired HR-QoL. PMID:24073408

  4. Dendritic Cell-Nerve Clusters Are Sites of T Cell Proliferation in Allergic Airway Inflammation

    PubMed Central

    Veres, Tibor Z.; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-01-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell–T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2′-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell–cell contacts in a semi-automated fashion. Dendritic cell–T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa. PMID:19179611

  5. GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    SciTech Connect

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-09-26

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.

  6. Neurogenic airway inflammation induced by repeated intra-esophageal instillation of HCl in guinea pigs.

    PubMed

    Liu, Chunli; Chen, Ruchong; Luo, Wei; Lai, Kefang; Zhong, Nanshan

    2013-04-01

    This study was conducted to investigate if repeated intra-esophageal acid administrations may induce neurogenic inflammation in the airways and nodose ganglion in a guinea pig model. Guinea pigs were sedated and perfused with 0.1 N HCl in the distal esophagus via a nasoesophageal catheter for 14 consecutive days. Substance P (SP), neurokinin A (NKA), neurokinin B (NKB), and calcitonin gene-related peptide concentration were measured by ELISA or radioimmunoassay. Neuropeptide expression in the airways and nodose ganglion was detected by immunohistochemistry and assessed semi-quantitatively. Inflammation was found in the trachea and bronchi. There was a threefold increase in substance P concentration in the trachea, main bronchi, and lung homogenate and a twofold increase in NKA and NKB concentration in the main bronchi, lung homogenate, and bronchial alveolus lavage fluid, respectively. The SP and NKA expressions in the airways and nodose ganglion were also significantly increased. Chronic intra-esophageal acid instillation induces significant neurogenic inflammation in the airways and nodose ganglion in the vagus nerve in guinea pigs. PMID:23225164

  7. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production

    PubMed Central

    Lee, Ju Hee; Lim, Hun Jai; Lee, Chan Woo; Son, Kun-Ho; Son, Jong-Keun; Lee, Sang Kook; Kim, Hyun Pyo

    2015-01-01

    The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10–100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100–400 mg/kg and 30–60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders. PMID:26379748

  8. Ambient particulate matter induces an exacerbation of airway inflammation in experimental asthma: role of interleukin-33

    PubMed Central

    Shadie, A M; Herbert, C; Kumar, R K

    2014-01-01

    High levels of ambient environmental particulate matter (PM10 i.e. < 10 μm median aerodynamic diameter) have been linked to acute exacerbations of asthma. We examined the effects of delivering a single dose of Sydney PM10 by intranasal instillation to BALB/c mice that had been sensitized to ovalbumin and challenged repeatedly with a low (≈3 mg/m3) mass concentration of aerosolized ovalbumin for 4 weeks. Responses were compared to animals administered carbon black as a negative control, or a moderate (≈30 mg/m3) concentration of ovalbumin to simulate an allergen-induced acute exacerbation of airway inflammation. Delivery of PM10 to mice, in which experimental mild chronic asthma had previously been established, elicited characteristic features of enhanced allergic inflammation of the airways, including eosinophil and neutrophil recruitment, similar to that in the allergen-induced exacerbation. In parallel, there was increased expression of mRNA for interleukin (IL)-33 in airway tissues and an increased concentration of IL-33 in bronchoalveolar lavage fluid. Administration of a monoclonal neutralizing anti-mouse IL-33 antibody prior to delivery of particulates significantly suppressed the inflammatory response induced by Sydney PM10, as well as the levels of associated proinflammatory cytokines in lavage fluid. We conclude that IL-33 plays a key role in driving airway inflammation in this novel experimental model of an acute exacerbation of chronic allergic asthma induced by exposure to PM10. PMID:24730559

  9. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    PubMed

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A

    2015-05-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  10. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production.

    PubMed

    Lee, Ju Hee; Lim, Hun Jai; Lee, Chan Woo; Son, Kun-Ho; Son, Jong-Keun; Lee, Sang Kook; Kim, Hyun Pyo

    2015-01-01

    The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10-100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100-400 mg/kg and 30-60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders. PMID:26379748

  11. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation

    PubMed Central

    Bansal, Preeti; Gaur, Shailendera Nath; Arora, Naveen

    2016-01-01

    Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C+TCRβ+ NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C+TCRβ+ NKT cells. PMID:27282246

  12. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation.

    PubMed

    Bansal, Preeti; Gaur, Shailendera Nath; Arora, Naveen

    2016-01-01

    Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C(+)TCRβ(+) NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C(+)TCRβ(+) NKT cells. PMID:27282246

  13. Association and management of eosinophilic inflammation in upper and lower airways.

    PubMed

    Okano, Mitsuhiro; Kariya, Shin; Ohta, Nobuo; Imoto, Yoshimasa; Fujieda, Shigeharu; Nishizaki, Kazunori

    2015-04-01

    This review discussed the contribution of eosinophilic upper airway inflammation includes allergic rhinitis (AR) and chronic rhinosinusitis (CRS) to the pathophysiology and course of asthma, the representative counterpart in the lower airway. The presence of concomitant AR can affect the severity of asthma in patients who have both diseases; however, it is still debatable whether the presence of asthma affects the severity of AR. Hypersensitivity, obstruction and/or inflammation in the lower airway can be detected in patients with AR without awareness or diagnosis of asthma, and AR is known as a risk factor for the new onset of wheeze and asthma both in children and adults. Allergen immunotherapy, pharmacotherapy and surgery for AR can contribute to asthma control; however, a clear preventive effect on the new onset of asthma has been demonstrated only for immunotherapy. Pathological similarities such as epithelial shedding are also seen between asthma and CRS, especially eosinophilic CRS. Abnormal sinus findings on computed tomography are seen in the majority of asthmatic patients, and asthmatic patients with CRS show a significant impairment in Quality of Life (QOL) and pulmonary function as compared to those without CRS. Conversely, lower airway inflammation and dysfunction are seen in non-asthmatic patients with CRS. Treatments for CRS that include pharmacotherapy such as anti-leukotrienes, surgery, and aspirin desensitization show a beneficial effect on concomitant asthma. Acting as a gatekeeper of the united airways, the control of inflammation in the nose is crucial for improvement of the QOL of patients with co-existing AR/CRS and asthma. PMID:25838087

  14. Temporal Changes in Glutaredoxin 1 and Protein S-Glutathionylation in Allergic Airway Inflammation

    PubMed Central

    Maki, Kanako; Nagai, Katsura; Suzuki, Masaru; Inomata, Takashi; Yoshida, Takayuki; Nishimura, Masaharu

    2015-01-01

    Introduction Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood. Methods BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue. Results Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF. Conclusions The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation. PMID:25874776

  15. Interleukin-22 exacerbates airway inflammation induced by short-term exposure to cigarette smoke in mice

    PubMed Central

    Li, Jiu-rong; Zhou, Wei-xun; Huang, Ke-wu; Jin, Yang; Gao, Jin-ming

    2014-01-01

    Aim: Interleukin-22 (IL-22) exhibits both proinflammatory and anti-inflammatory properties in various biological processes. In this study we explored the effects of exogenous recombinant IL-22 (rIL-22) on cigarette smoke (CS)-induced airway inflammation in mice. Methods: Male C57BL/6 mice were divided into groups: (1) CS group exposed to tobacco smoke for 3 consecutive days, (2) rIL-22 group received rIL-22 (100 mg/kg, ip), and (3) CS plus rIL-22 group, received rIL-22 (100 mg/kg, ip) before the CS exposure. The airway resistance (Rn), lung morphology, inflammatory cells in the airways, and inflammatory cytokines and CXCR3 ligands in both bronchoalveolar lavage (BAL) fluids and lung tissues were analyzed. Results: CS alone significantly elevated IL-22 level in the BAL fluid. Both CS and rIL-22 significantly augmented airway resistance, an influx of inflammatory cells into the airways and lung parenchyma, and significantly elevated levels of pro-inflammatory cytokines (TGFβ1 and IL-17A) and CXCR3 chemokines (particularly CXCL10) at the mRNA and/or protein levels. Furthermore, the effects of rIL-22 on airway resistance and inflammation were synergistic with those of CS, as demonstrated by a further increased Rn value, infiltration of greater numbers of inflammatory cells into the lung, higher levels of inflammatory cytokines and chemokines, and more severe pathological changes in CS plus rIL-22 group as compared to those in CS group. Conclusion: Exogenous rIL-22 exacerbates the airway inflammatory responses to CS exposure in part by inducing expression of several proinflammatory cytokines and CXCR3 ligands. PMID:25345745

  16. Reduction in bronchodilation following a deep inhalation is poorly related to airway inflammation in asthma.

    PubMed

    Pacini, F; Filippelli, M; Duranti, R; Rosi, E; Romagnoli, I; Grazzini, M; Stendardi, L; Misuri, G; Scano, G

    1999-11-01

    In patients with bronchial asthma, forced expiratory flows are differently sensitive to a previous volume history. A reduced ability of a deep inhalation (DI) to dilate obstructed airways has been hypothesized to be a physiological marker for the degree of airway responsiveness and to relate to the presence and magnitude of inflammation in the lung, even in mild stable asthma. However, there are at present doubts as to whether functional changes could be used as a substitute for airway inflammation studies. In order to investigate the interrelations among airway inflammation, bronchial hyperresponsiveness and effects of volume history, 58 consecutive asthmatics with mild to moderate asthma were studied. The effects of DI were assessed as the isovolumic ratio of flows from forced expiratory manoeuvres started from maximal (M) or partial (P) lung inflation. Airway inflammation was assessed by using induced sputum. Sputum was analysed for total and differential cell counts, and levels of eosinophil cationic protein (ECP) which reflects eosinophil activation. Airway responsiveness was assessed as the provocative concentration of histamine which caused a 20% fall in forced expiratory volume in one second (FEV1) from control (PC20). The M/P ratio was significantly related to ECP (r=-0.31, p<0.03) and eosinophils (r=-0.29, p<0.03), FEV1/vital capacity (VC) (r=0.32; p<0.01), clinical score (r=-0.33; p<0.03) and age (r=-0.41; p<0.0001). In a stepwise multiple regression analysis including age, score, baseline lung function, ECP, number of eosinophils and the response to beta2-agonist, age (p<0.037) predicted a small amount of the variance in M/P ratio (r2=0.12). It is concluded that volume history response is substantially independent of both sputum outcomes (inflammatory cell number and eosinophil cationic protein) and bronchial hyperresponsiveness; rather it seems to be associated with anthropometric characteristics. Functional aspects do not provide information on

  17. Bone morphogenetic protein 4 inhibits liposaccharide-induced inflammation in the airway.

    PubMed

    Li, Zhengtu; Wang, Jian; Wang, Yan; Jiang, Hua; Xu, Xiaoming; Zhang, Chenting; Li, Defu; Xu, Chuyi; Zhang, Kedong; Qi, Yafei; Gong, Xuefang; Tang, Chun; Zhong, Nanshan; Lu, Wenju

    2014-11-01

    Bone morphogenetic protein 4 (BMP4) is a multifunctional growth factor that belongs to the TGF-β superfamily. The role of BMP4 in lung diseases is not fully understood. Here, we demonstrate that BMP4 was upregulated in lungs undergoing lipopolysaccharide (LPS)-induced inflammation, and in airway epithelial cells treated with LPS or TNF-α. BMP4 mutant (BMP4(+/-) ) mice presented with more severe lung inflammation in response to LPS or Pseudomonas aeruginosa, and lower bacterial load compared with that in BMP4(+/+) mice. Knockdown of BMP4 by siRNA increased LPS and TNF-α-induced IL-8 expression in 16HBE human airway epithelial cells and in primary human bronchial epithelial cells. Similarly, peritoneal macrophages from BMP4(+/-) mice produced greater levels of TNF-α and keratinocyte chemoattractant (KC) upon LPS treatment compared with cells from BMP4(+/+) mice. Administration of exogenous BMP4 attenuated the upregulation of TNF-α, IL-8, or KC induced by LPS and/or TNF-α in airway epithelial cells, and peritoneal macrophages. Finally, partial deficiency of BMP4 in BMP4(+/-) mice protected the animals from restrictive lung function reduction upon chronic LPS exposure. These results indicate that BMP4 plays an important anti-inflammatory role, controlling the strength and facilitating the resolution of acute lung inflammation; yet, BMP4 also contributes to lung function impairment during chronic lung inflammation. PMID:25142202

  18. Relation of circulating T cell profiles to airway inflammation and asthma control in asthmatic pregnancy.

    PubMed

    Eszes, N; Bohács, A; Cseh, A; Toldi, G; Bikov, A; Ivancsó, I; Müller, V; Horváth, I; Rigó, J; Vásárhelyi, B; Losonczy, Gy; Tamási, L

    2012-09-01

    Asthmatic inflammation during pregnancy poses a risk for maternal and fetal morbidities. Circulating T cell immune phenotype is known to correlate with airway inflammation (detectable by fractional concentration of nitric oxide present in exhaled breath (FENO)) in non-pregnant allergic asthmatics. The aim of this study was to assess the relationship of peripheral T cell phenotype to FENO and clinical variables of asthma during pregnancy.We examined 22 pregnant women with allergic asthma in the 2nd/3rd trimester. The prevalence of Th1, Th2, regulatory T (Treg) and natural killer (NK) cell subsets was identified with flow cytometry using cell-specific markers. FENO, Asthma Control Test (ACT) total score and lung function were evaluated.Peripheral blood Th1, Th2, Treg, and NK cell prevalence were not significantly correlated to airway inflammation assessed by FENO in asthmatic pregnant women (all cells p > 0.05; study power > 75%). However, an inverse correlation was detected between Th2 cell prevalence and ACT total scores (p = 0.03) in asthmatic pregnancy.Blunted relationship between T cell profile and airway inflammation may be the result of pregnancy induced immune tolerance in asthmatic pregnancy. On the other hand, increased Th2 response impairs disease control that supports direct relationship between symptoms and cellular mechanisms of asthma during pregnancy. PMID:22982718

  19. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    PubMed Central

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  20. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease.

    PubMed

    George, Leena; Brightling, Christopher E

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10-40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  1. Airway irritation, inflammation, and toxicity in mice following inhalation of metal oxide nanoparticles.

    PubMed

    Larsen, Søren T; Jackson, Petra; Poulsen, Steen S; Levin, Marcus; Jensen, Keld A; Wallin, Håkan; Nielsen, Gunnar D; Koponen, Ismo K

    2016-11-01

    Metal oxide nanoparticles are used in a broad range of industrial processes and workers may be exposed to aerosols of the particles both during production and handling. Despite the widespread use of these particles, relatively few studies have been performed to investigate the toxicological effects in the airways following inhalation. In the present study, the acute (24 h) and persistent (13 weeks) effects in the airways after a single exposure to metal oxide nanoparticles were studied using a murine inhalation model. Mice were exposed 60 min to aerosols of either ZnO, TiO2, Al2O3 or CeO2 and the deposited doses in the upper and lower respiratory tracts were calculated. Endpoints were acute airway irritation, pulmonary inflammation based on analyses of bronchoalveolar lavage (BAL) cell composition, DNA damage assessed by the comet assay and pulmonary toxicity assessed by protein level in BAL fluid and histology. All studied particles reduced the tidal volume in a concentration-dependent manner accompanied with an increase in the respiratory rate. In addition, ZnO and TiO2 induced nasal irritation. BAL cell analyses revealed both neutrophilic and lymphocytic inflammation 24-h post-exposure to all particles except TiO2. The ranking of potency regarding induction of acute lung inflammation was Al2O3 = TiO2 < CeO2 ≪ ZnO. Exposure to CeO2 gave rise to a more persistent inflammation; both neutrophilic and lymphocytic inflammation was seen 13 weeks after exposure. As the only particles, ZnO caused a significant toxic effect in the airways while TiO2 gave rise to DNA-strand break as shown by the comet assay. PMID:27323801

  2. Effect of Continuous Positive Airway Pressure on Airway Inflammation and Oxidative Stress in Patients with Obstructive Sleep Apnea

    PubMed Central

    Tichanon, Promsrisuk; Sopida, Santamit; Orapin, Pasurivong; Watchara, Boonsawat; Banjamas, Intarapoka

    2016-01-01

    Background. Airway inflammation and oxidative stress may be linked in obstructive sleep apnea (OSA) patients. We determined the effectiveness of continuous positive airway pressure (CPAP) therapy in reducing fractional exhaled nitric oxide (FeNO) and malondialdehyde (MDA) levels in OSA patients. Methods. Thirteen patients with OSA and 13 normal controls were recruited. FeNO and MDA levels were measured in the controls and in OSA patients before and after three months of CPAP therapy. Results. FeNO and MDA levels were higher in the patients compared to the age and gender matched controls (FeNO: 25.9 ± 5.0 versus 17.5 ± 5.9 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 2.1 ± 0.3 μmol/L, P < 0.001). FeNO and MDA levels were lower post-CPAP compared to pre-CPAP (FeNO: 25.9 ± 5.0 versus 17.0 ± 2.3 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 10.0 ± 6.4 μmol/L, P < 0.01). Apnea-hypopnea index (15.9 ± 6.6 versus 4.1 ± 2.1/h, P < 0.001) and mean arterial pressure (P < 0.01) decreased following CPAP treatment. Daytime mean SpO2 (P < 0.05) increased. Conclusion. Our study demonstrates that CPAP therapy yields clinical benefits by reducing upper airway inflammation and oxidative stress in OSA patients. PMID:27445526

  3. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype

    PubMed Central

    Nagato, Akinori C; Bezerra, Frank S; Talvani, André; Aarestrup, Beatriz J; Aarestrup, Fernando M

    2015-01-01

    Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or

  4. The effect of phytocannabinoids on airway hyper-responsiveness, airway inflammation, and cough.

    PubMed

    Makwana, Raj; Venkatasamy, Radhakrishnan; Spina, Domenico; Page, Clive

    2015-04-01

    Cannabis has been demonstrated to have bronchodilator, anti-inflammatory, and antitussive activity in the airways, but information on the active cannabinoids, their receptors, and the mechanisms for these effects is limited. We compared the effects of Δ(9)-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, cannabidiolic acid, and tetrahydrocannabivarin on contractions of the guinea pig-isolated trachea and bronchoconstriction induced by nerve stimulation or methacholine in anesthetized guinea pigs following exposure to saline or the proinflammatory cytokine, tumor necrosis factor α (TNF-α). CP55940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol), a synthetic cannabinoid agonist, was also investigated in vitro. The cannabinoids were also evaluated on TNF-α- and lipopolysaccharide-induced leukocyte infiltration into the lungs and citric acid-induced cough responses in guinea pigs. TNF-α, but not saline, augmented tracheal contractility and bronchoconstriction induced by nerve stimulation, but not methacholine. Δ(9)-Tetrahydrocannabinol and CP55940 reduced TNF-α-enhanced nerve-evoked contractions in vitro to the magnitude of saline-incubated trachea. This effect was antagonized by the cannabinoid 1 (CB(1)) and CB(2) receptor antagonists AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-caroxamide] and JTE907 [N-(1,3-benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinolinecarboxamide], respectively. Tetrahydrocannabivarin partially inhibited the TNF-α-enhanced nerve-evoked contractions, whereas the other cannabinoids were without effect. The effect of cannabidiol and Δ(9)-tetrahydrocannabinol together did not differ from that of the latter alone. Only Δ(9)-tetrahydrocannabinol inhibited TNF-α-enhanced vagal-induced bronchoconstriction, neutrophil recruitment to the airways, and citric acid-induced cough responses. TNF-α potentiated contractions

  5. Increased synthesis and release of endothelin-1 during the initial phase of airway inflammation.

    PubMed

    Finsnes, F; Christensen, G; Lyberg, T; Sejersted, O M; Skjønsberg, O H

    1998-11-01

    Recently, we have shown a substantial increase in the endothelin-1 (ET-1) concentration in bronchoalveolar fluid (BALF) during an experimental eosinophilic airway inflammation. Moreover, we observed a significant inhibition of the inflammatory response after treatment with an endothelin receptor antagonist. This indicates that ET-1 may have proinflammatory properties and play a key role in eosinophilic inflammations, such as bronchial asthma. Accordingly, we hypothesized that the synthesis and release of ET-1 precedes the inflammatory response, and that the bronchial epithelium is the site of ET-1 synthesis in the lungs. An eosinophilic airway inflammation was induced by intratracheal Sephadex instillation in rats, and the animals were evaluated after 15 min, 30 min, 1, 2, 3, 6, 12, and 48 h. The ET-1 mRNA synthesis, assessed by Northern and slot blot analyses, was significantly increased 15 min after Sephadex challenge, peaking at 30 min with a 4.7-fold increase, before any signs of inflammation in the BALF could be observed. The increased synthesis was mainly located to the bronchial epithelium and macrophages at sites of inflammation as determined by in situ hybridization. A significant increase in tissue ET-1 was observed 3 h after provocation, and the recruitment of eosinophils followed a substantial release of ET-1 peptide in BALF peaking at 24 h with a 13-fold increase. Therefore, the rapid ET-1 mRNA synthesis and the considerable increase in the level of ET-1 indicate that this peptide plays an important role in the initiation of an eosinophilic airway inflammation. PMID:9817714

  6. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.

    PubMed

    Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D

    2015-07-15

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  7. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation

    PubMed Central

    Causton, Benjamin; Ramadas, Ravisankar A.; Cho, Josalyn L.; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J.

    2015-01-01

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein–coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain–containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  8. Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice

    PubMed Central

    Blasi, Francesco; Aliberti, Stefano; Allegra, Luigi; Piatti, Gioia; Tarsia, Paolo; Ossewaarde, Jacobus M; Verweij, Vivienne; Nijkamp, Frans P; Folkerts, Gert

    2007-01-01

    Background It has been reported that Chlamydophila (C.) pneumoniae is involved in the initiation and promotion of asthma and chronic obstructive pulmonary diseases (COPD). Surprisingly, the effect of C. pneumoniae on airway function has never been investigated. Methods In this study, mice were inoculated intranasally with C. pneumoniae (strain AR39) on day 0 and experiments were performed on day 2, 7, 14 and 21. Results We found that from day 7, C. pneumoniae infection causes both a sustained airway hyperresponsiveness and an inflammation. Interferon-γ (IFN-γ) and macrophage inflammatory chemokine-2 (MIP-2) levels in bronchoalveolar lavage (BAL)-fluid were increased on all experimental days with exception of day 7 where MIP-2 concentrations dropped to control levels. In contrast, tumor necrosis factor-α (TNF-α) levels were only increased on day 7. From day 7 to 21 epithelial damage and secretory cell hypertrophy was observed. It is suggested that, the inflammatory cells/mediators, the epithelial damage and secretory cell hypertrophy contribute to initiation of airway hyperresponsiveness. Conclusion Our study demonstrates for the first time that C. pneumoniae infection can modify bronchial responsiveness. This has clinical implications, since additional changes in airway responsiveness and inflammation-status induced by this bacterium may worsen and/or provoke breathlessness in asthma and COPD. PMID:18021431

  9. Cyclooxygenase-2/prostaglandin D2/CRTH2 pathway mediates double-stranded RNA-induced enhancement of allergic airway inflammation.

    PubMed

    Shiraishi, Yoshiki; Asano, Koichiro; Niimi, Kyoko; Fukunaga, Koichi; Wakaki, Misa; Kagyo, Junko; Takihara, Takahisa; Ueda, Soichiro; Nakajima, Takeshi; Oguma, Tsuyoshi; Suzuki, Yusuke; Shiomi, Tetsuya; Sayama, Koichi; Kagawa, Shizuko; Ikeda, Eiji; Hirai, Hiroyuki; Nagata, Kinya; Nakamura, Masataka; Miyasho, Taku; Ishizaka, Akitoshi

    2008-01-01

    Respiratory RNA viruses responsible for the common cold often worsen airway inflammation and bronchial responsiveness, two characteristic features of human asthma. We studied the effects of dsRNA, a nucleotide synthesized during viral replication, on airway inflammation and bronchial hyperresponsiveness in murine models of asthma. Intratracheal instillation of poly I:C, a synthetic dsRNA, increased the airway eosinophilia and enhanced bronchial hyperresponsiveness to methacholine in OVA-sensitized, exposed rats. These changes were associated with induction of cyclooxygenase-2 (COX-2) expression and COX-2-dependent PGD2 synthesis in the lungs, particularly in alveolar macrophages. The direct intratracheal instillation of PGD2 enhanced the eosinophilic inflammation in OVA-exposed animals, whereas pretreatment with a dual antagonist against the PGD2 receptor-(CRTH2) and the thromboxane A2 receptor, but not with a thromboxane A2 receptor-specific antagonist, nearly completely eliminated the dsRNA-induced worsening of airway inflammation and bronchial hyperresponsiveness. CRTH2-deficient mice had the same degree of allergen-induced airway eosinophilia as wild-type mice, but they did not exhibit a dsRNA-induced increase in eosinophil accumulation. Our data demonstrate that COX-2-dependent production of PGD2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenetic factors responsible for the dsRNA-induced enhancement of airway inflammation and responsiveness. PMID:18097056

  10. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness.

    PubMed

    Li, Shanru; Koziol-White, Cynthia; Jude, Joseph; Jiang, Meiqi; Zhao, Hengjiang; Cao, Gaoyuan; Yoo, Edwin; Jester, William; Morley, Michael P; Zhou, Su; Wang, Yi; Lu, Min Min; Panettieri, Reynold A; Morrisey, Edward E

    2016-05-01

    Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma. PMID:27088802

  11. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma.

    PubMed

    Yarova, Polina L; Stewart, Alecia L; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A; P Lowe, Alexander P; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J; Ford, William R; Broadley, Kenneth J; Rietdorf, Katja; Chang, Wenhan; Bin Khayat, Mohd E; Ward, Donald T; Corrigan, Christopher J; T Ward, Jeremy P; Kemp, Paul J; Pabelick, Christina M; Prakash, Y S; Riccardi, Daniela

    2015-04-22

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  12. Biomarkers of in vivo fluorescence imaging in allergic airway inflammation.

    PubMed

    Wang, Fa-Ping; Fan, Ying-Qi; Li, Su-Yun; Mao, Hui

    2016-04-01

    Airway inflammation is a central component of the manifestation of asthma but is relatively inaccessible to study. Current imaging techniques such as X-ray CT, MRI, and PET, have advanced noninvasive research on pulmonary diseases. However, these techniques mainly facilitate the anatomical or structural assessment of the diseased lung and/or typically use radioactive agents. In vivo fluorescence imaging is a novel method for noninvasive, real-time, and specific monitoring of lung airway inflammation, which is particularly important to gain a further understanding asthma. Compared to conventional techniques, fluorescent imaging has the advantages of rapid feedback, as well as high sensitivity and resolution. Recently, there has been an increase in the identification of biomarkers, including matrix metalloproteinases, cathepsins, selectins, folate receptor-beta, nanoparticles, as well as sialic acid-binding immunoglobulin-like lectin-F to assess the level of airway inflammation in asthma. Recent advances in our understanding of these biomarkers as molecular probes for in vivo imaging are discussed in this review. PMID:26902991

  13. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    PubMed Central

    Yarova, Polina L.; Stewart, Alecia L.; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A.; Lowe, Alexander P. P.; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C.; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J.; Ford, William R.; Broadley, Kenneth J.; Rietdorf, Katja; Chang, Wenhan; Khayat, Mohd E. Bin; Ward, Donald T.; Corrigan, Christopher J.; Ward, Jeremy P. T.; Kemp, Paul J.; Pabelick, Christina M.; Prakash, Y. S.; Riccardi, Daniela

    2016-01-01

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyper-reactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  14. Parasitic Nematode-Induced CD4+Foxp3+T Cells Can Ameliorate Allergic Airway Inflammation

    PubMed Central

    Kang, Shin Ae; Park, Mi-Kyung; Cho, Min Kyoung; Park, Sang Kyun; Jang, Min Seong; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Background The recruitment of CD4+CD25+Foxp3+T (Treg) cells is one of the most important mechanisms by which parasites down-regulate the immune system. Methodology/Principal Findings We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+)Foxp3+] or uninfected [Inf(-)Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA)-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+)Foxp3+ cells [IV(inf):+(+) group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-)Foxp3+ cells [IV(inf):+(-) group], but the effects were less distinct than those observed in the IV(inf):+(+) group. We found that Inf(+)Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9) and activation markers (Klrg1, Capg, GARP, Gzmb, OX40) than did Inf(-)Foxp3+ cells. Conclusion/Significance T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+)Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment

  15. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    PubMed Central

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  16. The effect of rhinovirus on airway inflammation in a murine asthma model

    PubMed Central

    Kim, Eugene; Lee, Huisu; Kim, Hyun Sook; Won, Sulmui; Lee, Eu Kyoung; Kim, Hwan Soo; Bang, Kyongwon; Chun, Yoon Hong; Yoon, Jong-Seo; Kim, Jin Tack; Lee, Joon Sung

    2013-01-01

    Purpose The aim of the present study was to investigate the differences in lower airway inflammatory immune responses, including cellular responses and responses in terms of inflammatory mediators in bronchoalveolar lavage fluid (BALF) and the airway, to rhinovirus (RV) infection on asthma exacerbation by comparing a control and a murine asthma model, with or without RV infection. Methods BALB/c mice were intraperitoneally injected with a crude extract of Dermatophagoides farinae (Df) or phosphate buffered saline (PBS) and were subsequently intranasally treated with a crude extract of Df or PBS. Airway responsiveness and cell infiltration, differential cell counts in BALF, and cytokine and chemokine concentrations in BALF were measured 24 hours after intranasal RV1B infection. Results RV infection increased the enhanced pause (Penh) in both the Df sensitized and challenged mice (Df mice) and PBS-treated mice (PBS mice) (P<0.05). Airway eosinophil infiltration increased in Df mice after RV infection (P<0.05). The levels of interleukin (IL) 13, tumor necrosis factor alpha, and regulated on activation, normal T cells expressed and secreted (RANTES) increased in response to RV infection in Df mice, but not in PBS mice (P<0.05). The level of IL-10 significantly decreased following RV infection in Df mice (P<0.05). Conclusion Our findings suggest that the augmented induction of proinflammatory cytokines, Th2 cytokines, and chemokines that mediate an eosinophil response and the decreased induction of regulatory cytokines after RV infection may be important manifestations leading to airway inflammation with eosinophil infiltration and changes in airway responsiveness in the asthma model. PMID:24348661

  17. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of allergic airway inflammation

    PubMed Central

    Palaniyandi, Senthilkumar; Liu, Xiaoyang; Periasamy, Sivakumar; Ma, Aiying; Tang, Jin; Jenkins, Mark; Tuo, Wenbin; Song, Wenxia; Keegan, Achsah D.; Conrad, Daniel H.; Zhu, Xiaoping

    2015-01-01

    The epithelial lining of the airway tract and allergen-specific IgE are considered essential controllers of inflammatory responses to allergens. The human low affinity IgE receptor, CD23 (FcεRII), is capable of transporting IgE or IgE-allergen complexes across the polarized human airway epithelial cell (AEC) monolayer in vitro. However, it remains unknown whether the CD23-dependent IgE transfer pathway in AECs initiates and facilitates allergic inflammation in vivo, and whether inhibition of this pathway attenuates allergic inflammation. To this end, we show that in wild-type (WT) mice, epithelial CD23 transcytosed both IgE and ovalbumin (OVA)-IgE complexes across the airway epithelial barrier, while neither type of transcytosis was observed in CD23 knockout (KO) mice. In chimeric mice, OVA sensitization and aerosol challenge of WT/WT (bone-marrow transfer from the WT to WT) or CD23KO/WT (CD23KO to WT) chimeric mice, which express CD23 on radioresistant airway structural cells (mainly epithelial cells) resulted in airway eosinophilia, including collagen deposition and a significant increase in goblet cells, and increased airway hyperreactivity. In contrast, the absence of CD23 expression on airway structural or epithelial cells, but not on hematopoietic cells, in WT/CD23KO (the WT to CD23KO) chimeric mice significantly reduced OVA-driven allergic airway inflammation. In addition, inhalation of the CD23-blocking B3B4 antibody in sensitized WT mice before or during airway challenge suppressed the salient features of asthma, including bronchial hyperreactivity. Taken together, these results identify a previously unproven mechanism in which epithelial CD23 plays a central role in the development of allergic inflammation. Further, our study suggests that functional inhibition of CD23 in the airway is a potential therapeutic approach with which to inhibit the development of asthma. PMID:25783969

  18. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    PubMed

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation. PMID:26101328

  19. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    SciTech Connect

    Inoue, Ken-ichiro Koike, Eiko; Yanagisawa, Rie; Hirano, Seishiro; Nishikawa, Masataka; Takano, Hirohisa

    2009-06-15

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology, levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.

  20. Anti-Siglec-F Antibody Reduces Allergen-Induced Eosinophilic Inflammation and Airway Remodeling1

    PubMed Central

    Song, Dae Jin; Cho, Jae Youn; Lee, Sang Yeub; Miller, Marina; Rosenthal, Peter; Soroosh, Pejman; Croft, Michael; Zhang, Mai; Varki, Ajit; Broide, David H.

    2009-01-01

    Siglec-F is a sialic acid-binding Ig superfamily receptor that is highly expressed on eosinophils. We have investigated whether administration of an anti-Siglec-F Ab to OVA-challenged wild-type mice would reduce levels of eosinophilic inflammation and levels of airway remodeling. Mice sensitized to OVA and challenged repetitively with OVA for 1 mo who were administered an anti-Siglec-F Ab had significantly reduced levels of peribronchial eosinophilic inflammation and significantly reduced levels of subepithelial fibrosis as assessed by either trichrome staining or lung collagen levels. The anti-Siglec-F Ab reduced the number of bone marrow, blood, and tissue eosinophils, suggesting that the anti-Siglec-F Ab was reducing the production of eosinophils. Administration of a F(ab′)2 fragment of an anti-Siglec-F Ab also significantly reduced levels of eosinophilic inflammation in the lung and blood. FACS analysis demonstrated increased numbers of apoptotic cells (annexin V+/CCR3+ bronchoalveolar lavage and bone marrow cells) in anti-Siglec-F Ab-treated mice challenged with OVA. The anti-Siglec-F Ab significantly reduced the number of peribronchial major basic protein+/TGF-β+ cells, suggesting that reduced levels of eosinophil-derived TGF-β in anti-Siglec-F Ab-treated mice contributed to reduced levels of peribronchial fibrosis. Administration of the anti-Siglec-F Ab modestly reduced levels of periodic acid-Schiff-positive mucus cells and the thickness of the smooth muscle layer. Overall, these studies suggest that administration of an anti-Siglec-F Ab can significantly reduce levels of allergen-induced eosinophilic airway inflammation and features of airway remodeling, in particular subepithelial fibrosis, by reducing the production of eosinophils and increasing the number of apoptotic eosinophils in lung and bone marrow. PMID:19783675

  1. Soluble Epoxide Hydrolase Inhibitor Attenuates Inflammation and Airway Hyperresponsiveness in Mice

    PubMed Central

    Yang, Jun; Bratt, Jennifer; Franzi, Lisa; Liu, Jun-Yan; Zhang, Guodong; Zeki, Amir A.; Vogel, Christoph F. A.; Williams, Keisha; Dong, Hua; Lin, Yanping; Hwang, Sung Hee; Kenyon, Nicholas J.

    2015-01-01

    Control of airway inflammation is critical in asthma treatment. Soluble epoxide hydrolase (sEH) has recently been demonstrated as a novel therapeutic target for treating inflammation, including lung inflammation. We hypothesized that pharmacological inhibition of sEH can modulate the inflammatory response in a murine ovalbumin (OVA) model of asthma. BALB/c mice were sensitized and exposed to OVA over 6 weeks. A sEH inhibitor (sEHI) was administered for 2 weeks. Respiratory system compliance, resistance, and forced exhaled nitric oxide were measured. Lung lavage cell counts were performed, and selected cytokines and chemokines in the lung lavage fluid were measured. A LC/MS/MS method was used to measure 87 regulatory lipids mediators in plasma, lung tissue homogenates, and lung lavage fluid. The pharmacological inhibition of sEH increased concentrations of the antiinflammatory epoxy eicosatrienoic acids and simultaneously decreased the concentrations of the proinflammatory dihydroxyeicosatrienoic acids and dihydroxyoctadecenoic acids. All monitored inflammatory markers, including FeNO levels, and total cell and eosinophil numbers in the lung lavage of OVA-exposed mice were reduced by sEHI. The type 2 T helper cell (Th2) cytokines (IL-4, IL-5) and chemokines (Eotaxin and RANTES) were dramatically reduced after sEHI administration. Resistance and dynamic lung compliance were also improved by sEHI. We demonstrated that sEHI administration attenuates allergic airway inflammation and airway responsiveness in a murine model. sEHI may have potential as a novel therapeutic strategy for allergic asthma. PMID:24922186

  2. Soluble epoxide hydrolase inhibitor attenuates inflammation and airway hyperresponsiveness in mice.

    PubMed

    Yang, Jun; Bratt, Jennifer; Franzi, Lisa; Liu, Jun-Yan; Zhang, Guodong; Zeki, Amir A; Vogel, Christoph F A; Williams, Keisha; Dong, Hua; Lin, Yanping; Hwang, Sung Hee; Kenyon, Nicholas J; Hammock, Bruce D

    2015-01-01

    Control of airway inflammation is critical in asthma treatment. Soluble epoxide hydrolase (sEH) has recently been demonstrated as a novel therapeutic target for treating inflammation, including lung inflammation. We hypothesized that pharmacological inhibition of sEH can modulate the inflammatory response in a murine ovalbumin (OVA) model of asthma. BALB/c mice were sensitized and exposed to OVA over 6 weeks. A sEH inhibitor (sEHI) was administered for 2 weeks. Respiratory system compliance, resistance, and forced exhaled nitric oxide were measured. Lung lavage cell counts were performed, and selected cytokines and chemokines in the lung lavage fluid were measured. A LC/MS/MS method was used to measure 87 regulatory lipids mediators in plasma, lung tissue homogenates, and lung lavage fluid. The pharmacological inhibition of sEH increased concentrations of the antiinflammatory epoxy eicosatrienoic acids and simultaneously decreased the concentrations of the proinflammatory dihydroxyeicosatrienoic acids and dihydroxyoctadecenoic acids. All monitored inflammatory markers, including FeNO levels, and total cell and eosinophil numbers in the lung lavage of OVA-exposed mice were reduced by sEHI. The type 2 T helper cell (Th2) cytokines (IL-4, IL-5) and chemokines (Eotaxin and RANTES) were dramatically reduced after sEHI administration. Resistance and dynamic lung compliance were also improved by sEHI. We demonstrated that sEHI administration attenuates allergic airway inflammation and airway responsiveness in a murine model. sEHI may have potential as a novel therapeutic strategy for allergic asthma. PMID:24922186

  3. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    PubMed

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of

  4. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    PubMed Central

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by

  5. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling.

    PubMed

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning; Huang, Mao

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin

  6. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection

  7. Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs.

    PubMed

    Yang, Xiaowei; Zhu, Jingjing; Tung, Chun-Yu; Gardiner, Gail; Wang, Qun; Chang, Hua-Chen; Zhou, Baohua

    2015-01-01

    Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy. PMID:25646897

  8. Lunasin Alleviates Allergic Airway Inflammation while Increases Antigen-Specific Tregs

    PubMed Central

    Yang, Xiaowei; Zhu, Jingjing; Tung, Chun-Yu; Gardiner, Gail; Wang, Qun; Chang, Hua-Chen; Zhou, Baohua

    2015-01-01

    Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy. PMID:25646897

  9. Replication-deficient adenoviral vector for gene transfer potentiates airway neurogenic inflammation.

    PubMed

    Piedimonte, G; Pickles, R J; Lehmann, J R; McCarty, D; Costa, D L; Boucher, R C

    1997-03-01

    Human trials for the treatment of cystic fibrosis lung disease with adenoviral vectors have been complicated by acute inflammatory reactions of unknown etiology. Because replicating respiratory viruses can potentiate tachykinin-mediated neurogenic inflammatory responses in airways, we studied whether the endotracheal administration of a replication-deficient adenoviral vector potentiated this response. The vector Ad5CMVLacZ was administered endotracheally to rats and the leakage of Evans blue dye was used to measure the capsaicin-induced neurogenic albumin extravasation. These studies show that neurogenic albumin extravasation is significantly potentiated in the airways of rats after administration of Ad5CMVLacZ. This inflammatory response can be blocked by selective antagonists of the substance P receptor or by glucocorticoids. Therefore, (1) the acute airway inflammation observed in patients after exposure to adenoviral vectors may exhibit a neurogenic component, which can be blocked pharmacologically, and (2) preclinical adenoviral vector safety studies of other organs innervated by the tachykinin system, e.g., coronary arteries and gastrointestinal tract, should include assessment of neurogenic inflammation. PMID:9070609

  10. Simvastatin delivery via inhalation attenuates airway inflammation in a murine model of asthma.

    PubMed

    Xu, Lan; Dong, Xing-wei; Shen, Liang-liang; Li, Fen-fen; Jiang, Jun-xia; Cao, Rui; Yao, Hong-yi; Shen, Hui-juan; Sun, Yun; Xie, Qiang-min

    2012-04-01

    The dose-response of the pleiotropic effects of statins on airway inflammation has not yet been established and may differ from that of their cholesterol-lowering effects. High oral doses of statins may have adverse effects, and it may be possible to overcome the side effects and low clinical efficacy by administering statins via inhalation. In this study, we hypothesize that simvastatin is a potential anti-inflammatory drug with biological and pharmacokinetic properties suitable for delivery by the inhaled route. Mice were immunized with ovalbumin (OVA) and then challenged with aerosol OVA. Simvastatin was locally delivered by inhalation (i.h.) and intratracheal injection (i.t.) or systematically delivered by intraperitoneal injection (i.p.) and gavage (i.g.) during the OVA challenge. In a mouse model of asthma, i.h. simvastatin significantly and dose-dependently attenuated airway inflammation, remodeling and hyperresponsiveness in a RhoA-dependent pathway. Upon comparing the pharmacodynamics, i.h. simvastatin had a more potent effect than that of i.g. and i.p. simvastatin, and the i.h. or i.t. delivery routes led to a higher drug concentration in local lung tissue and a lower drug concentration in the plasma than that obtained by the i.g. These results suggest that simvastatin is a potential anti-inflammatory drug for airway inflammatory diseases with properties suitable for delivery by inhalation, which will probably reduce the side effects and increase clinical efficacy. PMID:22326624

  11. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma.

    PubMed

    Zhou, Ershun; Fu, Yunhe; Wei, Zhengkai; Yu, Yuqiang; Zhang, Xichen; Yang, Zhengtao

    2014-07-01

    Thymol, a naturally occurring monocyclic phenolic compound derived from Thymus vulgaris (Lamiaceae), has been reported to exhibit anti-inflammatory property in vivo and vitro. However, the mechanism of thymol is not clear. The aim of the present study was to investigate the effects of thymol on allergic inflammation in OVA-induced mice asthma and explore its mechanism. The model of mouse asthma was established by the induction of OVA. Thymol was orally administered at a dose of 4, 8, and 16 mg/kg body weight 1h before OVA challenge. At 24h after the last challenge, mice were sacrificed, and the data were collected by various experimental methods. The results revealed that pretreatment with thymol reduced the level of OVA-specific IgE, inhibited recruitment of inflammatory cells into airway, and decreased the levels of IL-4, IL-5, and IL-13 in BALF. Moreover, the pathologic changes of lung tissues were obviously ameliorated and goblet cell hyperplasia was effectively inhibited by the pretreatment of thymol. In addition, thymol reduced the development of airway hyperresponsiveness and blocked the activation of NF-κB pathway. All data suggested that thymol ameliorated airway inflammation in OVA-induced mouse asthma, possibly through inhibiting NF-κB activation. These findings indicated that thymol may be used as an alternative agent for treating allergic asthma. PMID:24785965

  12. FLLL31, a derivative of curcumin, attenuates airway inflammation in a multi-allergen challenged mouse model.

    PubMed

    Yuan, Shaopeng; Cao, Shuhua; Jiang, Rentao; Liu, Renping; Bai, Jinye; Hou, Qi

    2014-07-01

    Signal transducer and activator of transcription protein 3 (STAT3), one of the major regulators of inflammation, plays multiple roles in cellular transcription, differentiation, proliferation, and survival in human diseases. Dysregulation of STAT3 is related to the severe airway inflammation associated with asthma. FLLL31 is a newly developed compound based on the herbal medicine curcumin, which specifically suppresses the activation of STAT3. However, the function of FLLL31 on inflammatory diseases, especially on the regulation of airway inflammation, has not been fully studied. In our prior investigations, we developed a mouse model that was challenged with a mixture of DRA allergens (including house dust mite, ragweed, and Aspergillums species) to mimic the severe airway inflammation observed in human patients. In this study, we performed a series of experiments on the inflammatory regulation activities of FLLL31 in both in vitro cultured cells and our in vivo DRA-challenged mouse model. Our results show that FLLL31 exhibits anti-inflammatory effects on macrophage activation, lymphocyte differentiation, and pro-inflammatory factor production. Importantly, FLLL31 significantly inhibited airway inflammation and recruitment of inflammatory cells in the DRA-challenged mouse model. Based on these results, we conclude that FLLL31 is a potential therapeutic agent that can be used against severe airway inflammation diseases. PMID:24819716

  13. Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness

    PubMed Central

    Peters, M; Kauth, M; Schwarze, J; Körner‐Rettberg, C; Riedler, J; Nowak, D; Braun‐Fahrländer, C; von Mutius, E; Bufe, A; Holst, O

    2006-01-01

    Background Recent epidemiological studies have shown that growing up on a traditional farm provides protection from the development of allergic disorders such as hay fever and allergic asthma. We present experimental evidence that substances providing protection from the development of allergic diseases can be extracted from dust collected in stables of animal farms. Methods Stable dust was collected from 30 randomly selected farms located in rural regions of the Alps (Austria, Germany and Switzerland). The dust was homogenised with glass beads and extracted with physiological sodium chloride solution. This extract was used to modulate immune response in a well established mouse model of allergic asthma. Results Treatment of mice by inhalation of stable dust extract during sensitisation to ovalbumin inhibited the development of airway hyperresponsiveness and airway eosinophilia upon challenge, as well as the production of interleukin 5 by splenocytes and of antigen specific IgG1 and IgE. Dust extract also suppressed the generation of human dendritic cells in vitro. The biological activity of the dust extract was not exclusively mediated by lipopolysaccharide. Conclusions Stable dust from animal farms contains strong immune modulating substances. These substances can interfere with the development of both cellular and humoral immunity against allergens, thus suppressing allergen sensitisation, airway inflammation, and airway hyperresponsiveness in a murine model of allergic asthma. PMID:16244088

  14. Functional characterization and biomarker identification in the Brown Norway model of allergic airway inflammation

    PubMed Central

    Underwood, Stephen L; Haddad, El-Bdaoui; Birrell, Mark A; McCluskie, Kerryn; Pecoraro, Michaela; Dabrowski, Dominika; Webber, Stephen E; Foster, Martyn L; Belvisi, Maria G

    2002-01-01

    The antigen-induced inflammatory response in the Brown Norway rat is a model commonly used to assess the impact of novel compounds on airway eosinophilia. A detailed functional, cellular and molecular characterization of this model has not yet been performed within a single study. This information together with the temporal changes in this phenomenon should be known before this model can be used, with confidence, to elucidate the mechanisms of action of novel anti-inflammatory drugs. Antigen challenge caused an accumulation of eosinophils in lung tissue 24 h after challenge. Accumulation of CD2+ T cells was not apparent until after 72 h. Interestingly, mRNA for the Th2 type cytokines interleukin (IL)-4, IL-5 and IL-13 and eotaxin were elevated in lung tissue after challenge and the expression of IL-13 and eotaxin protein increased at around 8–12 h. The temporal changes in both the biomarker production and the functional responses are important factors to consider in protocol design prior to initiating a compound screening program. A neutralising antibody (R73) against αβ-TCR caused a significant reduction in T cell numbers accompanied by a significant suppression of eosinophil accumulation. Airway hyperreactivity (AHR) was not apparent in this specific Brown Norway model in sensitized animals after a single or multiple challenges although eosinophil influx was seen in the same animals. In conclusion, this is a convenient pre-clinical model (incorporating the measurement of biomarkers and functional responses) for screening novel small molecule inhibitors and/or biotherapeutics targeted against T cell/eosinophil infiltration/activation. PMID:12208784

  15. γδT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations.

    PubMed

    Glanville, N; Message, S D; Walton, R P; Pearson, R M; Parker, H L; Laza-Stanca, V; Mallia, P; Kebadze, T; Contoli, M; Kon, O M; Papi, A; Stanciu, L A; Johnston, S L; Bartlett, N W

    2013-11-01

    Most asthma exacerbations are triggered by virus infections, the majority being caused by human rhinoviruses (RV). In mouse models, γδT cells have been previously demonstrated to influence allergen-driven airways hyper-reactivity (AHR) and can have antiviral activity, implicating them as prime candidates in the pathogenesis of asthma exacerbations. To explore this, we have used human and mouse models of experimental RV-induced asthma exacerbations to examine γδT-cell responses and determine their role in the immune response and associated airways disease. In humans, airway γδT-cell numbers were increased in asthmatic vs. healthy control subjects during experimental infection. Airway and blood γδT-cell numbers were associated with increased airways obstruction and AHR. Airway γδT-cell number was also positively correlated with bronchoalveolar lavage (BAL) virus load and BAL eosinophils and lymphocytes during RV infection. Consistent with our observations of RV-induced asthma exacerbations in humans, infection of mice with allergic airways inflammation increased lung γδT-cell number and activation. Inhibiting γδT-cell responses using anti-γδTCR (anti-γδT-cell receptor) antibody treatment in the mouse asthma exacerbation model increased AHR and airway T helper type 2 cell recruitment and eosinophilia, providing evidence that γδT cells are negative regulators of airways inflammation and disease in RV-induced asthma exacerbations. PMID:23385428

  16. γδT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations

    PubMed Central

    Glanville, N; Message, S D; Walton, R P; Pearson, R M; Parker, H L; Laza-Stanca, V; Mallia, P; Kebadze, T; Contoli, M; Kon, O M; Papi, A; Stanciu, L A; Johnston, S L; Bartlett, N W

    2013-01-01

    Most asthma exacerbations are triggered by virus infections, the majority being caused by human rhinoviruses (RV). In mouse models, γδT cells have been previously demonstrated to influence allergen-driven airways hyper-reactivity (AHR) and can have antiviral activity, implicating them as prime candidates in the pathogenesis of asthma exacerbations. To explore this, we have used human and mouse models of experimental RV-induced asthma exacerbations to examine γδT-cell responses and determine their role in the immune response and associated airways disease. In humans, airway γδT-cell numbers were increased in asthmatic vs. healthy control subjects during experimental infection. Airway and blood γδT-cell numbers were associated with increased airways obstruction and AHR. Airway γδT-cell number was also positively correlated with bronchoalveolar lavage (BAL) virus load and BAL eosinophils and lymphocytes during RV infection. Consistent with our observations of RV-induced asthma exacerbations in humans, infection of mice with allergic airways inflammation increased lung γδT-cell number and activation. Inhibiting γδT-cell responses using anti-γδTCR (anti-γδT-cell receptor) antibody treatment in the mouse asthma exacerbation model increased AHR and airway T helper type 2 cell recruitment and eosinophilia, providing evidence that γδT cells are negative regulators of airways inflammation and disease in RV-induced asthma exacerbations. PMID:23385428

  17. Thuja orientalis reduces airway inflammation in ovalbumin-induced allergic asthma.

    PubMed

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Hong, Ju-Mi; Kim, Hui-Seong; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2015-09-01

    Thuja orientalis (TO) may be used as a herbal remedy for the treatment of numerous inflammatory diseases. In the present study, the effects of TO were evaluated on airway inflammation in ovalbumin (OVA)‑induced allergic asthma and RAW264.7 murine macrophage cells. The effects of TO on the production of proinflammatory mediators, were determined in RAW264.7 cells that had been stimulated with lipopolysaccharide (LPS). Furthermore, an in vivo experiment was performed on mice that were sensitized to OVA and then received an OVA airway challenge. TO was administered by daily oral gavage at a dose of 30 mg/kg, 21‑23 days after the initial OVA sensitization. TO was shown to reduce nitric oxide production and reduce the relative mRNA expression levels of inducible nitric oxide synthase (iNOS), interleukin (IL)‑6, cyclooxygenase‑2, matrix metalloproteinase (MMP)‑9, and tumor necrosis factor‑α in RAW264.7 cells stimulated with LPS. In addition, TO markedly decreased the inflammatory cell counts in bronchial alveolar lavage fluid, reduced the levels of IL‑4, IL‑5, IL‑13, eotaxin and immunoglobulin E, and reduced airway hyperresponsivenes, in the OVA sensitized mice. Furthermore, TO attenuated airway inflammation and mucus hypersecretion, induced by the OVA challenge of the lung tissue. TO also reduced the expression of iNOS and MMP‑9 in lung tissue. In conclusion, TO exerted anti‑inflammatory effects in an OVA‑induced allergic asthma model, and in LPS‑stimulated RAW264.7 cells. These results suggest that TO may be a useful therapeutic agent for the treatment of inflammatory diseases, including allergic asthma. PMID:26063078

  18. Effect of airway inflammation on smooth muscle shortening and contractility in guinea pig trachealis.

    PubMed

    Mitchell, R W; Ndukwu, I M; Arbetter, K; Solway, J; Leff, A R

    1993-12-01

    We studied the effect of either 1) immunogenic inflammation caused by aerosolized ovalbumin or 2) neurogenic inflammation caused by aerosolized capsaicin in vivo on guinea pig tracheal smooth muscle (TSM) contractility in vitro. Force-velocity relationships were determined for nine epithelium-intact TSM strips from ovalbumin-sensitized (OAS) vs. seven sham-sensitized controls and TSM strips for seven animals treated with capsaicin aerosol (Cap-Aer) vs. eight sham controls. Muscle strips were tethered to an electromagnetic lever system, which allowed isotonic shortening when load clamps [from 0 to maximal isometric force (Po)] were applied at specific times after onset of contraction. Contractions were elicited by supramaximal electrical field stimulation (60 Hz, 10-s duration, 18 V). Optimal length for each muscle was determined during equilibration. Maximal shortening velocity (Vmax) was increased in TSM from OAS (1.72 +/- 0.46 mm/s) compared with sham-sensitized animals (0.90 +/- 0.15 mm/s, P < 0.05); Vmax for TSM from Cap-Aer (0.88 +/- 0.11 mm/s) was not different from control TSM (1.13 +/- 0.08 mm/s, P = NS). Similarly, maximal shortening (delta max) was augmented in TSM from OAS (1.01 +/- 0.15 mm) compared with sham-sensitized animals (0.72 +/- 0.14 mm, P < 0.05); delta max for TSM from Cap-Aer animals (0.65 +/- 0.11 mm) was not different from saline aerosol controls (0.71 +/- 0.15 mm, P = NS). We demonstrate Vmax and delta max are augmented in TSM after ovalbumin sensitization; in contrast, neurogenic inflammation caused by capsaicin has no effect on isolated TSM contractility in vitro. These data suggest that airway hyperresponsiveness in vivo that occurs in association with immunogenic or neurogenic inflammation may result from different effects of these types of inflammation on airway smooth muscle. PMID:8279571

  19. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice.

    PubMed

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-03-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5-10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2mg/kg with no effect at the lowest dose of 0.2mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. PMID:22266348

  20. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation.

    PubMed

    Bacsi, Attila; Aguilera-Aguirre, Leopoldo; Szczesny, Bartosz; Radak, Zsolt; Hazra, Tapas K; Sur, Sanjiv; Ba, Xueqing; Boldogh, Istvan

    2013-01-01

    Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits. PMID:23127499

  1. Obstructive Sleep Apnoea Modulates Airway Inflammation and Remodelling in Severe Asthma

    PubMed Central

    Taillé, Camille; Rouvel-Tallec, Anny; Stoica, Maria; Danel, Claire; Dehoux, Monique; Marin-Esteban, Viviana; Pretolani, Marina; Aubier, Michel; d’Ortho, Marie-Pia

    2016-01-01

    Background Obstructive sleep apnoea (OSA) is frequently observed in severe asthma but the causal link between the 2 diseases remains hypothetical. The role of OSA-related systemic and airway neutrophilic inflammation in asthma bronchial inflammation or remodelling has been rarely investigated. The aim of this study was to compare hallmarks of inflammation in induced sputum and features of airway remodelling in bronchial biopsies from adult patients with severe asthma with and without OSA. Materials and Methods An overnight polygraphy was performed in 55 patients referred for difficult-to-treat asthma, who complained of nocturnal respiratory symptoms, poor sleep quality or fatigue. We compared sputum analysis, reticular basement membrane (RBM) thickness, smooth muscle area, vascular density and inflammatory cell infiltration in bronchial biopsies. Results In total, 27/55 patients (49%) had OSA diagnosed by overnight polygraphy. Despite a moderate increase in apnoea-hypopnoea index (AHI; 14.2±1.6 event/h [5–35]), the proportion of sputum neutrophils was higher and that of macrophages lower in OSA than non-OSA patients, with higher levels of interleukin 8 and matrix metalloproteinase 9. The RBM was significantly thinner in OSA than non-OSA patients (5.8±0.4 vs. 7.8±0.4 μm, p<0.05). RBM thickness and OSA severity assessed by the AHI were negatively correlated (rho = -0.65, p<0.05). OSA and non-OSA patients did not differ in age, sex, BMI, lung function, asthma control findings or treatment. Conclusion Mild OSA in patients with severe asthma is associated with increased proportion of neutrophils in sputum and changes in airway remodelling. PMID:26934051

  2. Effect of Moringa oleifera Lam. seed extract on ovalbumin-induced airway inflammation in guinea pigs.

    PubMed

    Mahajan, Shailaja G; Mehta, Anita A

    2008-08-01

    To determine the therapeutic potential of herbal medicine Moringa oleifera Lam. family: Moringaceae in the control of allergic diseases, the efficacy of the ethanolic extract of the seeds of the plant (MOEE) against ovalbumin (OVA)-induced airway inflammation in guinea pigs was examined. During the experimental period, the test drugs (MOEE or dexamethasone) were administered by oral route prior to challenge with aerosolized 0.5% OVA. Bronchoconstriction tests were performed and respiratory parameters (i.e., tidal volume and respiratory rate) were measured. At the end of experiment, blood was collected from each animal to perform total and differential counts and serum was used for assay of IL-4, IL-6, and TNFalpha. Lung lavage fluid (BAL) was collected for estimation of cellular content and cytokine levels. Lung tissue histamine assays were performed using the homogenate of one lobe from each animal; a separate lobe and the trachea were subjected to histopathology to measure the degree of any airway inflammation. The results suggest that in OVA-sensitized control animals that did not receive either drug, tidal volume (V(t)) was decreased, respiration rate (f) was increased, and both the total and differential cell counts in blood and BAL fluid were increased significantly. MOEE-treatment of sensitized hosts resulted in improvement in all parameters except BAL TNFalpha and IL-4. Moreover, MOEE-treatment also showed protection against acetylcholine-induced broncho-constriction and airway inflammation which was confirmed by histological observations. The results of these studies confirm the traditional claim for the usefulness of this herb in the treatment of allergic disorders like asthma. PMID:18686107

  3. Aerobic training reverses airway inflammation and remodelling in an asthma murine model.

    PubMed

    Silva, R A; Vieira, R P; Duarte, A C S; Lopes, F D T Q S; Perini, A; Mauad, T; Martins, M A; Carvalho, C R F

    2010-05-01

    Aerobic training (AT) decreases dyspnoea and exercise-induced bronchospasm, and improves aerobic capacity and quality of life; however, the mechanisms for such benefits remain poorly understood. The aim of the present study was to evaluate the AT effects in a chronic model of allergic lung inflammation in mice after the establishment of airway inflammation and remodelling. Mice were divided into the control group, AT group, ovalbumin (OVA) group or OVA+AT group and exposed to saline or OVA. AT was started on day 28 for 60 min five times per week for 4 weeks. Respiratory mechanics, specific immunoglobulin (Ig)E and IgG(1), collagen and elastic fibres deposition, smooth muscle thickness, epithelial mucus, and peribronchial density of eosinophils, CD3+ and CD4+, IL-4, IL-5, IL-13, interferon-gamma, IL-2, IL-1ra, IL-10, nuclear factor (NF)-kappaB and Foxp3 were evaluated. The OVA group showed an increase in IgE and IgG(1), eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappaB, collagen and elastic, mucus synthesis, smooth muscle thickness and lung tissue resistance and elastance. The OVA+AT group demonstrated an increase of IgE and IgG(1), and reduction of eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappaB, airway remodelling, mucus synthesis, smooth muscle thickness and tissue resistance and elastance compared with the OVA group (p<0.05). The OVA+AT group also showed an increase in IL-10 and IL-1ra (p<0.05), independently of Foxp3. AT reversed airway inflammation and remodelling and T-helper cell 2 response, and improved respiratory mechanics. These results seem to occur due to an increase in the expression of IL-10 and IL-1ra and a decrease of NF-kappaB. PMID:19897558

  4. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.

    PubMed

    Moon, Hyung-Geun; Kang, Chil Sung; Choi, Jun-Pyo; Choi, Dong Sic; Choi, Hyun Il; Choi, Yong Wook; Jeon, Seong Gyu; Yoo, Joo-Yeon; Jang, Myoung Ho; Gho, Yong Song; Kim, Yoon-Keun

    2013-01-01

    T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback. PMID:23306703

  5. The Role of the Extracellular Matrix Protein Mindin in Airway Response to Environmental Airways Injury

    PubMed Central

    Frush, Sarah; Li, Zhuowei; Potts, Erin N.; Du, Wanglei; Eu, Jerry P.; Garantziotis, Stavros; He, You-Wen; Foster, W. Michael

    2011-01-01

    Background: Our previous work demonstrated that the extracellular matrix protein mindin contributes to allergic airways disease. However, the role of mindin in nonallergic airways disease has not previously been explored. Objectives: We hypothesized that mindin would contribute to airways disease after inhalation of either lipopolysaccharide (LPS) or ozone. Methods: We exposed C57BL/6J and mindin-deficient (–/–) mice to aerosolized LPS (0.9 μg/m3 for 2.5 hr), saline, ozone (1 ppm for 3 hr), or filtered air (FA). All mice were evaluated 4 hr after LPS/saline 
exposure or 24 hr after ozone/FA exposure. We characterized the physiological and biological responses by analysis of airway hyperresponsiveness (AHR) with a computer-controlled small-animal ventilator (FlexiVent), inflammatory cellular recruitment, total protein in bronchoalveolar lavage fluid (BALF), proinflammatory cytokine profiling, and ex vivo bronchial ring studies. Results: After inhalation of LPS, mindin–/– mice demonstrated significantly reduced total cell and neutrophil recruitment into the airspace compared with their wild-type counterparts. Mindin–/– mice also exhibited reduced proinflammatory cytokine production and lower AHR to methacholine challenge by FlexiVent. After inhalation of ozone, mice had no detectible differences in cellular inflammation or total BALF protein dependent on mindin. However, mindin–/– mice were protected from increased proinflammatory cytokine production and AHR compared with their C57BL/6J counterparts. After ozone exposure, bronchial rings derived from mindin–/– mice demonstrated reduced constriction in response to carbachol. Conclusions: These data demonstrate that the extracellular matrix protein mindin modifies the airway response to both LPS and ozone. Our data support a conserved role of mindin in production of proinflammatory cytokines and the development of AHR in two divergent models of reactive airways disease, as well as a role of

  6. Repeated Nitrogen Dioxide Exposures and Eosinophilic Airway Inflammation in Asthmatics: A Randomized Crossover Study

    PubMed Central

    Guillossou, Gaëlle; Neukirch, Catherine; Dehoux, Monique; Koscielny, Serge; Bonay, Marcel; Cabanes, Pierre-André; Samet, Jonathan M.; Mure, Patrick; Ropert, Luc; Tokarek, Sandra; Lambrozo, Jacques; Aubier, Michel

    2014-01-01

    Background: Nitrogen dioxide (NO2), a ubiquitous atmospheric pollutant, may enhance the asthmatic response to allergens through eosinophilic activation in the airways. However, the effect of NO2 on inflammation without allergen exposure is poorly studied. Objectives: We investigated whether repeated peaks of NO2, at various realistic concentrations, induce changes in airway inflammation in asthmatics. Methods: Nineteen nonsmokers with asthma were exposed at rest in a double-blind, crossover study, in randomized order, to 200 ppb NO2, 600 ppb NO2, or clean air once for 30 min on day 1 and twice for 30 min on day 2. The three series of exposures were separated by 2 weeks. The inflammatory response in sputum was measured 6 hr (day 1), 32 hr (day 2), and 48 hr (day 3) after the first exposure, and compared with baseline values measured twice 10–30 days before the first exposure. Results: Compared with baseline measurements, the percentage of eosinophils in sputum increased by 57% after exposure to 600 ppb NO2 (p = 0.003) but did not change significantly after exposure to 200 ppb. The slope of the association between the percentage of eosinophils and NO2 exposure level was significant (p = 0.04). Eosinophil cationic protein in sputum was highly correlated with eosinophil count and increased significantly after exposure to 600 ppb NO2 (p = 0.001). Lung function, which was assessed daily, was not affected by NO2 exposure. Conclusions: We observed that repeated peak exposures of NO2 performed without allergen exposure were associated with airway eosinophilic inflammation in asthmatics in a dose-related manner. Citation: Ezratty V, Guillossou G, Neukirch C, Dehoux M, Koscielny S, Bonay M, Cabanes PA, Samet JM, Mure P, Ropert L, Tokarek S, Lambrozo J, Aubier M. 2014. Repeated nitrogen dioxide exposures and eosinophilic airway inflammation in asthmatics: a randomized crossover study. Environ Health Perspect 122:850–855; http://dx.doi.org/10.1289/ehp.1307240 PMID

  7. T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice.

    PubMed

    Li, Bobby W S; de Bruijn, Marjolein J W; Tindemans, Irma; Lukkes, Melanie; KleinJan, Alex; Hoogsteden, Henk C; Hendriks, Rudi W

    2016-06-01

    Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL-5 and IL-13. Here, we used a house dust mite (HDM)-driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. In BALF, lungs, and lymph nodes, ILC2 activation is critically dependent on prior sensitization with HDM. Importantly, T cells are required for ILC2 induction, whereby T-cell activation precedes ILC2 induction. During HDM-driven allergic airway inflammation the accumulation of ILC2s in BALF is IL-33 independent, although infiltrating ILC2s produce less cytokines in Il33(-/-) mice. Transfer of in vitro polarized OVA-specific OT-II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T-cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM-mediated allergic airway inflammation in mice critically depends on activation of T cells. PMID:27062360

  8. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection

    PubMed Central

    Hergott, Christopher B.; Roche, Aoife M.; Naidu, Nikhil A.; Mesaros, Clementina; Blair, Ian A.; Weiser, Jeffrey N.

    2015-01-01

    Regulation of neutrophil activity is critical for immune evasion among extracellular pathogens, yet the mechanisms by which many bacteria disrupt phagocyte function remain unclear. Here, we have shown that the respiratory pathogen Streptococcus pneumoniae disables neutrophils by exploiting molecular mimicry to degrade platelet-activating factor (PAF), a host-derived inflammatory phospholipid. Using mass spectrometry and murine upper airway infection models, we demonstrated that phosphorylcholine (ChoP) moieties that are shared by PAF and the bacterial cell wall allow S. pneumoniae to leverage a ChoP-remodeling enzyme (Pce) to remove PAF from the airway. S. pneumoniae–mediated PAF deprivation impaired viability, activation, and bactericidal capacity among responding neutrophils. In the absence of Pce, neutrophils rapidly cleared S. pneumoniae from the airway and impeded invasive disease and transmission between mice. Abrogation of PAF signaling rendered Pce dispensable for S. pneumoniae persistence, reinforcing that this enzyme deprives neutrophils of essential PAF-mediated stimulation. Accordingly, exogenous activation of neutrophils overwhelmed Pce-mediated phagocyte disruption. Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP and subvert PAF function, suggesting that mimicry-driven immune evasion is a common paradigm among respiratory pathogens. These results identify a mechanism by which shared molecular structures enable microbial enzymes to subvert host lipid signaling, suppress inflammation, and ensure bacterial persistence at the mucosa. PMID:26426079

  9. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    PubMed

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated. PMID:26104914

  10. A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation.

    PubMed

    Williams, Neil C; Johnson, Michael A; Shaw, Dominick E; Spendlove, Ian; Vulevic, Jelena; Sharpe, Graham R; Hunter, Kirsty A

    2016-09-01

    Gut microbes have a substantial influence on systemic immune function and allergic sensitisation. Manipulation of the gut microbiome through prebiotics may provide a potential strategy to influence the immunopathology of asthma. This study investigated the effects of prebiotic Bimuno-galactooligosaccharide (B-GOS) supplementation on hyperpnoea-induced bronchoconstriction (HIB), a surrogate for exercise-induced bronchoconstriction, and airway inflammation. A total of ten adults with asthma and HIB and eight controls without asthma were randomised to receive 5·5 g/d of either B-GOS or placebo for 3 weeks separated by a 2-week washout period. The peak fall in forced expiratory volume in 1 s (FEV1) following eucapnic voluntary hyperpnoea (EVH) defined HIB severity. Markers of airway inflammation were measured at baseline and after EVH. Pulmonary function remained unchanged in the control group. In the HIB group, the peak post-EVH fall in FEV1 at day 0 (-880 (sd 480) ml) was unchanged after placebo, but was attenuated by 40 % (-940 (sd 460) v. -570 (sd 310) ml, P=0·004) after B-GOS. In the HIB group, B-GOS reduced baseline chemokine CC ligand 17 (399 (sd 140) v. 323 (sd 144) pg/ml, P=0·005) and TNF-α (2·68 (sd 0·98) v. 2·18 (sd 0·59) pg/ml, P=0·040) and abolished the EVH-induced 29 % increase in TNF-α. Baseline C-reactive protein was reduced following B-GOS in HIB (2·46 (sd 1·14) v. 1·44 (sd 0·41) mg/l, P=0·015) and control (2·16 (sd 1·02) v. 1·47 (sd 0·33) mg/l, P=0·050) groups. Chemokine CC ligand 11 and fraction of exhaled nitric oxide remained unchanged. B-GOS supplementation attenuated airway hyper-responsiveness with concomitant reductions in markers of airway inflammation associated with HIB. PMID:27523186

  11. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

    PubMed Central

    Choi, IL-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  12. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation

    PubMed Central

    Scanlon, Seth T.; Thomas, Seddon Y.; Ferreira, Caroline M.; Bai, Li; Krausz, Thomas; Savage, Paul B.

    2011-01-01

    Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4– and IL-13–producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung. After a single airborne exposure to lipid antigen, they promptly extravasate to orchestrate the formation of peribronchiolar and interstitial lymphohistiocytic granulomas containing numerous eosinophils. Concomitant airborne exposure to ovalbumin (OVA) induces the priming of OVA-specific Th2 cells and IgE antibodies by the same dendritic cell coexpressing CD1d and MHC class II. Although NKT cell activation remains confined to the lipid-exposed lung and draining lymph nodes, Th2 cells recirculate and seed the lung of a parabiotic partner, conferring susceptibility to OVA challenge months after the initial exposure, in a manner independent of NKT cells and CD1d. Thus, transient recruitment and activation of lung-resident intravascular NKT cells can trigger long-term susceptibility to allergic airway inflammation. PMID:21930768

  13. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma

    PubMed Central

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S.; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3−/−) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3−/− mice compared with wild-type mice after OVA challenge, consistently with fewer CD4+ T cells from AQP3−/− mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  14. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma.

    PubMed

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-Ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3(-/-)) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3(-/-) mice compared with wild-type mice after OVA challenge, consistently with fewer CD4(+) T cells from AQP3(-/-) mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  15. Thalidomide attenuates airway hyperresponsiveness and eosinophilic inflammation in a murine model of allergic asthma.

    PubMed

    Asano, Toshiaki; Kume, Hiroaki; Taki, Fumitaka; Ito, Satoru; Hasegawa, Yoshinori

    2010-01-01

    Asthma is characterized by chronic eosinophilic inflammation and hyperresponsiveness of the airways. We hypothesized that thalidomide, which has numerous immunomodulatory properties, may have anti-inflammatory effects in allergic asthma. BALB/c mice sensitized and challenged with ovalbumin (OVA) were treated orally with thalidomide (30, 100, or 300 mg/kg) or a vehicle. When thalidomide was administered to OVA-challenged mice, the number of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly decreased. The numbers of inflammatory cells other than eosinophils were not reduced by thalidomide. Thalidomide inhibited the elevated levels of interleukin-5 (IL-5) and tumor necrosis factor-alpha (TNF-alpha) in BALF by OVA challenges. Histological analysis of the lung revealed that both the infiltration of inflammatory cells and the hyperplasia of goblet cells were significantly suppressed by thalidomide treatment. Furthermore, thalidomide significantly inhibited the response to methacholine induced by OVA challenges. Taken together, thalidomide treatment decreased airway inflammation and hyperresponsiveness in a murine model of allergic asthma. These results might provide an opportunity for the development of novel therapeutics to treat severe asthma. PMID:20522972

  16. 2-O, 3-O-Desulfated Heparin Inhibits Neutrophil Elastase–Induced HMGB-1 Secretion and Airway Inflammation

    PubMed Central

    Griffin, Kathryn L.; Fischer, Bernard M.; Kummarapurugu, Apparao B.; Zheng, Shuo; Kennedy, Thomas P.; Rao, Narayanam V.; Foster, W. Michael

    2014-01-01

    Neutrophil elastase (NE) is a major inflammatory mediator in cystic fibrosis (CF) that is a robust predictor of lung disease progression. NE directly causes airway injury via protease activity, and propagates persistent neutrophilic inflammation by up-regulation of neutrophil chemokine expression. Despite its key role in the pathogenesis of CF lung disease, there are currently no effective antiprotease therapies available to patients with CF. Although heparin is an effective antiprotease and anti-inflammatory agent, its anticoagulant activity prohibits its use in CF, due to risk of pulmonary hemorrhage. In this report, we demonstrate the efficacy of a 2-O, 3-O-desulfated heparin (ODSH), a modified heparin with minimal anticoagulant activity, to inhibit NE activity and to block NE-induced airway inflammation. Using an established murine model of intratracheal NE-induced airway inflammation, we tested the efficacy of intratracheal ODSH to block NE-generated neutrophil chemoattractants and NE-triggered airway neutrophilic inflammation. ODSH inhibited NE-induced keratinocyte-derived chemoattractant and high-mobility group box 1 release in bronchoalveolar lavage. ODSH also blocked NE-stimulated high-mobility group box 1 release from murine macrophages in vitro, and inhibited NE activity in functional assays consistent with prior reports of antiprotease activity. In summary, this report suggests that ODSH is a promising antiprotease and anti-inflammatory agent that may be useful as an airway therapy in CF. PMID:24325600

  17. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. PMID:26826245

  18. miR-125b inhibits goblet cell differentiation in allergic airway inflammation by targeting SPDEF.

    PubMed

    Liu, Zhaoe; Chen, Xing; Wu, Qiaoling; Song, Jia; Wang, Lijun; Li, Gang

    2016-07-01

    Asthma is a disease characterized by goblet cell differentiation, mucus hypersecretion, airway inflammation, and airway hyperresponsiveness. miR-125b was downregulated as normal human bronchial epithelial cells differentiation to pseudostratified epithelium. However, its role in asthma remains unknown especially in regulating goblet cell differentiation. miR-125b expression in the sputum of 50 asthmatic children and 50 age- and sex-matched healthy controls were assessed by quantitative RT-PCR (qRT-PCR). Meanwhile, expressions of miR-125b and SAM pointed domain-containing ETS transcription factor (SPDEF) in normal human tracheal epithelial (HTEpC) and A549 cells stimulated with lipopolysaccharide (LPS) for 2h were detected by qRT-PCR and western blot. Furthermore, the predicted miR-125b target was determined in silico and confirmed with dual-luciferase reporter assay. Additionally, intranasal delivery of miR-125b mimic in mice was performed to study its effects on house dust mite-induced allergic airway inflammation mouse models. We found that miR-125b expression was decreased in the sputum of the asthmatic patients especially in eosinophilic asthma. After stimulation with LPS, miR-125b expression was downregulated, accompanied by the upregulation of SPDEF in HTEpC and A549 cells. Moreover, SPDEF is a target of miR-125b, which regulates SPDEF at the posttranscriptional level. Additionally, intranasal delivery of miR-125b decreased SPDEF protein levels, goblet cell differentiation, mucus hypersecretion, and altered relevant gene expressions. Taken together, these results suggest that miR-125b inhibits SPDEF expression modulating goblet cell differentiation and mucus secretion in asthma. PMID:27112664

  19. Effects of Woodsmoke Exposure on Airway Inflammation in Rural Guatemalan Women

    PubMed Central

    Basu, Chandreyi; Diaz, Anaite; Pope, Daniel; Smith, Kirk R.; Smith-Sivertsen, Tone; Bruce, Nigel; Solomon, Colin; McCracken, John; Balmes, John R.

    2014-01-01

    Background More than two-fifths of the world’s population uses solid fuels, mostly biomass, for cooking. The resulting biomass smoke exposure is a major cause of chronic obstructive pulmonary disease (COPD) among women in developing countries. Objective To assess whether lower woodsmoke exposure from use of a stove with a chimney, compared to open fires, is associated with lower markers of airway inflammation in young women. Design We carried out a cross-sectional analysis on a sub-cohort of participants enrolled in a randomized controlled trial in rural Guatemala, RESPIRE. Participants We recruited 45 indigenous women at the end of the 18-month trial; 19 women who had been using the chimney stove for 18–24 months and 26 women still using open fires. Measurements We obtained spirometry and induced sputum for cell counts, gene expression of IL-8, TNF-α, MMP-9 and 12, and protein concentrations of IL-8, myeloperoxidase and fibronectin. Exhaled carbon monoxide (CO) and 48-hr personal CO tubes were measured to assess smoke exposure. Results MMP-9 gene expression was significantly lower in women using chimney stoves. Higher exhaled CO concentrations were significantly associated with higher gene expression of IL-8, TNF-α, and MMP-9. Higher 48-hr personal CO concentrations were associated with higher gene expression of IL-8, TNF- α, MMP-9 and MMP-12; reaching statistical significance for MMP-9 and MMP-12. Conclusions Compared to using an open wood fire for cooking, use of a chimney stove was associated with lower gene expression of MMP-9, a potential mediator of airway remodeling. Among all participants, indoor biomass smoke exposure was associated with higher gene expression of multiple mediators of airway inflammation and remodeling; these mechanisms may explain some of the observed association between prolonged biomass smoke exposure and COPD. PMID:24625755

  20. Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma

    PubMed Central

    Pham, Duy Le; Kim, Seung-Hyun; Losol, Purevsuren; Yang, Eun-Mi; Shin, Yoo Seob; Ye, Young-Min; Park, Hae-Sim

    2016-01-01

    Background/Aims: Role of autophagy in neutrophil function and the association of autophagy and autophagy related (ATG) gene polymorphisms with asthma susceptibility were suggested. In this study, we investigated the genetic association of ATG5 and ATG7 polymorphisms with asthma risk, severity and neutrophilic airway inflammation. Methods: We recruited 408 asthma patients and 201 healthy controls. Sputum neutrophil counts were determined by H&E staining. Serum interleukin 8 (IL-8) levels were measured by enzyme-linked immunosorbent assay (ELISA). Genetic polymorphisms of ATG5 (–769T>C, –335G>A, and 8830C>T) and ATG7 (–100A>G and 25108G>C) were genotyped. The functional activities of ATG5 –769T>C and –335G>A variants were investigated by luciferase reporter assays. Results: No associations of ATG5 and ATG7 polymorphisms with asthma susceptibility and severity were found. ATG5 –769T>C and –335G>A were in complete linkage disequilibrium. In the asthma group, GA/AA genotypes at ATG5 –335G>A were associated with higher neutrophil counts in sputum (p < 0.05); CC/TT genotype at ATG5 8830C>T associated with lower FEV1% predicted value (p < 0.05). DNA fragments containing ATG5 –769T and –335G alleles had higher promoter activities compared to those with –769C and –335A in both human airway epithelial cells (A549, p < 0.01) and human mast cell (HMC-1, p < 0.001). GG and CC genotype at ATG7 –100A>G and 25108G>C were significantly associated with high serum levels of IL-8 (p < 0.05 for both variants). Conclusions: Genetic polymorphisms of ATG5 and ATG7 could contribute to neutrophilic airway inflammation in the pathogenesis of adult asthma. PMID:26701229

  1. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model

    PubMed Central

    Toledo, AC; Sakoda, CPP; Perini, A; Pinheiro, NM; Magalhães, RM; Grecco, S; Tibério, IFLC; Câmara, NO; Martins, MA; Lago, JHG; Prado, CM

    2013-01-01

    Background and Purpose Asthma is an inflammatory disease that involves airway hyperresponsiveness and remodelling. Flavonoids have been associated to anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment of asthma. Our aim was to evaluate the effects of the sakuranetin treatment in several aspects of experimental asthma model in mice. Experimental Approach Male BALB/c mice received ovalbumin (i.p.) on days 0 and 14, and were challenged with aerolized ovalbumin 1% on days 24, 26 and 28. Ovalbumin-sensitized animals received vehicle (saline and dimethyl sulfoxide, DMSO), sakuranetin (20 mg kg–1 per mice) or dexamethasone (5 mg kg–1 per mice) daily beginning from 24th to 29th day. Control group received saline inhalation and nasal drop vehicle. On day 29, we determined the airway hyperresponsiveness, inflammation and remodelling as well as specific IgE antibody. RANTES, IL-5, IL-4, Eotaxin, IL-10, TNF-α, IFN-γ and GMC-SF content in lung homogenate was performed by Bioplex assay, and 8-isoprostane and NF-kB activations were visualized in inflammatory cells by immunohistochemistry. Key Results We have demonstrated that sakuranetin treatment attenuated airway hyperresponsiveness, inflammation and remodelling; and these effects could be attributed to Th2 pro-inflammatory cytokines and oxidative stress reduction as well as control of NF-kB activation. Conclusions and Implications These results highlighted the importance of counteracting oxidative stress by flavonoids in this asthma model and suggest sakuranetin as a potential candidate for studies of treatment of asthma. PMID:23170811

  2. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation

    PubMed Central

    Sy, Chandler B.; Siracusa, Mark C.

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  3. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease.

    PubMed

    Royce, Simon G; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Ricardo, Sharon D; Samuel, Chrishan S

    2015-11-01

    This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs. PMID:26426509

  4. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

    PubMed

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R

    2010-06-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease. PMID:19617399

  5. Effects of chronic intermittent hypoxia on allergen-induced airway inflammation in rats.

    PubMed

    Broytman, Oleg; Braun, Rudolf K; Morgan, Barbara J; Pegelow, David F; Hsu, Pei-Ning; Mei, Linda S; Koya, Ajay K; Eldridge, Marlowe; Teodorescu, Mihaela

    2015-02-01

    Obstructive sleep apnea aggravates asthma, but its mechanisms are unknown. Chronic intermittent hypoxia is one hallmark feature of sleep apnea. In this study, we tested the effects of chronic intermittent hypoxia on allergen-induced inflammation in rats. Four groups (n = 9-11/group) of ovalbumin (OVA)-sensitized Brown-Norway rats underwent intermittent hypoxia (10% oxygen, 30 cycles/h, 10 h/d) or normoxia for 30 days concurrent with weekly OVA or vehicle challenges. Lung physiology, differential leukocyte counts from bronchoalveolar lavage, and histology (Picro Sirius Red staining for collagen content) were compared between groups 2 days after the last challenge. Gene expression in bronchoalveolar lavage cells was quantified by quantitative PCR. Compared with normoxia, chronic intermittent hypoxia reduced the FEV0.1/FVC ratio (P = 0.005), peak expiratory flow (P = 0.002), and mean midexpiratory flow (P = 0.004), predominantly in medium and large airways; decreased the baseline eosinophil number (P = 0.01) and amplified the effect of OVA on monocyte number (P = 0.02 for the interaction); in proximal airways, increased (P = 0.008), whereas in distal airways it decreased (P = 0.004), collagen density; induced qualitative emphysematous changes in lung periphery; and increased expression of the M2 macrophage marker YM-1 and augmented OVA-induced expression of plasminogen activator inhibitor-1. Chronic intermittent hypoxia alters immune response to allergen toward a more TH-1-predominant cellular phenotype with collagen deposition and matrix degradation, leading to airflow limitation. These findings highlight the potential of sleep apnea to aggravate airway dysfunction in patients with preexistent asthma. PMID:25004109

  6. Schistosoma mansoni Tegument (Smteg) Induces IL-10 and Modulates Experimental Airway Inflammation

    PubMed Central

    2016-01-01

    Background Previous studies have demonstrated that S. mansoni infection and inoculation of the parasite eggs and antigens are able to modulate airways inflammation induced by OVA in mice. This modulation was associated to an enhanced production of interleukin-10 and to an increased number of regulatory T cells. The S. mansoni schistosomulum is the first stage to come into contact with the host immune system and its tegument represents the host-parasite interface. The schistosomula tegument (Smteg) has never been studied in the context of modulation of inflammatory disorders, although immune evasion mechanisms take place in this phase of infection to guarantee the persistence of the parasite in the host. Methodology and Principal Findings The aim of this study was to evaluate the Smteg ability to modulate inflammation in an experimental airway inflammation model induced by OVA and to characterize the immune factors involved in this modulation. To achieve the objective, BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with OVA aerosol after Smteg intraperitoneal inoculation. Protein extravasation and inflammatory cells were assessed in bronchoalveolar lavage and IgE levels were measured in serum. Additionally, lungs were excised for histopathological analyses, cytokine measurement and characterization of the cell populations. Inoculation with Smteg led to a reduction in the protein levels in bronchoalveolar lavage (BAL) and eosinophils in both BAL and lung tissue. In the lung tissue there was a reduction in inflammatory cells and collagen deposition as well as in IL-5, IL-13, IL-25 and CCL11 levels. Additionally, a decrease in specific anti-OVA IgE levels was observed. The reduction observed in these inflammatory parameters was associated with increased levels of IL-10 in lung tissues. Furthermore, Smteg/asthma mice showed high percentage of CD11b+F4/80+IL-10+ and CD11c+CD11b+IL-10+ cells in lungs. Conclusion Taken together, these findings

  7. Overexpression of Dimethylarginine Dimethylaminohydrolase 1 Attenuates Airway Inflammation in a Mouse Model of Asthma

    PubMed Central

    Kinker, Kayla G.; Gibson, Aaron M.; Bass, Stacey A.; Day, Brandy P.; Deng, Jingyuan; Medvedovic, Mario; Figueroa, Julio A. Landero; Hershey, Gurjit K. Khurana; Chen, Weiguo

    2014-01-01

    Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses. PMID:24465497

  8. 12/15-Lipoxygenase deficiency protects mice from allergic airways inflammation and increases secretory IgA levels

    PubMed Central

    Hajek, Amanda R.; Lindley, Alexa R.; Favoreto, Silvio; Carter, Roderick; Schleimer, Robert P.; Kuperman, Douglas A.

    2009-01-01

    Background Induction of 15-lipoxygenase-1 (15-LO-1) has been observed in the airways of subjects with asthma, although its physiologic role in the airways has remained largely undefined. Objectives We sought to test the hypothesis that the mouse 15-LO-1 ortholog 12/15-LO contributes to the development of allergic airways inflammation. Methods Two models were used to evaluate wild-type and 12/15-LO–deficient mice. The systemic model involved intraperitoneal injections of allergen, and the mucosal model involved allergen exposures occurring exclusively in the airways. The systemic and mucosal-specific contributions of 12/15-LO to allergic sensitization and airways inflammation were determined by comparing the results obtained in the 2 models. Results In the mucosal model 12/15-LO knockout mice were protected from the development of allergic sensitization and airways inflammation, as evidenced by circulating levels of allergen-specific IgE, IgG1, and IgG2a; the profile of inflammatory cells in bronchoalveolar lavage fluid; and the expression of cytokines and mediators in lung tissue. In the systemic model 12/15-LO knockout mice were not protected. This suggested the presence of a lung-restricted protective role for 12/15-LO deficiency that was potentially accounted for by increased activation of mucosal B cells and increased production of the known mucosal-specific protective mediator secretory IgA. Conclusions Induction of 15-LO-1 in asthma might contribute to allergic sensitization and airways inflammation, potentially by causing suppression of secretory IgA. PMID:18692885

  9. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    SciTech Connect

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-03-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  10. Eosinophils in the Lung – Modulating Apoptosis and Efferocytosis in Airway Inflammation

    PubMed Central

    Felton, Jennifer M.; Lucas, Christopher D.; Rossi, Adriano G.; Dransfield, Ian

    2014-01-01

    Due to the key role of the lung in efficient transfer of oxygen in exchange for carbon dioxide, a controlled inflammatory response is essential for restoration of tissue homeostasis following airway exposure to bacterial pathogens or environmental toxins. Unregulated or prolonged inflammatory responses in the lungs can lead to tissue damage, disrupting normal tissue architecture, and consequently compromising efficient gaseous exchange. Failure to resolve inflammation underlies the development and/or progression of a number of inflammatory lung diseases including asthma. Eosinophils, granulocytic cells of the innate immune system, are primarily involved in defense against parasitic infections. However, the propagation of the allergic inflammatory response in chronic asthma is thought to involve excessive recruitment and impaired apoptosis of eosinophils together with defective phagocytic clearance of apoptotic cells (efferocytosis). In terms of therapeutic approaches for the treatment of asthma, the widespread use of glucocorticoids is associated with a number of adverse health consequences after long-term use, while some patients suffer from steroid-resistant disease. A new approach for therapeutic intervention would be to promote the resolution of inflammation via modulation of eosinophil apoptosis and the phagocytic clearance of apoptotic cells. This review focuses on the mechanisms underpinning eosinophil-mediated lung damage, currently available treatments and therapeutic targets that might in future be harnessed to facilitate inflammation resolution by the manipulation of cell survival and clearance pathways. PMID:25071763

  11. Eosinophils in the lung - modulating apoptosis and efferocytosis in airway inflammation.

    PubMed

    Felton, Jennifer M; Lucas, Christopher D; Rossi, Adriano G; Dransfield, Ian

    2014-01-01

    Due to the key role of the lung in efficient transfer of oxygen in exchange for carbon dioxide, a controlled inflammatory response is essential for restoration of tissue homeostasis following airway exposure to bacterial pathogens or environmental toxins. Unregulated or prolonged inflammatory responses in the lungs can lead to tissue damage, disrupting normal tissue architecture, and consequently compromising efficient gaseous exchange. Failure to resolve inflammation underlies the development and/or progression of a number of inflammatory lung diseases including asthma. Eosinophils, granulocytic cells of the innate immune system, are primarily involved in defense against parasitic infections. However, the propagation of the allergic inflammatory response in chronic asthma is thought to involve excessive recruitment and impaired apoptosis of eosinophils together with defective phagocytic clearance of apoptotic cells (efferocytosis). In terms of therapeutic approaches for the treatment of asthma, the widespread use of glucocorticoids is associated with a number of adverse health consequences after long-term use, while some patients suffer from steroid-resistant disease. A new approach for therapeutic intervention would be to promote the resolution of inflammation via modulation of eosinophil apoptosis and the phagocytic clearance of apoptotic cells. This review focuses on the mechanisms underpinning eosinophil-mediated lung damage, currently available treatments and therapeutic targets that might in future be harnessed to facilitate inflammation resolution by the manipulation of cell survival and clearance pathways. PMID:25071763

  12. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma.

    PubMed

    Van der Velden, Joanne; Harkness, Louise M; Barker, Donna M; Barcham, Garry J; Ugalde, Cathryn L; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A; Tokanovic, Ana; Burgess, Janette K; Snibson, Kenneth J

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10(+)-20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  13. Effect of Low-Dose, Long-Term Roxithromycin on Airway Inflammation and Remodeling of Stable Noncystic Fibrosis Bronchiectasis

    PubMed Central

    Zhong, Xiaoning; He, Zhiyi; Wei, Lianghong; Zheng, Xiaozhen; Zhang, Jianquan; Bai, Jing; Zhong, Wei; Zhong, Dengjun

    2014-01-01

    Background. Noncystic fibrosis bronchiectasis (NCFB) is characterized by airway expansion and recurrent acute exacerbations. Macrolide has been shown to exhibit anti-inflammatory effects in some chronic airway diseases. Objective. To assess the efficacy of roxithromycin on airway inflammation and remodeling in patients with NCFB under steady state. Methods. The study involved an open-label design in 52 eligible Chinese patients with NCFB, who were assigned to control (receiving no treatment) and roxithromycin (receiving 150 mg/day for 6 months) groups. At baseline and 6 months, the inflammatory markers such as interleukin- (IL-)8, neutrophil elastase (NE), matrix metalloproteinase- (MMP)9, hyaluronidase (HA), and type IV collagen in sputum were measured, along with the detection of dilated bronchus by throat computed tomography scan, and assessed the exacerbation. Results. Forty-three patients completed the study. The neutrophil in the sputum was decreased in roxithromycin group compared with control (P < 0.05). IL-8, NE, MMP-9, HA, and type IV collagen in sputum were also decreased in roxithromycin group compared with the control group (all P < 0.01). Airway thickness of dilated bronchus and exacerbation were reduced in roxithromycin group compared with the control (all P < 0.05). Conclusions. Roxithromycin can reduce airway inflammation and airway thickness of dilated bronchus in patients with NCFB. PMID:25580060

  14. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma

    PubMed Central

    Van der Velden, Joanne; Harkness, Louise M.; Barker, Donna M.; Barcham, Garry J.; Ugalde, Cathryn L.; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A.; Tokanovic, Ana; Burgess, Janette K.; Snibson, Kenneth J.

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10+–20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  15. The Epithelial Anion Transporter Pendrin Is Induced by Allergy and Rhinovirus Infection, Regulates Airway Surface Liquid, and Increases Airway Reactivity and Inflammation in an Asthma Model1

    PubMed Central

    Nakagami, Yasuhiro; Favoreto, Silvio; Zhen, Guohua; Park, Sung-Woo; Nguyenvu, Louis T.; Kuperman, Douglas A.; Dolganov, Gregory M.; Huang, Xiaozhu; Boushey, Homer A.; Avila, Pedro C.; Erle, David J.

    2008-01-01

    Asthma exacerbations can be triggered by viral infections or allergens. The Th2 cytokines IL-13 and IL-4 are produced during allergic responses and cause increases in airway epithelial cell mucus, electrolyte and water secretion into the airway surface liquid (ASL). Since ASL dehydration can cause airway inflammation and obstruction, ion transporters could play a role in pathogenesis of asthma exacerbations. We previously reported that expression of the epithelial cell anion transporter pendrin is markedly increased in response to IL-13. Here we show that pendrin plays a role in allergic airway disease and in regulation of ASL thickness. Pendrin-deficient mice had less allergen-induced airway hyperreactivity and inflammation than control mice although other aspects of the Th2 response were preserved. In cultures of IL-13-stimulated mouse tracheal epithelial cells, pendrin deficiency caused an increase in ASL thickness, suggesting that reductions in allergen-induced hyperreactivity and inflammation in pendrin-deficient mice result from improved ASL hydration. To determine whether pendrin might also play a role in virus-induced exacerbations of asthma, we measured pendrin mRNA expression in human subjects with naturally occurring common colds caused by rhinovirus and found a 4.9-fold-increase in mean expression during colds. Studies of cultured human bronchial epithelial cells indicated that this increase could be explained by the combined effects of rhinovirus and IFN-γ, a Th1 cytokine induced during virus infection. We conclude that pendrin regulates ASL thickness and may be an important contributor to asthma exacerbations induced by viral infections or allergens. PMID:18641360

  16. Graptopetalum paraguayense Ameliorates Airway Inflammation and Allergy in Ovalbumin- (OVA-) Sensitized BALB/C Mice by Inhibiting Th2 Signal

    PubMed Central

    Lee, Bao-Hong; Wu, She-Ching

    2013-01-01

    Role of inflammation-induced oxidative stress in the pathogenesis and progression of chronic inflammatory airways diseases has received increasing attention in recent years. Nuclear factor erythroid 2-related factor 2 is the primary transcription factor that regulates the expression of antioxidant and detoxifying enzymes. Graptopetalum paraguayense E. Walther, a vegetable consumed in Taiwan, has been used in folk medicine for protection against liver injury through elevating antioxidation. Recently, we found that gallic acid is an active compound of Graptopetalum paraguayense E. Walther, which has been reported to inhibit T-helper 2 cytokines. Currently, we assumed that Graptopetalum paraguayense E. Walther may potentially protect against ovalbumin-induced allergy and airway inflammation. Results demonstrated that Graptopetalum paraguayense E. Walther ethanolic extracts (GPE) clearly inhibited airway inflammation, mucus cell hyperplasia, and eosinophilia in OVA-challenged mice. Additionally, GPE also prevented T-cell infiltration and Th2 cytokines, including interleukin- (IL-)4, IL-5, and IL-13 generations in bronchial alveolar lavage fluid. The adhesion molecules ICAM-1 and VCAM-1 were substantially reduced by GPE treatment mediated by Nrf2 activation. Moreover, GPE attenuated GATA3 expression and inhibited Th2 signals of the T cells. These findings suggested that GPE ameliorated the development of airway inflammation through immune regulation. PMID:23843865

  17. GENETIC DIFFERENCES IN IN VIVO/IN VITRO AIRWAY INJURY AND INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    EPA Science Inventory

    GENETIC DIFFERENCES IN IN VIVO/ IN VITRO AIRWAY INJURY/ INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    Janice Dye, Debora Andrews, Judy Richards, Annette King*, Urmila Kodavanti. US EPA & *SEE Program, RTP, NC.

    Oxidative stress is implicated in the pathogenesis and progres...

  18. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma.

    PubMed

    Cho, Kyu-Sup; Park, Mi-Kyung; Kang, Shin-Ae; Park, Hee-Young; Hong, Sung-Lyong; Park, Hye-Kyung; Yu, Hak-Sun; Roh, Hwan-Jung

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-β) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production. PMID:25246732

  19. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  20. A standardized aqueous extract of Anoectochilus formosanus modulated airway hyperresponsiveness in an OVA-inhaled murine model.

    PubMed

    Hsieh, C-C; Hsiao, H-B; Lin, W-C

    2010-07-01

    Anoectochilus formosanus HAYATA, a Chinese herb, is a valued folk medicine for fever, pain, and diseases of the lung and liver. Allergic asthma is characterized by increased serum IgE level and inflammation of the airways with high levels of interleukin (IL)-4 and IL-5 in bronchoalveolar lavage fluids (BALF). Constriction of airway smooth muscle and development of airway hyperresponsiveness (AHR) are the most important symptoms of allergic asthma. In our previous study, a standardized aqueous extract of A. formosanus (SAEAF) was used to modulate innate immunity of normal mice. In this study, airway inflammatory infiltrations, including T cell differentiation, cytokine modulation, allergic antibodies estimation, pulmonary pathology, and enhanced pause (Penh) of AHR were used to evaluate SAEAF treatment of an ovalbumin (OVA)-inhaled airway allergic murine model. The resulting cytokine profiles demonstrated that SAEAF can significantly reduce Th2 polarization after administration of SAEAF in OVA inhalation. These results also suggest that SAEAF modulates cytokine secretion in allergic asthma. Modulated natural T regulatory cells (CD25+/CD4+, Treg) were also shown to increase immuno-suppression in the allergic lung inflammation and further down-regulate airway inflammatory infiltration in eosinophils and macrophages. Finally, decreased airway anti-OVA IgE secretion and reduced AHR were observed. Our results indicate that the administration of SAEAF can modulate cytokines and T cell subpopulation by regulating inflammatory cell infiltration and modulating the allergic response. PMID:20092984

  1. The PPARγ agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma

    PubMed Central

    Xu, Jing; Zhu, Yan-ting; Wang, Gui-zuo; Han, Dong; Wu, Yuan-yuan; Zhang, De-xin; Liu, Yun; Zhang, Yong-hong; Xie, Xin-ming; Li, Shao-jun; Lu, Jia-mei; Liu, Lu; Feng, Wei; Sun, Xiu-zhen; Li, Man-xiang

    2015-01-01

    Aim: Rosiglitazone is one of the specific PPARγ agonists showing potential therapeutic effects in asthma. Though PPARγ activation was considered protective in inhibiting airway inflammation and remodeling in asthma, the specific mechanisms are still unclear. This study was aimed to investigate whether heme oxygenase-1 (HO-1) related pathways were involved in rosiglitazone-activated PPARγ signaling in asthma treatment. Methods: Asthma was induced in mice by multiple exposures to ovalbumin (OVA) in 8 weeks. Prior to every OVA challenge, the mice received rosiglitazone (5 mg/kg, po). After the mice were sacrificed, the bronchoalveolar lavage fluid (BALF), blood samples and lungs were collected for analyses. The activities of HO-1, MMP-2 and MMP-9 in airway tissue were assessed, and the expression of PPARγ, HO-1 and p21 proteins was also examined. Results: Rosiglitazone administration significantly attenuated airway inflammation and remodeling in mice with OVA-induced asthma, which were evidenced by decreased counts of total cells, eosinophils and neutrophils, and decreased levels of IL-5 and IL-13 in BALF, and by decreased airway smooth muscle layer thickness and reduced airway collagen deposition. Furthermore, rosiglitazone administration significantly increased PPARγ, HO-1 and p21 expression and HO-1 activity, decreased MMP-2 and MMP-9 activities in airway tissue. All the therapeutic effects of rosiglitazone were significantly impaired by co-administration of the HO-1 inhibitor ZnPP. Conclusion: Rosiglitazone effectively attenuates airway inflammation and remodeling in OVA- induced asthma of mice by activating PPARγ/HO-1 signaling pathway. PMID:25619395

  2. Effects of environmental pollutants on airways, allergic inflammation, and the immune response.

    PubMed

    Handzel, Z T

    2000-01-01

    Particulate and gaseous air pollutants are capable of damaging the airway epithelial lining and of shifting the local immune balance, thereby facilitating the induction of persistent inflammation. Epidemiological studies are inconclusive regarding whether air pollution increases the incidence of asthma and chronic bronchitis in the population. Clearly, environmental pollution can, however, precipitate attacks and emergency-room admissions in those already suffering from such conditions. The catastrophic potential of airborne pollution was demonstrated in the 1960s and 1970s, when inverted atmospheric pressure conditions trapped smog over cities on the Eastern coast of the United States and over Europe. This smog resulted in thousands of hospital admissions and dozens of deaths. With the general rise in the incidence of atopy and asthma in the Western population, it is of major public health interest to reduce, as much as possible, the exposure of such populations to anthropogenic and natural sources of pollution. PMID:11048334

  3. Trigger of bronchial hyperresponsiveness development may not always need eosinophilic airway inflammation in very early stage of asthma

    PubMed Central

    Obase, Yasushi; Kishikawa, Reiko; Kohno, Shigeru; Iwanaga, Tomoaki

    2016-01-01

    Background: Cough variant asthma (CVA), a suggested precursor of standard bronchial asthma (SBA), is characterized by positive bronchial hyperresponsiveness (BHR) and a chronic cough response to bronchodilator that persists for >8 weeks. Objective: Airway inflammation, BHR, and airway obstructive damage were analyzed to assess whether CVA represents early or mild-stage SBA. Methods: Patients with newly diagnosed CVA (n = 72) and SBA (n = 84) naive to oral or inhaled corticosteroids and without exacerbated asthma were subjected to spirometry, impulse oscillometry, BHR tests, sputum induction, and fractional exhaled nitric oxide measurements. Results: In the patients with CVA, spirometry demonstrated higher forced expiratory volume in 1 second (FEV1) to forced vital capacity ratio, FEV1 percent predicted, flow volume at 50% of vital capacity % predicted, and flow volume at 25% of vital capacity % predicted values, and impulse oscillometry demonstrated lower R5–Z20, AX, and Fres, and higher X5 values. In addition, the fractional exhaled nitric oxide and sputum eosinophil numbers were lower and the PC20 was higher than in patients with moderate SBA. However, these factors were similar in the patients with CVA and in the patients with intermittent mild SBA. A significantly smaller proportion of the patients with CVA had increased sputum eosinophils than the patients with intermittent mild SBA (p < 0.0001). However, interestingly, among the patients with CVA, no significant differences in the PC20 values were found between the patients with and those without increased sputum eosinophils. Conclusions: All measures of central and peripheral airway obstruction, eosinophilic inflammation, and airway hyperresponsiveness in patients with CVA were milder than in patients with moderate SBA but were similar to those of patients with intermittent mild SBA. In CVA, the BHR was not affected by airway eosinophilic inflammation, which indicated that the very early development of BHR

  4. Repeated subacute ozone exposure of inbred mice: Airway inflammation and ventilation

    SciTech Connect

    Paquette, N.C.; Tankersley, C.G.; Zhang, L.Y.

    1994-11-01

    The present study was designed to assess the effects of repeated subacute ozone (O{sub 3}) exposure on pulmonary inflammation and ventilation in two inbred strains of mice differentially susceptible to a single O{sub 3} exposure. Susceptible C57BL/6J(B6) and resistant C3H/HeJ (C3) mice were exposed to 0.3 ppm O{sub 3} for 48 and 72 h and, after 14 days recovery, both strains were reexposed. Airway inflammation and lung injury were assessed by counting inflammatory cells and measuring total protein content and lactate dehydrogenase (LDH) activity in bronchoalveolar lavage (BAL) returns. Minute ventilation [V{sub E,} the product of breathing frequency (f), and tidal volume (V{sub T})] was measured prior to and immediately following each exposure. After the initial exposure, B6 mice developed greater O{sub 3}-induced increases in total protein, inflammatory cell influx, and LDH activity compared to C3 mice. In normal air, V{sub E} was also significantly elevated in B6, but not C3, mice after O{sub 3}. The hypercapnic f of B6 and hypercapnic V{sub T} of C3 mice were significantly altered after O{sub 3} exposure. Reexposure to O{sub 3} caused a smaller increase in the numbers of macrophages, lymphocytes, epithelial cells, and BAL protein in both strains, and no changes in LDH activity. However, the number of polymorphonuclear leukocytes significantly increased in B6 and C3 mice as compared to the initial O{sub 3} exposure. In both strains, the ventilatory responses to normal air or hypercapnia were largely reproducible after O{sub 3} reexposure. Results indicated that differential susceptibility to O{sub 3}-induced inflammation was maintained in B6 and C3 mice with O{sub 3} reexposure although the magnitude of the difference was reduced. Results also suggest that the ventilatory responses to O{sub 3} in B6 and C3 mice were reproducible with reexposure, and that airway inflammation and ventilation were not codependent. 34 refs., 4 figs., 1 tab.

  5. Control of T helper 2 cell function and allergic airway inflammation by PKCζ

    PubMed Central

    Martin, Pilar; Villares, Ricardo; Rodriguez-Mascarenhas, Sandra; Zaballos, Angel; Leitges, Michael; Kovac, Judit; Sizing, Irene; Rennert, Paul; Márquez, Gabriel; Martínez-A, Carlos; Diaz-Meco, María T.; Moscat, Jorge

    2005-01-01

    Asthma is a disease of chronic airway inflammation in which T helper (Th) 2 cells play a critical role. The molecular mechanisms controlling Th2 differentiation and function are of paramount importance in biology and immunology. PKCζ has been implicated in the regulation of apoptosis and NF-κB, as well as in the control of T-dependent responses, although no defects were detected in naïve T cells from PKCζ–/– mice. Here, we report that PKCζ is critical for IL-4 signaling and Th2 differentiation. Thus, PKCζ levels are increased during Th2 differentiation, but not Th1 differentiation, of CD4+ T cells, and the loss of PKCζ impairs the secretion of Th2 cytokines in vitro and in vivo, as well as the nuclear translocation and tyrosine phosphorylation of Stat6 and Jak1 activation, essential downstream targets of IL-4 signaling. Moreover, PKCζ–/– mice display dramatic inhibition of ovalbumin-induced allergic airway disease, strongly suggesting that PKCζ can be a therapeutic target in asthma. PMID:15987782

  6. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation

    PubMed Central

    Georas, Steve N.; Rezaee, Fariba

    2014-01-01

    Airway epithelial cells form a barrier to the outside world, and are at the frontline of mucosal immunity. Epithelial apical junctional complexes are multi-protein subunits that promote cell-cell adhesion and barrier integrity. Recent studies in the skin and GI tract suggest that disruption of cell-cell junctions is required to initiate epithelial immune responses, but how this applies to mucosal immunity in the lung is not clear. Increasing evidence indicates that defective epithelial barrier function is a feature of airway inflammation in asthma. One challenge in this area is that barrier function and junctional integrity are difficult to study in the intact lung, but innovative approaches should provide new knowledge in this area in the near future. In this article, we review the structure and function of epithelial apical junctional complexes, emphasizing how regulation of the epithelial barrier impacts innate and adaptive immunity. We discuss why defective epithelial barrier function may be linked to Th2 polarization in asthma, and propose a rheostat model of barrier dysfunction that implicates the size of inhaled allergen particles as an important factor influencing adaptive immunity. PMID:25085341

  7. Is the exhaled breath temperature in lung cancer influenced by airways neoangiogenesis or by inflammation?

    PubMed

    Carpagnano, Giovanna E; Lacedonia, Donato; Spanevello, Antonio; Cotugno, Grazia; Saliani, Valerio; Martinelli, Domenico; Foschino-Barbaro, Maria P

    2015-10-01

    Recently the exhaled breath temperature (EBT) was seen to increase in non-small cell lung cancer and was subsequently proposed as a possible non-invasive tool for its diagnosis. The need for further studies that confirm the previous findings and support the potential scope of this method underlies the main aim of this study that seeks to explore the pathogenic mechanisms determining the EBT in lung cancer. We enrolled 44 consecutive patients with a radiological suspicion of lung cancer and ten healthy non-smoker volunteers, after which their EBT was measured. On the same day, the subjects underwent breath condensate collection for the measurement of leukotriene (LTB)-4 and of the vascular endothelial growth factor (VEGF), the former being a marker of airways inflammation and the latter of neoangiogenesis. We confirmed the presence of a higher EBT in lung cancer patients compared to the controls. The multiple linear regression model showed that the exhaled VEGF was the only predictor of elevations of EBT. In conclusion, it can be stated that for the first time in this study, we have shown that EBT is higher in subjects with lung cancer and that the airways angiogenesis drives the increase in EBT in lung cancer. Moreover, the study suggests the potential for the use of EBT in monitoring the lung cancer progression, although the implementation of more in-depth studies to verify this result is recommended. PMID:26323590

  8. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What is New?

    PubMed

    Sanak, Marek

    2016-11-01

    Lipid mediators contribute to inflammation providing both pro-inflammatory signals and terminating the inflammatory process by activation of macrophages. Among the most significant biologically lipid mediators, these are produced by free-radical or enzymatic oxygenation of arachidonic acid named "eicosanoids". There were some novel eicosanoids identified within the last decade, and many of them are measurable in clinical samples by affordable chromatography-mass spectrometry equipment or sensitive immunoassays. In this review, we present some recent advances in understanding of the signaling by eicosanoid mediators during asthmatic airway inflammation. Eicosanoid profiling in the exhaled breath condensate, induced sputum, or their metabolites measurements in urine is complementary to the cellular phenotyping of asthmatic inflammation. Special attention is paid to aspirin-exacerbated respiratory disease, a phenotype of asthma manifested by the most profound changes in the profile of eicosanoids produced. A hallmark of this type of asthma with hypersensitivity to non-steroid anti-inflammatory drugs (NSAIDs) is to increase biosynthesis of cysteinyl leukotrienes on the systemic level. It depends on transcellular biosynthesis of leukotriene C₄ by platelets that adhere to granulocytes releasing leukotriene A₄. However, other abnormalities are also reported in this type of asthma as a resistance to anti-inflammatory activity of prostaglandin E₂ or a robust eosinophil interferon-γ response resulting in cysteinyl leukotrienes production. A novel mechanism is also discussed in which an isoprostane structurally related to prostaglandin E₂ is released into exhaled breath condensate during a provoked asthmatic attack. However, it is concluded that any single eicosanoid or even their complex profile can hardly provide a thorough explanation for the mechanism of asthmatic inflammation. PMID:27582398

  9. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel

    PubMed Central

    Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel L.; Schauer, James J.; Shafer, Martin M.

    2014-01-01

    Airborne particulate matter (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS). Reported associations between worsening asthma and PM2.5 mass could be related to PM oxidative potential to induce airway oxidative stress and inflammation (hallmarks of asthma pathology). We followed 45 schoolchildren with persistent asthma in their southern California homes daily over 10 days with offline fractional exhaled nitric oxide (FENO), a biomarker of airway inflammation. Ambient exposures included daily average PM2.5, PM2.5 elemental and organic carbon (EC, OC), NO2, O3, and endotoxin. We assessed PM2.5 oxidative potential using both an abiotic and an in vitro bioassay on aqueous extracts of daily particle filters: (1) dithiothreitol (DTT) assay (abiotic), representing chemically produced ROS; and (2) ROS generated intracellularly in a rat alveolar macrophage model using the fluorescent probe 2′7′-dicholorohidroflourescin diacetate. We analyzed relations of FENO to air pollutants in mixed linear regression models. FENO was significantly positively associated with lag 1-day and 2-day averages of traffic-related markers (EC, OC, and NO2), DTT and macrophage ROS, but not PM2.5 mass. DTT associations were nearly twice as strong as other exposures per interquartile range: median FENO increased 8.7–9.9% per 0.43 nmole/min/m3 DTT. Findings suggest that future research in oxidative stress-related illnesses such as asthma and PM exposure would benefit from assessments of PM oxidative potential and composition. PMID:23673461

  10. Associations of airway inflammation and responsiveness markers in non asthmatic subjects at start of apprenticeship

    PubMed Central

    2010-01-01

    Background Bronchial Hyperresponsiveness (BHR) is considered a hallmark of asthma. Other methods are helpful in epidemiological respiratory health studies including Fractional Exhaled Nitric Oxide (FENO) and Eosinophils Percentage (EP) in nasal lavage fluid measuring markers for airway inflammation along with the Forced Oscillatory Technique measuring Airway resistance (AR). Can their outcomes discriminate profiles of respiratory health in healthy subjects starting apprenticeship in occupations with a risk of asthma? Methods Rhinoconjunctivitis, asthma-like symptoms, FEV1 and AR post-Methacholine Bronchial Challenge (MBC) test results, FENO measurements and EP were all investigated in apprentice bakers, pastry-makers and hairdressers not suffering from asthma. Multiple Correspondence Analysis (MCA) was simultaneously conducted in relation to these groups and this generated a synthetic partition (EI). Associations between groups of subjects based on BHR and EI respectively, as well as risk factors, symptoms and investigations were also assessed. Results Among the 441 apprentice subjects, 45 (10%) declared rhinoconjunctivitis-like symptoms, 18 (4%) declared asthma-like symptoms and 26 (6%) suffered from BHR. The mean increase in AR post-MBC test was 21% (sd = 20.8%). The median of FENO values was 12.6 ppb (2.6-132 range). Twenty-six subjects (6.7%) had EP exceeding 14%. BHR was associated with atopy (p < 0.01) and highest FENO values (p = 0.09). EI identified 39 subjects with eosinophilic inflammation (highest values of FENO and eosinophils), which was associated with BHR and atopy. Conclusions Are any of the identified markers predictive of increased inflammatory responsiveness or of development of symptoms caused by occupational exposures? Analysis of population follow-up will attempt to answer this question. PMID:20604945

  11. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model.

    PubMed

    Bonfield, Tracey L; Koloze, Mary; Lennon, Donald P; Zuchowski, Brandon; Yang, Sung Eun; Caplan, Arnold I

    2010-12-01

    Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma. PMID:20817776

  12. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    PubMed

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections. PMID:26957481

  13. Analysis of induced sputum to examine the effects of prednisone on airway inflammation in asthmatic subjects.

    PubMed

    Claman, D M; Boushey, H A; Liu, J; Wong, H; Fahy, J V

    1994-11-01

    To determine whether induced sputum samples might provide a useful means for evaluating the effects of therapy on airway mucosal inflammation, we examined induced sputum samples obtained before and after 6 days of treatment with prednisone (0.5 mg/kg/day) or placebo in a randomized, double-blind study of 24 asthmatic subjects. Induced sputum was analyzed for total and differential cell counts and for concentrations of eosinophil cationic protein, albumin, and mucin-like glycoprotein. We found that the mean (+/- SEM) percentage of eosinophils in sputum samples from the prednisone-treated group fell from 14.1% +/- 5.0% at baseline to 1.8% +/- 0.8% after treatment, a decrease significantly greater than in the placebo-treated group (from 10.3% +/- 4.9% to 11.1% +/- 4.0%; p = 0.002). The absolute number of eosinophils also decreased significantly more in the prednisone-treated group than in the placebo-treated group (p = 0.04). In addition, eosinophil cationic protein levels in induced sputum fell more in the prednisone-treated group than in the placebo-treated group (from 324 +/- 131 ng/ml to 144 +/- 84 ng/ml vs 173 +/- 50 ng/ml to 188 +/- 47 ng/ml; p = 0.002). Furthermore, prednisone treatment was associated with a significant increase in peak expiratory flow, an effect that was significantly correlated with the decrease in eosinophil percentage in induced sputum (rs = 0.64, p = 0.04). Prednisone treatment was not associated with any significant change in the concentrations of albumin or mucin-like glycoprotein. We conclude that analysis of induced sputum is a useful noninvasive method for studying the effects of asthma therapy on airway eosinophilic inflammation. PMID:7963155

  14. Acute pulmonary inflammation induced by exposure of the airways to staphylococcal enterotoxin type B in rats

    SciTech Connect

    Desouza, Ivani A. . E-mail: ivanidesouza@fcm.unicamp.br; Franco-Penteado, Carla F.; Camargo, Enilton A.; Lima, Carmen S.P.; Teixeira, Simone A.; Muscara, Marcelo N.; De Nucci, Gilberto; Antunes, Edson

    2006-11-15

    Staphylocococcus aureus is a gram-positive bacterium that produces several enterotoxins, which are responsible for most part of pathological conditions associated to staphylococcal infections, including lung inflammation. This study aimed to investigate the underlying inflammatory mechanisms involved in leukocyte recruitment in rats exposed to staphylococcal enterotoxin B (SEB). Rats were anesthetized with pentobarbital sodium and intratracheally injected with either SEB or sterile phosphate-buffered saline (PBS, 0.4 ml). Airways exposition to SEB (7.5-250 ng/trachea) caused a dose- and time-dependent neutrophil accumulation in BAL fluid, the maximal effects of which were observed at 4 h post-SEB exposure (250 ng/trachea). Eosinophils were virtually absent in BAL fluid, whereas mononuclear cell counts increased only at 24 h post-SEB. Significant elevations of granulocytes in bone marrow (mature and immature forms) and peripheral blood have also been detected. In BAL fluid, marked elevations in the levels of lipid mediators (LTB{sub 4} and PGE{sub 2}) and cytokines (TNF-{alpha}, IL-6 and IL-10) were observed after SEB instillation. The SEB-induced neutrophil accumulation in BAL fluid was reduced by pretreatment with dexamethasone (0.5 mg/kg), the COX-2 inhibitor celecoxib (3 mg/kg), the selective iNOS inhibitor compound 1400 W (5 mg/kg) and the lipoxygenase inhibitor AA-861 (200 {mu}g/kg). In separate experiments carried out with rat isolated peripheral neutrophils, SEB failed to induce neutrophil adhesion to serum-coated plates and chemotaxis. In conclusion, rat airways exposition to SEB causes a neutrophil-dependent lung inflammation at 4 h as result of the release of proinflammatory (NO, PGE{sub 2}, LTB{sub 4}, TNF-{alpha}, IL-6) and anti-inflammatory mediators (IL-10)

  15. Periostin - A Novel Systemic Biomarker for Eosinophilic Airway Inflammation: A Case Control Study

    PubMed Central

    Emprm, Viswanathan; Rajanandh, MG

    2016-01-01

    Introduction Chronic airway inflammation and remodelling are fundamental features of asthma. The molecular phenotypes in asthma are Th2 high and Th2 low. Serum periostin is a biomarker which aid in understanding Th2 high eosinophilic asthma. Aim The present study aimed to identify whether or not serum periostin is a systemic biomarker for eosinophilic airway inflammation in asthmatics. Materials and Methods The study was designed as a prospective, case control study. Patients who presented with consistent symptoms of asthma and confirmed by spirometry with reversibility were the cases. The controls were healthy subjects who had no history of lung disease with normal lung function. The sputum and blood samples were collected from both the groups. Sputum eosinophils, Absolute Eosinophil Counts (AEC) and serum periostin levels were compared between the groups. Results The study comprised of 101 participants in which 30 were controls and 71 were cases. In the study group, mean post FEV1 was 64.45. There was a positive correlation of sputum eosinophils with severity of obstruction. The ROC curve analysis showed the cut-off value of 24.556 for serum periostin with the p-value of <0.001. As the severity of obstruction increased, the serum periostin levels were also found to be increased. Serum periostin had a sensitivity and specificity of 97.18% and 86.67% with a diagnostic accuracy of 94.06%. Conclusion Serum periostin appears to be a more sensitive tool for detection of airflow limitation in asthmatic patients with a Th2 high eosinophilic phenotype when compared to AEC and sputum eosinophils. PMID:27054127

  16. Toll-like receptor 7 stimulates production of specialized pro-resolving lipid mediators and promotes resolution of airway inflammation

    PubMed Central

    Koltsida, Ourania; Karamnov, Sergey; Pyrillou, Katerina; Vickery, Thad; Chairakaki, Aikaterini-Dimitra; Tamvakopoulos, Constantin; Sideras, Paschalis; Serhan, Charles N; Andreakos, Evangelos

    2013-01-01

    Although specialized pro-resolving mediators (SPMs) biosynthesized from polyunsaturated fatty acids are critical for the resolution of acute inflammation, the molecules and pathways that induce their production remain elusive. Here, we show that TLR7, a receptor recognizing viral ssRNA and damaged self-RNA, mobilizes the docosahexaenoic acid (DHA)-derived biosynthetic pathways that lead to the generation of D-series SPMs. In mouse macrophages and human monocytes, TLR7 activation triggered production of DHA-derived monohydroxy metabolome markers and generation of protectin D1 (PD1) and resolvin D1 (RvD1). In mouse allergic airway inflammation, TLR7 activation enhanced production of DHA-derived SPMs including PD1 and accelerated the catabasis of Th2-mediated inflammation. D-series SPMs were critical for TLR7-mediated resolution of airway inflammation as this effect was lost in Alox15−/− mice, while resolution was enhanced after local administration of PD1 or RvD1. Together, our findings reveal a new previously unsuspected role of TLR7 in the generation of D-series SPMs and the resolution of allergic airway inflammation. They also identify TLR stimulation as a new approach to drive SPMs and resolution of inflammatory diseases. PMID:23584892

  17. Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls

    PubMed Central

    Ishikawa, Nobuhisa; Hattori, Noboru; Kohno, Nobuoki; Kobayashi, Akihiro; Hayamizu, Tomoyuki; Johnson, Malcolm

    2015-01-01

    Purpose To assess the importance of inflammation in chronic obstructive pulmonary disease (COPD) by measuring airway and systemic inflammatory biomarkers in Japanese patients with the disease and relevant control groups. Patients and methods This was the first study of its type in Japanese COPD patients. It was a non-treatment study in which 100 participants were enrolled into one of three groups: nonsmoking controls, current or ex-smoking controls, and COPD patients. All participants underwent standard lung function assessments and provided sputum and blood samples from which the numbers of inflammatory cells and concentrations of biomarkers were measured, using standard procedures. Results The overall trends observed in levels of inflammatory cells and biomarkers in sputum and blood in COPD were consistent with previous reports in Western studies. Increasing levels of neutrophils, interleukin 8 (IL-8), surfactant protein D (SP-D), and Krebs von den Lungen 6 (KL-6) in sputum and clara cell 16 (CC-16), high-sensitivity C-reactive protein (hs-CRP), and KL-6 in serum and plasma fibrinogen were seen in the Japanese COPD patients compared with the non-COPD control participants. In sputum, significant correlations were seen between total cell count and matrix metalloproteinase 9 (MMP-9; P<0.001), neutrophils and MMP-9 (P<0.001), macrophages and KL-6 (P<0.01), total cell count and IL-8 (P<0.05), neutrophils and IL-8 (P<0.05), and macrophages and MMP-9 (P<0.05). Significant correlations were also observed between some inflammatory cells in sputum and biomarkers in serum, with the most significant between serum CC-16 and both total cell count (P<0.005) and neutrophils (P<0.005) in sputum. Conclusion These results provide evidence for the first time that COPD in Japanese patients is a multicomponent disease, involving both airway and systemic inflammation, in addition to airway obstruction. Therefore, intervention with anti-inflammatory therapy may provide additional

  18. [Lipid derivative of benzylidene malononitrile AG490 attenuates airway inflammation of mice with neutrophilic asthma].

    PubMed

    Zhang, Min; Nong, Guangmin; Jiang, Min; Zhan, Wenjie

    2016-06-01

    Objective To observe the effect of lipid derivative of benzylidene malononitrile AG490 on the airway inflammation in a mouse model of neutrophilic asthma (NA). Methods Fifty-four specific pathogen-free (SPF) female C57BL/6 mice were randomly divided into 3 groups: NA group, AG490-treated NA (NAAG) group, and normal control (NC) group, 18 mice in each group. The NA group and the NAAG group were sensitized by airway instillation of ovalbumin (OVA) and lipopolysaccharide (LPS) on day 0, 6 and 13. The NAAG group was injected with AG490 (500 μg/mouse, i.p.) three times a week, from day 0 after the first sensitization, for 3 weeks. Mice were challenged on day 21, 22 for 1 hour/time with an aerosol of 10 g/L OVA. At 24 hours after the final challenge, bronchoalveolar lavage fluid (BALF) was collected. The total number and differential counts of nucleated cells and the percentage of each type were determined. HE staining and PAS staining was employed for observing the lung pathological changes. The percentages of Th17 cells and regulatory T cells (Treg) in the lung issue were determined by flow cytometry. The level of interleukin-17 (IL-17) in BALF was measured using ELISA. Results Compared with the NA group, the total number of nucleated cells, the percentage of neutrophils and the percentage of eosinophils in BALF in the NAAG group were obviously reduced; lung tissue pathologic changes were improved in the NAAG group; goblet cell hyperplasia and the level of IL-17 in BALF in the NAAG group were significantly down-regulated; the proportion of Treg in the lung increased and the proportion of Th17 cells in the lung decreased in the NAAG group. Conclusion After NA mice are treated with AG490 during the sensitization phase, the proportion of Treg in the lung would increase and the proportion of Th17 cells in the lung would decrease. AG490 could attenuate the airway inflammation in the mouse model of NA. PMID:27371836

  19. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation.

    PubMed

    Joskova, M; Sutovska, M; Durdik, P; Koniar, D; Hargas, L; Banovcin, P; Hrianka, M; Khazaei, V; Pappova, L; Franova, S

    2016-01-01

    Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma. PMID:27369295

  20. Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust.

    PubMed

    Nordgren, Tara M; Bauer, Christopher D; Heires, Art J; Poole, Jill A; Wyatt, Todd A; West, William W; Romberger, Debra J

    2015-07-01

    Agriculture industry workers are at a higher risk for chronic bronchitis and obstructive pulmonary diseases, and current therapeutics are not entirely effective. We previously found that the specialized proresolving lipid mediator maresin-1 (MaR1) reduced proinflammatory cytokine release and intracellular adhesion molecule-1 (ICAM-1) expression in bronchial epithelial cells exposed to extracts of organic dust (DE) derived from swine confinement facilities in vitro. The objective of this study was to determine whether MaR1 is effective at limiting lung inflammation associated with acute and repetitive exposures to DE in an established murine model of inhalant dust exposures. C57Bl/6 mice were treated with MaR1 or vehicle control and intranasally instilled with DE once or daily for 3 weeks. Bronchioalveolar lavage fluid was analyzed for total and differential cell counts and proinflammatory cytokine levels, and lung tissues were assessed for histopathology and ICAM-1 expression. In both single and repetitive DE exposure studies, MaR1 significantly decreased bronchoalveolar lavage neutrophil infiltration, interleukin 6, tumor necrosis factor α, and chemokine C-X-C motif ligand 1 levels without altering repetitive DE-induced bronchioalveolar inflammation or lymphoid aggregate formation. Lung tissue ICAM-1 expression was also reduced in both single and repetitive exposure studies. These data suggest that MaR1 might contribute to an effective strategy to reduce airway inflammatory diseases induced by agricultural-related organic dust environmental exposures. PMID:25655838

  1. Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice.

    PubMed

    Givi, Masoumeh Ezzati; Akbari, Peyman; Boon, Louis; Puzovic, Vladimir S; Bezemer, Gillina F G; Ricciardolo, Fabio L M; Folkerts, Gert; Redegeld, Frank A; Mortaz, Esmaeil

    2016-01-01

    The recruitment and activation of inflammatory cells into the respiratory system is considered a crucial feature in the pathophysiology of chronic obstructive pulmonary disease (COPD). Because dendritic cells (DCs) have a pivotal role in the onset and regulation of immune responses, we investigated the effect of modulating DC subsets on airway inflammation by acute cigarette smoke (CS) exposure. CS-exposed mice (5 days) were treated with fms-like tyrosine kinase 3 ligand (Flt3L) and 120g8 antibody to increase total DC numbers and deplete plasmacytoid DCs (pDCs), respectively. Flt3L treatment decreased the number of inflammatory cells in the bronchoalveolar lavage (BALF) of the smoke-exposed mice and increased these in lung tissue. DC modulation reduced IL-17 and increased IL-10 levels, which may be responsible for the suppression of the BALF cells. Furthermore, depletion of pDCs led to increased infiltration of alveolar macrophages while restricting the presence of CD103(+) DCs. This study suggests that DC subsets may differentially and compartment-dependent influence the inflammation induced by CS. pDC may play a role in preventing the pathogenesis of CS by inhibiting the alveolar macrophage migration to lung and increasing CD103(+) DCs at inflammatory sites to avoid extensive lung tissue damage. PMID:26475733

  2. Resolution of Allergic Airway Inflammation and Airway Hyperreactivity Is Mediated by IL-17–producing γδT Cells

    PubMed Central

    Murdoch, Jenna R.; Lloyd, Clare M.

    2010-01-01

    Rationale: γδT lymphocytes are enriched within the epithelial microenvironment, where they are thought to maintain homeostasis and limit immunopathology. γδT cells are postulated to exert a regulatory influence during acute allergic airway disease, but the mechanism is unknown. Although regulation of allergic airway disease has been attributed to IL-17–producing T helper (Th) 17 cells, we have found that γδT cells represent the major source of IL-17 in the allergic lung. Objectives: The aim of this study was to determine the contribution of these IL-17–producing γδT cells to regulation of allergic airway inflammation. Methods: Flow cytometry revealed that IL-17–producing γδT cells are more prevalent than IL-17+αβT cells (Th17) in a murine model of ovalbumin-induced allergic inflammation. Measurements and Main Results: Transfer of γδT cells at the peak of acute allergic responses ameliorated airway hyperresponsiveness with a corresponding acceleration in the resolution of eosinophilic and Th2-driven inflammation. Conversely, functional blockade of γδT cells led to exacerbation of injury. Neither treatment changed pulmonary Th17 cell numbers. Moreover, transfer of Th17 cells had no effect on disease outcome. Importantly, IL-17–deficient γδT cells were unable to promote resolution of injury. These data identify IL-17–producing γδT cells as key regulators of the allergic response in vivo. Conclusions: This unfolds a new perspective for the understanding of γδT cell function with regard to innate regulation of the adaptive immune responses, emphasizing that resolution of responses are important in determining the outcome of acute inflammatory episodes as well as for maintenance of tissue integrity and homeostasis. PMID:20413629

  3. Inhibitory effect of Platycodi Radix on ovalbumin-induced airway inflammation in a murine model of asthma.

    PubMed

    Choi, Jae Ho; Hwang, Yong Pil; Lee, Hyun Sun; Jeong, Hye Gwang

    2009-06-01

    Asthma is a chronic inflammatory disease of the airways characterized by an associated increase in airway responsiveness. In this study, we investigated the inhibitory effect of an aqueous extract from the root of Platycodi Radix (Changkil: CK) on airway inflammation in a murine model of asthma. Mice were sensitized and challenged by ovalbumin (OVA) inhalation to induce chronic airway inflammation and airway remodeling. CK markedly decreased the number of infiltrated inflammatory cells and the levels of Th1 and Th2 cytokines and chemokines compared with those in the OVA-induced group. In addition, CK reduced OVA-specific IgE levels in bronchoalveolar lavage (BAL) fluid. Based on lung histopathological studies, inflammatory cell infiltration and mucus hypersecretion were inhibited by CK administration compared to that in the OVA-induced group. Lung weight was reduced after CK administration. Also, increased generation of ROS in BAL fluid, as well as NF-kappaB nuclear translocation, by inhalation of OVA was diminished by CK. Moreover, CK reduced the OVA-induced upregulation of matrix metalloproteases activity. These findings indicate that oxidative stress may play a crucial role in the pathogenesis of bronchial asthma induced by OVA and that CK may be useful as an adjuvant therapy for the treatment of bronchial asthma. PMID:19264106

  4. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives.

    PubMed

    Samitas, Konstantinos; Delimpoura, Vasiliki; Zervas, Eleftherios; Gaga, Mina

    2015-12-01

    Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes. PMID:26621973

  5. The effect of platelet activating factor antagonist on ozone-induced airway inflammation and bronchial hyperresponsiveness in guinea pigs

    SciTech Connect

    Tan, W.C.; Bethel, R.A. )

    1992-10-01

    We investigated the role of platelet-activating factor (PAF) in ozone-induced airway responses by examining the effects of L659,989, a potent PAF antagonist, on bronchial hyperresponsiveness and airway inflammation. Twenty-four male guinea pigs were studied in four equal groups. Total lung resistance (RL) in intubated and spontaneously breathing animals was measured in a constant-volume body plethysmograph. Dose-response curves to methacholine were determined in all animals at the start of the experiment. These were repeated on a separate day after the following types of treatments: air exposure in Group 1, intraperitoneally administered alcohol and air exposure in Group 2; intraperitoneally administered alcohol and ozone exposure in Group 3, and intraperitoneally administered L659,989 (a specific PAF antagonist), 5 mg/kg dissolved in alcohol, and ozone exposure in Group 4. Bronchoalveolar lavage (BAL) was performed after the second methacholine challenge, and the bronchial mucosa was also examined for inflammatory cells. Exposure to 3 ppm ozone for 2 h resulted in a three-doubling concentration increase in bronchial responsiveness, which was not significantly inhibited by prior treatment with L659,989. Ozone induced a 1.8-fold increase in BAL total cell count, increased eosinophilic influx into the airways, and increased eosinophilic infiltration in the bronchial mucosa, which were all not inhibited by L659,989 pretreatment. The results suggest that PAF may not have an essential role in ozone-induced airway hyperresponsiveness and nonallergic airway inflammation.

  6. Therapeutic expansion of CD4+FoxP3+ regulatory T cells limits allergic airway inflammation during pulmonary fungal infection.

    PubMed

    Schulze, Bianca; Piehler, Daniel; Eschke, Maria; Heyen, Laura; Protschka, Martina; Köhler, Gabriele; Alber, Gottfried

    2016-06-01

    Allergic asthma can be frequently caused and exacerbated by sensitization to ubiquitous fungal allergens associated with pulmonary mucus production, airway hyperresponsiveness and bronchial constriction, resulting in a complex disease that is often difficult to treat. Fungal infections are frequently complicated by the development of a type 2 immune response that prevents successful elimination of the fungal pathogen. Furthermore, production of type 2 cytokines triggers allergic airway inflammation. Following intranasal infection of BALB/c mice with the fungusCryptococcus neoformans, we recently described a more pronounced type 2 immune response in the absence of regulatory T (Treg) cells. To determine whether Treg cell expansion is able to suppress type 2-related fungal allergic inflammation, we increased Treg cell numbers during pulmonaryC. neoformansinfection by administration of an interleukin (IL)-2/anti-IL-2 complex. Expansion of Treg cells resulted in reduced immunoglobulin E production and decreased allergic airway inflammation including reduced production of pulmonary mucus and type 2 cytokines as well as production of immunosuppressive cytokines such as IL-10 and transforming growth factor-β1. From our data we conclude that Treg cells and/or their suppressive mediators represent potential targets for therapeutic intervention during allergic fungal airway disease. PMID:27001975

  7. Glutathione modulation during sensitization as well as challenge phase regulates airway reactivity and inflammation in mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Siddiqui, Nahid; Alharbi, Naif O; Alharbi, Mohammad M; Imam, Faisal; Sayed-Ahmed, Mohamed M

    2014-08-01

    Glutathione, being a major intracellular redox regulator has been shown to be implicated in regulation of airway reactivity and inflammation. However, no study so far has investigated the effect of glutathione depletion/repletion during sensitization and challenge phases separately, which could provide an important insight into the pathophysiology of allergic asthma. The aim of the present study was to evaluate the role of glutathione depletion/repletion during sensitization and challenge phases separately in a mouse model of allergic asthma. Buthionine sulphoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase or N-acetyl cysteine (NAC), a thiol donor were used for depletion or repletion of glutathione levels respectively during both sensitization and challenge phases separately followed by assessment of airway reactivity, inflammation and oxidant-antioxidant balance in allergic mice. Depletion of glutathione with BSO during sensitization as well as challenge phase worsened allergen induced airway reactivity/inflammation and caused greater oxidant-antioxidant imbalance as reflected by increased NADPH oxidase expression/reactive oxygen species (ROS) generation/lipid peroxides formation and decreased total antioxidant capacity. On the other hand, repletion of glutathione pool by NAC during sensitization and challenge phases counteracted allergen induced airway reactivity/inflammation and restored oxidant-antioxidant balance through a decrease in NADPH oxidase expression/ROS generation/lipid peroxides formation and increase in total antioxidant capacity. Taken together, these findings suggest that depletion or repletion of glutathione exacerbates or ameliorates allergic asthma respectively by regulation of airway oxidant-antioxidant balance. This might have implications towards increased predisposition to allergy by glutathione depleting environmental pollutants. PMID:24742380

  8. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles.

    PubMed

    Gustafsson, Åsa; Bergström, Ulrika; Ågren, Lina; Österlund, Lars; Sandström, Thomas; Bucht, Anders

    2015-10-01

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. PMID:26163175

  9. Airway smooth muscle inflammation is regulated by microRNA-145 in COPD.

    PubMed

    O'Leary, Lawrence; Sevinç, Kenan; Papazoglou, Ilektra M; Tildy, Bernadett; Detillieux, Karen; Halayko, Andrew J; Chung, Kian Fan; Perry, Mark M

    2016-05-01

    Chronic obstructive pulmonary disease (COPD) is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease, in part caused by the aberrant function of airway smooth muscle (ASM) cells under the regulation of transforming growth factor (TGF)-β. miRNA are short, noncoding gene transcripts involved in the negative regulation of specific target genes, through their interactions with mRNA. Previous studies have proposed that mRNA-145 (miR-145) may interact with SMAD3, an important downstream signalling molecule of the TGF-β pathway. TGF-β was used to stimulate primary human ASM cells isolated from healthy nonsmokers, healthy smokers and COPD patients. This resulted in a TGF-β-dependent increase in CXCL8 and IL-6 release, most notably in the cells from COPD patients. TGF-β stimulation increased SMAD3 expression, only in cells from COPD patients, with a concurrent increased miR-145 expression. Regulation of miR-145 was found to be negatively controlled by pathways involving the MAP kinases, MEK-1/2 and p38 MAPK. Subsequent, overexpression of miR-145 (using synthetic mimics) in ASM cells from patients with COPD suppressed IL-6 and CXCL8 release, to levels comparable to the nonsmoker controls. Therefore, this study suggests that miR-145 negatively regulates pro-inflammatory cytokine release from ASM cells in COPD by targeting SMAD3. PMID:27060571

  10. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    PubMed

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis. PMID:25010831

  11. Pulmonary C Fibers Modulate MMP-12 Production via PAR2 and Are Involved in the Long-Term Airway Inflammation and Airway Hyperresponsiveness Induced by Respiratory Syncytial Virus Infection

    PubMed Central

    Zang, Na; Zhuang, Jianguo; Deng, Yu; Yang, Zhimei; Ye, Zhixu; Xie, Xiaohong; Ren, Luo; Fu, Zhou; Luo, Zhengxiu; Xu, Fadi

    2015-01-01

    ABSTRACT Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection

  12. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  13. Activation of Nonclassical CD1d-Restricted NK T Cells Induces Airway Hyperreactivity in β2-Microglobulin-Deficient Mice1

    PubMed Central

    Meyer, Everett H.; Pichavant, Muriel; Akbari, Omid; Yasumi, Takahiro; Savage, Paul B.; DeKruyff, Rosemarie H.; Umetsu, Dale T.

    2016-01-01

    Allergic asthma is characterized by Th2-driven eosinophilic airway inflammation and by a central feature called airway hyperreactivity (AHR), development of which requires the presence of classical type I invariant NK T (iNKT) cells. Allergen-induced AHR, however, develops in β2-microglobulin (β2m)−/− mice, which lack classical iNKT cells, suggesting that in some situations iNKT cells may be dispensable for the development of AHR. In contrast, our studies now suggest that a CD1d-restricted, NK1.1+ noninvariant TCR NKT cell population is present in β2m−/− mice and is responsible for the development of AHR but not for Th2 responses. Furthermore, treatment of β2m−/− mice with anti-CD1d mAb or anti-NK1.1 mAb unexpectedly abolished allergen-induced AHR. The CD1-restricted NKT cells in these mice, which failed to respond to α-galactosylceramide and which therefore were not classical type I iNKT cells, appear to represent an NKT cell subset restricted by a β2m-independent form of CD1d. These results indicate that, although classical type I iNKT cells are normally required for the development of AHR, under different circumstances other NKT cell subsets, including nonclassical NKT cells, may substitute for classical iNKT cells and induce AHR. PMID:18802058

  14. Effect of an anti-Mo1 MAb on ozone-induced airway inflammation and airway hyperresponsiveness in dogs

    SciTech Connect

    Li, Z.; Daniel, E.E.; Lane, C.G.; Arnaout, M.A.; O'Byrne, P.M. )

    1992-12-01

    Ozone inhalation causes neutrophil migration into the airway and airway hyperresponsiveness in dogs. The leukocyte adhesion molecule Mo1 (CD11b/CD18) is a heterodimeric glycoprotein the expression of which is necessary for neutrophil adhesion to endothelium. To evaluate the contribution of Mo1 to ozone-induced neutrophil influx and airway hyperresponsiveness, six dogs were treated intravenously with an Anti-Mo1 monoclonal antibody (3.75 mg/kg in normal saline) that binds to both human and canine Mo1, or the diluent alone, 1.5 h before inhaling ozone (3 ppm for 30 min), or dry air. Airway responses to doubling doses of inhaled acetylcholine (ACh) were measured before and after inhalation of ozone. Neutrophil influx was assessed by bronchoalveolar lavage (BAL) performed after the second ACh inhalation. Treatment with anti-Mo1 prevented the ozone-induced influx of neutrophils into BAL. After diluent and inhaled dry air, the neutrophil count in BAL was 1.49 +/- 1.26 (SE) x 10(4) (5.0% of total cells). After diluent and inhaled ozone, the neutrophil count increased to 7.27 +/- 3.22 (SE) x 10(4) (22.6% of total cells) (P < 0.05). After anti-Mo1 and inhaled ozone, the neutrophil count was 1.48 +/- 0.62 (SE) x 10(4) (8.5% of total cells). Treatment with anti-Mo1 also significantly reduced the number of eosinophils in BAL after ozone. Ozone-induced ACh airway hyperresponsiveness was not prevented by treatment with anti-Mo1. These results indicate that expression of Mo1 is necessary for ozone-induced neutrophil migration into the airway lumen.

  15. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    PubMed

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young

    2015-06-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  16. Beta-escin has potent anti-allergic efficacy and reduces allergic airway inflammation

    PubMed Central

    2010-01-01

    Background Type I hypersensitivity is characterized by the overreaction of the immune system against otherwise innocuous substances. It manifests as allergic rhinitis, allergic conjunctivitis, allergic asthma or atopic dermatitis if mast cells are activated in the respective organs. In case of systemic mast cell activation, life-threatening anaphylaxis may occur. Currently, type I hypersensitivities are treated either with glucocorticoids, anti-histamines, or mast cell stabilizers. Although these drugs exert a strong anti-allergic effect, their long-term use may be problematic due to their side-effects. Results In the course of a routine in vitro screening process, we identified beta-escin as a potentially anti-allergic compound. Here we tested beta-escin in two mouse models to confirm this anti-allergic effect in vivo. In a model of the early phase of allergic reactions, the murine passive cutaneous anaphylaxis model, beta-escin inhibited the effects of mast cell activation and degranulation in the skin and dose-dependently prevented the extravasation of fluids into the tissue. Beta-escin also significantly inhibited the late response after antigen challenge in a lung allergy model with ovalbumin-sensitized mice. Allergic airway inflammation was suppressed, which was exemplified by the reduction of leucocytes, eosinophils, IL-5 and IL-13 in the bronchoalveolar lavage fluid. Histopathological examinations further confirmed the reduced inflammation of the lung tissue. In both models, the inhibitory effect of beta-escin was comparable to the benchmark dexamethasone. Conclusions We demonstrated in two independent murine models of type I hypersensitivity that beta-escin has potent anti-allergic properties. These results and the excellent safety profile of beta-escin suggest a therapeutic potential of this compound for a novel treatment of allergic diseases. PMID:20487574

  17. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.

    PubMed

    Sun, Yue-Qi; Deng, Meng-Xia; He, Jia; Zeng, Qing-Xiang; Wen, Weiping; Wong, David S H; Tse, Hung-Fat; Xu, Geng; Lian, Qizhou; Shi, Jianbo; Fu, Qing-Ling

    2012-12-01

    We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. PMID:22987325

  18. Aggravation of Allergic Airway Inflammation by Cigarette Smoke in Mice Is CD44-Dependent

    PubMed Central

    Kumar, Smitha; Lanckacker, Ellen; Dentener, Mieke; Bracke, Ken; Provoost, Sharen; De Grove, Katrien; Brusselle, Guy; Wouters, Emiel

    2016-01-01

    Background Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics. PMID:26999446

  19. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation

    PubMed Central

    Magalhães, G S; Rodrigues-Machado, M G; Motta-Santos, D; Silva, A R; Caliari, M V; Prata, L O; Abreu, S C; Rocco, P R M; Barcelos, L S; Santos, R A S; Campagnole-Santos, M J

    2015-01-01

    Background and Purpose A long-term imbalance between pro- and anti-inflammatory mediators leads to airway remodelling, which is strongly correlated to most of the symptoms, severity and progression of chronic lung inflammation. The Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis of the renin-angiotensin system is associated with attenuation of acute and chronic inflammatory processes. In this study, we investigated the effects of Ang-(1-7) treatment in a model of chronic allergic lung inflammation. Experimental Approach Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged three times per week (days 21–46). These mice received Ang-(1-7) (1 μg·h−1, s.c.) by osmotic mini-pumps, for the last 28 days. Histology and morphometric analysis were performed in left lung and right ventricle. Airway responsiveness to methacholine, analysis of Ang-(1-7) levels (RIA), collagen I and III (qRT-PCR), ERK1/2 and JNK (Western blotting), IgE (elisa), cytokines and chemokines (elisa multiplex), and immunohistochemistry for Mas receptors were performed. Key Results Infusion of Ang-(1-7) in OVA-sensitized and challenged mice decreased inflammatory cell infiltration and collagen deposition in the airways and lung parenchyma, and prevented bronchial hyperresponsiveness. These effects were accompanied by decreased IgE and ERK1/2 phosphorylation, and decreased pro-inflammatory cytokines. Mas receptors were detected in the epithelium and bronchial smooth muscle, suggesting a site in the lung for the beneficial actions of Ang-(1-7). Conclusions and Implications Ang-(1-7) exerted beneficial attenuation of three major features of chronic asthma: lung inflammation, airway remodelling and hyperresponsiveness. Our results support an important protective role of Ang-(1-7) in lung inflammation. PMID:25559763

  20. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation

    PubMed Central

    Zhong, Wenwei; Su, Wen; Zhang, Yanjie; Liu, Qi; Wu, Jinhong; Di, Caixia; Zhang, Zili; Xia, Zhenwei

    2014-01-01

    Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4. PMID:24383680

  1. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2

    PubMed Central

    Kim, Yun-Gi; Udayanga, Kankanam Gamage Sanath; Totsuka, Naoya; Weinberg, Jason B.; Núñez, Gabriel; Shibuya, Akira

    2014-01-01

    SUMMARY Although imbalances in gut microbiota composition, or “dysbiosis”, are associated with many diseases, the effects of gut dysbiosis on host systemic physiology are less well characterized. We report that gut dysbiosis induced by antibiotic (Abx)-treatment promotes allergic airway inflammation by shifting macrophage polarization in the lung toward the alternatively activated M2 phenotype. Adoptive transfer of alveolar macrophages derived from Abx-treated mice was sufficient to increase allergic airway inflammation. Abx-treatment resulted in the overgrowth of a commensal fungal Candida species in the gut and increased plasma concentrations of prostaglandin E2 (PGE2), which induced M2 macrophage polarization in the lung. Suppression of PGE2 synthesis by the cyclooxygenase inhibitors aspirin and celecoxib suppressed M2 macrophage polarization and decreased allergic airway inflammatory cell infiltration in Abx-treated mice. Thus, Abx-treatment can cause overgrowth of particular fungal species in the gut and promote M2 macrophage activation at distant sites to influence systemic responses including allergic inflammation. PMID:24439901

  2. Airway inflammation, cough and athlete quality of life in elite female cross-country skiers: A longitudinal study.

    PubMed

    Kennedy, M D; Davidson, W J; Wong, L E; Traves, S L; Leigh, R; Eves, N D

    2016-07-01

    The aim of this study was to investigate the effect of a season of cross-country training and racing on airway inflammation, cough symptoms, and athlete quality of life in female skiers. Eighteen elite female skiers performed sputum induction and completed the Leicester Cough Questionnaire (LCQ) and the Recovery-Stress Questionnaire (REST-Q) at three time points (T1 - May/Jun, T2 - Oct/Nov, T3 - Jan-Mar) during the year. No changes were observed between T1 and T2. However, an increase in sputum eosinophils and lymphocytes (P < 0.05) and a significant change in all three domains of the LCQ were observed between T1 and T3 (P < 0.05). A significant association was found between the total yearly hours of training and the change in the total cell count (r(2)  = 0.74; P = 0.006), and a number of other sputum cell counts between T1 and T3. No changes were observed for any domain of the REST-Q. The results of this study demonstrate that airway inflammation and cough symptoms are significantly increased in elite female cross-country skiers across a year of training and racing. The increase in airway inflammation is related to the total amount of training and is worse during the winter months when athletes are training and racing in cold, dry air. PMID:26283581

  3. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice.

    PubMed

    Rangasamy, Tirumalai; Guo, Jia; Mitzner, Wayne A; Roman, Jessica; Singh, Anju; Fryer, Allison D; Yamamoto, Masayuki; Kensler, Thomas W; Tuder, Rubin M; Georas, Steve N; Biswal, Shyam

    2005-07-01

    Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma. PMID:15998787

  4. Systemic and airway inflammation and the presence of emphysema in patients with COPD.

    PubMed

    Papaioannou, Andriana I; Mazioti, Argyro; Kiropoulos, Theodoros; Tsilioni, Irini; Koutsokera, Angela; Tanou, Kalliopi; Nikoulis, Dimitrios J; Georgoulias, Panagiotis; Zakynthinos, Epameinondas; Gourgoulianis, Konstantinos I; Kostikas, Konstantinos

    2010-02-01

    The aim of this study was to determine the impact of HRCT-confirmed emphysema on biomarkers evaluating airway and systemic inflammation in COPD patients. Forty-nine consecutive male COPD outpatients with stable COPD were divided in two groups according to the presence or absence of emphysema on HRCT. Patients underwent pulmonary function tests, plus assessment of exercise capacity, body composition and quality of life. Biomarkers were measured in serum (CRP, interleukin-6, TNF-alpha, leptin, adiponectin, osteocalcin, insulin growth factor-1, and systemic oxidative stress), in plasma (fibrinogen and VEGF) and in whole blood (B-type natriuretic peptide). TNF-alpha, 8-isoprostane and pH were additionally measured in exhaled breath condensate. Patients with emphysema had more severe lung function impairment, lower body-mass index and fat-free mass index, and poorer quality of life. Additionally, they presented increased systemic oxidative stress and plasma fibrinogen and lower BNP compared to patients without emphysema. After proper adjustment for disease severity, all differences remained with the exceptions of body-mass index, fat-free mass index and BNP. COPD patients with HRCT-confirmed emphysema present increased systemic oxidative stress and fibrinogen, suggesting that they may be more prone to the systemic consequences of COPD compared to patients without emphysema. PMID:19854037

  5. Airway inflammation and infection in congenital bilateral absence of the vas deferens.

    PubMed

    Gilljam, Marita; Moltyaner, Yuri; Downey, Gregory P; Devlin, Roslyn; Durie, Peter; Cantin, André M; Zielenski, Julian; Tullis, D Elizabeth

    2004-01-15

    In cystic fibrosis (CF), airway disease begins early in life. Bacteria and elevated levels of neutrophils and inflammatory mediators have been detected in bronchoalveolar lavage (BAL) fluid from infants with CF. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) are common in men with congenital bilateral absence of the vas deferens (CBAVD) and it has been suggested that this syndrome represents a mild form of CF. We hypothesized that men with CBAVD also have subclinical pulmonary disease. Bronchoscopy with BAL, viral and quantitative bacterial cultures, and analyses of total and differential cell count, cytokines, and free neutrophil elastase was performed in eight men with CBAVD, who had mutations in the CFTR and intermediate or elevated sweat chloride levels, and in four healthy control subjects. There was light growth of Staphylococcus aureus in one of eight men with CBAVD, and small numbers of opportunistic gram-negative bacteria in six of eight men with CBAVD and in one control subject. BAL cell counts and neutrophil elastase were within the normal range. Interleukin-8 and tumor necrosis factor-alpha levels were higher for men with CBAVD than for control subjects. These data suggest that mutations in the CFTR in men with CBAVD, in addition to causing infertility, lead to subclinical bacterial pulmonary infection and inflammation consistent with mild CF. PMID:14551163

  6. Interaction of ozone exposure with airway hyperresponsiveness and inflammation induced by trimellitic anhydride in sensitized guinea pigs

    SciTech Connect

    Sun, Jian; Chung, K.Fan

    1997-09-01

    The effect of prior ozone (O{sub 3}) exposure on airway hyperresponsiveness and inflammation induced by trimellitic anhydride (TMA) has been investigated in TMA-sensitized guinea pigs. Airway responsiveness was measured as the concentration of acetylcholine needed to increase baseline lung resistance (RL) by 300% (PC300). Ozone (3 ppm, for 3 h) caused an increase in-log PC300 at 1 h after exposure, with return of -log PC300 to control levels at 8 h. Ozone also increased baseline RL at 8 h. TMA challenge increase -log PC300 in TMA-sensitized guinea pigs at 8 h after challenge from 3.85 {+-} 0.09 to 4.11 {+-} 0.09. Ozone exposure prior to TMA challenge prevented the induction of airway hyperresponsiveness with a mean -log PC300 of 3.51 {+-} 0.20, which was not different from that of control TMA-Sensitized group. Baseline RL was significantly higher in ozone-pretreated animals after TMA challenge when compared to those of either control or challenged with TMA alone. Ozone had no effect on TMA challenge-induced BAL eosinophilia and neutrophilia. We conclude that a single exposure to ozone inhibits the increase in airway responsiveness, but increases the bronchoconstrictor response induced by TMA in TMA-Sensitized guinea pigs; however, the inflammatory airway response to TMA is unchanged by preexposure to ozone. 29 refs., 2 figs., 1 tab.

  7. Concomitant exposure to ovalbumin and endotoxin augments airway inflammation but not airway hyperresponsiveness in a murine model of asthma.

    PubMed

    Mac Sharry, John; Shalaby, Karim H; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T; Shanahan, Fergus; Martin, James G

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  8. Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  9. Phenotyping airways disease: an A to E approach.

    PubMed

    Gonem, S; Raj, V; Wardlaw, A J; Pavord, I D; Green, R; Siddiqui, S

    2012-12-01

    The airway diseases asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous conditions with overlapping pathophysiological and clinical features. It has previously been proposed that this heterogeneity may be characterized in terms of five relatively independent domains labelled from A to E, namely airway hyperresponsiveness (AHR), bronchitis, cough reflex hypersensitivity, damage to the airways and surrounding lung parenchyma, and extrapulmonary factors. Airway hyperresponsiveness occurs in both asthma and COPD, accounting for variable day to day symptoms, although the mechanisms most likely differ between the two conditions. Bronchitis, or airway inflammation, may be predominantly eosinophilic or neutrophilic, with different treatments required for each. Cough reflex hypersensitivity is thought to underlie the chronic dry cough out of proportion to other symptoms that can occur in association with airways disease. Structural changes associated with airway disease (damage) include bronchial wall thickening, airway smooth muscle hypertrophy, bronchiectasis and emphysema. Finally, a variety of extrapulmonary factors may impact upon airway disease, including rhinosinusitis, gastroesophageal reflux disease, obesity and dysfunctional breathing. This article discusses the A to E concept in detail and describes how this framework may be used to assess and treat patients with airway diseases in the clinic. PMID:23181785

  10. Self-Assembling Nanoparticles Containing Dexamethasone as a Novel Therapy in Allergic Airways Inflammation

    PubMed Central

    Kenyon, Nicholas J.; Bratt, Jennifer M.; Lee, Joyce; Luo, Juntao; Franzi, Lisa M.; Zeki, Amir A.; Lam, Kit S.

    2013-01-01

    Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78±0.44×105 (n = 18) vs. 5.98±1.3×105 (n = 13), P<0.05) and eosinophils (1.09±0.28×105 (n = 18) vs. 2.94±0.6×105 (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43±1.2 (n = 11) vs. 8.56±2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1±3.6 (n = 8) vs. 28.8±8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma. PMID:24204939

  11. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation.

    PubMed

    Kenyon, Nicholas J; Bratt, Jennifer M; Lee, Joyce; Luo, Juntao; Franzi, Lisa M; Zeki, Amir A; Lam, Kit S

    2013-01-01

    Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78 ± 0.44 × 10(5) (n = 18) vs. 5.98 ± 1.3 × 10(5) (n = 13), P<0.05) and eosinophils (1.09 ± 0.28 × 10(5) (n = 18) vs. 2.94 ± 0.6 × 10(5) (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43 ± 1.2 (n = 11) vs. 8.56 ± 2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1 ± 3.6 (n = 8) vs. 28.8 ± 8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma. PMID:24204939

  12. Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation.

    PubMed

    Di, Caixia; Lin, Xiaoliang; Zhang, Yanjie; Zhong, Wenwei; Yuan, Yufan; Zhou, Tong; Liu, Junling; Xia, Zhenwei

    2015-05-15

    Asthma is characterized by increased airway submucosal infiltration of T helper (Th) cells and myeloid cells that co-conspire to sustain a chronic inflammation. While recent studies have demonstrated that the myeloid basophils promote Th2 cells in response to various types of allergens, the underlying mechanisms are poorly understood. Here, we found for the first time that in a mouse model of allergic asthma basophils highly expressed OX40 ligand (OX40L) after activation. Interestingly, blockade of OX40-OX40L interaction suppressed basophils-primed Th2 cell differentiation in vitro and ameliorated ovalbumin (OVA)-induced allergic eosinophilic inflammation mediated by Th2 activation. In accordance, the adoptive transfer of basophils derived from mediastinal lymph nodes (MLN) of OVA-immunized mice triggered a robust Th2 response and eosinophilic inflammation in wild-type mice but largely muted in OX40(-/-) mice and mice receiving OX40L-blocked basophils. Taken together, our results reveal a critical role of OX40L presented by the activated basophils to initiate Th2 responses in an allergic asthma model, implicating OX40-OX40L signaling as a potential therapeutic target in the treatment of allergic airway inflammation. PMID:25839234

  13. Basophil-associated OX40 Ligand Participates in the Initiation of Th2 Responses during Airway Inflammation*

    PubMed Central

    Di, Caixia; Lin, Xiaoliang; Zhang, Yanjie; Zhong, Wenwei; Yuan, Yufan; Zhou, Tong; Liu, Junling; Xia, Zhenwei

    2015-01-01

    Asthma is characterized by increased airway submucosal infiltration of T helper (Th) cells and myeloid cells that co-conspire to sustain a chronic inflammation. While recent studies have demonstrated that the myeloid basophils promote Th2 cells in response to various types of allergens, the underlying mechanisms are poorly understood. Here, we found for the first time that in a mouse model of allergic asthma basophils highly expressed OX40 ligand (OX40L) after activation. Interestingly, blockade of OX40-OX40L interaction suppressed basophils-primed Th2 cell differentiation in vitro and ameliorated ovalbumin (OVA)-induced allergic eosinophilic inflammation mediated by Th2 activation. In accordance, the adoptive transfer of basophils derived from mediastinal lymph nodes (MLN) of OVA-immunized mice triggered a robust Th2 response and eosinophilic inflammation in wild-type mice but largely muted in OX40−/− mice and mice receiving OX40L-blocked basophils. Taken together, our results reveal a critical role of OX40L presented by the activated basophils to initiate Th2 responses in an allergic asthma model, implicating OX40-OX40L signaling as a potential therapeutic target in the treatment of allergic airway inflammation. PMID:25839234

  14. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation.

    PubMed

    Abram, Melanie; Wegmann, Michael; Fokuhl, Verena; Sonar, Sanchaita; Luger, Elke Olga; Kerzel, Sebastian; Radbruch, Andreas; Renz, Harald; Zemlin, Michael

    2009-04-15

    Allergen-specific Abs play a pivotal role in the induction and maintenance of allergic airway inflammation. During secondary immune responses, plasma cell survival and Ab production is mediated by extrinsic factors provided by the local environment (survival niches). It is unknown whether neurotrophins, a characteristic marker of allergic airway inflammation, influence plasma cell survival in the lung. Using a mouse model of allergic asthma, we found that plasma cells from the lung and spleen are distinct subpopulations exhibiting differential expression patterns of neurotrophins and their receptors (Trks). In vitro, the nerve growth factor (NGF) and neurotrophin-3 (NT3) led to a dose-dependent increase in viability of isolated pulmonary plasma cells due to up-regulation of the antiapoptotic Bcl2 pathway. In parallel, the expression of transcription factors that stimulate the production of immunoglobulins (X-box binding protein 1 and NF-kappaB subunit RelA) was enhanced in plasma cells treated with NGF and NT3. These findings were supported in vivo. When the NGF pathway was blocked by intranasal application of a selective TrkA inhibitor, sensitized mice showed reduced numbers of pulmonary plasma cells and developed lower levels of allergen-specific and total serum IgE in response to OVA inhalation. This suggests that in the allergic airway inflammation, NGF/TrkA-mediated pulmonary IgE production contributes significantly to serum-IgE levels. We conclude that the neurotrophins NGF and NT3 act as survival factors for pulmonary plasma cells and thus are important regulators of the local Ab production in the allergic airway disease. PMID:19342646

  15. Polymorphisms at the glutathione S-transferase, GSTP1 locus: a novel mechanism for susceptibility and development of atopic airway inflammation.

    PubMed

    Spiteri, M A; Bianco, A; Strange, R C; Fryer, A A

    2000-01-01

    A common feature of environmental irritants is their ability to cause local inflammation which could alter airway function. The principal targets of such injury are the epithelial cells lining the airway passages and the lower respiratory gas-exchange areas. While host atopy is a recognized risk factor for airway inflammation, atopy alone cannot cause asthma. We hypothesize that susceptibility to persistent airway inflammation in atopic individuals is characterized by an inherited deficiency in the effectiveness of detoxification of inhaled irritants and products of oxidative stress such as reactive oxygen species (ROS). Our case-control studies show that polymorphisms at the glutathione S-transferase, GSTP1, locus on chromosome 11q13 may account for variation in host response to oxidative stress, a key component of airway inflammation. Frequency of the GSTP1 Val/Val genotype is reduced in atopic subjects compared with nonatopic subjects. Trend analysis also shows a significant decrease of GSTP1 Val/Val (with parallel increase of GSTP1 Ile/Ile) genotype frequency with increasing severity of airflow obstruction/bronchial hyperresponsiveness. The implication of specific polymorphisms at the GSTP1 locus in airway inflammation is entirely novel: however, GST are recognized as a supergene family of enzymes critical in 1) cell protection from the toxic products of ROS-mediated reactions, 2) modulation of eicosanoid synthesis. PMID:10919500

  16. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    PubMed Central

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  17. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation.

    PubMed

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N; Benharroch, D Aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel; Mizrachi Nebenzahl, Yaffa; Porgador, Angel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  18. Adenosine A1 Receptor Antagonist Versus Montelukast on Airway Reactivity and Inflammation

    PubMed Central

    Nadeem, Ahmed; Obiefuna, Peter C.M.; Wilson, Constance N.; Mustafa, S. Jamal

    2006-01-01

    Adenosine produces bronchoconstriction in allergic rabbits, primates, and humans by activating adenosine A1 receptors. Previously, it is reported that a high dose of L-97-1, a water-soluble, small molecule adenosine A1 receptor antagonist, blocks early and late allergic responses, and bronchial hyper-responsiveness to histamine in a hyper-responsive rabbit model of allergic asthma. Effects of a lower dose of L-97-1 are compared to montelukast, a cysteinyl leukotriene-1 receptor antagonist on early allergic response, late allergic response, bronchial hyper-responsiveness, and inflammatory cells in bronchoalveolar lavage (BAL) fluid following house dust mite administration. Rabbits received intraperitoneal injections of house dust mite extract within 24 h of birth followed by booster house dust mite injections. Hyper-responsive rabbits received aerosolized house dust mite (2500 allergen units), 1 h after intragastric administration of L-97-1 (1 mg/kg) or montelukast (0.15 mg/kg) and lung dynamic compliance was measured for 6 h. Lung dynamic compliance was significantly higher following L-97-1 at all time points and with montelukast at 60-300 min following house dust mite (P < 0.05). L-97-1 blocks both early and late allergic responses. Montelukast blocks only the late allergic response. Both L-97-1 and montelukast significantly blocked bronchial hyper-responsiveness at 24 h (P < 0.05). Both L-97-1 and montelukast significantly reduced BAL eosinophils at 6 h and neutrophils at 6 and 24 h (P < 0.05). L-97-1 significantly reduced BAL lymphocytes at 6 and 24 h (P < 0.05). Montelukast significantly reduced BAL macrophages at 6 and 24 h (P < 0.05). By blocking both bronchoconstriction and airway inflammation, L-97-1 may be an effective oral anti-asthma treatment. PMID:17027749

  19. Air Pollution, Airway Inflammation, and Lung Function in a Cohort Study of Mexico City Schoolchildren

    PubMed Central

    Barraza-Villarreal, Albino; Sunyer, Jordi; Hernandez-Cadena, Leticia; Escamilla-Nuñez, Maria Consuelo; Sienra-Monge, Juan Jose; Ramírez-Aguilar, Matiana; Cortez-Lugo, Marlene; Holguin, Fernando; Diaz-Sánchez, David; Olin, Anna Carin; Romieu, Isabelle

    2008-01-01

    Background The biological mechanisms involved in inflammatory response to air pollution are not clearly understood. Objective In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function. Methods We studied a cohort of 158 asthmatic and 50 nonasthmatic school-age children, followed an average of 22 weeks. We conducted spirometric tests, measurements of fractional exhaled nitric oxide (FeNO), interleukin-8 (IL-8) in nasal lavage, and pH of exhaled breath condensate every 15 days during follow-up. Data were analyzed using linear mixed-effects models. Results An increase of 17.5 μg/m3 in the 8-hr moving average of PM2.5 levels (interquartile range) was associated with a 1.08-ppb increase in FeNO [95% confidence interval (CI), 1.01–1.16] and a 1.07-pg/mL increase in IL-8 (95% CI 0.98–1.19) in asthmatic children and a 1.16 pg/ml increase in IL-8 (95% CI, 1.00–1.36) in nonasthmatic children. The 5-day accumulated average of exposure to particulate matter < 2.5 μm in aerodynamic diamter (PM2.5) was significantly inversely associated with forced expiratory volume in 1 sec (FEV1) (p = 0.048) and forced vital capacity (FVC) (p = 0.012) in asthmatic children and with FVC (p = 0.021) in nonasthmatic children. FeNO and FEV1 were inversely associated (p = 0.005) in asthmatic children. Conclusions Exposure to PM2.5 resulted in acute airway inflammation and decrease in lung function in both asthmatic and nonasthmatic children. PMID:18560490

  20. Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus

    PubMed Central

    McSorley, Henry J; O'Gorman, Mary T; Blair, Natalie; Sutherland, Tara E; Filbey, Kara J; Maizels, Rick M

    2016-01-01

    Summary Allergic asthma is less prevalent in countries with parasitic helminth infections, and mice infected with parasites such as Heligmosomoides polygyrus are protected from allergic airway inflammation. To establish whether suppression of allergy could be mediated by soluble products of this helminth, we tested H. polygyrus excretory-secretory (HES) material for its ability to impair allergic inflammation. When HES was added to sensitising doses of ovalbumin, the subsequent allergic airway response was suppressed, with ablated cell infiltration, a lower ratio of effector (CD4+CD25+Foxp3−) to regulatory (CD4+Foxp3+) T (Treg) cells, and reduced Th1, Th2 and Th17 cytokine production. HES exposure reduced IL-5 responses and eosinophilia, abolished IgE production, and inhibited the type 2 innate molecules arginase-1 and RELM-α. Although HES contains a TGF-β-like activity, similar effects in modulating allergy were not observed when administering mammalian TGF-β alone. HES also protected previously sensitised mice, suppressing recruitment of eosinophils to the airways when given at challenge, but no change in Th or Treg cell populations was apparent. Because heat-treatment of HES did not impair suppression at sensitisation, but compromised its ability to suppress at challenge, we propose that HES contains distinct heat-stable and heat-labile immunomodulatory molecules which modulate pro-allergic adaptive and innate cell populations. PMID:22706967

  1. Functional relevance of NLRP3 inflammasome-mediated interleukin (IL)-1β during acute allergic airway inflammation

    PubMed Central

    Ritter, M; Straubinger, K; Schmidt, S; Busch, D H; Hagner, S; Garn, H; Prazeres da Costa, C; Layland, L E

    2014-01-01

    Overall asthmatic symptoms can be controlled with diverse therapeutic agents. However, certain symptomatic individuals remain at risk for serious morbidity and mortality, which prompts the identification of novel therapeutic targets and treatment strategies. Thus, using an adjuvant-free T helper type 2 (Th2) murine model, we have deciphered the role of interleukin (IL)-1 signalling during allergic airway inflammation (AAI). Because functional IL-1β depends on inflammasome activation we first studied asthmatic manifestations in specific inflammasome-deficient [NACHT, LRR and PYD domains-containing protein 3 (NLRP3−/−) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC−/−)] and IL-1 receptor type 1−/− (IL-1R1−/−) mice on the BALB/c background. To verify the onset of disease we assessed cellular infiltration in the bronchial regions, lung pathology, airway hyperresponsiveness and ovalbumin (OVA)-specific immune responses. In the absence of NLRP3 inflammasome-mediated IL-1β release all symptoms of AAI were reduced, except OVA-specific immunoglobulin levels. To address whether manipulating IL-1 signalling reduced asthmatic development, we administered the IL-1R antagonist anakinra (Kineret®) during critical immunological time-points: sensitization or challenge. Amelioration of asthmatic symptoms was only observed when anakinra was administered during OVA challenge. Our findings indicate that blocking IL-1 signalling could be a potential complementary therapy for allergic airway inflammation. PMID:24943899

  2. Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways

    PubMed Central

    Levy, Bruce D.

    2012-01-01

    Resolvins are generated from omega-3 fatty acids during inflammatory responses in the lung. These natural mediators interact with specific receptors to decrease lung inflammation and promote its resolution in healthy tissues. There are several lung diseases of chronic inflammation that fail to resolve, most notable asthma. This common disorder has a lifetime prevalence of nearly 10% and is characterized, in part, by chronic, non-resolving inflammation of the airway. Pro-resolving mediators are generated during asthma; however, their biosynthesis is decreased in severe and uncontrolled asthma, suggesting that the chronic, adaptive inflammation in asthmatic airways may result from a resolution defect. This article focuses on recent insights into the cellular and molecular mechanisms for resolvins that limit adaptive immune responses in healthy airways. PMID:23293638

  3. Prevention of antigen-induced bronchial hyperreactivity and airway inflammation in sensitized guinea-pigs by tacrolimus.

    PubMed Central

    Lapa e Silva, J R; Ruffié, C; Lefort, J; Nahori, M A; Vargaftig, B B; Pretolani, M

    1999-01-01

    We examined the effect of the immunosuppressive agent, tacrolimus (FK506), on antigen-induced bronchial hyperreactivity to acetylcholine and leukocyte infiltration into the airways of ovalbumin-challenged guinea-pigs. Subcutaneous injection of 0.5 mg/kg of FK506, 1 h before and 5 h after intra-nasal antigen challenge prevented bronchial hyperreactivity to aerosolized acetylcholine, eosinophilia in bronchoalveolar lavage (BAL) fluid and bronchial tissue and the invasion of the bronchial wall by CD4+ T-lymphocytes. FK506 also suppressed ovalbumin-induced increase in the number of leukocytes adhering to the pulmonary vascular endothelium and expressing alpha4-integrins. Inhibition by FK506 of antigen-induced bronchial hyperreactivity in sensitized guinea-pigs may thus relate to its ability to prevent the emergence of important inflammatory components of airway inflammation, such as eosinophil accumulation, as well as CD4+ T-lymphocyte infiltration into the bronchial tissue. PMID:10704085

  4. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma

    PubMed Central

    2014-01-01

    Background Honey is widely used in folk medicine to treat cough, fever, and inflammation. In this study, the effect of aerosolised honey on airway tissues in a rabbit model of ovalbumin (OVA)-induced asthma was investigated. The ability of honey to act either as a rescuing agent in alleviating asthma-related symptoms or as a preventive agent to preclude the occurrence of asthma was also assessed. Methods Forty New Zealand white rabbits were sensitized twice with mixture of OVA and aluminium hydroxide on days 1 and 14. Honey treatments were given from day 23 to day 25 at two different doses (25% (v/v) and 50% (v/v) of honey diluted in sterile phosphate buffer saline. In the aerosolised honey as a rescue agent group, animals were euthanized on day 28; for the preventive group, animals were further exposed to aerosolised OVA for 3 days starting from day 28 and euthanized on day 31. The effects of honey on inflammatory cell response, airway inflammation, and goblet cell hyperplasia were assessed for each animal. Results Histopathological analyses revealed that aerosolised honey resulted in structural changes of the epithelium, mucosa, and submucosal regions of the airway that caused by the induction with OVA. Treatment with aerosolised honey has reduced the number of airway inflammatory cells present in bronchoalveolar lavage fluid and inhibited the goblet cell hyperplasia. Conclusion In this study, aerosolised honey was used to effectively treat and manage asthma in rabbits, and it could prove to be a promising treatment for asthma in humans. Future studies with a larger sample size and studies at the gene expression level are needed to better understand the mechanisms by which aerosolised honey reduces asthma symptoms. PMID:24886260

  5. T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation.

    PubMed

    Swaidani, Shadi; Bulek, Katarzyna; Kang, Zizhen; Gulen, Muhammet Fatih; Liu, Caini; Yin, Weiguo; Abbadi, Amina; Aronica, Mark; Li, Xiaoxia

    2011-09-15

    The cellular and molecular mechanisms driven by IL-25 and its cognate receptor IL-17RB necessary for the promotion of Th2-mediating pathogenic pulmonary inflammation remains to be defined. We have previously reported the critical role of the U-box-type E3 ubiquitin ligase Act1 (1) for the downstream signaling of the IL-17 cytokine family including the Th2-promoting cytokine IL-25 (IL-17E) (2). In this study, we report that IL-25-driven but not conventional IL-4-driven Th2 polarization and cytokine production is impaired in Act1-deficient T cells. Also, Act1 deficiency in the T cell compartment results in the abrogation of eosinophilic airway infiltration as well as airway hyperresponsiveness in mouse models of Ag-induced airway inflammation. The in vivo generation of Ag-specific Th2 cytokine-producing cells is defective in the absence of Act1 expression in T cells after OVA/aluminum hydroxide immunization. Notably, the production of OVA-specific IgG(1) but not IgG(2a) or IgE is also impaired. At the molecular level, we report that IL-25-mediated induction of Th2 master regulator GATA-3 and the transcription factor GFI-1 is attenuated in Act1-deficient T cells. Taken together, our findings indicate that Act1 expression in T cells is required for cellular and humoral Th2-mediated allergic responses and the development of airway hyperresponsiveness, in part, through Act1's function in IL-25-induced development of Th2 T cells. PMID:21856933

  6. Proteinase activated receptor-2-mediated dual oxidase-2 up-regulation is involved in enhanced airway reactivity and inflammation in a mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Alharbi, Naif O; Vliagoftis, Harissios; Tyagi, Manoj; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M

    2015-07-01

    Airway epithelial cells (AECs) express a variety of receptors, which sense danger signals from various aeroallergens/pathogens being inhaled constantly. Proteinase-activated receptor 2 (PAR-2) is one such receptor and is activated by cockroach allergens, which have intrinsic serine proteinase activity. Recently, dual oxidases (DUOX), especially DUOX-2, have been shown to be involved in airway inflammation in response to Toll-like receptor activation. However, the association between PAR-2 and DUOX-2 has not been explored in airways of allergic mice. Therefore, this study investigated the contribution of DUOX-2/reactive oxygen species (ROS) signalling in airway reactivity and inflammation after PAR-2 activation. Mice were sensitized intraperitoneally with intact cockroach allergen extract (CE) in the presence of aluminium hydroxide followed by intranasal challenge with CE. Mice were then assessed for airway reactivity, inflammation, oxidative stress (DUOX-2, ROS, inducible nitric oxide synthase, nitrite, nitrotyrosine and protein carbonyls) and apoptosis (Bax, Bcl-2, caspase-3). Challenge with CE led to up-regulation of DUOX-2 and ROS in AECs with concomitant increases in airway reactivity/inflammation and parameters of oxidative stress, and apoptosis. All of these changes were significantly inhibited by intranasal administration of ENMD-1068, a small molecule antagonist of PAR-2 in allergic mice. Administration of diphenyliodonium to allergic mice also led to improvement of allergic airway responses via inhibition of the DUOX-2/ROS pathway; however, these effects were less pronounced than PAR-2 antagonism. The current study suggests that PAR-2 activation leads to up-regulation of the DUOX-2/ROS pathway in AECs, which is involved in regulation of airway reactivity and inflammation via oxidative stress and apoptosis. PMID:25684443

  7. The Endogenous Th17 Response in NO2-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    PubMed Central

    Martin, Rebecca A.; Ather, Jennifer L.; Daggett, Rebecca; Hoyt, Laura; Alcorn, John F.; Suratt, Benjamin T.; Weiss, Daniel J.; Lundblad, Lennart K. A.; Poynter, Matthew E.

    2013-01-01

    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. PMID:24069338

  8. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism.

    PubMed

    Cates, Elizabeth C; Fattouh, Ramzi; Wattie, Jennifer; Inman, Mark D; Goncharova, Susanna; Coyle, Anthony J; Gutierrez-Ramos, José-Carlos; Jordana, Manel

    2004-11-15

    It is now well established that passive exposure to inhaled OVA leads to a state of immunological tolerance. Therefore, to elicit allergic sensitization, researchers have been compelled to devise alternative strategies, such as the systemic delivery of OVA in the context of powerful adjuvants, which are alien to the way humans are exposed and sensitized to allergens. The objectives of these studies were to investigate immune-inflammatory responses to intranasal delivery of a purified house dust mite (HDM) extract and to evaluate the role of GM-CSF in this process. HDM was delivered to BALB/c mice daily for 10 days. After the last exposure, mice were killed, bronchoalveolar lavage was performed, and samples were obtained. Expression/production of Th2-associated molecules in the lymph nodes, lung, and spleen were evaluated by real-time quantitative PCR and ELISA, respectively. Using this exposure protocol, exposure to HDM alone generated Th2 sensitization based on the expression/production of Th2 effector molecules and airway eosinophilic inflammation. Flow cytometric analysis demonstrated expansion and activation of APCs in the lung and an influx of activated Th2 effector cells. Moreover, this inflammation was accompanied by airways hyper-responsiveness and a robust memory-driven immune response. Finally, administration of anti-GM-CSF-neutralizing Abs markedly reduced immune-inflammatory responses in both lung and spleen. Thus, intranasal delivery of HDM results in Th2 sensitization and airway eosinophilic inflammation that appear to be mediated, at least in part, by endogenous GM-CSF production. PMID:15528378

  9. A CCL24-dependent pathway augments eosinophilic airway inflammation in house dust mite-challenged Cd163(-/-) mice.

    PubMed

    Dai, C; Yao, X; Gordon, E M; Barochia, A; Cuento, R A; Kaler, M; Meyer, K S; Keeran, K J; Nugent, G Z; Jeffries, K R; Qu, X; Yu, Z-X; Aponte, A; Gucek, M; Dagur, P K; McCoy, J P; Levine, S J

    2016-05-01

    CD163 is a macrophage scavenger receptor with anti-inflammatory and pro-inflammatory functions. Here, we report that alveolar macrophages (AMΦs) from asthmatic subjects had reduced cell-surface expression of CD163, which suggested that CD163 might modulate the pathogenesis of asthma. Consistent with this, house dust mite (HDM)-challenged Cd163(-/-) mice displayed increases in airway eosinophils and mucous cell metaplasia (MCM). The increased airway eosinophils and MCM in HDM-challenged Cd163(-/-) mice were mediated by augmented CCL24 production and could be reversed by administration of a neutralizing anti-CCL24 antibody. A proteomic analysis identified the calcium-dependent binding of CD163 to Dermatophagoides pteronyssinus peptidase 1 (Der p1). Der p1-challenged Cd163(-/-) mice had the same phenotype as HDM-challenged Cd163(-/-) mice with increases in airway eosinophils, MCM and CCL24 production, while Der p1 induced CCL24 secretion by bone marrow-derived macrophages (BMMΦs) from Cd163(-/-) mice, but not BMMΦs from wild-type (WT) mice. Finally, airway eosinophils and bronchoalveolar lavage fluid CCL24 levels were increased in Der p1-challenged WT mice that received adoptively transferred AMΦ's from Cd163(-/-) mice. Thus, we have identified CD163 as a macrophage receptor that binds Der p1. Furthermore, we have shown that HDM-challenged Cd163(-/-) mice have increased eosinophilic airway inflammation and MCM that are mediated by a CCL24-dependent mechanism. PMID:26376364

  10. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma.

    PubMed

    Kuperman, Douglas A; Huang, Xiaozhu; Koth, Laura L; Chang, Grace H; Dolganov, Gregory M; Zhu, Zhou; Elias, Jack A; Sheppard, Dean; Erle, David J

    2002-08-01

    Asthma is an increasingly common disease that remains poorly understood and difficult to manage. This disease is characterized by airway hyperreactivity (AHR, defined by exaggerated airflow obstruction in response to bronchoconstrictors), mucus overproduction and chronic eosinophilic inflammation. AHR and mucus overproduction are consistently linked to asthma symptoms and morbidity. Asthma is mediated by Th2 lymphocytes, which produce a limited repertoire of cytokines, including interleukin-4 (IL-4), IL-5, IL-9 and IL-13. Although each of these cytokines has been implicated in asthma, IL-13 is now thought to be especially critical. In animal models of allergic asthma, blockade of IL-13 markedly inhibits allergen-induced AHR, mucus production and eosinophilia. Furthermore, IL-13 delivery to the airway causes all of these effects. IL-13 is thus both necessary and sufficient for experimental models of asthma. However, the IL-13-responsive cells causing these effects have not been identified. Here we show that mice lacking signal transducer and activator of transcription 6 (STAT6) were protected from all pulmonary effects of IL-13. Reconstitution of STAT6 only in epithelial cells was sufficient for IL-13-induced AHR and mucus production in the absence of inflammation, fibrosis or other lung pathology. These results demonstrate the importance of direct effects of IL-13 on epithelial cells in causing two central features of asthma. PMID:12091879

  11. ROLE OF NEPRILYSIN IN AIRWAY INFLAMMATION INDUCED BY DIESEL EXHAUST EMISSIONS

    EPA Science Inventory

    The investigators intend to evaluate airway inflammatory responses and expression of the enzyme neprilysin in response to diesel exhaust particle exposure. Dr. Wong and colleagues anticipate that their research will reveal that components of diesel exhaust decrease neprilys...

  12. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  13. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model

    PubMed Central

    Tashiro, Hiroki; Takahashi, Koichiro; Hayashi, Shinichiro; Kato, Go; Kurata, Keigo; Kimura, Shinya; Sueoka-Aragane, Naoko

    2016-01-01

    Background Interleukin-33 (IL-33) activates group 2 innate lymphoid cells (ILC2), resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation. Methods BALB/c mice were sensitized and challenged with a house dust mite (HDM) preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL) fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes. Results The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung. Conclusion IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation. PMID:27310495

  14. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation. PMID:26588845

  15. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma

    PubMed Central

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation. PMID:26588845

  16. Acute glutathione depletion leads to enhancement of airway reactivity and inflammation via p38MAPK-iNOS pathway in allergic mice.

    PubMed

    Nadeem, A; Siddiqui, N; Alharbi, Naif O; Alharbi, M M; Imam, F

    2014-09-01

    Glutathione (GSH) plays a major role in allergic airway responses through a variety of mechanism which include direct scavenging of oxidative species, being a reducing equivalent and regulation of cellular signaling through redox sensitive mechanisms. Therefore, the aim of the present study was to evaluate the role of acute GSH depletion on airway reactivity, inflammation and NO signaling in a mouse model of allergic asthma. Buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase was used for depletion of GSH levels. Acute depletion of GSH with BSO worsened allergen induced airway reactivity and inflammation through increase in nitrosative stress as reflected by increased inducible NO synthase (iNOS) expression, total nitrates and nitrites (NOx), nitrotyrosine, protein carbonyls, and decreased total antioxidant capacity. Treatment with p38 mitogen-activated protein kinase (MAPK) and iNOS inhibitors attenuated the effects of GSH depletion on airway reactivity and inflammation through attenuation of nitrosative stress as evidenced by a decrease in NOx, nitrotyrosine, protein carbonyls and increase in total antioxidant capacity (TAC). In conclusion, these data suggest that acute depletion of glutathione is associated with alteration of airway responses through an increase in nitrosative stress in allergic airways of mice. PMID:24978607

  17. Involvement of preprotachykinin A gene-encoded peptides and the neurokinin 1 receptor in endotoxin-induced murine airway inflammation.

    PubMed

    Helyes, Zsuzsanna; Elekes, Krisztián; Sándor, Katalin; Szitter, István; Kereskai, László; Pintér, Erika; Kemény, Agnes; Szolcsányi, János; McLaughlin, Lynn; Vasiliou, Sylvia; Kipar, Anja; Zimmer, Andreas; Hunt, Stephen P; Stewart, James P; Quinn, John P

    2010-10-01

    Tachykinins encoded by the preprotachykinin A (TAC1) gene such as substance P (SP) and neurokinin A (NKA) are involved in neurogenic inflammatory processes via predominantly neurokinins 1 and 2 (NK1 and NK2) receptor activation, respectively. Endokinins and hemokinins encoded by the TAC4 gene also have remarkable selectivity and potency for the NK1 receptors and might participate in inflammatory cell functions. The aim of the present study was to investigate endotoxin-induced airway inflammation and consequent bronchial hyper-reactivity in TAC1(-/-), NK1(-/-) and also in double knockout (TAC1(-/-)/NK1(-/-)) mice. Sub-acute interstitial lung inflammation was evoked by intranasal Escherichia coli lipopolysaccharide (LPS) in the knockout mice and their wildtype C57BL/6 counterparts 24 h before measurement. Respiratory parameters were measured with unrestrained whole body plethysmography. Bronchoconstriction was induced by inhalation of the muscarinic receptor agonist carbachol and Penh (enhanced pause) correlating with airway resistance was calculated. Lung interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) concentrations were measured with ELISA. Histological evaluation was performed and a composite morphological score was determined. Myeloperoxidase (MPO) activity in the lung was measured with spectrophotometry to quantify the number of infiltrating neutrophils/macrophages. Airway hyper-reactivity was significantly reduced in the TAC1(-/-) as well as the TAC1(-/-)/NK1(-/-) groups. However, LPS-induced histological inflammatory changes (perivascular/peribronchial oedema, neutrophil infiltration and goblet cell hyperplasia), MPO activity and TNF-alpha concentration were markedly diminished only in TAC1(-/-) mice. Interestingly, the concentrations of both cytokines, IL-1beta and TNF-alpha, were significantly greater in the NK1(-/-) group. These data clearly demonstrated on the basis of histology, MPO and cytokine measurements that TAC1 gene

  18. The Effect of Seasonal Variations in Airborne Particulate Matter on Asthma-Related Airway Inflammation in Mice

    PubMed Central

    Kurai, Jun; Watanabe, Masanari; Sano, Hiroyuki; Hantan, Degejirihu; Shimizu, Eiji

    2016-01-01

    This study aimed to investigate the effects of winter and spring particulate matter (PM) on airway inflammation and allergies in a mouse asthma model. PM was collected during 7–28 February 2013 (winter) and during 7–28 April 2013 (spring) in Yonago, Japan. NC/Nga mice were co-sensitized using intranasal instillation of the PMs and Dermatophagoides farinae (Df) for 5 consecutive days, and were subsequently challenged using intranasal Df at 7 days after the last sensitization. At 24 h after the challenge, serum immunoglobulin levels, differential leukocyte counts, and inflammatory cytokines levels were measured in the mice’s bronchoalveolar lavage fluid (BALF). Compared to co-sensitization using spring PM and Df, winter PM and Df induced greater increases in the BALF neutrophil and eosinophil counts and total serum IgE and IgG2a levels. Furthermore, winter PM-sensitized mice exhibited higher BALF levels of interleukin-5, interleukin-13, interleukin-6, and keratinocyte-derived chemokine. Therefore, we observed seasonal variations in the effects of PM on asthma-related airway inflammation. These findings suggest that the compositions of PM vary according to season, and that it is important to evaluate PM compositions in order to understand the associations between asthma and PM. PMID:27294946

  19. Inhibitory effects of Pycnogenol® (French maritime pine bark extract) on airway inflammation in ovalbumin-induced allergic asthma.

    PubMed

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Hong, Ju-Mi; Kwon, Ok-Kyoung; Kim, Jong-Choon; Oh, Sei-Ryang; Hahn, Kyu-Woung; Ahn, Kyung-Seop

    2013-12-01

    Pycnogenol® (PYC) is a standardized extracts from the bark of the French maritime pine (Pinus maritime) and used as a herbal remedy for various diseases. In this study, we evaluated the effects of PYC on airway inflammation using a model of ovalbumin (OVA)-induced allergic asthma and RAW264.7 cells. PYC decreased nitric oxide production and reduced the interleukine (IL)-1β and IL-6 levels in LPS-stimulated RAW264.7 cells. PYC also reduced the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase (MMP)-9 and enhanced the expression of hemeoxygenase (HO)-1. In the in vivo experiment, PYC decreased the inflammatory cell count and the levels of IL-4, IL-5, IL-13, and immunoglobulin (Ig) E in BALF or serum. These results are consistent with the histological analysis findings, which showed that PYC attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, PYC enhanced the expression of HO-1. In contrast, PYC inhibited the elevated expression of iNOS and MMP-9 proteins induced by OVA challenge. In conclusion, PYC exhibits protective effects against OVA-induced asthma and LPS-stimulated RAW264.7 cells. These results suggest that PYC has potential as a therapeutic agent for the treatment of allergic asthma. PMID:24120901

  20. The Effect of Seasonal Variations in Airborne Particulate Matter on Asthma-Related Airway Inflammation in Mice.

    PubMed

    Kurai, Jun; Watanabe, Masanari; Sano, Hiroyuki; Hantan, Degejirihu; Shimizu, Eiji

    2016-01-01

    This study aimed to investigate the effects of winter and spring particulate matter (PM) on airway inflammation and allergies in a mouse asthma model. PM was collected during 7-28 February 2013 (winter) and during 7-28 April 2013 (spring) in Yonago, Japan. NC/Nga mice were co-sensitized using intranasal instillation of the PMs and Dermatophagoides farinae (Df) for 5 consecutive days, and were subsequently challenged using intranasal Df at 7 days after the last sensitization. At 24 h after the challenge, serum immunoglobulin levels, differential leukocyte counts, and inflammatory cytokines levels were measured in the mice's bronchoalveolar lavage fluid (BALF). Compared to co-sensitization using spring PM and Df, winter PM and Df induced greater increases in the BALF neutrophil and eosinophil counts and total serum IgE and IgG2a levels. Furthermore, winter PM-sensitized mice exhibited higher BALF levels of interleukin-5, interleukin-13, interleukin-6, and keratinocyte-derived chemokine. Therefore, we observed seasonal variations in the effects of PM on asthma-related airway inflammation. These findings suggest that the compositions of PM vary according to season, and that it is important to evaluate PM compositions in order to understand the associations between asthma and PM. PMID:27294946

  1. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    PubMed Central

    Hung, Chien-Ya; Shi, Li-Shian; Wang, Jing-Yao; Tsai, Yu-Cheng; Ye, Yi-Ling

    2013-01-01

    The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE) in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE's oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE's significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent. PMID:24386002

  2. High-dose but not low-dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function

    PubMed Central

    Thatcher, Thomas H.; Benson, Randi P.; Phipps, Richard P.; Sime, Patricia J.

    2008-01-01

    Epidemiological studies have identified childhood exposure to environmental tobacco smoke as a significant risk factor for the onset and exacerbation of asthma, but studies of smoking in adults are less conclusive, and mainstream cigarette smoke (MCS) has been reported to both enhance and attenuate allergic airway inflammation in animal models. We sensitized mice to ovalbumin (OVA) and exposed them to MCS in a well-characterized exposure system. Exposure to MCS (600 mg/m3 total suspended particulates, TSP) for 1 h/day suppresses the allergic airway response, with reductions in eosinophilia, tissue inflammation, goblet cell metaplasia, IL-4 and IL-5 in bronchoalveolar lavage (BAL) fluid, and OVA-specific antibodies. Suppression is associated with a loss of antigen-specific proliferation and cytokine production by T cells. However, exposure to a lower dose of MCS (77 mg/m3 TSP) had no effect on the number of BAL eosinophils or OVA-specific antibodies. This is the first report to demonstrate, using identical smoking methodologies, that MCS inhibits immune responses in a dose-dependent manner and may explain the observation that, although smoking provokes a systemic inflammatory response, it also inhibits T cell-mediated responses involved in a number of diseases. PMID:18567739

  3. Randomized placebo controlled assessment of airway inflammation due to racemic albuterol and levalbuterol via exhaled nitric oxide testing

    PubMed Central

    Freiler, John F; Arora, Rajiv; Kelley, Thomas C; Hagan, Larry; Allan, Patrick F

    2006-01-01

    Study Objectives The S-stereoisomer found in racemic albuterol may have associated proinflammatory properties. We tested the hypothesis that airway inflammation as assessed by exhaled nitric oxide is no different in patients with COPD when using racemic albuterol relative to levalbuterol or placebo. Measurements Twelve mild to moderate COPD patients were assigned to five days each of nebulized racemic albuterol, levalbuterol, and saline placebo. Before and after each course of treatment, airway inflammation was assessed via exhaled nitric oxide breath testing. Secondary functional outcomes that were measured included spirometry, a functional assessment utilizing a six-minute walk, and symptoms score using the University of California, San Diego Shortness of Breath Questionnaire. Results There was no statistically significant difference in pre and post FeNO levels within and between treatment groups (p = 0.121). There were also no significant differences within or between treatment groups for the secondary outcome measurements of FEV1 (p = 0.913), functional assessment utilizing a six-minute walk (p = 0.838) and the symptom scores using Shortness of Breath Questionnaire (p = 0.500). Conclusion We found no difference in mild to moderate COPD patients treated with racemic albuterol, levalbuterol or placebo for measurement of exhaled nitric oxide or the secondary outcomes that were measured. PMID:18044102

  4. NOX Modifiers—Just a Step Away from Application in the Therapy of Airway Inflammation?

    PubMed Central

    Wieczfinska, Joanna; Sokolowska, Milena

    2015-01-01

    Abstract Significance: NADPH oxidase (NOX) enzymes, which are widely expressed in different airway cell types, not only contribute to the maintenance of physiological processes in the airways but also participate in the pathogenesis of many acute and chronic diseases. Therefore, the understanding of NOX isoform regulation, expression, and the manner of their potent inhibition might lead to effective therapeutic approaches. Recent Advances: The study of the role of NADPH oxidases family in airway physiology and pathophysiology should be considered as a work in progress. While key questions still remain unresolved, there is significant progress in terms of our understanding of NOX importance in airway diseases as well as a more efficient way of using NOX modifiers in human settings. Critical Issues: Agents that modify the activity of NADPH enzyme components would be considered useful tools in the treatment of various airway diseases. Nevertheless, profound knowledge of airway pathology, as well as the mechanisms of NOX regulation is needed to develop potent but safe NOX modifiers. Future Directions: Many compounds seem to be promising candidates for development into useful therapeutic agents, but their clinical potential is yet to be demonstrated. Further analysis of basic mechanisms in human settings, high-throughput compound scanning, clinical trials with new and existing molecules, and the development of new drug delivery approaches are the main directions of future studies on NOX modifiers. In this article, we discuss the current knowledge with regard to NOX isoform expression and regulation in airway inflammatory diseases as well as the aptitudes and therapeutic potential of NOX modifiers. Antioxid. Redox Signal. 23, 428–445. PMID:24383678

  5. EBM84 attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma.

    PubMed

    Shin, In Sik; Lee, Mee Young; Jeon, Woo Young; Shin, Na Ra; Seo, Chang Seob; Ha, Hyekyung

    2013-04-01

    EBM84 is a traditional herbal medicine and a combination of extracts obtained from Pinellia ternata and Zingiber officinale. It is traditionally used to treat vomiting, nausea, sputum and gastrointestinal disorders, and functions is an effective expectorant. In this study, we evaluated the protective effects of EBM84 on asthmatic responses, particularly mucus hypersecretion in an ovalbumin (OVA)-induced murine model of asthma. We also analyzed EBM84 composition using high performance liquid chromatography. Animals were sensitized on days 0 and 14 via intraperitoneal injection using 20 µg OVA. On days 21, 22 and 23 after initial sensitization, the mice received an airway challenge with OVA (1% w/v in PBS) for 1 h using an ultrasonic nebulizer (NE-U12). EBM84 was administered by gavage to the mice at doses of 16.9, 33.8 and 67.5 mg/kg once daily from days 18 to 23. EBM84 administration significantly lowered elevated levels of interleukin (IL)-4, IL-13, eotaxin and immunoglobulin (Ig)E in the bronchoalveolar lavage fluid or plasma. Airway inflammation and mucus hypersecretion were attenuated following EBM84 administration. EBM84 also inhibited the overexpression of mucin 5AC (MUC5AC) induced by OVA challenge in lung tissue. This result was consistent with the immunohistochemistry results. Our results indicate that EBM84 effectively inhibited airway inflammation and mucus hypersecretion via the downregulation of T helper 2 (Th2) cytokines, which reduced MUC5AC expression. Therefore, EBM84 has potential as a useful medicine for the treatment of allergic asthma. PMID:23403738

  6. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    PubMed Central

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  7. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model

    PubMed Central

    MA, XIAOJUAN; MA, XIUMIN; MA, ZHIXING; WANG, JING; SUN, ZHAN; YU, WENYAN; LI, FENGSEN; DING, JIANBING

    2014-01-01

    The Uygur herb, Hyssopus officinalis L., has been demonstrated to affect the levels of a number of cytokines in asthmatic mice, including interleukin-4, -6 and -17 and interferon-γ. In the present study, the effect of Hyssopus officinalis L. on airway immune regulation and airway inflammation was investigated in a mouse model of chronic asthma. A total of 32 BALB/c mice were randomly divided into four groups, which included the normal, chronic asthmatic, dexamethasone treatment and Hyssopus officinalis L.treatment groups. Mice were sensitized and challenged with ovalbumin to establish an asthma model and the ratio of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) was determined. In addition, the levels of immunoglobulin (Ig)E and IgG were detected using an enzyme-linked immunosorbent assay. The degree of airway mucus secretion was observed using the periodic acid-Schiff stain method. The results demonstrated that the ratio of EOS in the BALF and the level of serum IgE in the chronic asthmatic and dexamethasone treatment groups increased, while the level of serum IgG decreased, when compared with the normal group. In addition, excessive secretion of airway mucus was observed in these two groups. However, the EOS ratio in the BALF and the levels of serum IgE and IgG in the Hyssopus officinalis L. treatment group were similar to the results observed in the normal group. In conclusion, Hyssopus officinalis L. not only plays an anti-inflammatory role by inhibiting the invasion of EOS and decreasing the levels of IgE, but also affects immune regulation. PMID:25289025

  8. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model.

    PubMed

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Wang, Jing; Sun, Zhan; Yu, Wenyan; Li, Fengsen; Ding, Jianbing

    2014-11-01

    The Uygur herb, Hyssopus officinalis L., has been demonstrated to affect the levels of a number of cytokines in asthmatic mice, including interleukin-4, -6 and -17 and interferon-γ. In the present study, the effect of Hyssopus officinalis L. on airway immune regulation and airway inflammation was investigated in a mouse model of chronic asthma. A total of 32 BALB/c mice were randomly divided into four groups, which included the normal, chronic asthmatic, dexamethasone treatment and Hyssopus officinalis L.treatment groups. Mice were sensitized and challenged with ovalbumin to establish an asthma model and the ratio of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) was determined. In addition, the levels of immunoglobulin (Ig)E and IgG were detected using an enzyme-linked immunosorbent assay. The degree of airway mucus secretion was observed using the periodic acid-Schiff stain method. The results demonstrated that the ratio of EOS in the BALF and the level of serum IgE in the chronic asthmatic and dexamethasone treatment groups increased, while the level of serum IgG decreased, when compared with the normal group. In addition, excessive secretion of airway mucus was observed in these two groups. However, the EOS ratio in the BALF and the levels of serum IgE and IgG in the Hyssopus officinalis L. treatment group were similar to the results observed in the normal group. In conclusion, Hyssopus officinalis L. not only plays an anti-inflammatory role by inhibiting the invasion of EOS and decreasing the levels of IgE, but also affects immune regulation. PMID:25289025

  9. Regulator of G-protein signaling 2 repression exacerbates airway hyper-responsiveness and remodeling in asthma.

    PubMed

    Jiang, Haihong; Xie, Yan; Abel, Peter W; Wolff, Dennis W; Toews, Myron L; Panettieri, Reynold A; Casale, Thomas B; Tu, Yaping

    2015-07-01

    G protein-coupled receptors (GPCRs) are important regulators of cell functions in asthma. We recently reported that regulator of G-protein signaling (RGS) 2, a selective modulator of Gq-coupled GPCRs, is a key regulator of airway hyper-responsiveness (AHR), the pathophysiologic hallmark of asthma. Because RGS2 protein levels in airway cells were significantly lower in patients with asthma compared with patients without asthma, we further investigated the potential pathological importance of RGS2 repression in asthma. The human RGS2 gene maps to chromosome 1q31. We first screened patients with asthma for RGS2 gene promoter single-nucleotide polymorphisms (SNPs) and found significant differences in the distribution of two RGS2 SNPs (A638G, rs2746071 and C395G, rs2746072) between patients with asthma and nonasthmatic subjects. These two SNPs are always associated with each other and have the same higher prevalence in patients with asthma (65%) as compared with nonasthmatic subjects (35%). Point mutations corresponding to these SNPs decrease RGS2 promoter activity by 44%. The importance of RGS2 down-regulation was then determined in an acute IL-13 mouse model of asthma. Intranasal administration of IL-13 in mice also decreased RGS2 expression in lungs by ∼50% and caused AHR. Although naive RGS2 knockout (KO) mice exhibit spontaneous AHR, acute IL-13 exposure further increased AHR in RGS2 KO mice. Loss of RGS2 also significantly enhanced IL-13-induced mouse airway remodeling, including peribronchial smooth muscle thickening and fibrosis, without effects on goblet cell hyperplasia or airway inflammation in mice. Thus, genetic variations and increased inflammatory cytokines can lead to RGS2 repression, which exacerbates AHR and airway remodeling in asthma. PMID:25368964

  10. Administration of Pigment Epithelium-Derived Factor Inhibits Airway Inflammation and Remodeling in Chronic OVA-Induced Mice via VEGF Suppression

    PubMed Central

    Zha, Wangjian; Su, Mei; Huang, Mao; Cai, Jiankang

    2016-01-01

    Purpose Pigment epithelium-derived factor (PEDF) is a recently discovered antiangiogenesis protein. PEDF possesses powerful anti-inflammatory, antioxidative, antiangiogenic, and antifibrosis properties. It has been reported that PEDF can regulate vascular endothelial growth factor (VEGF) expression. This study aimed to evaluate whether recombinant PEDF protein could attenuate allergic airway inflammation and airway remodeling via the negative regulation of VEGF using a murine model of chronic ovalbumin (OVA)-induced asthma and BEAS-2B human bronchial epithelial cells. Methods In an in vivo experiment, mice sensitized with OVA were chronically airway challenged with aerosolized 1% OVA solution for 8 weeks. Treated mice were given injections of recombinant PEDF protein (50 or 100 µg/kg body weight) via the tail vein. In an in vitro experiment, we investigated the effects of recombinant PEDF protein on VEGF release levels in BEAS-2B cells stimulated with IL-1β. Results Recombinant PEDF protein significantly inhibited eosinophilic airway inflammation, airway hyperresponsiveness, and airway remodeling, including goblet cell hyperplasia, subepithelial collagen deposition, and airway smooth muscle hypertrophy. In addition, recombinant PEDF protein suppressed the enhanced expression of VEGF protein in lung tissue and bronchoalveolar lavage fluid (BALF) in OVA-challenged chronically allergic mice. In the in vitro experiment, VEGF expression was increased after IL-1β stimulation. Pretreatment with 50 and 100 ng/mL of recombinant PEDF protein significantly attenuated the increase in VEGF release levels in a concentration-dependent manner in BEAS-2B cells stimulated by IL-1β. Conclusions These results suggest that recombinant PEDF protein may abolish the development of characteristic features of chronic allergic asthma via VEGF suppression, providing a potential treatment option for chronic airway inflammation diseases such as asthma. PMID:26739410

  11. Early markers of airways inflammation and occupational asthma: Rationale, study design and follow-up rates among bakery, pastry and hairdressing apprentices

    PubMed Central

    Tossa, Paul; Bohadana, Abraham; Demange, Valérie; Wild, Pascal; Michaely, Jean-Pierre; Hannhart, Bernard; Paris, Christophe; Zmirou-Navier, Denis

    2009-01-01

    Background Occupational asthma is a common type of asthma caused by a specific agent in the workplace. The basic alteration of occupational asthma is airways inflammation. Although most patients with occupational asthma are mature adults, there is evidence that airways inflammation starts soon after inception of exposure, including during apprenticeship. Airways hyper responsiveness to methacholine is a valid surrogate marker of airways inflammation, which has proved useful in occupational epidemiology. But it is time-consuming, requires active subject's cooperation and is not readily feasible. Other non-invasive and potentially more useful tests include the forced oscillation technique, measurement of fraction exhaled nitric oxide, and eosinophils count in nasal lavage fluid. Methods and design This study aims to investigate early development of airways inflammation and asthma-like symptoms in apprentice bakers, pastry-makers and hairdressers, three populations at risk of occupational asthma whose work-related exposures involve agents of different nature. The objectives are to (i) examine the performance of the non-invasive tests cited above in detecting early airways inflammation that might eventually develop into occupational asthma; and (ii) evaluate whether, and how, constitutional (e.g. atopy) and behavioural (e.g. smoking) risk factors for occupational asthma modulate the effects of allergenic and/or irritative substances involved in these occupations. This paper presents the study rationale and detailed protocol. Discussion Among 441 volunteers included at the first visit, 354 attended the fourth one. Drop outs were investigated and showed unrelated to the study outcome. Sample size and follow-up participation rates suggest that the data collected in this study will allow it to meet its objectives. PMID:19389222

  12. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  13. Airway oxidative stress causes vascular and hepatic inflammation via upregulation of IL-17A in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Ansari, Mushtaq A; AlSharari, Shakir D; Bahashwan, Saleh A; Attia, Sabry M; Al-Hosaini, Khaled A; Al Hoshani, Ali R; Ahmad, Sheikh F

    2016-05-01

    Oxidants are generated in asthmatic airways due to infiltration of inflammatory leukocytes and resident cells in the lung. Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide radical may leak into systemic circulation when generated in uncontrolled manner and may impact vasculature. Our previous studies have shown an association between airway inflammation and systemic inflammation; however so far none has investigated the impact of airway oxidative inflammation on hepatic oxidative stress and Th1/Th2/Th17 cytokine markers in liver/vasculature in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of systemic/hepatic Th1/Th2/Th17 cytokines balance and hepatic oxidative stress. Mice were sensitized intraperitoneally with cockroach extract (CE) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with CE. Mice were then assessed for systemic/hepatic inflammation through assessment of Th1/Th2/Th17 cytokines and oxidative stress (iNOS, protein nitrotyrosine, lipid peroxides and myeloperoxidase activity). Challenge with CE led to increased Th2/Th17 cytokines in blood/liver and hepatic oxidative stress. However, only Th17 related pro-inflammatory markers were upregulated by hydrogen peroxide (H2O2) inhalation in vasculature and liver, whereas antioxidant treatment, N-acetyl cysteine (NAC) downregulated them. Hepatic oxidative stress was also upregulated by H2O2 inhalation, whereas NAC attenuated it. Therefore, our study shows that airway oxidative inflammation may contribute to systemic inflammation through upregulation of Th17 immune responses in blood/liver and hepatic oxidative stress. This might predispose these patients to increased risk for the development of cardiovascular disorders. PMID:26953647

  14. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity

    PubMed Central

    Evans, Christopher M.; Raclawska, Dorota S.; Ttofali, Fani; Liptzin, Deborah R.; Fletcher, Ashley A.; Harper, Daniel N.; McGing, Maggie A.; McElwee, Melissa M.; Williams, Olatunji W.; Sanchez, Elizabeth; Roy, Michelle G.; Kindrachuk, Kristen N.; Wynn, Thomas A.; Eltzschig, Holger K.; Blackburn, Michael R.; Tuvim, Michael J.; Janssen, William J.; Schwartz, David A.; Dickey, Burton F.

    2015-01-01

    In asthma, airflow obstruction is thought to result primarily from inflammation-triggered airway smooth muscle (ASM) contraction. However, anti-inflammatory and smooth muscle-relaxing treatments are often temporary or ineffective. Overproduction of the mucin MUC5AC is an additional disease feature that, while strongly associated pathologically, is poorly understood functionally. Here we show that Muc5ac is a central effector of allergic inflammation that is required for airway hyperreactivity (AHR) to methacholine (MCh). In mice bred on two well-characterized strain backgrounds (C57BL/6 and BALB/c) and exposed to two separate allergic stimuli (ovalbumin and Aspergillus extract), genetic removal of Muc5ac abolishes AHR. Residual MCh responses are identical to unchallenged controls, and although inflammation remains intact, heterogeneous mucus occlusion decreases by 74%. Thus, whereas inflammatory effects on ASM alone are insufficient for AHR, Muc5ac-mediated plugging is an essential mechanism. Inhibiting MUC5AC may be effective for treating asthma and other lung diseases where it is also overproduced. PMID:25687754

  15. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females

    PubMed Central

    Bennett, William D.; Ivins, Sally; Alexis, Neil E.; Wu, Jihong; Bromberg, Philip A.; Brar, Sukhdev S.; Travlos, Gregory; London, Stephanie J.

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  16. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females.

    PubMed

    Bennett, William D; Ivins, Sally; Alexis, Neil E; Wu, Jihong; Bromberg, Philip A; Brar, Sukhdev S; Travlos, Gregory; London, Stephanie J

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  17. Effect of subchronic in vivo exposure to nitrogen dioxide on lung tissue inflammation, airway microvascular leakage, and in vitro bronchial muscle responsiveness in rats.

    PubMed Central

    Chitano, P; Rado, V; Di Stefano, A; Papi, A; Boniotti, A; Zancuoghi, G; Boschetto, P; Romano, M; Salmona, M; Ciaccia, A; Fabbri, L M; Mapp, C E

    1996-01-01

    OBJECTIVES: In a previous study on bronchoalveolar lavage fluid from rats exposed in vivo for seven days to 10 ppm nitrogen dioxide (NO2), it has been shown that there is an influx of macrophages into the airways. The present study investigated the effect of seven day exposure to 10 ppm NO2, on: (a) lung tissue inflammation and morphology; (b) airway microvascular leakage; (c) in vitro contractile response of main bronchi. METHODS: Lung tissue was studied by light microscopy, after fixing the lungs by inflation with 4% formalin at a pressure of 20 cm H2O. Microvascular leakage was measured by extravasation of Evans blue dye in the larynx, trachea, main bronchi, and intrapulmonary airways. Smooth muscle responsiveness was evaluated by concentration-responses curves to acetylcholine (10(-9)-10(-3) M), serotonin (10(-9)-10(-4) M), and voltage-response curves (12-28 V) to electrical field stimulation. RESULTS: Histology showed an increased total inflammation at the level of respiratory bronchioles and alveoli. No influx of inflammatory cells was found in the main bronchi. A loss of cilia in the epithelium of small airways and ectasia of alveolar capillaries was also found. By contrast, no alterations to microvascular permeability or modification of bronchial smooth muscle responsiveness was found. CONCLUSIONS: Subchronic exposure to 10 ppm NO2 causes airway inflammation and structural damage, but does not cause any persistent alteration to microvascular permeability or bronchial smooth muscle responsiveness in rats. Images Figure 1 PMID:8758032

  18. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma

    PubMed Central

    Catherine Jin, S.-L.; Goya, Sho; Nakae, Susumu; Wang, Dan; Bruss, Matthew; Hou, Chiaoyin; Umetsu, Dale; Conti, Marco

    2010-01-01

    Background Cyclic AMP (cAMP) signaling modulates functions of inflammatory cells involved in the pathogenesis of asthma, and type 4 cAMP-specific phosphodiesterases (PDE4s) are essential components of this pathway. Induction of the PDE4 isoform PDE4B is necessary for Toll-like receptor signaling in monocytes and macrophages and is associated with T cell receptor/CD3 in T cells; however, its exact physiological function in the development of allergic asthma remains undefined. Objectives We investigated the role of PDE4B in the development of allergen-induced airway hyperresponsiveness (AHR) and TH2-driven inflammatory responses. Methods Wild-type and PDE4B−/− mice were sensitized and challenged with ovalbumin and AHR measured in response to inhaled methacholine. Airway inflammation was characterized by analyzing leukocyte infiltration and cytokine accumulation in the airways. Ovalbumin-stimulated cell proliferation and TH2 cytokine production were determined in cultured bronchial lymph node cells. Results Mice deficient in PDE4B do not develop AHR. This protective effect was associated with a significant decrease in eosinophils recruitment to the lungs and decreased TH2 cytokine levels in the bronchoalveolar lavage fluid. Defects in T-cell replication, TH2 cytokine production, and dendritic cell migration were evident in cells from the airway-draining lymph nodes. Conversely, accumulation of the TH1 cytokine IFN-γ was not affected in PDE4B−/− mice. Ablation of the orthologous PDE4 gene PDE4A has no impact on airway inflammation. Conclusion By relieving a cAMP-negative constraint, PDE4B plays an essential role in TH2-cell activation and dendritic cell recruitment during airway inflammation. These findings provide proof of concept that PDE4 inhibitors with PDE4B selectivity may have efficacy in asthma treatment. PMID:21047676

  19. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation.

    PubMed

    Duvall, Melody G; Levy, Bruce D

    2016-08-15

    Essential fatty acids can serve as important regulators of inflammation. A new window into mechanisms for the resolution of inflammation was opened with the identification and structural elucidation of mediators derived from these fatty acids with pro-resolving capacity. Inflammation is necessary to ensure the continued health of the organism after an insult or injury; however, unrestrained inflammation can lead to injury "from within" and chronic changes that may prove both morbid and fatal. The resolution phase of inflammation, once thought to be a passive event, is now known to be a highly regulated, active, and complex program that terminates the inflammatory response once the threat has been contained. Specialized pro-resolving mediators (SPMs) are biosynthesized from omega-3 essential fatty acids to resolvins, protectins, and maresins and from omega-6 fatty acids to lipoxins. Through cell-specific actions mediated through select receptors, these SPMs are potent regulators of neutrophil infiltration, cytokine and chemokine production, and clearance of apoptotic neutrophils by macrophages, promoting a return to tissue homeostasis. This process appears to be defective in several common human lung diseases, such as asthma and COPD, which are characterized by chronic unrestrained inflammation and significant associated morbidity. Here, we highlight translational research in animal models of disease and with human subjects that sheds light on this rapidly evolving area of science and review the molecular and cellular components of the resolution of lung inflammation. PMID:26546247

  20. Preventative effect of an herbal preparation (HemoHIM) on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    PubMed

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4(+) T cells displayed increased Th1 (IFN-γ(+) cell) as well as decreased Th2 (IL-4(+) cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance. PMID:23844220

  1. Intranasal curcumin ameliorates airway inflammation and obstruction by regulating MAPKinase activation (p38, Erk and JNK) and prostaglandin D2 release in murine model of asthma.

    PubMed

    Subhashini; Chauhan, Preeti S; Dash, D; Paul, B N; Singh, Rashmi

    2016-02-01

    Asthma, a multifactorial, chronic inflammatory disease encompasses multiple complex pathways releasing number of mediators by activated mast cells, eosinophils and T lymphocytes, leading to its severity. Presently available medications are associated with certain limitations, and hence, it is imperative to search for anti-inflammatory drug preferably targeting signaling cascades involved in inflammation thereby suppressing inflammatory mediators without any side effect. Curcumin, an anti-inflammatory molecule with potent anti-asthmatic potential has been found to suppress asthmatic features by inhibiting airway inflammation and bronchoconstriction if administered through nasal route. The present study provides new insight towards anti-asthmatic potential of intranasal curcumin at lower doses (2.5 and 5.0mg/kg) in Balb/c mice sensitized and challenged with ovalbumin (OVA) which is effective in inhibiting airway inflammation. These investigations suggest that intranasal curcumin (2.5 and 5.0mg/kg) regulates airway inflammation and airway obstruction mainly by modulating cytokine levels (IL-4, 5, IFN-ƴ and TNF-α) and sPLA2 activity thereby inhibiting PGD2 release and COX-2 expression. Further, the suppression of p38 MAPK, ERK 42/44 and JNK54/56 activation elucidate the mechanism behind the inhibitory role of intranasal curcumin in asthma progression. Thus, curcumin could be better alternative for the development of nasal formulations and inhalers in near future. PMID:26761722

  2. Preventative Effect of an Herbal Preparation (HemoHIM) on Development of Airway Inflammation in Mice via Modulation of Th1/2 Cells Differentiation

    PubMed Central

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4+ T cells displayed increased Th1 (IFN-γ+ cell) as well as decreased Th2 (IL-4+ cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance. PMID:23844220

  3. γ-Secretase Inhibitor Alleviates Acute Airway Inflammation of Allergic Asthma in Mice by Downregulating Th17 Cell Differentiation

    PubMed Central

    Zhang, Weixi; Zhang, Xueya; Sheng, Anqun; Weng, Cuiye; Zhu, Tingting; Zhao, Wei; Li, Changchong

    2015-01-01

    T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. Th17 cell differentiation requires Notch signaling. γ-Secretase inhibitor (GSI) blocks Notch signaling; thus, it may be considered as a potential treatment for allergic asthma. The aim of this study was to evaluate the effect of GSI on Th17 cell differentiation in a mouse model of allergic asthma. OVA was used to induce mouse asthma model in the presence and absence of GSI. GSI ameliorated the development of OVA-induced asthma, including suppressing airway inflammation responses and reducing the severity of clinical signs. GSI also significantly suppressed Th17-cell responses in spleen and reduced IL-17 levels in serum. These findings suggest that GSI directly regulates Th17 responses through a Notch signaling-dependent pathway in mouse model of allergic asthma, supporting the notion that GSI is a potential therapeutic agent for the treatment of allergic asthma. PMID:26339131

  4. Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB

    PubMed Central

    Hartenstein, Bettina; Teurich, Sibylle; Hess, Jochen; Schenkel, Johannes; Schorpp-Kistner, Marina; Angel, Peter

    2002-01-01

    Naïve CD4+ T cells differentiate into effector T helper 1 (Th1) or Th2 cells, which are classified by their specific set of cytokines. Here we demonstrate that loss of JunB in in vitro polarized Th2 cells led to a dysregulated expression of the Th2-specific cytokines IL-4 and IL-5. These cells produce IFN-γ and express T-bet, the key regulator of Th1 cells. In line with the essential role of Th2 cells in the pathogenesis of allergic asthma, mice with JunB-deficient CD4+ T cells exhibited an impaired allergen-induced airway inflammation. This study demonstrates novel functions of JunB in the development of Th2 effector cells, for a normal Th2 cytokine expression pattern and for a complete Th2-dependent immune response in mice. PMID:12456639

  5. Changes in Expression of Genes Regulating Airway Inflammation Following a High-Fat Mixed Meal in Asthmatics.

    PubMed

    Li, Qian; Baines, Katherine J; Gibson, Peter G; Wood, Lisa G

    2016-01-01

    Consumption of a high fat meal can increase neutrophilic airway inflammation in asthma subjects. This study investigates the molecular mechanisms driving airway neutrophilia following a high fat meal in asthmatics. Subjects with asthma (n = 11) and healthy controls (n = 8) consumed a high-fat/energy meal, containing total energy (TE) of 3846 kJ and 48 g of total fat (20.5 g saturated). Sputum was induced at 0 and 4 h, and gene expression was examined by microarray and quantitative real-time PCR (qPCR). Following the high fat dietary challenge, 168 entities were significantly differentially expressed greater than >1.5 fold in subjects with asthma, whereas, in healthy controls, only 14 entities were differentially expressed. Of the 168 genes that were changed in asthma, several biological processes were overrepresented, with 25 genes involved in "immune system processes". qPCR confirmed that S100P, S100A16, MAL and MUC1 were significantly increased in the asthma group post-meal. We also observed a strong correlation and a moderate correlation between the change in NLRP12 and S100A16 gene expression at 4 h compared to baseline, and the change in total and saturated non-esterified plasma fatty acid levels at 2 h compared to baseline. In summary, our data identifies differences in inflammatory gene expression that may contribute to increased airway neutrophilia following a high fat meal in subjects with asthma and may provide useful therapeutic targets for immunomodulation. This may be particularly relevant to obese asthmatics, who are habitually consuming diets with a high fat content. PMID:26751474

  6. G-protein-coupled estrogen receptor agonist suppresses airway inflammation in a mouse model of asthma through IL-10.

    PubMed

    Itoga, Masamichi; Konno, Yasunori; Moritoki, Yuki; Saito, Yukiko; Ito, Wataru; Tamaki, Mami; Kobayashi, Yoshiki; Kayaba, Hiroyuki; Kikuchi, Yuta; Chihara, Junichi; Takeda, Masahide; Ueki, Shigeharu; Hirokawa, Makoto

    2015-01-01

    Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response. PMID:25826377

  7. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice.

    PubMed

    Chan, Cheng-Chi; Lai, Chin-Wen; Wu, Chia-Jen; Chen, Li-Chen; Tao, Mi-Hua; Kuo, Ming-Ling

    2016-08-01

    Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma. PMID:27178525

  8. Insulin modulates cytokine release and selectin expression in the early phase of allergic airway inflammation in diabetic rats

    PubMed Central

    2010-01-01

    Background Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. Methods Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. Results Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration. Conclusion Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction. PMID:20667094

  9. Changes in Expression of Genes Regulating Airway Inflammation Following a High-Fat Mixed Meal in Asthmatics

    PubMed Central

    Li, Qian; Baines, Katherine J.; Gibson, Peter G.; Wood, Lisa G.

    2016-01-01

    Consumption of a high fat meal can increase neutrophilic airway inflammation in asthma subjects. This study investigates the molecular mechanisms driving airway neutrophilia following a high fat meal in asthmatics. Subjects with asthma (n = 11) and healthy controls (n = 8) consumed a high-fat/energy meal, containing total energy (TE) of 3846 kJ and 48 g of total fat (20.5 g saturated). Sputum was induced at 0 and 4 h, and gene expression was examined by microarray and quantitative real-time PCR (qPCR). Following the high fat dietary challenge, 168 entities were significantly differentially expressed greater than >1.5 fold in subjects with asthma, whereas, in healthy controls, only 14 entities were differentially expressed. Of the 168 genes that were changed in asthma, several biological processes were overrepresented, with 25 genes involved in “immune system processes”. qPCR confirmed that S100P, S100A16, MAL and MUC1 were significantly increased in the asthma group post-meal. We also observed a strong correlation and a moderate correlation between the change in NLRP12 and S100A16 gene expression at 4 h compared to baseline, and the change in total and saturated non-esterified plasma fatty acid levels at 2 h compared to baseline. In summary, our data identifies differences in inflammatory gene expression that may contribute to increased airway neutrophilia following a high fat meal in subjects with asthma and may provide useful therapeutic targets for immunomodulation. This may be particularly relevant to obese asthmatics, who are habitually consuming diets with a high fat content. PMID:26751474

  10. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation

    PubMed Central

    Rogerio, Alexandre P; Andrade, Edinéia L; Leite, Daniela FP; Figueiredo, Cláudia P; Calixto, João B

    2009-01-01

    Background and purpose: α-Humulene and trans-caryophyllene are plant sesquiterpenes with pronounced anti-inflammatory properties. Here, we evaluated the effects of these compounds in an experimental model of airways allergic inflammation. Experimental approach: Female BALB/c mice, sensitized to and challenged with ovalbumin received daily α-humulene or trans-caryophyllene (50 mg·kg−1, orally) or α-humulene (1 mg·mL−1, by aerosol) as either a preventive (for 22 days) or therapeutic (from the 18th to the 22nd day) treatment. Dexamethasone or budesonide was used as a positive control drug. Inflammation was determined on day 22 post-immunization by leukocyte recruitment, interleukin-5 (IL-5), CCL11, interferon-γ (IFN-γ) and leukotriene (LT)B4 levels in bronchoalveolar lavage fluid (BALF). In addition, transcription factors [nuclear factor κB (NF-κB), activator protein 1 (AP-1)] and P-selectin in lung tissue were measured by immunohistochemistry and mucus secretion by histochemistry. Key results: Preventive or therapeutic treatments with α-humulene, but not with trans-caryophyllene, significantly reduced the eosinophil recruitment to the BALF. In addition, α-humulene recovery INF-γ and reduced the IL-5, CCL11 and LTB4 levels in BALF, as well as the IL-5 production in mediastinal lymph nodes (in vitro assay). Furthermore, α-humulene decreased the NF-kB and the AP-1 activation, the expression of P-selectin and the increased mucus secretion in the lung. Conclusions and implications: α-Humulene, given either orally or by aerosol, exhibited marked anti-inflammatory properties in a murine model of airways allergic inflammation, an effect that seemed to be mediated via reduction of inflammatory mediators, adhesion molecule expression and transcription factors activation. This article is part of a themed issue on Mediators and Receptors in the Resolution of Inflammation. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear

  11. Chemical compositions and properties of Schinus areira L. essential oil on airway inflammation and cardiovascular system of mice and rabbits.

    PubMed

    Bigliani, María C; Rossetti, Víctor; Grondona, Ezequiel; Lo Presti, Silvina; Paglini, Patricia M; Rivero, Virginia; Zunino, María P; Ponce, Andrés A

    2012-07-01

    The main purpose was to investigate the effects of essential plant-oil of Schinus areira L. on hemodynamic functions in rabbits, as well as myocardial contractile strength and airways inflammation associated to bacterial endotoxin lipopolysaccharide (LPS) in mice. This study shows the important properties of the essential oil (EO) of S. areira studied and these actions on lung with significant inhibition associated to LPS, all of which was assessed in mice bronchoalveolar lavage fluid and evidenced by stability of the percentage of alveolar macrophages, infiltration of polymorphonuclear leukocytes and tumor necrosis factor-α concentration, and without pathway modifications in conjugated dienes activity. Clinical status (morbidity or mortality), macroscopic morphology and lung/body weight index were unaffected by the administration of the EO S. areira. Furthermore, the ex vivo analysis of isolated hearts demonstrated the negative inotropic action of the EO of S. areira in a mice model, and in rabbits changes in the hemodynamic parameters, such as a reduction of systolic blood pressure. We conclude that EO S. areira could be responsible for modifications on the cardiovascular and/or airway parameters. PMID:22546367

  12. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice

    PubMed Central

    Kozy, Heather M.; Lum, Jeremy A.; Sweetwood, Rosemary; Chu, Mabel; Cunningham, Cameron R.; Salamon, Hugh; Lloyd, Clare M.; Coffman, Robert L.; Hessel, Edith M.

    2015-01-01

    Background CpG-containing oligodeoxynucleotides (CpG-ODN) are potent inhibitors of Th2-mediated allergic airway disease in sensitized mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. Objective To optimize the treatment regimen and determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. Methods A limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were given to ragweed allergen-sensitized mice chronically exposed to allergen during and after the 1018 ISS treatment regimen. Treatment effects were evaluated by measuring effect on lung Th2 cytokines and eosinophilia as well as lung dendritic cell function and T cell responses. Results Twelve intranasal 1018 ISS treatments induced significant suppression of BAL eosinophilia and IL-4, IL-5, and IL-13 levels and suppression was maintained through 13 weekly ragweed exposures administered after treatment cessation. At least 5 treatments were required for lasting Th2 suppression. CpG-ODN induced moderate Th1 responses but Th2 suppression did not require IFN-γ. Th2 suppression was associated with induction of a regulatory T cell response. Conclusion A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen. PMID:24464743

  13. Collection of exhaled breath condensate and analysis of hydrogen peroxide as a potential marker of lower airway inflammation in cats.

    PubMed

    Kirschvink, Nathalie; Marlin, David; Delvaux, François; Leemans, Jérôme; Clercx, Cécile; Sparkes, Andrew; Gustin, Pascal

    2005-05-01

    The objective of this study was to describe a standardised and non-invasive method for exhaled breath condensate (EBC) collection in cats and to test whether determination of hydrogen peroxide (H(2)O(2)) in EBC might be used as marker of lower airway inflammation. The technique of barometric whole body plethysmography for cats was combined with a system to condense the effluent air from the plethysmograph, allowing simultaneous EBC collection and respiratory pattern measurement. H(2)O(2) was determined spectrophotometrically. Eighteen experimental cats were used to investigate the impact on EBC volume and EBC H(2)O(2) of plethysmograph ventilation rate, collection duration, sample stability, within-day and day-to-day variability. After determination of a standardised EBC collection procedure, correlation analyses between EBC H(2)O(2) and bronchoalveolar lavage (BAL) cytology of healthy and allergen-challenged Ascaris suum (AS)-sensitised cats were performed. A significant and positive correlation between EBC H(2)O(2) and bronchoalveolar lavage (BAL) neutrophil% was found in healthy cats (P < 0.001, r = 0.55), whereas in AS-sensitised cats, correlation with BAL eosinophil% was significant (P < 0.005, r = 0.61). H(2)O(2) was increased after an allergen challenge in AS-sensitised cats (n = 6, 0.56+/-0.12 versus 1.08+/-0.35 micromol/L, P < 0.05). This study proposes a non-invasive, well tolerated and repeatable method of EBC collection for cats and suggests that EBC H(2)O(2) might be used as non-invasive biomarker for monitoring lower airway inflammation. PMID:15848781

  14. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation.

    PubMed

    Cardoso, L S; Oliveira, S C; Góes, A M; Oliveira, R R; Pacífico, L G; Marinho, F V; Fonseca, C T; Cardoso, F C; Carvalho, E M; Araujo, M I

    2010-05-01

    Schistosoma mansoni infection has been associated with protection against allergies. The mechanisms underlying this association may involve regulatory cells and cytokines. We evaluated the immune response induced by the S. mansoni antigens Sm22.6, PIII and Sm29 in a murine model of ovalbumin (OVA)-induced airway inflammation. BALB/c mice were sensitized with subcutaneously injected OVA-alum and challenged with aerolized OVA. Mice were given three doses of the different S. mansoni antigens. Lung histopathology, cellularity of bronchoalveolar lavage (BAL) and eosinophil peroxidase activity in lung were evaluated. Immunoglobulin (Ig)E levels in serum and cytokines in BAL were also measured. Additionally, we evaluated the frequency of CD4+forkhead box P3 (FoxP3)+ T cells in cultures stimulated with OVA and the expression of interleukin (IL)-10 by these cells. The number of total cells and eosinophils in BAL and the levels of OVA-specific IgE were reduced in the immunized mice. Also, the levels of IL-4 and IL-5 in the BAL of mice immunized with PIII and Sm22.6 were decreased, while the levels of IL-10 were higher in mice immunized with Sm22.6 compared to the non-immunized mice. The frequency of CD4+FoxP3+ T cells was higher in the groups of mice who received Sm22.6, Sm29 and PIII, being the expression of IL-10 by these cells only higher in mice immunized with Sm22.6. We concluded that the S. mansoni antigens used in this study are able to down-modulate allergic inflammatory mediators in a murine model of airway inflammation and that the CD4+FoxP3+ T cells, even in the absence of IL-10 expression, might play an important role in this process. PMID:20132231

  15. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation

    PubMed Central

    Cardoso, L S; Oliveira, S C; Góes, A M; Oliveira, R R; Pacífico, L G; Marinho, F V; Fonseca, C T; Cardoso, F C; Carvalho, E M; Araujo, M I

    2010-01-01

    Schistosoma mansoni infection has been associated with protection against allergies. The mechanisms underlying this association may involve regulatory cells and cytokines. We evaluated the immune response induced by the S. mansoni antigens Sm22·6, PIII and Sm29 in a murine model of ovalbumin (OVA)-induced airway inflammation. BALB/c mice were sensitized with subcutaneously injected OVA-alum and challenged with aerolized OVA. Mice were given three doses of the different S. mansoni antigens. Lung histopathology, cellularity of bronchoalveolar lavage (BAL) and eosinophil peroxidase activity in lung were evaluated. Immunoglobulin (Ig)E levels in serum and cytokines in BAL were also measured. Additionally, we evaluated the frequency of CD4+forkhead box P3 (FoxP3)+ T cells in cultures stimulated with OVA and the expression of interleukin (IL)-10 by these cells. The number of total cells and eosinophils in BAL and the levels of OVA-specific IgE were reduced in the immunized mice. Also, the levels of IL-4 and IL-5 in the BAL of mice immunized with PIII and Sm22·6 were decreased, while the levels of IL-10 were higher in mice immunized with Sm22·6 compared to the non-immunized mice. The frequency of CD4+FoxP3+ T cells was higher in the groups of mice who received Sm22·6, Sm29 and PIII, being the expression of IL-10 by these cells only higher in mice immunized with Sm22·6. We concluded that the S. mansoni antigens used in this study are able to down-modulate allergic inflammatory mediators in a murine model of airway inflammation and that the CD4+FoxP3+ T cells, even in the absence of IL-10 expression, might play an important role in this process. PMID:20132231

  16. The Role of Inflammation Resolution Speed in Airway Smooth Muscle Mass Accumulation in Asthma: Insight from a Theoretical Model

    PubMed Central

    Chernyavsky, Igor L.; Croisier, Huguette; Chapman, Lloyd A. C.; Kimpton, Laura S.; Hiorns, Jonathan E.; Brook, Bindi S.; Jensen, Oliver E.; Billington, Charlotte K.; Hall, Ian P.; Johnson, Simon R.

    2014-01-01

    Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models. PMID:24632688

  17. Early stages of Ascaris suum induce airway inflammation and hyperreactivity in a mouse model.

    PubMed

    Enobe, C S; Araújo, C A; Perini, A; Martins, M A; Macedo, M S; Macedo-Soares, M F

    2006-09-01

    The inflammatory and functional changes that occur in murine lung after infection with 2500 infective Ascaris suum eggs were studied in this work. A sequential influx of neutrophils, mononuclear cells and eosinophils occurred into airways concomitantly with migration of larvae from liver to the lungs. Histological analysis of the lung showed a severe intra-alveolar haemorrhage at the peak of larval migration (day 8) and the most intense inflammatory cell infiltrate on day 14. Ascaris L3 were found in alveolar spaces and inside bronchioles on day 8. The number of eosinophils was elevated in the blood on days 8 and 14. The peak of eosinophil influx into the lung was at day 14, as indicated by the high levels of eosinophil peroxidase activity, followed by their migration into the airways. The antibody response against egg and larval antigens consisted mainly of IgG1 and IgM, and also of IgE and anaphylactic IgG1, that cross-reacted with adult worm antigens. Total IgE levels were substantially elevated during the infection. Measurement of lung mechanical parameters showed airway hyperreactivity in infected mice. In conclusion, the murine model of A. suum infection mimics the Th2-induced parameters observed in pigs and humans and can be used to analyse the immunoregulatory properties of this helminth. PMID:16916369

  18. Adalimumab ameliorates OVA-induced airway inflammation in mice: Role of CD4(+) CD25(+) FOXP3(+) regulatory T-cells.

    PubMed

    Elsakkar, Mohamed G; Sharaki, Olla A; Abdallah, Dina M; Mostafa, Dalia K; Shekondali, Fadia T

    2016-09-01

    Asthma is a chronic inflammatory heterogeneous disorder initiated by a dysregulated immune response which drives disease development in susceptible individuals. Though T helper 2 (TH2) biased responses are usually linked to eosinophilic asthma, other Th cell subsets induce neutrophilic airway inflammation which provokes the most severe asthmatic phenotypes. A growing evidence highlights the role of T regulatory (Treg) cells in damping abnormal Th responses and thus inhibiting allergy and asthma. Therefore, strategies to induce or augment Treg cells hold promise for treatment and prevention of allergic airway inflammation. Recently, the link between Tumor necrosis factor-α (TNF-α) and Treg has been uncovered, and TNF-α antagonists are increasingly used in many autoimmune diseases. Yet, their benefits in allergic airway inflammation is not clarified. We investigated the effect of Adalimumab, a TNF-α antagonist, on Ovalbumin (OVA)-induced allergic airway inflammation in CD1 mice and explored its impact on Treg cells. Our results showed that Adalimumab treatment attenuated the OVA-induced increase in serum IgE, TH2 and TH1 derived inflammatory cytokines (IL-4 and IFN-γ, respectively) in bronchoalveolar lavage (BAL) fluid, suppressed recruitment of inflammatory cells in BAL fluid and lung, and inhibited BAL fluid neutrophilia. It also ameliorated goblet cell metaplasia and bronchial fibrosis. Splenocytes flow cytometry revealed increased percentage of CD4(+) CD25(+) FOXP3(+) Treg cells by Adalimumab that was associated with increase in their suppressive activity as shown by elevated BAL fluid IL-10. We conclude that the beneficial effects of Adalimumab in this CD1 neutrophilic model of allergic airway inflammation are attributed to augmentation of Treg cell number and activity. PMID:27262379

  19. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    SciTech Connect

    Kato, Takuma; Tada-Oikawa, Saeko; Wang, Linan; Murata, Mariko; Kuribayashi, Kagemasa

    2013-11-15

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants

  20. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders.

    PubMed

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2013-06-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3(+) regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  1. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders

    PubMed Central

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3+ regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  2. Effects of Anti-G and Anti-F Antibodies on Airway Function after Respiratory Syncytial Virus Infection

    PubMed Central

    Han, Junyan; Takeda, Katsuyuki; Wang, Meiqin; Zeng, Wanjiang; Jia, Yi; Shiraishi, Yoshiki; Okamoto, Masakazu; Dakhama, Azzeddine

    2014-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illnesses in infants worldwide. Both RSV-G and RSV-F glycoproteins play pathogenic roles during infection with RSV. The objective of this study was to compare the effects of anti–RSV-G and anti–RSV-F monoclonal antibodies (mAbs) on airway hyperresponsiveness (AHR) and inflammation after primary or secondary RSV infection in mice. In the primary infection model, mice were infected with RSV at 6 weeks of age. Anti–RSV-G or anti–RSV-F mAbs were administered 24 hours before infection or Day +2 postinfection. In a secondary infection model, mice were infected (primary) with RSV at 1 week (neonate) and reinfected (secondary) 5 weeks later. Anti–RSV-G and anti–RSV-F mAbs were administered 24 hours before the primary infection. Both mAbs had comparable effects in preventing airway responses after primary RSV infection. When given 2 days after infection, anti–RSV-G–treated mice showed significantly decreased AHR and airway inflammation, which persisted in anti–RSV-F–treated mice. In the reinfection model, anti–RSV-G but not anti–RSV-F administered during primary RSV infection in neonates resulted in decreased AHR, eosinophilia, and IL-13 but increased levels of IFN-γ in bronchoalveolar lavage on reinfection. These results support the use of anti–RSV-G in the prevention and treatment of RSV-induced disease. PMID:24521403

  3. Investigating the Effects of Particulate Matter on House Dust Mite and Ovalbumin Allergic Airway Inflammation in Mice.

    PubMed

    Castañeda, Alejandro R; Pinkerton, Kent E

    2016-01-01

    Particulate matter (PM), a component of air pollution, has been shown to enhance allergen-mediated airway hypersensitivity and inflammation. Surprisingly, exposure to PM during the sensitization to allergen is sufficient to produce immunological changes that result in heightened inflammatory effects upon future allergen exposures (challenge) in the absence of PM. This suggests that PM has the ability to modulate the allergic immune response, thereby acting as an adjuvant by enhancing the immunological memory formed during the adaptive immune response; however, the mechanisms through which this occurs remain elusive. Establishing a reproducible animal model to study the PM-mediated immunotoxicological effects that enhance allergy, may provide insights to understand how air pollution activates the immune system and thereby modulates the pathophysiology of asthma. The basic protocol can be used to study various characteristics of air pollution, such as PM size, source, or chemical composition, to help elucidate how such features may affect the allergic response in a mouse model of asthma. Using a BALB/c model of acute exposure (14 days), mice are first sensitized with allergen and PM, and then subsequently challenged with allergen only. The endpoints of this basic protocol include the assessment of inflammation via cells recovered from broncho-alveolar lavage (BAL), histopathological analysis, gene expression profiles, and protein quantification of inflammatory markers. © 2016 by John Wiley & Sons, Inc. PMID:27145110

  4. Effect of diosmetin on airway remodeling in a murine model of chronic asthma.

    PubMed

    Ge, Ai; Liu, Yanan; Zeng, Xiaoning; Kong, Hui; Ma, Yuan; Zhang, Jiaxiang; Bai, Fangfang; Huang, Mao

    2015-08-01

    Bronchial asthma, one of the most common allergic diseases, is characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. The anti-oxidant flavone aglycone diosmetin ameliorates the inflammation in pancreatitis, but little is known about its impact on asthma. In this study, the effects of diosmetin on chronic asthma were investigated with an emphasis on the modulation of airway remodeling in BALB/c mice challenged with ovalbumin (OVA). It was found that diosmetin significantly relieved inflammatory cell infiltration, goblet cell hyperplasia, and collagen deposition in the lungs of asthmatic mice and notably reduced AHR in these animals. The OVA-induced increases in total cell and eosinophil counts in bronchoalveolar lavage fluid were reversed, and the level of OVA-specific immunoglobulin E in serum was attenuated by diosmetin administration, implying an anti-Th2 activity of diosmetin. Furthermore, diosmetin remarkably suppressed the expression of smooth muscle actin alpha chain, indicating a potent anti-proliferative effect of diosmetin on airway smooth muscle cells (ASMCs). Matrix metallopeptidase-9, transforming growth factor-β1, and vascular endothelial growth factor levels were also alleviated by diosmetin, suggesting that the remission of airway remodeling might be attributed to the decline of these proteins. Taken together, our findings provided a novel profile of diosmetin with anti-remodeling therapeutic benefits, highlighting a new potential of diosmetin in remitting the ASMC proliferation in chronic asthma. PMID:26033789

  5. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice.

    PubMed

    Gavett, S H; Madison, S L; Stevens, M A; Costa, D L

    1999-12-01

    Particulate matter (PM) air pollution may increase symptom severity in allergic asthmatics. To examine possible interaction, or greater than additive responses, between PM effects and allergic responses, an ovalbumin-sensitized and challenged (OVA) mouse model of allergic airways disease was utilized. After challenge, mice were intratracheally instilled with saline vehicle or 3 mg/kg (approximately 60 microg) residual oil fly ash (ROFA), a transition metal-rich emission source PM sample. Physiological and inflammatory responses were examined 1, 3, 8, and 15 d later. In response to intravenously administered methacholine, ROFA increased total respiratory system resistance and decreased compliance 1 d after exposure, whereas effects of OVA lasted at least 15 d after exposure. Significant interactions between OVA and ROFA were mainly observed 8 d after challenge and exposure, especially with respect to compliance. A strong interaction (p < 0.01) between OVA and ROFA exposure resulted in 8-fold (1 d) and 3-fold (3 d) increases in bronchoalveolar lavage (BAL) fluid eosinophil numbers. A similarly strong interaction (8-fold) was observed in BAL fluid interleukin-4 (IL-4) 1 d after challenge and exposure. Significant though less strong interactions were also found with respect to IL-4 and IL-5 by 3 d postchallenge/exposure. This study shows that allergen challenge and exposure to emission source particulate matter containing relatively high levels of transitions metals can interact to increase Th2 cytokine production, eosinophil recruitment, and airway hyperresponsiveness in previously sensitized mice. PMID:10588603

  6. Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation.

    PubMed

    Trimble, Nancy J; Botelho, Fernando M; Bauer, Carla M T; Fattouh, Ramzi; Stämpfli, Martin R

    2009-01-01

    The impact of cigarette smoke on allergic asthma remains controversial both clinically and experimentally. The objective of this study was to investigate, in a murine model, how cigarette smoke affects immune inflammatory processes elicited by a surrogate allergen. In our experimental design, mice were concurrently exposed to cigarette smoke and ovalbumin (OVA), an innocuous antigen that, unless introduced in the context of an adjuvant, induces inhalation tolerance. We show that cigarette smoke exposure has adjuvant properties, allowing for allergic mucosal sensitization to OVA. Specifically, concurrent exposure to cigarette smoke and OVA for 2 weeks led to airway eosinophilia and goblet cell hyperplasia. In vivo OVA recall challenge 1 month after the last smoke exposure showed that concurrent exposure to OVA and cigarette smoke induced antigen-specific memory. Robust eosinophilia and OVA-specific IgG1 and IgE characterized the ensuing inflammatory response. Mechanistically, allergic sensitization was, in part, granulocyte macrophage colony-stimulating factor (GM-CSF) dependent, as a significant reduction in BAL eosinophilia was observed in mice treated with an anti-GM-CSF antibody. Of note, continuous smoke exposure attenuated the OVA recall response; decreased airway eosinophilia was observed in mice continuously exposed to cigarette smoke compared with mice that ceased the smoke exposure protocol. In conclusion, we demonstrate experimentally that while cigarette smoke acts as an adjuvant allowing for allergic sensitization, it also attenuates the ensuing eosinophilic inflammatory response. PMID:18635815

  7. Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13

    PubMed Central

    Eiymo Mwa Mpollo, Marthe-Sandrine; Brandt, Eric B.; Shanmukhappa, Shiva Kumar; Arumugam, Paritha I.; Tiwari, Swati; Loberg, Anastacia; Pillis, Devin; Rizvi, Tilat; Lindsey, Mark; Jonck, Bart; Carmeliet, Peter; Kalra, Vijay K.; Le Cras, Timothy D.; Ratner, Nancy; Wills-Karp, Marsha; Hershey, Gurjit K. Khurana; Malik, Punam

    2015-01-01

    Airway hyperresponsiveness (AHR) affects 55%–77% of children with sickle cell disease (SCD) and occurs even in the absence of asthma. While asthma increases SCD morbidity and mortality, the mechanisms underlying the high AHR prevalence in a hemoglobinopathy remain unknown. We hypothesized that placenta growth factor (PlGF), an erythroblast-secreted factor that is elevated in SCD, mediates AHR. In allergen-exposed mice, loss of Plgf dampened AHR, reduced inflammation and eosinophilia, and decreased expression of the Th2 cytokine IL-13 and the leukotriene-synthesizing enzymes 5-lipoxygenase and leukotriene-C4-synthase. Plgf–/– mice treated with leukotrienes phenocopied the WT response to allergen exposure; conversely, anti-PlGF Ab administration in WT animals blunted the AHR. Notably, Th2-mediated STAT6 activation further increased PlGF expression from lung epithelium, eosinophils, and macrophages, creating a PlGF/leukotriene/Th2-response positive feedback loop. Similarly, we found that the Th2 response in asthma patients is associated with increased expression of PlGF and its downstream genes in respiratory epithelial cells. In an SCD mouse model, we observed increased AHR and higher leukotriene levels that were abrogated by anti-PlGF Ab or the 5-lipoxygenase inhibitor zileuton. Overall, our findings indicate that PlGF exacerbates AHR and uniquely links the leukotriene and Th2 pathways in asthma. These data also suggest that zileuton and anti-PlGF Ab could be promising therapies to reduce pulmonary morbidity in SCD. PMID:26690703

  8. Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13.

    PubMed

    Eiymo Mwa Mpollo, Marthe-Sandrine; Brandt, Eric B; Shanmukhappa, Shiva Kumar; Arumugam, Paritha I; Tiwari, Swati; Loberg, Anastacia; Pillis, Devin; Rizvi, Tilat; Lindsey, Mark; Jonck, Bart; Carmeliet, Peter; Kalra, Vijay K; Le Cras, Timothy D; Ratner, Nancy; Wills-Karp, Marsha; Hershey, Gurjit K Khurana; Malik, Punam

    2016-02-01

    Airway hyperresponsiveness (AHR) affects 55%-77% of children with sickle cell disease (SCD) and occurs even in the absence of asthma. While asthma increases SCD morbidity and mortality, the mechanisms underlying the high AHR prevalence in a hemoglobinopathy remain unknown. We hypothesized that placenta growth factor (PlGF), an erythroblast-secreted factor that is elevated in SCD, mediates AHR. In allergen-exposed mice, loss of Plgf dampened AHR, reduced inflammation and eosinophilia, and decreased expression of the Th2 cytokine IL-13 and the leukotriene-synthesizing enzymes 5-lipoxygenase and leukotriene-C4-synthase. Plgf-/- mice treated with leukotrienes phenocopied the WT response to allergen exposure; conversely, anti-PlGF Ab administration in WT animals blunted the AHR. Notably, Th2-mediated STAT6 activation further increased PlGF expression from lung epithelium, eosinophils, and macrophages, creating a PlGF/leukotriene/Th2-response positive feedback loop. Similarly, we found that the Th2 response in asthma patients is associated with increased expression of PlGF and its downstream genes in respiratory epithelial cells. In an SCD mouse model, we observed increased AHR and higher leukotriene levels that were abrogated by anti-PlGF Ab or the 5-lipoxygenase inhibitor zileuton. Overall, our findings indicate that PlGF exacerbates AHR and uniquely links the leukotriene and Th2 pathways in asthma. These data also suggest that zileuton and anti-PlGF Ab could be promising therapies to reduce pulmonary morbidity in SCD. PMID:26690703

  9. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity.

    PubMed

    Ibba, Salome' V; Ghonim, Mohamed A; Pyakurel, Kusma; Lammi, Matthew R; Mishra, Anil; Boulares, A Hamid

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma. PMID:27524861

  10. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity

    PubMed Central

    Ghonim, Mohamed A.; Pyakurel, Kusma; Mishra, Anil

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma. PMID:27524861

  11. Naringin Protects Ovalbumin-Induced Airway Inflammation in a Mouse Model of Asthma.

    PubMed

    Guihua, Xiong; Shuyin, Liu; Jinliang, Gao; Wang, Shumin

    2016-04-01

    Many plant species containing flavonoids have been widely used in traditional Chinese medicine. Naringin, a well-known flavanone glycoside of citrus fruits, possesses antioxidant, anti-inflammatory, anti-apoptotic, anti-ulcer, anti-osteoporosis, and anti-carcinogenic properties. The aim of the study was to investigate the anti-asthmatic effects of naringin and the possible mechanisms. Asthma model was established by ovalbumin. A total of 50 mice were randomly assigned to five experimental groups: control, model, and dexamethasone (2 mg/kg, orally) and naringin (5 mg/kg, 10 mg/kg, orally). Airway resistance (Raw) were measured, histological studies were evaluated by the hematoxylin and eosin (HE) staining, OVA-specific serum and BALF IgE levels and Th1/Th2 cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA), and Th1/Th2 cells was evaluated by flow cytometry (FCM). T-bet and GABA3 in the lung were evaluated by Western blot. Our study demonstrated that naringin inhibited OVA-induced increases in Raw and eosinophil count; OVA-induced effects on interleukin (IL)-4 and INF-gamma levels were blunted with naringin administration. Histological studies demonstrated that naringin substantially inhibited OVA-induced eosinophilia in lung tissue and airway tissue. Flow cytometry studies demonstrated that naringin substantially inhibited Th2 cells and enhanced Th1 cells. Naringin substantially inhibited GABA3 and increased T-bet. These findings suggest that naringin may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma. PMID:26920847

  12. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  13. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome.

    PubMed

    Eyring, Kenneth R; Pedersen, Brent S; Yang, Ivana V; Schwartz, David A

    2015-01-01

    Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM) model of allergic airway disease, we measured airway hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to cigarette smoke (CS) or filtered air (FA). DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease. PMID:26642056

  14. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome

    PubMed Central

    Eyring, Kenneth R.; Pedersen, Brent S.; Yang, Ivana V.; Schwartz, David A.

    2015-01-01

    Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM) model of allergic airway disease, we measured airway hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to cigarette smoke (CS) or filtered air (FA). DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease. PMID:26642056

  15. Role of Neprilysin in Airway Inflammation Induced by Diesel Exhaust Emissions

    PubMed Central

    Wong, Simon S.; Sun, Nina N.; Fastje, Cynthia D.; Witten, Mark L.; Lantz, R. Clark; Lu, Bao; Sherrill, Duane L.; Gerard, Craig J.; Burgess, Jefferey L.

    2016-01-01

    In this study, we examined the role of neprilysin (NEP*), a key membrane-bound endopeptidase, in the inflammatory response induced by diesel exhaust emissions (DEE) in the airways through a number of approaches: in vitro, animal, and controlled human exposure. Our specific aims were (1) to examine the role of NEP in inflammatory injury induced by diesel exhaust particles (DEP) using Nep-intact (wild-type) and Nep-null mice; (2) to examine which components of DEP are associated with NEP downregulation in vitro; (3) to determine the molecular impact of DEP exposure and decreased NEP expression on airway epithelial cells’ gene expression in vitro, using a combination of RNA interference (RNAi) and microarray approaches; and (4) to evaluate the effects on NEP activity of human exposure to DEE. We report four main results: First, we found that exposure of normal mice to DEP consisting of standard reference material (SRM) 2975 via intratracheal installation can downregulate NEP expression in a concentration-dependent manner. The changes were accompanied by increases in the number of macrophages and epithelial cells, as well as proinflammatory cytokines, examined in bronchoalveolar lavage (BAL) fluid and cells. Nep-null mice displayed increased and/or additional inflammatory responses when compared with wild-type mice, especially in response to exposure to the higher dose of DEP that we used. These in vivo findings suggest that loss of NEP in mice could cause increased susceptibility to injury or exacerbate inflammatory responses after DEP exposure via release of specific cytokines from the lungs. Second, we found evidence, using in vitro studies, that downregulation of NEP by DEP in cultured human epithelial BEAS-2B cells was mostly attributable to DEP-adsorbed organic compounds, whereas the carbonaceous core and transition metal components of DEP had little or no effect on NEP messenger RNA (mRNA) expression. This NEP downregulation was not a specific response to DEP

  16. Ozone-induced inflammation in the lower airways of human subjects

    SciTech Connect

    Koren, H.S.; Devlin, R.B.; Graham, D.E.; Mann, R.; McGee, M.P.; Horstman, D.H.; Kozumbo, W.J.; Becker, S.; House, D.E.; McDonnell, W.F.

    1989-02-01

    Although ozone (O3) has been shown to induce inflammation in the lungs of animals, very little is known about its inflammatory effects on humans. In this study, 11 healthy nonsmoking men, 18 to 35 yr of age (mean, 25.4 +/- 3.5), were exposed once to 0.4 ppm O3 and once to filtered air for 2 h with intermittent exercise. Eighteen hours later, bronchoalveolar lavage (BAL) was performed and the cells and fluid were analyzed for various indicators of inflammation. There was an 8.2-fold increase in the percentage of polymorphonuclear leukocytes (PMN) in the total cell population, and a small but significant decrease in the percentage of macrophages after exposure to O3. Immunoreactive neutrophil elastase often associated with inflammation and lung damage increased by 3.8-fold in the fluid while its activity increased 20.6-fold in the lavaged cells. A 2-fold increase in the levels of protein, albumin, and IgG suggested increased vascular permeability of the lung. Several biochemical markers that could act as chemotactic or regulatory factors in an inflammatory response were examined in the BAL fluid (BALF). The level of complement fragment C3 alpha was increased by 1.7-fold. The chemotactic leukotriene B4 was unchanged while prostaglandin E2 increased 2-fold. In contrast, three enzyme systems of phagocytes with potentially damaging effects on tissues and microbes, namely, NADPH-oxidase and the lysosomal enzymes acid phosphatase and beta-glucuronidase, were increased neither in the lavaged fluid nor cells. In addition, the amounts of fibrogenic-related molecules were assessed in BALF.

  17. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice.

    PubMed

    André, Diana Majolli; Calixto, Marina Ciarallo; Sollon, Carolina; Alexandre, Eduardo Costa; Leiria, Luiz O; Tobar, Natalia; Anhê, Gabriel Forato; Antunes, Edson

    2016-09-01

    Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property. PMID:27344038

  18. Brd4 Is Essential for IL-1β-Induced Inflammation in Human Airway Epithelial Cells

    PubMed Central

    Khan, Younis M.; Kirkham, Paul; Barnes, Peter J.; Adcock, Ian M.

    2014-01-01

    Background Chronic inflammation and oxidative stress are key features of chronic obstructive pulmonary disease (COPD). Oxidative stress enhances COPD inflammation under the control of the pro-inflammatory redox-sensitive transcription factor nuclear factor-kappaB (NF-κB). Histone acetylation plays a critical role in chronic inflammation and bromodomain and extra terminal (BET) proteins act as “readers” of acetylated histones. Therefore, we examined the role of BET proteins in particular Brd2 and Brd4 and their inhibitors (JQ1 and PFI-1) in oxidative stress- enhanced inflammation in human bronchial epithelial cells. Methods Human primary epithelial (NHBE) cells and BEAS-2B cell lines were stimulated with IL-1β (inflammatory stimulus) in the presence or absence of H2O2 (oxidative stress) and the effect of pre-treatment with bromodomain inhibitors (JQ1 and PFI-1) was investigated. Pro-inflammatory mediators (CXCL8 and IL-6) were measured by ELISA and transcripts by RT-PCR. H3 and H4 acetylation and recruitment of p65 and Brd4 to the native IL-8 and IL-6 promoters was investigated using chromatin immunoprecipitation (ChIP). The impact of Brd2 and Brd4 siRNA knockdown on inflammatory mediators was also investigated. Result H2O2 enhanced IL1β-induced IL-6 and CXCL8 expression in NHBE and BEAS-2B cells whereas H2O2 alone did not have any affect. H3 acetylation at the IL-6 and IL-8 promoters was associated with recruitment of p65 and Brd4 proteins. Although p65 acetylation was increased this was not directly targeted by Brd4. The BET inhibitors JQ1 and PFI-1 significantly reduced IL-6 and CXCL8 expression whereas no effect was seen with the inactive enantiomer JQ1(-). Brd4, but not Brd2, knockdown markedly reduced IL-6 and CXCL8 release. JQ1 also inhibited p65 and Brd4 recruitment to the IL-6 and IL-8 promoters. Conclusion Oxidative stress enhanced IL1β-induced IL-6 and CXCL8 expression was significantly reduced by Brd4 inhibition. Brd4 plays an important role in

  19. Chenodeoxycholic acid attenuates ovalbumin-induced airway inflammation in murine model of asthma by inhibiting the T(H)2 cytokines.

    PubMed

    Shaik, Firdose Begum; Panati, Kalpana; Narasimha, Vydyanath R; Narala, Venkata Ramireddy

    2015-08-01

    Asthma is a complex highly prevalent airway disease that is a major public health problem for which current treatment options are inadequate. Recently, farnesoid X receptor (FXR) has been shown to exert anti-inflammatory actions in various disease conditions, but there have been no reported investigations of Chenodeoxycholic acid (CDCA), a natural FXR agonist, in allergic airway inflammation. To test the CDCA effectiveness in airway inflammation, ovalbumin (OVA)-induced acute murine asthma model was established. We found that lung tissue express FXR and CDCA administration reduced the severity of the murine allergic airway disease as assessed by pathological and molecular markers associated with the disease. CDCA treatment resulted in fewer infiltrations of cells into the airspace and peribronchial areas, and decreased goblet cell hyperplasia, mucus secretion and serum IgE levels which was increased in mice with OVA-induced allergic asthma. The CDCA treatment further blocked the secretion of TH2 cytokines (IL-4, IL-5 and IL-13) and proinflammatory cytokine TNF-α indicate that the FXR and its agonists may have potential for treating allergic asthma. PMID:26067554

  20. Effect of nutritional antioxidant supplementation on systemic and pulmonary antioxidant status, airway inflammation and lung function in heaves-affected horses.

    PubMed

    Kirschvink, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Smith, N; Marlin, D; Roberts, C; Harris, P; Lekeux, P

    2002-11-01

    An oxidant/antioxidant imbalance in favour of oxidants has been identified as playing a decisive role in the pathogenesis of chronic inflammatory airway diseases. Nutritional antioxidant supplementation might reduce oxidative damage by enhancement of the antioxidant defence, thereby modulating inflammatory processes. In a placebo-controlled, blind study, it was tested whether a dietary antioxidant supplement administered for 4 weeks would improve lung function and reduce airway inflammation in heaves-affected horses. Eight horses in clinical remission of heaves were investigated at rest and after a standardised exercise test before and after treatment with an antioxidant supplement (consisting of a mixture of natural antioxidants including vitamins E and C and selenium from a variety of sources) or placebo (oatfeed pellets without additive). Pulmonary function and exercise tolerance were monitored; systemic and pulmonary lining fluid uric acid, glutathione and 8-epi-PGF(2alpha) were analysed, and bronchoalveolar lavage (BAL) cytology and inflammatory scoring of the airways were performed. The antioxidant treatment significantly improved exercise tolerance and significantly reduced endoscopic inflammatory score. Plasma uric acid concentrations were significantly reduced, suggesting downregulation of the xanthine-dehydrogenase and xanthine-oxydase pathway. Haemolysate glutathione showed a nonsignificant trend to increase, while plasma 8-epi-PGF(2alpha) remained unchanged. Pulmonary markers and BAL cytology were not significantly affected by antioxidant supplementation. The present study suggests that the antioxidant supplement tested modulated oxidant/antioxidant balance and airway inflammation of heaves-affected horses. PMID:12455842

  1. Evaluation of Airway Inflammation in Compost Workers Exposed to Bioaerosols Using Exhaled Breath Condensate and Fractional Exhaled Nitric Oxide.

    PubMed

    Hoffmeyer, F; van Kampen, V; Deckert, A; Neumann, H-D; Buxtrup, M; Willer, E; Felten, C; Brüning, T; Raulf, M; Bünger, J

    2015-01-01

    Occupational bioaerosol exposures are capable to cause respiratory diseases. We studied the relationship between exposure to bioaerosols and biomarkers' concentration in exhaled breath condensate (EBC) and fractional exhaled nitric oxide (FeNO) in 119 bioaerosol-exposed compost workers taking into account atopy and smoking habits. Atopy was classified according to specific IgE concentrations to common inhalant allergens (sx1). Bioaerosol exposure was estimated according to job title, duration of employment, results of ambient monitoring at the workplaces, and shift time worked under protection of filtered air supply. Concentrations of 8-iso-prostaglandin F2α (8-iso-PGF2α), prostaglandin E2 (PGE2), leukotriene B4 (LTB4), and acid-base balance (pH) in EBC and FeNO were assessed in 59 never-smoking (NS) and 60 smoking (S) compost workers. We found that atopic subjects were equally distributed among NS and S (n=16 each). Levels of 8-iso-PGF2α were significantly higher in workers considered highly exposed to bioaerosols than in low exposed workers (86.6 (66.1; 128.8) pg/mL vs. 74.4 (56.3; 96.7) pg/mL, p=0.047). No associations could be observed between exposures and biomarkers concerning compost workers in total, but there were some in atopic workers (duration of employment and FeNO: r=0.376, p=0.041; filtered air supply and FeNO: r=-0.335, p=0.071). Smokers had significantly lower pH values compared to NS (non-atopic, p=0.041; atopic p=0.050). In conclusion, EBC and FeNO might be useful tools for monitoring of inflammation due to bioaerosol exposures, especially in atopic subjects. Besides smoking also atopy should be considered when investigating airway inflammation. PMID:25786401

  2. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress

    PubMed Central

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-01-01

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma. PMID:27256110

  3. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress.

    PubMed

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-01-01

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma. PMID:27256110

  4. Dermatophagoides pteronyssinus group 2 allergen bound to 8-OH modified adenine reduces the Th2-mediated airway inflammation without inducing a Th17 response and autoimmunity.

    PubMed

    Pratesi, Sara; Nencini, Francesca; Filì, Lucia; Occhiato, Ernesto G; Romagnani, Sergio; Parronchi, Paola; Maggi, Enrico; Vultaggio, Alessandra

    2016-09-01

    8-OH modified adenine bound to Dermatophagoides pteronyssinus group 2 (nDer p2-Conj), a novel allergen-TLR7 agonist conjugate, improves murine airway inflammation in priming and therapeutic settings, however no data are known on the activity of this construct on Th17 cells. The aim of the study was to evaluate if nDer p2-Conj elicited in vivo Th17 cells and Th17-driven autoimmune responses, by using both short- and long-term priming and therapeutic protocols in a nDer p2-driven model of murine airway inflammation. The conjugate induced the in vitro production of cytokines favouring the Th17 polarization by bone marrow-derived dendritic cells. In short-term protocols, the priming or treatment with the conjugate ameliorated the airway inflammation by shifting Th2 allergen-specific cells into T cells producing IFN-γ, IL-10, but not IL-17A. Similar results were found in long-term protocol where the conjugate down-regulated airway inflammation without any evidence of autoimmune response and B cell compartment expansion. nDer p2-Conj also failed to shorten the spontaneous onset of diabetes on conjugates-primed NOD/LtJ mice. We found that neutrophils in BALF, ROR-γt and IL-17A expression in lungs were increased in conjugate-treated IL-10KO mice. These data emphasize the role of conjugate-driven IL-10 production, which can regulate the activity of memory Th17 cells and prevent the onset of autoimmune response. PMID:27475304

  5. Therapeutic effects of R8, a semi-synthetic analogue of Vasicine, on murine model of allergic airway inflammation via STAT6 inhibition.

    PubMed

    Rayees, Sheikh; Mabalirajan, Ulaganathan; Bhat, Wajid Waheed; Rasool, Shafaq; Rather, Rafiq Ahmad; Panda, Lipsa; Satti, Naresh Kumar; Lattoo, Surrinder Kumar; Ghosh, Balaram; Singh, Gurdarshan

    2015-05-01

    This is a follow-up study of our previous work in which we screened a series of Vasicine analogues for their anti-inflammatory activity in a preventive OVA induced murine model of asthma. The study demonstrated that R8, one of the analogues, significantly suppressed the Th2 cytokine production and eosinophil recruitment to the airways. In the present study, we have been using two standard experimental murine models of asthma, where the mice were treated with R8 either during (preventive use) or after (therapeutic use) the development of asthma features. In the preventive model, R8 reduced inflammatory cell infiltration to the airways, OVA specific IgE and Th2 cytokine production. Also, the R8 treatment in the therapeutic model decreased methacholine induced AHR, Th2 cytokine release, serum IgE levels, infiltration of inflammatory cells into the airways, phosphorylation of STAT6 and expression of GATA3. Moreover, R8 not only reduced goblet cell metaplasia in asthmatic mice but also reduced IL-4 induced Muc5AC gene expression in human alveolar basal epithelial cells. Further, R8 attenuated IL-4 induced differentiation of murine splenocytes into Th2 cells in vitro. So, we may deduce that R8 treatment profoundly reduced asthma features by attenuating the differentiation of T cells into Th2 cells by interfering with the binding of IL-4 to its receptor in turn decreasing the phosphorylation of STAT6 and expression of GATA3 in murine model of asthma. These preclinical findings suggest a possible therapeutic role of R8 in allergic asthma. PMID:25863236

  6. Inhibitory effect of n-butanol fraction of Moringa oleifera Lam. seeds on ovalbumin-induced airway inflammation in a guinea pig model of asthma.

    PubMed

    Mahajan, Shailaja G; Banerjee, Aryamitra; Chauhan, Bhupendrasinh F; Padh, Harish; Nivsarkar, Manish; Mehta, Anita A

    2009-01-01

    Moringaceae, which belongs to the Moringa oleifera Lam. family, is a well-known herb used in Asian medicine as an antiallergic drug. In the present study, the efficacy of the n-butanol extract of the seeds of the plant (MONB) is examined against ovalbumin-induced airway inflammation in guinea pigs. The test drugs (MONB or dexamethasone) are administered orally prior to challenge with aerosolized 0.5% ovalbumin. During the experimental period, bronchoconstriction tests are performed, and lung function parameters are measured. The blood and bronchoalveolar lavage fluid are collected to assess cellular content, and serum is used for cytokine (tumor necrosis factor-alpha, interleukin-4, and interleukin-6) assays. Histamine assays of lung tissue are performed using lung tissue homogenate. The results suggest that in ovalbumin-sensitized model control animals, tidal volume is decreased, respiration rate is increased, and both the total and differential cell counts in blood and bronchoalveolar lavage fluid are increased significantly compared with nonsensitized controls. MONB treatment shows improvement in all parameters except bronchoalveolar lavage tumor necrosis factor-alpha and interleukin-4. Moreover, MONB treatment demonstrates protection against acetylcholine-induced bronchoconstriction and airway inflammation. These results indicate that MONB has an inhibitory effect on airway inflammation. Thus, MONB possesses an antiasthmatic property through modulation of the relationship between Th1/Th2 cytokine imbalances. PMID:19966143

  7. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways

    PubMed Central

    Gu, Wen; Song, Lin; Li, Xiao-Ming; Wang, Di; Guo, Xue-Jun; Xu, Wei-Guo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been identified as one possible strategy for the treatment of chronic obstructive pulmonary disease (COPD). Our previous studies have demonstrated that MSC administration has therapeutic potential in airway inflammation and emphysema via a paracrine mechanism. We proposed that MSCs reverse the inflammatory process and restore impaired lung function through their interaction with macrophages. In our study, the rats were exposed to cigarette smoke (CS), followed by the administration of MSCs into the lungs for 5 weeks. Here we show that MSC administration alleviated airway inflammation and emphysema through the down-regulation of cyclooxygenase-2 (COX-2) and COX-2-mediated prostaglandin E2 (PGE2) production, possibly through the effect on alveolar macrophages. In vitro co-culture experiments provided evidence that MSCs down-regulated COX-2/PGE2 in macrophages through inhibition of the activation-associated phosphorylation of p38 MAPK and ERK. Our data suggest that MSCs may relieve airway inflammation and emphysema in CS-exposed rat models, through the inhibition of COX-2/PGE2 in alveolar macrophages, mediated in part by the p38 MAPK and ERK pathways. This study provides a compelling mechanism for MSC treatment in COPD, in addition to its paracrine mechanism. PMID:25736434

  8. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10.

    PubMed

    Engler, Daniela B; Reuter, Sebastian; van Wijck, Yolanda; Urban, Sabine; Kyburz, Andreas; Maxeiner, Joachim; Martin, Helen; Yogev, Nir; Waisman, Ari; Gerhard, Markus; Cover, Timothy L; Taube, Christian; Müller, Anne

    2014-08-12

    The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103(+)CD11b(-) dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma. PMID:25074917

  9. Broncho-Vaxom Attenuates Allergic Airway Inflammation by Restoring GSK3β-Related T Regulatory Cell Insufficiency

    PubMed Central

    Zhong, Hua; Yu, Dehong; Zeng, Xianping; Deng, Mengxia; Sun, Yueqi; Wen, Weiping; Li, Huabin

    2014-01-01

    Background Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Method Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. Results We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Conclusion Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells. PMID:24667347

  10. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10

    PubMed Central

    Engler, Daniela B.; Reuter, Sebastian; van Wijck, Yolanda; Urban, Sabine; Kyburz, Andreas; Maxeiner, Joachim; Martin, Helen; Yogev, Nir; Waisman, Ari; Gerhard, Markus; Cover, Timothy L.; Taube, Christian; Müller, Anne

    2014-01-01

    The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103+CD11b− dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma. PMID:25074917

  11. The IL-33 receptor (ST2) regulates early IL-13 production in fungus-induced allergic airway inflammation.

    PubMed

    Piehler, D; Eschke, M; Schulze, B; Protschka, M; Müller, U; Grahnert, A; Richter, T; Heyen, L; Köhler, G; Brombacher, F; Alber, G

    2016-07-01

    Allergic airway inflammation (AAI) in response to environmental antigens is an increasing medical problem, especially in the Western world. Type 2 interleukins (IL) are central in the pathological response but their importance and cellular source(s) often rely on the particular allergen. Here, we highlight the cellular sources and regulation of the prototypic type 2 cytokine, IL-13, during the establishment of AAI in a fungal infection model using Cryptococcus neoformans. IL-13 reporter mice revealed a rapid onset of IL-13 competence within innate lymphoid cells type 2 (ILC2) and IL-33R(+) T helper (Th) cells. ILC2 showed IL-33-dependent proliferation upon infection and significant IL-13 production. Th cells essentially required IL-33 to become either GATA3(+) or GATA3(+)/Foxp3(+) hybrids. GATA3(+) Th cells almost exclusively contributed to IL-13 production but hybrid GATA3(+)/Foxp3(+) Th cells did not. In addition, alveolar macrophages upregulated the IL-33R and subsequently acquired a phenotype of alternative activation (Ym1(+), FIZZ1(+), and arginase-1(+)) linked to type 2 immunity. Absence of adaptive immunity in rag2(-/-) mice resulted in attenuated AAI, revealing the need for Th2 cells for full AAI development. Taken together, in pulmonary cryptococcosis ILC2 and GATA3(+) Th2 cells produce early IL-13 largely IL-33R-dependent, thereby promoting goblet cell metaplasia, pulmonary eosinophilia, and alternative activation of alveolar macrophages. PMID:26555705

  12. Effect of chronic airway inflammation and exercise on pulmonary and systemic antioxidant status of healthy and heaves-affected horses.

    PubMed

    Kirschvink, N; Smith, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Marlin, D; Roberts, C; Génicot, B; Lindsey, P; Lekeux, P

    2002-09-01

    In heaves-affected horses the relation between oxidant status, airway inflammation (AI) and pulmonary function (PF) is unknown. The oxidant status of blood and pulmonary epithelial lining fluid (PELF) of healthy (H, n = 6) and heaves-affected horses in clinical remission (REM, n = 6) and in crisis (CR, n = 7) was assessed at rest, during and after standardised exercise test by measurement of reduced and oxidised glutathione, glutathione redox ratio [GRR%]; uric acid and 8-epi-PGF2alpha. Oxidant status was related to PF parameters (mechanics of breathing and arterial blood gas tension) and Al parameters (bronchoalveolar lavage [BAL] neutrophil % and AI score). Haemolysate glutathione was significantly different between groups and was correlated with PF and AI parameters; GRR in PELF was increased during CR and was correlated with PF and AI parameters. Exercise induced an increase of plasma uric acid that was significantly higher both in REM and CR. PELF 8-epi-PGF2alpha was significantly increased in CR and correlated with PF and AI parameters. These results suggest that oxidative stress occurring in heaves is correlated with PF and AI and may be locally assessed by PELF glutathione status, uric acid and 8-epi-PGF2alpha. Systemic repercussions are reflected by assay of GSH in resting horses and by uric acid in exercising horses. PMID:12357995

  13. T cell derived IL-10 is dispensable for tolerance induction in a murine model of allergic airway inflammation.

    PubMed

    Kunz, Stefanie; Dolch, Anja; Surianarayanan, Sangeetha; Dorn, Britta; Bewersdorff, Mayte; Alessandrini, Francesca; Behrendt, Rayk; Karp, Christopher L; Muller, Werner; Martin, Stefan F; Roers, Axel; Jakob, Thilo

    2016-08-01

    Regulatory mechanisms initiated by allergen-specific immunotherapy are mainly attributed to T cell derived IL-10. However, it has not been shown that T cell derived IL-10 is required for successful tolerance induction (TI). Here, we analyze cellular sources and the functional relevance of cell type specific IL-10 during TI in a murine model of allergic airway inflammation. While TI was effective in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely abrogated the beneficial effects. Cellular sources of IL-10 during TI were identified by using transcriptional reporter mice as T cells, B cells, and to a lesser extent DCs. Interestingly, TI was still effective in mice with T cell, B cell, B and T cell, or DC-specific IL-10 deficiency. In contrast, TI was not possible in mice lacking IL-10 in all hematopoetic cells, while it was effective in bone marrow (BM) chimera that lacked IL-10 only in nonhematopoetic cells. Taken together, allergen-specific tolerance depends on IL-10 from hematopoetic sources. The beneficial effects of allergen-specific immunotherapy cannot solely be attributed to IL-10 from T cells, B cells, or even DCs, suggesting a high degree of cellular redundancy in IL-10-mediated tolerance. PMID:27287239

  14. Proton-Sensing Ovarian Cancer G Protein-Coupled Receptor 1 on Dendritic Cells Is Required for Airway Responses in a Murine Asthma Model

    PubMed Central

    Hisada, Takeshi; Nakakura, Takashi; Kamide, Yosuke; Ichimonji, Isao; Tomura, Hideaki; Tobo, Masayuki; Sato, Koichi; Tsurumaki, Hiroaki; Dobashi, Kunio; Mori, Tetsuya; Harada, Akihiro; Yamada, Masanobu; Mori, Masatomo; Ishizuka, Tamotsu; Okajima, Fumikazu

    2013-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) stimulation by extracellular protons causes the activation of G proteins and subsequent cellular functions. However, the physiological and pathophysiological roles of OGR1 in airway responses remain largely unknown. In the present study, we show that OGR1-deficient mice are resistant to the cardinal features of asthma, including airway eosinophilia, airway hyperresponsiveness (AHR), and goblet cell metaplasia, in association with a remarkable inhibition of Th2 cytokine and IgE production, in an ovalbumin (OVA)-induced asthma model. Intratracheal transfer to wild-type mice of OVA-primed bone marrow-derived dendritic cells (DCs) from OGR1-deficient mice developed lower AHR and eosinophilia after OVA inhalation compared with the transfer of those from wild-type mice. Migration of OVA-pulsed DCs to peribronchial lymph nodes was also inhibited by OGR1 deficiency in the adoption experiments. The presence of functional OGR1 in DCs was confirmed by the expression of OGR1 mRNA and the OGR1-sensitive Ca2+ response. OVA-induced expression of CCR7, a mature DC chemokine receptor, and migration response to CCR7 ligands in an in vitro Transwell assay were attenuated by OGR1 deficiency. We conclude that OGR1 on DCs is critical for migration to draining lymph nodes, which, in turn, stimulates Th2 phenotype change and subsequent induction of airway inflammation and AHR. PMID:24244587

  15. Absence of c-Jun NH2-terminal kinase 1 protects against house dust mite-induced pulmonary remodeling but not airway hyperresponsiveness and inflammation

    PubMed Central

    van der Velden, Jos L. J.; Hoffman, Sidra M.; Alcorn, John F.; Tully, Jane E.; Chapman, David G.; Lahue, Karolyn G.; Guala, Amy S.; Lundblad, Lennart K. A.; Aliyeva, Minara; Daphtary, Nirav; Irvin, Charles G.

    2014-01-01

    Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-β1 (TGF-β1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-β1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1−/− mice by intranasal administration of HDM extract. WT and JNK1−/− mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1−/− mice. In addition, the profibrotic cytokine TGF-β1 and phosphorylation of Smad3 were equally increased in WT and JNK1−/− mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1−/− mice compared with WT controls. Furthermore HDM-induced increases of α-smooth muscle actin (α-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1−/− mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1−/− mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in α-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling. PMID:24610935

  16. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    PubMed Central

    2010-01-01

    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed. PMID:20092634

  17. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation

    PubMed Central

    Kim, Jiwook; Kim, Bokyoum; Kim, Joowon; Shin, Yusom; Kim, Judeok; Ryu, Siejeong; Yang, Yu-Mi

    2016-01-01

    Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca2+ signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases. PMID:27034593

  18. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells.

    PubMed

    Massoud, Amir Hossein; Charbonnier, Louis-Marie; Lopez, David; Pellegrini, Matteo; Phipatanakul, Wanda; Chatila, Talal A

    2016-09-01

    Mechanisms by which regulatory T (Treg) cells fail to control inflammation in asthma remain poorly understood. We show that a severe asthma-associated polymorphism in the gene encoding the interleukin (IL)-4 receptor alpha chain (Il4ra(R576)) promotes conversion of induced Treg (iTreg) cells toward a T helper 17 (TH17) cell fate. This skewing is mediated by the recruitment by IL-4Rα(R576) of the growth-factor-receptor-bound protein 2 (GRB2) adaptor protein, which drives IL-17 expression by activating a pathway that involves extracellular-signal-regulated kinase, IL-6 and the transcription factor STAT3. Treg cell-specific deletion of genes that regulate TH17 cell differentiation, including Il6ra and RAR-related orphan receptor gamma (Rorc), but not of Il4 or Il13, prevented exacerbated airway inflammation in mice expressing Il4ra(R576) (hereafter referred to as Il4ra(R576) mice). Furthermore, treatment of Il4ra(R576) mice with a neutralizing IL-6-specific antibody prevented iTreg cell reprogramming into TH17-like cells and protected against severe airway inflammation. These findings identify a previously unknown mechanism for the development of mixed TH2-TH17 cell inflammation in genetically prone individuals and point to interventions that stabilize iTreg cells as potentially effective therapeutic strategies. PMID:27479084

  19. Wogonin, a plant flavone from Scutellariae radix, attenuated ovalbumin-induced airway inflammation in mouse model of asthma via the suppression of IL-4/STAT6 signaling.

    PubMed

    Ryu, Eun Kyung; Kim, Tae-Hyun; Jang, Eun Jeong; Choi, Yoon Suk; Kim, Seon Tae; Hahm, Ki Baik; Lee, Ho-Jae

    2015-09-01

    Bronchial asthma is a chronic inflammatory disease of the airways characterized by a marked infiltration of eosinophils at the site of inflammation. Eotaxins are potent chemoattractants for eosinophils and play important roles in pathogenesis of asthma. In the course of screening for eotaxin-3 inhibitors, we found that wogonin showed potent inhibitory activity of interleukin-4 (IL-4)-induced eotaxin-3 expression in BEAS-2B cells. In this study, we examined the effects of wogonin on IL-4/STAT6 signaling pathway and biological implication in a mouse model of asthma. Wogonin inhibited IL-4-induced activation and nuclear translocation of STAT6 which plays a key role in either the transcription of STAT6-response genes or Th2 cytokine-mediated inflammation. Oral administration of wogonin significantly reduced activation of STAT6 in the lung and the expression of eotaxin and RANTES in bronchoalveolar lavage fluids. Histological examination of lung tissue demonstrated that wogonin significantly inhibited allergen-induced eosinophilic inflammation. Administration of wogonin reduced the total IgE and ovalbumin-specific IgE levels compared with the ovalbumin-challenged group. All of these data demonstrated that wogonin could alleviate airway inflammation through inhibition of STAT6 activation induced by Th2 cytokines. Our finding implicates a potential therapeutic value of wogonin in the treatment of asthma through regulation of IL-4/STAT6 signaling pathway. PMID:26388667

  20. A Multi-Scale Approach to Airway Hyperresponsiveness: From Molecule to Organ

    PubMed Central

    Lauzon, Anne-Marie; Bates, Jason H. T.; Donovan, Graham; Tawhai, Merryn; Sneyd, James; Sanderson, Michael J.

    2012-01-01

    Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive reduction in airway caliber, is a complex mechanism reflecting multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other, the spatially distributed constriction of the branching airways leads to breathing difficulties. Similarly, asthma therapies act at the molecular scale while clinical outcomes are determined by lung function. These extremes are linked by events operating over intermediate scales of length and time. Thus, AHR is an emergent phenomenon that limits our understanding of asthma and confounds the interpretation of studies that address physiological mechanisms over a limited range of scales. A solution is a modular computational model that integrates experimental and mathematical data from multiple scales. This includes, at the molecular scale, kinetics, and force production of actin-myosin contractile proteins during cross-bridge and latch-state cycling; at the cellular scale, Ca2+ signaling mechanisms that regulate ASM force production; at the tissue scale, forces acting between contracting ASM and opposing viscoelastic tissue that determine airway narrowing; at the organ scale, the topographic distribution of ASM contraction dynamics that determine mechanical impedance of the lung. At each scale, models are constructed with iterations between theory and experimentation to identify the parameters that link adjacent scales. This modular model establishes algorithms for modeling over a wide range of scales and provides a framework for the inclusion of other responses such as inflammation or therapeutic regimes. The goal is to develop this lung model so that it can make predictions about bronchoconstriction and identify the pathophysiologic mechanisms having the greatest impact on AHR and its therapy. PMID:22701430

  1. Role of the Inflammasome-Caspase1/11-IL-1/18 Axis in Cigarette Smoke Driven Airway Inflammation: An Insight into the Pathogenesis of COPD

    PubMed Central

    Eltom, Suffwan; Belvisi, Maria G.; Stevenson, Christopher S.; Maher, Sarah A.; Dubuis, Eric; Fitzgerald, Kate A.; Birrell, Mark A.

    2014-01-01

    Background Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory airway disease often associated with cigarette smoke (CS) exposure. The disease is increasing in global prevalence and there is no effective therapy. A major step forward would be to understand the disease pathogenesis. The ATP-P2X7 pathway plays a dominant role in murine models of CS induced airway inflammation, and markers of activation of this axis are upregulated in patients with COPD. This strongly suggests that the axis could be important in the pathogenesis of COPD. The aim of this study was to perform a detailed characterisation of the signalling pathway components involved in the CS-driven, P2X7 dependent airway inflammation. Methods We used a murine model system, bioassays and a range of genetically modified mice to better understand this complex signalling pathway. Results The inflammasome-associated proteins NALP3 and ASC, but not IPAF and AIM2, are required for CS-induced IL-1β/IL-18 release, but not IL-1α. This was associated with a partial decrease in lung tissue caspase 1 activity and BALF neutrophilia. Mice missing caspase 1/11 or caspase 11 had markedly attenuated levels of all three cytokines and neutrophilia. Finally the mechanism by which these inflammatory proteins are involved in the CS-induced neutrophilia appeared to be via the induction of proteins involved in neutrophil transmigration e.g. E-Selectin. Conclusion This data indicates a key role for the P2X7-NALP3/ASC-caspase1/11-IL-1β/IL-18 axis in CS induced airway inflammation, highlighting this pathway as a possible therapeutic target for the treatment of COPD. PMID:25405768

  2. Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema.

    PubMed

    Kirschvink, Nathalie; Martin, Nathalie; Fievez, Laurence; Smith, Nicola; Marlin, David; Gustin, Pascal

    2006-03-01

    The aim of this study was to test the hypothesis that pulmonary inflammation and emphysema induced by cadmium (Cd) inhalation are associated with pulmonary oxidative stress. Two groups of Sprague Dawley rats were used: one vehicle-exposed group undergoing inhalation of NaCl (0.9%, n = 24) and one Cd-exposed group undergoing inhalation of CdCl(2) (0.1%, n = 24). The animals in the vehicle-and Cd-exposed groups were divided into 4 subgroups (n = 6 per group), which underwent either a single exposure (D2) of 1H or repeated exposures 3 times/week for 1H for a period of 3 weeks (3W), 5 weeks (5W) or 5 weeks followed by 2 weeks without exposure (5W + 2). At sacrifice, the left lung was fixed for histomorphometric analysis (median inter-wall distance, MIWD), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. Cytological analysis of BALF was performed and BALF was analysed for oxidant markers 8-iso-PGF(2a), uric acid (UA), reduced (AA) and oxidised ascorbic acid (DHA) and reduced (GSH) and oxidised glutathione (GSSG). Cd-exposure induced a significant increase of BALF macrophages and neutrophils. 8-iso-PGF(2a), UA, GSH and GSSG were significantly increased at D2. At 5W and 5W + 2, AA and GSH were significantly lower in Cd-exposed rats, indicating antioxidant depletion. MIWD significantly increased in all repeatedly Cd-exposed groups, suggesting development of pulmonary emphysema. 8-iso-PGF(2a) and UA were positively correlated with macrophage and neutrophil counts. GSH, GSSG and 8-iso-PGF(2a) were negatively correlated with MIWD, indicating that Cd-induced emphysema could be associated with pulmonary oxidative stress. PMID:16484040

  3. Efficacy of Add-on Montelukast in Nonasthmatic Eosinophilic Bronchitis: The Additive Effect on Airway Inflammation, Cough and Life Quality

    PubMed Central

    Bao, Wuping; Liu, Ping; Qiu, Zhongmin; Yu, Li; Hang, Jingqing; Gao, Xiaohua; Zhou, Xin

    2015-01-01

    Background: The efficacy of montelukast (MONT), a cysteinyl leukotriene receptor antagonist, in nonasthmatic eosinophilic bronchitis (NAEB), especially its influence on cough associated life quality is still indefinite. We evaluated the efficacy of MONT combined with budesonide (BUD) as compared to BUD monotherapy in improving life quality, suppressing airway eosinophilia and cough remission in NAEB. Methods: A prospective, open-labeled, multicenter, randomized controlled trial was conducted. Patients with NAEB (aged 18-75 years) were randomized to inhaled BUD (200 μg, bid) or BUD plus oral MONT (10 μg, qn) for 4 weeks. Leicester cough questionnaire (LCQ) life quality scores, cough visual analog scale (CVAS) scores, eosinophil differential ratio (Eos), and eosinophil cationic protein (ECP) in induced sputum were monitored and compared. Results: The control and MONT groups contained 33 and 32 patients, respectively, with similar baseline characteristics. Significant with-in group improvement in CVAS, LCQ scores, Eos, and ECP was observed in both groups during treatment. After 2-week treatment, add-on treatment of MONT was significantly more effective than BUD monotherapy for CVAS decrease and LCQ scores improvement (both P < 0.05). Similar results were seen at 4-week assessment (both P < 0.05). 4-week add-on therapy of MONT also resulted in a higher percentage of patients with normal sputum Eos (<2.5%) and greater decrease of ECP (both P < 0.05). Conclusions: MONT combined with BUD was demonstrated cooperative effects in improvement of life quality, suppression of eosinophilic inflammation, and cough remission in patients with NAEB. PMID:25563311

  4. Chinese herbal medicine formula Gu-Ben-Fang-Xiao-Tang attenuates airway inflammation by modulating Th17/Treg balance in an ovalbumin-induced murine asthma model

    PubMed Central

    Ruan, Guiying; Tao, Baohong; Wang, Dongguo; Li, Yong; Wu, Jingyi; Yin, Genquan

    2016-01-01

    Gu-Ben-Fang-Xiao-Tang (GBFXT) is a traditional Chinese medicine formula consisting of 11 medicinal plants, which has been used in the treatment of asthma. The present study aimed to determine the protective effects and the underlying mechanisms of GBFXT on ovalbumin (OVA)-induced allergic inflammation in a mouse model of allergic asthma. A total of 50 mice were randomly assigned to the following five experimental groups: Normal, model, montelukast (2.6 mg/kg), 12 g/kg GBFXT and 36 g/kg GBFXT groups. Airway responsiveness was measured using the forced oscillation technique, while differential cell count in the bronchoalveolar lavage fluid (BALF) was measured by Wright-Giemsa staining. Histological assessment was performed by hematoxylin and eosin staining, while BALF levels of Th17/Treg cytokines were measured by enzyme-linked immunosorbent assay, and the proportions of Th17 and Treg cells were evaluated by flow cytometry. The results showed that GBFXT suppressed airway hyperresponsiveness during methacholine-induced constriction, reduced the percentage of leukocytes and eosinophils, and resulted in decreased absolute neutrophil infiltration in lung tissue. In addition, GBFXT treatment significantly decreased the IL-17A cytokine level and increased the IL-10 cytokine level in the BALF. Furthermore, GBFXT significantly suppressed Th17 cells and increased Treg cells in asthmatic mice. In conclusion, the current results demonstrated that GBFXT may effectively inhibit the progression of airway inflammation in allergic asthma, partially by modulating the Th17/Treg cell balance.

  5. Effects of the flavanone combination hesperetin-naringenin, and orange and grapefruit juices, on airway inflammation and remodeling in a murine asthma model.

    PubMed

    Seyedrezazadeh, Ensiyeh; Kolahian, Saeed; Shahbazfar, Amir-Ali; Ansarin, Khalil; Pour Moghaddam, Masoud; Sakhinia, Masoud; Sakhinia, Ebrahim; Vafa, Mohammadreza

    2015-04-01

    We investigated whether flavanones, hesperetin-naringenin, orange, and grapefruit juices reduce airway inflammation and remodeling in murine chronic asthma model. To establish chronic asthma, mice received house dust mite (HDM) for 3 days in 2 weeks, followed by twice per week for 4 weeks. Concurrently, during the last 4 weeks, mice received hesperetin plus naringenin (HN), orange plus grapefruit juice (OGJ), orange juice (OJ), or grapefruit juice (GJ); whereas the asthmatic control (AC) group and non-asthmatic control (NC) group consumed water ad libitum. In histopathological examination, no goblet cells metaplasia was observed in the HN, OJ, and GJ groups; also, intra-alveolar macrophages decreased compared with those of the AC group. Hesperetin plus naringenin significantly decreased subepithelial fibrosis, smooth muscle hypertrophy in airways, and lung atelectasis compared with the AC group. Also, there was a reduction of subepithelial fibrosis in airways in OJ and GJ groups compared with AC group, but it was not noticed in OGJ group. In bronchoalveolar lavage fluid, macrophages numbers decreased in OJ and OGJ groups, whereas eosinophil numbers were increased in OJ group compared with NC group. Our finding revealed that hesperetin plus naringenin ameliorate airway structural remodeling more than orange juice and grapefruit juice in murine model of HDM-induced asthma. PMID:25640915

  6. Inhibition of antigen-induced airway inflammation and hyperresponsiveness in guinea pigs by a selective antagonist of "chemoattractant receptor homologous molecule expressed on Th2 cells" (CRTH2).

    PubMed

    Tasaki, Mamoru; Kobayashi, Miki; Tenda, Yoshiyuki; Tsujimoto, Susumu; Nakazato, Shoko; Numazaki, Mako; Hirano, Yasuno; Matsuda, Hiroshi; Terasaka, Tadashi; Miyao, Yasuhiro; Shimizu, Yasuaki; Hirayama, Yoshitaka

    2013-06-14

    Chemoattractant receptor homologous molecule expressed on T helper type 2 cells (CRTH2) is a PGD2 receptor found on eosinophils, basophils, and Th2 type T cells which exhibits chemotaxis and functions in activation cascades. However, while a number of CRTH2 antagonists, including ramatroban, are known to exert activity in certain animal models, activity in a guinea pig model of EA-induced airway hyperresponsiveness has not been demonstrated. The newly developed CRTH2 antagonist ASP5642 has shown antagonistic activity against human and guinea pig CRTH2 in previous studies and has also been found effective in treating guinea pig models of airway inflammation and airway hyperresponsiveness. While previous studies have used animals such as rats and mice to evaluate CRTH2 antagonist effects, ours is the first attempt to evaluate CRTH2 function in a guinea pig asthma model, which may prove useful in evaluating the compound's effects in humans, given the comparable airway function between the two species taken together, these data from the present study strongly suggest the utility of ASP5642 in investigating the role of CRTH2 in inflammatory responses and as a drug treatment for human asthma. PMID:23624353

  7. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of airway allergic inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The epithelium lining the airway tract and allergen-specific IgE are considered essential controllers of inflammatory responses to allergens. The human IgE receptor, CD23 (Fc'RII), is capable of transporting IgE or IgE-allergen complexes across the polarized human airway epithelial cell (AEC) monola...

  8. Moracin M inhibits airway inflammation by interrupting the JNK/c-Jun and NF-κB pathways in vitro and in vivo.

    PubMed

    Lee, Ju Hee; Ko, Hae Ju; Woo, Eun-Rhan; Lee, Sang Kook; Moon, Bong Soo; Lee, Chan Woo; Mandava, Suresh; Samala, Mallesham; Lee, Jongkook; Kim, Hyun Pyo

    2016-07-15

    The therapeutic effectiveness of moracins as 2-arylbenzofuran derivatives against airway inflammation was examined. Moracin M, O, and R were isolated from the root barks of Morus alba, and they inhibited interleukin (IL)-6 production from IL-1β-treated lung epithelial cells (A549) at 101-00μM. Among them, moracin M showed the strongest inhibitory effect (IC50=8.1μM). Downregulation of IL-6 expression by moracin M was mediated by interrupting the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Moracin derivatives inhibited inducible nitric oxide synthase (iNOS)-catalyzed NO production from lipopolysaccharide (LPS)-treated alveolar macrophages (MH-S) at 50-100μM. In particular, moracin M inhibited NO production by downregulating iNOS. When orally administered, moracin M (20-60mg/kg) showed comparable inhibitory action with dexamethasone (30mg/kg) against LPS-induced lung inflammation, acute lung injury, in mice with that of dexamethasone (30mg/kg). The action mechanism included interfering with the activation of nuclear transcription factor-κB in inflamed lungs. Therefore, it is concluded that moracin M inhibited airway inflammation in vitro and in vivo, and it has therapeutic potential for treating lung inflammatory disorders. PMID:27138708

  9. Heme oxygenase-1 inhibits basophil maturation and activation but promotes its apoptosis in T helper type 2-mediated allergic airway inflammation.

    PubMed

    Zhong, Wenwei; Di, Caixia; Lv, Jiajia; Zhang, Yanjie; Lin, Xiaoliang; Yuan, Yufan; Lv, Jie; Xia, Zhenwei

    2016-03-01

    The anti-inflammatory role of heme oxygenase-1 (HO-1) has been studied extensively in many disease models including asthma. Many cell types are anti-inflammatory targets of HO-1, such as dendritic cells and regulatory T cells. In contrast to previous reports that HO-1 had limited effects on basophils, which participate in T helper type 2 immune responses and antigen-induced allergic airway inflammation, we demonstrated in this study, for the first time, that the up-regulation of HO-1 significantly suppressed the maturation of mouse basophils, decreased the expression of CD40, CD80, MHC-II and activation marker CD200R on basophils, blocked DQ-ovalbumin uptake and promoted basophil apoptosis both in vitro and in vivo, leading to the inhibition of T helper type 2 polarization. These effects of HO-1 were mimicked by exogenous carbon monoxide, which is one of the catalytic products of HO-1. Furthermore, adoptive transfer of HO-1-modified basophils reduced ovalbumin-induced allergic airway inflammation. The above effects of HO-1 can be reversed by the HO-1 inhibitor Sn-protoporphyrin IX. Moreover, conditional depletion of basophils accompanying hemin treatment further attenuated airway inflammation compared with the hemin group, indicating that the protective role of HO-1 may involve multiple immune cells. Collectively, our findings demonstrated that HO-1 exerted its anti-inflammatory function through suppression of basophil maturation and activation, but promotion of basophil apoptosis, providing a possible novel therapeutic target in allergic asthma. PMID:26879758

  10. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma.

    PubMed

    Mehra, Divya; Sternberg, David I; Jia, Yuxia; Canfield, Stephen; Lemaitre, Vincent; Nkyimbeng, Takwi; Wilder, Julie; Sonett, Joshua; D'Armiento, Jeanine

    2010-02-01

    Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tissue macrophage to determine the direct effect of human MMP-9 expression on airway inflammation. Transgenic (TG) and wild-type (WT) mice were immunized and challenged with ovalbumin. Forty-eight hours after the ovalbumin challenge, airway hyperresponsiveness (AHR) was measured, and inflammatory cell infiltration was evaluated in bronchoalveolar lavage fluid (BALF) and lung tissue. Baseline levels of inflammation were similar in the TG and WT groups of mice, and pulmonary eosinophilia was established in both groups by sensitization and challenge with ovalbumin. There was a significant reduction in AHR in sensitized and challenged trangenics compared with WT controls. Although total BALF cell counts were similar in both groups, the lymphocyte number in the lavage of the TG group was significantly diminished compared with the WT group (0.25 +/- 0.08 vs. 0.89 +/- 0.53; P = 0.0032). In addition, the draining lymphocytes were found to be larger in the TG animals compared with the WT mice. Equal numbers of macrophages, eosinophils, and neutrophils were seen in both groups. IL-13 levels were found to be lower in the sensitized TG compared with the WT mice. These results demonstrate an inverse relationship between human MMP-9 and AHR and suggest that MMP-9 expression alters leukocyte extravasation by reducing lymphocyte accumulation in the walls of asthmatic airways. PMID:19940022

  11. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma

    PubMed Central

    Mehra, Divya; Sternberg, David I.; Jia, Yuxia; Canfield, Stephen; Lemaitre, Vincent; Nkyimbeng, Takwi; Wilder, Julie; Sonett, Joshua

    2010-01-01

    Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tiss