Sample records for ahr antagonist ch-223191

  1. The AhR is involved in the regulation of LoVo cell proliferation through cell cycle-associated proteins.

    PubMed

    Yin, Jiuheng; Sheng, Baifa; Han, Bin; Pu, Aimin; Yang, Kunqiu; Li, Ping; Wang, Qimeng; Xiao, Weidong; Yang, Hua

    2016-05-01

    Some ingredients in foods can activate the aryl hydrocarbon receptor (AhR) and arrest cell proliferation. In this study, we hypothesized that 6-formylindolo [3, 2-b] carbazole (FICZ) arrests the cell cycle in LoVo cells (a colon cancer line) through the AhR. The AhR agonist FICZ and the AhR antagonist CH223191 were used to treat LoVo cells. Real-time PCR and Western blot analyses were performed to detect the expression of the AhR, CYP1A1, CDK4, cyclinD1, cyclin E, CDK2, P27, and pRb. The distribution and activation of the AhR were detected with immunofluorescence. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometric analysis were performed to measure cell viability, cell cycle stage, and apoptosis. Our results show that FICZ inhibited LoVo cell proliferation by inducing G1 cell cycle arrest but had no effect on epithelial apoptosis. Further analysis found that FICZ downregulated cyclinD1 and upregulated p27 expression to arrest Rb phosphorylation. The downregulation of cyclinD1 and upregulation of p27 were abolished by co-treatment with CH223191. We conclude that the AhR, when activated by FICZ (an endogenous AhR ligand), can arrest the cell cycle and block LoVo cell proliferation. © 2016 International Federation for Cell Biology.

  2. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  3. Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos.

    PubMed

    Zhang, Hang; Yao, Yugang; Chen, Yang; Yue, Cong; Chen, Jiahong; Tong, Jian; Jiang, Yan; Chen, Tao

    2016-04-29

    Recent studies have shown an association between congenital heart defects and air fine particle matter (PM2.5), but the molecular mechanisms remain elusive. It is well known that a number of organic compounds in PM2.5 can act as AhR agonists, and activation of AhR can antagonize Wnt/β-catenin signaling. Therefore, we hypothesized that PM2.5 could activate AhR and then repress the expression of wnt/β-catenin targeted genes essential for cardiogenesis, resulting in heart defects. To test this hypothesis, we investigated the effects of extractable organic matter (EOM) from PM2.5 on AhR and Wnt/β-catenin signal pathways in zebrafish embryos. We confirmed that EOM could cause malformations in the heart and decreased heart rate in zebrafish embryos at 72hpf, and found that the EOM-induced heart defects were rescued in embryos co-exposed with EOM plus AhR antagonist CH223191 or β-catenin agonist CHIR99021. We further found that EOM had increased the expression levels of AhR targeted genes (Cyp1a1, Cyp1b1 and Ahrra) and reduced the mRNA levels of β-catenin targeted genes (axin2, nkx2.5 and sox9b). The mRNA expression level of Rspo2, a β-catenin upstream gene, was also decreased in embryos exposed to EOM. Supplementation with CH223191 or CHIR99021 attenuated most of the EOM-induced expression changes of genes involved in both AhR and wnt/β-catenin signal pathways. However, the mRNA expression level of AhR inhibitor Ahrrb, which did not change by EOM treatment alone, was increased in embryos co-exposed to EOM plus CH223191 or CHIR99021. We conclude that the activation of AhR by EOM from PM2.5 might repress wnt/β-catenin signaling, leading to heart defects in zebrafish embryos. Furthermore, our results indicate that the cardiac developmental toxicity of PM2.5 might be prevented by targeting AhR or wnt/β-catenin signaling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Cigarette smoke-induced cell death of a spermatocyte cell line can be prevented by inactivating the Aryl hydrocarbon receptor

    PubMed Central

    Esakky, P; Hansen, D A; Drury, A M; Cusumano, A; Moley, K H

    2015-01-01

    Cigarette smoke exposure causes germ cell death during spermatogenesis. Our earlier studies demonstrated that cigarette smoke condensate (CSC) causes spermatocyte cell death in vivo and growth arrest of the mouse spermatocyte cell line (GC-2spd(ts)) in vitro via the aryl hydrocarbon receptor (AHR). We hypothesize here that inactivation of AHR could prevent the CSC-induced cell death in spermatocytes. We demonstrate that CSC exposure generates oxidative stress, which differentially regulates mitochondrial apoptosis in GC-2spd(ts) and wild type (WT) and AHR knockout (AHR-KO) mouse embryonic fibroblasts (MEFs). SiRNA-mediated silencing of Ahr augments the extent of CSC-mediated cellular damage while complementing the AHR-knockout condition. Pharmacological inhibition using the AHR-antagonist (CH223191) modulates the CSC-altered expression of apoptotic proteins and significantly abrogates DNA fragmentation though the cleavage of PARP appears AHR independent. Pretreatment with CH223191 at concentrations above 50 μM significantly prevents the CSC-induced activation of caspase-3/7 and externalization of phosphatidylserine in the plasma membrane. However, MAPK inhibitors alone or together with CH223191 could not prevent the membrane damage upon CSC addition and the caspase-3/7 activation and membrane damage in AHR-deficient MEF indicates the interplay of multiple cell signaling and cytoprotective ability of AHR. Thus the data obtained on one hand signifies the protective role of AHR in maintaining normal cellular homeostasis and the other, could be a potential prophylactic therapeutic target to promote cell survival and growth under cigarette smoke exposed environment by receptor antagonism via CH223191-like mechanism. Antagonist-mediated inactivation of the aryl hydrocarbon receptor blocks downstream events leading to cigarette smoke-induced cell death of a spermatocyte cell line. PMID:27551479

  5. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

    PubMed

    Moyer, Benjamin J; Rojas, Itzel Y; Kerley-Hamilton, Joanna S; Hazlett, Haley F; Nemani, Krishnamurthy V; Trask, Heidi W; West, Rachel J; Lupien, Leslie E; Collins, Alan J; Ringelberg, Carol S; Gimi, Barjor; Kinlaw, William B; Tomlinson, Craig R

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity

  6. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Benjamin J.

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHRmore » antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding

  7. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD+/SIRT1/SUV39H1/H3K9me3 signaling pathway.

    PubMed

    Lv, Qi; Wang, Kai; Qiao, Simiao; Yang, Ling; Xin, Yirong; Dai, Yue; Wei, Zhifeng

    2018-02-15

    Norisoboldine (NOR), a natural aryl hydrocarbon receptor (AhR) agonist, has been demonstrated to attenuate ulcerative colitis (UC) and induce the generation of Treg cells. Under UC condition, hypoxia widely exists in colonic mucosa, and secondary changes of microRNAs (miRs) expressions and glycolysis contribute to Treg differentiation. At present, we worked for exploring the deep mechanisms for NOR-promoted Treg differentiation in hypoxia and its subsequent anti-UC action from the angle of AhR/miR or AhR/glycolysis axis. Results showed that NOR promoted Treg differentiation in hypoxia and the effect was stronger relative to normoxia. It activated AhR in CD4 + T cells under hypoxic microenvironment; CH223191 (a specific AhR antagonist) and siAhR-3 abolished NOR-promoted Treg differentiation. Furthermore, the progress of glycolysis, levels of Glut1 and HK2, and expression of miR-31 rather than miR-219 and miR-490 in CD4 + T cells were downregulated by NOR treatment under hypoxic microenvironment. However, HK2 plasmid but not miR-31 mimic significantly interfered NOR-enhanced Treg polarization. In addition, NOR reduced NAD + and SIRT1 levels, facilitated the ubiquitin-proteasomal degradation of SUV39H1 protein, and inhibited the enrichment of H3K9me3 at -1, 201 to -1,500 region of Foxp3 promoter in CD4 + T cells under hypoxic microenvironment, which was weakened by HK2 plasmid, CH223191, and siAhR-3. Finally, the correlation between NOR-mediated activation of AhR, repression of glycolysis, regulation of NAD + /SIRT1/SUV39H1/H3K9me3 signals, induction of Treg cells, and remission of colitis was confirmed in mice with DSS-induced colitis by using CH223191 and HK2 plasmid. In conclusion, NOR promoted Treg differentiation and then alleviated the development of colitis by regulating AhR/glycolysis axis and subsequent NAD + /SIRT1/SUV39H1/H3K9me3 signaling pathway.

  9. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line . Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Aryl hydrocarbon receptor (AHR) regulation of L-Type Amino Acid Transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 breast cancer cells.

    PubMed

    Tomblin, Justin K; Arthur, Subha; Primerano, Donald A; Chaudhry, Ateeq R; Fan, Jun; Denvir, James; Salisbury, Travis B

    2016-04-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is regulated by environmental toxicants that function as AHR agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). L-Type Amino Acid Transporter 1 (LAT1) is a leucine transporter that is overexpressed in cancer. The regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 breast cancer cells (BCCs) was investigated in this report. Ingenuity pathway analysis (IPA) revealed a significant association between TCDD-regulated genes (TRGs) and molecular transport. Overlapping the TCDD-RNA-Seq dataset obtained in this study with a published TCDD-ChIP-seq dataset identified LAT1 as a primary target of AHR-dependent TCDD induction. Short interfering RNA (siRNA)-directed knockdown of AHR confirmed that TCDD-stimulated increases in LAT1 mRNA and protein required AHR expression. TCDD-stimulated increases in LAT1 mRNA were also inhibited by the AHR antagonist CH-223191. Upregulation of LAT1 by TCDD coincided with increases in leucine uptake by MCF-7 cells in response to TCDD. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays revealed increases in AHR, AHR nuclear translocator (ARNT) and p300 binding and histone H3 acetylation at an AHR binding site in the LAT1 gene in response to TCDD. In MCF-7 and MDA-MB-231 cells, endogenous levels of LAT1 mRNA and protein were reduced in response to knockdown of AHR expression. Knockdown experiments demonstrated that proliferation of MCF-7 and MDA-MB-231 cells is dependent on both LAT1 and AHR. Collectively, these findings confirm the dependence of cancer cells on leucine uptake and establish a mechanism for extrinsic and intrinsic regulation of LAT1 by AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The AhR and NF-κB/Rel Proteins Mediate the Inhibitory Effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3′ Immunoglobulin Heavy Chain Regulatory Region

    PubMed Central

    Salisbury, Richard L.; Sulentic, Courtney E. W.

    2015-01-01

    Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3′Igh regulatory region (3′IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3′IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3′IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3′IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3′IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3′IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3′IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels. PMID:26377645

  12. Novel roles for AhR and ARNT in the regulation of alcohol dehydrogenases in human hepatic cells.

    PubMed

    Attignon, Eléonore A; Leblanc, Alix F; Le-Grand, Béatrice; Duval, Caroline; Aggerbeck, Martine; Rouach, Hélène; Blanc, Etienne B

    2017-01-01

    The mechanisms by which pollutants participate in the development of diverse pathologies are not completely understood. The pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the AhR (aryl hydrocarbon receptor) signaling pathway. We previously showed that TCDD (25 nM, 30 h) decreased the expression of several alcohol metabolism enzymes (cytochrome P450 2E1, alcohol dehydrogenases ADH1, 4 and 6) in differentiated human hepatic cells (HepaRG). Here, we show that, as rapidly as 8 h after treatment (25 nM TCDD) ADH expression decreased 40 % (p < 0.05). ADH1 and 4 protein levels decreased 40 and 27 %, respectively (p < 0.05), after 72 h (25 nM TCDD). The protein half-lives were not modified by TCDD which suggests transcriptional regulation of expression. The AhR antagonist CH-223191 or AhR siRNA reduced the inhibitory effect of 25 nM TCDD on ADH1A, 4 and 6 expression 50-100 % (p < 0.05). The genomic pathway (via the AhR/ARNT complex) and not the non-genomic pathway involving c-SRC mediated these effects. Other AhR ligands (3-methylcholanthrene and PCB 126) decreased ADH1B, 4 and 6 mRNAs by more than 78 and 55 %, respectively (p < 0.01). TCDD also regulated the expression of ADH4 in the HepG2 human hepatic cell line, in primary human hepatocytes and in C57BL/6J mouse liver. In conclusion, activation of the AhR/ARNT signaling pathway by AhR ligands represents a novel mechanism for regulating the expression of ADHs. These effects may be implicated in the toxicity of AhR ligands as well as in the alteration of ethanol or retinol metabolism and may be associated further with higher risk of liver diseases or/and alcohol abuse disorders.

  13. SLC6A19 is a novel putative gene, induced by dioxins via AhR in human hepatoma HepG2 cells.

    PubMed

    Tian, Wenjing; Fu, Hualing; Xu, Tuan; Xu, Sherry Li; Guo, Zhiling; Tian, Jijing; Tao, Wuqun; Xie, Heidi Qunhui; Zhao, Bin

    2018-06-01

    The aryl hydrocarbon receptor (AhR) plays an important role in mediating dioxins toxicity. Currently, genes of P450 families are major research interests in studies on AhR-mediated gene alterations caused by dioxins. Genes related to other metabolic pathways or processes may be also responsive to dioxin exposures. Amino acid transporter B0AT1 (encoded by SLC6A19) plays a decisive role in neutral amino acid transport which is present in kidney, intestine and liver. However, effects of dioxins on its expression are still unknown. In the present study, we focused on the effects of dioxin and dioxin-like compounds on SLC6A19 expression in HepG2 cells. We identified SLC6A19 as a novel putative target gene of AhR activation in HepG2 cells. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) increased the expression of SLC6A19 in time- and concentration-dependent manners. Using AhR antagonist CH223191 and/or siRNA assays, we demonstrated that certain AhR agonists upregulated SLC6A19 expression via AhR, including TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (1,2,3,7,8-PeCDD), 2,3,4,7,8- pentachlorodibenzofuran (2,3,4,7,8-PeCDF) and PCB126. In addition, the expression of B0AT1 was also significantly induced by TCDD in HepG2 cells. Our study suggested that dioxins might affect the transcription and translation of SLC6A19 in HepG2 cells, which might be a novel putative gene to assess dioxins' toxicity in amino acid transport and metabolism in liver. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.

    PubMed

    Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M; Vondráček, Jan; Machala, Miroslav

    2018-08-01

    Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADPmore » (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.« less

  16. Essential oils of culinary herbs and spices display agonist and antagonist activities at human aryl hydrocarbon receptor AhR.

    PubMed

    Bartoňková, Iveta; Dvořák, Zdeněk

    2018-01-01

    Essential oils (EOs) of culinary herbs and spices are used to flavor, color and preserve foods and drinks. Dietary intake of EOs is significant, deserving an attention of toxicologists. We examined the effects of 31 EOs of culinary herbs and spices on the transcriptional activity of human aryl hydrocarbon receptor (AhR), which is a pivotal xenobiotic sensor, having also multiple roles in human physiology. Tested EOs were sorted out into AhR-inactive ones (14 EOs) and AhR-active ones, including full agonists (cumin, jasmine, vanilla, bay leaf), partial agonists (cloves, dill, thyme, nutmeg, oregano) and antagonists (tarragon, caraway, turmeric, lovage, fennel, spearmint, star anise, anise). Major constituents (>10%) of AhR-active EOs were studied in more detail. We identified AhR partial agonists (carvacrol, ligustilide, eugenol, eugenyl acetate, thymol, ar-turmerone) and antagonists (trans-anethole, butylidine phtalide, R/S-carvones, p-cymene), which account for AhR-mediated activities of EOs of fennel, anise, star anise, caraway, spearmint, tarragon, cloves, dill, turmeric, lovage, thyme and oregano. We also show that AhR-mediated effects of some individual constituents of EOs differ from those manifested in mixtures. In conclusion, EOs of culinary herbs and spices are agonists and antagonists of human AhR, implying a potential for food-drug interactions and interference with endocrine pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  18. The Aryl Hydrocarbon Receptor (AhR) as a Drug Target for Cancer Chemotherapy.

    PubMed

    Safe, Stephen; Cheng, Yating; Jin, Un-Ho

    2017-02-01

    The aryl hydrocarbon receptor (AhR) is overexpressed in some patients with different tumor types, and the receptor can be a negative or positive prognostic factor. There is also evidence from both in vivo and in vitro cell culture models that the AhR can exhibit tumor-specific pro-oncogenic and tumor suppressor-like functions and therefore can be treated with AhR antagonists or agonists, respectively. Successful clinical applications of AhR ligands will require the synthesis and development of selective AhR modulators (SAhRMs) with tumor-specific AhR agonist or antagonist activity, and some currently available compounds such as indole-3-carbinol and diindolylmethane-(DIM) and synthetic AhR antagonists are potential drug candidates. There is also evidence that some AhR-active pharmaceuticals, including tranilast, flutamide, hydroxytamoxifen and omeprazole or their derivatives, may be effective AhR-dependent anticancer agents for single or combination cancer chemotherapies for treatment of breast and pancreatic cancers.

  19. Buprenorphine, Norbuprenorphine, R-Methadone, and S-Methadone Upregulate BCRP/ABCG2 Expression by Activating Aryl Hydrocarbon Receptor in Human Placental Trophoblasts

    PubMed Central

    Neradugomma, Naveen K.; Liao, Michael Z.

    2017-01-01

    Opioid dependence during pregnancy is a rising concern. Maintaining addicted pregnant women on long-acting opioid receptor agonist is the most common strategy to manage drug abuse in pregnant women. Methadone (MET) and buprenorphine (BUP) are widely prescribed for opiate maintenance therapy. Norbuprenorphine (NBUP) is the primary active metabolite of BUP. These medications can cross the placenta to the fetus, leading to postpartum neonatal abstinence syndrome. Despite their use during pregnancy, little is known about the cellular changes in the placenta brought about by these drugs. In this study, we showed that BUP, NBUP, and MET at clinically relevant plasma concentrations significantly induced BCRP mRNA up to 10-fold in human model placental JEG3 and BeWo cells and in primary human villous trophoblasts, and this induction was abrogated by CH223191, an aryl hydrocarbon receptor (AhR)-specific antagonist. These drugs increased AhR recruitment onto the AhR-response elements and significantly induced breast cancer resistance protein (BCRP) gene transcription. AhR overexpression further increased BCRP mRNA and protein expression. Knockdown of AhR by shRNA decreased BCRP expression, and this decrease was reversed by rescuing AhR expression. Finally, induction of BCRP expression in JEG3 and BeWo cells was accompanied by an increase in its efflux activity. Collectively, we have demonstrated, for the first time, that BUP, NBUP, and MET are potent AhR agonists and can induce BCRP in human placental trophoblasts by activating AhR. Given the critical role of BCRP in limiting fetal exposure to drugs and xenobiotics, long-term use of these medications may affect fetal drug exposure by altering BCRP expression in human placenta. PMID:27974484

  20. Characterization of AhR agonists reveals antagonistic activity in European herring gull (Larus argentatus) eggs.

    PubMed

    Muusse, Martine; Christensen, Guttorm; Gomes, Tânia; Kočan, Anton; Langford, Katherine; Tollefsen, Knut Erik; Vaňková, Lenka; Thomas, Kevin V

    2015-05-01

    European herring gull (Larus argentatus) eggs from two Norwegian islands, Musvær in the south east and Reiaren in Northern Norway, were screened for dioxins, furans, and dioxin-like and selected non-dioxin-like polychlorinated biphenyls (PCBs), and subjected to non-target analysis to try to identify the aryl hydrocarbon receptor (AhR) agonists, responsible for elevated levels measured using the dioxin responsive chemically activated luciferase expression (DR-CALUX) assay. Eggs from Musvær contained chemically calculated toxic equivalent (WHO TEQ) levels of between 109 and 483 pg TEQ/g lw, and between 82 and 337 pg TEQ/g lw was determined in eggs from Reiaren. In particular PCB126 contributed highly to the total TEQ (69-82%). In 19 of the 23 samples the calculated WHO TEQ was higher than the TEQCALUX. Using CALUX specific relative effect potencies (REPs), the levels were lower at between 77 and 292 pg/g lw in eggs from Musvær and between 55 and 223 pg/g lw in eggs from Reiaren, which was higher than the TEQCALUX in 16 of the 23 samples. However, the means of the REP values and the TEQCALUX were not significantly different. This suggests the presence of compounds that can elicit antagonist effects, with a low binding affinity to the AhR. Non-target analysis identified the presence of hexachlorobenzene (HCB) (quantified at 9.6-185 pg/g lw) but neither this compound nor high concentrations of PCB126 and non-dioxin-like PCBs could explain the differences between the calculated TEQ or REP values and the TEQCALUX. Even though, for most AhR agonists, the sensitivity of herring gulls is not known, the reported levels can be considered to represent a risk for biological effects in the developing embryo, compared to LC50 values in chicken embryos. For human consumers of herring gull eggs, these eggs contain TEQ levels up to four times higher than the maximum tolerable weekly intake. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells.

    PubMed

    Bekki, Kanae; Vogel, Helena; Li, Wen; Ito, Tomohiro; Sweeney, Colleen; Haarmann-Stemmann, Thomas; Matsumura, Fumio; Vogel, Christoph F A

    2015-05-01

    The aryl hydrocarbon receptor (AhR) is well known as a ligand binding transcription factor regulating various biological effects. Previously we have shown that long-term exposure to estrogen in breast cancer cells caused not only down regulation of estrogen receptor (ER) but also overexpression of AhR. The AhR interacts with several cell signaling pathways associated with induction of tyrosine kinases, cytokines and growth factors which may support the survival roles of AhR escaping from apoptosis elicited by a variety of apoptosis inducing agents in breast cancer. In this study, we studied the anti-apoptotic role of AhR in different breast cancer cells when apoptosis was induced by exposure to UV light and chemotherapeutic agents. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in AhR overexpressing breast cancer cells effectively suppressed the apoptotic response induced by UV-irradiation, doxorubicin, lapatinib and paclitaxel. The anti-apoptotic response of TCDD was uniformly antagonized by the treatment with 3'methoxy-4'nitroflavone (MNF), a specific antagonist of AhR. TCDD's survival action of apoptosis was accompanied with the induction of well-known inflammatory genes, such as cyclooxygenase-2 (COX-2) and NF-κB subunit RelB. Moreover, TCDD increased the activity of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO), which metabolizes tryptophan to kynurenine (Kyn) and mediates tumor immunity. Kyn also acts as an AhR ligand like TCDD, and kyn induced an anti-apoptotic response in breast cancer cells. Accordingly, our present study suggests that AhR plays a pivotal role in the development of breast cancer via the suppression of apoptosis, and provides an idea that the use of AhR antagonists with chemotherapeutic agents may effectively synergize the elimination of breast cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents.

    PubMed

    Bach, Nicolai; Bølling, Anette Kocbach; Brinchmann, Bendik C; Totlandsdal, Annike I; Skuland, Tonje; Holme, Jørn A; Låg, Marit; Schwarze, Per E; Øvrevik, Johan

    2015-10-14

    Adsorbed soluble organics seem to be the main drivers of inflammatory responses induced by diesel exhaust particles (DEP). The specific compounds contributing to this process and the cellular mechanisms behind DEP-induced inflammation are not well known. We have assessed pro-inflammatory effects of DEP and various soluble DEP fractions, in human bronchial epithelial cells (BEAS-2B). DEP increased the expression of interleukin (IL)-6 and CXCL8. Silencing of the aryl hydrocarbon receptor (AhR) by siRNA or pretreatment with AhR-antagonists did not attenuate DEP-induced IL-6 and CXCL8 responses. However, the halogenated aromatic hydrocarbon (HAH)-selective AhR antagonist CH223191 caused a considerable reduction in DEP-induced CYP1A1 expression indicating that this response may be due to dioxin or dioxin-like constituents in DEP. Knock-down of protease activated receptor (PAR)-2 attenuated IL-6 responses without affecting CXCL8. Antioxidants did not affect IL-6 expression after 4h DEP-exposure and only partly reduced CXCL8 expression. However, after 24h exposure antioxidant treatment partly suppressed IL-6 protein release and completely blocked CXCL8 release. Furthermore, a heptane-soluble (non-polar) extract of DEP induced both IL-6 and CXCL8 release, whereas a PBS-soluble (highly polar) extract induced only IL-6. Thus, pro-inflammatory responses in DEP-exposed epithelial cells appear to be the result of both reactive oxygen species and receptor signaling, mediated through combinatorial effects between both non-polar and polar constituents adhered to the particle surface. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

    PubMed Central

    Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert

    2014-01-01

    The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545

  4. Genome-wide mapping and analysis of aryl hydrocarbon receptor (AHR)- and aryl hydrocarbon receptor repressor (AHRR)-binding sites in human breast cancer cells.

    PubMed

    Yang, Sunny Y; Ahmed, Shaimaa; Satheesh, Somisetty V; Matthews, Jason

    2018-01-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic actions of environmental contaminants, such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), and also plays roles in vascular development, the immune response, and cell cycle regulation. The AHR repressor (AHRR) is an AHR-regulated gene and a negative regulator of AHR; however, the mechanisms of AHRR-dependent repression of AHR are unclear. In this study, we compared the genome-wide binding profiles of AHR and AHRR in MCF-7 human breast cancer cells treated for 24 h with TCDD using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq). We identified 3915 AHR- and 2811 AHRR-bound regions, of which 974 (35%) were common to both datasets. When these 24-h datasets were also compared with AHR-bound regions identified after 45 min of TCDD treatment, 67% (1884) of AHRR-bound regions overlapped with those of AHR. This analysis identified 994 unique AHRR-bound regions. AHRR-bound regions mapped closer to promoter regions when compared with AHR-bound regions. The AHRE was identified and overrepresented in AHR:AHRR-co-bound regions, AHR-only regions, and AHRR-only regions. Candidate unique AHR- and AHRR-bound regions were validated by ChIP-qPCR and their ability to regulate gene expression was confirmed by luciferase reporter gene assays. Overall, this study reveals that AHR and AHRR exhibit similar but also distinct genome-wide binding profiles, supporting the notion that AHRR is a context- and gene-specific repressor of AHR activity.

  5. Potencies of red seabream AHR1- and AHR2-mediated transactivation by dioxins: implication of both AHRs in dioxin toxicity.

    PubMed

    Bak, Su-Min; Iida, Midori; Hirano, Masashi; Iwata, Hisato; Kim, Eun-Young

    2013-03-19

    To evaluate species- and isoform-specific responses to dioxins and related compounds (DRCs) via aryl hydrocarbon receptor (AHR) in the red seabream ( Pagrus major ), we constructed a reporter gene assay system. Each expression plasmid of red seabream AHR1 (rsAHR1) and AHR2 (rsAHR2) together with a reporter plasmid containing red seabream CYP1A 5'-flanking region were transfected into COS-7 cells. The cells were treated with graded concentrations of seven DRC congeners including 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 2,3,7,8-TCDF, 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, and PCB126. Both rsAHR1 and rsAHR2 exhibited dose-dependent responses for all the tested congeners. The rsAHR isoform-specific TCDD induction equivalency factors (rsAHR1- and rsAHR2-IEFs) were calculated on the basis of 2,3,7,8-TCDD relative potency derived from the dose-response of each congener. The rsAHR1-IEFs of PeCDD, HxCDD, TCDF, PeCDF, and HxCDF were estimated as 0.17, 0.29, 2.5, 1.5, and 0.27, respectively. For PCB126, no rsAHR1-IEF was given because of less than 10% 2,3,7,8-TCDD maximum response. The rsAHR2-IEFs of PeCDD, HxCDD, TCDF, PeCDF, HxCDF, and PCB126 were estimated as 0.38, 0.13, 1.5, 0.93, 0.20, and 0.0085, respectively. The rsAHR1/2-IEF profiles were different from WHO toxic equivalency factors for fish. In silico docking simulations supported that both rsAHRs have potentials to bind to these congeners. These results suggest that dioxin toxicities may be mediated by both rsAHRs in red seabreams.

  6. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Emelia; Zago, Michela; Sarill, Miles

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{supmore » +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates

  7. T-cell expression of AhR inhibits the maintenance of pTreg cells in the gastrointestinal tract in acute GVHD.

    PubMed

    Dant, Trisha A; Lin, Kaifeng L; Bruce, Danny W; Montgomery, Stephanie A; Kolupaev, Oleg V; Bommiasamy, Hemamalini; Bixby, Lisa M; Woosley, John T; McKinnon, Karen P; Gonzalez, Frank J; Blazar, Bruce R; Vincent, Benjamin G; Coghill, James M; Serody, Jonathan S

    2017-07-20

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that affects the function and development of immune cells. Here, we show that recipient mice receiving AhR -/- T cells have improved survival and decreased acute graft-versus-host disease (aGVHD) in 2 different murine allogeneic bone marrow transplant (BMT) models. We also show that CD4 + T cells lacking AhR demonstrate reduced accumulation in secondary lymphoid tissue because of low levels of proliferation 4 days after BMT. Additionally, we found a significant increase in the quantity of peripherally induced regulatory donor T (pT reg ) cells in the colon of recipients transplanted with AhR -/- T cells 14 days after transplant. Blockade of AhR using a clinically available AhR antagonist greatly enhanced the in vitro generation of inducible T reg (iT reg ) cells from naïve CD4 + human T cells. We have identified AhR as a novel target on donor T cells that is critical to the pathogenesis of aGVHD.

  8. Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms.

    PubMed

    Bonati, Laura; Corrada, Dario; Tagliabue, Sara Giani; Motta, Stefano

    2017-02-01

    Molecular modeling has given important contributions to elucidation of the main stages in the AhR signal transduction pathway. Despite the lack of experimentally determined structures of the AhR functional domains, information derived from homologous systems has been exploited for modeling their structure and interactions. Homology models of the AhR PASB domain have provided information on the binding cavity and contributed to elucidate species-specific differences in ligand binding. Molecular Docking simulations of the ligand binding process have given insights into differences in binding of diverse agonists, antagonists, and selective AhR modulators, and their application to virtual screening of large databases of compounds have allowed identification of novel AhR ligands. Recently available structural information on protein-protein and protein-DNA complexes of other bHLH-PAS systems has opened the way for modeling the AhR:ARNT dimer structure and investigating the mechanisms of AhR transformation and DNA binding. Future research directions should include simulation of the protein dynamics to obtain a more reliable description of intermolecular interactions involved in signal transmission.

  9. Ahr function in lymphocytes: emerging concepts

    PubMed Central

    Zhou, Liang

    2015-01-01

    The aryl hydrocarbon receptor (Ahr) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with Ahr's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for Ahr in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate Ahr transcription and function. I propose a conceptual framework in which Ahr function is determined by three factors: the amount of Ahr in any given cell, the abundance and potency of Ahr ligands within certain tissues, and the tissue microenvironment wherein Ahr+ cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of Ahr function. PMID:26700314

  10. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells.

    PubMed

    Gaspar-Ramírez, Octavio; Pérez-Vázquez, Francisco J; Salgado-Bustamante, Mariana; González-Amaro, Roberto; Hernandez-Castro, Berenice; Pérez-Maldonado, Ivan N

    2015-01-01

    Recent studies have demonstrated that compounds inducing pro-inflammatory cytokines enhance AhR expression. The aim of this study was 2-fold: (1) to determine if two pro-inflammatory compounds, dichlorodiphenyldichloroethylene (DDE) and 2,2',4,4',5,5'-hexa-chlorobiphenyl (PCB 153), independently affect AhR gene expression in peripheral blood mononuclear cells (PBMC); and (2) if affected, to determine whether the mechanism involved was due to AhR activation or to a pro-inflammatory effect of the chemicals. PBMC isolated from healthy individuals were incubated in the presence of DDE (10 µg/ml) and PCB 153 (20 ng/ml) over time and AhR and CYP1A1 expression was assessed with a real-time PCR technique. The results indicated there was over-expression of the AhR mRNA in PBMC when the cells were treated with DDE and PCB 153. No changes in expression levels of CYP1A1 mRNA were found. Importantly, when the cells were exposed to DDE and PCB 153 in the presence of an antagonist of tumor necrosis factor (TNF)-α, the over-expression of AhR was abolished; as expected, the expression of CYP1A1 was unaffected. In conclusion, these studies demonstrated for the first time an increment of AhR expression "in vitro" in PBMC treated with two pro-inflammatory environmental pollutants, DDE and PCB153. Moreover, the over-expression of AhR was dependent of TNFα induced by DDE and PCB 153 and was independent of AhR activation.

  11. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity ofmore » Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.« less

  12. Unprecedented genomic diversity of AhR1 and AhR2 genes in Atlantic salmon (Salmo salar L.).

    PubMed

    Hansson, Maria C; Wittzell, Håkan; Persson, Kerstin; von Schantz, Torbjörn

    2004-06-24

    Aryl hydrocarbon receptor (AhR) genes encode proteins involved in mediating the toxic responses induced by several environmental pollutants. Here, we describe the identification of the first two AhR1 (alpha and beta) genes and two additional AhR2 (alpha and beta) genes in the tetraploid species Atlantic salmon (Salmo salar L.) from a cosmid library screening. Cosmid clones containing genomic salmon AhR sequences were isolated using a cDNA clone containing the coding region of the Atlantic salmon AhR2gamma as a probe. Screening revealed 14 positive clones, from which four were chosen for further analyses. One of the cosmids contained genomic AhR sequences that were highly similar to the rainbow trout (Oncorhynchus mykiss) AhR2alpha and beta genes. SMART RACE amplified two complete, highly similar but not identical AhR type 2 sequences from salmon cDNA, which from phylogenetic analyses were determined as the rainbow trout AhR2alpha and beta orthologs. The salmon AhR2alpha and beta encode proteins of 1071 and 1058 residues, respectively, and encompass characteristic AhR sequence elements like a basic-helix-loop-helix (bHLH) and two PER-ARNT-SIM (PAS) domains. Both genes are transcribed in liver, spleen and muscle tissues of adult salmon. A second cosmid contained partial sequences, which were identical to the previously characterized AhR2gamma gene. The last two cosmids contained partial genomic AhR sequences, which were more similar to other AhR type 1 fish genes than the four characterized salmon AhR2 genes. However, attempts to amplify the corresponding complete cDNA sequences of the inserts proved very difficult, suggesting that these genes are non-functional or very weakly transcribed in the examined tissues. Phylogenetic analyses of the conserved regions did, however, clearly indicate that these two AhRs belong to the AhR type 1 clade and have been assigned as the Atlantic salmon AhR1alpha and AhR1beta genes. Taken together, these findings demonstrate that

  13. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation.

    PubMed

    Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin

    2017-04-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.

  14. Human and rodent aryl hydrocarbon receptor (AHR): from mediator of dioxin toxicity to physiologic AHR functions and therapeutic options.

    PubMed

    Bock, Karl Walter

    2017-04-01

    Metabolism of aryl hydrocarbons and toxicity of dioxins led to the discovery of the aryl hydrocarbon receptor (AHR). Tremendous advances have been made on multiplicity of AHR signaling and identification of endogenous ligands including the tryptophan metabolites FICZ and kynurenine. However, human AHR functions are still poorly understood due to marked species differences as well as cell-type- and cell context-dependent AHR functions. Observations in dioxin-poisoned individuals may provide hints to physiologic AHR functions in humans. Based on these observations three human AHR functions are discussed: (1) Chemical defence and homeostasis of endobiotics. The AHR variant Val381 in modern humans leads to reduced AHR affinity to aryl hydrocarbons in comparison with Neanderthals and primates expressing the Ala381 variant while affinity to indoles remains unimpaired. (2) Homeostasis of stem/progenitor cells. Dioxins dysregulate homeostasis in sebocyte stem cells. (3) Modulation of immunity. In addition to microbial defence, AHR may be involved in a 'disease tolerance defence pathway'. Further characterization of physiologic AHR functions may lead to therapeutic options.

  15. Hop (Humulus lupulus L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation

    PubMed Central

    2016-01-01

    Humulus lupulus L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for postmenopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops can also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways, respectively. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and its bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the isolated compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of

  16. Feedback control of AHR signalling regulates intestinal immunity.

    PubMed

    Schiering, Chris; Wincent, Emma; Metidji, Amina; Iseppon, Andrea; Li, Ying; Potocnik, Alexandre J; Omenetti, Sara; Henderson, Colin J; Wolf, C Roland; Nebert, Daniel W; Stockinger, Brigitta

    2017-02-09

    The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation.

  17. Comparison of hepatic NRF2 and AHR binding in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treated mice demonstrates NRF2-independent PKM2 induction.

    PubMed

    Nault, Rance; Doskey, Claire M; Fader, Kelly A; Rockwell, Cheryl E; Zacharewski, Timothy R

    2018-05-11

    2,3,7,8-Tetrachlorodibenzo- p -dioxin (TCDD) induces hepatic oxidative stress following activation of the aryl hydrocarbon receptor (AhR). Our recent studies showed TCDD induced pyruvate kinase muscle isoform 2 ( Pkm2 ) as a novel antioxidant response in normal differentiated hepatocytes. To investigate cooperative regulation between nuclear factor, erythroid derived 2, like 2 ( Nrf2 ) and the AhR in the induction of Pkm2 , hepatic ChIP-seq analyses were integrated with RNA-seq time course data from mice treated with TCDD for 2 - 168h. ChIP-seq analysis 2h after TCDD treatment identified genome-wide NRF2 enrichment. Approximately 842 NRF2 enriched regions were located in the regulatory region of differentially expressed genes (DEGs) while 579 DEGs showed both NRF2 and AhR enrichment. Sequence analysis of regions with overlapping NRF2 and AhR enrichment showed over-representation of either antioxidant or dioxin response elements (ARE and DRE, respectively), although 18 possessed both motifs. NRF2 exhibited negligible enrichment within a closed Pkm chromatin region while the AhR was enriched 29-fold. Furthermore, TCDD induced Pkm2 in primary hepatocytes from wild-type and Nrf2 null mice, indicating NRF2 is not required. Although NRF2 and AhR cooperate to regulate numerous antioxidant gene expression responses, the induction of Pkm2 by TCDD is independent of ROS-mediated NRF2 activation. The American Society for Pharmacology and Experimental Therapeutics.

  18. Immunological characterization of the aryl hydrocarbon receptor (AHR) knockout rat in the presence and absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

    PubMed

    Phadnis-Moghe, Ashwini S; Chen, Weimin; Li, Jinpeng; Crawford, Robert B; Bach, Anthony; D'Ingillo, Shawna; Kovalova, Natalia; Suarez-Martinez, Jose E; Kaplan, Barbara L F; Harrill, Joshua A; Budinsky, Robert; Rowlands, J Craig; Thomas, Russell S; Kaminski, Norbert E

    2016-08-10

    The aryl hydrocarbon receptor (AHR) has been extensively characterized for the essential role it plays in mediating the toxic responses elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Despite similarities across animal species, species-specific differences exist in the profile of toxicity and sensitivity to TCDD owing, in part, to differences in the AHR. Newer reports have implicated the importance of AHR in the development and regulation of the immune system. Our present studies seek to further explore the essential role of AHR in lymphoid tissue composition, B cell function and the immunological responses after TCDD administration using the recently established AHR KO rats. Comprehensive immune cell phenotyping showed a decrease in the CD8 + T cell, CD11c + populations and an increase in NKT cells in 3-week-old AHR KO rats compared to the WT controls. The lipopolysaccharide-induced IgM response and proliferation was markedly suppressed in the WT but not in the AHR KO B cells in the presence of TCDD. However, the percentage of LPS-activated IgM + B cells was significantly higher in the AHR KO B cells as compared to that of WT suggesting the role of AHR in regulating the IgM response. The use of an AHR antagonist further alluded to the endogenous role of AHR in regulating B cell responses in the rat. Overall, the studies report for the first time, comprehensive immune cell phenotyping of the AHR KO rat and the endogenous role of AHR in the regulation of B cell function in the rat. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens.

    PubMed

    Giménez-Gómez, Pablo; Pérez-Hernández, Mercedes; Gutiérrez-López, María Dolores; Vidal, Rebeca; Abuin-Martínez, Cristina; O'Shea, Esther; Colado, María Isabel

    2018-06-01

    Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 μg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Cross-regulatory circuit between AHR and microbiota.

    PubMed

    Ji, Jian; Qu, Hao

    2018-01-29

    The gut microbes have a close symbiotic relationship with their host. Interactions between host and the microbiota affect the nutritional, immunological, and physiological status of the host. The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that mediates the toxicity of xenobiotics. Recently, the relationship between the gut microbiota and AHR has attracted the attention of many researchers. The AHR influences the intestinal microbiota population and mediates host-microbe homeostasis. Interestingly, the gut microbiota also produces ligands of AHR from bacterial metabolism and thereby activates the AHR signaling pathway. This review presents current knowledge of the cross-regulatory circuit between the AHR and intestinal microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the aryl hydrocarbon receptor (AHR)-mediated impairment of immunoglobulin secretion in human primary B cells.

    PubMed

    Zhou, Jiajun; Zhang, Qiang; Henriquez, Joseph E; Crawford, Robert B; Kaminski, Norbert E

    2018-05-31

    The aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation and cell development. In humans, the activation of AHR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM secretion and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.

  2. AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells

    PubMed Central

    2014-01-01

    Background The aryl hydrocarbon receptor (AhR) has gradually emerged as a regulator of inflammation in the lung and other tissues. AhR may interact with the p65-subunit of the nuclear factor (NF)-κB transcription factors, but reported outcomes of AhR/NF-κB-interactions are conflicting. Some studies suggest that AhR possess pro-inflammatory activities while others suggest that AhR may be anti-inflammatory. The present study explored the impact of AhR and its binding partner AhR nuclear translocator (Arnt) on p65-activation and two differentially regulated chemokines, CXCL8 (IL-8) and CCL5 (RANTES), in human bronchial epithelial cells (BEAS-2B). Results Cells were exposed to CXCL8- and CCL5-inducing chemicals, 1-nitropyrene (1-NP) and 1-aminopyrene (1-AP) respectively, or the synthetic double-stranded RNA analogue, polyinosinic-polycytidylic acid (Poly I:C) which induced both chemokines. Only CXCL8, and not CCL5, appeared to be p65-dependent. Yet, constitutively active unligated AhR suppressed both CXCL8 and CCL5, as shown by siRNA knock-down and the AhR antagonist α-naphthoflavone. Moreover, AhR suppressed activation of p65 by TNF-α and Poly I:C as assessed by luciferase-assay and p65-phosphorylation at serine 536, without affecting basal p65-activity. In contrast, Arnt suppressed only CXCL8, but did not prevent the p65-activation directly. However, Arnt suppressed expression of the NF-κB-subunit RelB which is under transcriptional regulation by p65. Furthermore, AhR-ligands alone at high concentrations induced a moderate CXCL8-response, without affecting CCL5, but suppressed both CXCL8 and CCL5-responses by Poly I:C. Conclusion AhR and Arnt may differentially and independently regulate chemokine-responses induced by both inhaled pollutants and pulmonary infections. Constitutively active, unligated AhR suppressed the activation of p65, while Arnt may possibly interfere with the action of activated p65. Moreover, ligand-activated AhR suppressed CXCL8 and CCL5

  3. AHR/CYP1A1 interplay triggers lymphatic barrier breaching in breast cancer spheroids by inducing 12(S)-HETE synthesis.

    PubMed

    Nguyen, Chi Huu; Brenner, Stefan; Huttary, Nicole; Atanasov, Atanas Georgiev; Dirsch, Verena Maria; Chatuphonprasert, Waranya; Holzner, Sivio; Stadler, Serena; Riha, Juliane; Krieger, Sigurd; de Martin, Rainer; Bago-Horvath, Zsuzsanna; Krupitza, Georg; Jäger, Walter

    2016-11-15

    A causal link between overexpression of aryl hydrocarbon receptor (AHR) and its target cytochrome P450 1A1 (CYP1A1) and metastatic outgrowth of various cancer entities has been established. Nevertheless, the mechanism how AHR/CYP1A1 support metastasis formation is still little understood. In vitro we discovered a potential mechanism facilitating tumour dissemination based on the production of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE). Utilising a three-dimensional lymph endothelial cell (LEC) monolayer & MDA-MB231 breast cancer cell spheroid co-culture model in combination with knock-down approach allowed elucidation of the molecular/biochemical basis of AHR/CYP1A1-induced tumour breaching through the LEC barrier. Enzyme immunoassay evidenced the potential of recombinant CYP1A1 to synthesise 12(S)-HETE in vitro and qPCR and Western blotting measured gene and protein expression in specific experimental settings. In detail, AHR induced CYP1A1 expression and 12(S)-HETE secretion in tumour spheroids, which caused LEC junction retraction thereby forming large discontinuities allowing transmigration of the tumour. This was enforced by the activating AHR ligand 6-formylindolo (3,3-b)carbazole (FICZ), or inhibited by the AHR antagonist 3,3’-diindolylmethane (DIM) as well as by siRNA against AHR and CYP1A1. AHR and NF-κB were negatively cross talking and therefore, the inhibition of AHR (but not CYP1A1) induced RELA, RELB, NFKB1, NFKB2 and the NF-κB target MMP1, which itself promotes tumour intravasation by a mechanism that is different from 12(S)-HETE. Conversely, the inhibition of NFKB2 induced AHR, CYP1A1 and 12(S)-HETE synthesis. The approved clinical drugs guanfacine and vinpocetine, which inhibit CYP1A1 and NF-κB, respectively, significantly inhibited LEC barrier breaching in vitro indicating an option to reduce metastatic dissemination.

  4. Cigarette smoke-induced cell cycle arrest in spermatocytes [GC-2spd(ts)] is mediated through crosstalk between Ahr-Nrf2 pathway and MAPK signaling.

    PubMed

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Moley, Kelle H

    2015-02-01

    Our earlier studies have demonstrated that the cigarette smoke in the form of cigarette smoke condensate (CSC) causes growth arrest of a mouse spermatocyte cell line [GC-2spd(ts)] through activation of the AHR-NRF2 pathway. The present study demonstrates the CSC-activated p38 and ERK MAPK signaling in GC-2spd(ts) via arylhydrocarbon receptor (AHR). Pharmacological inhibition by using AHR-antagonist, or p38 MAPK and ERK (MEK1) inhibitors significantly abrogates CSC-induced growth arrest by AHR and MAPK inactivation. QRT-PCR, western blot, and immunofluorescence of Ahr-target of Nrf2, and stress-inducible growth suppressive Atf3 and E2f4 following treatments indicate a crosstalk among these pathways. Regulation of Atf3 by Nrf2 and Ahr through RNA interference suggests the existence of a cross-regulatory loop between the targets. CSC induction of E2f4 via Atf3 and its regulation by pharmacological inhibitors reveal a possible regulatory mechanism of growth inhibitory CSC. SiRNA silencing of Ahr, Nrf2, Atf3, and E2f4 genes and downregulation of cyclins by CSC corroborate the growth inhibitory effect of cigarette smoke. Thus, the data obtained suggest that the CSC-mediated MAPKs and AHR-NRF2 crosstalks lay the molecular basis for the growth arrest and cell death of spermatocytes. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  5. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibitedmore » increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.« less

  6. Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes.

    PubMed

    Sadowska, Agnieszka; Paukszto, Lukasz; Nynca, Anna; Szczerbal, Izabela; Orlowska, Karina; Swigonska, Sylwia; Ruszkowska, Monika; Molcan, Tomasz; Jastrzebski, Jan P; Panasiewicz, Grzegorz; Ciereszko, Renata E

    2017-03-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS; lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig. In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.

  7. Regulation of subcellular localization of the Aryl Hydrocarbon Receptor (AhR)

    USGS Publications Warehouse

    Richter, Catherine A.; Tillitt, Donald E.; Hannink, Mark

    2001-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity of dioxin and other xenobiotics. In the absence of exogenous ligand, AhR is cytosolic. We investigated how AhR is retained in the cytosol and how dioxin induces AhR to move to the nucleus. Disruption of nuclear export of AhR by the nuclear export inhibitor leptomycin B (LMB) or by mutation of the AhR nuclear export signal resulted in nuclear accumulation of AhR in the absence of exogenous ligand. Mutation of the AhR nuclear localization signal resulted in defects in nuclear import of AhR in both the presence and the absence of exogenous ligand. Dioxin treatment caused a more rapid accumulation of AhR in the nucleus than LMB treatment. In the presence of both dioxin and LMB, nuclear accumulation of AhR was more rapid than in the presence of dioxin alone. Our results show that AhR shuttles between the nucleus and the cytosol in the absence of exogenous ligand. Binding of ligand induces an increase in the rate of nuclear import of AhR but does not eliminate nuclear export of AhR.

  8. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization

    PubMed Central

    Lindsey, Stephan; T. Papoutsakis, Eleftherios

    2012-01-01

    Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. PMID:21226706

  9. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization.

    PubMed

    Lindsey, Stephan; Papoutsakis, Eleftherios T

    2011-02-01

    We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. © 2011 Blackwell Publishing Ltd.

  10. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wincent, Emma; Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm; Stegeman, John J.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examinedmore » phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.« less

  11. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution.

    PubMed

    Hahn, Mark E; Karchner, Sibel I; Merson, Rebeka R

    2017-02-01

    The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax , a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa , whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.

  12. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution

    PubMed Central

    Hahn, Mark E.; Karchner, Sibel I.; Merson, Rebeka R.

    2017-01-01

    The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology. PMID:28286876

  13. In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles.

    PubMed

    Ziv-Gal, A; Gao, L; Karman, B N; Flaws, J A

    2015-03-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Genetic dissection of endothelial transcriptional activity of zebrafish aryl hydrocarbon receptors (AHRs).

    PubMed

    Sugden, Wade W; Leonardo-Mendonça, Roberto C; Acuña-Castroviejo, Darío; Siekmann, Arndt F

    2017-01-01

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor conserved across phyla from flies to humans. Activated by a number of endogenous ligands and environmental toxins, studies on AHR function and gene regulation have largely focused on a toxicological perspective relating to aromatic hydrocarbons generated by human activities and the often-deleterious effects of exposure on vertebrates mediated by AHR activation. A growing body of work has highlighted the importance of AHR in physiologic processes, including immune cell differentiation and vascular patterning. Here we dissect the contribution of the 3 zebrafish AHRs, ahr1a, ahr1b and ahr2, to endothelial cyp1a1/b1 gene regulation under physiologic conditions and upon exposure to the AHR ligand Beta-naphthoflavone. We show that in fish multiple AHRs are functional in the vasculature, with vessel-specific differences in the ability of ahr1b to compensate for the loss of ahr2 to maintain AHR signaling. We further provide evidence that AHR can regulate the expression of the chemokine receptor cxcr4a in endothelial cells, a regulatory mechanism that may provide insight into AHR function in the endothelium.

  15. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. © The Author(s) 2016.

  16. Potential involvement of placental AhR in unexplained recurrent spontaneous abortion.

    PubMed

    Wu, Y; Chen, X; Chang, X; Huang, Y J; Bao, S; He, Q; Li, Y; Zheng, J; Duan, T; Wang, K

    2016-01-01

    Recurrent spontaneous abortion (RSA) is a common complication of pregnancy. Recent studies have demonstrated that the aryl hydrocarbon receptor (AhR) might play important roles in establishing and maintaining early pregnancy. In this study, we found that placental AhR protein levels were significantly lower and placental CYP1A1 mRNA levels were higher in unexplained RSA (URSA) patients than in control subjects. The results of immunohistochemical analyzes showed that placental AhR was expressed in syncytiotrophoblast cells and that the level of AhR was markedly lower in these cells in URSA subjects than in control subjects. β-Naphthoflavone (β-NF, an AhR ligand) at 5μM significantly inhibited proliferation and migration in HTR-8/SVneo cells and was associated with the activation of AhR. Moreover, overexpressing AhR in JAR cells significantly increased CYP1A1 mRNA levels and inhibited cell migration. These results indicate that AhR is highly activated in URSA placentas and that the activation of AhR in the placenta might impair trophoblast cell proliferation and migration, possibly leading to the occurrence of URSA. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhan; The Fifth Affiliated Hospital, Zhengzhou University, 450052; Bu, Yongjun

    2016-05-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cellmore » migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.« less

  18. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-02

    are mediated by ERK1/2. Pretreatment with an AhR antagonist, prevented HCB-induced PCNA protein levels, ERK1/2 phosphorylation and alterations in cell cycle distribution. These results demonstrate that HCB-induced HepG2 proliferation and cell cycle progression depend on ERK1/2 phosphorylation which is mediated by the AhR. Our results provide a clue to the molecular events involved in the mechanism of action of HCB-induced hepatocarcinogenesis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Overexpression of aryl hydrocarbon receptor (AHR) signalling pathway in human meningioma.

    PubMed

    Talari, Noble Kumar; Panigrahi, Manas K; Madigubba, Sailaja; Phanithi, Prakash Babu

    2018-04-01

    Aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor and involved in tumorigenesis of many cancers. However there are no reports on AHR in human meningioma. Therefore we examined the status of the AHR and its signalling molecules in human meningioma by using tumor biopsy samples and autopsy control meninges. We report the up regulation of AHR pathway genes like aryl hydrocarbon receptor nuclear translocator (ARNT), aldehyde dehydrogenase1family memberA3 (ALDH1A3), cytochrome P450, family1, subfamily A polypeptide1 (CYP1A1) and TCCD induced poly ADP ribose polymerase (TIPARP) gene expression in human meningioma. Further, AHR protein expression was found to be up regulated in all grades of human meningioma. We found that AHR localized in the nucleus for high grade anaplastic meningioma through immunohistochemical analysis. Since AHR signalling pathway was known to involve in inhibition of apoptosis in cancer cells, we evaluated the cyclophilin D levels which maintains mitochondrial permeability transition pore a critical event during apoptosis. We report that cyclophilin D levels were upregulated in all grades of human meningioma compared to control meninges. Finally we also evaluated c-Fos protein levels as its levels were regulated by AHR. Here we report that c-Fos protein levels were down regulated in all grades of human meningioma compared to control meninges. To sum-up we found that AHR signalling pathway components were upregulated, as the grade of the meningioma progresses from low to high grade, suggesting an important role of AHR signalling pathway in human meningioma.

  20. The anticonvulsant action of AHR-11748 on kindled amygdaloid seizures in rats.

    PubMed

    Albertson, T E; Walby, W F

    1987-03-01

    The anticonvulsant effectiveness of AHR-11748 (3-[3-(trifluoromethyl)phenoxy]-1-azetidinecarboxamide) was evaluated in the kindled amygdaloid seizure model in rats. Doses of AHR-11748 that did not cause prestimulation toxicity significantly attenuated elicited afterdischarge durations and the severity of the accompanying behavioral convulsive response in previously kindled rats. AHR-11748 (25-100 mg/kg i.p.) was evaluated at 30 min in previously kindled rats using both threshold (20 microA increments) and suprathreshold (400 microA) paradigms. AHR-11748 (50-100.mg/kg) reduced suprathreshold elicited after discharges and seizure severity. Utilizing a suprathreshold kindling paradigm, the maximum anticonvulsant effectiveness for the 100 mg/kg i.p. dose of AHR-11748 was seen at 180 min. AHR-11748 significantly elevated seizure thresholds only at the 100 mg/kg dose. AHR-11748 (25-100 mg/kg) significantly reduced the severity of threshold elicited seizures. When AHR-11748 (50 and 100 mg/kg i.p.) was administered daily during kindling acquisition, the number of daily trials necessary to complete kindling significantly increased. A reduction in both the duration and the severity of the responses induced by the daily stimulations during the acquisition period was seen with AHR-11748 treatment. This study has demonstrated that AHR-11748 significantly modifies both the acquisition of kindling and the fully kindled amygdaloid seizures at doses that do not cause behavioral toxicity.

  1. An endogenous aryl hydrocarbon receptor (AhR) ligand, ITE induces regulatory T cells (Tregs) and ameliorates experimental colitis.

    PubMed

    Abron, Jessicca D; Singh, Narendra P; Mishra, Manoj K; Price, Robert L; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Singh, Udai P

    2018-04-19

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that affects millions of people with high morbidity and health-care cost. The precise etiology of IBD is unknown, but clear evidence suggests that intestinal inflammation is caused by an excessive immune response to mucosal antigens. Recent studies have shown that activation of the aryl hydrocarbon receptor (AhR) induces regulatory T cells (Tregs) and suppresses autoimmune diseases. In the current study, we investigated if nontoxic ligand of AhR, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), can attenuate dextran sodium sulphate (DSS)-induced colitis. Our studies demonstrated that in mice that received ITE treatment, in-vivo colitis pathogenesis, including a decrease in body weight, was significantly reversed along with the systemic and intestinal inflammatory cytokines. ITE increased the expression of Tregs in spleen, mesenteric lymph nodes (MLNs) and colon lamina propria lymphocytes (cLPL) of mice with colitis when compared to controls. This induction of Tregs was reversed by AhR antagonist treatment in-vitro. ITE treatment also increased dendritic cells (DCs; CD11c+) and decreased F4/80+ (macrophage) from the spleen, MLNs and cLPL in mice with colitis. ITE also reversed the systemic and intestinal frequency of CD4+T cells during colitis and suppressed inflammatory cytokines including IFN-γ, TNF-α, IL-17, IL-6 and IL-1 as well as induced IL-10 levels. These findings suggest that ITE attenuates colitis through induction of Tregs and reduction in inflammatory CD4+ T cells and cytokines. Thus, our work demonstrates that the nontoxic endogenous AhR ligand ITE, may serve as a therapeutic modality to treat IBD.

  2. The regulation mechanisms of AhR by molecular chaperone complex.

    PubMed

    Kudo, Ikuru; Hosaka, Miki; Haga, Asami; Tsuji, Noriko; Nagata, Yuhtaroh; Okada, Hirotaka; Fukuda, Kana; Kakizaki, Yuka; Okamoto, Tomoya; Grave, Ewa; Itoh, Hideaki

    2018-03-01

    The AhR, so called the dioxin receptor, is a member of the nuclear receptor superfamily. The ligand-free AhR forms a cytosolic protein complex with the molecular chaperone HSP90, co-chaperone p23, and XAP2 in the cytoplasm. Following ligand binding like 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), the AhR translocates into the nucleus. Although it has been reported that HSP90 regulates the translocation of the AhR to the nucleus, the precise activation mechanisms of the AhR have not yet been fully understood. AhR consists of the N-terminal bHLH domain containing NLS and NES, the middle PAS domain and the C-terminal transactivation domain. The PAS domain is familiar as a ligand and HSP90 binding domain. In this study, we focused on the bHLH domain that was thought to be a HSP90 binding domain. We investigated the binding properties of bHLH to HSP90. We analyzed the direct interaction of bHLH with HSP90, p23 and XAP2 using purified proteins. We found that not only the PAS domain but also the bHLH domain bound to HSP90. The bHLH domain forms complex with HSP90, p23 and XAP2. We also determined the bHLH binding domain was HSP90 N-domain. The bHLH domain makes a complex with HSP90, p23 and XAP2 via the HSP90 N-domain. Although the NLS is closed in the absence of a ligand, the structure of AhR will be changed in the presence of a ligand, which leads to NLS open, result in the nuclear translocation of AhR.

  3. Ultraviolet B inhibition of DNMT1 activity via AhR activation dependent SIRT1 suppression in CD4+ T cells from systemic lupus erythematosus patients.

    PubMed

    Wu, Zhouwei; Mei, Xingyu; Ying, Zuolin; Sun, Yue; Song, Jun; Shi, Weimin

    2017-06-01

    Previous studies have reported that ultraviolet B (UVB) inhibits DNA methyltransferase1 (DNMT1) activity in CD4+ T cells from systemic lupus erythematosus (SLE) patients. Silent mating type information regulation 2 homolog 1 (SIRT1) is a type of Class III histone deacetylases (HDACs), and has been reported to play roles in the pathogenesis of different autoimmune diseases and can modulate DNMT1 activity. Moreover, aryl hydrocarbon receptor (AhR) has been reported to link UVB with SLE. However, the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells remain largely unknown. To elucidate the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells. Twenty-two newly diagnosed active SLE patients and 30 healthy controls were enrolled in the study. CD4+ T cells were isolated, cultured and treated. DNMT1 activity assay, quantitative real-time PCR (qRT-PCR), Western blotting, RNA interference using small interfering RNA and Chromatin Immunoprecipitation (ChIP) assay were employed. DNMT1 activity was inhibited in si-SIRT1-transfected CD4+ T cells, and increased by the established SIRT1 activator, SRT1720. Moreover, the mRNA and protein expression of SIRT1 were suppressed by UVB exposure in lupus CD4+ T cells. UVB-inhibited DNMT1 activity was reversed by SRT1720 in si-control-transfected lupus CD4+ T cells, but not in si-SIRT1-transfected lupus CD4 + T cells. Furthermore, AhR activation by VAF347 reduced the mRNA and protein expression of SIRT1. ChIP using an antibody against AhR in normal CD4+ T cells revealed a 16-fold stronger signal at the site about 1.6kb upstream from the translation start site of the SIRT1 promoter. Finally, UVB could activate AhR and inhibit the mRNA and protein expression of SIRT1. AhR knockdown abrogated the inhibition of UVB-mediated SIRT1 mRNA and protein expression and DNMT1 activity in lupus CD4+ T cells. UVB suppressed SIRT1 expression via activating AhR, and subsequently inhibited DNMT1

  4. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  5. Aryl Hydrocarbon Receptor (AhR) Deletion in Cerebellar Granule Neuron Precursors Impairs Neurogenesis

    PubMed Central

    Dever, Daniel P.; Adham, Zachariah O.; Thompson, Bryan; Genestine, Matthieu; Cherry, Jonathan; Olschowka, John A.; DiCicco-Bloom, Emanuel; Opanashuk, Lisa A.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated member of the basic-helix-loop-helix (bHLH)/PER-ARNT-SIM(PAS) transcription factor superfamily that also mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence suggests that AhR influences the development of many tissues, including the central nervous system. Our previous studies suggest that sustained AhR activation by TCDD and/or AhR deletion disrupts cerebellar granule neuron precursor (GNP) development. In the current study, to determine whether endogenous AhR controls GNP development in a cell autonomous manner, we created a GNP-specific AhR deletion mouse, AhRfx/fx/Math1CRE/+ (AhR CKO). Selective AhR deletion in GNPs produced abnormalities in proliferation and differentiation. Specifically, fewer GNPs were engaged in S-phase, as demonstrated by ~25% reductions in thymidine (in vitro) and BrdU (in vivo) incorporation. Furthermore, total granule neuron numbers in the IGL at PND21 and PND60 were diminished in AhR CKO mice compared to controls. On the other hand, differentiation was enhanced, including ~40% increase in neurite outgrowth and 50% increase in GABARα6 receptor expression in deletion mutants. Our results suggest that AhR activity plays a role in regulating granule neuron number and differentiation, possibly by coordinating this GNP developmental transition. These studies provide novel insights for understanding the normal roles of AhR signaling during cerebellar granule cell neurogenesis, and may have important implications for the effects of environmental factors in cerebellar dysgenesis. PMID:26243376

  6. UAV State Estimation Modeling Techniques in AHRS

    NASA Astrophysics Data System (ADS)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  7. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex.

    PubMed

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A; Xing, Yongna

    2017-05-23

    The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR-ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.

  8. Constitutive expression of the AHR signaling pathway in a bovine mammary epithelial cell line and modulation by dioxin-like PCB and other AHR ligands.

    PubMed

    Girolami, Flavia; Spalenza, Veronica; Manzini, Livio; Carletti, Monica; Nebbia, Carlo

    2015-01-05

    Environmental pollutants, such as dioxin-like (DL) PCBs, benzo(a) pyrene (B[a]P), and flavonoids are aryl hydrocarbon receptor (AHR) ligands and may be excreted in dairy milk. The expression of AHR-target genes, particularly those involved in xenobiotic biotransformation, and their modulation by two DL-PCBs, B[a]P, and β-naphthoflavone was investigated in a bovine mammary epithelial cell line (BME-UV). As assessed by quantitative PCR, BME-UV cells expressed a functional AHR signaling pathway. All the AHR ligands induced a concentration-related increase in the transcription of cytochrome P450 1A1 and 1B1, known to be implicated in the bioactivation of several xenobiotics. Conversely, genes encoding for antioxidant and detoxifying enzymes, like quinone oxidoreductase or glutathione S-transferase A2, were not affected or even depressed. This study demonstrates the occurrence and the modulation by different AHR-ligands of genes involved in xenobiotic metabolism in BME-UV cells, with the potential generation of (re) active metabolites that may damage mammary tissue and/or affect animal or human health via the contaminated milk. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Teratogenic impact of dioxin-activated AHR in laboratory animals

    EPA Science Inventory

    AHR and ARNT are expressed in mouse and human palatal shelves and in the urinary tract of the mouse fetus. AHR expression, translocation to the nucleus, binding to DRE, and activation are required for mediation of TCDD-induction of CP and HN. Although the human palate requires a ...

  10. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism.

    PubMed

    Korecka, Agata; Dona, Anthony; Lahiri, Shawon; Tett, Adrian James; Al-Asmakh, Maha; Braniste, Viorica; D'Arienzo, Rossana; Abbaspour, Afrouz; Reichardt, Nicole; Fujii-Kuriyama, Yoshiaki; Rafter, Joseph; Narbad, Arjan; Holmes, Elaine; Nicholson, Jeremy; Arulampalam, Velmurugesan; Pettersson, Sven

    2016-01-01

    The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism-biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1 H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR -/- ) and wild-type (AhR +/+ ) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR +/+ and AhR -/- mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR -/- mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR -/- mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR -/- mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways.

  11. Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas.

    PubMed

    Formosa, R; Borg, J; Vassallo, J

    2017-08-01

    Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G 0 /G 1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. © 2017 The authors.

  12. Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas

    PubMed Central

    Formosa, R; Borg, J

    2017-01-01

    Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. PMID:28649092

  13. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    PubMed Central

    Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna

    2017-01-01

    The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands. PMID:28396409

  14. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li

    he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomainmore » interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.« less

  15. Synthetic antagonists of in vivo antidiuretic and vasopressor responses to arginine-vasopressin.

    PubMed

    Manning, M; Lammek, B; Kolodziejczyk, A M; Seto, J; Sawyer, W H

    1981-06-01

    Four analogues of [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid),4-valine,8-D-arginine]vasopressin [d-(CH2)5 VDAVP] and four analogues of its L-arginine isomer d(CH2)5 VAVP with O-methyl-, O-ethyl, O-isopropyl, and O-n-propyltyrosine substituents at position 2 were prepared by the solid-phase method using a slightly modified reoxidation procedure following deblocking with sodium in liquid ammonia to overcome losses due to insolubility. These analogues are the following: 1, d(CH2)5Tyr(Me)VDAVP;2, d(CH2)5Tyr(Et)VDAVP; 3, d(CH2)5Tyr(i-Pr)VDAVP; 4, d(CH2)5Tyr(n-Pr)VDAVP; 5, d(CH2)5Tyr(Me)VAVP; 6, d(CH2)5Tyr(Et)VAVP; 7, d(CH2)5Tyr(i-Pr)VAVP; 8, d(CH2)5Tyr(n-Pr)VAVP. These analogues were tested for agonistic and antagonistic activities in rat antidiuretic and rat vasopressor assay systems. All eight analogues cause a transient antidiuresis when injected intravenously and effectively antagonize antidiuretic responses to subsequent injections of arginine-vasopressin (AVP). They exhibit the following antiantidiuretic pA2 values: 1, 6.68 +/- 0.11; 2, 7.10 +/- 0.08; 3, 6.88 +/- 0.07; 4, 6.67 +/0 0.05; 5, 7.35 +/- 0.06; 6, 7.57 +/- 0.06; 7, 7.32 +/- 0.10; 8, 7.29 +/- 0.07. They are also highly effective antagonists of the vasopressor responses to AVP, with antivasopressor pA2 values in the range of 7.86 to 8.44. These findings indicate tht in this series O-ethyl substitution on the tyrosine at position 2 is optimal for antiantidiuretic potency and that L-arginine is far superior to D-arginine in this regard also. Thus, d(CH2)5Tyr(Et)VAVP with an antiantidiuretic pA2 of 7.57 +/- 0.06 is the most potent of these eight antidiuretic antagonists. These are the first known effective antagonists of in vivo antidiuretic responses to AVP. They are, thus, potentially useful pharmacological tools for studies on the roles of AVP in regulating water balance in normal and pathophysiological states in animals and in humans. They also serve as excellent lead compounds for the

  16. Serotonin is an endogenous regulator of intestinal CYP1A1 via AhR.

    PubMed

    Manzella, Christopher; Singhal, Megha; Alrefai, Waddah A; Saksena, Seema; Dudeja, Pradeep K; Gill, Ravinder K

    2018-04-17

    Aryl hydrocarbon receptor (AhR) is a nuclear receptor that controls xenobiotic detoxification via induction of cytochrome P450 1A1 (CYP1A1) and regulates immune responses in the intestine. Metabolites of L-tryptophan activate AhR, which confers protection against intestinal inflammation. We tested the hypothesis that serotonin (5-HT) is an endogenous activator of AhR in intestinal epithelial cells. Treatment of Caco-2 monolayers with 5-HT induced CYP1A1 mRNA in a time- and concentration-dependent manner and also stimulated CYP1A1 activity. CYP1A1 induction by 5-HT was dependent upon uptake via serotonin transporter (SERT). Antagonism of AhR and knockdown of AhR and its binding partner aryl hydrocarbon receptor nuclear translocator (ARNT) attenuated CYP1A1 induction by 5-HT. Activation of AhR was evident by its nuclear translocation after 5-HT treatment and by induction of an AhR-responsive luciferase reporter. In vivo studies showed a dramatic decrease in CYP1A1 expression and other AhR target genes in SERT KO ileal mucosa by microarray analysis. These results suggest that intracellular accumulation of 5-HT via SERT induces CYP1A1 expression via AhR in intestinal epithelial cells, and SERT deficiency in vivo impairs activation of AhR. Our studies provide a novel link between the serotonergic and AhR pathways which has implications in xenobiotic metabolism and intestinal inflammation.

  17. Regulation of zebrafish CYP3A65 transcription by AHR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenicmore » lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  18. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders

    PubMed Central

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3+ regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  19. Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR).

    PubMed

    Seok, Seung-Hyeon; Ma, Zhi-Xiong; Feltenberger, John B; Chen, Hongbo; Chen, Hui; Scarlett, Cameron; Lin, Ziqing; Satyshur, Kenneth A; Cortopassi, Marissa; Jefcoate, Colin R; Ge, Ying; Tang, Weiping; Bradfield, Christopher A; Xing, Yongna

    2018-02-09

    Cellular metabolites act as important signaling cues, but are subject to complex unknown chemistry. Kynurenine is a tryptophan metabolite that plays a crucial role in cancer and the immune system. Despite its atypical, non-ligand-like, highly polar structure, kynurenine activates the aryl hydrocarbon receptor (AHR), a PER, ARNT, SIM (PAS) family transcription factor that responds to diverse environmental and cellular ligands. The activity of kynurenine is increased 100-1000-fold by incubation or long-term storage and relies on the hydrophobic ligand-binding pocket of AHR, with identical structural signatures for AHR induction before and after activation. We purified trace-active derivatives of kynurenine and identified two novel, closely related condensation products, named trace-extended aromatic condensation products (TEACOPs), which are active at low picomolar levels. The synthesized compound for one of the predicted structures matched the purified compound in both chemical structure and AHR pharmacology. Our study provides evidence that kynurenine acts as an AHR pro-ligand, which requires novel chemical conversions to act as a receptor agonist. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Suppression of CYP1 members of the AHR response by pathogen-associated molecular patterns.

    PubMed

    Peres, Adam G; Zamboni, Robert; King, Irah L; Madrenas, Joaquín

    2017-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that triggers a broad response, which includes the regulation of proinflammatory cytokine production by monocytes and macrophages. AHR is negatively regulated by a set of genes that it transcriptionally activates, including the AHR repressor ( Ahrr ) and the cytochrome P450 1 ( Cyp1 ) family, which are critical for preventing exacerbated AHR activity. An imbalance in these regulatory mechanisms has been shown to cause severe defects in lymphoid cells. Therefore, we wanted to assess how AHR activation is regulated in monocytes and macrophages in the context of innate immune responses induced by pathogen-associated molecular patterns (PAMPs). We found that concomitant stimulation of primary human monocytes with PAMPs and the AHR agonist 6-formylindolo(3,2-b)carbazole (FICZ) led to a selective dose-dependent inhibition of Cyp1 family members induction. Two other AHR-dependent genes [ Ahrr and NADPH quinone dehydrogenase 1 ( Nqo1 )] were not affected under these conditions, suggesting a split in the AHR regulation by PAMPs. This down-regulation of Cyp1 family members did not require de novo protein production nor signaling through p38, ERK, or PI3K-Akt-mammalian target of rapamycin (mTOR) pathways. Furthermore, such a split regulation of the AHR response was more apparent in GM-CSF-derived macrophages, a finding corroborated at the functional level by decreased CYP1 activity and decreased proinflammatory cytokine production in response to FICZ and LPS. Collectively, our findings identify a role for pattern recognition receptor (PRR) signaling in regulating the AHR response through selective down-regulation of Cyp1 expression in human monocytes and macrophages. © Society for Leukocyte Biology.

  1. AhR transcriptional activity in serum of Inuits across Greenlandic districts

    PubMed Central

    Long, Manhai; Deutch, Bente; Bonefeld-Jorgensen, Eva C

    2007-01-01

    Background Human exposure to lipophilic persistent organic pollutants (POPs) including polychlorinated dibenzo-p-dioxins/furans (PCDDs/PCDFs), polychlorinated biphenyls (PCBs) and organochlorine pesticide is ubiquitous. The individual is exposed to a complex mixture of POPs being life-long beginning during critical developmental windows. Exposure to POPs elicits a number of species- and tissue-specific toxic responses, many of which involve the aryl hydrocarbon receptor (AhR). The aim of this study was to compare the actual level of integrated AhR transcriptional activity in the lipophilic serum fraction containing the actual POP mixture among Inuits from different districts in Greenland, and to evaluate whether the AhR transactivity is correlated to the bio-accumulated POPs and/or lifestyle factors. Methods The study included 357 serum samples from the Greenlandic districts: Nuuk and Sisimiut (South West Coast), Qaanaaq (North Coast) and Tasiilaq (East Coast). The bio-accumulated serum POPs were extracted by ethanol: hexane and clean-up on Florisil columns. Effects of the serum extract on the AhR transactivity was determined using the Hepa 1.12cR mouse hepatoma cell line carrying an AhR-luciferase reporter gene, and the data was evaluated for possible association to the serum levels of 14 PCB congeners, 10 organochlorine pesticide residues and/or lifestyle factors. Results In total 85% of the Inuit samples elicited agonistic AhR transactivity in a district dependent pattern. The median level of the AhR-TCDD equivalent (AhR-TEQ) of the separate genders was similar in the different districts. For the combined data the order of the median AhR-TEQ was Tasiilaq > Nuuk ≥ Sisimiut > Qaanaaq possibly being related to the different composition of POPs. In overall, the AhR transactivity was inversely correlated to the levels of sum POPs, age and/or intake of marine food. Conclusion i) We observed that the proportion of dioxin like (DL) compounds in the POP mixture was the

  2. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast

    PubMed Central

    Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios

    2015-01-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496

  3. Simultaneous inhibition of aryl hydrocarbon receptor (AhR) and Src abolishes androgen receptor signaling.

    PubMed

    Ghotbaddini, Maryam; Cisse, Keyana; Carey, Alexis; Powell, Joann B

    2017-01-01

    Altered c-Src activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers including prostate cancer. Src is known to regulate several biological functions of tumor cells, including proliferation. There are several Src inhibitors under evaluation for clinical effectiveness but have shown little activity in monotherapy trials of solid tumors. Combination studies are being explored by in vitro analysis and in clinical trials. Here we investigate the effect of simultaneous inhibition of the aryl hydrocarbon receptor (AhR) and Src on androgen receptor (AR) signaling in prostate cancer cells. AhR has also been reported to interact with the Src signaling pathway during prostate development. c-Src protein kinase is associated with the AhR complex in the cytosol and upon ligand binding to AhR, c-Src is activated and released from the complex. AhR has also been shown to regulate AR signaling which remains functionally important in the development and progression of prostate cancer. We provide evidence that co-inhibition of AhR and Src abolish AR activity. Evaluation of total protein and cellular fractions revealed decreased pAR expression and AR nuclear localization. Assays utilizing an androgen responsive element (ARE) and qRT-PCR analysis of AR genes revealed decreased AR promoter activity and transcriptional activity in the presence of both AhR and Src inhibitors. Furthermore, co-inhibition of AhR and Src reduced the growth of prostate cancer cells compared to individual treatments. Several studies have revealed that AhR and Src individually inhibit cellular proliferation. However, this study is the first to suggest simultaneous inhibition of AhR and Src to inhibit AR signaling and prostate cancer cell growth.

  4. Aryl hydrocarbon receptor (AhR) a possible target for the treatment of skin disease.

    PubMed

    Napolitano, Maddalena; Patruno, Cataldo

    2018-07-01

    Aryl hydrocarbon receptor (AhR) is a transcription factor expressed in all skin cells type. It responds to exogenous and endogenous chemicals by inducing/repressing the expression of several genes with toxic or protective effects in a wide range of species and tissues. In healthy skin, AhR signalling contributes to keratinocytes differentiation, skin barrier function, skin pigmentation, and mediates oxidative stress. In the last years, some studies have shown that AhR seems to be involved in the pathogenesis of some skin diseases, even if the currently available data are contradictory. Indeed, while the blocking the AhR signalling activity could prevent or treat skin cancer, the AhR activation seems to be advantageous for the treatment of inflammatory skin diseases. Therefore, for its multifaceted role in skin diseases, AhR seems to be an attractive therapeutic target. Indeed, recently some molecules have been identified for the prevention of skin cancer and the treatment of inflammatory skin diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Steven Karl; Determan, John C.

    2015-10-14

    A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.

  6. Estimation of weekly 99Mo production by AHR 200 kW

    NASA Astrophysics Data System (ADS)

    Siregar, I. H.; Suharyana; Khakim, A.; Siregar, D.; Frida, A. R.

    2016-11-01

    The estimation of weekly 99Mo production by AHR 200 kW fueled with Low Enriched Uranium Uranyl Nitrate solution has been simulated by using MCNPX computer code. We have employed the AHR design of Babcock & Wilcox Medical Isotope Production System with 9Be Reflector and Stainless steel vessel. We found that when the concentration of uranium in the fresh fuel was 108 gr U/L of UO2(NO3)2 fuel solution, the multiplication factor was 1.0517. The 99Mo concentration reached saturated at tenth day operation. The AHR can produce approximately 1.96×103 6-day-Ci weekly.

  7. Intersection of AHR and Wnt Signaling in Development, Health, and Disease

    PubMed Central

    Schneider, Andrew J.; Branam, Amanda M.; Peterson, Richard E.

    2014-01-01

    The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development. PMID:25286307

  8. Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding.

    PubMed

    Reitzel, Adam M; Passamaneck, Yale J; Karchner, Sibel I; Franks, Diana G; Martindale, Mark Q; Tarrant, Ann M; Hahn, Mark E

    2014-02-01

    The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has diverse roles in development, physiology, and environmental sensing in bilaterian animals. Studying the expression of conserved genes and function of proteins in outgroups to protostomes and deuterostomes assists in understanding the antiquity of gene function and deciphering lineage-specific differences in these bilaterian clades. We describe the developmental expression of AHR from the sea anemone Nematostella vectensis and compare its expression with three other members of the bHLH-PAS family (AHR nuclear translocator (ARNT), Cycle, and a proto-Single-Minded/Trachealess). NvAHR expression was highest early in the larval stage with spatial expression in the basal portion of the ectoderm that became increasingly restricted to the oral pole with concentrated expression in tentacles of the juvenile polyp. The other bHLH-PAS genes showed a divergent expression pattern in later larval stages and polyps, in which gene expression was concentrated in the aboral end, with broader expression in the endoderm later in development. In co-immunoprecipitation assays, we found no evidence for heterodimerization of AHR with ARNT, contrary to the conservation of this specific interaction in all bilaterians studied to date. Similar to results with other invertebrate AHRs but in contrast to vertebrate AHRs, NvAHR failed to bind two prototypical xenobiotic AHR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin, β-naphthoflavone). Together, our data suggest that AHR's original function in Eumetazoa likely involved developmental patterning, potentially of neural tissue. The role of heterodimerization in the function of AHR may have arisen after the cnidarian-bilaterian ancestor. The absence of xenobiotic binding to NvAHR further supports a hypothesis for a derived role of this protein in chemical sensing within the chordates.

  9. Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding

    PubMed Central

    Reitzel, Adam M.; Passamaneck, Yale J.; Karchner, Sibel I.; Franks, Diana G.; Martindale, Mark Q.; Tarrant, Ann M.; Hahn, Mark E.

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a member of the basic-helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has diverse roles in development, physiology, and environmental sensing in bilaterian animals. Studying the expression of conserved genes and function of proteins in outgroups to protostomes and deuterostomes assists in understanding the antiquity of gene function and deciphering lineage-specific differences in these bilaterian clades. We describe the developmental expression of AHR from the sea anemone Nematostella vectensis and compare its expression with three other members of the bHLH-PAS family (AHR nuclear translocator (ARNT), Cycle, and a proto-Single-Minded/Trachaeless). NvAHR expression was highest early in the larval stage with spatial expression in the basal portion of the ectoderm that became increasingly restricted to the oral pole with concentrated expression in tentacles of the juvenile polyp. The other bHLH-PAS genes showed a divergent expression pattern in later larval stages and polyps, in which gene expression was concentrated in the aboral end, with broader expression in the endoderm later in development. In co-immunoprecipitation assays, we found no evidence for heterodimerization of AHR with ARNT, contrary to the conservation of this specific interaction in all bilaterians studied to date. Similar to results with other invertebrate AHRs but in contrast to vertebrate AHRs, NvAHR failed to bind two prototypical xenobiotic AHR ligands (TCDD, BNF). Together, our data suggest that AHR's original function in Eumetazoa likely involved developmental patterning, potentially of neural tissue. The role of heterodimerization in the function of AHR may have arisen after the cnidarian-bilaterian ancestor. The absence of xenobiotic binding to NvAHR further supports a hypothesis for a derived role of this protein in chemical sensing within the chordates. PMID:24292160

  10. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  11. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis

    PubMed Central

    van den Bogaard, Ellen H.; Bergboer, Judith G.M.; Vonk-Bergers, Mieke; van Vlijmen-Willems, Ivonne M.J.J.; Hato, Stanleyson V.; van der Valk, Pieter G.M.; Schröder, Jens Michael; Joosten, Irma; Zeeuwen, Patrick L.J.M.; Schalkwijk, Joost

    2013-01-01

    Topical application of coal tar is one of the oldest therapies for atopic dermatitis (AD), a T helper 2 (Th2) lymphocyte–mediated skin disease associated with loss-of-function mutations in the skin barrier gene, filaggrin (FLG). Despite its longstanding clinical use and efficacy, the molecular mechanism of coal tar therapy is unknown. Using organotypic skin models with primary keratinocytes from AD patients and controls, we found that coal tar activated the aryl hydrocarbon receptor (AHR), resulting in induction of epidermal differentiation. AHR knockdown by siRNA completely abrogated this effect. Coal tar restored filaggrin expression in FLG-haploinsufficient keratinocytes to wild-type levels, and counteracted Th2 cytokine–mediated downregulation of skin barrier proteins. In AD patients, coal tar completely restored expression of major skin barrier proteins, including filaggrin. Using organotypic skin models stimulated with Th2 cytokines IL-4 and IL-13, we found coal tar to diminish spongiosis, apoptosis, and CCL26 expression, all AD hallmarks. Coal tar interfered with Th2 cytokine signaling via dephosphorylation of STAT6, most likely due to AHR-regulated activation of the NRF2 antioxidative stress pathway. The therapeutic effect of AHR activation herein described opens a new avenue to reconsider AHR as a pharmacological target and could lead to the development of mechanism-based drugs for AD. PMID:23348739

  12. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis.

    PubMed

    van den Bogaard, Ellen H; Bergboer, Judith G M; Vonk-Bergers, Mieke; van Vlijmen-Willems, Ivonne M J J; Hato, Stanleyson V; van der Valk, Pieter G M; Schröder, Jens Michael; Joosten, Irma; Zeeuwen, Patrick L J M; Schalkwijk, Joost

    2013-02-01

    Topical application of coal tar is one of the oldest therapies for atopic dermatitis (AD), a T helper 2 (Th2) lymphocyte-mediated skin disease associated with loss-of-function mutations in the skin barrier gene, filaggrin (FLG). Despite its longstanding clinical use and efficacy, the molecular mechanism of coal tar therapy is unknown. Using organotypic skin models with primary keratinocytes from AD patients and controls, we found that coal tar activated the aryl hydrocarbon receptor (AHR), resulting in induction of epidermal differentiation. AHR knockdown by siRNA completely abrogated this effect. Coal tar restored filaggrin expression in FLG-haploinsufficient keratinocytes to wild-type levels, and counteracted Th2 cytokine-mediated downregulation of skin barrier proteins. In AD patients, coal tar completely restored expression of major skin barrier proteins, including filaggrin. Using organotypic skin models stimulated with Th2 cytokines IL-4 and IL-13, we found coal tar to diminish spongiosis, apoptosis, and CCL26 expression, all AD hallmarks. Coal tar interfered with Th2 cytokine signaling via dephosphorylation of STAT6, most likely due to AHR-regulated activation of the NRF2 antioxidative stress pathway. The therapeutic effect of AHR activation herein described opens a new avenue to reconsider AHR as a pharmacological target and could lead to the development of mechanism-based drugs for AD.

  13. Macrophages from Behcet's Disease Patients Express Decreased Level of Aryl Hydrocarbon Receptor (AHR) mRNA.

    PubMed

    Palizgir, Mohammad Taghi; Akhtari, Maryam; Mahmoudi, Mahdi; Mostafaei, Shayan; Rezaeimanesh, Alireza; Akhlaghi, Massoomeh; Shahram, Farhad

    2017-10-01

    Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, connecting environmental stimulators with the immune system. M1 macrophages are a part of immune system that contribute to the inflammatory events in the pathogenesis of Behcet's disease (BD). The effect of AHR on the macrophages in BD patients is still unclear. In this study, we investigated the mRNA expression of AHR in the monocyte-derived and M1 macrophages in active BD patients in comparison to healthy controls. Isolated monocytes from 10 healthy controls and 10 active BD patients were differentiated to macrophages by macrophage-colony stimulating factor (M-CSF) for 7 days. Cells were then polarized to M1 macrophages by lipopolysaccharide (LPS) and interferon-γ (IFNγ) for 24h. Monocyte purity and macrophage markers expression were analyzed by flow cytometry. Analysis of AHR mRNA expression was performed by SYBR Green real-time PCR. Our results showed that AHR expression is significantly down-regulated in M1 macrophages compare to monocyte-derived macrophages. It was shown that both monocyte-derived macrophages and M1 macrophages from BD patients significantly express lower level of AHR mRNA compared to healthy individuals. Our results demonstrate an anti-inflammatory role for AHR in macrophages, which suggest that decreased AHR expression is associated with pro-inflammatory M1 macrophage and BD susceptibility.

  14. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism

    PubMed Central

    Korecka, Agata; Dona, Anthony; Lahiri, Shawon; Tett, Adrian James; Al-Asmakh, Maha; Braniste, Viorica; D’Arienzo, Rossana; Abbaspour, Afrouz; Reichardt, Nicole; Fujii-Kuriyama, Yoshiaki; Rafter, Joseph; Narbad, Arjan; Holmes, Elaine; Nicholson, Jeremy; Arulampalam, Velmurugesan; Pettersson, Sven

    2016-01-01

    The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism—biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR−/−) and wild-type (AhR+/+) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR+/+ and AhR−/− mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR−/− mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR−/− mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR−/− mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways. PMID:28721249

  15. The role of aryl hydrocarbon receptor (AhR) in the pathology of pleomorphic adenoma in parotid gland.

    PubMed

    Drozdzik, Agnieszka; Kowalczyk, Robert; Lipski, Mariusz; Łapczuk, Joanna; Urasinska, Elzbieta; Kurzawski, Mateusz

    2016-01-01

    Pleomorphic adenoma (benign mixed tumor) is one of the most common salivary gland tumors. However, molecular mechanisms implicated in its development are not entirely defined. Therefore, the study aimed at definition of aryl hydrocarbon receptor (AhR) involvement in pleomorphic adenoma pathology, as the AhR controlled gene system was documented to play a role in development of various human tumors. The study was carried out in pleomorphic adenoma and control parotid gland tissues where gene expression of AHR, AhR nuclear translocator (ARNT), AhR repressor (AHRR), as well as AhR controlled genes: CYP1A1 and CYP1B1, at mRNA and protein (immunohistochemistry) levels were studied. Functional evaluation of AhR system was evaluated in HSY cells (human parotid gland adenocarcinoma cells) using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as AhR specific inducer. Pleomorphic adenoma specimens showed cytoplasmic and nuclear AhR expression in epithelial cells as well as in mesenchymal cells. In parotid gland AhR was expressed in cytoplasm of duct cells. Quantitative expression at mRNA level showed significantly higher expression of AHR, ARNT and CYP1B1, and comparable levels of CYP1A1 in pleomorphic adenoma tissue in comparison to healthy parotid gland. The HSY cell study revealed significantly higher expression level of AHRR in HSY as compared with MCF-7 cells (human breast adenocarcinoma cell line used as reference). Upon TCDD stimulation a drop in AHRR level in HSY cells and an increase in MCF-7 cells were observed. The HSY and MCF-7 cell proliferation rate (measured by WST-1 test) was not affected by TCDD. Summarizing both in vitro and in vivo observations it can be stated that AhR system may play a role in the pathology of pleomorphic adenoma. Copyright © 2015. Published by Elsevier Ltd.

  16. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankoti, Jaishree; Center for Environmental Health Sciences, University of Montana, Missoula, MT; Rase, Ben

    2010-07-15

    Aryl hydrocarbon receptor (AhR) activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces immune suppression. Dendritic cells (DCs) are key antigen presenting cells governing T cell activation and differentiation. However, the consequences of AhR activation in DCs are not fully defined. We hypothesized that AhR activation alters DC differentiation and generates dysfunctional DCs. To test this hypothesis, inflammatory bone marrow-derived DCs (BMDCs) from C57Bl/6 mice were generated in the presence of vehicle or TCDD. TCDD decreased CD11c expression but increased MHC class II, CD86 and CD25 expression on the BMDCs. The effects of TCDD were strictly AhR-dependent but not exclusively DRE-mediated. Similar effects weremore » observed with two natural AhR ligands, 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid (ITE). TCDD increased LPS- and CpG-induced IL-6 and TNF-{alpha} production by BMDCs but decreased their NO production. TCDD decreased CpG-induced IL-12p70 production by BMDCs but did not affect their secretion of IL-10. TCDD downregulated LPS- and CpG-induced NF-kB p65 levels and induced a trend towards upregulation of RelB levels in the BMDCs. AhR activation by TCDD modulated BMDC uptake of both soluble and particulate antigens. Induction of indoleamine-2,3-dioxygenase (IDO) and TGF-{beta}3 has been implicated in the generation of regulatory T cells following AhR activation. TCDD increased IDO1, IDO2 and TGF-{beta}3 mRNA levels in BMDCs as compared to vehicle. Despite the induction of regulatory mediators, TCDD-treated BMDCs failed to suppress antigen-specific T cell activation. Thus, AhR activation can directly alter the differentiation and innate functions of inflammatory DCs without affecting their ability to successfully interact with T cells.« less

  17. Crucial Role of the Aryl Hydrocarbon Receptor (AhR) in Indoxyl Sulfate-Induced Vascular Inflammation.

    PubMed

    Ito, Shunsuke; Osaka, Mizuko; Edamatsu, Takeo; Itoh, Yoshiharu; Yoshida, Masayuki

    2016-08-01

    The aryl hydrocarbon receptor (AhR), a ligand-inducible transcription factor mediating toxic effects of dioxins and uremic toxins, has recently emerged as a pathophysiological regulator of immune-inflammatory conditions. Indoxyl sulfate, a uremic toxin, is associated with cardiovascular disease in patients with chronic kidney disease and has been shown to be a ligand for AhR. The aim of this study was to investigate the potential role of AhR in indoxyl sulfate-induced leukocyte-endothelial interactions. Endothelial cell-specific AhR knockout (eAhR KO) mice were produced by crossing AhR floxed mice with Tie2 Cre mice. Indoxyl sulfate was administered for 2 weeks, followed by injection of TNF-α. Leukocyte recruitment to the femoral artery was assessed by intravital microscopy. Vascular endothelial cells were transfected with siRNA specific to AhR (siAhR) and treated with indoxyl sulfate, followed by stimulation with TNF-α. Indoxyl sulfate dramatically enhanced TNF-α-induced leukocyte recruitment to the vascular wall in control animals but not in eAhR KO mice. In endothelial cells, siAhR significantly reduced indoxyl sulfate-enhanced leukocyte adhesion as well as E-selectin expression, whereas the activation of JNK and nuclear factor-κB was not affected. A luciferase assay revealed that the region between -153 and -146 bps in the E-selectin promoter was responsible for indoxyl sulfate activity via AhR. Mutational analysis of this region revealed that activator protein-1 (AP-1) is responsible for indoxyl sulfate-triggered E-selectin expression via AhR. AhR mediates indoxyl sulfate-enhanced leukocyte-endothelial interactions through AP-1 transcriptional activity, which may constitute a new mechanism of vascular inflammation in patients with renal disease.

  18. Cell and region specificity of Aryl hydrocarbon Receptor (AhR) system in the testis and the epididymis.

    PubMed

    Wajda, A; Łapczuk, J; Grabowska, M; Pius-Sadowska, E; Słojewski, M; Laszczynska, M; Urasinska, E; Machalinski, B; Drozdzik, M

    2017-04-01

    Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells

    PubMed Central

    Ibabao, Christopher N.; Bunaciu, Rodica P.; Schaefer, Deanna M.W.; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14+CD11b+ monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47phox. Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr. PMID:25941627

  20. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells.

    PubMed

    Ibabao, Christopher N; Bunaciu, Rodica P; Schaefer, Deanna M W; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr.

  1. AIP mutations impair AhR signaling in pituitary adenoma patients fibroblasts and in GH3 cells.

    PubMed

    Lecoq, Anne-Lise; Viengchareun, Say; Hage, Mirella; Bouligand, Jérôme; Young, Jacques; Boutron, Audrey; Zizzari, Philippe; Lombès, Marc; Chanson, Philippe; Kamenický, Peter

    2016-05-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas through unknown molecular mechanisms. The best-known interacting partner of AIP is the aryl hydrocarbon receptor (AhR), a transcription factor that mediates the effects of xenobiotics implicated in carcinogenesis. As 75% of AIP mutations disrupt the physical and/or functional interaction with AhR, we postulated that the tumorigenic potential of AIP mutations might result from altered AhR signaling. We evaluated the impact of AIP mutations on the AhR signaling pathway, first in fibroblasts from AIP-mutated patients with pituitary adenomas, by comparison with fibroblasts from healthy subjects, then in transfected pituitary GH3 cells. The AIP protein level in mutated fibroblasts was about half of that in cells from healthy subjects, but AhR expression was unaffected. Gene expression analyses showed significant modifications in the expression of the AhR target genes CYP1B1 and AHRR in AIP-mutated fibroblasts, both before and after stimulation with the endogenous AhR ligand kynurenine. Kynurenine increased Cyp1b1 expression to a greater extent in GH3 cells overexpressing wild type compared with cells expressing mutant AIP Knockdown of endogenous Aip in these cells attenuated Cyp1b1 induction by the AhR ligand. Both mutant AIP expression and knockdown of endogenous Aip affected the kynurenine-dependent GH secretion of GH3 cells. This study of human fibroblasts bearing endogenous heterozygous AIP mutations and transfected pituitary GH3 cells shows that AIP mutations affect the AIP protein level and alter AhR transcriptional activity in a gene- and tissue-dependent manner. © 2016 Society for Endocrinology.

  2. NcoA2-Dependent Inhibition of HIF-1α Activation Is Regulated via AhR.

    PubMed

    Tsai, Chi-Hao; Li, Ching-Hao; Liao, Po-Lin; Cheng, Yu-Wen; Lin, Cheng-Hui; Huang, Shih-Hsuan; Kang, Jaw-Jou

    2015-12-01

    High endogenous levels of aryl hydrocarbon receptor (AhR) contribute to hypoxia signaling pathway inhibition following exposure to the potent AhR ligand benzo[a]pyrene (B[a]P) and could alter cellular homeostasis and disease condition. Increasing evidence indicates that AhR might compete with AhR nuclear translocator (ARNT) for complex formation with hypoxia-inducible factor-1α (HIF-1α) for transactivation, which could alter several physiological variables. Nuclear receptor coactivator 2 (NcoA2) is a transcription coactivator that regulates transcription factor activation and inhibition of basic helix-loop-helix Per (Period)-ARNT-SIM (single-minded) (bHLH-PAS) family proteins, such as HIF-1α, ARNT, and AhR, through protein-protein interactions. In this study, we demonstrated that both hypoxia and hypoxia-mimic conditions decreased NcoA2 protein expression in HEK293T cells. Hypoxia response element (HRE) and xenobiotic-responsive element (XRE) transactivation also were downregulated with NcoA2 knockdown under hypoxic conditions. In addition, B[a]P significantly decreased NcoA2 protein expression be accompanied with AhR degradation. We next evaluated whether the absence of AhR could affect NcoA2 protein function under hypoxia-mimetic conditions. NcoA2 and HIF-1α nuclear localization decreased in both B[a]P-pretreated and AhR-knockdown HepG2 cells under hypoxia-mimic conditions. Interestingly, NcoA2 overexpression downregulated HRE transactivation by competing with HIF-1α and AhR to form protein complexes with ARNT. Both NcoA2 knockdown and overexpression inhibited endothelial cell tube formation in vitro. We also demonstrated using the in vivo plug assay that NcoA2-regulated vascularization decreased in mice. Taken together, these results revealed a biphasic role of NcoA2 between AhR and hypoxic conditions, thus providing a novel mechanism underlying the cross talk between AhR and hypoxia that affects disease development and progression. © The Author 2015

  3. In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression

    PubMed Central

    Garcia, Gloria R.; Goodale, Britton C.; Wiley, Michelle W.; La Du, Jane K.; Hendrix, David A.

    2017-01-01

    Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long noncoding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2 dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurologic and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway. PMID:28385905

  4. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps.

    PubMed

    Liu, C C; Xia, M; Zhang, Y J; Jin, P; Zhao, L; Zhang, J; Li, T; Zhou, X M; Tu, Y Y; Kong, F; Sun, C; Shi, L; Zhao, M Q

    2018-06-02

    MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs. Copyright © 2018. Published by Elsevier Inc.

  5. Modeling the Effect of Cigarette Smoke on Hexose Utilization in Spermatocytes

    PubMed Central

    Esakky, Prabagaran; Debosch, Brian J.; Schoeller, Erica L.; Chi, Maggie M.; Moley, Kelle H.

    2015-01-01

    We set out to determine whether the addition of an aryl hydrocarbon receptor (AHR) antagonist has an effect on glucose/fructose utilization in the spermatocyte when exposed to cigarette smoke condensate (CSC). We exposed male germ cells to 5 and 40 μg/mL of CSC ± 10 μmol/L of AHR antagonist at various time points. Immunoblot expression of specific glucose/fructose transporters was compared to control. Radiolabeled uptake of 2-deoxyglucose (2-DG) and fructose was also performed. Spermatocytes utilized fructose nearly 50-fold more than 2-DG. Uptake of 2-DG decreased after CSC + AHR antagonist exposure. Glucose transporters (GLUTs) 9a and 12 declined after CSC + AHR antagonist exposure. Synergy between CSC and the AHR antagonist in spermatocytes may disrupt the metabolic profile in vitro. Toxic exposures alter energy homeostasis in early stages of male germ cell development, which could contribute to later effects explaining decreases in sperm motility in smokers. PMID:24803506

  6. Dibutyl Phthalate (DBP)-Induced Apoptosis and Neurotoxicity are Mediated via the Aryl Hydrocarbon Receptor (AhR) but not by Estrogen Receptor Alpha (ERα), Estrogen Receptor Beta (ERβ), or Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Mouse Cortical Neurons.

    PubMed

    Wójtowicz, Anna K; Szychowski, Konrad A; Wnuk, Agnieszka; Kajta, Małgorzata

    2017-01-01

    Dibutyl phthalate (di-n-butyl phthalate, DBP) is one of the most commonly used phthalate esters. DBP is widely used as a plasticizer in a variety of household industries and consumer products. Because phthalates are not chemically bound to products, they can easily leak out to enter the environment. DBP can pass through the placental and blood-brain barriers due to its chemical structure, but little is known about its mechanism of action in neuronal cells. This study demonstrated the toxic and apoptotic effects of DBP in mouse neocortical neurons in primary cultures. DBP stimulated caspase-3 and LDH activities as well as ROS formation in a concentration (10 nM-100 µM) and time-dependent (3-48 h) manner. DBP induced ROS formation at nanomolar concentrations, while it activated caspase-3 and LDH activities at micromolar concentrations. The biochemical effects of DBP were accompanied by decreased cell viability and induction of apoptotic bodies. Exposure to DBP reduced Erα and Pparγ mRNA expression levels, which were inversely correlated with protein expression of the receptors. Treatment with DBP enhanced Ahr mRNA expression, which was reflected by the increased AhR protein level observed at 3 h after exposure. ERα, ERβ, and PPARγ antagonists stimulated DBP-induced caspase-3 and LDH activities. AhR silencing demonstrated that DBP-induced apoptosis and neurotoxicity are mediated by AhR, which is consistent with the results from DBP-induced enhancement of AhR mRNA and protein expression. Our study showed that AhR is involved in DBP-induced apoptosis and neurotoxicity, while the ERs and PPARγ signaling pathways are impaired by the phthalate.

  7. High AHR expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism

    PubMed Central

    Castagnet, Patrice; Chemlali, Walid; Lallemand, François; Meseure, Didier; Pocard, Marc; Bieche, Ivan; Perrot-Applanat, Martine

    2018-01-01

    Increasing epidemiological and animal experimental data provide substantial support for the role of aryl hydrocarbon receptor (AhR) in mammary tumorigenesis. The effects of AhR have been clearly demonstrated in rodent models of breast carcinogenesis and in several established human breast cancer cell lines following exposure to AhR ligands or AhR overexpression. However, relatively little is known about the role of AhR in human breast cancers. AhR has always been considered to be a regulator of toxic and carcinogenic responses to environmental contaminants such as TCDD (dioxin) and benzo[a]pyrene (BaP). The aim of this study was to identify the type of breast tumors (ERα-positive or ERα-negative) that express AHR and how AhR affects human tumorigenesis. The levels of AHR, AHR nuclear translocator (ARNT) and AHR repressor (AHRR) mRNA expression were analyzed in a cohort of 439 breast tumors, demonstrating a weak association between high AHR expression and age greater than fifty years and ERα-negative status, and HR-/ERBB2 breast cancer subtypes. AHRR mRNA expression was associated with metastasis-free survival, while AHR mRNA expression was not. Immunohistochemistry revealed the presence of AhR protein in both tumor cells (nucleus and/or cytoplasm) and the tumor microenvironment (including endothelial cells and lymphocytes). High AHR expression was correlated with high expression of several genes involved in signaling pathways related to inflammation (IL1B, IL6, TNF, IL8 and CXCR4), metabolism (IDO1 and TDO2 from the kynurenine pathway), invasion (MMP1, MMP2 and PLAU), and IGF signaling (IGF2R, IGF1R and TGFB1). Two well-known ligands for AHR (TCDD and BaP) induced mRNA expression of IL1B and IL6 in an ERα-negative breast tumor cell line. The breast cancer ER status likely influences AhR activity involved in these signaling pathways. The mechanisms involved in AhR activation and target gene expression in breast cancers are also discussed. PMID:29320557

  8. High AHR expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism.

    PubMed

    Vacher, Sophie; Castagnet, Patrice; Chemlali, Walid; Lallemand, François; Meseure, Didier; Pocard, Marc; Bieche, Ivan; Perrot-Applanat, Martine

    2018-01-01

    Increasing epidemiological and animal experimental data provide substantial support for the role of aryl hydrocarbon receptor (AhR) in mammary tumorigenesis. The effects of AhR have been clearly demonstrated in rodent models of breast carcinogenesis and in several established human breast cancer cell lines following exposure to AhR ligands or AhR overexpression. However, relatively little is known about the role of AhR in human breast cancers. AhR has always been considered to be a regulator of toxic and carcinogenic responses to environmental contaminants such as TCDD (dioxin) and benzo[a]pyrene (BaP). The aim of this study was to identify the type of breast tumors (ERα-positive or ERα-negative) that express AHR and how AhR affects human tumorigenesis. The levels of AHR, AHR nuclear translocator (ARNT) and AHR repressor (AHRR) mRNA expression were analyzed in a cohort of 439 breast tumors, demonstrating a weak association between high AHR expression and age greater than fifty years and ERα-negative status, and HR-/ERBB2 breast cancer subtypes. AHRR mRNA expression was associated with metastasis-free survival, while AHR mRNA expression was not. Immunohistochemistry revealed the presence of AhR protein in both tumor cells (nucleus and/or cytoplasm) and the tumor microenvironment (including endothelial cells and lymphocytes). High AHR expression was correlated with high expression of several genes involved in signaling pathways related to inflammation (IL1B, IL6, TNF, IL8 and CXCR4), metabolism (IDO1 and TDO2 from the kynurenine pathway), invasion (MMP1, MMP2 and PLAU), and IGF signaling (IGF2R, IGF1R and TGFB1). Two well-known ligands for AHR (TCDD and BaP) induced mRNA expression of IL1B and IL6 in an ERα-negative breast tumor cell line. The breast cancer ER status likely influences AhR activity involved in these signaling pathways. The mechanisms involved in AhR activation and target gene expression in breast cancers are also discussed.

  9. ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR.

    PubMed

    Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing

    2017-12-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression.

    PubMed

    Garcia, Gloria R; Goodale, Britton C; Wiley, Michelle W; La Du, Jane K; Hendrix, David A; Tanguay, Robert L

    2017-06-01

    Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long noncoding RNA ( slincR ) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2 dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurologic and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway. Copyright © 2017 by The Author(s).

  11. AhR mediates an anti-inflammatory feedback mechanism in human Langerhans cells involving FcεRI and IDO.

    PubMed

    Koch, S; Stroisch, T J; Vorac, J; Herrmann, N; Leib, N; Schnautz, S; Kirins, H; Förster, I; Weighardt, H; Bieber, T

    2017-11-01

    Aryl hydrocarbon receptor (AhR), an important regulator of immune responses, is activated by UVB irradiation in the skin. Langerhans cells (LC) in the epidermis of patients with atopic dermatitis (AD) carry the high-affinity receptor for IgE, FcεRI, and are crucially involved in the pathogenesis of AD by inducing inflammatory responses and regulating tolerogenic processes. We investigated AhR and AhR repressor (AhRR) expression and functional consequences of AhR activation in human ex vivo skin cells and in in vitro-generated LC. Epidermal cells from healthy skin were analyzed for their expression of AhR and AhRR. LC generated from CD34 + hematopoietic stem cells (CD34LC) were treated with the UV photoproduct and AhR ligand 6-formylindolo[3,2-b]carbazole (FICZ). Cell surface receptors, transcription factors, and the tolerogenic tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) were analyzed using flow cytometry and quantitative PCR. Epidermal LC and CD34LC express AhR and AhRR. AhR was also found in keratinocytes, which lack AhRR. AhR activation of LC by FICZ caused downregulation of FcεRI in CD34LC without affecting their maturation. AhR-mediated regulation of FcεRI did not involve any known transcription factors related to this receptor. Furthermore, we could show upregulation of IDO mediated by AhR engagement. Our study shows that AhR activation by FICZ reduces FcεRI and upregulates IDO expression in LC. This AhR-mediated anti-inflammatory feedback mechanism may dampen the allergen-induced inflammation in AD. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  12. Relationships between serum-induced AhR bioactivity or mitochondrial inhibition and circulating polychlorinated biphenyls (PCBs).

    PubMed

    Park, Wook Ha; Kang, Sora; Lee, Hong Kyu; Salihovic, Samira; Bavel, Bert van; Lind, P Monica; Pak, Youngmi Kim; Lind, Lars

    2017-08-24

    Metabolic syndrome and mitochondrial dysfunction have been linked to elevated serum levels of persistent organic pollutants (POPs). However, it is not clear which specific POPs contribute to aryl hydrocarbon receptor (AhR)-dependent bioactivity or inhibit mitochondrial function in human subjects. Here, we measured the cumulative bioactivity of AhR ligand mixture (AhR bioactivity) and the effects on mitochondrial function (ATP concentration) in recombinant Hepa1c1c7 cells incubated with raw serum samples obtained from 911 elderly subjects in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort. Plasma concentrations of 30 POPs and plastic chemicals have previously been determined in the same PIVUS subjects. Linear regression analysis demonstrated that total toxic equivalence (TEQ) values and polychlorinated biphenyls (PCBs) were significantly correlated with AhR bioactivity (positively) and ATP concentration (negatively). Serum AhR bioactivities were positively associated with some PCBs, regardless of their dioxin-like properties, but only dioxin-like PCBs stimulated AhR bioactivity. By contrast, PCBs mediated a reduction in ATP content independently of their dioxin-like properties. This study suggests that AhR bioactivity and ATP concentrations in serum-treated cells may be valuable surrogate biomarkers of POP exposure and could be useful for the estimation of the effects of POPs on human health.

  13. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin.

    PubMed

    Hidaka, Takanori; Ogawa, Eisaku; Kobayashi, Eri H; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Fujimura, Taku; Aiba, Setsuya; Nakayama, Keiko; Okuyama, Ryuhei; Yamamoto, Masayuki

    2017-01-01

    Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.

  14. From the Cover: Development and Application of a Dual Rat and Human AHR Activation Assay.

    PubMed

    Brown, Martin R; Garside, Helen; Thompson, Emma; Atwal, Saseela; Bean, Chloe; Goodall, Tony; Sullivan, Michael; Graham, Mark J

    2017-12-01

    Significant prolonged aryl hydrocarbon receptor (AHR) activation, classically exhibited following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin, can cause a variety of undesirable toxicological effects. Novel pharmaceutical chemistries also have the potential to cause activation of AHR and consequent toxicities in pre-clinical species and man. Previous methods either employed relatively expensive and low-throughput primary hepatocyte dosing with PCR endpoint, or low resolution overexpressing reporter gene assays. We have developed, validated and applied an in vitro microtitre plate imaging-based medium throughput screening assay for the assessment of endogenous species-specific AHR activation potential via detection of induction of the surrogate transcriptional target Cytochrome P450 CYP1A1. Routine testing of pharmaceutical drug development candidate chemistries using this assay can influence the chemical design process and highlight AHR liabilities. This assay should be introduced such that human AHR activation liability is flagged early for confirmatory testing. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model.

    PubMed

    Cochez, Perrine M; Michiels, Camille; Hendrickx, Emilie; Van Belle, Astrid B; Lemaire, Muriel M; Dauguet, Nicolas; Warnier, Guy; de Heusch, Magali; Togbe, Dieudonnée; Ryffel, Bernhard; Coulie, Pierre G; Renauld, Jean-Christophe; Dumoutier, Laure

    2016-06-01

    IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRβ(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRβ(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRβ(+) T cells and ILCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans.

    PubMed

    Shinde, Rahul; Hezaveh, Kebria; Halaby, Marie Jo; Kloetgen, Andreas; Chakravarthy, Ankur; da Silva Medina, Tiago; Deol, Reema; Manion, Kieran P; Baglaenko, Yuriy; Eldh, Maria; Lamorte, Sara; Wallace, Drew; Chodisetti, Sathi Babu; Ravishankar, Buvana; Liu, Haiyun; Chaudhary, Kapil; Munn, David H; Tsirigos, Aristotelis; Madaio, Michael; Gabrielsson, Susanne; Touma, Zahi; Wither, Joan; De Carvalho, Daniel D; McGaha, Tracy L

    2018-06-01

    The transcription factor AhR modulates immunity at multiple levels. Here we report that phagocytes exposed to apoptotic cells exhibited rapid activation of AhR, which drove production of the cytokine IL-10. Activation of AhR was dependent on interactions between apoptotic-cell DNA and the pattern-recognition receptor TLR9 that was required for the prevention of immune responses to DNA and histones in vivo. Moreover, disease progression in mouse systemic lupus erythematosus (SLE) correlated with strength of the AhR signal, and the disease course could be altered by modulation of AhR activity. Deletion of AhR in the myeloid lineage caused systemic autoimmunity in mice, and an enhanced AhR transcriptional signature correlated with disease in patients with SLE. Thus, AhR activity induced by apoptotic cell phagocytes maintains peripheral tolerance.

  17. Is chronic AhR activation by rapidly metabolized ligands safe for the treatment of immune-mediated diseases?

    PubMed

    Ehrlich, Allison K; Kerkvliet, Nancy I

    2017-02-01

    There is a long standing perception that AhR ligands are automatically disqualified from pharmaceutical development due to their induction of Cyp1a1 as well as their potential for causing "dioxin-like" toxicities. However, recent discoveries of new AhR ligands with potential therapeutic applications have been reported, inviting reconsideration of this policy. One area of exploration is focused on the activation of AhR to promote the generation of regulatory T cells, which control the intensity and duration of immune responses. Rapidly metabolized AhR ligands (RMAhRLs), which do not bioaccumulate in the same manner as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) have been discovered that induce Tregs and display impressive therapeutic efficacy in a broad range of preclinical models of immune-mediated diseases. Given the promise of these RMAhRLs, is the bias against AhR activators still valid? Can RMAhRLs be given chronically to maintain therapeutic levels of AhR activation without producing the same toxicity profile as dioxin-like compounds? Based on our review of the data, there is little evidence to support the indiscriminate exclusion of AhR activators/Cyp1a1 inducers from early drug developmental pipelines. We also found no evidence that short-term treatment with RMAhRLs produce "dioxin-like toxicity" and, in fact, were well tolerated. However, safety testing of individual RMAhRLs under therapeutic conditions, as performed with all promising new drugs, will be needed to reveal whether or not chronic activation of AhR leads to unacceptable adverse outcomes.

  18. Antioxidant Artemisia princeps Extract Enhances the Expression of Filaggrin and Loricrin via the AHR/OVOL1 Pathway.

    PubMed

    Hirano, Akiko; Goto, Masashi; Mitsui, Tsukasa; Hashimoto-Hachiya, Akiko; Tsuji, Gaku; Furue, Masutaka

    2017-09-11

    The Japanese mugwort, Artemisia princeps ( yomogi in Japanese), has anti-inflammatory and antioxidant effects. Skin care products containing Artemisia princeps extract (APE) are known to improve dry skin symptoms in atopic dermatitis. Atopic dry skin is associated with a marked reduction of skin barrier proteins, such as filaggrin (FLG) and loricrin (LOR). Recently, aryl hydrocarbon receptor (AHR), and its downstream transcription factor OVO-like 1 (OVOL1), have been shown to regulate the gene expression of FLG and LOR. The focus of this paper is to evaluate the effects of APE on the AHR/OVOL1/FLG or LOR pathway since they have remained unknown to this point. We first demonstrated that non-cytotoxic concentrations of APE significantly upregulated antioxidant enzymes, NAD(P)H dehydrogenase quinone 1 and heme oxygenase 1, in human keratinocytes. Even at these low concentrations, APE induced nuclear translocation of AHR and significantly upregulated CYP1A1 (a specific target gene for AHR activation), FLG , and LOR expression. AHR knockdown downregulated OVOL1 expression. The APE-induced upregulation of FLG and LOR was canceled in keratinocytes with AHR or OVOL1 knockdown. In conclusion, antioxidant APE is a potent phytoextract that upregulates FLG and LOR expression in an AHR/OVOL1-dependent manner and this may underpin the barrier-repairing effects of APE in treating atopic dry skin.

  19. Antioxidant Artemisia princeps Extract Enhances the Expression of Filaggrin and Loricrin via the AHR/OVOL1 Pathway

    PubMed Central

    Hirano, Akiko; Goto, Masashi; Mitsui, Tsukasa; Hashimoto-Hachiya, Akiko; Tsuji, Gaku; Furue, Masutaka

    2017-01-01

    The Japanese mugwort, Artemisia princeps (yomogi in Japanese), has anti-inflammatory and antioxidant effects. Skin care products containing Artemisia princeps extract (APE) are known to improve dry skin symptoms in atopic dermatitis. Atopic dry skin is associated with a marked reduction of skin barrier proteins, such as filaggrin (FLG) and loricrin (LOR). Recently, aryl hydrocarbon receptor (AHR), and its downstream transcription factor OVO-like 1 (OVOL1), have been shown to regulate the gene expression of FLG and LOR. The focus of this paper is to evaluate the effects of APE on the AHR/OVOL1/FLG or LOR pathway since they have remained unknown to this point. We first demonstrated that non-cytotoxic concentrations of APE significantly upregulated antioxidant enzymes, NAD(P)H dehydrogenase quinone 1 and heme oxygenase 1, in human keratinocytes. Even at these low concentrations, APE induced nuclear translocation of AHR and significantly upregulated CYP1A1 (a specific target gene for AHR activation), FLG, and LOR expression. AHR knockdown downregulated OVOL1 expression. The APE-induced upregulation of FLG and LOR was canceled in keratinocytes with AHR or OVOL1 knockdown. In conclusion, antioxidant APE is a potent phytoextract that upregulates FLG and LOR expression in an AHR/OVOL1-dependent manner and this may underpin the barrier-repairing effects of APE in treating atopic dry skin. PMID:28892018

  20. INSIGHTS FROM AHR AND ARNT GENE KNOCKOUT STUDIES REGARDING RESPONSES TO TCDD AND REGULATION OF NORMAL EMBRYONIC DEVELOPMENT

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) and the AhR nuclear translocator (ARNT) are members of the Per-ARNT-Sim (PAS) family of proteins. The AhR binds members of the chemical family that includes dioxins, furans and coplanar polychlorinated biphenyls (PCBs). A ligand-AhR-ARNT comp...

  1. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  2. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis.

    PubMed

    Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji; Ishimaru, Naozumi

    2016-12-15

    The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow-derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR -/- mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos-dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR -/- mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer.

    PubMed

    Khanal, Tilak; Choi, Kwangmin; Leung, Yuet-Kin; Wang, Jiang; Kim, Dasom; Janakiram, Vinothini; Cho, Sung-Gook; Puga, Alvaro; Ho, Shuk-Mei; Kim, Kyounghyun

    2017-09-06

    The aryl hydrocarbon receptor (AHR) plays crucial roles in inflammation, metabolic disorder, and cancer. However, the molecular mechanisms regulating AHR expression remain unknown. Here, we found that an orphan nuclear NR2E3 maintains AHR expression, and forms an active transcriptional complex with transcription factor Sp1 and coactivator GRIP1 in MCF-7 human breast and HepG2 liver cancer cell lines. NR2E3 loss promotes the recruitment of LSD1, a histone demethylase of histone 3 lysine 4 di-methylation (H3K4me2), to the AHR gene promoter region, resulting in repression of AHR expression. AHR expression and responsiveness along with H3K4me2 were significantly reduced in the livers of Nr2e3 rd7 (Rd7) mice that express low NR2E3 relative to the livers of wild-type mice. SP2509, an LSD1 inhibitor, fully restored AHR expression and H3K4me2 levels in Rd7 mice. Lastly, we demonstrated that both AHR and NR2E3 are significantly associated with good clinical outcomes in liver cancer. Together, our results reveal a novel link between NR2E3, AHR, and liver cancer via LSD1-mediated H3K4me2 histone modification in liver cancer development.

  4. An Assessment of Technical and Production Risks of Candidate Low-Cost Attitude/Heading Reference Systems(AHRS)

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel; Burgess, Malcolm; Hammers, William

    1999-01-01

    This report provides an assessment of technical and production risks of candidate low-cost attitude/heading reference systems (AHRS) for use in the Advanced General Aviation Transport Experiments (AGATE) airplanes. A low-cost AHRS is a key component of modem "glass cockpit" flight displays for General Aviation (GA) aircraft. The technical capabilities of several candidate low-cost AHRS were examined and described along with the technical issues involved with using all solid-state components for attitude measurement. An economic model was developed which describes the expected profit, rate of return, and volume requirements for the manufacture of low-cost AHRS for GA aircraft in the 2000 to 2020 time frame. The model is the result of interviews with GA airframe manufacturers, avionics manufacturers and historical analysis of avionics of similar complexity. The model shows that a manufacturer will break even after three years of AHRS production, realizing an 18 percent rate of return (23 percent profit) on an investment of $3.5M over the 20 year period. A start-up production estimate showed costs of $6-12M for a new company to build and certify an AHRS from scratch, considered to be a high-risk proposition, versus $0.25-0.75M for an experienced avionics manufacturer to manufacture a design under license, a low-risk proposition.

  5. 76 FR 80447 - Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Committee 219: Attitude and Heading Reference Systems (AHRS) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 219: Attitude and... eighth meeting of RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS). DATES: The...

  6. TCDD dysregulation of 13 AHR-target genes in rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, John D., E-mail: john.watson@oicr.on.ca; Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca; Smith, Ashley B., E-mail: ashleyblaines@gmail.com

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluatedmore » doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic m

  7. Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse.

    PubMed

    Kimura, Eiki; Kubo, Ken-Ichiro; Endo, Toshihiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2017-01-01

    The aryl hydrocarbon receptor (AhR) avidly binds dioxin, a ubiquitous environmental contaminant. Disruption of downstream AhR signaling has been reported to alter neuronal development, and rodent offspring exposed to dioxin during gestation and lactation showed abnormalities in learning and memory, emotion, and social behavior. However, the mechanism behind the disrupted AhR signaling and developmental neurotoxicity induced by xenobiotic ligands remains elusive. Therefore, we studied how excessive AhR activation affects neuronal migration in the hippocampal CA1 region of the developing mouse brain. We transfected constitutively active (CA)-AhR, AhR, or control vector plasmids into neurons via in utero electroporation on gestational day 14 and analyzed neuronal positioning in the hippocampal CA1 region of offspring on postnatal day 14. CA-AhR transfection affected neuronal positioning, whereas no change was observed in AhR-transfected or control hippocampus. These results suggest that constitutively activated AhR signaling disrupts neuronal migration during hippocampal development. Further studies are needed to investigate whether such developmental disruption in the hippocampus leads to the abnormal cognition and behavior of rodent offspring upon maternal exposure to AhR xenobiotic ligands.

  8. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  9. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massarsky, Andrey, E-mail: andrey.massarsky@duke.e

    The zebrafish embryo has been proposed as a ‘bridge model’ to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6 h post fertilization (hpf) until 96 hpf to TPM{sub 0.5} and TPM{sub 1.0} (corresponding to 0.5 and 1.0 μg/mL equi-nicotine units)more » in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96 hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity. - Highlights: • Total particulate matter (TPM) is the particulate phase of cigarette smoke. • Zebrafish is proposed as a ‘bridge model’ to study the effects of TPM. • We investigate the roles of antioxidant and aryl hydrocarbon receptor (AHR

  10. Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish.

    PubMed

    Teraoka, Hiroki; Ogawa, Akira; Kubota, Akira; Stegeman, John J; Peterson, Richard E; Hiraga, Takeo

    2010-08-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). The AHR also plays important roles in normal development in mice, and AHR(-/-) mice show abnormal development of vascular structures in various blood vessels. Our previous studies revealed that Ahr type 2 (Ahr2) activation by TCDD and beta-naphthoflavone (BNF) caused a significant decrease in blood flow in the dorsal midbrain of zebrafish embryos. Here we report effects of TCDD exposure on the morphology of some blood vessels in the head of developing zebrafish. TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic artery in zebrafish larvae. In contrast, no major vascular defects were recognized in the trunk and tail regions following exposure to TCDD at least at the concentrations used. Essentially, the same observations were also confirmed in BNF-exposed larvae. Knock-down of either Ahr2 or Ahr nuclear translocator type 1 (Arnt1) by morpholino oligonucleotides (MOs) protected larvae against abnormal shape of the prosencephalic artery caused by TCDD and BNF. On the other hand, knock-down of Ahr2 or Arnt1 in vehicle-exposed zebrafish larvae had no clear effect on morphology of the prosencephalic artery or trunk vessels. Ascorbic acid, an antioxidant, protected against the TCDD-induced decrease in blood flow through the prosencephalic artery, but not the abnormal morphological changes in the shape of this artery. These results indicate that activation of Ahr2/Arnt1 pathway by TCDD and BNF affects the shape of certain blood vessels in the brain of developing zebrafish. (c) 2010 Elsevier B.V. All rights reserved.

  11. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver.

    PubMed

    Amenya, Hesbon Z; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-07

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  12. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    NASA Astrophysics Data System (ADS)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  13. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    PubMed

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-06

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  14. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis

    PubMed Central

    Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji

    2016-01-01

    The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)–mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow–derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR−/− mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos–dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR−/− mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. PMID:27849171

  15. Tapinarof Is a Natural AhR Agonist that Resolves Skin Inflammation in Mice and Humans.

    PubMed

    Smith, Susan H; Jayawickreme, Channa; Rickard, David J; Nicodeme, Edwige; Bui, Thi; Simmons, Cathy; Coquery, Christine M; Neil, Jessica; Pryor, William M; Mayhew, David; Rajpal, Deepak K; Creech, Katrina; Furst, Sylvia; Lee, James; Wu, Dalei; Rastinejad, Fraydoon; Willson, Timothy M; Viviani, Fabrice; Morris, David C; Moore, John T; Cote-Sierra, Javier

    2017-10-01

    Tapinarof (GSK2894512) is a naturally derived topical treatment with demonstrated efficacy for patients with psoriasis and atopic dermatitis, although the biologic target and mechanism of action had been unknown. We demonstrate that the anti-inflammatory properties of tapinarof are mediated through activation of the aryl hydrocarbon receptor (AhR). We show that tapinarof binds and activates AhR in multiple cell types, including cells of the target tissue-human skin. In addition, tapinarof moderates proinflammatory cytokine expression in stimulated peripheral blood CD4+ T cells and ex vivo human skin, and impacts barrier gene expression in primary human keratinocytes; both of these processes are likely to be downstream of AhR activation based on current evidence. That the anti-inflammatory properties of tapinarof derive from AhR agonism is conclusively demonstrated using the mouse model of imiquimod-induced psoriasiform skin lesions. Topical treatment of AhR-sufficient mice with tapinarof leads to compound-driven reductions in erythema, epidermal thickening, and tissue cytokine levels. In contrast, tapinarof has no impact on imiquimod-induced skin inflammation in AhR-deficient mice. In summary, these studies identify tapinarof as an AhR agonist and confirm that its efficacy is dependent on AhR. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Binding Mode and Structure-Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist.

    PubMed

    Dolciami, Daniela; Gargaro, Marco; Cerra, Bruno; Scalisi, Giulia; Bagnoli, Luana; Servillo, Giuseppe; Fazia, Maria Agnese Della; Puccetti, Paolo; Quintana, Francisco J; Fallarino, Francesca; Macchiarulo, Antonio

    2018-02-06

    Discovered as a modulator of the toxic response to environmental pollutants, aryl hydrocarbon receptor (AhR) has recently gained attention for its involvement in various physiological and pathological pathways. AhR is a ligand-dependent transcription factor activated by a large array of chemical compounds, which include metabolites of l-tryptophan (l-Trp) catabolism as endogenous ligands of the receptor. Among these, 2-(1'H-indole-3'-carbonyl)thiazole-4-carboxylic acid methyl ester (ITE) has attracted interest in the scientific community, being endowed with nontoxic, immunomodulatory, and anticancer AhR-mediated functions. So far, no information about the binding mode and interactions of ITE with AhR is available. In this study, we used docking and molecular dynamics to propose a putative binding mode of ITE into the ligand binding pocket of AhR. Mutagenesis studies were then instrumental in validating the proposed binding mode, identifying His 285 and Tyr 316 as important key residues for ligand-dependent receptor activation. Finally, a set of ITE analogues was synthesized and tested to further probe molecular interactions of ITE to AhR and characterize the relevance of specific functional groups in the chemical structure for receptor activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle.

    PubMed

    Kim, Young-Chae; Seok, Sunmi; Byun, Sangwon; Kong, Bo; Zhang, Yang; Guo, Grace; Xie, Wen; Ma, Jian; Kemper, Byron; Kemper, Jongsook Kim

    2018-02-07

    Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.

  18. Deficiency in Aryl Hydrocarbon Receptor (AHR) Expression throughout Aging Alters Gene Expression Profiles in Murine Long-Term Hematopoietic Stem Cells

    PubMed Central

    Bennett, John A.; Singh, Kameshwar P.; Unnisa, Zeenath; Welle, Stephen L.; Gasiewicz, Thomas A.

    2015-01-01

    Dysregulation of hematopoietic stem cell (HSC) signaling can contribute to the development of diseases of the blood system. Lack of aryl hydrocarbon receptor (AhR) has been associated with alterations in gene expression related to HSC function and the subsequent development of a myeloproliferative disorder in aging female mice. We sorted the most primitive population of HSCs with the highest stem cell potential (Long-term, or LT-HSCs) from 18-month-old AhR-null-allele (AhR-KO) and WT mice and analyzed gene expression using microarray to determine alterations in gene expression and cell signaling networks in HSCs that could potentially contribute to the aging phenotype of AhR-KO mice. Comparisons with previous array data from 8-week old mice indicated that aging alone is sufficient to alter gene expression. In addition, a significant number of gene expression differences were observed in aged LT-HSCs that are dependent on both aging and lack of AhR. Pathway analysis of these genes revealed networks related to hematopoietic stem cell activity or function. qPCR was used to confirm the differential expression of a subset of these genes, focusing on genes that may represent novel AhR targets due to the presence of a putative AhR binding site in their upstream regulatory region. We verified differential expression of PDGF-D, Smo, Wdfy1, Zbtb37 and Zfp382. Pathway analysis of this subset of genes revealed overlap between cellular functions of the novel AhR targets and AhR itself. Lentiviral-mediated knockdown of AhR in lineage-negative hematopoietic cells was sufficient to induce changes in all five of the candidate AhR targets identified. Taken together, these data suggest a role for AhR in HSC functional regulation, and identify novel HSC AhR target genes that may contribute to the phenotypes observed in AhR-KO mice. PMID:26208102

  19. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity.

    PubMed

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-04-12

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity.

  20. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolicmore » sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.« less

  1. The Role of AhR in Autoimmune Regulation and Its Potential as a Therapeutic Target against CD4 T Cell Mediated Inflammatory Disorder

    PubMed Central

    Zhu, Conghui; Xie, Qunhui; Zhao, Bin

    2014-01-01

    AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently. PMID:24905409

  2. Genetic and epigenetic regulation of AHR gene expression in MCF-7 breast cancer cells: role of the proximal promoter GC-rich region

    PubMed Central

    Englert, Neal A.; Turesky, Robert J.; Han, Weiguo; Bessette, Erin E.; Spivack, Simon D.; Caggana, Michele; Spink, David C.; Spink, Barbara C.

    2014-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, contributes to carcinogenesis through its role in the regulation of cytochrome P450 1 (CYP1)-catalyzed metabolism of carcinogens. Here, we investigated genetic and epigenetic mechanisms that affect AhR expression. Analyses of the human AHR proximal promoter in MCF-7 human breast cancer cells using luciferase assays and electrophoretic mobility shift assays revealed multiple specificity protein (Sp) 1 binding sequences that are transcriptional activators in vitro. The regulation of AhR expression was evaluated in long-term estrogen exposed (LTEE) MCF-7 cells, which showed increased AhR expression, enhanced CYP1 inducibility, and increased capacity to form DNA adducts when exposed to the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. The increased AhR expression in LTEE cells was found not to result from increased mRNA stability, differential RNA processing, or decreased DNA methylation. Analysis of the AHR proximal promoter region using chromatin immunoprecipitation confirmed that enhanced expression of AhR in LTEE cells involves changes in histone modifications, notably decreased trimethylation of histone 3, lysine 27. Upon further examination of the GC-rich Sp1-binding region, we confirmed that it contains a polymorphic (GGGGC)n repeat. In a population of newborns from New York State, the allele frequency of (GGGGC)n was n = 4>5≫6, 2. Circular dichroism spectroscopy revealed the ability of sequences of this GC-rich region to form guanine-quadruplex structures in vitro. These studies revealed multiple levels at which AhR expression may be controlled, and offer additional insights into mechanisms regulating AhR expression that can ultimately impact carcinogenesis. PMID:22728919

  3. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spink, Barbara C.; Bloom, Michael S.; Wu, Susan

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC){sub n}, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5more » species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC){sub 2} alleles were observed; however, in western gorilla, (GGGGC){sub n} alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC){sub n} was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC){sub n} alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC){sub 2} was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC){sub n} short tandem repeats are inherited, and that the (GGGGC){sub 2} allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC){sub n}, where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC){sub n} microsatellite instability • AHR promoter activity of a construct with (GGGGC){sub 2} was lower than that of (GGGGC){sub 4} • The frequency of (GGGGC){sub 2

  4. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    PubMed

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. TCDD, FICZ, and Other High Affinity AhR Ligands Dose-Dependently Determine the Fate of CD4+ T Cell Differentiation.

    PubMed

    Ehrlich, Allison K; Pennington, Jamie M; Bisson, William H; Kolluri, Siva K; Kerkvliet, Nancy I

    2018-02-01

    FICZ and TCDD, two high-affinity AhR ligands, are reported to have opposite effects on T cell differentiation with TCDD inducing regulatory T cells and FICZ inducing Th17 cells. This dichotomy has been attributed to ligand-intrinsic differences in AhR activation, although differences in sensitivity to metabolism complicate the issue. TCDD is resistant to AhR-induced metabolism and produces sustained AhR activation following a single dose in the μg/kg range, whereas FICZ is rapidly metabolized and AhR activation is transient. Nonetheless, prior studies comparing FICZ with TCDD have generally used the same 10-50 μg/kg dose range, and thus the two ligands would not equivalently activate AhR. We hypothesized that high-affinity AhR ligands can promote CD4+ T cell differentiation into both Th17 cells and Tregs, with fate depending on the extent and duration of AhR activation. We compared the immunosuppressive effects of TCDD and FICZ, along with two other rapidly metabolized ligands (ITE and 11-Cl-BBQ) in an acute alloresponse mouse model. The dose and timing of administration of each ligand was optimized for TCDD-equivalent Cyp1a1 induction. When optimized, all of the ligands suppressed the alloresponse in conjunction with the induction of Foxp3- Tr1 cells on day 2 and the expansion of natural Foxp3+ Tregs on day 10. In contrast, a low dose of FICZ induced transient expression of Cyp1a1 and did not induce Tregs or suppress the alloresponse but enhanced IL-17 production. Interestingly, low doses of the other ligands, including TCDD, also increased IL-17 production on day 10. These findings support the conclusion that the dose and the duration of AhR activation by high-affinity AhR ligands are the primary factors driving the fate of T cell differentiation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. AHR and CYP1A expression link historical contamination events to modern day developmental effects in the American alligator.

    PubMed

    Hale, Matthew D; Galligan, Thomas M; Rainwater, Thomas R; Moore, Brandon C; Wilkinson, Philip M; Guillette, Louis J; Parrott, Benjamin B

    2017-11-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians. Here, we characterize AHR and CYP1A gene expression in embryonic and juvenile specimen of a long-lived, apex predator, the American alligator (Alligator mississippiensis), and investigate variation in gene expression profiles in offspring collected from sites conveying differential exposures to environmental contaminants. Both age- and tissue-dependent patterning of AHR isoform expression are detected. We characterize two downstream transcriptional targets of the AHR, CYP1A1 and CYP1A2, and describe conserved elements of their genomic architecture. When comparisons across different sites are made, hepatic expression of CYP1A2, a direct target of the AHR, appears elevated in embryos from a site associated with a dioxin point source and previously characterized PCB contamination. Elevated CYP1A2 expression is not persistent, as site-specific variation was absent in juveniles originating from field-collected eggs but reared under lab conditions. Our results illustrate the patterning of AHR gene expression in a long-lived environmental model species, and indicate a potential contemporary influence of historical contamination. This research presents a novel opportunity to link

  7. Characterization testing of a 40 AHR bipolar nickel-hydrogen battery

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1989-12-01

    Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.

  8. Characterization testing of a 40 AHR bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1989-01-01

    Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.

  9. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  10. Antioxidant Opuntia ficus-indica Extract Activates AHR-NRF2 Signaling and Upregulates Filaggrin and Loricrin Expression in Human Keratinocytes.

    PubMed

    Nakahara, Takeshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Takahara, Masakazu; Tsuji, Gaku; Uchi, Hiroshi; Yan, Xianghong; Hachisuka, Junichi; Chiba, Takahito; Esaki, Hitokazu; Kido-Nakahara, Makiko; Furue, Masutaka

    2015-10-01

    Opuntia ficus-indica (OFI) is a cactus species widely used as an anti-inflammatory, antilipidemic, and hypoglycemic agent. It has been shown that OFI extract (OFIE) inhibits oxidative stress in animal models of diabetes and hepatic disease; however, its antioxidant mechanism remains largely unknown. In this study, we demonstrated that OFIE exhibited potent antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the downstream antioxidant enzyme quinone oxidoreductase 1 (NQO1), which inhibited the generation of reactive oxygen species in keratinocytes challenged with tumor necrosis factor α or benzo[α]pyrene. The antioxidant capacity of OFIE was canceled in NRF2 knockdown keratinocytes. OFIE exerted this NRF2-NQO1 upregulation through activation of the aryl hydrocarbon receptor (AHR). Moreover, the ligation of AHR by OFIE upregulated the expression of epidermal barrier proteins: filaggrin and loricrin. OFIE also prevented TH2 cytokine-mediated downregulation of filaggrin and loricrin expression in an AHR-dependent manner because it was canceled in AHR knockdown keratinocytes. Antioxidant OFIE is a potent activator of AHR-NRF2-NQO1 signaling and may be beneficial in treating barrier-disrupted skin disorders.

  11. Deletion of Aryl Hydrocarbon Receptor AHR in Mice Leads to Subretinal Accumulation of Microglia and RPE Atrophy

    PubMed Central

    Kim, Soo-Young; Yang, Hyun-Jin; Chang, Yi-Sheng; Kim, Jung-Woong; Brooks, Matthew; Chew, Emily Y.; Wong, Wai T.; Fariss, Robert N.; Rachel, Rivka A.; Cogliati, Tiziana; Qian, Haohua; Swaroop, Anand

    2014-01-01

    Purpose. The aryl hydrocarbon receptor (AHR) is a ligand-activated nuclear receptor that regulates cellular response to environmental signals, including UV and blue wavelength light. This study was undertaken to elucidate AHR function in retinal homeostasis. Methods. RNA-seq data sets were examined for Ahr expression in the mouse retina and rod photoreceptors. The Ahr−/− mice were evaluated by fundus imaging, optical coherence tomography, histology, immunohistochemistry, and ERG. For light damage experiments, adult mice were exposed to 14,000 to 15,000 lux of diffuse white light for 2 hours. Results. In mouse retina, Ahr transcripts were upregulated during development, with continued increase in aging rod photoreceptors. Fundus examination of 3-month-old Ahr−/− mice revealed subretinal autofluorescent spots, which increased in number with age and following acute light exposure. Ahr−/− retina also showed subretinal microglia accumulation that correlated with autofluorescence changes, RPE abnormalities, and reactivity against immunoglobulin, complement factor H, and glial fibrillary acidic protein. Functionally, Ahr−/− mice displayed reduced ERG c-wave amplitudes. Conclusions. The Ahr−/− mice exhibited subretinal accumulation of microglia and focal RPE atrophy, phenotypes observed in AMD. Together with a recently published report on another Ahr−/− mouse model, our study suggests that AHR has a protective role in the retina as an environmental stress sensor. As such, its altered function may contribute to human AMD progression and provide a target for pharmacological intervention. PMID:25159211

  12. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR

    PubMed Central

    Sahm, Felix; Rauschenbach, Katharina J.; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-01-01

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR–IL-6–STAT3 signaling loop. Inhibition of the AHR–IL-6–STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients. PMID:24657910

  13. The aryl hydrocarbon receptor-mediated disruption of vitellogenin synthesis in the fish liver: Cross-talk between AHR- and ERα-signalling pathways

    PubMed Central

    Bemanian, Vahid; Male, Rune; Goksøyr, Anders

    2004-01-01

    Background In the fish liver, the synthesis of egg yolk protein precursor vitellogenin (VTG) is under control of the estrogen receptor alpha (ERα). Environmental contaminants such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) are suspected to have antiestrogenic effects. The aryl hydrocarbon receptor (AHR) is the initial cellular target for TCDD and related compounds. The AHR is a ligand-activated transcription factor that stimulates the expression of the genes encoding xenobiotic metabolizing enzymes, such as cytochrome P450 1A (CYP1A). In this study, the effects of activation of AHR on the hepatic expression of VTG and ERα genes, in primary cultured salmon hepatocytes, have been investigated. Results The expression of the genes encoding VTG and ERα were strongly induced by 17β-estradiol (E2). However, the expression of VTG was disrupted by exposure of the cells to TCDD while CYP1A expression was enhanced. The effect of TCDD on VTG and CYP1A expression was annulled by the AHR-inhibitor α-naphthoflavone. Furthermore, exposure of the cells to TCDD abolished E2-induced accumulation of ERα mRNA. The AHR-mediated inhibitory effects on the expression of the VTG and ERα genes may occur at transcriptional and/or post-transcriptional levels. Nuclear run-off experiments revealed that simultaneous exposure of the cells to E2 and TCDD strongly inhibited the initiation of transcription of the VTG and ERα genes. In addition, inhibition of RNA synthesis by actinomycin D treatment showed that post-transcriptional levels of VTG and ERα mRNAs were not significantly altered upon treatment of the cells with TCDD. These results suggested that activation of AHR may inhibit the transactivation capacity of the ERα. Further, electrophoretic mobility shift assays using nuclear extracts prepared from cells treated for one or two hours with E2, alone or in mixture with TCDD, showed a strong reduction in the DNA binding activities upon TCDD treatment. These results also suggested

  14. Novel cellular targets of AhR underlie alterations in neutrophilic inflammation and iNOS expression during influenza virus infection

    PubMed Central

    Head Wheeler, Jennifer L.; Martin, Kyle C.; Lawrence, B. Paige

    2012-01-01

    The underlying reasons for variable clinical outcomes from respiratory viral infections remain uncertain. Several studies suggest that environmental factors contribute to this variation, but limited knowledge of cellular and molecular targets of these agents hampers our ability to quantify or modify their contribution to disease and improve public health. The aryl hydrocarbon receptor (AhR) is an environment sensing transcription factor that binds many anthropogenic and natural chemicals. The immunomodulatory properties of AhR ligands are best characterized with extensive studies of changes in CD4+ T cell responses. Yet, AhR modulates other aspects of immune function. We previously showed that during influenza virus infection, AhR activation modulates neutrophil accumulation in the lung, and this contributes to increased mortality in mice. Enhanced levels of inducible nitric oxide synthase (iNOS) in infected lungs are observed during the same timeframe as AhR-mediated increased pulmonary neutrophilia. In this study, we evaluated whether these two consequences of AhR activation are causally linked. Reciprocal inhibition of AhR-mediated elevations in iNOS and pulmonary neutrophilia reveal that, although they are contemporaneous, they are not causally related. We show using Cre/loxP technology that elevated iNOS levels and neutrophil number in the infected lung result from separate, AhR-dependent signaling in endothelial and respiratory epithelial cells, respectively. Studies using mutant mice further reveal that AhR-mediated alterations in these innate responses to infection require a functional nuclear localization signal and DNA binding domain. Thus, gene targets of AhR in non-hematopoietic cells are important new considerations for understanding AhR-mediated changes in innate anti-viral immunity. PMID:23233726

  15. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.

  16. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability

    PubMed Central

    Zago, Michela; Sheridan, Jared A.; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H.; Hamid, Qutayba

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients. PMID:28749959

  17. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability.

    PubMed

    Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.

  18. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    PubMed Central

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  19. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Raymond; Celius, Trine; Forgacs, Agnes L.

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed anmore » over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched

  20. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The structure of the winged helix–turn–helix DNA-binding domain of AhrC has been determined at 1.0 Å resolution. The largely hydrophobic β-wing shows high B factors and may mediate the dimer interface in operator complexes. In Bacillus subtilis the concentration of l-arginine is controlled by the transcriptional regulator AhrC, which interacts with 18 bp DNA operator sites called ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a 100 kDa homohexamer, with each subunit having two domains. The C-terminal domains form the core, mediating intersubunit interactions and binding of the co-repressor l-arginine, whilst the N-terminal domains containmore » a winged helix–turn–helix DNA-binding motif and are arranged around the periphery. The N-terminal domain of AhrC has been expressed, purified and characterized and it has been shown that the fragment still binds DNA operators as a recombinant monomer. The DNA-binding domain has also been crystallized and the crystal structure refined to 1.0 Å resolution is presented.« less

  1. AHR-Enhancing γδ T Cells Develop in Normal Untreated Mice and Fail to Produce IL-4/13, Unlike TH2 Cells and NKT Cells1

    PubMed Central

    Jin, Niyun; Roark, Christina L.; Miyahara, Nobuaki; Taube, Christian; Aydintug, M. Kemal; Wands, JM; Huang, Yafei; Hahn, Youn-Soo; Gelfand, Erwin W.; O’Brien, Rebecca L.; Born, Willi K.

    2008-01-01

    Allergic airway hyperresponsiveness (AHR) in OVA-sensitized and challenged mice, mediated by allergen-specific Th2 cells and Th2-like iNKT cells, develops under the influence of enhancing and inhibitory γδ T cells. The AHR-enhancing cells belong to the Vγ1+ γδ T cell subset, cells that are capable of increasing IL-5 and IL-13 levels in the airways in a manner like Th2 cells. They also synergize with iNKT cells in mediating AHR. However, unlike Th2 cells, the AHR-enhancers arise in untreated mice, and we show here that they exhibit their functional bias already as thymocytes, at an HSAhi maturational stage. In further contrast to Th2 cells and also unlike iNKT cells, they could not be stimulated to produce IL-4 and IL-13, consistent with their synergistic dependence on iNKT cells in mediating AHR. Mice deficient in IFN-γ, TNFRp75 or IL-4 did not produce these AHR-enhancing γδ T cells, but in the absence of IFN-γ, their spontaneous development was restored by adoptive transfer of IFN-γ competent dendritic cells from untreated donors. Intra-peritoneal injection of OVA/alum restored development of the AHR-enhancers in all of the mutant strains, indicating that the enhancers still can be induced when they fail to develop spontaneously, and that they themselves need not express TNFRp75, IFN-γ or IL-4 in order to exert their function. We conclude that both the development and the cytokine potential of the AHR-enhancing γδ T cells differs critically from that of Th2 cells and NKT cells, despite similar influences of these cell populations on AHR. PMID:19201853

  2. Regulatory effects of dioxin-like and non-dioxin-like PCBs and other AhR ligands on the antioxidant enzymes paraoxonase 1/2/3.

    PubMed

    Shen, Hua; Robertson, Larry W; Ludewig, Gabriele

    2016-02-01

    Paraoxonase 1 (PON1), an antioxidant enzyme, is believed to play a critical role in many diseases, including cancer. PCBs are widespread environmental contaminants known to induce oxidative stress and cancer and to produce changes in gene expression of various pro-oxidant and antioxidant enzymes. Thus, it appeared of interest to explore whether PCBs may modulate the activity and/or gene expression of PON1 as well. In this study, we compared the effects of dioxin-like and non-dioxin-like PCBs and of various aryl hydrocarbon receptor (AhR) ligands on PON1 regulation and activity in male and female Sprague-Dawley rats. Our results demonstrate that (i) the non-dioxin-like PCB154, PCB155, and PCB184 significantly reduced liver and serum PON1 activities, but only in male rats; (ii) the non-dioxin-like PCB153, the most abundant PCB in many matrices, did not affect PON1 messenger RNA (mRNA) level in the liver but significantly decreased serum PON1 activity in male rats; (iii) PCB126, an AhR ligand and dioxin-like PCB, increased both PON1 activities and gene expression; and (iv) even though three tested AhR ligands induced CYP1A in several tissues to a similar extent, they displayed differential effects on the three PONs and AhR, i.e., PCB126 was an efficacious inducer of PON1, PON2, PON3, and AhR in the liver, while 3-methylcholantrene induced liver AhR and lung PON3, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent AhR agonist, increased only PON3 in the lung, at the doses and exposure times used in these studies. These results show that PCBs may have an effect on the antioxidant protection by paraoxonases in exposed populations and that regulation of gene expression through AhR is highly diverse.

  3. Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism

    PubMed Central

    2017-01-01

    Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women’s health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE1, 4-MeOE1) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 μg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE1. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in “normal” vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast

  4. Role of Sequence Variations in AhR Gene Towards Modulating Smoking Induced Lung Cancer Susceptibility in North Indian Population: A Multiple Interaction Analysis.

    PubMed

    Budhwar, Sneha; Bahl, Charu; Sharma, Siddharth; Singh, Navneet; Behera, Digambar

    2018-05-01

    AhR, a ubiquitously expressed ligand-activated transcription factor, upon its encounter with the foreign ligands activates the transcriptional machinery of genes encoding for bio-transformation enzymes like CYP1A1 hence, mediating the metabolism of Poly aromatic hydrocarbons and nitrosamines which account for the maximally found carcinogen in cigarette smoke. Polymorphic variants of AhR play a significant role and are held responsible for disposing the individuals with greater chances of acquiring lung cancer. To study the role of AhR variants (rs2282885, rs10250822, rs7811989, rs2066853) in affect-ing lung cancer susceptibility. 297 cases and 320 controls have been genotyped using PCR-RFLP technique. In order to find out the association, unconditional logistic regression approach was used. To analyze high order in-teractions Multifactor Dimensionality Reduction and Classification and regression tree was used. Subjects carrying the variant genotype for AhR rs7811989 showed a two-fold risk (p=0.007) and a marginal risk was also seen in case of individuals carrying either single or double copy of suscep-tible allele for rs102550822 (p=0.02). Whereas the variant allele for rs2066853 showcased a strong pro-tective effect (p=0.003). SQCC individuals with mutant genotype of rs2066853 also exhibited a protec-tive effect towards lung cancer (OR=0.30, p=0.0013). The association of rs7811989 mutant genotype and rs10250822 mutant genotype was evident especially in smokers as compared to non-smokers. AhR rs2066853 showed a decreased risk in smokers with mutant genotype (p=0.002). MDR approach gave the best interaction model of AhR rs2066853 and smoking (CVC=10/10, prediction error=0.42). AhR polymorphic variations can significantly contribute towards lung cancer predisposi-tion.

  5. 75 FR 49550 - Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference System (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... 219: Attitude and Heading Reference System (AHRS) AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 219: Attitude and Heading... 49551

  6. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica.

    PubMed

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-12-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.

  7. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica

    PubMed Central

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-01-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10-6-10-5 M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10-9-10-5 M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10-6-10-5 M), while having no effects at low concentrations (10-9-10-7 M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β. PMID:25949102

  8. Combined chemical and toxicological long-term monitoring for AhR agonists with SPMD-based virtual organisms in drinking water Danjiangkou Reservoir, China.

    PubMed

    Wang, Jingxian; Song, Guoqiang; Li, Aimin; Henkelmann, Bernhard; Pfister, Gerd; Tong, Anthony Z; Schramm, Karl-Werner

    2014-08-01

    SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer.

    PubMed

    Vogel, Christoph F A; Haarmann-Stemmann, Thomas

    2017-02-01

    The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.

  10. 4-Nitrophenol exposure alters the AhR signaling pathway and related gene expression in the rat liver.

    PubMed

    Li, Ruonan; Song, Meiyan; Li, Zhi; Li, Yansen; Watanabe, Gen; Nagaoka, Kentaro; Taya, Kazuyoshi; Li, Chunmei

    2017-02-01

    4-Nitrophenol (PNP) is well known as an environmental endocrine disruptor. The aim of this study was to clarify the mechanism of PNP-induced liver damage and determine the regulatory involvement of the aryl hydrocarbon receptor (AhR) signaling pathway and associated gene expression. Immature male Wistar-Imamichi rats (28 days old) were randomly divided into control and PNP groups, which consisted of 1- and 3-day exposure (1 DE and 3 DE, respectively) and 3-day exposure followed by 3-day recovery (3 DE + 3 DR), groups. Each group was administered the vehicle or PNP (200 mg kg -1 body weight). The body and liver weight were significantly decreased in the 3 DE group. The mRNA expression levels of estrogen receptor-α (ERα), glutathione S-transferase (GST) and AhR exhibited a significant increase in the 1 DE group whereas, in contrast, that of cytochrome P450 (CYP) 1A1 decreased significantly in the 3 DE +3 DR group. AhR and CYP1A1 proteins were detected in the cytoplasm of hepatocytes of the 1 DE and 3 DE +3 DR groups whereas the ERα protein was found in the hepatocyte nuclei of the 1 DE and 3 DE groups. The present study demonstrates that PNP activated the AhR signaling pathway and regulated related CYP1A1 and GST gene expression in the liver. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Epigenetic Programming of Breast Cancer and Nutrition Prevention

    DTIC Science & Technology

    2011-05-01

    is to test the role of xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin -like and...tumor promoter 2,3,7,8 tetrachlorobenzo-p- dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE...phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonizes at physiologically relevant doses (1  mol /L) the TCDD-induced

  12. In Vitro Antitumor Effects of AHR Ligands Aminoflavone (AFP 464) and Benzothiazole (5F 203) in Human Renal Carcinoma Cells.

    PubMed

    Luzzani, Gabriela A; Callero, Mariana A; Kuruppu, Anchala I; Trapani, Valentina; Flumian, Carolina; Todaro, Laura; Bradshaw, Tracey D; Loaiza Perez, Andrea I

    2017-12-01

    We investigated activity and mechanism of action of two AhR ligand antitumor agents, AFP 464 and 5F 203 on human renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis, and migration. TK-10, SN12C, Caki-1, and ACHN human renal cancer cell lines were treated with AFP 464 and 5F 203. We evaluated cytotoxicity by MTS assays, cell cycle arrest, and apoptosis by flow cytometry and corroborated a mechanism of action involving AhR signal transduction activation. Changes in migration properties by wound healing assays were investigated: 5F 203-sensitive cells show decreased migration after treatment, therefore, we measured c-Met phosphorylation by Western blot in these cells. A 5F 203 induced a decrease in cell viability which was more marked than AFP 464. This cytotoxicity was reduced after treatment with the AhR inhibitor α-NF for both compounds indicating AhR signaling activation plays a role in the mechanism of action. A 5F 203 is sequestered by TK-10 cells and induces CYP1A1 expression; 5F 203 potently inhibited migration of TK-10, Caki-1, and SN12C cells, and inhibited c-Met receptor phosphorylation in TK-10 cells. AhR ligand antitumor agents AFP 464 and 5F 203 represent potential new candidates for the treatment of renal cancer. A 5F 203 only inhibited migration of sensitive cells and c-Met receptor phosphorylation in TK-10 cells. c-Met receptor signal transduction is important in migration and metastasis. Therefore, we consider that 5F 203 offers potential for the treatment of metastatic renal carcinoma. J. Cell. Biochem. 118: 4526-4535, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats.

    PubMed

    Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei

    2016-09-01

    4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  15. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw; Li, Lih-Ann; Lin, Pinpin

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phasemore » and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.« less

  16. RELATIONSHIPS BETWEEN RESIDUES OF AHR AGONISTS IN FISH AND CONCENTRATIONS IN WATER AND SEDIMENTS

    EPA Science Inventory

    Relationships between Residues of AhR Agonists in Fish and Concentrations in Water and Sediment. Cook, PM*, Burkhard, LP, Mount, DR, US-EPA, NHEERL, MED, Duluth, MN. The bioaccumulation visualization approach of Burkhard et al. (2002) can be effectively used to describe the bioa...

  17. Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent mu/delta-opioid receptor antagonist, regulates obese-related factors in mice.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Myers, Page H; Blankenship, Terry; Wilson, Ralph; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H

    2009-08-15

    Orally active dual mu-/delta-opioid receptor antagonist, H-Dmt-Tic-Lys-NH-CH(2)-Ph (MZ-2) was applied to study body weight gain, fat content, bone mineral density, serum insulin, cholesterol and glucose levels in female ob/ob (B6.V-Lep/J homozygous) and lean wild mice with or without voluntary exercise on wheels for three weeks, and during a two week post-treatment period under the same conditions. MZ-2 (10mg/kg/day, p.o.) exhibited the following actions: (1) reduced body weight gain in sedentary obese mice that persisted beyond the treatment period without effect on lean mice; (2) stimulated voluntary running on exercise wheels of both groups of mice; (3) decreased fat content, enhanced bone mineral density (BMD), and decreased serum insulin and glucose levels in obese mice; and (4) MZ-2 (30 microM) increased BMD in human osteoblast cells (MG-63) comparable to naltrexone, while morphine inhibited mineral nodule formation. Thus, MZ-2 has potential application in the clinical management of obesity, insulin and glucose levels, and the amelioration of osteoporosis.

  18. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  19. EXPRESSION OF AHR AND ARNT MRNA IN CULTURED HUMAN ENDOMETRIAL EXPLANTS EXPOSED TO TCDD

    EPA Science Inventory

    Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD.

    Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG, Koury ST, Bofinger DP.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.

    Endom...

  20. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  1. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    PubMed

    Corrada, Dario; Soshilov, Anatoly A; Denison, Michael S; Bonati, Laura

    2016-06-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  2. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  3. Genome-Wide Meta-Analysis Identifies Regions on 7p21 (AHR) and 15q24 (CYP1A2) As Determinants of Habitual Caffeine Consumption

    PubMed Central

    Azzato, Elizabeth M.; Bennett, Siiri N.; Berndt, Sonja I.; Boerwinkle, Eric; Chanock, Stephen; Chatterjee, Nilanjan; Couper, David; Curhan, Gary; Heiss, Gerardo; Hu, Frank B.; Hunter, David J.; Jacobs, Kevin; Jensen, Majken K.; Kraft, Peter; Landi, Maria Teresa; Nettleton, Jennifer A.; Purdue, Mark P.; Rajaraman, Preetha; Rimm, Eric B.; Rose, Lynda M.; Rothman, Nathaniel; Silverman, Debra; Stolzenberg-Solomon, Rachael; Subar, Amy; Yeager, Meredith; Chasman, Daniel I.; van Dam, Rob M.; Caporaso, Neil E.

    2011-01-01

    We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4×10−19), near AHR, and 15q24 (P = 5.2×10−14), between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2. PMID:21490707

  4. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    PubMed

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals.

    PubMed

    Nebert, Daniel W

    2017-07-01

    The basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family comprises many transcription factors, found throughout all three kingdoms of life; bHLH/PAS members "sense" innumerable intracellular and extracellular "signals" - including endogenous compounds, foreign chemicals, gas molecules, redox potential, photons (light), gravity, heat, and osmotic pressure. These signals then initiate downstream signaling pathways involved in responding to that signal. The term "PAS", abbreviation for "per-Arnt-sim" was first coined in 1991. Although the mouse Arnt gene was not identified until 1991, evidence of its co-transcriptional binding partner, aryl hydrocarbon receptor (AHR), was first reported in 1974 as a "sensor" of foreign chemicals, up-regulating cytochrome P450 family 1 (CYP1) and other enzyme activities that usually metabolize the signaling chemical. Within a few years, AHR was proposed also to participate in inflammation. The mouse [Ah] locus was shown (1973-1989) to be relevant to chemical carcinogenesis, mutagenesis, toxicity and teratogenesis, the mouse Ahr gene was cloned in 1992, and the first Ahr(-/-) knockout mouse line was reported in 1995. After thousands of studies from the early 1970s to present day, we now realize that AHR participates in dozens of signaling pathways involved in critical-life processes, affecting virtually every organ and cell-type in the animal, including many invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ahr2-dependance of PCB126 effects on the swimbladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    PubMed Central

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia; Woodin, Bruce; Stegeman, John J.

    2012-01-01

    The teleost swimbladder is assumed a homolog of the tetrapod lung. Both swimbladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR1) agonists; in zebrafish (Danio rerio) the swimbladder fails to inflate with exposure to 3,3’,4,4’,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P4501 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swimbladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependance of the effect of PCB126 on swimbladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swimbladder inflation. The effects of PCB126 were concentration-dependent with EC50 values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swimbladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swimbladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos2 failed to inflate the swimbladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swimbladder. Our results indicate that PCB126 blocks swimbladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swimbladder cells. PMID:23036320

  7. The Aryl Hydrocarbon Receptor: Differential Contribution to T Helper 17 and T Cytotoxic 17 Cell Development

    PubMed Central

    Hayes, Mark D.; Ovcinnikovs, Vitalijs; Smith, Andrew G.; Kimber, Ian; Dearman, Rebecca J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8+) and Th (CD4+) cells were isolated by negative selection from naive AhR+/− and AhR−/− mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR+/− mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR−/− mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses. PMID:25203682

  8. Antagonists of substance P. Further modifications of substance P antagonists obtained by replacing either positions 7, 9 or 7, 8 and 11 of SP with D-amino acid residues.

    PubMed

    Dutta, A S; Gormley, J J; Graham, A S; Briggs, I; Growcott, J W; Jamieson, A

    1986-07-01

    Antagonists of SP and the C-terminal (6-11)-hexapeptide have been obtained by multiple D-amino acid substitutions in various positions of SP and by protecting the N alpha-Arg1 and N epsilon Lys3 amino groups with benzyloxycarbonyl groups. On the guinea pig ileum a number of these antagonized both SP and the hexapeptide. Except [N alpha-Z-Arg1,D-Pro2,N epsilon-Z-Lys3,Asn5,Arg6,D-Phe7,D-Trp9]-SP-OMe (4) and the corresponding amide 7, which were more potent antagonists of SP than the hexapeptide, all the others, e.g., [N alpha-Z-Arg1,D-Pro2,4,N epsilon-Z-Lys3,D-Phe7,8,Sar9,D-Met11]-SP-OMe (9), [N alpha-Z-Arg1,D-Pro2,4,N epsilon-Z-Lys3,D-Phe7,8,Sar9,MeLeu10,D-Met11]-SP -OMe (11), were more potent antagonists of the hexapeptide. On the rat spinal cord preparation, most of the antagonists were only active against the hexapeptide. A few antagonized SP, but these also reduced carbachol or both carbachol and glutamate responses. Two of the antagonists, [D-Pro2,Asn5,Lys6,D-Phe7,D-Trp9]-SP-OMe (2) and [Boc-D-Pro4,D-Phe7,8,Sar9,D-Met11]-SP(4-11)-OMe (10), were inactive on the ileum but still antagonized the hexapeptide on the spinal cord. The smallest peptides to antagonize SP and the hexapeptide were two heptapeptides, 6 and 21, [Z-Asn5,Arg6,D-Phe7,8,Gly9 psi (CH2S)D-Leu10,D-Met11]-SP(5-11)-OMe (21) being more potent than 6. None of the antagonists showed significant analgesic activity without side effects. Some of the antagonists were shown to release histamine from isolated rat peritoneal cells.

  9. Screening a mouse liver gene expression Compendium Identifies Effectors of the Aryl Hydrocarbon receptor (AhR)

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3, 7 ,8-tetrachlorodibenzo-p-dioxin {TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term act...

  10. The tertiary structures of porcine AhR and ARNT proteins and molecular interactions within the TCDD/AhR/ARNT complex.

    PubMed

    Orlowska, Karina; Molcan, Tomasz; Swigonska, Sylwia; Sadowska, Agnieszka; Jablonska, Monika; Nynca, Anna; Jastrzebski, Jan P; Ciereszko, Renata E

    2016-06-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and natural chemicals, including toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the present study, homology models of the porcine AhR-ligand binding domain (LBD) and the porcine aryl hydrocarbon receptor nuclear translocator-ligand binding domain (ARNT-LBD) were created on the basis of structures of closely related respective proteins i.e., human Hif-2α and ARNT. Molecular docking of TCDD to the porcine AhR-LBD model revealed high binding affinity (-8.8kcal/mol) between TCDD and the receptor. Moreover, formation of the TCDD/AhR-LBD complex was confirmed experimentally with the use of electrophoretic mobility shift assay (EMSA). It was found that TCDD (10nM, 2h of incubation) not only bound to the AhR in the porcine granulosa cells but also activated the receptor. The current study provides a framework for examining the key events involved in the ligand-dependent activation of the AhR. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Kubota, Akira, E-mail: akubota@whoi.edu

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependencemore » of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1

  12. Protective effects of levamisole, acetylsalicylic acid, and α-tocopherol against dioxin toxicity measured as the expression of AhR and COX-2 in a chicken embryo model.

    PubMed

    Gostomska-Pampuch, Kinga; Ostrowska, Alicja; Kuropka, Piotr; Dobrzyński, Maciej; Ziółkowski, Piotr; Kowalczyk, Artur; Łukaszewicz, Ewa; Gamian, Andrzej; Całkosiński, Ireneusz

    2017-04-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are classed as persistent organic pollutants and have adverse effects on multiple functions within the body. Dioxins are known carcinogens, immunotoxins, and teratogens. Dioxins are transformed in vivo, and interactions between the products and the aryl hydrocarbon receptor (AhR) lead to the formation of proinflammatory and toxic metabolites. The aim of this study was to determine whether α-tocopherol (vitamin E), acetylsalicylic acid (ASA), and levamisole can decrease the amount of damage caused by dioxins. Fertile Hubbard Flex commercial line chicken eggs were injected with solutions containing 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or containing TCDD and the test compounds. The chicken embryos and organs were analyzed after 7 and 13 days. The levels at which AhR and cyclooxygenase-2 (COX-2) proteins (which are induced during inflammation) were expressed were evaluated by performing immunohistochemical analyses on embryos treated with TCDD alone or with TCDD and the test compounds. TCDD caused developmental disorders and increased AhR and COX-2 expression in the chicken embryo tissues. Vitamin E, levamisole, ASA, and ASA plus vitamin E inhibited AhR and COX-2 expression in embryos after 7 days and decreased AhR and COX-2 expression in embryos after 13 days. ASA, levamisole, and ASA plus vitamin E weakened the immune response and prevented multiple organ changes. Vitamin E was not fully protective against developmental changes in the embryos.

  13. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation.

    PubMed

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2015-04-30

    The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced

  15. Functional Expression of Aryl Hydrocarbon Receptor on Mast Cells Populating Human Endometriotic Tissues

    PubMed Central

    Orsaria, Maria; Marzinotto, Stefania; Londero, Ambrogio P; Bulfoni, Michela; Candotti, Veronica; Zanello, Andrea; Ballico, Maurizio; Mimmi, Maria C; Calcagno, Angelo; Marchesoni, Diego; Di Loreto, Carla; Beltrami, Antonio P; Cesselli, Daniela; Gri, Giorgia

    2016-01-01

    Endometriosis is an inflammatory disease characterized by the presence of ectopic endometrial tissue outside the uterus. A diffuse infiltration of mast cells (MCs) is observed throughout endometriotic lesions, but little is known about how these cells contribute to the network of molecules that modulate the growth of ectopic endometrial implants and promote endometriosis-associated inflammation. The Aryl Hydrocarbon Receptor (AhR), a transcription factor known to respond to environmental toxins and endogenous compounds, is present in MCs. In response to AhR activation, MCs produce IL-17 and reactive oxygen species, highlighting the potential impact of AhR ligands on inflammation via MCs. Here, we investigated the possibility that endometrial MCs promote an inflammatory microenvironment by sensing AhR ligands, thus sustaining endometriosis development. Using human endometriotic tissue (ET) samples, we performed the following experiments: i) examined the cytokine expression profile; ii) counted AhR-expressing MCs; iii) verified the phenotype of AhR-expressing MCs to establish whether MCs have a tolerogenic (IL-10-positive) or inflammatory (IL-17-positive) phenotype; iv) measured the presence of AhR ligands (tryptophan-derived kynurenine) and tryptophan-metabolizing enzymes (indoleamine 2,3-dioxygenase 1 (IDO1)); v) treated ET organ cultures with an AhR antagonist in vitro to measure changes in the cytokine milieu; and vi) measured the growth of endometrial stromal cells cultured with AhR-activated MC-conditioned medium. We found that ET tissue was conducive to cytokine production, orchestrating chronic inflammation and a population of AhR-expressing MCs that are both IL-17 and IL-10-positive. ET was rich in IDO1 and the AhR-ligand kynurenine compared with control tissue, possibly promoting MC activation through AhR. ET was susceptible to treatment with an AhR antagonist, and endometrial stromal cell growth was improved in the presence of soluble factors released by

  16. Functional expression of aryl hydrocarbon receptor on mast cells populating human endometriotic tissues.

    PubMed

    Mariuzzi, Laura; Domenis, Rossana; Orsaria, Maria; Marzinotto, Stefania; Londero, Ambrogio P; Bulfoni, Michela; Candotti, Veronica; Zanello, Andrea; Ballico, Maurizio; Mimmi, Maria C; Calcagno, Angelo; Marchesoni, Diego; Di Loreto, Carla; Beltrami, Antonio P; Cesselli, Daniela; Gri, Giorgia

    2016-09-01

    Endometriosis is an inflammatory disease characterized by the presence of ectopic endometrial tissue outside the uterus. A diffuse infiltration of mast cells (MCs) is observed throughout endometriotic lesions, but little is known about how these cells contribute to the network of molecules that modulate the growth of ectopic endometrial implants and promote endometriosis-associated inflammation. The aryl hydrocarbon receptor (AhR), a transcription factor known to respond to environmental toxins and endogenous compounds, is present in MCs. In response to AhR activation, MCs produce IL-17 and reactive oxygen species, highlighting the potential impact of AhR ligands on inflammation via MCs. Here, we investigated the possibility that endometrial MCs promote an inflammatory microenvironment by sensing AhR ligands, thus sustaining endometriosis development. Using human endometriotic tissue (ET) samples, we performed the following experiments: (i) examined the cytokine expression profile; (ii) counted AhR-expressing MCs; (iii) verified the phenotype of AhR-expressing MCs to establish whether MCs have a tolerogenic (IL-10-positive) or inflammatory (IL-17-positive) phenotype; (iv) measured the presence of AhR ligands (tryptophan-derived kynurenine) and tryptophan-metabolizing enzymes (indoleamine 2,3-dioxygenase 1 (IDO1)); (v) treated ET organ cultures with an AhR antagonist in vitro to measure changes in the cytokine milieu; and (vi) measured the growth of endometrial stromal cells cultured with AhR-activated MC-conditioned medium. We found that ET tissue was conducive to cytokine production, orchestrating chronic inflammation and a population of AhR-expressing MCs that are both IL-17 and IL-10-positive. ET was rich in IDO1 and the AhR-ligand kynurenine compared with control tissue, possibly promoting MC activation through AhR. ET was susceptible to treatment with an AhR antagonist, and endometrial stromal cell growth was improved in the presence of soluble factors

  17. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    PubMed

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  18. TCDD and a Putative Endogenous AhR Ligand, ITE, Elicit the Same Immediate Changes in Gene Expression in Mouse Lung Fibroblasts

    PubMed Central

    Henry, Ellen C.; Welle, Stephen L.; Gasiewicz, Thomas A.

    2010-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5μM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible. PMID:19933214

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  8. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    PubMed

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yueh-Hsia; Kuo, Yu-Chun; Tsai, Ming-Hsien

    Exposure to environmental aryl hydrocarbon receptor (AhR) agonists, such as halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), has great impacts on the development of various lung diseases. As emerging molecular targets for AhR agonists, cytokines may contribute to the inflammatory or immunotoxic effects of environmental AhR agonists. However, general cytokine expression may not specifically indicate environmental AhR agonist exposure. By comparing cytokine and chemokine expression profiles in human lung adenocarcinoma cell line CL5 treated with AhR agonists and the non-AhR agonist polychlorinated biphenyl (PCB) 39, we identified a target cytokine of environmental AhR agonist exposure of in the lungs.more » Thirteen cytokine and chemokine genes were altered in the AhR agonists-treated cells, but none were altered in the PCB39-treated cells. Interleukin (IL)-24 was the most highly induced gene among AhR-modulated cytokines. Cotreatment with AhR antagonist completely prevented IL-24 induction by AhR agonists in the CL5 cells. Knockdown AhR expression with short-hairpin RNA (shRNA) significantly reduced benzo[a]pyrene (BaP)-induced IL-24 mRNA levels. We further confirmed that gene transcription, but not mRNA stability, was involved in IL-24 upregulation by BaP. Particulate matter (PM) in the ambient air contains some PAHs and is reported to activate AhR. Oropharyngeal aspiration of PM significantly increased IL-24 levels in lung epithelia and in bronchoalveolar lavage fluid of mice 4 weeks after treatment. Thus, our data suggests that IL-24 is a pulmonary exposure target cytokine of environmental AhR agonists. - Graphical abstract: (A) Cytokine and chemokine gene expressions were examined in CL5 cells treated with AhR and non-AhR agonists. Thirteen cytokines and chemokines genes were altered in the AhR agonist-treated cells, but not in the non-AhR agonist-treated cells. IL-24 was the most highly induced gene among the Ah

  10. Elucidating the Role of CD84 and AHR in Modulation of LPS-Induced Cytokines Production by Cruciferous Vegetable-Derived Compounds Indole-3-Carbinol and 3,3′-Diindolylmethane

    PubMed Central

    Wang, Thomas T. Y.; Pham, Quynhchi; Kim, Young S.

    2018-01-01

    Modulation of the immune system by cancer protective food bioactives has preventive and therapeutic importance in prostate cancer, but the mechanisms remain largely unclear. The current study tests the hypothesis that the diet-derived cancer protective compounds, indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM), affect the tumor microenvironment by regulation of inflammatory responses in monocytes and macrophages. We also ask whether I3C and DIM act through the aryl hydrocarbon (AHR)-dependent pathway or the signaling lymphocyte activation molecule (SLAM) family protein CD84-mediated pathway. The effect of I3C and DIM was examined using the human THP-1 monocytic cell in its un-differentiated (monocyte) and differentiated (macrophage) state. We observed that I3C and DIM inhibited lipopolysaccharide (LPS) induction of IL-1β mRNA and protein in the monocyte form but not the macrophage form of THP-1. Interestingly, CD84 mRNA but not protein was inhibited by I3C and DIM. AHR siRNA knockdown experiments confirmed that the inhibitory effects of I3C and DIM on IL-1β as well as CD84 mRNA are regulated through AHR-mediated pathways. Additionally, the AHR ligand appeared to differentially regulate other LPS-induced cytokines expression. Hence, cross-talk between AHR and inflammation-mediated pathways, but not CD84-mediated pathways, in monocytes but not macrophages may contribute to the modulation of tumor environments by I3C and DIM in prostate cancer. PMID:29364159

  11. Chemokine receptor antagonists: part 2.

    PubMed

    Pease, James E; Horuk, Richard

    2009-02-01

    The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.

  12. Toward reliable modeling of S-nitrosothiol chemistry: Structure and properties of methyl thionitrite (CH3SNO), an S-nitrosocysteine model

    NASA Astrophysics Data System (ADS)

    Khomyakov, Dmitry G.; Timerghazin, Qadir K.

    2017-07-01

    Methyl thionitrite CH3SNO is an important model of S-nitrosated cysteine aminoacid residue (CysNO), a ubiquitous biological S-nitrosothiol (RSNO) involved in numerous physiological processes. As such, CH3SNO can provide insights into the intrinsic properties of the —SNO group in CysNO, in particular, its weak and labile S—N bond. Here, we report an ab initio computational investigation of the structure and properties of CH3SNO using a composite Feller-Peterson-Dixon scheme based on the explicitly correlated coupled cluster with single, double, and perturbative triple excitations calculations extrapolated to the complete basis set limit, CCSD(T)-F12/CBS, with a number of additive corrections for the effects of quadruple excitations, core-valence correlation, scalar-relativistic and spin-orbit effects, as well as harmonic zero-point vibrational energy with an anharmonicity correction. These calculations suggest that the S—N bond in CH3SNO is significantly elongated (1.814 Å) and has low stretching frequency and dissociation energy values, νS—N = 387 cm-1 and D0 = 32.4 kcal/mol. At the same time, the S—N bond has a sizable rotation barrier, △E0≠ = 12.7 kcal/mol, so CH3SNO exists as a cis- or trans-conformer, the latter slightly higher in energy, △E0 = 1.2 kcal/mol. The S—N bond properties are consistent with the antagonistic nature of CH3SNO, whose resonance representation requires two chemically opposite (antagonistic) resonance structures, CH3—S+=N—O- and CH3—S-/NO+, which can be probed using external electric fields and quantified using the natural resonance theory approach (NRT). The calculated S—N bond properties slowly converge with the level of correlation treatment, with the recently developed distinguished cluster with single and double excitations approximation (DCSD-F12) performing significantly better than the coupled cluster with single and double excitations (CCSD-F12), although still inferior to the CCSD(T)-F12 method that

  13. Effects of human blood levels of two PAH mixtures on the AHR signalling activation pathway and CYP1A1 and COMT target genes in granulosa non-tumor and granulosa tumor cell lines.

    PubMed

    Zajda, Karolina; Ptak, Anna; Rak, Agnieszka; Fiedor, Elżbieta; Grochowalski, Adam; Milewicz, Tomasz; Gregoraszczuk, Ewa L

    2017-08-15

    Epidemiological studies have shown a link between problems with offspring of couples living in a contaminated environment in comparison to those who live in an uncontaminated environment. We measured the concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in maternal and cord blood. To explore the mechanism of the effects of PAH mixtures on nonluteinized granulosa cells (HGrC1) and granulosa tumor cells (COV434), as well as cell proliferation and apoptosis, we investigated the effect of PAH mixtures on the expression of the aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor repressor (AHRR) genes, as well as the expression and activity of target genes cytochrome P450 1A1 (CYP1A1) and catechol-O-methyltransferase (COMT). The cells were exposed to mixture 1 (M1), composed of all 16 priority PAHs, and mixture 2 (M2), composed of five PAHs which are not classified as human carcinogens, and which are observed in the highest amounts both in maternal and cord blood. All 16 priority PAHs were bioavailable in maternal and cord plasma, suggesting that perinatal exposure should be considered. In HGrC1 cells, M1 increased AHR and ARNT, but decreased AHRR expression, in parallel with increased CYP1A1 and COMT expression and activity. M2 decreased AHR and AHRR, and increased ARNT, with no effect on CYP1A1 expression and activity; however, it did increase COMT expression and activity. In tumor cells, M1 lowered AHR and up-regulated AHRR and ARNT expression, consequently decreasing CYP1A1 expression and COMT activity. M2 up-regulated AHR and ARNT, down-regulated AHRR, and had no effect on CYP1A1 and COMT expression, but decreased COMT activity. We hypothesise that, dependent on composition, mixtures of PAHs activate the AHR differently through varying transcription responses: in HGrC1, a canonical AHR mechanism of M1, with activation of CYP1A1 important for detoxication, while in COV434, a

  14. Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor.

    PubMed

    Narasimhan, Supraja; Stanford Zulick, Elizabeth; Novikov, Olga; Parks, Ashley J; Schlezinger, Jennifer J; Wang, Zhongyan; Laroche, Fabrice; Feng, Hui; Mulas, Francesca; Monti, Stefano; Sherr, David H

    2018-05-07

    We have postulated that the aryl hydrocarbon receptor (AHR) drives the later, more lethal stages of some cancers when chronically activated by endogenous ligands. However, other studies have suggested that, under some circumstances, the AHR can oppose tumor aggression. Resolving this apparent contradiction is critical to the design of AHR-targeted cancer therapeutics. Molecular (siRNA, shRNA, AHR repressor, CRISPR-Cas9) and pharmacological (AHR inhibitors) approaches were used to confirm the hypothesis that AHR inhibition reduces human cancer cell invasion (irregular colony growth in 3D Matrigel cultures and Boyden chambers), migration (scratch wound assay) and metastasis (human cancer cell xenografts in zebrafish). Furthermore, these assays were used for a head-to-head comparison between AHR antagonists and agonists. AHR inhibition or knockdown/knockout consistently reduced human ER − /PR − /Her2 − and inflammatory breast cancer cell invasion, migration, and metastasis. This was associated with a decrease in invasion-associated genes (e.g., Fibronectin , VCAM1 , Thrombospondin, MMP1 ) and an increase in CDH1/E-cadherin , previously associated with decreased tumor aggression. Paradoxically, AHR agonists (2,3,7,8-tetrachlorodibenzo- p -dioxin and/or 3,3′-diindolylmethane) similarly inhibited irregular colony formation in Matrigel and blocked metastasis in vivo but accelerated migration. These data demonstrate the complexity of modulating AHR activity in cancer while suggesting that AHR inhibitors, and, under some circumstances, AHR agonists, may be useful as cancer therapeutics.

  15. Studies on the Role of The Ah Receptor (AhR) on the Etiology of Breast Cancer: A Novel Idea of Identifying this Receptor as a New Therapeutic Target

    DTIC Science & Technology

    2010-09-01

    found that the most potent phytochemical suppressors of cell proliferation of P20E cells were curcumin (10 µM approximately 80 to 90% suppression...effectiveness of a number of phytochemicals from edible plants known to block AhR in attenuating the expression of high rates of cell proliferation...selected number of those phytochemicals , by xenografting those AhR overexpressing human breast cancer cells into athymic nude mice, and by treating

  16. Tumor-Repopulating Cells Induce PD-1 Expression in CD8+ T Cells by Transferring Kynurenine and AhR Activation.

    PubMed

    Liu, Yuying; Liang, Xiaoyu; Dong, Wenqian; Fang, Yi; Lv, Jiadi; Zhang, Tianzhen; Fiskesund, Roland; Xie, Jing; Liu, Jinyan; Yin, Xiaonan; Jin, Xun; Chen, Degao; Tang, Ke; Ma, Jingwei; Zhang, Huafeng; Yu, Jing; Yan, Jun; Liang, Huaping; Mo, Siqi; Cheng, Feiran; Zhou, Yabo; Zhang, Haizeng; Wang, Jing; Li, Jingnan; Chen, Yang; Cui, Bing; Hu, Zhuo-Wei; Cao, Xuetao; Xiao-Feng Qin, F; Huang, Bo

    2018-03-12

    Despite the clinical successes fostered by immune checkpoint inhibitors, mechanisms underlying PD-1 upregulation in tumor-infiltrating T cells remain an enigma. Here, we show that tumor-repopulating cells (TRCs) drive PD-1 upregulation in CD8 + T cells through a transcellular kynurenine (Kyn)-aryl hydrocarbon receptor (AhR) pathway. Interferon-γ produced by CD8 + T cells stimulates release of high levels of Kyn produced by TRCs, which is transferred into adjacent CD8 + T cells via the transporters SLC7A8 and PAT4. Kyn induces and activates AhR and thereby upregulates PD-1 expression. This Kyn-AhR pathway is confirmed in both tumor-bearing mice and cancer patients and its blockade enhances antitumor adoptive T cell therapy efficacy. Thus, we uncovered a mechanism of PD-1 upregulation with potential tumor immunotherapeutic applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells.

    PubMed

    Logan, Ian R; McNeill, Hesta V; Cook, Susan; Lu, Xiaohong; Lunec, John; Robson, Craig N

    2007-06-01

    Small molecule MDM2 antagonists including nutlin-3 have been shown to be effective against a range of cancer cell types and nutlin-3 can inhibit growth of LNCaP xenografts. We compared the efficacy of nutlin-3 in three prostate cancer cell types and provide an insight into the mechanism of nutlin-3. Nutlin-3 efficacy was measured using proliferation assays, cell cycle analysis, apoptosis assays, quantitative RT-PCR, and immunoblotting. Chromatin immunoprecipitation (ChIP) assays were also performed. Nutlin-3 can specifically inhibit proliferation of LNCaP cells through cell cycle arrest and apoptosis. This coincides with increased levels of the p53-responsive transcripts p21, PUMA, gadd45, and Mdm2 and recruitment of p53 to chromatin. Nutlin-3 also reduces androgen receptor levels, resulting in altered receptor recruitment to chromatin. Our study demonstrates that small molecule MDM2 antagonists might be useful in the treatment of human prostate cancers that retain functional p53 and androgen receptor signaling. Copyright 2007 Wiley-Liss, Inc.

  18. Kinetics of OH- and Cl-initiated oxidation of CH2dbnd CHC(O)O(CH2)2CH3 and CH2dbnd CHCH2C(O)O(CH2)2CH3 and fate of the alkoxy radicals formed

    NASA Astrophysics Data System (ADS)

    Rivela, Cynthia; Blanco, María B.; Teruel, Mariano A.

    2016-05-01

    Rate coefficients of the reactions of OH and Cl radicals with vinyl and allyl butyrate were determined for the first time at 298 K and 1 atm using the relative method to be (in cm3 molecule-1 s-1): k1(OH + CH2dbnd CHC(O)O(CH2)2CH3) = (2.61 ± 0.31) × 10-11, k2(Cl + CH2dbnd CHC(O)O(CH2)2CH3) = (2.48 ± 0.89) × 10-10, k3(OH + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.89 ± 0.31) × 10-11, and k4(Cl + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.25 ± 0.96) × 10-10. Reactivity trends and atmospheric lifetimes of esters are presented. Additionally, a product study shown butyric acid and polifunctional products for the reactions of vinyl and allyl butyrate, respectively and general mechanism is proposed.

  19. Aryl hydrocarbon receptor-induced adrenomedullin mediates cigarette smoke carcinogenicity in humans and mice

    PubMed Central

    Portal-Nuñez, Sergio; Shankavaram, Uma; Rao, Mahadev; Datrice, Nicole; Scott, Atay; Aparicio, Marta; Camphausen, Kevin A.; Fernández-Salguero, Pedro M.; Chang, Han; Lin, Pinpin; Schrump, David S.; Garantziotis, Stavros; Cuttitta, Frank; Zudaire, Enrique

    2015-01-01

    Cigarette smoke (CS) is a leading cause of death worldwide. The aryl hydrocarbon receptor (AHR) is partially responsible for tobacco-induced carcinogenesis although the underlying mechanisms involving early effector genes have yet to be determined. Here, we report that adrenomedullin (ADM) significantly contributes to the carcinogenicity of tobacco activated AHR. CS and AHR activating ligands induced ADM in vitro and in vivo but not in AHR-deficient fibroblasts and mice. Ectopic transfection of AHR rescued ADM expression in AHR−/− fibroblasts while AHR blockage with siRNA in wild type cells significantly decreased ADM expression. AHR regulates ADM expression through two intronic xenobiotic response elements located close to the start codon in the ADM gene. Using tissue microarrays we showed that ADM and AHR were coupregulated in lung tumor biopsies from smoker patients. Microarray metaanalysis of 304 independent microarray experiments showed that ADM is elevated in smokers and smokers with cancer. Additionally, ADM coassociated with a subset of AHR responsive genes and efficiently differentiated patients with lung cancer from non-smokers. In a novel preclinical model of CS-induced tumor progression, host exposure to CS extracts significantly elevated tumor ADM while systemic treatment with the ADM antagonist NSC16311 efficiently blocked tobacco-induced tumor growth. In conclusion, ADM significantly contributes the carcinogenic effect of AHR and tobacco combustion products. We suggest that therapeutics targeting the AHR/ADM axis may be of clinical relevance in the treatment of tobacco-induced pulmonary malignancies. PMID:22993405

  20. Polycyclic Aromatic Hydrocarbons (PAHs) Mediate Transcriptional Activation of the ATP Binding Cassette Transporter ABCB6 Gene via the Aryl Hydrocarbon Receptor (AhR)*

    PubMed Central

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-01-01

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics. PMID:22761424

  1. Identification of a Raloxifene Analog That Promotes AhR-Mediated Apoptosis in Cancer Cells.

    PubMed

    Jang, Hyo Sang; Pearce, Martin; O'Donnell, Edmond F; Nguyen, Bach Duc; Truong, Lisa; Mueller, Monica J; Bisson, William H; Kerkvliet, Nancy I; Tanguay, Robert L; Kolluri, Siva Kumar

    2017-12-01

    We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure-activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR.

  2. Antagonistic potential against pathogenic microorganisms and hydrogen peroxide production of indigenous lactobacilli isolated from vagina of Chinese pregnant women.

    PubMed

    Xu, Heng-Yi; Tian, Wan-Hong; Wan, Cui-Xiang; Jia, Li-Jun; Wang, Lan-Yin; Yuan, Jing; Liu, Chun-Mei; Zeng, Ming; Wei, Hua

    2008-10-01

    To investigate the indigenous lactobacilli from the vagina of pregnant women and to screen the isolates with antagonistic potential against pathogenic microorganisms. The strains were isolated from pregnant women's vagina and identified using the API50CH system. The ability of the isolates to produce hydrogen peroxide was analyzed semi-quantitatively using the TMB-HRP-MRS agar. The antagonistic effects of the isolates on pathogenic microorganisms were determined with a double layer agar plate. One hundred and three lactobacilli strains were isolated from 60 samples of vaginal secretion from healthy pregnant women. Among them, 78 strains could produce hydrogen peroxide, in which 68%, 80%, 80%, and 88% had antagonistic effects against Candida albicans CMCC98001, Staphylococcus aureus CMCC26003, Escherichia coli CMCC44113, and Pseudomonas aeruginosa CMCC10110, respectively. The recovery of hydrogen peroxide-producing lactobacilli decreases with the increasing pregnant age and time. The most commonly isolated species from vagina of Chinese pregnant women are Lactobacillus acidophilus and Lactobacillus crispatus. Most of L. acidophilus and L. crispatus produce a high H2O2 level.

  3. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis

    PubMed Central

    Jenkinson, Karl M; Southwell, Bridget R; Furness, John B

    1999-01-01

    In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r.We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum.SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis.The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leuψ[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-βAla) were both more potent in inhibiting endocytosis (50× and 8× greater respectively) against septide than against SP.The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor. PMID:10051129

  4. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

    PubMed

    Jenkinson, K M; Southwell, B R; Furness, J B

    1999-01-01

    1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.

  5. Molokhia (Corchorus olitorius L.) extract suppresses transformation of the aryl hydrocarbon receptor induced by dioxins.

    PubMed

    Nishiumi, Shin; Yabushita, Yoshiyuki; Fukuda, Itsuko; Mukai, Rie; Yoshida, Ken-Ichi; Ashida, Hitoshi

    2006-02-01

    Dioxins enter the body mainly through diet and cause the various toxicological effects by binding to the cytosolic aryl hydrocarbon receptor (AhR) followed by its transformation. In recent reports, it has been shown that certain natural compounds suppress AhR transformation in vitro. In this study, we demonstrated that ethanolic extract from molokhia, known as Egyptian spinach, showed the strongest suppressive effect on AhR transformation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in cell-free system using rat hepatic cytosol among 41 kinds of extracts from vegetables and fruits. The molokhia extract also suppressed TCDD-induced AhR transformation in mouse hepatoma Hepa-1c1c7 cells and in intestinal permeability system constructed with human colon adenocarcinoma Caco-2 cells and human hepatoma HepG2 cells. Moreover, oral administration of the molokhia extract (100mg/kg body weight) decreased 3-methylcholanthrene-induced AhR transformation to the control level by inhibiting translocation of the AhR from cytosol into the nucleus in the liver of rats. The molokhia extract-administered rat liver showed a tolerance to TCDD-induced AhR transformation by ex vivo experiment. These results indicate that molokhia is an attractive food for isolation and identification of a natural antagonist for the AhR.

  6. AHR-related activities in a creosote-adapted population of adult atlantic killifish, Fundulus heteroclitus, two decades post-EPA superfund status at the Atlantic Wood Site, Portsmouth, VA USA.

    PubMed

    Wojdylo, Josephine V; Vogelbein, Wolfgang; Bain, Lisa J; Rice, Charles D

    2016-08-01

    Atlantic killifish, Fundulus heteroclitus, are adapted to creosote-based PAHs at the US EPA Superfund site known as Atlantic Wood (AW) on the southern branch of the Elizabeth River, VA USA. Subsequent to the discovery of the AW population in the early 1990s, these fish were shown to be recalcitrant to CYP1A induction by PAHs under experimental conditions, and even to the time of this study, killifish embryos collected from the AW site are resistant to developmental deformities typically associated with exposure to PAHs in reference fish. Historically, however, 90 +% of the adult killifish at this site have proliferative hepatic lesions including cancer of varying severity. Several PAHs at this site are known to be ligands for the aryl hydrocarbon receptor (AHR). In this study, AHR-related activities in AW fish collected between 2011 and 2013 were re-examined nearly 2 decades after first discovery. This study shows that CYP1A mRNA expression is three-fold higher in intestines of AW killifish compared to a reference population. Using immunohistochemistry, CYP1A staining in intestines was uniformly positive compared to negative staining in reference fish. Livers of AW killifish were examined by IHC to show that CYP1A and AHR2 protein expression reflect lesions-specific patterns, probably representing differences in intrinsic cellular physiology of the spectrum of proliferative lesions comprising the hepatocarcinogenic process. We also found that COX2 mRNA expression levels were higher in AW fish livers compared to those in the reference population, suggesting a state of chronic inflammation. Overall, these findings suggest that adult AW fish are responsive to AHR signaling, and do express CYP1A and AHR2 proteins in intestines at a level above what was observed in the reference population. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. AHR-related Activities in a Creosote-Adapted Population of Adult Atlantic Killifish, Fundulus heteroclitus, Two Decades Post-EPA Superfund Status at the Atlantic Wood Site, Portsmouth, VA USA

    PubMed Central

    Wojdylo, Josephine V.; Vogelbein, Wolfgang; Bain, Lisa J.; Rice, Charles D.

    2016-01-01

    Atlantic killifish, Fundulus heteroclitus, are adapted to creosote-based PAHs at the US EPA Superfund site known as Atlantic Wood (AW) on the southern branch of the Elizabeth River, VA USA. Subsequent to the discovery of the AW population in the early 1990s, these fish were shown to be recalcitrant to CYP1A induction by PAHs under experimental conditions, and even to the time of this study, killifish embryos collected from the AW site are resistant to developmental deformities typically associated with exposure to PAHs in reference fish. Historically, however, 90+% of the adult killifish at this site have proliferative hepatic lesions including cancer of varying severity. Several PAHs at this site are known to be ligands for the aryl hydrocarbon receptor (AHR). In this study, AHR-related activities in AW fish collected between 2011–2013 were re-examined nearly 2 decades after first discovery. This study shows that CYP1A mRNA expression is three-fold higher in intestines of AW killifish compared to a reference population. Using immunohistochemistry, CYP1A staining in intestines was uniformly positive compared to negative staining in reference fish. Livers of AW killifish were examined by IHC to show that CYP1A and AHR2 protein expression reflect lesions-specific patterns, probably representing differences in intrinsic cellular physiology of the spectrum of proliferative lesions comprising the hepatocarcinogenic process. We also found that COX2 mRNA expression levels were higher in AW fish livers compared to those in the reference population, suggesting a state of chronic inflammation. Overall, these findings suggest that adult AW fish are responsive to AHR signaling, and do express CYP1A and AHR2 proteins in intestines at a level above what was observed in the reference population. PMID:27262937

  8. Unimolecular reactivity of organotrifluoroborate anions, RBF3- , and their alkali metal cluster ions, M(RBF3 )2- (M = Na, K; R = CH3 , CH3 CH2 , CH3 (CH2 )3 , CH3 (CH2 )5 , c-C3 H5 , C6 H5 , C6 H5 CH2 , CH2 CHCH2 , CH2 CH, C6 H5 CO).

    PubMed

    Bathie, Fiona L B; Bowen, Chris J; Hutton, Craig A; O'Hair, Richard A J

    2018-07-15

    Potassium organotrifluoroborates (RBF 3 K) are important reagents used in organic synthesis. Although mass spectrometry is commonly used to confirm their molecular formulae, the gas-phase fragmentation reactions of organotrifluoroborates and their alkali metal cluster ions have not been previously reported. Negative-ion mode electrospray ionization (ESI) together with collision-induced dissociation (CID) using a triple quadrupole mass spectrometer were used to examine the fragmentation pathways for RBF 3 - (where R = CH 3 , CH 3 CH 2 , CH 3 (CH 2 ) 3 , CH 3 (CH 2 ) 5 , c-C 3 H 5 , C 6 H 5 , C 6 H 5 CH 2 , CH 2 CHCH 2 , CH 2 CH, C 6 H 5 CO) and M(RBF 3 ) 2 - (M = Na, K), while density functional theory (DFT) calculations at the M06/def2-TZVP level were used to examine the structures and energies associated with fragmentation reactions for R = Me and Ph. Upon CID, preferentially elimination of HF occurs for RBF 3 - ions for systems where R = an alkyl anion, whereas R - formation is favoured when R = a stabilized anion. At higher collision energies loss of F - and additional HF losses are sometimes observed. Upon CID of M(RBF 3 ) 2 - , formation of RBF 3 - is the preferred pathway with some fluoride transfer observed only when M = Na. The DFT-calculated relative thermochemistry for competing fragmentation pathways is consistent with the experiments. The main fragmentation pathways of RBF 3 - are HF elimination and/or R - loss. This contrasts with the fragmentation reactions of other organometallate anions, where reductive elimination, beta hydride transfer and bond homolysis are often observed. The presence of fluoride transfer upon CID of Na(RBF 3 ) 2 - but not K(RBF 3 ) 2 - is in agreement with the known fluoride affinities of Na + and K + and can be rationalized by Pearson's HSAB theory. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Akira, E-mail: akubota@whoi.edu; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Stegeman, John J.

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced viamore » AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown

  10. Lamin A/C Is Required for ChAT-Dependent Neuroblastoma Differentiation.

    PubMed

    Guglielmi, Loredana; Nardella, Marta; Musa, Carla; Iannetti, Ilaria; Arisi, Ivan; D'Onofrio, Mara; Storti, Andrea; Valentini, Alessandra; Cacci, Emanuele; Biagioni, Stefano; Augusti-Tocco, Gabriella; D'Agnano, Igea; Felsani, Armando

    2017-07-01

    The mouse neuroblastoma N18TG2 clone is unable to differentiate and is defective for the enzymes of the biosynthesis of neurotransmitters. The forced expression of choline acetyltransferase (ChAT) in these cells results in the synthesis and release of acetylcholine (Ach) and hence in the expression of neurospecific features and markers. To understand how the expression of ChAT triggered neuronal differentiation, we studied the differences in genome-wide transcription profiles between the N18TG2 parental cells and its ChAT-expressing 2/4 derived clone. The engagement of the 2/4 cells in the neuronal developmental program was confirmed by the increase of the expression level of several differentiation-related genes and by the reduction of the amount of transcripts of cell cycle genes. At the same time, we observed a massive reorganization of cytoskeletal proteins in terms of gene expression, with the accumulation of the nucleoskeletal lamina component Lamin A/C in differentiating cells. The increase of the Lmna transcripts induced by ChAT expression in 2/4 cells was mimicked treating the parental N18TG2 cells with the acetylcholine receptor agonist carbachol, thus demonstrating the direct role played by this receptor in neuron nuclei maturation. Conversely, a treatment of 2/4 cells with the muscarinic receptor antagonist atropine resulted in the reduction of the amount of Lmna RNA. Finally, the hypothesis that Lmna gene product might play a crucial role in the ChAT-dependent molecular differentiation cascade was strongly supported by Lmna knockdown in 2/4 cells leading to the downregulation of genes involved in differentiation and cytoskeleton formation and to the upregulation of genes known to regulate self-renewal and stemness.

  11. ChIP-seq.

    PubMed

    Kim, Tae Hoon; Dekker, Job

    2018-05-01

    Owing to its digital nature, ChIP-seq has become the standard method for genome-wide ChIP analysis. Using next-generation sequencing platforms (notably the Illumina Genome Analyzer), millions of short sequence reads can be obtained. The densities of recovered ChIP sequence reads along the genome are used to determine the binding sites of the protein. Although a relatively small amount of ChIP DNA is required for ChIP-seq, the current sequencing platforms still require amplification of the ChIP DNA by ligation-mediated PCR (LM-PCR). This protocol, which involves linker ligation followed by size selection, is the standard ChIP-seq protocol using an Illumina Genome Analyzer. The size-selected ChIP DNA is amplified by LM-PCR and size-selected for the second time. The purified ChIP DNA is then loaded into the Genome Analyzer. The ChIP DNA can also be processed in parallel for ChIP-chip results. © 2018 Cold Spring Harbor Laboratory Press.

  12. Dihydromethysticin (DHM) Blocks Tobacco Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-Induced O6-Methylguanine in a Manner Independent of the Aryl Hydrocarbon Receptor (AhR) Pathway in C57BL/6 Female Mice.

    PubMed

    Narayanapillai, Sreekanth C; Lin, Shang-Hsuan; Leitzman, Pablo; Upadhyaya, Pramod; Baglole, Carolyn J; Xing, Chengguo

    2016-11-21

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a key carcinogen responsible for tobacco smoke-induced lung carcinogenesis. Among the types of DNA damage caused by NNK and its metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), O 6 -methylguanine (O 6 -mG) is likely the most carcinogen in A/J mice. Results of our previous studies showed that levels of O 6 -mG and other types of NNAL-derived DNA damage were preferentially reduced in the lung of female A/J mice upon dietary treatment with dihydromethysticin (DHM), a promising lung cancer chemopreventive agent from kava. Such a differential blockage may be mediated via an increased level of NNAL glucuronidation, thereby leading to its detoxification. The potential of the aryl hydrocarbon receptor (AhR) as an upstream target of DHM mediating these events was evaluated herein using Ahr +/- and Ahr -/- C57BL/6 female mice because DHM was reported as an AhR agonist. DHM (0.05, 0.2, and 1.0 mg/g of diet) and dihydrokavain (DHK, an inactive analogue, 1.0 mg/g of diet) were given to mice for 7 days, followed by a single intraperitoneal dose of NNK at 100 mg/kg of body weight. The effects of DHM on the amount of O 6 -mG in the lung, on the urinary ratio of glucuronidated NNAL (NNAL-Gluc) and free NNAL, and on CYP1A1/2 activity in the liver microsomes were analyzed. As observed in A/J mice, DHM treatment significantly and dose-dependently reduced the level of O 6 -mG in the target lung tissue, but there were no significant differences in O 6 -mG reduction between mice from Ahr +/- and Ahr -/- backgrounds. Similarly, in both strains, DHM at 1 mg/g of diet significantly increased the urinary ratio of NNAL-Gluc to free NNAL and CYP1A1/2 enzymatic activity in liver with no changes detected at lower DHM dosages. Because none of these effects of DHM were dependent on Ahr status, AhR clearly is not the upstream target for DHM.

  13. ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance.

    PubMed

    Visa, Neus; Jordán-Pla, Antonio

    2018-01-01

    Protein-DNA interactions in vivo can be detected and quantified by chromatin immunoprecipitation (ChIP). ChIP has been instrumental for the advancement of epigenetics and has set the groundwork for the development of a number of ChIP-related techniques that have provided valuable information about the organization and function of genomes. Here, we provide an introduction to ChIP and discuss the applications of ChIP in different research areas. We also review some of the strategies that have been devised to improve ChIP performance.

  14. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    PubMed

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  15. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data

    PubMed Central

    2010-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome. Results We have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes. Conclusions ChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such

  16. Selenium carboxylic acids betaine; 3,3‧,3″-selenotris(propanoic acid) betaine, Se(CH2CH2COOH)2(CH2CH2COO)

    NASA Astrophysics Data System (ADS)

    Doudin, Khalid; Törnroos, Karl W.

    2017-06-01

    Attempts to prepare [Se(CH2CH2COOH)3]+Cl- from Se(CH2CH2COOH)2 and H2Cdbnd CHCOOH in concentrated hydrochloric acid, for the corresponding sulfonium salt, led exclusively to the Se-betaine, Se(CH2CH2COOH)2(CH2CH2COO). The Se-betaine crystallises in the space group P2l/c with the cell dimensions at 223 K, a = 5.5717(1), b = 24.6358(4), c = 8.4361(1) Å, β = 104.762(1)°, V = 1119.74(3) Å3, Z = 4, Dcalc = 1.763 Mgm- 3, μ = 3.364 Mm-1. The structure refined to RI = 0.0223 for 2801 reflections with Fo > 4σ(Fo). In the crystalline state the molecule is intermolecularly linked to neighbouring molecules by a number of hydrogen bonds; a very strong carboxylic-carboxylate bond with an O⋯O distance of 2.4435(16) Å, a medium strong carboxylic-carboxylate bond with an O⋯O distance of 2.6431(16) Å and several weak O⋯H(CH2) with O⋯C distances between 3.2 and 3.3 Å. In the carboxylic group involved in the very strong hydrogen bond the O⋯H bond is antiperiplanar to the Cdbnd O bond while the Osbnd H bond is periplanar to the Cdbnd O bond in the second carboxylic group. Based upon the Csbnd O bond lengths and the elongation of the Osbnd H bond involved in the strong hydrogen bond one may describe the compound as strongly linked units of Se(CH2CH2COOH)(CH2CH2COO)2 rather than Se(CH2CH2COOH)2(CH2CH2COO). The selenium atom forms two strong intramolecular 1,5-Se⋯O contacts, with a carboxylate oxygen atom, 2.9385(12) Å, and with a carboxylic oxygen atom, 2.8979(11) Å. To allow for these contacts the two organic fragments have been forced into the periplanar conformation. The molecule is only slightly asymmetric with regard to the Csbnd Sesbnd C bond angles but is very asymmetric with regard to the torsion angles.

  17. Laboratory Spectroscopy of CH(+) and Isotopic CH

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    The A1II - X1(Epsilon) electronic band of the CH(+) ion has been used as a probe of the physical and dynamical conditions of the ISM for 65 years. In spite of being one of the first molecular species observed in the ISM and the very large number of subsequent observations with large derived column densities, the pure rotational spectra of CH+ has remained elusive in both the laboratory and in the ISM as well. We report the first laboratory measurement of the pure rotation of the CH(+) ion and discuss the detection of CH-13(+) in the ISM. Also reported are the somewhat unexpected chemical conditions that resulted in laboratory production.

  18. Dioxin Receptor Expression Inhibits Basal and Transforming Growth Factor β-induced Epithelial-to-mesenchymal Transition*

    PubMed Central

    Rico-Leo, Eva M.; Alvarez-Barrientos, Alberto; Fernandez-Salguero, Pedro M.

    2013-01-01

    Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR−/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells. PMID:23382382

  19. libChEBI: an API for accessing the ChEBI database.

    PubMed

    Swainston, Neil; Hastings, Janna; Dekker, Adriano; Muthukrishnan, Venkatesh; May, John; Steinbeck, Christoph; Mendes, Pedro

    2016-01-01

    ChEBI is a database and ontology of chemical entities of biological interest. It is widely used as a source of identifiers to facilitate unambiguous reference to chemical entities within biological models, databases, ontologies and literature. ChEBI contains a wealth of chemical data, covering over 46,500 distinct chemical entities, and related data such as chemical formula, charge, molecular mass, structure, synonyms and links to external databases. Furthermore, ChEBI is an ontology, and thus provides meaningful links between chemical entities. Unlike many other resources, ChEBI is fully human-curated, providing a reliable, non-redundant collection of chemical entities and related data. While ChEBI is supported by a web service for programmatic access and a number of download files, it does not have an API library to facilitate the use of ChEBI and its data in cheminformatics software. To provide this missing functionality, libChEBI, a comprehensive API library for accessing ChEBI data, is introduced. libChEBI is available in Java, Python and MATLAB versions from http://github.com/libChEBI, and provides full programmatic access to all data held within the ChEBI database through a simple and documented API. libChEBI is reliant upon the (automated) download and regular update of flat files that are held locally. As such, libChEBI can be embedded in both on- and off-line software applications. libChEBI allows better support of ChEBI and its data in the development of new cheminformatics software. Covering three key programming languages, it allows for the entirety of the ChEBI database to be accessed easily and quickly through a simple API. All code is open access and freely available.

  20. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data

    PubMed Central

    Carroll, Thomas S.; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency. PMID:24782889

  1. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    PubMed

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect.

  2. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    PubMed

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  3. An Interaction of LPS and RSV Infection in Augmenting the AHR and Airway Inflammation in Mice.

    PubMed

    Zhou, Na; Li, Wei; Ren, Luo; Xie, Xiaohong; Liu, Enmei

    2017-10-01

    Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection (LRTI) in children under 5 years of age, especially infants with severe bronchiolitis. Our preliminary clinical experiments showed that bacterial colonization was commonly observed in children with virus-induced wheezing, particularly in those with recurrent wheezing, suggesting that bacterial colonization with an accompanying viral infection may contribute to disease severity. In most cases, RSV-infected infants were colonized with pathogenic bacteria (mainly Gram-negative bacteria). LPS is the main component of Gram-negative bacteria and acts as a ligand for Toll-like receptor 4 (TLR4). Relevant studies have reported that the TLR family is crucial in mediating the link between viral components and immunologic responses to infection. Of note, TLR4 activation has been associated with disease severity during RSV infection. In the present study, we identified that LPS aggravated RSV-induced AHR and airway inflammation in BALB/c mice using an RSV coinfection model. We found that the airway inflammatory cells and cytokines present in BALF and TRIF in lung tissue play a role in inducing AHR and airway inflammation upon RSV and bacteria coinfection, which might occur through the TRIF-MMP-9-neutrophil-MMP-9 signalling pathway. These results may aid in the development of novel treatments and improve vaccine design.

  4. Aldosterone antagonists in heart failure.

    PubMed

    Miller, Susan E; Alvarez, René J

    2013-01-01

    Chronic, systolic heart failure is an increasing and costly health problem, and treatments based on pathophysiology have evolved that include the use of aldosterone antagonists. Advances in the understanding of neurohormonal responses to heart failure have led to better pharmacologic treatments. The steroid hormone aldosterone has been associated with detrimental effects on the cardiovascular system, such as ventricular remodeling and endothelial dysfunction. This article will review the literature and guidelines that support the use of aldosterone antagonists in the treatment of chronic, systolic heart failure. Aldosterone antagonists are life-saving drugs that have been shown to decrease mortality in patients with New York Heart Association class III to IV heart failure and in patients with heart failure after an acute myocardial infarction. Additional studies are being conducted to determine if the role of aldosterone antagonists can be expanded to patients with less severe forms of heart failure. Aldosterone antagonists are an important pharmacologic therapy in the neurohormonal blockade necessary in the treatment of systolic heart failure. These drugs have been shown to decrease mortality and reduce hospital readmission rates. The major complication of aldosterone antagonists is hyperkalemia, which can be avoided with appropriate patient selection and diligent monitoring.

  5. USE OF THE TEQ MODEL FOR ASSESSING AHR MEDIATED TOXICITY RISKS TO POPULATIONS OF LAKE TROUT AND OTHER SPECIES IN LAKE ONTARIO

    EPA Science Inventory

    The toxicity equivalence (TEQ) model for assessing aryl hydrocarbon receptor (AHR) mediated toxicity risks associated with polyhalogenated aromatic chemicals structurally similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been applied to human health risks for more than 15...

  6. Narcotic antagonists. Treatment tool for addiction.

    PubMed

    Valentine, N M; Meyer, R E

    1976-09-01

    Narcotic antagonists have recently gained attention through research aimed at evaluating both biochemical effects and treatment potential for opiate addiction. Narcotic antagonists are a classification of drugs which block the euphoric (and all other) effects of opiates. Naltrexone is the most promising narcotic antagonist based on ability to produce blockade, length of duration, and relative absence of side effects. The narcotic antagonists offer an adjunctive or alternative method of treatment for opiate addicts based on Wikler's biobehavioral theory of conditioned abstinence. Narcotic antagonists are presently being investigated at seven research centers throughout the United States and may be available for clinical use in the future.

  7. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human

  8. Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells

    PubMed Central

    Boitano, Anthony E.; Wang, Jian; Romeo, Russell; Bouchez, Laure C.; Parker, Albert E.; Sutton, Sue E.; Walker, John R.; Flaveny, Colin A.; Perdew, Gary H.; Denison, Michael S.; Schultz, Peter G.; Cooke, Michael P.

    2011-01-01

    Although practiced clinically for over 40 years, the use of hematopoietic stem cell (HSC) transplants remains limited by the ability to expand these cells ex vivo. An unbiased screen with primary human HSC identified a purine derivative, StemRegenin 1 (SR1), that promotes the ex vivo expansion of CD34+ cells. Culture of HSC with SR1 led to a fifty-fold increase in cells expressing CD34, and a 17-fold increase in cells that retain the ability to engraft immunodeficient mice. Mechanistic studies show that SR1 acts by antagonizing the aryl hydrocarbon receptor (AhR). The identification of SR1 and AhR modulation as a means to induce ex vivo HSC expansion should facilitate the clinical use of HSC therapy. PMID:20688981

  9. On the Jupiter's ephemeris in the Ch'i-Yao Jang-Tsai-Chüch.

    NASA Astrophysics Data System (ADS)

    Niu, Weixing; Jiang, Xiaoyuan

    Jupiter's ephemeris preserved in the Ch'i-Yao Jang-Tsai-Chüch is interpreted. Then the time and position coordinates of Jupiter's first stationary point, second stationary point, first visibility in the east and last visibility in the west, which recorded in the ephemeris are analysed. The accuracy of the ephemeris is also discussed. Finally, it is identified that the ephemeris has been used as an astrological handbook by Japanese astrologers in 973 - 1132.

  10. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  11. Cholinesterase (ChE) response and related mortality among birds fed ChE inhibitors

    USGS Publications Warehouse

    Ludke, J.L.; Hill, E.F.; Dieter, M.P.

    1975-01-01

    Patterns of mortality and inhibition of brain and plasma ChE in birds treated with ChE inhibitors were studied in an attempt to determine the validity of using ChE activity as a monitoring and diagnostic technique. Analysis of brain ChE activity proved to be reliable for diagnosing and monitoring effects of selected ChE inhibitors in birds. Brain ChE inhibition exceeding 20% indicated exposure, and inhibition greater than 50% was sufficient for diagnosing cause of death. Individuals that died from dietary exposure to parathion or carbofuran had brain ChE activities below 55% of normal; although individuals could survive with brain ChE activity lower than 50%. Problems associated with collection, storage, and analysis of tissues for ChE activity are discussed.

  12. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome

  13. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancermore » proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.« less

  14. Ice chemistry of acetaldehyde reveals competitive reactions in the first step of the Strecker synthesis of alanine: formation of HO-CH(CH3)-NH2 vs. HO-CH(CH3)-CN

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-08-01

    The understanding of compound formation in laboratory simulated astrophysical environments is an important challenge in obtaining information on the chemistry occurring in these environments. We here investigate by means of both laboratory experiments and quantum chemical calculations the ice-based reactivity of acetaldehyde (CH3CHO) with ammonia (NH3) and hydrogen cyanide (HCN) in excess of water (H2O) promoted by temperature. A priori, this study should give information on alanine (2HN-CH(CH3)-COOH) formation (the simplest chiral amino acid detected in meteorites), since these reactions concern the first steps of its formation through the Strecker synthesis. However, infrared spectroscopy, mass spectrometry with HC14N or HC15N isotopologues and B3LYP-D3 results converge to indicate that an H2O-dominated ice containing CH3CHO, NH3 and HCN not only leads to the formation of α-aminoethanol (2HN-CH(CH3)-OH, the product compound of the first step of the Strecker mechanism) and its related polymers (2HN-(CH(CH3)-O)n-H) due to reaction between CH3CHO and NH3, but also to the 2-hydroxypropionitrile (HO­-CH(CH3)-CN) and its related polymers (H-(O-CH(CH3))n-CN) from direct reaction between CH3CHO and HCN. The ratio between these two species depends on the initial NH3/HCN ratio in the ice. Formation of α-aminoethanol is favoured when the NH3 concentration is larger than HCN. We also show that the presence of water is essential for the formation of HO­-CH(CH3)-CN, contrarily to 2HN-CH(CH3)-OH whose formation also takes place in absence of H2O ice. As in astrophysical ices NH3 is more abundant than HCN, formation of α-aminoethanol should consequently be favoured compared to 2-hydroxypropionitrile, thus pointing out α-aminoethanol as a plausible intermediate species for alanine synthesis through the Strecker mechanism in astrophysical ices.

  15. Use of the mouse jumping test for estimating antagonistic potencies of morphine antagonists.

    PubMed

    Cowan, A

    1976-03-01

    The potencies of 19 reference morphine antagonists have been compared in a modified version of the mouse jumping test. Mice were each implanted subcutaneously with one 75 mg pellet of morphine. Antagonist challenge took place 72 h later and the incidence of repetitive vertical-jumping was monitored over 1 h. A high Pearson correlation coefficient (r = 0.997) was found between quantitative assays based on the total number of jumps per mouse and quantal assays based on mice jumping at least 6 times. A comparison of relative potencies obtained with the mouse test and with non-withdrawn morphine-dependent monkeys gave a Spearman rank order coefficient of 0.91 while a similar comparison with values obtained with the guinea-pig isolated ileum preparation also gave a high correlation coefficient (r= 0.92). Whereas it is difficult to assess the antagonistic component of buprenorphine and cyclorphan with the ileum preparation, both compounds can be satisfactorily assayed in the mouse jumping test. The reported antagonistic properties of ketocyclazocine and profadol could not be confirmed in the mouse model.

  16. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nault, Rance, E-mail: naultran@msu.edu; Abdul-Fattah, Hiba; Mironov, Gleb G.

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesismore » rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.« less

  17. Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists

    PubMed Central

    Randall, Patrick A.; Nunes, Eric J.; Janniere, Simone L.; Stopper, Colin M.; Farrar, Andrew M.; Sager, Thomas N.; Baqi, Younis; Hockemeyer, Jörg; Müller, Christa E.

    2012-01-01

    Rationale Adenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone. Objective The present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists. Methods Six drugs were tested: two nonselective adenosine antagonists (caffeine and theophylline), two adenosine A1 antagonists (DPCPX and CPT), and two adenosine A2A antagonists (istradefylline (KW6002) and MSX-3). Two schedules of reinforcement were employed; a fixed interval 240-s (FI-240 sec) schedule was used to generate low baseline rates of responding and a fixed ratio 20 (FR20) schedule generated high rates. Results Caffeine and theophylline produced rate-dependent effects on lever pressing, increasing responding on the FI-240 sec schedule but decreasing responding on the FR20 schedule. The A2A antagonists MSX-3 and istradefylline increased FI-240 sec lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact, there was a tendency for istradefylline to increase FR20 responding at a moderate dose. A1 antagonists failed to increase lever pressing rate, but DPCPX decreased FR20 responding at higher doses. Conclusions These results suggest that adenosine A2A antagonists enhance operant response rates, but A1 antagonists do not. The involvement of adenosine A2A receptors in regulating aspects of instrumental response output and behavioral activation may have implications for the treatment of effort-related psychiatric dysfunctions, such as psychomotor slowing and anergia in depression. PMID:21347642

  18. New superhindered polydentate polyphosphine ligands P(CH2CH2P(t)Bu2)3, PhP(CH2CH2P(t)Bu2)2, P(CH2CH2CH2P(t)Bu2)3, and their ruthenium(II) chloride complexes.

    PubMed

    Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M

    2012-03-05

    The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.

  19. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis

    PubMed Central

    Li, Guipeng; Chen, Yang; Snyder, Michael P.; Zhang, Michael Q.

    2017-01-01

    ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2. PMID:27625391

  20. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.

    PubMed

    Bedard, Jeremy; Hong, Do-Young; Bhan, Aditya

    2013-08-07

    Co-processing of formic acid or carbon dioxide with CH4 (FA/CH4 = 0.01-0.03 and CO2/CH4 = 0.01-0.03) on Mo/H-ZSM-5 catalysts at 950 K with the prospect of kinetically coupling dehydrogenation and deoxygenation cycles results instead in a two-zone, staged bed reactor configuration consisting of upstream oxygenate/CH4 reforming and downstream CH4 dehydroaromatization. The addition of an oxygenate co-feed (oxygenate/CH4 = 0.01-0.03) causes oxidation of the active molybdenum carbide catalyst while producing CO and H2 until completely converted. Forward rates of C6H6 synthesis are unaffected by the introduction of an oxygenate co-feed after rigorously accounting for the thermodynamic reversibility caused by the H2 produced in oxygenate reforming reactions and the fraction of the active catalyst deemed unavailable for CH4 DHA. All effects of co-processing oxygenates with CH4 can be construed in terms of an approach to equilibrium.

  1. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Kuo-Liang

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim intomore » less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG{sub 0}/G{sub 1} population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the

  2. Role of substance P and neurokinin A in toluene diisocyanate-induced increased airway responsiveness in rabbits.

    PubMed

    Marek, W; Potthast, J J; Marcynski, B; Baur, X

    1996-01-01

    The aim of the present study was to examine the role of neuropeptides, especially substance P (SP) and neurokinin A (NKA), in toluene diisocyanate (TDI)-induced airway hyperresponsiveness (AHR) to acetylcholine aerosols. Thirty parts per billion of TDI in air administered over 4 hours caused a significant increase in the airway constrictive response to acetylcholine (ACH) aerosols in rabbits (DeltaRI: 245 +/- 30%, p < 0.005) without altering basic values of respiratory, cardiovascular or blood gas parameters. Inhalation of the aerosolized neuropeptides SP and NKA resulted in a similar increase in airway responsiveness (AR) to ACH as exposure to 30 ppb TDI. To determine whether neuropeptides contribute to TDI-induced AHR, we studied their effects after systemic treatment with capsaicin as well as after infusion of specific synthetic antagonists for SP and NK2 (NKA) receptors. CAPS treatment performed on 4 consecutive days as well as antagonists' infusion only moderately (p > 0.05) decreased airway responses to ACH. CAPS application prevented the TDI-induced increase in AR to ACH in all rabbits. The increase in airway resistance to ACH did not significantly change after TDI exposure (98 +/- 22% of the control response before TDI, p > 0.05). Simultaneous infusion of specific synthetic SP and NK2 receptor antagonists also abolished the TDI-induced increase in airway responses to ACH in all animals investigated (p > 0.05). The results of this study demonstrate that neuropeptides, especially the tachykinins SP and NKA, are important mediators in TDI-induced AHR in rabbits.

  3. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    PubMed

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. ChIP-re-ChIP: Co-occupancy Analysis by Sequential Chromatin Immunoprecipitation.

    PubMed

    Beischlag, Timothy V; Prefontaine, Gratien G; Hankinson, Oliver

    2018-01-01

    Chromatin immunoprecipitation (ChIP) exploits the specific interactions between DNA and DNA-associated proteins. It can be used to examine a wide range of experimental parameters. A number of proteins bound at the same genomic location can identify a multi-protein chromatin complex where several proteins work together to regulate gene transcription or chromatin configuration. In many instances, this can be achieved using sequential ChIP; or simply, ChIP-re-ChIP. Whether it is for the examination of specific transcriptional or epigenetic regulators, or for the identification of cistromes, the ability to perform a sequential ChIP adds a higher level of power and definition to these analyses. In this chapter, we describe a simple and reliable method for the sequential ChIP assay.

  5. Anharmonic Effect in CH3CH2C(=O)OCH2CH3 Decomposition

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Song, Liguo; Yao, Li; Xia, Wenwen

    2017-12-01

    In this paper, using the B3LYP functional and CCSD(T) method with 6-311++G** basis set, the harmonic and anharmonic rate constants in the unimolecular dissociation of ethyl propanoate have been calculated using Rice-Ramsperger-Kassel-Marcus theory. The anharmonic rate constants of the title reaction have also been examined, the comparison shows that, the anharmonic effect especially in the case of high total energies and temperature for channels 3 to 6 is significant, so that the anharmonic effect cannot be neglected for unimolecular dissociation reaction of CH3CH2C(=O)OCH2CH3 both in microcanonical and canonical systems.

  6. ChIP-chip.

    PubMed

    Kim, Tae Hoon; Dekker, Job

    2018-05-01

    ChIP-chip can be used to analyze protein-DNA interactions in a region-wide and genome-wide manner. DNA microarrays contain PCR products or oligonucleotide probes that are designed to represent genomic sequences. Identification of genomic sites that interact with a specific protein is based on competitive hybridization of the ChIP-enriched DNA and the input DNA to DNA microarrays. The ChIP-chip protocol can be divided into two main sections: Amplification of ChIP DNA and hybridization of ChIP DNA to arrays. A large amount of DNA is required to hybridize to DNA arrays, and hybridization to a set of multiple commercial arrays that represent the entire human genome requires two rounds of PCR amplifications. The relative hybridization intensity of ChIP DNA and that of the input DNA is used to determine whether the probe sequence is a potential site of protein-DNA interaction. Resolution of actual genomic sites bound by the protein is dependent on the size of the chromatin and on the genomic distance between the probes on the array. As with expression profiling using gene chips, ChIP-chip experiments require multiple replicates for reliable statistical measure of protein-DNA interactions. © 2018 Cold Spring Harbor Laboratory Press.

  7. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Rohit; Badger, Thomas M.; Arkansas Children's Nutrition Center, Little Rock, AR 72202

    2008-03-01

    Consumption of soy diets has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. Previously, we have demonstrated that female Sprague-Dawley rats fed purified AIN-93G diets with soy protein isolate (SPI) as the sole protein source had reduced CYP1A1 induction and basal aryl hydrocarbon receptor (AhR) levels relative to those fed the same diet containing casein (CAS). In the present study, the molecular mechanisms underlying reduced AhR expression have been studied. The SPI-effect on AhR was not observed after feeding diets containing the purified soy isoflavones genistein or daidzein. Rat hepatoma FGC-4more » cells were treated with the serum obtained from rats fed CAS- or SPI-containing diets. Reduced AhR levels (P < 0.05) were observed after 24 h exposure to SPI-serum without any changes in the overall expression of chaperone proteins-HSP90 and XAP2. SPI-serum-stimulated AhR degradation was inhibited by treating the cells with the proteasome inhibitor, MG132, and was observed to be preceded by ubiquitination of the receptor. A reduced association of XAP2 with the immunoprecipitated AhR complex was observed. SPI-serum-mediated AhR degradation was preceded by nuclear translocation of the receptor. However, the translocated receptor was found to be unable to heterodimerize with ARNT or to bind to XRE elements on the CYP1A1 enhancer. These data suggest that feeding SPI-containing diets antagonizes AhR signaling by a novel mechanism which differs from those established for known AhR antagonists.« less

  8. IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model.

    PubMed

    Kobayashi, Minoru; Ashino, Shigeru; Shiohama, Yasuo; Wakita, Daiko; Kitamura, Hidemitsu; Nishimura, Takashi

    2012-02-01

    The adoptive transfer of OVA-specific Th1 cells into WT mice followed by OVA inhalation induces a significant elevation of airway hyper-responsiveness (AHR) with neutrophilia but not mucus hypersecretion. Here, we demonstrate that the airway inflammation model, pathogenically characterized as severe asthma, was partly mimicked by i.n. administration of IFN-γ. The administration of IFN-γ instead of Th1 cells caused AHR elevation but not neutrophilia, and remarkably induced neurokinin-2 receptor (NK2R) expression along with neurokinin A (NKA) production in the lung. To evaluate whether NKA/NK2R was involved in airway inflammation, we first investigated the role of NKA/NK2R-signaling in airway smooth muscle cells (ASMCs) in vitro. NK2R mRNA expression was significantly augmented in tracheal tube-derived ASMCs of WT mice but not STAT-1(-/-) mice after stimulation with IFN-γ. In addition, methacholine-mediated Ca(2+) influx into the ASMCs was significantly reduced in the presence of NK2R antagonist. Moreover, the NK2R antagonist strongly inhibited IFN-γ-dependent AHR elevation in vivo. Thus, these results demonstrated that IFN-γ directly acts on ASMCs to elevate AHR via the NKA/NK2R-signaling cascade. Our present findings suggested that NK2R-mediated neuro-immuno crosstalk would be a promising target for developing novel drugs in Th1-cell-mediated airway inflammation, including severe asthma. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Alleviative effects of quercetin and onion on male reproductive toxicity induced by diesel exhaust particles.

    PubMed

    Izawa, Hiromi; Kohara, Machiko; Aizawa, Koichi; Suganuma, Hiroyuki; Inakuma, Takahiro; Watanabe, Gen; Taya, Kazuyoshi; Sagai, Masaru

    2008-05-01

    Diesel exhaust particles (DEPs) are particulate matter from diesel exhaust that contain many toxic compounds, such as polyaromatic hydrocarbons (PAHs). Some toxicities of PAH are thought to be expressed via aryl hydrocarbon receptors (AhRs). The male reproductive toxicity of DEPs might depend on AhR activation induced by PAHs. We hypothesized that AhR antagonists protect against the male reproductive toxicity of DEPs. Quercetin is a flavonoid and a well-known AhR antagonist, while onion contains many flavonoids, including quercetin. Hence, we examined whether quercetin and onion have alleviative effects against the male reproductive toxicity induced by DEPs. BALB/c male mice were fed quercetin- or onion-containing diets and received 10 injections of DEP suspension or vehicle into the dorsal subcutaneous layer over 5 weeks. The mice were euthanized at 2 weeks, after the last treatment, and their organs were collected. Daily sperm production and total incidence of sperm abnormalities were significantly affected in the DEP groups as compared with the vehicle group, but the total incidence of sperm abnormalities in the quercetin + DEP-treated mice was significantly reduced as compared with the DEP-treated mice. The numbers of Sertoli cells were significantly decreased in DEP-treated mice as compared with the vehicle-treated mice, but, the numbers of Sertoli cells were significantly increased in the quercetin and the onion + DEP-treated mice as compared with the DEP-treated mice. These results clearly indicate alleviative effects of quercetin and onion against the male reproductive toxicity induced by DEP.

  10. Luminescent Copper(I) Halide Butterfly Dimers Coordinated to [Au(CH3imCH2py)2]BF4 and [Au(CH3imCH2quin)2]BF4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, V.; Moore, A; Shearer, J

    2009-01-01

    The coordination chemistry of copper(I) halides to the homoleptic, N-heterocyclic carbene Au(I) complexes [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} and [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} was explored. The reaction of CuX (X = Cl, Br, I) with either [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} or [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} produces trimetallic complexes containing Cu{sub 2}X{sub 2}-butterfly copper clusters coordinated to the two imine moieties. The triangular arrangement of the metals places the gold(I) center in close proximity ({approx}2.5-2.6 {angstrom}) to the centroid of the Cu-Cu vector. The Cu-Cu separations vary as a function of bridging halide with the shortest Cu-Cu separationsmore » of {approx}2.5 {angstrom} found in the iodo-complexes and the longest separations of 2.9 {angstrom} found in the bridging chloride complexes. In all six complexes the Au-Cu separations range from {approx}2.8 to 3.0 {angstrom}. In the absence of halides, the dimetallic complex [AuCu(CH{sub 3}imCH{sub 2}py){sub 2}(NCCH{sub 3}){sub 2}](BF{sub 4}){sub 2}, containing a long Au-Cu distance of {approx}4.72 {angstrom} is formed. Additionally, as the byproduct of the reaction of CuBr with [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} the deep-red, dimetallic compound, AuCuBr{sub 2}(CH{sub 3}imCH{sub 2}quin){sub 2}, was isolated in very low yield. All of these complexes were studied by NMR spectroscopy, mass spectrometry, and the copper containing species were additionally characterized by X-ray crystallography. In solution the copper centers dissociate from the gold complexes, but as shown by XANES and EXAFS spectroscopy, at low temperature the Cu-Cu linkage is broken, and the individual copper(I) halides reposition themselves to opposite sides of the gold complex while remaining coordinated to one imine moiety. In the solid state all of the complexes are photoluminescent, though the nature of the excited state was not determined.« less

  11. Corticospinal control of antagonistic muscles in the cat.

    PubMed

    Ethier, Christian; Brizzi, Laurent; Giguère, Dominic; Capaday, Charles

    2007-09-01

    We recently suggested that movement-related inter-joint muscle synergies are recruited by selected excitation and selected release from inhibition of cortical points. Here we asked whether a similar cortical mechanism operates in the functional linking of antagonistic muscles. To this end experiments were done on ketamine-anesthetized cats. Intracortical microstimulation (ICMS) and intramuscular electromyographic recordings were used to find and characterize wrist, elbow and shoulder antagonistic motor cortical points. Simultaneous ICMS applied at two cortical points, each evoking activity in one of a pair of antagonistic muscles, produced co-contraction of antagonistic muscle pairs. However, we found an obvious asymmetry in the strength of reciprocal inhibition; it was always significantly stronger on physiological extensors than flexors. Following intravenous injection of a single bolus of strychnine, a cortical point at which only a physiological flexor was previously activated also elicited simultaneous activation of its antagonist. This demonstrates that antagonistic corticospinal neurons are closely grouped, or intermingled. To test whether releasing a cortical point from inhibition allows it to be functionally linked with an antagonistic cortical point, one of three GABA(A) receptor antagonists, bicuculline, gabazine or picrotoxin, was injected iontophoretically at one cortical point while stimulation was applied to an antagonistic cortical point. This coupling always resulted in co-contraction of the represented antagonistic muscles. Thus, antagonistic motor cortical points are linked by excitatory intracortical connections held in check by local GABAergic inhibition, with reciprocal inhibition occurring at the spinal level. Importantly, the asymmetry of cortically mediated reciprocal inhibition would appear significantly to bias muscle maps obtained by ICMS in favor of physiological flexors.

  12. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    PubMed

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  13. CH-53K Heavy Lift Replacement Helicopter (CH-53K)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-390 CH-53K Heavy Lift Replacement Helicopter (CH-53K) As of FY 2017 President’s Budget...December 2015 SAR March 4, 2016 10:04:18 UNCLASSIFIED 4 Col Henry Vanderborght PMA-261 Heavy Lift Helicopters Program Executive Office - Air, Anti...Replacement Helicopter (CH-53K) DoD Component Navy Responsible Office References SAR Baseline (Development Estimate) Defense Acquisition Executive (DAE

  14. AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis.

    PubMed

    Gaitanis, George; Magiatis, Prokopios; Stathopoulou, Konstantina; Bassukas, Ioannis D; Alexopoulos, Evangelos C; Velegraki, Aristea; Skaltsounis, Alexios-Leandros

    2008-07-01

    Malassezia yeasts are connected with seborrheic dermatitis (SD) whereas M. furfur pathogenicity is associated with the production of bioactive indoles. In this study, the production of indoles by M. furfur isolates from healthy and diseased skin was compared, the respective HPLC patterns were analyzed, and substances that are preferentially synthesized by strains isolated from SD lesions were isolated and characterized. Malassezin, pityriacitrin, indole-3-carbaldehyde, and indolo[3,2-b]carbazole (ICZ) were isolated by HPLC from extracts of M. furfur grown in L-tryptophan agar, and identified by nuclear magnetic resonance and mass spectroscopy. Of these, ICZ, a potent ligand of the aryl hydrocarbon receptor (AhR), is described for the first time to our knowledge as a M. furfur metabolite. HPLC-photodiode array detection analysis of strain extracts from 7 healthy subjects and 10 SD patients showed that M. furfur isolates from only SD patients consistently produce malassezin and ICZ. This discriminatory production of AhR agonists provides initial evidence for a previously unreported mechanism triggering development of SD and indicates that the variable pathogenicity patterns recorded for M. furfur-associated SD conditions may be attributed to selective production (P<0.001) of measurable bioactive indoles.

  15. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    PubMed

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  16. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    PubMed

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  17. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  18. T helper 1 background protects against airway hyperresponsiveness and inflammation in guinea pigs with persistent respiratory syncytial virus infection.

    PubMed

    Sutton, Troy C; Tayyari, Farnoosh; Khan, M Aatif; Manson, Heather E; Hegele, Richard G

    2007-05-01

    A family history of allergy has been implicated in children who develop post-bronchiolitis wheezing and asthma. In a guinea pig model of respiratory syncytial virus (RSV) lung infection, we evaluated the role of host Th1 background (either genetic or induced) on the development of a persistent infection, nonspecific airway hyperresponsiveness (AHR) and airway inflammation. Allergy resistant/T helper 1 (Th1)-skewed strain 2 guinea pigs (STR2) and cytosine phosphate guanine oligodeoxynucleotides (CpG-ODN) (Th1 stimuli) pretreated Cam Hartley guinea pigs (CH) were inoculated with RSV and compared with virus-inoculated allergy-susceptible/Th2-skewed CHs and to sham-inoculated STR2 and CH, 60 d post-inoculation. We measured titers of intrapulmonary RSV, lung interferon (IFN)-gamma and interleukin (IL)-5 mRNA expression, AHR and airway T cells and eosinophils. All virus-inoculated groups of animals showed evidence of persistent RSV lung infection; however, Th2-skewed guinea pigs had virus-associated AHR and significantly greater levels of airway T cells and eosinophils. In conclusion, RSV can establish persistent infection of the guinea pig lung regardless of host Th1/Th2 background; however; a host Th1 background limits the extent of virus-associated AHR and airway inflammation. Heterogeneity in virus-host interactions may be relevant to understanding why some children hospitalized for RSV bronchiolitis go on to develop recurrent wheezing/asthma symptoms.

  19. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma.

    PubMed

    Patel, Kruti R; Bai, Yan; Trieu, Kenneth G; Barrios, Juliana; Ai, Xingbin

    2017-10-01

    Asthma often progresses into adulthood from early-life episodes of adverse environmental exposures. However, how the injury to developing lungs contributes to the pathophysiology of persistent asthma remains poorly understood. In this study, we identified an age-related mechanism along the cholinergic nerve-airway smooth muscle (ASM) axis that underlies prolonged airway hyperreactivity (AHR) in mice. We showed that ASM continued to mature until ∼3 wk after birth. Coinciding with postnatal ASM maturation, there was a critical time window for the development of ASM hypercontractility after cholinergic stimulation. We found that allergen exposure in neonatal mice, but not in adult mice, elevated the level and activity of cholinergic nerves (termed neuroplasticity). We demonstrated that cholinergic neuroplasticity is necessary for the induction of persistent AHR after neonatal exposure during rescue assays in mice deficient in neuroplasticity. In addition, early intervention with cholinergic receptor muscarinic (ChRM)-3 blocker reversed the progression of AHR in the neonatal exposure model, whereas β2-adrenoceptor agonists had no such effect. Together, our findings demonstrate a functional relationship between cholinergic neuroplasticity and ASM contractile phenotypes that operates uniquely in early life to induce persistent AHR after allergen exposure. Targeting ChRM3 may have disease-modifying benefits in childhood asthma.-Patel, K. R., Bai, Y., Trieu, K. G., Barrios, J., Ai, X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma. © FASEB.

  20. A rapid and reagent-free bioassay for the detection of dioxin-like compounds and other aryl hydrocarbon receptor (AhR) agonists using autobioluminescent yeast.

    PubMed

    Xu, Tingting; Young, Anna; Marr, Enolia; Sayler, Gary; Ripp, Steven; Close, Dan

    2018-02-01

    An autonomously bioluminescent Saccharomyces cerevisiae BLYAhS bioreporter was developed in this study for the simple and rapid detection of dioxin-like compounds (DLCs) and aryl hydrocarbon receptor (AhR) agonists. This recombinant yeast reporter was based on a synthetic bacterial luciferase reporter gene cassette (lux) that can produce the luciferase as well as the enzymes capable of self-synthesizing the requisite substrates for bioluminescent production from endogenous cellular metabolites. As a result, bioluminescent signal production is generated continuously and autonomously without cell lysis or exogenous reagent addition. By linking the expression of the autobioluminescent lux reporter cassette to AhR activation via the use of a dioxin-responsive promoter, the S. cerevisiae BLYAhS bioreporter emitted a bioluminescent signal in response to DLC exposure in a dose-responsive manner. The model dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), could be detected within 4 h with a half maximal effective concentration (EC 50 ) of ~ 8.1 nM and a lower detection limit of 500 pM. The autobioluminescent response of BLYAhS to other AhR agonists, including 2,3,7,8-tetrachlorodibenzofuran (TCDF), polychlorinated bisphenyl congener 126 (PCB-126) and 169 (PCB-169), 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), benzo[a]pyrene (BaP), and β-naphthoflavone (bNF), were also characterized in this study. The non-destructive and reagent-free nature of the BLYAhS reporter assay facilitated near-continuous, automated signal acquisition without additional hands-on effort and cost, providing a simple and cost-effective method for rapid DLC detection.

  1. Overall and Comparative Risk of Herpes Zoster With Pharmacotherapy for Inflammatory Bowel Diseases: A Nationwide Cohort Study.

    PubMed

    Khan, Nabeel; Patel, Dhruvan; Trivedi, Chinmay; Shah, Yash; Lichtenstein, Gary; Lewis, James; Yang, Yu-Xiao

    2018-01-05

    Patients with inflammatory bowel disease (IBD) might be at increased risk for herpes zoster infection. We sought to quantify the risk of herpes zoster in patients with IBD and evaluate the effects of IBD and IBD medications on the risk of herpes zoster. We conducted 2 retrospective studies of populations of Veterans, from January 2000 through June 2016. In study 1, we compared the incidence of herpes zoster among patients with IBD receiving 5-ASA alone vs matched patients without IBD. In study 2, we compared the incidence of herpes zoster among patients with IBD treated with only 5-ASA, with thiopurines, with antagonists of tumor necrosis factor (TNF), with a combination of thiopurines and TNF antagonists, and with vedolizumab. We used multivariable Cox regression to estimate the hazard ratios and 95% CIs for herpes zoster associated with IBD in study 1 and with different treatments in study 2. We also estimated the incidence rate of herpes zoster based on age and IBD medication subgroups. Compared to no IBD, ulcerative colitis (UC) and Crohn's disease (CD) were each associated with significantly increased risk of herpes zoster infection. In multivariable Cox regression (compared to no IBD), UC, CD, or IBD treated with 5-ASA treatment alone was associated with significantly increased risk of herpes zoster, with adjusted HRs (AHR) of 1.81 for UC (95% CI, 1.56-2.11), 1.56 for CD (95% CI, 1.28-1.91), and 1.72 for treated IBD (95% CI, 1.51-1.96). In multivariable Cox regression analysis, compared to exposure to 5-ASA alone, exposure to thiopurines (AHR, 1.47; 95% CI, 1.31-1.65) or a combination of thiopurines and TNF antagonists (AHR, 1.65; 95% CI, 1.22-2.23) was associated with increased risk of herpes zoster. However, exposure to TNF antagonists alone (AHR, 1.15; 95% CI, 0.96-1.38) was not associated with increased risk of herpes zoster. The incidence rates of herpes zoster in all age groups and all IBD medication subgroups were substantially higher than that in the

  2. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption

    PubMed Central

    Sulem, Patrick; Gudbjartsson, Daniel F.; Geller, Frank; Prokopenko, Inga; Feenstra, Bjarke; Aben, Katja K.H.; Franke, Barbara; den Heijer, Martin; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Yanek, Lisa R.; Becker, Lewis C.; Boyd, Heather A.; Stacey, Simon N.; Walters, G. Bragi; Jonasdottir, Adalbjorg; Thorleifsson, Gudmar; Holm, Hilma; Gudjonsson, Sigurjon A.; Rafnar, Thorunn; Björnsdottir, Gyda; Becker, Diane M.; Melbye, Mads; Kong, Augustine; Tönjes, Anke; Thorgeirsson, Thorgeir; Thorsteinsdottir, Unnur; Kiemeney, Lambertus A.; Stefansson, Kari

    2011-01-01

    Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), the Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10−14) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10−11). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers. PMID:21357676

  3. Conformational and spectroscopic study of xanthogen ethyl formates, ROC(S)SC(O)OCH2CH3. Isolation of CH3CH2OC(O)SH

    NASA Astrophysics Data System (ADS)

    Juncal, Luciana C.; Cozzarín, Melina V.; Romano, Rosana M.

    2015-03-01

    ROC(S)SC(O)OCH2CH3, with R = CH3sbnd , (CH3)2CHsbnd and CH3(CH2)2sbnd , were obtained through the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3. The liquid compounds were identified and characterized by 1H and 13C NMR and mass spectrometry. The conformations adopted by the molecules were studied by DFT methods. 6 conformers were theoretically predicted for R = CH3sbnd and (CH3)2CHsbnd , while the conformational flexibility of the n-propyl substituent increases the total number of feasible rotamers to 21. For the three molecules, the conformers can be associated in 3 groups, being the most stable the AS forms - the Cdbnd S double bond anti (A) with respect to the Csbnd S single bond and the Ssbnd C single bond syn (S) with respect to the Cdbnd O double bond - followed by AA and SS conformers. The vibrational spectra were interpreted in terms of the predicted conformational equilibrium, presenting the ν(Cdbnd O) spectral region signals corresponding to the three groups of conformers. A moderated pre-resonance Raman enhancement of the ν(Cdbnd S) vibrational mode of CH3(CH2)2OC(S)SC(O)OCH2CH3 was detected, when the excitation radiation approaches the energy of a n → π∗ electronic transition associated with the Cdbnd S chromophore. UV-visible spectra in different solvents were measured and interpreted in terms of TD-DFT calculations. The unknown molecule CH3CH2OC(O)SH was isolated by the UV-visible photolysis of CH3OC(S)SC(O)OCH2CH3 isolated in Ar matrix, and also obtained as a side-product of the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3.

  4. Thermal decomposition of ethanol. 4. Ab initio chemical kinetics for reactions of H atoms with CH3CH2O and CH3CHOH radicals.

    PubMed

    Xu, Z F; Xu, Kun; Lin, M C

    2011-04-21

    The potential energy surfaces of H-atom reactions with CH(3)CH(2)O and CH(3)CHOH, two major radicals in the decomposition and oxidation of ethanol, have been studied at the CCSD(T)/6-311+G(3df,2p) level of theory with geometric optimization carried out at the BH&HLYP/6-311+G(3df,2p) level. The direct hydrogen abstraction channels and the indirect association/decomposition channels from the chemically activated ethanol molecule have been considered for both reactions. The rate constants for both reactions have been calculated at 100-3000 K and 10(-4) Torr to 10(3) atm Ar pressure by microcanonical VTST/RRKM theory with master equation solution for all accessible product channels. The results show that the major product channel of the CH(3)CH(2)O + H reaction is CH(3) + CH(2)OH under atmospheric pressure conditions. Only at high pressure and low temperature, the rate constant for CH(3)CH(2)OH formation by collisonal deactivation becomes dominant. For CH(3)CHOH + H, there are three major product channels; at high temperatures, CH(3)+CH(2)OH production predominates at low pressures (P < 100 Torr), while the formation of CH(3)CH(2)OH by collisional deactivation becomes competitive at high pressures and low temperatures (T < 500 K). At high temperatures, the direct hydrogen abstraction reaction producing CH(2)CHOH + H(2) becomes dominant. Rate constants for all accessible product channels in both systems have been predicted and tabulated for modeling applications. The predicted value for CH(3)CHOH + H at 295 K and 1 Torr pressure agrees closely with available experimental data. For practical modeling applications, the rate constants for the thermal unimolecular decomposition of ethanol giving key accessible products have been predicted; those for the two major product channels taking place by dehydration and C-C breaking agree closely with available literature data.

  5. On the simultaneous action of two competitive antagonists

    PubMed Central

    Ginsborg, B.L.; Stephenson, R.P.

    1974-01-01

    1 A hypothesis is outlined predicting the conditions in which the addition of a second competitive antagonist will increase rather than reduce the response to an agonist. 2 Experiments were performed with the guinea-pig ileum as the test tissue, hexyltrimethyl ammonium as the agonist, benzilyltropine methiodide as the `slow' antagonist and pentyltriethyl ammonium as the `fast' antagonist. 3 The results are consistent with the hypothesis, if the affinity constant for hexyltrimethyl ammonium is between 2.7 and 3.7 × 104 M-1, if the dissociation time constant for the slow antagonist is greater than 10 min and if that for the fast antagonist is less than 10 seconds. PMID:4451745

  6. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.

    PubMed

    Xu, Z F; Raghunath, P; Lin, M C

    2015-07-16

    The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to

  7. The Evolution of Sexually Antagonistic Phenotypes

    PubMed Central

    Perry, Jennifer C.; Rowe, Locke

    2015-01-01

    Sexual conflict occurs whenever there is sexually antagonistic selection on shared traits. When shared traits result from interactions (e.g., mating rate) and have a different genetic basis in each sex (i.e., interlocus conflict), then sex-specific traits that shift the value of these interaction traits toward the sex-specific optimum will be favored. Male traits can be favored that increase the fitness of their male bearers, but decrease the fitness of interacting females. Likewise, female traits that reduce the costs of interacting with harmful males may simultaneously impose costs on males. If the evolution of these antagonistic traits changes the nature of selection acting on the opposite sex, interesting coevolutionary dynamics will result. Here we examine three current issues in the study of sexually antagonistic interactions: the female side of sexual conflict, the ecological context of sexual conflict, and the strength of evidence for sexually antagonistic coevolution. PMID:26032715

  8. Electron spin resonance of (CO 2 H)CH 2 CH 2 CH(CO 2 H) in irradiated glutaric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsfield, A.; Morton, J. R.; Whiffen, D. H.

    It is concluded from electron spin resonance spectra that the radical (CO 2 H)CH 2 CH 2 CH(CO 2 H) remains trapped in a glutaric acid crystal after gamma -irradiation. This radical is found in two different conformations. Approximate hyperfine coupling constants are given for each, although exact interpretation is hindered by the overlapping of spectra. Reasons for the formation of the two forms of the radical are discussed.

  9. On the formation of the ·CH 2CH 2CH=NH 2+ distonic radical cation upon ionization of cyclopropylamine and allylamine

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Tho; Creve, Steven; Ha, Tae-Kyu

    1998-08-01

    Ab initio molecular orbital and density functional theory calculations have been applied to determine the relative stability of the cyclopropylamine 1 and allylamine (CH 2=CHCH 2NH 2+·2) radical cations and their isomers. It is confirmed that, upon ionization, 1 undergoes barrier-free ring-opening giving the distonic species ·CH 2CH 2CH=NH 2+3. 2 also rearranges by a 1,2-H-shift to the more stable 3 (by 70 kJ/mol) which is, however, less stable than the 1-aminopropene ion (CH 3-CH=CH-NH 2+·4) by 60 kJ/mol. The transition structure TS 2/3 lies 40 kJ/mol higher in energy than TS 3/4. Although QCISD and B3LYP calculations of isotropic hyperfine coupling constants agree reasonably with observed values, supporting the presence of the distonic 3 in ESR matrix experiments, the exclusive observation of 3, but not 4, is intriguing. This emphasizes the role of the matrix in stabilizing 3.

  10. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    NASA Technical Reports Server (NTRS)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  11. Inhibition of neutral endopeptidase increases airway responsiveness to ACh in nonsensitized normal rats.

    PubMed

    Chiba, Y; Misawa, M

    1995-02-01

    The effects of sensory neuropeptides on the airway responsiveness to acetylcholine (ACh) were investigated in normal nonsensitized rats. The airway responsiveness to inhaled ACh was significantly increased after treatment with neurokinin A (NKA; 0.001%) or substance P (SP; 0.01%) aerosol in the presence of the neutral endopeptidase (NEP) inhibitor. NKA had a more potent effect than SP. Interestingly, the intravenous treatment with NEP inhibitor alone also induced airway hyperresponsiveness (AHR) to inhaled ACh. This AHR was significantly attenuated by pretreatment with a nonselective NK-receptor antagonist, [D-Pro2,D-Trp7,9]SP, systemic capsaicin, or bilateral cervical vagotomy, indicating that decreased NEP activity results in accumulation of endogenous sensory neuropeptide(s) and enhancement of vagal reflex to cause AHR. The airway responsiveness to ACh of isolated left main bronchus was also increased after treatment with 10(-6) M NKA, but not SP, together with 10(-6) M phosphoramidon. This in vitro AHR to ACh induced by phosphoramidon plus NKA was significantly attenuated by pretreatment with 10(-6) M tetrodotoxin. These findings suggest that overaccumulated sensory neuropeptides, especially NKA, may enhance the probability of transmitter release, probably via NK2 receptors, and that the enhanced transmitter release might be involved in AHR in rats.

  12. Low-Temperature Hydrocarbon Photochemistry: CH3 + CH3 Recombination in Giant Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Smith, Gregory P.; Huestis, David L.

    2002-01-01

    Planetary emissions of the methyl radical CH3 were observed for the first time in 1998 on Saturn and Neptune by the ISO (Infrared Space Observatory) mission satellite. CH3 is produced by VUV photolysis of CH4 and is the key photochemical intermediate leading complex organic molecules on the giant planets and moons. The CH3 emissions from Saturn were unexpectedly weak. A suggested remedy is to increase the rate of the recombination reaction CH3 + CH3 + H2 --> C2H6 + H2 at 140 K to a value at least 10 times that measured at room temperature in rare gases, but within the range of disagreeing theoretical expressions at low temperature. We are performing laboratory experiments at low temperature and very low pressure. The experiments are supported by RRKM theoretical modeling that is calibrated using the extensive combustion literature.

  13. Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.

    2013-11-01

    Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

  14. Reflected shock tube studies of high-temperature rate constants for OH + CH4 --> CH3 + H2O and CH3 + NO2 --> CH3O + NO.

    PubMed

    Srinivasan, N K; Su, M-C; Sutherland, J W; Michael, J V

    2005-03-10

    The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.

  15. Antagonistic versus non-antagonistic models of balancing selection: Characterizing the relative timescales and hitchhiking effects of partial selective sweeps

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2012-01-01

    Antagonistically selected alleles -- those with opposing fitness effects between sexes, environments, or fitness components -- represent an important component of additive genetic variance in fitness-related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate-frequency alleles disproportionately contribute to genetic variance of life history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus non-antagonistic (e.g., overdominant and frequency-dependent selection) processes. We show that that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, non-antagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection. PMID:23461340

  16. Kinin B1 receptor antagonists containing alpha-methyl-L-phenylalanine: in vitro and in vivo antagonistic activities.

    PubMed

    Gobeil, F; Charland, S; Filteau, C; Perron, S I; Neugebauer, W; Regoli, D

    1999-03-01

    -To protect from metabolism and to improve potency of the AcLys-[D-betaNal7,Ile8]desArg9-bradykinin (BK) (R 715), we prepared and tested 3 analogues containing alpha-methyl-L-Phe ([alphaMe]Phe) in position 5: these are the AcLys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 892), Lys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 913), and AcLys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 914). The new compounds were tested against the contractile effect induced by desArg9BK on 2 B1 receptor bioassays, the human umbilical vein, and the rabbit aorta. Their antagonistic activities were compared with those of the early prototypes (Lys-[Leu8]desArg9BK and [Leu8]desArg9BK) and with other recently described peptide antagonists. The 3 (alphaMe)Phe analogues showed high antagonistic potencies (pA2) at both the human (8.8, 7.7, and 8. 7, respectively) and rabbit (8.6, 7.8, and 8.6, respectively) B1 receptors. No antagonistic effects (pA2<5) were observed on the B2 receptors that mediate the contractile effects of BK on the human umbilical vein, the rabbit jugular vein, and the guinea pig ileum. Moreover, these new B1 antagonists were found to be resistant to in vitro degradation by purified angiotensin-converting enzyme from rabbit lung. The Nalpha-acetylated forms, R 892 and R 914, were resistant to aminopeptidases from human plasma. In vivo antagonistic potencies (ID50) of B1 receptor antagonists were evaluated in anesthetized lipopolysaccharide-treated (for B1 receptor) and nontreated (for B2 receptor) rabbits against the hypotensive effects of exogenous desArg9BK and BK. R 892 efficiently inhibited (ID50 2.8 nmol/kg IV) hypotension induced by desArg9BK without affecting that evoked by BK (ID50 >600 nmol/kg IV). Conversely, the peptide antagonists Lys-Lys-[Hyp3,Igl5,D-Igl7,Oic8]desArg9BK (B 9858) and DArg-[Hyp3,Thi5,D-Tic7,Oic8] desArg9BK (S 0765) showed dual B1/B2 receptor antagonism in vitro and in vivo. It is concluded that R 892 and congeners provide selective

  17. Total cross sections of electron scattering by molecules NF3, PF3, N(CH3)3, P(CH3)3, NH(CH3)2, PH(CH3)2, NH2CH3 and PH2CH3 at 30-5000 eV

    NASA Astrophysics Data System (ADS)

    Shi, D. H.; Sun, J. F.; Zhu, Z. L.; Liu, Y. F.

    2010-04-01

    Total cross sections of electron scattering by eight molecules NF3, PF3, N(CH3)3, P(CH3)3, NH(CH3)2, PH(CH3)2, NH2CH3 and PH2CH3, which have some structural similarities, are calculated at the Hartree-Fork level by the modified additivity rule approach [D.H. Shi, J.F. Sun, Z.L. Zhu, H. Ma, Y.F. Liu, Eur. Phys. J. D 45, 253 (2007); D.H. Shi, J.F. Sun, Y.F. Liu, Z.L. Zhu, X.D. Yang, Chin. Opt. Lett. 4, 192 (2006)]. The modified additivity rule approach takes into considerations that the contributions of the geometric shielding effect vary as the energy of incident electrons, the dimension of target molecule, the number of electrons in the molecule and the number of atoms constituting the molecule. The present investigations cover the impact energy range from 30 to 5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories. Excellent agreement is observed even at energies of several tens of eV. It shows that the modified additivity rule approach is applicable to carry out the total cross section calculations of electron scattering by these molecules at intermediate and high energies, in particular over the energy range above 80 eV or so. It proves that the microscopic molecular properties, such as the geometrical size of the target and the number of atoms constituting the molecule, are of crucial importance in the TCS calculations. The new results for PH(CH3)2 and PH2CH3 are also presented at energies from 30 to 5000 eV, although no experimental and theoretical data are available for comparison. In the present calculations, the atoms are still represented by the spherical complex optical potential, which is composed of static, exchange, polarization and absorption terms.

  18. Two-wavelength single laser CH and CH(4) imaging in a lifted turbulent diffusion flame.

    PubMed

    Namazian, M; Schmitt, R L; Long, M B

    1988-09-01

    A new technique has been developed which allows simultaneous 2-D mapping of CH and CH 4 in a turbulent methane flame. A flashlamp-pumped dye laser using two back mirrors produces output at 431.5 and 444 nm simultaneously. The 431.5-nm line is used to excite the (0, 0) band of the A(2)Delta-X(2)Pi system of CH, and the fluorescence of the (0, 1) transition is observed at 489 nm. Coincidentally, the spontaneous Raman scattering from CH(4) also occurs near 489 nm for a 431.5-nm excitation. To separate the CH(4) and CH contributions, the 444-nm line is used to produce a spontaneous Raman signal from CH(4) that is spectrally separated from the CH fluorescence. Subtraction of the signals generated by the 431.5- and 444-nm wavelength beams yields separate measurements of CH(4) and CH. Raman-scattered light records the instantaneous distribution of the fuel, and simultaneously the CH fluorescence indicates the location of the flame zone. The resulting composite images provide important insight on the interrelationship between fuel-air mixing and subsequent combustion.M. Namazian is with Altex Technologies Corporation, 109 Via De Tesoros, Los Gatos, California 95030; R. L. Schmitt is with Sandia National Laboratories, Combustion Research Facility, Livermore, California 94550; and M. B. Long is with Yale University, Department of Mechanical Engineering, New Haven, Connecticut 06520.

  19. Electron driven processes in sulphur containing compounds CH3SCH3 and CH3SSCH3

    NASA Astrophysics Data System (ADS)

    Kopyra, Janina; Władziński, Jakub

    2015-06-01

    Dissociative electron attachment to gas phase dimethyl sulphide (CH3SCH3) and dimethyl disulphide (CH3SSCH3) has been studied by means of a crossed beams apparatus. Cleavage of the C-S bond within CH3SCH3 and the S-S bond within CH3SSCH3 is observed within a resonance in the energy range below 2 eV and visible preferentially via the appearance of the fragment CH2S-. The striking finding is that the intensity of CH2S- generated from CH3SSCH3 is more than two orders of magnitude higher than the intensity of the respective anionic fragment generated from CH3SCH3. Our results clearly demonstrate that the CH3SSCH3 molecule, which contains disulphide bridge is substantially more sensitive towards electron attachment resulting mainly in dissociation along the S-S bridge.

  20. Scaled Hartree-Fock force field calculations for organothallium compounds: Normal-mode analysis for TlCH sub 3 Tl(CH sub 3 ) sub 2 sup + , Tl(CH sub 3 ) sub 3 , Tl(CH sub 3 ) sub 2 Br, and Tl(CH sub 3 ) sub 4 sup minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, P.; Bowmaker, G.A.; Boyd, P.D.W.

    1990-02-01

    In a recent paper we presented Hartree-Fock (HF) calculations for aliphatic organothallium compounds. The diagonal HF force constants obtained from a Fletcher-Powell geometry optimization are now used for a normal-mode analysis of TlCH{sub 3}, Tl(CH{sub 3}){sub 2}{sup +}, Tl(CH{sub 3}){sub 3}, Tl(CH{sub 3}){sub 2}Br, and Tl(CH{sub 3}){sub 4}{sup {minus}}. In order to calculate frequencies comparable to experimental values, the HF force field has been scaled by using scaling factors obtained from experimental infrared and Raman measurements on Tl(CH{sub 3}){sub 2}{sup +} and TlBr. The vibrational spectra of Tl(CH{sub 3}){sub 2}{sup +} were remeasured (infrared and Raman) in order to obtainmore » an accurate force field. Predictions are made for the vibrational spectrum of the as yet undetected TlCH{sub 3} molecule. Experimental infrared and Raman results for Tl(CH{sub 3}){sub 3} compare reasonably well with our calculated frequencies. Relativistic and correlation effects are analyzed for the vibrational frequencies of Tl(CH{sub 3}){sub 2}{sup +}.« less

  1. CH-TRU Waste Content Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled

  2. Formation of unexpected silicon- and disiloxane-bridged multiferrocenyl derivatives bearing Si-O-CH[double bond, length as m-dash]CH2 and Si-(CH2)2C(CH3)3 substituents via cleavage of tetrahydrofuran and trapping of its ring fragments.

    PubMed

    Bruña, Sonia; González-Vadillo, Ana Mª; Ferrández, Marta; Perles, Josefina; Montero-Campillo, M Merced; Mó, Otilia; Cuadrado, Isabel

    2017-09-12

    The formation of a family of silicon- and siloxane-bridged multiferrocenyl derivatives carrying different functional groups attached to silicon, including Fc 2 (CH 3 ) 3 C(CH 2 ) 2 SiCH[double bond, length as m-dash]CH 2 (5), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)SiCH[double bond, length as m-dash]CH 2 (6), Fc 2 (OH)SiCH[double bond, length as m-dash]CH 2 (7), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-Si(O-CH[double bond, length as m-dash]CH 2 )Fc 2 (8) and Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-SiFc 3 (9) is described. Silyl vinyl ether molecules 6, 8 and 9 and the heteroleptic vinylsilane 5 resulted from the competing metathesis reaction of lithioferrocene (FcLi), CH 2 [double bond, length as m-dash]CH-OLi or (CH 3 ) 3 C(CH 2 ) 2 Li with the corresponding multifunctional chlorosilane, Cl 3 SiCH[double bond, length as m-dash]CH 2 or Cl 3 Si-O-SiCl 3 . The last two organolithium species have been likely formed in situ by fragmentation of the tetrahydrofuran solvent. Diferrocenylvinyloxyvinylsilane 6 is noteworthy since it represents a rare example of a redox-active silyl mononomer in which two different C[double bond, length as m-dash]C polymerisable groups are directly connected to silicon. The molecular structures of the silicon-containing multiferrocenyl species 5, 6, 8 and 9 have been investigated by single-crystal X-ray diffraction studies, demonstrating the capture and storage processes of two ring fragments resulting from the cleavage of cyclic THF in redox-active and stable crystalline organometallic compounds. From electrochemical studies we found that by changing the anion of the supporting electrolyte from [PF 6 ] - to [B(C 6 F 5 ) 4 ] - , the redox behaviour of tetrametallic disiloxane 8 can be switched from a poorly resolved multistep redox process to four consecutive well-separated one-electron oxidations, corresponding to the sequential oxidation of the four ferrocenyl moieties.

  3. Gonadotrophin-releasing hormone antagonists for assisted conception.

    PubMed

    Al-Inany, H G; Abou-Setta, A M; Aboulghar, M

    2006-07-19

    Gonadotrophin-releasing hormone antagonists produce immediate suppression of gonadotrophin secretion, hence, they can be given after starting gonadotrophin administration. This has resulted in dramatic reduction in the duration of treatment cycle. Two different regimes have been described. The multiple-dose protocol involves the administration of 0.25 mg cetrorelix (or ganirelix) daily from day six to seven of stimulation, or when the leading follicle is 14 to15 mm, until human chorionic gonadotrophin (HCG) administration and the single-dose protocol involves the single administration of 3 mg cetrorelix on day seven to eight of stimulation. Assuming comparable clinical outcome, these benefits would justify a change from the standard long protocol of GnRH agonists to the new GnRH antagonist regimens. To evaluate the evidence regarding the efficacy of gonadotrophin-releasing hormone (GnRH) antagonists with the standard long protocol of GnRH agonists for controlled ovarian hyperstimulation in assisted conception. We searched Cochrane Menstrual Disorders and Subfertility Group's Specialised Register, MEDLINE and EMBASE databases from 1987 to February 2006, and handsearched bibliographies of relevant publications and reviews, and abstracts of scientific meetings. We also contacted manufacturers in the field. Randomized controlled studies comparing different protocols of GnRH antagonists with GnRH agonists in assisted conception cycles were included in this review. Two authors independently assessed trial quality and extracted data. If relevant data were missing or unclear, the authors have been consulted Twenty seven RCTs comparing the GnRH antagonist to the long protocol of GnRH agonist fulfilled the inclusion criteria. Clinical pregnancy rate was significantly lower in the antagonist group. (OR = 0.84, 95% CI = 0.72 - 0.97). The ongoing pregnancy/ live-birth rate showed the same significant lower pregnancy in the antagonist group (P = 0.03; OR 0.82, 95% CI 0.69 to 0

  4. Calcium channel antagonists in the treatment of hypertension.

    PubMed

    Weber, Michael A

    2002-01-01

    Calcium channel antagonists are widely used antihypertensive agents. Their popularity among primary care physicians is not only due to their blood pressure-lowering effects, but also because they appear to be effective regardless of the age or ethnic background of the patients. The first available calcium channel antagonists utilized immediate-release formulations which, although effective in patients with angina pectoris, were not approved by the US FDA for use in hypertension. When long-acting once-daily formulations were approved in this indication, the short-acting preparations--which had by then become generic and inexpensive--retained some residual unapproved use for hypertension. An observational case-controlled trial, based on such usage, noted that these agents were associated with a greater risk of myocardial infarctions than conventional agents such as diuretics and beta-adrenoceptor antagonists. Further case-controlled trials showed, in fact, that the dangers of calcium channel antagonists were confined to the short-acting agents and that approved long-acting agents were at least as well tolerated and effective as other antihypertensive drugs. Cardiovascular outcomes during treatment with calcium channel antagonists have been examined in randomized, controlled trials. Compared with placebo, the calcium channel antagonists clearly prevented strokes and other cardiovascular events and reduced mortality. The effects of these agents on survival and clinical outcomes were similar to those with other antihypertensive drugs. There is a slight tendency for the calcium channel antagonists to be more effective than other drug types in preventing stroke, but slightly less effective in preventing coronary events. These observations extend to high-risk patients with hypertension including those with diabetes mellitus. Even so, patients with evidence of nephropathy should not receive monotherapy with calcium channel antagonists. Such patients are optimally treated

  5. Benzo[a]pyrene impedes self-renewal and differentiation of mesenchymal stem cells and influences fracture healing.

    PubMed

    Zhou, Yiqing; Jiang, Rong; An, Liqin; Wang, Hong; Cheng, Sicheng; Qiong, Shi; Weng, Yaguang

    2017-06-01

    Mesenchymal stem cells (MSCs) are implicated in the bone-forming process during fracture repair. Benzo[a]pyrene (BaP)-a cigarette smoke component and powerful motivator of the aryl hydrocarbon receptor (Ahr)-unfavorably influences bone condition and osteoblast differentiation. The first thing we noticed decreases self-renewal and differentiation of human bone marrow mesenchymal stem (hBM-MSCs) from smokers and activates Ahr signaling in MSCs by up-regulating the Ahr target gene cytochrome P450 (CYP) 1B1 expression. In vitro studies, we employed C3H10T1/2 and bone marrow mesenchymal stem cells (BM-MSCs) with BaP and discovered that BaP impaired innate properties of MSCs. Further investigation into MSCs showed that exposure to BaP activated Ahr signaling and inhibited TGF-β1/SMAD4 and TGF-β1/ERK/AKT signaling pathways. Corresponding with the outcomes, tibial fracture calluses produced by BaP-administered rats appeared to delay healing. This effect of BaP was abrogated by resveratrol, a natural Ahr antagonist, in vitro and in vivo. These data demonstrated that Ahr may play a key role in BaP-impaired innate properties by inhibiting SMAD-dependent signaling pathways TGF-β1/SMAD4 and SMAD-independent TGF-β1/ERK/AKT signaling pathways. Furthermore, resveratrol inhibited MSCs from adverse effects caused by BaP. Copyright © 2017. Published by Elsevier B.V.

  6. New Trends in Aryl Hydrocarbon Receptor Biology.

    PubMed

    Mulero-Navarro, Sonia; Fernandez-Salguero, Pedro M

    2016-01-01

    Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and reproductive systems. At the cellular level, AhR establishes functional interactions with signaling pathways governing cell proliferation and cell cycle, cell morphology, cell adhesion and cell migration. Two exciting new aspects in AhR biology deal with its implication in the control of cell differentiation and its more than likely involvement in cell pluripotency and stemness. In fact, it is possible that AhR could help modulate the balance between differentiation and pluripotency in normal and transformed tumor cells. At the molecular level, AhR regulates an increasingly large array of physiologically relevant genes either by traditional transcription-dependent mechanisms or by unforeseen processes involving genomic insulators, chromatin dynamics and the transcription of mobile genetic elements. AhR is also closely related to epigenetics, not only from the point of view of target gene expression but also with respect to its own regulation by promoter methylation. It is reasonable to consider that deregulation of these many functions could have a causative role, or at least contribute to, human disease. Consequently, several laboratories have proposed that AhR could be a valuable tool as diagnostic marker and/or therapeutic target in human pathologies. An additional point of interest is the possibility of regulating AhR activity by endogenous non-toxic low weight molecules agonist or antagonist molecules that could be present or included in the diet. In this review, we will

  7. Adverse cutaneous reactions induced by TNF-alpha antagonist therapy.

    PubMed

    Borrás-Blasco, Joaquín; Navarro-Ruiz, Andrés; Borrás, Consuelo; Casterá, Elvira

    2009-11-01

    To review adverse cutaneous drug reactions induced by tumor necrosis factor alpha (TNF-alpha) antagonist therapy. A literature search was performed using PubMed (1996-March 2009), EMBASE, and selected MEDLINE Ovid bibliography searches. All language clinical trial data, case reports, letters, and review articles identified from the data sources were used. Since the introduction of TNF-alpha antagonist, the incidence of adverse cutaneous drug reactions has increased significantly. A wide range of different skin lesions might occur during TNF-alpha antagonist treatment. New onset or exacerbation of psoriasis has been reported in patients treated with TNF-alpha antagonists for a variety of rheumatologic conditions. TNF-alpha antagonist therapy has been associated with a lupus-like syndrome; most of these case reports occurred in patients receiving either etanercept or infliximab. Serious skin reactions such as erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely with the use of TNF-alpha antagonists. As the use of TNF-alpha antagonists continues to increase, the diagnosis and management of cutaneous side effects will become an increasingly important challenge. In patients receiving TNF-alpha antagonist treatment, skin disease should be considered, and clinicians need to be aware of the adverse reactions of these drugs.

  8. Examination of Zolpidem effects on AhR- and PXR-dependent expression of drug-metabolizing cytochromes P450 in primary cultures of human hepatocytes.

    PubMed

    Bachleda, Petr; Vrzal, Radim; Pivnicka, Jakub; Cvek, Boris; Dvorak, Zdenek

    2009-12-01

    A hypnotic drug Zolpidem is used in clinical practice for more than 25 years. Surprisingly, the effects of Zolpidem on the expression of drug-metabolizing cytochromes P450 (CYPs) were not examined yet. Recently, the unexpected capacity of several "old drugs", such as valproic acid or azoles, to induce CYPs was reported. Therefore, we tested whether Zolpidem induces the expression of important CYPs in primary cultures of human hepatocytes. Cells were treated for 24h with Zolpidem in therapeutic (0.1mg/L) and toxic (1mg/L) concentrations. The levels of CYP1A1, CYP1A2, CY2C9 and CYP3A4 mRNAs were not altered by Zolpidem, whereas model inducers dioxin and rifampicin significantly induced CYP1A and CYP2/3 gene expression, respectively. Consistently, Zolpidem did not activate aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR), the key regulators of cytochromes P450s, as revealed by transient transfection gene reporter assays using HepG2 cells. We conclude Zolpidem be considered a safe drug with respect to the possible interactions through AhR- and PXR-dependent induction of drug-metabolizing CYPs.

  9. Direct observation of unimolecular decay of CH 3 CH 2 CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Klippenstein, Stephen J.

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH3CH2CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice-Ramsperger-Kassel-Marcus calculations of the microcanonical unimolecular decay rate for CH3CH2CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantlymore » to the decay rate. Infrared transitions of CH3CH2CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH3CH2CHOO of ca. 10(7) s(-1), which are slower than those obtained for syn-CH3CHOO or (CH3)(2)COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH3CH2CHOO under atmospheric conditions, giving a rate of 279 s(-1) at 298 K.« less

  10. Identification of the Aryl Hydrocarbon Receptor Target Gene TiPARP as a Mediator of Suppression of Hepatic Gluconeogenesis by 2,3,7,8-Tetrachlorodibenzo-p-dioxin and of Nicotinamide as a Corrective Agent for This Effect*

    PubMed Central

    Diani-Moore, Silvia; Ram, Payal; Li, Xintian; Mondal, Prosenjit; Youn, Dou Yeon; Sauve, Anthony A.; Rifkind, Arleen B.

    2010-01-01

    The environmental toxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, dioxin) produces diverse toxic effects including a lethal wasting syndrome whose hallmark is suppressed hepatic gluconeogenesis. All TCDD toxicities require activation of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor. Whereas the mechanism for AHR induction of target genes is well understood, it is not known how AHR activation produces any TCDD toxicity. This report identifies for the first time an AHR target gene, TiPARP (TCDD-inducible poly(ADP-ribose) polymerase, PARP7) that can mediate a TCDD toxicity, i.e. suppression of hepatic gluconeogenesis. TCDD suppressed hepatic glucose production, expression of key gluconeogenic genes, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase), and NAD+ levels, and increased PARP activity and TiPARP expression. TCDD also increased acetylation and ubiquitin-dependent proteosomal degradation of the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α), a coactivator of PEPCK and G6Pase transcription. TiPARP overexpression reproduced TCDD effects on glucose output and NAD+ levels whereas TiPARP silencing diminished them. TiPARP overexpression also increased PGC1α acetylation and decreased PGC1α levels. In contrast, silencing of cytochromes P450 (CYP) 1A, main AHR-induced genes, did not alter TCDD suppression of gluconeogenesis. The vitamin B3 constituent, nicotinamide (NAM), prevented TCDD suppression of glucose output, NAD+, and gluconeogenic genes and stabilized PGC1α. The corrective effects of NAM could be attributed to increased NAD+ levels and suppression of AHR target gene induction. The results reveal that TiPARP can mediate a TCDD effect, that the AHR is linked to PGC1α function and stability and that NAM has novel AHR antagonist activity. PMID:20876576

  11. Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-n-Nonylphenol, and 4-n-Octylphenol in Vitro: New Data and a Brief Review

    PubMed Central

    Bonefeld-Jørgensen, Eva C.; Long, Manhai; Hofmeister, Marlene V.; Vinggaard, Anne Marie

    2007-01-01

    Background An array of environmental compounds is known to possess endocrine disruption (ED) potentials. Bisphenol A (BPA) and bisphenol A dimethacrylate (BPA-DM) are monomers used to a high extent in the plastic industry and as dental sealants. Alkylphenols such as 4-n-nonylphenol (nNP) and 4-n-octylphenol (nOP) are widely used as surfactants. Objectives We investigated the effect in vitro of these four compounds on four key cell mechanisms including transactivation of a) the human estrogen receptor (ER), b) the human androgen receptor (AR), c) the aryl hydrocarbon receptor (AhR), and d) aromatase activity. Results All four compounds inhibited aromatase activity and were agonists and antagonists of ER and AR, respectively. nNP increased AhR activity concentration-dependently and further increased the 2,3,7,8-tetrachlorodibenzo-p-dioxin AhR action. nOP caused dual responses with a weak increased and a decreased AhR activity at lower (10−8 M) and higher concentrations (10−5–10−4 M), respectively. AhR activity was inhibited with BPA (10−5–10−4 M) and weakly increased with BPA-DM (10−5 M), respectively. nNP showed the highest relative potency (REP) compared with the respective controls in the ER, AhR, and aromatase assays, whereas similar REP was observed for the four chemicals in the AR assay. Conclusion Our in vitro data clearly indicate that the four industrial compounds have ED potentials and that the effects can be mediated via several cellular pathways, including the two sex steroid hormone receptors (ER and AR), aromatase activity converting testosterone to estrogen, and AhR; AhR is involved in syntheses of steroids and metabolism of steroids and xenobiotic compounds. PMID:18174953

  12. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site.

    PubMed

    Oleksiak, Marjorie F; Karchner, Sibel I; Jenny, Matthew J; Franks, Diana G; Welch, David B Mark; Hahn, Mark E

    2011-05-24

    Populations of Atlantic killifish (Fundulus heteroclitus) have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs) and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR)-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A), a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) exposure in embryos (5 and 10 dpf) and larvae (15 dpf) from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH) Superfund site (PCB-resistant) and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive). Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing). The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.

  13. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site

    PubMed Central

    2011-01-01

    Background Populations of Atlantic killifish (Fundulus heteroclitus) have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs) and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR)-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A), a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) exposure in embryos (5 and 10 dpf) and larvae (15 dpf) from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH) Superfund site (PCB-resistant) and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive). Results Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing). Conclusions The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish. PMID:21609454

  14. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  15. Antiandrogenic activities of diesel exhaust particle extracts in PC3/AR human prostate carcinoma cells.

    PubMed

    Kizu, Ryoichi; Okamura, Kazumasa; Toriba, Akira; Mizokami, Atsushi; Burnstein, Kerry L; Klinge, Carolyn M; Hayakawa, Kazuichi

    2003-12-01

    We collected diesel exhaust particles (DEPs) emitted from three diesel-engine vehicles--a car, a bus, and a truck--in daily use, and prepared DEP extracts (DEPEs), designated as EC, EB, or ET, respectively. The androgenic and antiandrogenic effects of the DEPE samples were examined by a luciferase reporter assay in human prostate carcinoma PC3/AR cells transiently transfected with a prostate specific antigen gene promoter-driven luciferase expression vector pGLPSA5.8. PC3/AR is a subline of human prostate carcinoma PC3 transformed to stably express wild-type human androgen receptor (AR). While DEPE samples did not exhibit any androgenic effect, they exerted antiandrogenic effect, inhibiting dihydrotestosterone (10 pM) -induced luciferase activity by 24 to 52% at an extract concentration of 10 microg/ml. The antiandrogenic effect was greater in the following order: ET > EB > EC. Co-treatment of PC3/AR cells with SKF-525A, a nonselective inhibitor of cytochrome P450 (CYP) enzymes, enhanced the antiandrogenic effect, indicating that the antiandrogenic effect is caused by intact species of DEPE constituents. The antiandrogenic effect of DEPE samples was reversed by alpha-naphthoflavone, an aryl hydrocarbon receptor (AhR) antagonist. The antiandrogenic activity of a DEPE sample correlated with its AhR agonist activity assayed in PC3/AR cells transiently transfected with CYP1A1 gene promoter-driven luciferase expression vector pLUC1A1. Equimolar mixtures of ten polycyclic aromatic hydrocarbons (PAHs) having four or more rings, structures found in the DEPEs, showed significant antiandrogenic effects and AhR agonist activity at concentrations equivalent to those found in DEPE samples. Further, DEPE samples elicited only antiandrogenic effects in recombinant yeast cells, which express beta-galactosidase in response to androgen. A competitive AR binding assay showed that AR-binding constituents exist in DEPE samples, indicating that greater part of AR-binding constituents in

  16. The kinetics of competitive antagonists on guinea-pig ileum.

    PubMed Central

    Roberts, F; Stephenson, R P

    1976-01-01

    1 The kinetics of action of some competitive muscarinic and histamine antagonists were examined on guinea-pig isolated ileum and their behaviour compared with the predictions of the interaction-limited model described by Paton (1961). 2 The kinetics of antagonism were not consistent with the predictions of this model: (1) The apparent dissociation rate constant calculated from the decrease in occupancy on washout was not independent of the concentration of antagonist. (2) The dissociation rate constant of a 'slow' antagonist calculated from the change in occupancy when a 'fast' antagonist was superimposed varied with the concentration of fast antagonist. (3) If the concentration of slow antagonist was increased when the fast antagonist was superimposed so that the equilibrium occupancy of the 'slow' was the same as before, a transitional phase was observed. 3 The kinetics of antagonism were observed in longitudinal muscle strips and intact pieces of ileum, bathed in Tyrode or Krebs solution, and with isometric and isotonic recording. No evidence was found that the discrepancies between the interaction-limited model and the observed kinetics could be accounted for by the experimental method used. 4 It is therefore concluded that either access is rate-limiting in these circumstances or, if interaction is rate-limiting, some alternative interaction-limited model is required to describe the kinetics of antagonism. In either case it would seem unwise at this time to calculate antagonist-receptor rate constants from the observed kinetics of antagonism. PMID:974378

  17. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. Results Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. Conclusions Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. PMID:21356108

  18. Kynurenine promotes the goblet cell differentiation of HT-29 colon carcinoma cells by modulating Wnt, Notch and AhR signals.

    PubMed

    Park, Joo-Hung; Lee, Jeong-Min; Lee, Eun-Jin; Kim, Da-Jeong; Hwang, Won-Bhin

    2018-04-01

    Various amino acids regulate cell growth and differentiation. In the present study, we examined the ability of HT-29 cells to differentiate into goblet cells in RPMI and DMEM which are largely different in the amounts of numerous amino acids. Most of the HT-29 cells differentiated into goblet cells downregulating the stem cell marker Lgr5 when cultured in DMEM, but remained undifferentiated in RPMI. The goblet cell differentiation in DMEM was inhibited by 1-methyl-tryptophan (1-MT), an inhibitor of indoleamine 2,3 dioxygenase-1 which is the initial enzyme in tryptophan metabolism along the kynurenine (KN) pathway, whereas tryptophan and KN induced goblet cell differentiation in RPMI. The levels of Notch1 and its activation product Notch intracytoplasmic domain in HT-29 cells were lower in DMEM than those in RPMI and were increased by 1-MT in both media. HT-29 cells grown in both media expressed β-catenin at the same level on day 2 when goblet cell differentiation was not observed. β-catenin expression, which was increased by 1-MT in both media, was decreased by KN. DMEM reduced Hes1 expression while enhancing Hath1 expression. Finally, aryl hydrocarbon receptor (AhR) activation moderately induced goblet cell differentiation. Our results suggest that KN promotes goblet cell differentiation by regulating Wnt, Notch, and AhR signals and expression of Hes1 and Hath1.

  19. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  20. Gonadotropin-releasing hormone antagonist in in vitro fertilization superovulation.

    PubMed

    Seng, Shay Way; Ong, Kee Jiet; Ledger, W L

    2006-11-01

    The use of gonadotropin-releasing hormone (GnRH) antagonists in in vitro fertilization superovulation remains controversial. The GnRH agonist 'long protocol' has been seen as the gold standard for many years. Comparisons and meta-analyses of the efficacy of GnRH antagonists and agonists have been largely inconclusive, with the dataset being contaminated with outdated reports of poorer efficacy with GnRH antagonists, which have stemmed from studies of their use as a second-line drug in older women and women who were poor responders. This work cannot reflect the actual clinical effectiveness of GnRH antagonist and must be interpreted with care. The major advantages of GnRH antagonists use in superovulation include a gentler and more patient-friendly stimulation cycle with less hypoestrogenic side effects, with the potential to lower the risk of ovarian hyperstimulation and enhanced embryo growth. Our current clinical experience with GnRH antagonists in in vitro fertilization is limited, although there are a growing number of in vitro fertilization centers embracing this new technology. There is a clear need for a modern, suitably powered clinical trial to demonstrate the place of GnRH antagonist-based superovulation protocols and in subgroups of patients, such as polycystic ovary syndrome or poor responders.

  1. Vitamin K antagonist use and mortality in dialysis patients.

    PubMed

    Voskamp, Pauline W M; Rookmaaker, Maarten B; Verhaar, Marianne C; Dekker, Friedo W; Ocak, Gurbey

    2018-01-01

    The risk-benefit ratio of vitamin K antagonists for different CHA2DS2-VASc scores in patients with end-stage renal disease treated with dialysis is unknown. The aim of this study was to investigate the association between vitamin K antagonist use and mortality for different CHA2DS2-VASc scores in a cohort of end-stage renal disease patients receiving dialysis treatment. We prospectively followed 1718 incident dialysis patients. Hazard ratios were calculated for all-cause and cause-specific (stroke, bleeding, cardiovascular and other) mortality associated with vitamin K antagonist use. Vitamin K antagonist use as compared with no vitamin K antagonist use was associated with a 1.2-fold [95% confidence interval (95% CI) 1.0-1.5] increased all-cause mortality risk, a 1.5-fold (95% CI 0.6-4.0) increased stroke mortality risk, a 1.3-fold (95% CI 0.4-4.2) increased bleeding mortality risk, a 1.2-fold (95% CI 0.9-1.8) increased cardiovascular mortality risk and a 1.2-fold (95% CI 0.8-1.6) increased other mortality risk after adjustment. Within patients with a CHA2DS2-VASc score ≤1, vitamin K antagonist use was associated with a 2.8-fold (95% CI 1.0-7.8) increased all-cause mortality risk as compared with no vitamin K antagonist use, while vitamin K antagonist use within patients with a CHA2DS2-VASc score ≥2 was not associated with an increased mortality risk after adjustment. Vitamin K antagonist use was not associated with a protective effect on mortality in the different CHA2DS2-VASc scores in dialysis patients. The lack of knowledge on the indication for vitamin K antagonist use could lead to confounding by indication. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  2. Resolved 12CH2D2 and 13CH3D in CH4 as Sensitive Indicators of Disequilibrium and Equilibrium during Microbial Methane Cycling

    NASA Astrophysics Data System (ADS)

    Ash, J. L.; Egger, M.; Slomp, C. P.; Kohl, I. E.; Treude, T.; Rumble, D.; Young, E. D.

    2016-12-01

    The ability to measure the relative concentrations of at least two doubly-substituted rare isotopologues of gases with biogeochemical relevance provides new constraints on sources and sinks of these gases. In particular, as shown recently for O2, the use of two independent, rare isotopologues allows for detection of thermodynamic intra-species equilibrium and disequilibrium. Here, we report the first measurements of fully resolved 13CH3D and 12CH2D2 from natural samples of microbial methane gas. A suite of sedimentary methane samples from the Bornholm Basin in the Baltic Sea was collected during IODP Exp. 347. Sample depths range from 2-20 meters below seafloor (mbsf). Methane concentrations decrease with depth, and mcrA (a marker for methanogenesis and methanotropy) is present throughout. See Figure. Both Δ13CH3D and Δ12CH2D2 increase with depth as methane concentrations decrease with the shallowest samples exhibiting disequilibrium by up to 2‰ in Δ13CH3D and 13‰ in Δ12CH2D2 while the deepest samples approach isotopic thermodynamic equilibrium (marked by grey bars in Figure). The Fe-mediated anaerobic oxidation of methane (Fe-AOM) has been inferred in these sediments by geochemical modeling . Slow methane cycling by methanogensis and methanotrophy is likely responsible for the approach to isotopic bond order equilibrium in CH4 with depth, consistent with Fe-AOM. While axenic culturing experiments generate methane with large deficits in 12CH2D2 (reported at this meeting), these data from the Baltic Sea demonstrate that isotopic equilibrium can be achieved during microbial recycling of methane. In the absence of Δ12CH2D2, the Δ13CH3D values alone could be misinterpreted as representing gradients in temperature due perhaps to exothermic organic matter degradation. The combination of both mass-18 rare isotopologues of methane provides the means to distinguish equilibrium from disequilibrium and probe microbial methane cycling even where Δ13CH3D suggests

  3. Diminished CAGE Effect in {p}-H2: Infrared Spectra of CH3S Observed from Photolysis of CH3SH, CH3SCH3, and CH3SSCH3 Isolated in {p}-H2

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Pern; Bahou, Mohammed

    2010-06-01

    We report infrared absorption spectrum of the methylthio (or thiomethoxy) radical, CH3S, isolated in solid {p}-H2. CH3S was produced by in situ UV photodissociation of three precursors: CH3SH, CH3SH3, and CH3SSCH3 isolated in solid {p}-H2. New absorption features commonly observed with similar intensity ratios in experiments using these precursors are assigned as absorption of CH3S. In Addition to the previously assigned transitions of ν 3 (a1) at 727.1 cm-1, fundamental transitions ν 6 (a1) at 771.1, ν 6 (e) at 1056.6, ν 5 (a1) at 1400.0, and &nu 4 (a1) at 2898.0 cm-1 were observed. The wavenumbers of these features agree satisfactorily with those predicted with a spin-vibronic Hamiltonian accounting for the anharmonic effects and the Jahn-Teller effects to the qu rtic term; the corresponding wavenumbers predicted from theory are ν 6 (a1) at 793, ν 6 (e) at 1105, ν 5 (a1) at 1436, and ν 4 (a1) at 2938 cm-1, with deviations of 14-4.6 % from experiments. Previous attempts of UV photolysis of CH3SCH3 and CH3SSCH3 isolated in an Ar matrix failed to produce CH3S. These results serve as an excellent example that the diminished cae effect of solid {p}-H2 makes production of free radicals via photolysis in situ feasible. If time permits, other examples will be discussed. A. V. Marenich and J. E. Boggs, J. Chem. Theory Comput., 1, 1162 (2005).

  4. Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Dariusz; Rapiński, Jacek; Pelc-Mieczkowska, Renata

    2017-12-01

    Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.

  5. Effects of Boreal Lake Wetlands on Atmospheric 13CH3D and 12CH2D2

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, M. A.; Kohl, I. E.; Schauble, E. A.; Walter Anthony, K. M.; Young, E. D.

    2017-12-01

    Recently, we developed a theoretical model to investigate the potential use of 13CH3D and 12CH2D2 as tools for tracking atmospheric methane budget. We used electronic structure methods to estimate kinetic isotope fractionations associated with the major sink reactions of CH4 in air (reactions with •OH and Cl•), and literature data with reconnaissance measurements of the relative abundances of 13CH3D and 12CH2D2 to estimate the compositions of the largest atmospheric sources. Here we present new methane rare isotopologue data from boreal wetlands, comprising one of the most important sources, in order to evaluate the robustness of the model. Boreal wetlands (>55° N) account for more than half of the wetland area in the Northern hemisphere. We analyzed methane samples from high latitude lakes representing different geographical regions, geological and ecological contexts, methane fluxes, and isotopic signatures. Using clumped isotopes of CH4 we are able to determine the likely production mechanism for natural CH4 samples. So far, all of our analyzed samples except one plot in the microbial pure-culture methanogenesis field (Young et al. 2017) with ranges of -0.2‰ to +1.2‰ for Δ13CH3D, and -29.6‰ to -18.2‰ for Δ12CH2D2. These compositions are far from equilibrium. The one exception, from Lake Doughnut, Alaska, exhibits Δ13CH3D and Δ12CH2D2 values of +5.2‰ and +18.7‰, respectively, which fall near ambient thermodynamic equilibrium values. This may be an effect of methanotrophy. Mean Δ13CH3D and Δ12CH2D2 for all lake samples are +1.7‰ and -15.4‰ respectively, compared to our original estimate of +6.1‰ and +21.2‰ for the wetland methane source based on an assumption of equilibrium. If we assume that these samples are representative of the overall wetland source, Δ13CH3D decreases by 0.8‰ and Δ12CH2D2 decreases by 0.6‰ in our model of bulk atmospheric methane. Δ13CH3D and Δ12CH2D2 values of air (including •OH and Cl• sink

  6. ChIPWig: a random access-enabling lossless and lossy compression method for ChIP-seq data.

    PubMed

    Ravanmehr, Vida; Kim, Minji; Wang, Zhiying; Milenkovic, Olgica

    2018-03-15

    Chromatin immunoprecipitation sequencing (ChIP-seq) experiments are inexpensive and time-efficient, and result in massive datasets that introduce significant storage and maintenance challenges. To address the resulting Big Data problems, we propose a lossless and lossy compression framework specifically designed for ChIP-seq Wig data, termed ChIPWig. ChIPWig enables random access, summary statistics lookups and it is based on the asymptotic theory of optimal point density design for nonuniform quantizers. We tested the ChIPWig compressor on 10 ChIP-seq datasets generated by the ENCODE consortium. On average, lossless ChIPWig reduced the file sizes to merely 6% of the original, and offered 6-fold compression rate improvement compared to bigWig. The lossy feature further reduced file sizes 2-fold compared to the lossless mode, with little or no effects on peak calling and motif discovery using specialized NarrowPeaks methods. The compression and decompression speed rates are of the order of 0.2 sec/MB using general purpose computers. The source code and binaries are freely available for download at https://github.com/vidarmehr/ChIPWig-v2, implemented in C ++. milenkov@illinois.edu. Supplementary data are available at Bioinformatics online.

  7. A Cyclic Tetrapeptide (“Cyclodal”) and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists

    PubMed Central

    Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.

    2016-01-01

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089

  8. Detecting sexually antagonistic coevolution with population crosses.

    PubMed

    Rowe, Locke; Cameron, Erin; Day, Troy

    2003-10-07

    The result of population crosses on traits such as mating rate, oviposition rate and survivorship are increasingly used to distinguish between modes of coevolution between the sexes. Two key hypotheses, erected from a verbal theory of sexually antagonistic coevolution, have been the subject of several recent tests. First, statistical interactions arising in population crosses are suggested to be indicative of a complex signal/receiver system. In the case of oviposition rates, an interaction between populations (x, y and z) would be indicated by the rank order of female oviposition rates achieved by x, y and z males changing depending upon the female (x, y or z) with which they mated. Second, under sexually antagonistic coevolution females will do 'best' when mated with their own males, where best is defined by the weakest response to the signal and the highest fitness. We test these hypotheses by crossing strains generated from a formal model of sexually antagonistic coevolution. Strains differ in the strength of natural selection acting on male and female traits. In our model, we assume sexually antagonistic coevolution of a single male signal and female receptor. The female receptor is treated as a preference function where both the slope and intercept of the function can evolve. Our results suggest that neither prediction is consistently supported. Interactions are not diagnostic of complex signal-receiver systems, and even under sexually antagonistic coevolution, females may do better mating with males of strains other than their own. These results suggest a reinterpretation of several recent experiments and have important implications for developing theories of speciation when sexually antagonistic coevolution is involved.

  9. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    DTIC Science & Technology

    2010-09-30

    a novel hypocretiniorexin antagonist, almorexant (ALM), to a standard hypnotic , zolpidem (ZOL), and placebo (PBO) on neurocognitive performance at...Placebo-Controlled, Randomized, Parallel- Group Study Comparing the Effect of a Novel HypocretiniOrexin Antagonist (Almorexant) Versus a Standard Hypnotic ...Group Study Comparing the Effect of a Novel HypocretiniOrexin Antagonist (Almorexant) Versus a Standard Hypnotic (Zolpidem) and Placebo on

  10. Antagonistic and synergistic interactions among predators.

    PubMed

    Huxel, Gary R

    2007-08-01

    The structure and dynamics of food webs are largely dependent upon interactions among consumers and their resources. However, interspecific interactions such as intraguild predation and interference competition can also play a significant role in the stability of communities. The role of antagonistic/synergistic interactions among predators has been largely ignored in food web theory. These mechanisms influence predation rates, which is one of the key factors regulating food web structure and dynamics, thus ignoring them can potentially limit understanding of food webs. Using nonlinear models, it is shown that critical aspects of multiple predator food web dynamics are antagonistic/synergistic interactions among predators. The influence of antagonistic/synergistic interactions on coexistence of predators depended largely upon the parameter set used and the degree of feeding niche differentiation. In all cases when there was no effect of antagonism or synergism (a ( ij )=1.00), the predators coexisted. Using the stable parameter set, coexistence occurred across the range of antagonism/synergism used. However, using the chaotic parameter strong antagonism resulted in the extinction of one or both species, while strong synergism tended to coexistence. Whereas using the limit cycle parameter set, coexistence was strongly dependent on the degree of feeding niche overlap. Additionally increasing the degree of feeding specialization of the predators on the two prey species increased the amount of parameter space in which coexistence of the two predators occurred. Bifurcation analyses supported the general pattern of increased stability when the predator interaction was synergistic and decreased stability when it was antagonistic. Thus, synergistic interactions should be more common than antagonistic interactions in ecological systems.

  11. Tachykinin antagonists have potent local anaesthetic actions.

    PubMed

    Post, C; Butterworth, J F; Strichartz, G R; Karlsson, J A; Persson, C G

    1985-11-19

    Contrary to what would have been expected, an antagonist of substance P (SP) [Arg5,D-Trp7,9]SP-(5-11) inhibited the neurogenic contraction of isolated guinea-pig hilus bronchi more readily than a contraction produced by exogenous SP. Furthermore, it has previously been shown that a tachykinin antagonist given intrathecally produced motor blockade as do local anaesthetic drugs. We therefore examined whether tachykinin antagonists had a depressant action on axonal neurotransmission. The compound action potential (APc) of the frog isolated sciatic nerve was suppressed in a concentration-dependent manner by the tachykinin antagonists [D-Pro2,D-Trp7,9]SP and [Arg5,D-Trp7,9]Sp-(5-11), both being about 4 times more potent than lidocaine. SP itself was without effect. Similarly in the rat isolated sciatic nerve [D-Pro2,D-Trp7,9]SP suppressed the APc. It was more potent in the A alpha- than in the C-fibres. SP did not affect conduction in either fibre type. In conscious guinea-pigs [D-Pro2,D-Trp7,9]SP injected adjacent to the sciatic nerve was found to block motor but not sensory functions of the limb. Thus, commonly used tachykinin antagonists, but not SP itself, have potent local anaesthetic properties. This should be considered when these agents are employed as pharmacological tools.

  12. Martian CH(4): sources, flux, and detection.

    PubMed

    Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M

    2006-04-01

    Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.

  13. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS.

    PubMed

    Miller, Thomas M; Viggiano, Albert A; Shuman, Nicholas S

    2018-05-14

    The kinetics of thermal electron attachment to methyl thiocyanate (CH 3 SCN), methyl isothiocyanate (CH 3 NCS), and ethyl thiocyanate (C 2 H 5 SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH 3 SCN and C 2 H 5 SCN undergo inefficient dissociative attachment to yield primarily SCN - at 300 K (k = 2 × 10 -10 cm 3 s -1 ), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH 3 SCN) and 0.14 eV (C 2 H 5 SCN). CN - product is formed at <1% branching at 300 K, increasing to ∼30% branching at 1000 K. Attachment to CH 3 NCS yields exclusively SCN - ionic product but at a rate at 300 K that is below our detection threshold (k < 10 -12 cm 3 s -1 ). The rate coefficient increases rapidly with increasing temperature (k = 6 × 10 -11 cm 3 s -1 at 600 K), in a manner well described by an activation energy of 0.51 eV. Calculations at the B3LYP/def2-TZVPPD level suggest that attachment to CH 3 SCN proceeds through a dissociative state of CH 3 SCN - , while attachment to CH 3 NCS initially forms a weakly bound transient anion CH 3 NCS -* that isomerizes over an energetic barrier to yield SCN - . Kinetic modeling of the two systems is performed in an attempt to identify a kinetic signature differentiating the two mechanisms. The kinetic modeling reproduces the CH 3 NCS data only if dissociation through the transient anion is considered.

  14. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, Albert A.; Shuman, Nicholas S.

    2018-05-01

    The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at <1% branching at 300 K, increasing to ˜30% branching at 1000 K. Attachment to CH3NCS yields exclusively SCN- ionic product but at a rate at 300 K that is below our detection threshold (k < 10-12 cm3 s-1). The rate coefficient increases rapidly with increasing temperature (k = 6 × 10-11 cm3 s-1 at 600 K), in a manner well described by an activation energy of 0.51 eV. Calculations at the B3LYP/def2-TZVPPD level suggest that attachment to CH3SCN proceeds through a dissociative state of CH3SCN-, while attachment to CH3NCS initially forms a weakly bound transient anion CH3NCS-* that isomerizes over an energetic barrier to yield SCN-. Kinetic modeling of the two systems is performed in an attempt to identify a kinetic signature differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.

  15. The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice.

    PubMed

    Carlsson, M L; Martin, P; Nilsson, M; Sorensen, S M; Carlsson, A; Waters, S; Waters, N

    1999-01-01

    The purpose of the present study was to compare the effectiveness of the selective 5-HT2A antagonist M100907 in different psychosis models. The classical neuroleptic haloperidol was used as reference compound. Two hyperdopaminergia and two hypoglutamatergia mouse models were used. Hyperdopaminergia was produced by the DA releaser d-amphetamine or the DA uptake inhibitor GBR 12909. Hypoglutamatergia was produced by the un-competitive NMDA receptor antagonist MK-801 or the competitive NMDA receptor antagonist D-CPPene. M100907 was found to counteract the locomotor stimulant effects of the NMDA receptor antagonists MK-801 and D-CPPene, but spontaneous locomotion, d-amphetamine- and GBR-12909-induced hyperactivity were not significantly affected. Haloperidol, on the other hand, antagonized both NMDA antagonist- and DA agonist-induced hyperactivity, as well as spontaneous locomotion in the highest dose used. Based on the present and previous results we draw the conclusion that 5-HT2A receptor antagonists are particularly effective against behavioural anomalies resulting from hypoglutamatergia of various origins. The clinical implications of our results and conclusions would be that a 5-HT2A receptor antagonist, due to i a the low side effect liability, could be the preferable treatment strategy in various disorders associated with hypoglutamatergia; such conditions might include schizophrenia, childhood autism and dementia disorders.

  16. Screening of antagonistic bacteria isolated from Amorphophallus konjac rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan; Huang, Ying; Qin, Fang

    2018-04-01

    Bacteria lived in Amorphaphallus konjac rhizosphere soil have the potential ability of antagonistic bacterial pathogen activity against to Erwinia carotovora subsp carotovora (Ecc). The paper was to study and analyze all strains of 18 bacteria isolated from A. konjac rhizosphere soil with strong antagonistic effect against to Ecc and to identify antagonistic bacteria with morphology, physiology and biochemistry characteristic. The antagonistic bacterial pathogen activity of different bacterial strains were significantly different. Five of 18 strains isolated from A. konjac rhizosphere soil, including AKSB03, AKSB05, AKSB08, AKSB13 and AKSB16 was screened with antagonistic wider more than 15 mm in first screening test. Strain AKSB08 and strain AKSB16 had a strong antagonism activity for Ecc with antagonistic wider more than 20 mm in second screening test. Strain AKSB08 and strain AKSB16 belonged to Bacillus with morphology, physiology and biochemistry characteristic.

  17. Comparison of GnRH agonist, GnRH antagonist, and GnRH antagonist mild protocol of controlled ovarian hyperstimulation in good prognosis patients.

    PubMed

    Stimpfel, Martin; Vrtacnik-Bokal, Eda; Pozlep, Barbara; Virant-Klun, Irma

    2015-01-01

    The reports on how to stimulate the ovaries for oocyte retrieval in good prognosis patients are contradictory and often favor one type of controlled ovarian hyperstimulation (COH). For this reason, we retrospectively analyzed data from IVF/ICSI cycles carried out at our IVF Unit in good prognosis patients (aged <38 years, first and second attempts of IVF/ICSI, more than 3 oocytes retrieved) to elucidate which type of COH is optimal at our condition. The included patients were undergoing COH using GnRH agonist, GnRH antagonist or GnRH antagonist mild protocol in combination with gonadotrophins. We found significant differences in the average number of retrieved oocytes, immature oocytes, fertilized oocytes, embryos, transferred embryos, embryos frozen per cycle, and cycles with embryo freezing between studied COH protocols. Although there were no differences in live birth rate (LBR), miscarriages, and ectopic pregnancies between compared protocols, pregnancy rate was significantly higher in GnRH antagonist mild protocol in comparison with both GnRH antagonist and GnRH agonist protocols and cumulative LBR per cycle was significantly higher in GnRH antagonist mild protocol in comparison to GnRH agonist protocol. Our data show that GnRH antagonist mild protocol of COH could be the best method of choice in good prognosis patients.

  18. The chlorinated AHR ligand 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) promotes reactive oxygen species (ROS) production during embryonic development in the killifish (Fundulus heteroclitus)

    USGS Publications Warehouse

    Arzuaga, Xabier; Wassenberg, Deena; Giulio, Richard D.; Elskus, Adria

    2006-01-01

    Exposure to dioxin-like chemicals that activate the aryl hydrocarbon receptor (AHR) can result in increased cellular and tissue production of reactive oxygen species (ROS). Little is known of these effects during early fish development. We used the fish model, Fundulus heteroclitus, to determine if the AHR ligand and pro-oxidant 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) can increase ROS production during killifish development, and to test a novel method for measuring ROS non-invasively in a living organism. The superoxide-sensitive fluorescent dye, dihydroethidium (DHE), was used to detect in ovo ROS production microscopically in developing killifish exposed to PCB126 or vehicle. Both in ovo CYP1A activity (ethoxyresorufin-o-deethylase, EROD) and in ovo ROS were induced by PCB126. In ovo CYP1A activity was inducible by PCB126 concentrations as low as 0.003 nM, with maximal induction occurring at 0.3 nM PCB126. These PCB126 concentrations also significantly increased in ovo ROS production in embryonic liver, ROS being detectable as early as 5 days post-fertilization. These data demonstrate that the pro-oxidant and CYP1A inducer, PCB126, increases both CYP1A activity and ROS production in developing killifish embryos. The superoxide detection assay (SoDA) described in this paper provides a semi-quantitative, easily measured, early indicator of altered ROS production that can be used in conjunction with simultaneous in ovo measurements of CYP1A activity and embryo development to explore functional relationships among biochemical, physiological and developmental responses to AHR ligands.

  19. Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP).

    PubMed

    Desvoyes, Bénédicte; Sequeira-Mendes, Joana; Vergara, Zaida; Madeira, Sofia; Gutierrez, Crisanto

    2018-01-01

    Identification of chromatin modifications, e.g., histone acetylation and methylation, among others, is widely carried out by using a chromatin immunoprecipitation (ChIP) strategy. The information obtained with these procedures is useful to gain an overall picture of modifications present in all cells of the population under study. It also serves as a basis to figure out the mechanisms of chromatin organization and gene regulation at the population level. However, the ultimate goal is to understand gene regulation at the level of single chromatin fibers. This requires the identification of chromatin modifications that occur at a given genomic location and within the same chromatin fiber. This is achieved by following a sequential ChIP strategy using two antibodies to distinguish different chromatin modifications. Here, we describe a sequential ChIP protocol (Re-ChIP), paying special attention to the controls needed and the required steps to obtain meaningful and reproducible results. The protocol is developed for young Arabidopsis seedlings but could be adapted to other plant materials.

  20. Immuno-detection of dioxins using a recombinant protein of aryl hydrocarbon receptor (AhR) fused with sfGFP.

    PubMed

    Faiad, Walaa; Hanano, Abdulsamie; Kabakibi, Mohamed Maher; Abbady, Abdul Qader

    2016-06-21

    Dioxins are one of the most toxic groups of persistent organic pollutants. Their bioaccumulation through the food chain constitutes a potential risk for human health. Upon cell entry, dioxins bind specifically and firmly to the aryl hydrocarbon receptor (AhR), leading to the stimulation of several enzymes responsible for its detoxification. Dioxin/AhR interaction could be exploited as an affordable alternative to a variety of analytical methods for detecting dioxin contamination in the environment. In this work, the ligand binding domain (LBD) of the AhR was cloned downstream a superfolder form of the green fluorescent protein (sfGFP), resulting in the construct pRSET-sfGFP-AhR. High level of expressed sfGFP-AhR fusion protein (50 kDa) was recovered from the inclusion bodies of E. coli by simple solubilization with the Arginine, and purified by affinity chromatography via its N-terminal 6 × His tag. Its purity was confirmed by SDS-PAGE analysis and immunoblotting with anti-His or anti-GFP antibodies. Indirect ELISA revealed the ability of the sfGFP-AhR, but not the sfGFP, to bind to the immobilized dioxin with the possibility to detect such interaction by both its 6 × His and GFP tags,Competitive ELISA showed that anti-dioxin antibody was more sensitive to low dioxin concentrations than sfGFP-AhR. Nevertheless,the detection range of sfGFP-AhR fusion was much wider and the detection limit was of about 10 ppt (parts per trillion) of free dioxin in the tested artificial samples. this highly expressed and functional sfGFP-AhR fusion protein provides a promising molecular tool for detecting and quantifying different congeners of dioxins.

  1. In-plane chemical pressure essential for superconductivity in BiCh2-based (Ch: S, Se) layered structure

    PubMed Central

    Mizuguchi, Yoshikazu; Miura, Akira; Kajitani, Joe; Hiroi, Takafumi; Miura, Osuke; Tadanaga, Kiyoharu; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    BiCh2-based compounds (Ch: S, Se) are a new series of layered superconductors, and the mechanisms for the emergence of superconductivity in these materials have not yet been elucidated. In this study, we investigate the relationship between crystal structure and superconducting properties of the BiCh2-based superconductor family, specifically, optimally doped Ce1−xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1−ySey)2. We use powder synchrotron X-ray diffraction to determine the crystal structures. We show that the structure parameter essential for the emergence of bulk superconductivity in both systems is the in-plane chemical pressure, rather than Bi-Ch bond lengths or in-plane Ch-Bi-Ch bond angle. Furthermore, we show that the superconducting transition temperature for all REO0.5F0.5BiCh2 superconductors can be determined from the in-plane chemical pressure. PMID:26447333

  2. Direct observation of unimolecular decay of CH{sub 3}CH{sub 2}CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH{sub 3}CH{sub 2}CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice–Ramsperger–Kassel–Marcus calculations of the microcanonical unimolecular decay rate for CH{sub 3}CH{sub 2}CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronicmore » structure calculations, contributes significantly to the decay rate. Infrared transitions of CH{sub 3}CH{sub 2}CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH{sub 3}CH{sub 2}CHOO of ca. 10{sup 7} s{sup −1}, which are slower than those obtained for syn-CH{sub 3}CHOO or (CH{sub 3}){sub 2}COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH{sub 3}CH{sub 2}CHOO under atmospheric conditions, giving a rate of 279 s{sup −1} at 298 K.« less

  3. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish.

    PubMed

    Zhang, Jing-Hui; Sun, Tai; Niu, Aping; Tang, Yu-Mei; Deng, Shun; Luo, Wei; Xu, Qun; Wei, Dapeng; Pei, De-Sheng

    2017-07-01

    Graphene quantum dots (GQDs) has been widely used in enormous fields, however, the inherent molecular mechanism of GQDs for potential risks in biological system is still elusive to date. In this study, the outstanding reduced graphene quantum dots (rGOQDs) with the QY as high as 24.62% were successfully synthesized by the improved Hummers method and DMF hydrothermal treatment approach. The rGOQDs were N-doped photoluminescent nanomaterials with functional groups on the surface. The fluorescent bio-imaging was performed by exposing zebrafish in different concentrations of the as-prepared rGOQDs, and the distribution of rGOQDs was successfully observed. Moreover, the developmental toxicity and genotoxicity were evaluated to further investigate the potential hazard of rGOQDs. The result indicated that rGOQDs were responsible for the dose-dependent abnormalities on the development of zebrafish. Since the real-time polymerase chain reaction (RT-PCR) results showed that the expression of cyp1a was the highest expression in the selected genes and significantly up-regulated 8.49 fold in zebrafish, the perturbation of rGOQDs on aryl hydrocarbon receptor (AhR) pathway was investigated by using the Tg(cyp1a:gfp) zebrafish for the first time. The results demonstrated that rGOQDs significantly increased the green fluorescent protein (GFP) expression promoted by cyp1a in a dose-dependent manner, which was also further confirmed by the western blotting. This study offered an opportunity to reveal the potential hazards of in vivo bio-probes, which provided a valuable reference for investigating the graphene-based materials on the disturbance of AhR pathway in biological organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.

    PubMed

    Sebbar, N; Bozzelli, J W; Bockhorn, H

    2014-01-09

    Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.

  5. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem.

    PubMed

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-21

    Quantum mechanical calculations of ro-vibrational energies of CH 4 , CHD 3 , CH 3 D, and CH 3 F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH 3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH 3 . Euler angles specifying the orientation of a frame attached to CH 3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH 4 , CHD 3 , and CH 3 D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH 3 F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  6. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H.; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-01

    Quantum mechanical calculations of ro-vibrational energies of CH4, CHD3, CH3D, and CH3F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH3. Euler angles specifying the orientation of a frame attached to CH3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH4, CHD3, and CH3D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH3F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  7. CH_{4} production in the deep soil as a source of stem CH_{4} emission in Fagus sylvatica}

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Machacova, Katerina; Urban, Otmar; Lang, Friederike

    2017-04-01

    Predicting greenhouse gas (GHG) fluxes on a global scale requires understanding fluxes on the local scale. Understanding GHG processes in soil-plant-atmosphere systems is essential to understand and mitigate GHG fluxes on the local scale. Forests are known to act as carbon sink. Yet, trees at waterlogged sites are known to emit large amounts of CH4, what can offset the positive GHG balance due the CO2 that is sequestered as wood. Generally, upland trees like European beech (Fagus sylvatica L.) are assumed not to emit CH4, and the upland forest soils are regarded as CH4 sinks. Soil-atmosphere fluxes and stem-atmosphere fluxes of CH4 were studied together with soil gas profiles at two upland beech forest sites in Germany and Czech Republic. Soil was a net CH4 sink at both sites. While most trees showed no or low emissions, one beech tree had exorbitant CH4 emissions that were higher than the CH4 sink capacity of the soil. A soil survey showed strong redoximorphic color patterns in the soil adjacent to this tree. Although the soil around the tree was taking up CH4, the soil gas profiles around this tree showed CH4 production at a soil depth >0.3 m. We interpret the coincidence of the production of CH4 in the deep soil below the beech with the large stem emissions as strong hint that there is a transport link between the soil and stem. We think that the root system represents a preferential transport system for CH4 despite the fact that beech roots usually do not have a special gas transport tissue. The observed CH4 stem emissions represent an important CH4 flux in this ecosystem, and, thus, should be considered in future research. Acknowledgement This research was supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), the Czech Science Foundation (17-18112Y), National Programme for Sustainability I (LO1415) and project DFG (MA 5826

  8. Experimental and Computational Study fo CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Walsh, K. T.

    1998-01-01

    In this study, we extend the results of previous combined numerical and experimental investigations of an axisymmetric laminar diffusion flame in which difference Raman spectroscopy, laser-induced fluorescence (LIF), and a multidimensional flame model were used to generate profiles of the temperature and major and minor species. A procedure is outlined by which the number densities of ground-state CH (X(sup 2)II) excited-state CH (A(sup 2)Delta, denoted CH*), and excited-state OH (A(sup 2)Sigma, denoted OH*) are measured and modeled. CH* and OH* number densities are deconvoluted from line-of-sight flame-emission measurements. Ground-state CH is measured using linear LIF. The computations are done with GRI Mech 2.11 as well as an alternate hydrocarbon mechanism. In both cases, additional reactions for the production and consumption of CH* and OH* are added from recent kinetic studies. Collisional quenching and spontaneous emission are responsible for the de-excitation of the excited-state radicals. As with our previous investigations, GRI Mech 2.11 continues to produce very good agreement with the overall flame length observed in the experiments, while significantly under predicting the flame lift-off height. The alternate kinetic scheme is much more accurate in predicting lift-off height but overpredicts the over-all flame length. Ground-state CH profiles predicted with GRI Mech 2.11 are in excellent agreement with the corresponding measurements, regarding both spatial distribution and absolute concentration (measured at 4 ppm) of the CH radical. Calculations of the excited-state species show reasonable agreement with the measurements as far as spatial distribution and overall characteristics are concerned. For OH*, the measured peak mole fraction, 1.3 x 10(exp -8), compared well with computed peaks, while the measured peak level for CH*, 2 x 10(exp -9), was severely underpredicted by both kinetic schemes, indicating that the formation and destruction kinetics

  9. Infrared-Terahertz Double-Resonance Spectroscopy of CH3F and CH3Cl at Atmospheric Pressure

    DTIC Science & Technology

    2012-05-16

    coincidence with the RQ3(6) rovibrational transition in CH3 35Cl [Fig. 4(b)]. At atmospheric pressure, nine more P -, Q-, and R-branch rovibrational...the double-resonance signatures of all IR-THz pump-probe coincidences at atmospheric pressure for 12CH3F and CH3 35Cl 052507-11050-2947/2012/85(5...were calculated using the rotational constants listed in Tables I and II. For CH3F, the standard P - type (J = − 1), Q-type (J = 0), and R-type (J

  10. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.

    PubMed

    Choi, Joon Young; Lee, Hwa Young; Hur, Jung; Kim, Kyung Hoon; Kang, Ji Young; Rhee, Chin Kook; Lee, Sook Young

    2018-05-01

    Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. There is emerging interest in the involvement of the transient receptor potential vanilloid 1 (TRPV1) channel in the pathophysiology of asthma. This study examined whether TRPV1 antagonism alleviates asthma features in a murine model of chronic asthma. BALB/c mice were sensitized to and challenged by ovalbumin to develop chronic asthma. Capsazepine (TRPV1 antagonist) or TRPV1 small interfering RNA (siRNA) was administered in the treatment group to evaluate the effect of TPV1 antagonism on AHR, airway inflammation, and remodeling. The mice displayed increased AHR, airway inflammation, and remodeling. Treatment with capsazepine or TRPV1 siRNA reduced AHR to methacholine and airway inflammation. Type 2 T helper (Th2) cytokines (interleukin [IL]-4, IL-5, and IL-13) were reduced and epithelial cell-derived cytokines (thymic stromal lymphopoietin [TSLP], IL-33, and IL-25), which regulate Th2 cytokine-associated inflammation, were also reduced. Airway remodeling characterized by goblet cell hyperplasia, increased α-smooth muscle action, and collagen deposition was also alleviated by both treatments. Treatment directed at TRPV1 significantly alleviated AHR, airway inflammation, and remodeling in a chronic asthma murine model. The TRPV1 receptor can be a potential drug target for chronic bronchial asthma. Copyright © 2018 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease.

  11. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Benjamin J.

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase genemore » reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.« less

  12. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    PubMed

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  13. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  14. Recruitment of CREB1 and Histone Deacetylase 2 (HDAC2) to the Mouse Ltbp-1 Promoter Regulates its Constitutive Expression in a Dioxin Receptor-dependent Manner

    PubMed Central

    Gomez-Duran, Aurea; Ballestar, Esteban; Carvajal-Gonzalez, Jose M.; Marlowe, Jennifer L.; Puga, Alvaro; Esteller, Manel; Fernandez-Salguero, Pedro M.

    2010-01-01

    Latent TGFβ-binding protein 1 (LTBP-1) is a key regulator of TGFβ targeting and activation in the extracellular matrix. LTBP-1 is recognized as a major docking molecule to localize, and possibly to activate, TGFβ in the extracellular matrix. Despite this relevant function, the molecular mechanisms regulating Ltbp-1 transcription remain largely unknown. Previous results from our laboratory revealed that mouse embryonic fibroblasts (MEF) lacking dioxin receptor (AhR) had increased Ltbp-1 mRNA expression and elevated TGFβ activity, suggesting that AhR repressed Ltbp-1 transcription. Here, we have cloned the mouse Ltbp-1 gene promoter and analysed its mechanism of transcriptional repression by AhR. Reporter gene assays, AhR over-expression and site-directed mutagenesis showed that basal Ltbp-1 transcription is AhR-dependent. Chromatin immunoprecipitation (ChIP) and RNA interference (RNAi) revealed that AhR regulates Ltbp-1 transcription by a mechanism involving recruitment of co-activators such as CREB1 and co-repressors such as HDAC2 to the Ltbp-1 promoter. In AhR-expressing (AhR+/+) MEF cells, the recruitment of HDAC1, 2 and 4 correlated with decreased K8H4 acetylation and impaired binding of pCREBSer133 to the Ltbp-1 promoter, likely maintaining a constitutive repressed state. AhR−/− MEF cells had the opposite pattern of HDACs and pCREB1Ser133 binding to Ltbp-1 promoter, and therefore, over-expressed Ltbp-1 mRNA. In agreement, siRNA for HDAC2 increased Ltbp-1 expression and K8H4 acetylation in AhR+/+ but not in AhR−/− MEF cells. We suggest that HDAC2 binding keeps Ltbp-1 promoter repressed in AhR+/+ MEF cells, whereas in AhR-null MEF cells the absence of HDAC2 and the binding of pCREBSer133 allow Ltbp-1 transcription. Thus, epigenetics can contribute to constitutive Ltbp-1 repression by a mechanism requiring AhR activity. PMID:18508077

  15. Aryl Hydrocarbon Receptor activation by diesel exhaust particles mediates epithelium-derived cytokines expression in severe allergic asthma.

    PubMed

    Weng, Chih-Ming; Wang, Chun-Hua; Lee, Meng-Jung; He, Jung-Re; Huang, Hsin-Yu; Chao, Ming-Wei; Chung, Kian Fan; Kuo, Han-Pin

    2018-04-19

    Exposure to environmental pollutants promotes Th2 cell responses. Aryl hydrocarbon receptor (AhR) activation aggravates allergic responses. Epithelium-derived thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33 are implicated in the dysregulation of Th2 immune responses in severe allergic asthma. Bronchial biopsies of 28 allergic severe asthma and 6 mild asthma subjects from highly polluted areas were analyzed for AhR nuclear translocation (NT), cytokine expression and gene activation. Cultured primary epithelial cells were stimulated with diesel exhausted particles (DEP) to determine AhR-mediated IL-33, Il-25 and TSLP synthesis and release. Primary bronchial epithelial cells exposed to DEP showed up-regulation of IL-33, IL-25 and TSLP. These effects were abolished by knock-down of AhR by siRNA. Increased AhR/ARNT binding to promoters of IL-33, IL-25, and TSLP was found using chromatin immunoprecipitation (ChIP) assay. Allergic severe asthma with high AhR NT had higher bronchial gene and protein expression of IL-33, IL-25 and TSLP. These patients derived clinical benefit from anti-IgE treatment. AhR activation by DEP mediates up-regulation of IL-33, IL-25 and TSLP with Th2 activation, potentially linking environmental pollution and allergic severe asthma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum.

    PubMed

    El-Debaiky, Samah A

    2017-12-01

    The present study represents, for the first time, the detailed studies about the hyphal interactions of Aspergillus piperis, as a new antagonist, against some isolated plant pathogenic fungi (Alternaria alternata, Alternaria solani, Botrytis cinerea, Sclerotium cepivorum and Sclerotinia sclerotiorum) in vitro. The bio-controlling capability of A. piperis against the tested phytopathogens was tested using the dual culture method. This experiment revealed that A. piperis had antagonistic activity and reduced the growth of the tested phytopathogens and grew over their mycelia in the paired plates. Also, several antagonistic mechanisms were recorded, in this study, between A. piperis and the tested phytopathogens using the microscopic examination. The bio-controlling activity and the antagonistic mechanisms exhibited by the new antagonist, A. piperis were compared with those obtained by the common antagonist, Trichoderma harzianum against the same phytopathogens. The obtained results showed that, A. piperis was more effective than T. harzianum in inhibiting all the tested species in the dual culture plates. The best result was 81.85% inhibition percentage against S. sclerotiorum by A. piperis while, T. harzianum exhibits only 45.18%. Moreover, several antagonistic mechanisms and hyphal interactions were investigated among the hyphae of both A.piperis and T. harzianum and the hyphae of the tested phytopathogens. These mechanisms were summarized as; mycoparasitism (coiling and penetration of the hyphae) and antibiosis in the form of lysis of the hyphal cells and spores, denaturation and breaking of the hyphae. The indirect interaction (antibiosis) and the direct mycoparasitism were observed by A. piperis against all the tested phytopathogens, but it attacked the hyphae and conidiophores of A. alternata by only the antibiosis interaction. The microscopic examination revealed also that T. harzianum attacked the tested phytopathogens by both antibiosis and mycoparasitism

  17. ChIP-PIT: Enhancing the Analysis of ChIP-Seq Data Using Convex-Relaxed Pair-Wise Interaction Tensor Decomposition.

    PubMed

    Zhu, Lin; Guo, Wei-Li; Deng, Su-Ping; Huang, De-Shuang

    2016-01-01

    In recent years, thanks to the efforts of individual scientists and research consortiums, a huge amount of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experimental data have been accumulated. Instead of investigating them independently, several recent studies have convincingly demonstrated that a wealth of scientific insights can be gained by integrative analysis of these ChIP-seq data. However, when used for the purpose of integrative analysis, a serious drawback of current ChIP-seq technique is that it is still expensive and time-consuming to generate ChIP-seq datasets of high standard. Most researchers are therefore unable to obtain complete ChIP-seq data for several TFs in a wide variety of cell lines, which considerably limits the understanding of transcriptional regulation pattern. In this paper, we propose a novel method called ChIP-PIT to overcome the aforementioned limitation. In ChIP-PIT, ChIP-seq data corresponding to a diverse collection of cell types, TFs and genes are fused together using the three-mode pair-wise interaction tensor (PIT) model, and the prediction of unperformed ChIP-seq experimental results is formulated as a tensor completion problem. Computationally, we propose efficient first-order method based on extensions of coordinate descent method to learn the optimal solution of ChIP-PIT, which makes it particularly suitable for the analysis of massive scale ChIP-seq data. Experimental evaluation the ENCODE data illustrate the usefulness of the proposed model.

  18. Comparative Effectiveness of Renin-Angiotensin System Antagonists in Maintenance Dialysis Patients

    PubMed Central

    Shireman, Theresa I.; Mahnken, Jonathan D.; Phadnis, Milind A.; Ellerbeck, Edward F.; Wetmore, James B.

    2017-01-01

    Background/Aims Whether angiotensin converting enzyme inhibitors (ACE) and angiotensin receptor blockers (ARB) are differentially associated with reductions in cardiovascular events and mortality in patients receiving maintenance dialysis is uncertain. We compared outcomes between ACE and ARB users among hypertensive, maintenance dialysis patients. Methods National retrospective cohort study of hypertensive, Medicare-Medicaid eligible patients initiating chronic dialysis between 1/1/2000 to 12/31/2005. The exposure of interest was new use of either an ACEI or ARB. Outcomes were all-cause mortality (ACM) and combined cardiovascular hospitalization or death (CV-endpoint). Cox proportion hazards models were used to compare the effect of ACEI vs ARB use on ACM and, separately, CV-endpoint. Results ACM models were based on 3,555 ACEI and 1,442 ARB new users, while CV-endpoint models included 3,289 ACEI and 1,346 ARB new users. After statistical adjustments, ACEI users had higher hazard ratios for ACM (AHR = 1.22, 99% CI 1.05–1.42) and CV-endpoint (AHR = 1.12, 99% CI 0.99–1.27). Conclusions Patients initiating maintenance dialysis who received an ACEI faced an increased risk for mortality and a trend towards an increased risk for CV-endpoints when compared to patients who received an ARB. Validation of these results in a rigorous clinical trial is warranted. PMID:27871075

  19. Comparative Effectiveness of Renin-Angiotensin System Antagonists in Maintenance Dialysis Patients.

    PubMed

    Shireman, Theresa I; Mahnken, Jonathan D; Phadnis, Milind A; Ellerbeck, Edward F; Wetmore, James B

    2016-01-01

    Whether angiotensin converting enzyme inhibitors (ACE) and angiotensin receptor blockers (ARB) are differentially associated with reductions in cardiovascular events and mortality in patients receiving maintenance dialysis is uncertain. We compared outcomes between ACE and ARB users among hypertensive, maintenance dialysis patients. National retrospective cohort study of hypertensive, Medicare-Medicaid eligible patients initiating chronic dialysis between 1/1/2000 to 12/31/2005. The exposure of interest was new use of either an ACEI or ARB. Outcomes were all-cause mortality (ACM) and combined cardiovascular hospitalization or death (CV-endpoint). Cox proportion hazards models were used to compare the effect of ACEI vs ARB use on ACM and, separately, CV-endpoint. ACM models were based on 3,555 ACEI and 1,442 ARB new users, while CV-endpoint models included 3,289 ACEI and 1,346 ARB new users. After statistical adjustments, ACEI users had higher hazard ratios for ACM (AHR = 1.22, 99% CI 1.05-1.42) and CV-endpoint (AHR = 1.12, 99% CI 0.99-1.27). Patients initiating maintenance dialysis who received an ACEI faced an increased risk for mortality and a trend towards an increased risk for CV-endpoints when compared to patients who received an ARB. Validation of these results in a rigorous clinical trial is warranted. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. The photolysis of CH3ONO

    NASA Technical Reports Server (NTRS)

    Wiebe, H. A.; Heicklen, J.

    1972-01-01

    The photolysis of CH3ONO, alone and in the presence of NO, NO-N2 mixtures, and NO-CO mixtures was studied between 25 and 150 C. The major products are CH2O, N2O, and H2O. The quantum yields of N2O were measured. The N2O yield is large at low pressures but approaches a high-pressure limiting value of 0.055 at all temperatures as the excited CH3O produced in the primary step is stabilized by collision. In the presence of excess CO, and N2O yield drops, and CO2 is produced (though not in sufficient amounts to account for the drop in N2O). When pure CH2ONO is photolyzed, CO is produced and NO accumulates in the system. Both products are formed in related processes and result from CH3O attack on CH2O.

  1. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  2. Daily treatment with {alpha}-naphthoflavone enhances follicular growth and ovulation rate in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreiro, Karina A.; Di Yorio, Maria P.; Artillo-Guida, Romina D.

    2011-04-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and the first protein involved in a variety of physiological and toxicological processes, including those of xenobiotic metabolizing enzymes. AhR has been found in the ovary of many species and seems to mediate the ovarian toxicity of many environmental contaminants, which are AhR ligands. However, the role of AhR in the ovarian function is unknown. Therefore, the aim of this work was to study the action of {alpha}-naphthoflavone ({alpha}NF), known to be an AhR antagonist, on both follicular growth and ovulation. Immature Sprague-Dawley rats were daily injected intraperitoneally with {alpha}NFmore » (0.1-80 mg/kg) or vehicle for 12 days, and primed with gonadotrophins (eCG/hCG) to induce follicular growth and ovulation. Ovaries were obtained 20 h after hCG administration. By means of immunohistochemistry, we found that the numbers of primordial, primary and antral follicles were increased in rats treated with 80 mg/kg {alpha}NF and that there were no differences with other doses. Likewise, the ovarian weight and the ovulation rate, measured by both number of oocytes within oviducts and corpora lutea in ovarian sections, were increased when the rats received either 1 or 10 mg/kg daily. Although further studies are necessary to know the mechanism of action of {alpha}NF, it is possible that the different ovarian processes can be differentially responsive to the presence of different levels of {alpha}NF, and that the same or different endogenous AhR ligands can be involved in these ovarian processes in a cell type-dependent manner.« less

  3. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    PubMed

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Antagonistic and Bargaining Games in Optimal Marketing Decisions

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…

  5. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan [Mystic, CT; Jancarik, Jarmila [Walnut Creek, CA; Kim, Sung-Hou [Moraga, CA; Koths, Kirston [El Cerrito, CA; Halenbeck, Robert [San Rafael, CA; Fear, Anna Lisa [Oakland, CA; Taylor, Eric [Oakland, CA; Yamamoto, Ralph [Martinez, CA; Bohm, Andrew [Armonk, NY

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  6. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NF{kappa}B and AhR and EGFR-ERK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapovich, Alla I.; Biology Department, Belarus State University, Skorina Prosp. 10, Minsk 220050; Lulli, Daniela

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure,more » the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted

  7. Spatial distribution of CH3 and CH2 radicals in a methane rf discharge

    NASA Astrophysics Data System (ADS)

    Sugai, H.; Kojima, H.; Ishida, A.; Toyoda, H.

    1990-06-01

    Spatial distributions of neutral radicals CH3 and CH2 in a capacitively coupled rf glow discharge of methane were measured by threshold ionization mass spectrometry. A strong asymmetry of the density profile was found for the CH2 radical in the high-pressure (˜100 mTorr) discharge. In addition, comprehensive measurements of electron energy distribution, ionic composition, and radical sticking coefficient were made to use as inputs to theoretical modeling of radicals in the methane plasma. The model predictions agree substantially with the measured radical distributions.

  8. AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice.

    PubMed

    Goettel, Jeremy A; Gandhi, Roopali; Kenison, Jessica E; Yeste, Ada; Murugaiyan, Gopal; Sambanthamoorthy, Sharmila; Griffith, Alexandra E; Patel, Bonny; Shouval, Dror S; Weiner, Howard L; Snapper, Scott B; Quintana, Francisco J

    2016-10-25

    Existing therapies for inflammatory bowel disease that are based on broad suppression of inflammation result in variable clinical benefit and unwanted side effects. A potential therapeutic approach for promoting immune tolerance is the in vivo induction of regulatory T cells (Tregs). Here we report that activation of the aryl hydrocarbon receptor using the non-toxic agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) induces human Tregs in vitro that suppress effector T cells through a mechanism mediated by CD39 and Granzyme B. We then developed a humanized murine system whereby human CD4 + T cells drive colitis upon exposure to 2,4,6-trinitrobenzenesulfonic acid and assessed ITE as a potential therapeutic. ITE administration ameliorated colitis in humanized mice with increased CD39, Granzyme B, and IL10-secreting human Tregs. These results develop an experimental model to investigate human CD4 + T responses in vivo and identify the non-toxic AHR agonist ITE as a potential therapy for promoting immune tolerance in the intestine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Thz Spectroscopy of 12CH^+, 13CH^+, and 12CD^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian; Pearson, John; Amano, Takayoshi

    2015-06-01

    In 1937, Dunham detected a couple of unidentified lines in near-UV, and later Douglas and Herzberg identified them based on their laboratory observations to be low-J electronic transitions of CH^+. The electronic spectra, in particular the A^1Π-X^1σ^+ band, have been investigated extensively. On the other hand, the pure rotational transitions have not been studied so extensively. Only the lowest rotational transition, J=1-0, was observed in the laboratory for the normal species, 13CH^+, and CD^+. Based on the laboratory frequency, CH^+ was detected in star forming regions with the Hershel space observatory. Cernicharo et al identified pure rotational transitions from J=2-1 to J=6-5 in the far-infrared region in the ISO spectrum of the planetary nebula NGC 7027. The ISO spectra, however, were of low-resolution, so high-resolution spectroscopic observation is highly desirable. In this presentation, we have extended the measurements to higher-J lines up to 2 THz. For production of CH^+, an extended negative glow discharge in a gas mixture of CH_4 (˜ 0.5 mTorr) diluted in He (˜ 60 mTorr) was used. The optimum discharge current was about 15 mA and the axial magnetic filed to 160 Gauss was applied up. The discharge cell was cooled down to liquid nitrogen temperature. Several frequency multiplier chains, developed at JPL and purchased from Virginia Diodes, were used as THz radiation sources. New THz measurements are not only useful for providing better characterization of spectroscopic properties but also will serve as starting point for astronomical observations. T. Dunham, Publ. Astron. Soc. Pac., 49,~26 (1937) A. E. Douglas and G. Herzberg, Ap. J. 94,~381 (1941) T. Amano, Ap.J.Lett., 716, L1 (2010) T. Amano, J. Chem. Phys., 133, 244305 (2010) J. Cernicharo et al., Ap. J. Lett., 483, L65 (1997)

  10. BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy

    BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.

  11. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C-H Functionalization Catalysis.

    PubMed

    Topczewski, Joseph J; Sanford, Melanie S

    2015-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a Pd II /Pd IV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a Pd II centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at Pd IV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at Pd II . This Mini Review highlights proposed examples of C-H activation at Pd IV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed.

  12. Methane Provenance Determined by CH2D2 and 13CH3D Abundances

    NASA Astrophysics Data System (ADS)

    Kohl, I. E.; Giunta, T.; Warr, O.; Ash, J. L.; Ruffine, L.; Sherwood Lollar, B.; Young, E. D.

    2017-12-01

    Determining the provenance of naturally occurring methane gases is of major interest to energy companies and atmospheric climate modelers, among others. Bulk isotopic compositions and other geochemical tracers sometimes fail to provide definitive determinations of sources of methane due to complications from mixing and complicated chemical pathways of origin. Recent measurements of doubly-substituted isotopologues of methane, CH2D2 (UCLA) and 13CH3D (UCLA, CalTech, and MIT) have allowed for major improvements in sourcing natural methane gases. Early work has focused on formation temperatures obtained when the relative abundances of both doubly-substituted mass-18 species are consistent with internal equilibrium. When methane gases do not plot on the thermodynamic equilibrium curve in D12CH2D2 vs D13CH3D space, temperatures determined from D13CH3D values alone are usually spurious, even when appearing reasonable. We find that the equilibrium case is actually rare and almost exclusive to thermogenic gases produced at temperatures exceeding 100°C. All other relevant methane production processes appear to generate gases that are not in isotopologue-temperature equilibrium. When gases show departures from equilibrium as determined by the relationship between CH2D2 and 13CH3D abundances, data fall within empirically defined fields representing formation pathways. These fields are thus far consistent between different geological settings and and between lab experiments and natural samples. We have now defined fields for thermogenic gas production, microbial methanogenesis, low temperature abiotic (Sabatier) synthesis and higher temperature FTT synthesis. The majority of our natural methane data can be explained by mixing between end members originating within these production fields. Mixing can appear complex, resulting in both hyper-clumped and anti-clumped isotopologue abundances. In systems where mixtures dominate and end-members are difficult to sample, mixing models

  13. Permanent renal loss following tumor necrosis factor α antagonists for arthritis.

    PubMed

    Chen, Tzu-Jen; Yang, Ya-Fei; Huang, Po-Hao; Lin, Hsin-Hung; Huang, Chiu-Ching

    2010-06-01

    Tumor necrosis factor alpha (TNF-alpha) antagonists are now widely used in the treatment of aggressive rheumatoid arthritis and are generally well tolerated. Although rare, they could induce systemic lupus erythematosus, glomerulonephritis, and antineutrophil cytoplasmic antibody associated systemic vasculitis. Tumor necrosis factor alpha antagonists associated glomerulonephritis usually subsides after discontinuation of the therapy and subsequent initiation of corticosteroids and immunosuppressive agents. Here we describe crescentic glomerulonephritis progression to end-stage renal disease in a patient following two doses of TNF-alpha antagonists for the treatment of reactive arthritis. To our knowledge, dialysis dependent permanent renal loss after TNF-alpha antagonists has not yet been reported. We suggest the renal function should be closely monitored in patients treated with TNF-alpha antagonists by rheumatologists.

  14. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    NASA Astrophysics Data System (ADS)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  15. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing

    2018-07-01

    The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.

  16. Antagonist wear of monolithic zirconia crowns after 2 years.

    PubMed

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  17. Training Management in the CH-46E Community After MAWTS-1 Stands Down Its CH-46E Division

    DTIC Science & Technology

    2012-04-23

    SHOULD INCLUDE THE FOREGOING STATEMENT. QUOTATION FROM, ABSTRACTION FROM, OR REPRODUCTION OF ALL OR ANY PART OF THIS DOCUMENT IS PERMITTED...HMH) currently fly either the CH-53D Sea Stallion or the CH-53E Super Stallion helicopters. Those units that fly the CH-53D Sea Stallion are in the...process of converting to the CH-53E Super Stallion or will transition the squadrons to medium lift assault support platforms.5 The HMHs currently

  18. Degraded Land Restoration in Reinstating CH4 Sink

    PubMed Central

    Singh, Jay Shankar; Gupta, Vijai K.

    2016-01-01

    Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems. PMID:27379053

  19. Degraded Land Restoration in Reinstating CH4 Sink.

    PubMed

    Singh, Jay Shankar; Gupta, Vijai K

    2016-01-01

    Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems.

  20. Constraining the sources of CH4 emissions during past abrupt climate change using CH4 triple isotopes mass balance from the ice core records

    NASA Astrophysics Data System (ADS)

    Dyonisius, M.; Petrenko, V. V.; Smith, A. W.; Hmiel, B.; Beck, J.; Seth, B.; Bock, M.; Hua, Q.; Yang, B.; Harth, C. M.; Beaudette, R.; Lee, J.; Erhardt, T.; Schmitt, J.; Brook, E.; Weiss, R. F.; Fischer, H.; Severinghaus, J. P.

    2017-12-01

    Methane (CH4) is the third most important greenhouse gas in the atmosphere after water vapor and CO2. Understanding how the natural CH4 budget has changed in response to changing climate in the past can provide insights on the sensitivity of the natural CH4 emissions to the current anthropogenic warming. CH4 isotopes (Δ14CH4, δ13C-CH4, and δD-CH4) from ice cores can be used to fingerprint the sources of CH4 increases in the past. We have successfully extracted 6 large volume (>1000kg) ice core samples from Taylor Glacier, Antarctica spanning the Oldest Dryas-Bølling transition ( 14.7ka) - the first abrupt warming and CH4 rise since the Last Glacial Maximum. Among the CH4 isotopes, our Δ 14CH4 data are unique in their ability to unambiguously distinguish between "old" CH4 sources (e.g. marine clathrate, geologic sources, old permafrost) and "modern" CH4 sources (e.g. tropical and boreal wetlands). Our Δ14CH4 data unambiguously rule out marine clathrate and old permafrost as the sources of the abrupt CH4 rise. Preliminary CH4 stable isotopes box modeling combined with interpolar CH4 concentration gradient from existing ice core records suggest that tropical wetlands were the dominant driver for the Oldest Dryas-Bølling CH4 rise.

  1. Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore.

    PubMed

    Balboni, Gianfranco; Onnis, Valentina; Congiu, Cenzo; Zotti, Margherita; Sasaki, Yusuke; Ambo, Akihiro; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Trapella, Claudio; Salvadori, Severo

    2006-09-07

    Substitution of Gly with side-chain-protected or unprotected Lys in lead compounds containing the opioid pharmacophore Dmt-Tic [H-Dmt-Tic-Gly-NH-CH(2)-Ph, mu agonist/delta antagonist; H-Dmt-Tic-Gly-NH-Ph, mu agonist/delta agonist; and H-Dmt-Tic-NH-CH(2)-Bid, delta agonist (Bid = 1H-benzimidazole-2-yl)] yielded a new series of compounds endowed with distinct pharmacological activities. Compounds (1-10) included high delta- (Ki(delta) = 0.068-0.64 nM) and mu-opioid affinities (Ki(mu) = 0.13-5.50 nM), with a bioactivity that ranged from mu-opioid agonism {10, H-Dmt-Tic-NH-CH[(CH2)4-NH2]-Bid (IC50 GPI = 39.7 nM)} to a selective mu-opioid antagonist [3, H-Dmt-Tic-Lys-NH-CH2-Ph (pA2(mu) = 7.96)] and a selective delta-opioid antagonist [5, H-Dmt-Tic-Lys(Ac)-NH-Ph (pA2(delta) = 12.0)]. The presence of a Lys linker provides new lead compounds in the formation of opioid peptidomimetics containing the Dmt-Tic pharmacophore with distinct agonist and/or antagonist properties.

  2. MMP-12-mediated by SARM-TRIF signaling pathway contributes to IFN-γ-independent airway inflammation and AHR post RSV infection in nude mice.

    PubMed

    Long, Xiaoru; Li, Simin; Xie, Jun; Li, Wei; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2015-02-05

    Respiratory syncytial virus (RSV) is one of the most frequently observed pathogens during infancy and childhood. However, the corresponding pathogenesis has not been determined to date. We previously demonstrated that IFN-γ plays an important role in RSV pathogenesis, and SARM-TRIF-signaling pathway could regulate the production of IFN-γ. This study is to investigate whether T cells or innate immune cells are the predominant producers of IFN-γ, and further to explore other culprits in addition to IFN-γ in the condition of RSV infection. Normal BALB/c mice and nude mice deficient in T cells were infected intranasally with RSV. Leukocytes in bronchoalveolar lavage fluid were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. IFN-γ and MMP-12 were detected by ELISA. MMP408, a selective MMP-12 inhibitor, was given intragastrically. Resveratrol, IFN-γ neutralizing antibody and recombinant murine IFN-γ were administered intraperitoneally. SARM and TRIF protein were semi-quantified by Western blot. siRNA was used to knock-down SARM expression. RSV induced significant airway inflammation and AHR in both mice; IFN-γ was significantly increased in BALB/c mice but not in nude mice. MMP-12 was dramatically increased in both mice but earlier in nude mice. When MMP-12 was inhibited by MMP408, RSV-induced respiratory symptoms were alleviated. SARM was significantly suppressed while TRIF was significantly enhanced in both mice strains. Following resveratrol administration in nude mice, 1) SARM inhibition was prevented, 2) TRIF and MMP-12 were correspondingly down-regulated and 3) airway disorders were subsequently alleviated. Moreover, when SARM was efficiently knocked down using siRNA, TRIF and MMP-12 were markedly enhanced, and the anti-RSV effects of resveratrol were remarkably abrogated. MMP-12 was significantly increased in the IFN-γ neutralizing antibody-treated BALB/c mice but reduced in the

  3. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Gillian E., E-mail: gmann017@uottawa.ca; Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3; Mundy, Lukas J., E-mail: lukas.mundy@ec.gc.ca

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, inmore » combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity

  4. A Mechanistical Study on the Formation of Dimethyl Ether (CH3OCH3) and Ethanol (CH3CH2OH) in Methanol-containing Ices and Implications for the Chemistry of Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Bergantini, Alexandre; Góbi, Sándor; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    The underlying formation mechanisms of complex organic molecules (COMs)—in particular, structural isomers—in the interstellar medium (ISM) are largely elusive. Here, we report new experimental findings on the role of methanol (CH3OH) and methane (CH4) ices in the synthesis of two C2H6O isomers upon interaction with ionizing radiation: ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3). The present study reproduces the interstellar abundance ratios of both species with ethanol to dimethyl ether branching ratios of (2.33 ± 0.14):1 suggesting that methanol and methane represents the key precursor to both isomers within interstellar ices. Exploiting isotopic labeling combined with reflectron time-of-flight mass spectrometry (Re-TOF-MS) after isomer selective vacuum ultra-violet (VUV) photoionization of the neutral molecules, we also determine the formation mechanisms of both isomers via radical–radical recombination versus carbene (CH2) insertion with the former pathway being predominant. Formation routes to higher molecular weight reaction products such as ethylene glycol (HOCH2CH2OH), dimethyl peroxide (CH3OOCH3), and methoxymethanol (CH3OCH2OH) are discussed briefly as well.

  5. The Effect of Sympathetic Antagonists on the Antidepressant Action of Alprazolam

    PubMed Central

    Al-Tubuly, RA; Aburawi, SM; Alghzewi, EA; Gorash, ZM; Errwami, S

    2008-01-01

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor antagonists with benzodiazepines, which may impact the clinical use of alprazolam, was also studied. Behavioral despair was examined in six groups of albino mice. Drugs were administered intraperitoneally. The control group received only a single dose of 1% Tween 80. The second group received a single dose of alprazolam, and the third group received an antagonist followed by alprazolam. The fourth group was treated with imipramine, and the fifth group received an antagonist followed by imipramine. The sixth group was treated with a single dose of an antagonist alone (atenolol, a β1-selective adrenoceptor antagonist; propranolol, a non selective β-adrenoceptor antagonist; and prazocin, an α1-adrenoceptor antagonist). Results confirmed the antidepressant action of alprazolam and imipramine. Prazocin treatment alone produced depression, but it significantly potentiated the antidepressant actions of imipramine and alprazolam. Atenolol alone produced an antidepressant effect and potentiated the antidepressant action of alprazolam. Propranolol treatment alone produced depression, and antagonized the effects of alprazolam and imipramine, even producing depression in combined treatments.In conclusion, our results reveal that alprazolam may produce antidepressant effects through the release of noradrenaline, which stimulates β2 receptors to produce an antidepressant action. Imipramine may act by activating β2 receptors by blocking or down-regulating β1 receptors. PMID:21499463

  6. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat.

    PubMed

    Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj

    2014-01-01

    Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  7. Interannual Variability and Trends of CH4, CO and OH Using the Computationally-Efficient CH4-CO-OH (ECCOH) Module

    NASA Technical Reports Server (NTRS)

    Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules

    2015-01-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG). Its 100-year global warming potential (GWP) is 34 times larger than that for carbon dioxide. The 100-year integrated GWPof CH4 is sensitive to changes in hydroxyl radical (OH) levels.Oxidation of CH4 and carbon monoxide (CO) by OH is the main loss process, thus affecting the oxidizing capacity of the atmosphere and contributing to the global ozone background. Limitations of using archived, monthly OH fields for studies of methane's and COs evolution are that feedbacks of the CH4-CO-OH system on methane, CO and OH are not captured. In this study, we employ the computationally Efficient CH4-CO-OH (ECCOH) module (Elshorbany et al., 2015) to investigate the nonlinear feedbacks of the CH4-CO-OH system on the interannual variability and trends of the CH4, CO, OH system.

  8. Opioid antagonists for smoking cessation

    PubMed Central

    David, Sean P; Lancaster, Tim; Stead, Lindsay F; Evins, A. Eden; Prochaska, Judith J

    2014-01-01

    Background The reinforcing properties of nicotine may be mediated through release of various neurotransmitters both centrally and systemically. People who smoke report positive effects such as pleasure, arousal, and relaxation as well as relief of negative affect, tension, and anxiety. Opioid (narcotic) antagonists are of particular interest to investigators as potential agents to attenuate the rewarding effects of cigarette smoking. Objectives To evaluate the efficacy of opioid antagonists in promoting long-term smoking cessation. The drugs include naloxone and the longer-acting opioid antagonist naltrexone. Search methods We searched the Cochrane Tobacco Addiction Group Specialised Register for trials of naloxone, naltrexone and other opioid antagonists and conducted an additional search of MEDLINE using ’Narcotic antagonists’ and smoking terms in April 2013. We also contacted investigators, when possible, for information on unpublished studies. Selection criteria We considered randomised controlled trials comparing opioid antagonists to placebo or an alternative therapeutic control for smoking cessation. We included in the meta-analysis only those trials which reported data on abstinence for a minimum of six months. We also reviewed, for descriptive purposes, results from short-term laboratory-based studies of opioid antagonists designed to evaluate psycho-biological mediating variables associated with nicotine dependence. Data collection and analysis We extracted data in duplicate on the study population, the nature of the drug therapy, the outcome measures, method of randomisation, and completeness of follow-up. The main outcome measure was abstinence from smoking after at least six months follow-up in patients smoking at baseline. Abstinence at end of treatment was a secondary outcome. We extracted cotinine- or carbon monoxide-verified abstinence where available. Where appropriate, we performed meta-analysis, pooling risk ratios using a Mantel

  9. Inverse Modeling of Surface CH4 and δ13C-CH4 Measurements to Understand Recent Trends in Global Methane Emissions

    NASA Astrophysics Data System (ADS)

    Karmakar, S.; Butenhoff, C. L.; Rice, A. L.; Lofdahl, D. B.; Khalil, A. K.

    2016-12-01

    Methane (CH4) is the second most important greenhouse gas with a radiative forcing of 0.97 W/m2 including both direct and indirect effects and a global warming potential of 28 over a 100-year time horizon. Unlike CO2 whose rate of growth in the atmosphere has remained positive and increased in recent decades, the behavior of atmospheric methane is considerably more complex and is much less understood on account of the spatiotemporal variability of its emissions which include biogenic (e.g. wetlands, ruminants, rice agriculture), thermogenic (fossil fuels), and pyrogenic (i.e. biomass burning) sources. After sustained growth during most of the 20th century, the CH4 growth rate declined falling from 15 ppbv/yr during the 1980s to 6 ppbv/yr in the 1990s to near-zero and even negative values in the early 2000s. With some surprise however, the growth rate rebounded in 2007 and has been on average 6 ppbv/yr during the past 10 years. During this same period the 13CH4/12CH4 ratio of atmospheric CH4 also declined suggesting the recent CH4 growth was caused by an increase in 13CH4-depleted biogenic emissions. Here, we provide additional insight into the recent behavior of atmospheric methane by performing a global three-dimensional Bayesian inversion of surface CH4 and 13CH4/12CH4 ratios over the period 1985-2015 using NOAA Global Monitoring Division (GMD) CH4 measurements and the GEOS-Chem chemical-transport model (CTM) at a horizontal grid resolution of 2ox2.5o. The use of the 3-D model allows us to exploit spatial patterns in the global CH4 and 13CH4/12CH4 fields that provide additional constraints on the retrieval of the time-dependent CH4 fluxes. This work follows up on our previous CH4 inversion where we used a 4ox5o horizontal grid for GEOS-Chem to retrieve fluxes from 1985 to 2009. At higher resolution more information is extracted from the observations due to improved model skill and a smaller number of stations aggregated within model grid cells. This increases the

  10. Thermal decomposition and oxidation of CH3OH.

    PubMed

    Lee, Pei-Fang; Matsui, Hiroyuki; Xu, Ding-Wei; Wang, Niann-Shiah

    2013-01-24

    Thermal decomposition of CH(3)OH diluted in Ar has been studied by monitoring H atoms behind reflected shock waves of 100 ppm CH(3)OH + Ar. The total decomposition rate k(1) for CH(3)OH + M → products obtained in this study is expressed as, ln(k(1)/cm(3) molecule(-1) s(-1)) = -(14.81 ± 1.22) - (38.86 ± 1.82) × 10(3)/T, over 1359-1644 K. The present result on k(1) is indicated to be substantially smaller than the extrapolation of the most of the previous experimental data but consistent with the published theoretical results [Faraday Discuss. 2002, 119, 191-205 and J. Phys. Chem. A 2007, 111, 3932-3950]. Oxidation of CH(3)OH has been studied also by monitoring H atoms behind shock waves of (0.35-100) ppm CH(3)OH + (100-400) ppm O(2) + Ar. For the low concentration CH(3)OH (below 10 ppm) + O(2) mixtures, the initial concentration of CH(3)OH is evaluated by comparing evolutions of H atoms in the same concentration of CH(3)OH with addition of 300 ppm H(2) diluted in Ar. The branching fraction for CH(3)OH + Ar → (1)CH(2) + H(2)O + Ar has been quantitatively evaluated from this comparative measurements with using recent experimental result on the yield of H atoms in the reaction of (1,3)CH(2) + O(2) [J. Phys. Chem. A 2012, 116, 9245-9254]; i.e., the branching fraction for the above reaction is evaluated as, φ(1a) = 0.20 ± 0.04 at T = 1880-2050 K, in the 1.3 and 3.5 ppm CH(3)OH + 100 ppm O(2) samples. An extended reaction mechanism for the pyrolysis and oxidation of CH(3)OH is constructed based on the results of the present study combined with the oxidation mechanism of natural gas [GRI-Mech 3.0]; evolution of H atoms can be predicted very well with this new reaction scheme over a wide concentration range for the pyrolysis (0.36-100 ppm CH(3)OH), and oxidation (0.36-100 ppm CH(3)OH + 100/400 ppm O(2)) of methanol.

  11. Opioid Antagonist Impedes Exposure.

    ERIC Educational Resources Information Center

    Merluzzi, Thomas V.; And Others

    1991-01-01

    Thirty spider-phobic adults underwent exposure to 17 phobic-related, graded performance tests. Fifteen subjects were assigned to naltrexone, an opioid antagonist, and 15 were assigned to placebo. Naltrexone had a significant effect on exposure, with naltrexone subjects taking significantly longer to complete first 10 steps of exposure and with…

  12. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  13. Antagonistic interactions between plant competition and insect herbivory.

    PubMed

    Schädler, Martin; Brandl, Roland; Haase, Josephine

    2007-06-01

    Interspecific competition between plants and herbivory by specialized insects can have synergistic effects on the growth and performance of the attacked host plant. We tested the hypothesis that competition between plants may also negatively affect the performance of herbivores as well as their top-down effect on the host plant. In such a case, the combined effects of competition and herbivory may be less than expected from a simple multiplicative response. In other words, competition and herbivory may interact antagonistically. In a greenhouse experiment, Poa annua was grown in the presence or absence of a competitor (either Plantago lanceolata or Trifolium repens), as well as with or without a Poa-specialist aphid herbivore. Both competition and herbivory negatively affected Poa growth. Competition also reduced aphid density on Poa. This effect could in part be explained by changes in the biomass and the nitrogen content of Poa shoots. In treatments with competitors, reduced aphid densities alleviated the negative effect of herbivory on above- and belowground Poa biomass. Hence, we were able to demonstrate an antagonistic interaction between plant-plant interspecific competition and herbivory. However, response indices suggested that antagonistic interactions between competition and herbivory were contingent on the identity of the competitor. We found the antagonistic effect only in treatments with T. repens as the competitor. We conclude that both competitor identity and the herbivore's ability to respond with changes in its density or activity to plant competition affect the magnitude and direction (synergistic vs. antagonistic) of the interaction between competition and herbivory on plant growth.

  14. Early Illustrations of Geste Antagoniste in Cervical and Generalized Dystonia

    PubMed Central

    Broussolle, Emmanuel; Laurencin, Chloé; Bernard, Emilien; Thobois, Stéphane; Danaila, Teodor; Krack, Paul

    2015-01-01

    Background Geste antagoniste, or sensory trick, is a voluntary maneuver that temporarily reduces the severity of dystonic postures or movements. We present a historical review of early reports and illustrations of geste antagoniste. Results In 1894, Brissaud described this phenomenon in Paris in patients with torticollis. He noted that a violent muscular contraction could be reversed by a minor voluntary action. He considered the improvement obtained by what he called “simple mannerisms, childish behaviour or fake pathological movements” was proof of the psychogenic origin of what he named mental torticollis. This concept was supported by photographical illustrations of the patients. The term geste antagoniste was used by Brissaud’s pupils, Meige and Feindel, in their 1902 monograph on movement disorders. Other reports and illustrations of this sign were published in Europe between 1894 and 1906. Although not mentioned explicitly, geste antagoniste was also illustrated in a case report of generalized dystonia in Oppenheim’s 1911 seminal description of dystonia musculorum deformans in Berlin. Discussion Brissaud-Meige’s misinterpretation of the geste antagoniste unfortunately anchored the psychogenic origin of dystonia for decades. In New York, Herz brought dystonia back into the realm of organic neurology in 1944. Thereafter, it was given prominence by other authors, notably Fahn and Marsden in the 1970–1980s. Nowadays, neurologists routinely investigate for geste antagoniste when a dystonic syndrome is suspected, because it provides a further argument in favor of dystonia. The term alleviating maneuver was proposed in 2014 to replace sensory trick or geste antagoniste. This major sign is now part of the motor phenomenology of the 2013 Movement Disorder Society’s classification of dystonia. PMID:26417535

  15. Subsoil methanogenesis as source of stem CH4 emission in upland forest trees: preferential CH4 transport via the root system?

    NASA Astrophysics Data System (ADS)

    Maier, M.; Machacova, K.; Urban, O.; Friederike, L.

    2016-12-01

    Quantifying and understanding green house gas fluxes in natural soil-plant-atmosphere systems are crucial to predicting global climate change. Wetland species or trees at waterlogged sites are known to emit large amounts of CH4. Yet upland forest soils are regarded as CH4 sinks and tree species like upland European beech (Fagus sylvatica, L.) are assumed not to emit CH4. We studied the soil-atmosphere and stem-atmosphere fluxes of CH4, and soil gas profiles at two upland beech forest sites in Central Europe. Soil was a net CH4 sink at both. Unusually there was one beech tree with substantial CH4 emissions that were higher than the CH4 sink of the soil. The soil gas profile at this tree indicated CH4 production at a soil depth >0.3 m, despite the net uptake of CH4 observed at the soil surface adjacent to the tree. Field soil assessment showed strong redoximorphic color patterns in the adjacent soil. We think that there is a transport link between the soil and stem via the root system representing a preferential transport mechanism for CH4 despite the fact that beech roots usually do not bear aerenchyma. The gas transport process , either via dissolved CH4 in the xylem water or in the root gas phase, is not yet clear. The observed CH4 stem emissions represent an important CH4flux in this ecosystem, und thus should be considered in future research. AcknowledgementThis research was financially supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), National Programme for Sustainability I (LO1415) and project DFG (MA 5826/2-1). We would like to thank Marek Jakubik, Katerina Svobodova, Sinikka Paulus, Ellen Halaburt and Sally Haddad for technical support.

  16. Direct formation of (CH sub 3 ) sub 2 HSiCl from silicon and CH sub 3 Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magrini, K.A.; Falconer, J.L.; Koel, B.E.

    1989-07-13

    A Cu-catalyzed reaction procedure was found for the selective formation of dimethylchlorosilane ((CH{sub 3}){sub 2}HSiCl) from the direct reaction of CH{sub 3}Cl with solid Si. The new procedure is a two-step process. A Cu/Si sample is prepared by evaporating Cu onto clean polycrystalline Si under ultrahigh vacuum, and the Cu/Si surface is first activated by exposure to 10% HSiCl{sub 3}/CH{sub 3}Cl at 598 K. After the HSiCl{sub 3}CH{sub 3}Cl mixture is evacuated from the reactor, the activated Cu/Si surface is reacted in fresh CH{sub 3}Cl. For low surface concentrations of Cu, the partially hydrogenated silane, (CH{sub 3}){sub 2}HSiCl, is selectivelymore » produced. Trichlorosilane was also found to activate polycrystalline Si (in the absence of Cu) for production of highly chlorinated methylchlorosilanes at a much higher rate than on the Cu/Si surface but with poor selectively to (CH{sub 3}){sub 2}HSiCl. All reactions are carried out at atmospheric pressure in a reactor that is attached to an ultrahigh-vacuum chamber. This allows surface analysis of Auger electron spectroscopy, which detected SiCl{sub x} on reacted surfaces. These SiCl{sub x} sites, which appear necessary for methylchlorosilane formation, are apparently formed during activation by HSiCl{sub 3}.« less

  17. Orexin OX2 Receptor Antagonists as Sleep Aids.

    PubMed

    Jacobson, Laura H; Chen, Sui; Mir, Sanjida; Hoyer, Daniel

    The discovery of the orexin system represents the single major progress in the sleep field of the last three to four decades. The two orexin peptides and their two receptors play a major role in arousal and sleep/wake cycles. Defects in the orexin system lead to narcolepsy with cataplexy in humans and dogs and can be experimentally reproduced in rodents. At least six orexin receptor antagonists have reached Phase II or Phase III clinical trials in insomnia, five of which are dual orexin receptor antagonists (DORAs) that target both OX 1 and OX 2 receptors (OX 2 Rs). All clinically tested DORAs induce and maintain sleep: suvorexant, recently registered in the USA and Japan for insomnia, represents the first hypnotic principle that acts in a completely different manner from the current standard medications. It is clear, however, that in the clinic, all DORAs promote sleep primarily by increasing rapid eye movement (REM) and are almost devoid of effects on slow-wave (SWS) sleep. At present, there is no consensus on whether the sole promotion of REM sleep has a negative impact in patients suffering from insomnia. However, sleep onset REM (SOREM), which has been documented with DORAs, is clearly an undesirable effect, especially for narcoleptic patients and also in fragile populations (e.g. elderly patients) where REM-associated loss of muscle tone may promote an elevated risk of falls. Debate thus remains as to the ideal orexin agent to achieve a balanced increase in REM and non-rapid eye movement (NREM) sleep. Here, we review the evidence that an OX 2 R antagonist should be at least equivalent, or perhaps superior, to a DORA for the treatment of insomnia. An OX 2 R antagonist may produce more balanced sleep than a DORA. Rodent sleep experiments show that the OX 2 R is the primary target of orexin receptor antagonists in sleep modulation. Furthermore, an OX 2 R antagonist should, in theory, have a lower narcoleptic/cataplexic potential. In the clinic, the situation

  18. Photodissociation of the CH3O and CH3S radical molecules: An ab initio electronic structure study

    PubMed Central

    Bouallagui, A.; Zanchet, A.; Yazidi, O.; Jaïdane, N.; Bañares, L.; Senent, M.L.; García-Vela, A.

    2018-01-01

    The electronic states and the spin-orbit couplings between them involved in the photodissociation process of the radical molecules CH3X, CH3X → CH3 + X(X = O, S), taking place after the Ā(2A1) ← X̄(2E) transition, have been investigated using highly correlated ab initio techniques. A two-dimensional representation of both the potential-energy surfaces (PESs) and the couplings is generated. This description includes the C-X dissociative mode and the CH3 umbrella mode. Spin-orbit effects are found to play a relevant role on the shape of the excited state potential-energy surfaces, particularly in the CH3S case where the spin-orbit couplings are more than twice more intense than in CH3O. The potential surfaces and couplings reported here for the present set of electronic states allow for the first complete description of the above photodissociation process. The different photodissociation mechanisms are analyzed and discussed in the light of the results obtained. PMID:29143005

  19. A DFT-Elucidated Comparison of the Solution-Phase and SAM Electrochemical Properties of Short-Chain Mercaptoalkylferrocenes: Synthetic and Spectroscopic Aspects, and the Structure of Fc-CH2CH2-S-S-CH2CH2-Fc.

    PubMed

    Lewtak, Jan P; Landman, Marilé; Fernández, Israel; Swarts, Jannie C

    2016-03-07

    Facile synthetic procedures to synthesize a series of difficult-to-obtain mercaptoalkylferrocenes, namely, Fc(CH2)nSH, where n = 1 (1), 2 (2), 3 (3), or 4 (4) and Fc = Fe(η(5)-C5H5)(η(5)-C5H4), are reported. Dimerization of 1-4 to the corresponding disulfides 19-22 was observed in air. Dimer 20 (Z = 2) crystallized in the triclinic space group P1̅. Dimers 20-22 could be reduced back to the original Fc(CH2)nSH derivatives with LiAlH4 in refluxing tetrahydrofuran. Density functional theory (DFT) calculations showed that the highest occupied molecular orbital of 1-4 lies exclusively on the ferrocenyl group implying that the electrochemical oxidation observed at ca. -15 < Epa < 76 mV versus FcH/FcH(+) involves exclusively an Fe(II) to Fe(III) process. Further DFT calculations showed this one-electron oxidation is followed by proton loss on the thiol group to generate a radical, Fc(CH2)nS(•), with spin density mainly located on the sulfur. Rapid exothermic dimerization leads to the observed dimers, Fc(CH2)n-S-S-(CH 2)nFc. Reduction of the ferrocenium groups on the dimer occurs at potentials that still showed the ferrocenyl group ΔE = Epa,monomer - Epc,dimer ≤ 78 mV, indicating that the redox properties of the ferrocenyl group on the mercaptans are very similar to those of the dimer. (1)H NMR measurements showed that, like ferrocenyl oxidation, the resonance position of the sulfhydryl proton, SH, and others, are dependent on -(CH2)n- chain length. Self-assembled monolayers (SAMs) on gold were generated to investigate the electrochemical behavior of 1-4 in the absence of diffusion. Under these conditions, ΔE approached 0 mV for the longer chain derivatives at slow scan rates. The surface-bound ferrocenyl group of the metal-thioether, Fc(CH2)n -S-Au, is oxidized at approximately equal potentials as the equivalent CH2Cl2-dissolved ferrocenyl species 1-4. Surface coverage by the SAMs is dependent on alkyl chain length with the largest coverage obtained for 4, while

  20. Inhibition of growth of PC-82 human prostate cancer line xenografts in nude mice by bombesin antagonist RC-3095 or combination of agonist [D-Trp6]-luteinizing hormone-releasing hormone and somatostatin analog RC-160.

    PubMed

    Milovanovic, S R; Radulovic, S; Groot, K; Schally, A V

    1992-01-01

    The effects of treatment with a bombesin receptor antagonist [D-Tpi6, Leu13 psi (CH2NH) Leu14]BN(6-14)(RC-3095) and the combination of an agonist of luteinizing hormone-releasing hormone [D-Trp6]-LH-RH and somatostatin analog D-Phe-Cys-Tyr-D-Trp-Lys-Val- Cys-Trp-NH2 (RC-160) were studied in nude mice bearing xenografts of the hormone-dependent human prostate tumor PC-82. During the 5 weeks of treatment, tumor growth was decreased in all treated groups compared with controls. Bombesin antagonist RC-3095 and the combination of [D-Trp6]-LH-RH and RC-160 caused a greater inhibition of tumor growth than [D-Trp6]-LH-RH or RC-160 alone as based on measurement of tumor volume and percentage change in tumor volume. The largest decrease in tumor weight was also seen in the groups treated with the bombesin antagonist and with the combination of RC-160 and [D-Trp6]-LH-RH. Serum prostatic-specific antigen levels were greatly decreased, and insulin-like growth factor I (IGF-I) as well as growth hormone levels were reduced in all treated groups. Specific binding sites for [D-Trp6]-LH-RH, epidermal growth factor (EGF), IGF-I, and somatostatin (SS-14) were found in the tumor membranes. Receptors for EGF were significantly down-regulated by treatment with the bombesin antagonist or RC-160. Combination of LH-RH agonists with somatostatin analog RC-160 might be considered for improvement of hormonal therapy for prostate cancer. The finding that bombesin antagonist RC-3095 inhibits the growth of PC-82 prostate cancer suggests the merit of further studies to evaluate the possible usefulness of antagonists of bombesin in the management of prostatic carcinoma.

  1. Infrared spectroscopy of solid normal hydrogen doped with CH3F and O2 at 4.2 K: CH3F:O2 complex and CH3F migration

    NASA Astrophysics Data System (ADS)

    Abouaf-Marguin, L.; Vasserot, A.-M.

    2011-04-01

    Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.

  2. InChIKey collision resistance: an experimental testing

    PubMed Central

    2012-01-01

    InChIKey is a 27-character compacted (hashed) version of InChI which is intended for Internet and database searching/indexing and is based on an SHA-256 hash of the InChI character string. The first block of InChIKey encodes molecular skeleton while the second block represents various kinds of isomerism (stereo, tautomeric, etc.). InChIKey is designed to be a nearly unique substitute for the parent InChI. However, a single InChIKey may occasionally map to two or more InChI strings (collision). The appearance of collision itself does not compromise the signature as collision-free hashing is impossible; the only viable approach is to set and keep a reasonable level of collision resistance which is sufficient for typical applications. We tested, in computational experiments, how well the real-life InChIKey collision resistance corresponds to the theoretical estimates expected by design. For this purpose, we analyzed the statistical characteristics of InChIKey for datasets of variable size in comparison to the theoretical statistical frequencies. For the relatively short second block, an exhaustive direct testing was performed. We computed and compared to theory the numbers of collisions for the stereoisomers of Spongistatin I (using the whole set of 67,108,864 isomers and its subsets). For the longer first block, we generated, using custom-made software, InChIKeys for more than 3 × 1010 chemical structures. The statistical behavior of this block was tested by comparison of experimental and theoretical frequencies for the various four-letter sequences which may appear in the first block body. From the results of our computational experiments we conclude that the observed characteristics of InChIKey collision resistance are in good agreement with theoretical expectations. PMID:23256896

  3. InChIKey collision resistance: an experimental testing.

    PubMed

    Pletnev, Igor; Erin, Andrey; McNaught, Alan; Blinov, Kirill; Tchekhovskoi, Dmitrii; Heller, Steve

    2012-12-20

    InChIKey is a 27-character compacted (hashed) version of InChI which is intended for Internet and database searching/indexing and is based on an SHA-256 hash of the InChI character string. The first block of InChIKey encodes molecular skeleton while the second block represents various kinds of isomerism (stereo, tautomeric, etc.). InChIKey is designed to be a nearly unique substitute for the parent InChI. However, a single InChIKey may occasionally map to two or more InChI strings (collision). The appearance of collision itself does not compromise the signature as collision-free hashing is impossible; the only viable approach is to set and keep a reasonable level of collision resistance which is sufficient for typical applications.We tested, in computational experiments, how well the real-life InChIKey collision resistance corresponds to the theoretical estimates expected by design. For this purpose, we analyzed the statistical characteristics of InChIKey for datasets of variable size in comparison to the theoretical statistical frequencies. For the relatively short second block, an exhaustive direct testing was performed. We computed and compared to theory the numbers of collisions for the stereoisomers of Spongistatin I (using the whole set of 67,108,864 isomers and its subsets). For the longer first block, we generated, using custom-made software, InChIKeys for more than 3 × 1010 chemical structures. The statistical behavior of this block was tested by comparison of experimental and theoretical frequencies for the various four-letter sequences which may appear in the first block body.From the results of our computational experiments we conclude that the observed characteristics of InChIKey collision resistance are in good agreement with theoretical expectations.

  4. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  5. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-12-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  6. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-01-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  7. Global Inverse Modeling of CH4 and δ13C-CH4 Measurements to Understand Recent Trends in Methane Emissions

    NASA Astrophysics Data System (ADS)

    Karmakar, S.; Butenhoff, C. L.; Rice, A. L.; Khalil, A. K.

    2017-12-01

    Methane (CH4) is the second most important greenhouse gas with a radiative forcing of 0.97 W/m2 including both direct and indirect effects and a global warming potential of 28 over a 100-year time horizon. After a decades-long period of decline beginning in the 1980s, the methane growth rate rebounded in 2007 for reasons that are of current debate. During this same growth period atmospheric methane became less enriched in the 13CH4 isotope suggesting the recent CH4 growth was caused by an increase in 13CH4-depleted biogenic emissions. Recent papers have attributed this growth to increasing emissions from wetlands, rice agriculture, and ruminants. In this work we provide additional insight into the recent behavior of atmospheric methane and global wetland emissions by performing a three-dimensional Bayesian inversion of surface CH4 and 13CH4/12CH4 ratios using NOAA Global Monitoring Division (GMD) "event-level" CH4 measurements and the GEOS-Chem chemical-transport model (CTM) at a horizontal grid resolution of 2ox2.5o. The spatial pattern of wetland emissions was prescribed using soil moisture and temperature from GEOS-5 meteorology fields and soil carbon pools from the Lund-Potsdam-Jena global vegetation model. In order to reduce the aggregation error caused by a potentially flawed distribution and to account for isotopic measurements that indicate northern high latitude wetlands are isotopically depleted in 13CH4 relative to tropical wetlands we separated our pattern into three latitudinal bands (90-30°N, 30°N-0, 0-90°S). Our preliminary results support previous claims that the recent increase in atmospheric methane is driven by increases in biogenic CH4 emissions. We find that while wetland emissions from northern high latitudes (90-30°N) remained relatively constant during this time, southern hemisphere wetland emissions rebounded from a decade-long decline and began to rise again in 2007 and have remained elevated to the present. Emissions from rice

  8. ChIP-nexus: a novel ChIP-exo protocol for improved detection of in vivo transcription factor binding footprints

    PubMed Central

    He, Qiye; Johnston, Jeff; Zeitlinger, Julia

    2014-01-01

    Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP experiments with nucleotide resolution through exonuclease, unique barcode and single ligation (ChIP-nexus), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins—human TBP and Drosophila NFkB, Twist and Max— demonstrates that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs and allows the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA sequence features such as DNA shape. ChIP-nexus will be broadly applicable to studying in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms. PMID:25751057

  9. Additional Value of CH4 Measurement in a Combined 13C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis

    PubMed Central

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-01-01

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H2) excretion after an oral dose of lactose. We use a combined 13C/H2 lactose breath test that measures breath 13CO2 as a measure of lactose digestion in addition to H2 and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 13C/H2 lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH4 in addition to H2 and 13CO2. Based on the 13C/H2 breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH4 further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H2-excretion were found to excrete CH4. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH4-concentrations has an added value to the 13C/H2 breath test to identify methanogenic subjects with lactose malabsorption or SIBO. PMID:26371034

  10. Electron-spin-resonance studies of 12CH3F + , 13CH3F + , and 12CH2DF + in neon matrices at 4 K: Comparison with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Knight, Lon B., Jr.; Gregory, Brian W.; Hill, Devon W.; Arrington, C. A.; Momose, Takamasa; Shida, Tadamasa

    1991-01-01

    Various isotopic forms of the methyl fluoride cation 12CH3F+, 13CH3F+, and 12CH2DF+ have been generated by photoionization at 16.8 eV and separately by electron bombardment at 50 eV. The first electron-spin-resonance (ESR) results are reported for this radical cation which was isolated in neon matrices at 4 K. The measured A tensors or nuclear hyperfine parameters were compared with the results obtained from various computational approaches. Surprising observations were the large amounts of spin density on the methyl group, especially the hydrogen atoms, and the extreme differences in the deuterated spectra compared to the nondeuterated case. The presence of a single D atom apparently acts to prevent dynamic Jahn-Teller averaging which makes the methyl hydrogens equivalent on the ESR time scale. Such a dramatic Jahn-Teller effect has been previously observed for the similar methane cations CH+4 and CH2D+2. The magnetic parameters for CH2DF+ in neon at 4 K are gX=2.0032(5), gY=2.0106(8), and gZ=2.0120(5); for H: AX = 483(1), AY=476(1), and AZ=483(1) MHz; for D: ‖AX‖=5.0(3), ‖AY‖<3, and ‖AZ‖=7.1(3) MHz; for 19F : AX=965(1), AY=-130(2), and AZ=-166(1) MHz. For CH3F+, the g tensor and 19F A tensor were similar to those above but the H atoms were equivalent with values of AX=317(1), AY=323(2), and AZ=312 MHz.

  11. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Recent Developments in C-H Activation for Materials Science in the Center for Selective C-H Activation.

    PubMed

    Zhang, Junxiang; Kang, Lauren J; Parker, Timothy C; Blakey, Simon B; Luscombe, Christine K; Marder, Seth R

    2018-04-16

    Abstract : Organic electronics is a rapidly growing field driven in large part by the synthesis of ∏-conjugated molecules and polymers. Traditional aryl cross-coupling reactions such as the Stille and Suzuki have been used extensively in the synthesis of ∏-conjugated molecules and polymers, but the synthesis of intermediates necessary for traditional cross-couplings can include multiple steps with toxic and hazardous reagents. Direct arylation through C-H bond activation has the potential to reduce the number of steps and hazards while being more atom-economical. Within the Center for Selective C-H Functionalization (CCHF), we have been developing C-H activation methodology for the synthesis of ∏-conjugated materials of interest, including direct arylation of difficult-to-functionalize electron acceptor intermediates and living polymerization of ∏-conjugated polymers through C-H activation.

  13. Calculations on the orientation of the CH fragment in Co 3(CO) 9(μ 3-CH): Implications for metal surfaces

    NASA Astrophysics Data System (ADS)

    DeKock, Roger L.; Fehlner, Thomas P.

    1982-07-01

    A series of molecular orbital calculations using the Fenske-Hall method have been carried out on Co 3(CO) 9(μ 3-CH), in which the orientation of the CH fragment is varied with respect to the triangular plane of the three Co atoms. The calculations show that the energy differences between the orbitals that are predominantly CH in character are affected very little by the orientation of the CH fragment. These calculated differences are Δ(2 σ-1 σ)≅7 eV and Δ(1 π-1 σ)≅ 10.5 eV. The calculated splitting of the degenerate 1π orbitals for geometries with tilted CH fragments never amounted to more than 0.46 eV. Mixing of CH orbitals into the predominantly Co 3d manifold was extensive in all of the calculations. These calculations provide no support for the interpretation of energy loss and photoemission electron spectroscopy experiments in terms of CH fragments that are tilted with respect to the metal surface, but such an interpretation cannot be eliminated due to the diffuse nature of the spectral bands in the photoemission experiments.

  14. Controversial therapeutics: the β-adrenergic antagonist and cocaine-associated cardiovascular complications dilemma.

    PubMed

    Schurr, James W; Gitman, Brenda; Belchikov, Yuly

    2014-12-01

    Cocaine abuse is associated with cardiovascular complications that include chest pain and myocardial infarction. Traditional therapy for these conditions includes a β-adrenergic antagonist. However, guidelines released in 2008 recommended against this treatment option because of the prevailing theory that cocaine will potentiate vasospasm secondary to unopposed α-adrenergic effects. Subsequently, further evidence and updated guidelines have become available, debunking this claim. Current literature is limited but suggests that β-adrenergic antagonists are harmful. Although case reports support a detrimental effect of β-adrenergic antagonists, the anecdotal data are inconsistent, and the conclusions from case studies are overruled by larger studies. The pharmacology, pathophysiology, and literature on the use of β-adrenergic antagonists in association with cocaine are reviewed. Future studies that focus on outcomes and different pharmacologic profiles of β-adrenergic antagonists are needed. © 2014 Pharmacotherapy Publications, Inc.

  15. ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data.

    PubMed

    Wu, Song; Wang, Jianmin; Zhao, Wei; Pounds, Stanley; Cheng, Cheng

    2010-06-03

    ChIP-Seq is a powerful tool for identifying the interaction between genomic regulators and their bound DNAs, especially for locating transcription factor binding sites. However, high cost and high rate of false discovery of transcription factor binding sites identified from ChIP-Seq data significantly limit its application. Here we report a new algorithm, ChIP-PaM, for identifying transcription factor target regions in ChIP-Seq datasets. This algorithm makes full use of a protein-DNA binding pattern by capitalizing on three lines of evidence: 1) the tag count modelling at the peak position, 2) pattern matching of a specific tag count distribution, and 3) motif searching along the genome. A novel data-based two-step eFDR procedure is proposed to integrate the three lines of evidence to determine significantly enriched regions. Our algorithm requires no technical controls and efficiently discriminates falsely enriched regions from regions enriched by true transcription factor (TF) binding on the basis of ChIP-Seq data only. An analysis of real genomic data is presented to demonstrate our method. In a comparison with other existing methods, we found that our algorithm provides more accurate binding site discovery while maintaining comparable statistical power.

  16. The ChArMEx database

    NASA Astrophysics Data System (ADS)

    Ferré, Hélène; Belmahfoud, Nizar; Boichard, Jean-Luc; Brissebrat, Guillaume; Cloché, Sophie; Descloitres, Jacques; Fleury, Laurence; Focsa, Loredana; Henriot, Nicolas; Mière, Arnaud; Ramage, Karim; Vermeulen, Anne; Boulanger, Damien

    2015-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project includes long term monitoring of environmental parameters , intensive field campaigns, use of satellite data and modelling studies. Therefore ChARMEx scientists produce and need to access a wide diversity of data. In this context, the objective of the database task is to organize data management, distribution system and services, such as facilitating the exchange of information and stimulating the collaboration between researchers within the ChArMEx community, and beyond. The database relies on a strong collaboration between ICARE, IPSL and OMP data centers and has been set up in the framework of the Mediterranean Integrated Studies at Regional And Locals Scales (MISTRALS) program data portal. ChArMEx data, either produced or used by the project, are documented and accessible through the database website: http://mistrals.sedoo.fr/ChArMEx. The website offers the usual but user-friendly functionalities: data catalog, user registration procedure, search tool to select and access data... The metadata (data description) are standardized, and comply with international standards (ISO 19115-19139; INSPIRE European Directive; Global Change Master Directory Thesaurus). A Digital Object Identifier (DOI) assignement procedure allows to automatically register the datasets, in order to make them easier to access, cite, reuse and verify. At present, the ChArMEx database contains about 120 datasets, including more than 80 in situ datasets (2012, 2013 and 2014 summer campaigns, background monitoring station of Ersa...), 25 model output sets (dust model intercomparison, MEDCORDEX scenarios...), a high resolution emission inventory over the Mediterranean... Many in situ datasets

  17. Wear Behavior of Ceramic CAD/CAM Crowns and Natural Antagonists

    PubMed Central

    Naumova, Ella A.; Schneider, Stephan; Arnold, Wolfgang H.; Piwowarczyk, Andree

    2017-01-01

    Objective: Evaluation of wear behavior of computer-aided design/computer-aided manufacturing (CAD/CAM) crowns from various restorative materials and natural antagonists. Method: Full CAD/CAM crowns fabricated with nanoceramic resin (Lava Ultimate (LU)), a glass ceramic in a resin interpenetrating matrix (Vita Enamic (VE)) and a lithium silicate reinforced ceramic enriched with zirconia (Vita Suprinity (VS)) were cemented on human molars. The crown and antagonists were subjected to simulated chewing. 3D data sets, before and after the chewing simulation, were generated and matched. Occlusal surface roughness, vertical and volume loss of the crowns and antagonists were analyzed. Results: Crown roughness was significantly different between the LU and VE groups after chewing simulation. Crown vertical loss differed in all groups. The highest crown volume loss was found in the LU group, and the lowest in the VE group. Comparisons between the LU and VE groups and the LU and VS groups were significantly different. The highest antagonist volume loss was reached in the VE group, the lowest was in the LU group. Conclusion: Roughness increased after chewing simulation. LU crowns are the most natural antagonist-friendly; these were the most susceptible to vertical and volume loss. Of the tested materials, the VE crowns are the most stable regarding occlusion. PMID:28772602

  18. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani.

    PubMed

    Anees, Muhammad; Tronsmo, Arne; Edel-Hermann, Véronique; Hjeljord, Linda Gordon; Héraud, Cécile; Steinberg, Christian

    2010-09-01

    The aim of the present study was to characterize sixteen isolates of Trichoderma originating from a field of sugar beet where disease patches caused by Rhizoctonia solani were observed. Use of both molecular and morphological characteristics gave consistent identification of the isolates. Production of water-soluble and volatile inhibitors, mycoparasitism and induced systemic resistance in plant host were investigated using in vitro and in vivo tests in both sterilized and natural soils. This functional approach revealed the intra-specific diversity as well as biocontrol potential of the different isolates. Different antagonistic mechanisms were evident for different strains. The most antagonistic strain, T30 was identified as Trichoderma gamsii. This is the first report of an efficient antagonistic strain of T. gamsii being able to reduce the disease in different conditions. The ability to produce water-soluble inhibitors or coil around the hyphae of the pathogen in vitro was not related to the disease reduction in vivo. Additionally, the strains collected from the high disease areas in the field were better antagonists. The antagonistic activity was not characteristic of a species but that of a population. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Nonpeptide vasopressin antagonists: a new group of hormone blockers entering the scene.

    PubMed

    Mayinger, B; Hensen, J

    1999-01-01

    After the story of success of hormone blockers for catecholamines, aldosterone and angiotensin II and their successful implementation into clinical practice another endocrine cardiovascular system has come into focus. It has long been known, that the hormone vasopressin plays an important role in peripheral vasoconstriction, hypertension and in several disease conditions with dilutional hyponatremia in edematous disorders, like congestive heart failure, liver cirrhosis, SIADH and nephrotic syndrome. A series of orally active nonpeptide antagonists against the vasopressin receptor subtypes has recently been synthesized and is now under intensive examination. Nonpeptide V1a-receptor specific antagonists, OPC 21268 and SR 49059, nonpeptide V2-receptor specific antagonists, SR 121463 A and VPA 985, and combined V1a-/V2-receptor antagonists, OPC 31260 and YM 087, have become available for clinical research. AVP-V2-receptor antagonists lead to a dose-dependent diabetes insipidus in animals and man. The term aquaretic drugs (aquaretics) has been coined for these drugs to highlight their different mechanism compared to the saluretic diuretic furosemide. V1a-receptor antagonists might offer new therapeutic advantages in the treatment of vasoconstriction and hypertension. Combined V1a-/V2-receptor antagonists might be beneficial in the treatment of congestive heart failure. Early results are promising and now need to be confirmed in large clinical studies.

  20. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu; Xie, Xiaoyan

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cellmore » lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.« less

  1. The CH/π hydrogen bond: Implication in chemistry

    NASA Astrophysics Data System (ADS)

    Nishio, M.

    2012-06-01

    The CH/π hydrogen bond is the weakest extreme of hydrogen bonds that occurs between a soft acid CH and a soft base π-system. Implication in chemistry of the CH/π hydrogen bond includes issues of conformation, crystal packing, and specificity in host/guest complexes. The result obtained by analyzing the Cambridge Structural Database is reviewed. The peculiar axial preference of isopropyl group in α-phellandrene and folded conformation of levopimaric acid have been explained in terms of the CH/π hydrogen bond, by high-level ab initio MO calculations. Implication of the CH/π hydrogen bond in structural biology is also discussed, briefly.

  2. The products of the thermal decomposition of CH{sub 3}CHO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliou, AnGayle; National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401; Piech, Krzysztof M.

    2011-07-07

    We have used a heated 2 cm x 1 mm SiC microtubular ({mu}tubular) reactor to decompose acetaldehyde: CH{sub 3}CHO +{Delta}{yields} products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 {mu}s in the {mu}tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH{sub 3}CHO, we have studied three isotopologues, CH{sub 3}CDO, CD{sub 3}CHO, and CD{sub 3}CDO. We have identified the thermal decomposition productsmore » CH{sub 3} (PIMS), CO (IR, PIMS), H (PIMS), H{sub 2} (PIMS), CH{sub 2}CO (IR, PIMS), CH{sub 2}=CHOH (IR, PIMS), H{sub 2}O (IR, PIMS), and HC{identical_to}CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH{sub 3}CHO; namely, radical decomposition: CH{sub 3}CHO +{Delta}{yields} CH{sub 3}+[HCO]{yields} CH{sub 3}+ H + CO; elimination: CH{sub 3}CHO +{Delta}{yields} H{sub 2}+ CH{sub 2}=C=O; isomerization/elimination: CH{sub 3}CHO +{Delta}{yields}[CH{sub 2}=CH-OH]{yields} HC{identical_to}CH + H{sub 2}O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH{sub 2}=C:, as an intermediate in the decomposition of vinyl alcohol: CH{sub 2}=CH-OH +{Delta}{yields}[CH{sub 2}=C:]+ H{sub 2}O {yields} HC{identical_to}CH + H{sub 2}O.« less

  3. Electrochemical Cobalt-Catalyzed C-H Activation.

    PubMed

    Sauermann, Nicolas; Meyer, Tjark H; Ackermann, Lutz

    2018-06-19

    Carbon-heteroatom bonds represent omnipresent structural motifs of the vast majority of functionalized materials and bioactive compounds. C-H activation has emerged as arguably the most efficient strategy to construct C-Het bonds. Despite of major advances, these C-H transformations were largely dominated by precious transition metal catalysts, in combination with stoichiometric, toxic metal oxidants. Herein, we discuss the recent evolution of cobalt-catalyzed C-H activations that enable C-Het formations with electricity as the sole sustainable oxidant until May 2018. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ice core δD(CH4) record precludes marine hydrate CH4 emissions at the onset of Dansgaard-Oeschger events

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Möller, L.; Spahni, R.; Blunier, T.; Fischer, H.

    2010-12-01

    Air enclosures in polar ice cores represent the only direct paleoatmospheric archive (besides firn air) and show that atmospheric CH4 concentrations changed in concert with northern hemisphere temperature during both glacial/interglacial transitions as well as rapid climate changes (Dansgaard-Oeschger events). For stadials and interstadials during Marine Isotope Stage 3 concentration jumps of 100 - 200 ppbv within a few decades are observed. A concentration gradient with higher values in the northern versus the southern hemisphere during warm stages was reconstructed from ice core methane data from Greenland and Antarctica. This gradient indicates additional methane emissions during warm periods located in the northern hemisphere. However, the underlying processes for these changes are still not well understood. With tropical and boreal wetlands, biomass burning, thermokarst lakes, ruminants, termites, UV-induced emissions from organic matter and marine gas hydrates all contributing to the natural atmospheric CH4 level, an unambiguous source attribution remains difficult. Also changes in the methane sinks can modify the tropospheric CH4 budget, as trace gases like volatile organic compounds are competing for the major reactant - the OH radical. Additionally, the changing global atmospheric methane concentration itself feeds back on its lifetime. Together with the CH4 interhemispheric gradient, stable hydrogen and carbon isotopic studies on methane (δD(CH4) and δ13CH4) in ice cores allow to constrain individual CH4 source/sink changes. Here we present clear evidence from the North Greenland Ice Core Project ice core based on the hydrogen isotopic composition of methane δD(CH4) that clathrates did not cause atmospheric methane concentration to rise at the onset of Dansgaard-Oeschger (DO) events 7 and 8 (34 - 41 kilo years before present), however, we can not exclude that they played a minor role during and at the end of an interstadial. Box modeling supports

  5. Human muscle fascicle behavior in agonist and antagonist isometric contractions.

    PubMed

    Simoneau, Emilie M; Longo, Stefano; Seynnes, Olivier R; Narici, Marco V

    2012-01-01

    The aim of this study was to compare, at a given level of electromyographic (EMG) activity, the behavior of dorsiflexor and plantarflexor muscles as assessed via their architecture (pennation angle and fiber length) during agonist or antagonist isometric contractions. Real-time ultrasonography and EMG activity of gastrocnemius medialis (GM) and tibialis anterior (TA) muscles were obtained while young males performed ramp isometric contractions in dorsi- and plantarflexion. For both muscles, at a similar level of EMG activity, fiber length was longer, and pennation angle was smaller, during antagonist than during agonist contractions. These results indicate that, at similar levels of EMG activity, GM and TA muscles elicit a higher mechanical output while acting as an antagonist. These findings have important implications for muscle function testing. They show that estimation of antagonistic force using the common method based on the EMG/net torque relationship yields underestimated values. Copyright © 2011 Wiley Periodicals, Inc.

  6. TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception

    PubMed Central

    Brandt, Michael R.; Beyer, Chad E.; Stahl, Stephen M.

    2012-01-01

    In the last decade, considerable evidence as accumulated to support the development of Transient Receptor Potential Vanilloid 1 (TRPV1) antagonists for the treatment of various chronic pain conditions. Whereas there is a widely accepted rationale for the development of TRPV1 antagonists for the treatment of various inflammatory pain conditions, their development for indications of chronic pain, where conditions of tactical, mechanical and spontaneous pain predominate, is less clear. Preclinical localization and expression studies provide a firm foundation for the use of molecules targeting TRPV1 for conditions of bone pain, osteoarthritis and neuropathic pain. Selective TRPV1 antagonists weakly attenuate tactile and mechanical hypersensivity and are partially effective for behavioral and electrophysiological endpoints that incorporate aspects of spontaneous pain. While initial studies with TRPV1 antagonist in normal human subjects indicate a loss of warm thermal perception, clinical studies assessing allelic variants suggests that TRPV1 may mediate other sensory modalities under certain conditions. The focus of this review is to summarize the current perspectives of TRPV1 for the treatment of conditions beyond those with a primary thermal sensitivity. PMID:24288084

  7. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    PubMed

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  8. Nonsteroidal antagonists of the mineralocorticoid receptor.

    PubMed

    Kolkhof, Peter; Nowack, Christina; Eitner, Frank

    2015-09-01

    The broad clinical use of steroidal mineralocorticoid receptor antagonists (MRAs) is limited by the potential risk of inducing hyperkalemia when given on top of renin-angiotensin system blockade. Drug discovery campaigns have been launched aiming for the identification of nonsteroidal MRAs with an improved safety profile. This review analyses the evidence for the potential of improved safety profiles of nonsteroidal MRAs and the current landscape of clinical trials with nonsteroidal MRAs. At least three novel nonsteroidal MRAs have reportedly demonstrated an improved therapeutic index (i.e. less risk for hyperkalemia) in comparison to steroidal antagonists in preclinical models. Five pharmaceutical companies have nonsteroidal MRAs in clinical development with a clear focus on the treatment of chronic kidney diseases. No clinical data have been published so far for MT-3995 (Mitsubishi), SC-3150 (Daiichi-Sankyo), LY2623091 (Eli Lilly) and PF-03882845 (Pfizer). In contrast, data from two clinical phase II trials are available for finerenone (Bayer) which demonstrated safety and efficacy in patients with heart failure and additional chronic kidney diseases, and significantly reduced albuminuria in patients with diabetic nephropathy. Neither hyperkalemia nor reductions in kidney function were limiting factors to its use. Novel, nonsteroidal MRAs are currently tested in clinical trials. Based on preclinical and first clinical data, these nonsteroidal MRAs might overcome the limitations of today's steroidal antagonists.

  9. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  10. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  11. Neutralization of Staphylococcal Enterotoxin B by an Aptamer Antagonist

    PubMed Central

    Wang, Kaiyu; Gan, Longjie; Jiang, Li; Zhang, Xianhui; Yang, Xiangyue; Chen, Min

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a major virulence factor for staphylococcal toxic shock syndrome (TSS). SEB activates a large subset of the T lymphocytic population, releasing proinflammatory cytokines. Blocking SEB-initiated toxicity may be an effective strategy for treating TSS. Using a process known as systematic evolution of ligands by exponential enrichment (SELEX), we identified an aptamer that can antagonize SEB with nanomolar binding affinity (Kd = 64 nM). The aptamer antagonist effectively inhibits SEB-mediated proliferation and cytokine secretion in human peripheral blood mononuclear cells. Moreover, a PEGylated aptamer antagonist significantly reduced mortality in a “double-hit” mouse model of SEB-induced TSS, established via sensitization with d-galactosamine followed by SEB challenge. Therefore, our novel aptamer antagonist may offer potential therapeutic efficacy against SEB-mediated TSS. PMID:25624325

  12. Intravenous Narcotic Antagonists in Ambulatory Oral Surgery

    PubMed Central

    Greenfield, William; Granada, Margarito G.

    1975-01-01

    Results of a study indicate that significant respiratory depression can be produced by the intravenous administration of narcotics in the anesthetic management of oral surgery patients. Naloxone hydrochloride reversed this reaction in all instances. Naloxone is a unique narcotic antagonist in that it does not possess agonistic properties of its own, it is effective in reversing respiratory depression resulting from all commonly used narcotics and narcotic antagonists, it causes no undesirable side effects, and it acts as a placebo when administered to a patient who has not had a narcotic. The use of naloxone should be considered when a potent narcotic is administered to an ambulatory patient. PMID:19598479

  13. Tropospheric photooxidation of CF3CH2CHO and CF3(CH2)2CHO initiated by Cl atoms and OH radicals

    NASA Astrophysics Data System (ADS)

    Antiñolo, M.; Jiménez, E.; Notario, A.; Martínez, E.; Albaladejo, J.

    2009-11-01

    The absolute rate coefficients for the tropospheric reactions of chlorine (Cl) atoms and hydroxyl (OH) radicals with CF3CH2CHO and CF3(CH2)2CHO were measured as a function of temperature (263-371 K) and pressure (50-215 Torr of He) by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work as a detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10-11 cm3 molecule-1 s-1): kCl(CF3CH2CHO) = (1.55±0.53); kCl(CF3(CH2)2CHO) = (3.39±1.38); kOH(CF3CH2CHO) = (0.259±0.050); kOH(CF3(CH2)2CHO) = (1.28±0.24). A slightly negative temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH2)2CHO, and kOH(CF3CH2CHO). In contrast, kOH(CF3(CH2)2CHO) did not exhibit a temperature dependence in the studied ranged. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO) =(4.4±1.0) × 10-11 exp{-(316±68)/T} cm3 molecule-1 s-1, kCl(CF3(CH2)2CHO) = (2.9±0.7) × 10-10 exp{-625±80)/T} cm3 molecule-1 s-1, kOH(CF3CH2CHO) = (7.8±2.2) × 10-12 exp{-(314±90)/T} cm3 molecule-1 s-1. The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2)xCHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.

  14. Tropospheric photooxidation of CF3CH2CHO and CF3(CH2)2CHO initiated by Cl atoms and OH radicals

    NASA Astrophysics Data System (ADS)

    Antiñolo, M.; Jiménez, E.; Notario, A.; Martínez, E.; Albaladejo, J.

    2010-02-01

    The absolute rate coefficients for the tropospheric reactions of chlorine (Cl) atoms and hydroxyl (OH) radicals with CF3CH2CHO and CF3(CH2)2CHO were measured as a function of temperature (263-371 K) and pressure (50-215 Torr of He) by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work for the detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10-11 cm3 molecule-1 s-1): kCl(CF3CH2CHO) = (1.55±0.53); kCl(CF3(CH2)2CHO) = (3.39±1.38); kCl(CF3CH2CHO) = (0.259±0.050); kCl(CF3(CH2)2CHO) = (1.28±0.24). A slightly positive temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH2)2CHO, and kOH(CF3CH2CHO). In contrast, kOH(CF3(CH2)2CHO) did not exhibit a temperature dependence over the range investigated. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO) = (4.4±1.0)×10-11 exp{-(316±68)/T} cm3 molecule-1 s-1 kCl(CF3(CH2)2CHO) = (2.9±0.7)×10-10 exp{-(625±80)/T} cm3 molecule-1 s-1 kOH(CF3CH2CHO) = (7.8±2.2)×10-12 exp{-(314±90)/T} cm3 molecule-1 s-1 The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2)x CHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.

  15. Shipboard measurements and modeling of the distribution of CH4 and 13CH4 in the western Pacific

    NASA Astrophysics Data System (ADS)

    Bromley, T.; Allan, W.; Martin, R.; Mikaloff Fletcher, S. E.; Lowe, D. C.; Struthers, H.; Moss, R.

    2012-02-01

    We present observations of methane (CH4) mixing ratio and 13C/12C isotopic ratios in CH4 (δ13C) data from a collaborative shipboard project using bulk carrier ships sailing between Nelson, New Zealand, and Osaka, Japan, in the western Pacific Ocean. Measurements of the CH4 mixing ratio and δ13C in CH4were obtained from large clean-air samples collected in each 2.5° to 5° of latitude between 30°S and 30°N on eight voyages from 2004 to 2007. The data show large variations in CH4 mixing ratio in the tropical western Pacific, and data analysis suggests that these large variations are related to the positions and strengths of the South Pacific Convergence Zone and the Intertropical Convergence Zone, with variability in the sources playing a much smaller role. These measurements are compared with results from a modified version of the Unified Model (UMeth) general circulation model along two transects, one similar to the ship transects and another 18.75° to the east. Although UMeth was run to a steady state with the same sources and sinks each year, the gradient structures varied considerably from year to year, supporting our conclusion that variability in transport is a major driver for the observed variations in CH4. Simulations forced with an idealized representation of the El Niño-Southern Oscillation (ENSO) suggest that a large component of the observed variability in latitudinal gradients of CH4 and its δ13C arises from intrinsic variability in the climate system that does not occur on ENSO time scales.

  16. Alpha-adrenoceptor antagonistic and calcium antagonistic effects of nicergoline in the rat isolated aorta.

    PubMed

    Heitz, C; Descombes, J J; Miller, R C; Stoclet, J C

    1986-04-16

    The activity of the alpha-adrenoceptor antagonist nicergoline, a molecule composed of two constituent parts, ergoline and bromonicotinic acid, was investigated in the rat isolated aorta. Nicergoline (10 nM-0.1 microM) displaced concentration-effect curves elicited by noradrenaline and phenylephrine to the right and inhibited maximal responses elicited by both alpha-adrenoceptor agonists without significantly affecting prostaglandin F2 alpha-induced contractions. Higher concentrations of nicergoline (1 microM-50 microM) displaced to the right the concentration-effect curves elicited by calcium in a depolarizing medium. This calcium antagonist activity was not shared by either of the constituent parts. Nicergoline 100 microM abolished the 45Ca influx induced into rat aorta by 100 mM K+-containing physiological solution. The selectivity of nicergoline for alpha 1-adrenoceptors seen in binding experiments also depends on the presence of the bromonicotinic moiety of the molecule. It is concluded that nicergoline, but not its substituent parts, displays both alpha 1-adrenoceptor and calcium antagonism. The latter property may account for some of the observed effects of this compound.

  17. The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data.

    PubMed

    Ambrosini, Giovanna; Dreos, René; Kumar, Sunil; Bucher, Philipp

    2016-11-18

    ChIP-seq and related high-throughput chromatin profilig assays generate ever increasing volumes of highly valuable biological data. To make sense out of it, biologists need versatile, efficient and user-friendly tools for access, visualization and itegrative analysis of such data. Here we present the ChIP-Seq command line tools and web server, implementing basic algorithms for ChIP-seq data analysis starting with a read alignment file. The tools are optimized for memory-efficiency and speed thus allowing for processing of large data volumes on inexpensive hardware. The web interface provides access to a large database of public data. The ChIP-Seq tools have a modular and interoperable design in that the output from one application can serve as input to another one. Complex and innovative tasks can thus be achieved by running several tools in a cascade. The various ChIP-Seq command line tools and web services either complement or compare favorably to related bioinformatics resources in terms of computational efficiency, ease of access to public data and interoperability with other web-based tools. The ChIP-Seq server is accessible at http://ccg.vital-it.ch/chipseq/ .

  18. Anomalous torsional tripling in the ν9 and ν10 CH3-deformation modes of ethane 12CH313CH3

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.

    2017-12-01

    We have investigated the anomalous torsional behavior in the coupled ν9 and ν10 vibrational fundamentals of 12CH313CH3, both states exhibiting a splitting into three components, instead of two, only in those rotational levels which are very close to resonance. We conclude that the intrinsic additional splitting, which occurs in the E-torsional components, for these two vibrational states is too small to be detected in the high resolution infrared spectrum, but it is substantively enhanced by their coupling. It is shown that this effect requires the simultaneous action of torsion independent operators, such as Fermi-type and z-Coriolis, not allowed in the more symmetric isotopologue 12CH312CH3, and torsion dependent operators, such as torsional-Coriolis, connecting the two vibrational states. Our conclusions lead to a simple model for the coupling of ν9 and ν10, with effective Fermi-type matrix elements W for the A-torsional components, and W ± w for the two pairs of E-torsional components. This causes the additional splitting in the E-pairs. This model is consistent with the mechanism causing the Coriolis-dependent decrease of the A-E torsional splitting in degenerate vibrational states. Exploratory calculations were performed making use of results from a normal mode analysis, showing that the effects predictable by the proposed model are of the correct order of magnitude compared to the observed features, with coupling parameter values reasonably consistent with those determined by the least squares fit of the observed transition wavenumbers.

  19. Isotopic signatures of anthropogenic CH4 sources in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Sherwood, O. A.; Dlugokencky, E. J.; Kessler, R.; Giroux, L.; Worthy, D. E. J.

    2017-09-01

    A mobile system was used for continuous ambient measurements of stable CH4 isotopes (12CH4 and 13CH4) and ethane (C2H6). This system was used during a winter mobile campaign to investigate the CH4 isotopic signatures and the C2H6/CH4 ratios of the main anthropogenic sources of CH4 in the Canadian province of Alberta. Individual signatures were derived from δ13CH4 and C2H6 measurements in plumes arriving from identifiable single sources. Methane emissions from beef cattle feedlots (n = 2) and landfill (n = 1) had δ13CH4 signatures of -66.7 ± 2.4‰ and -55.3 ± 0.2‰, respectively. The CH4 emissions associated with the oil or gas industry had distinct δ13CH4 signatures, depending on the formation process. Emissions from oil storage tanks (n = 5) had δ13CH4 signatures ranging from -54.9 ± 2.9‰ to -60.6 ± 0.6‰ and non-detectable C2H6, characteristic of secondary microbial methanogenesis in oil-bearing reservoirs. In contrast, CH4 emissions associated with natural gas facilities (n = 8) had δ13CH4 signatures ranging from -41.7 ± 0.7‰ to -49.7 ± 0.7‰ and C2H6/CH4 molar ratios of 0.10 for raw natural gas to 0.04 for processed/refined natural gas, consistent with thermogenic origins. These isotopic signatures and C2H6/CH4 ratios have been used for source discrimination in the weekly atmospheric measurements of stable CH4 isotopes over a two-month winter period at the Lac La Biche (LLB) measurement station, located in Alberta, approximately 200 km northeast of Edmonton. The average signature of -59.5 ± 1.4‰ observed at LLB is likely associated with transport of air after passing over oil industry sources located south of the station.

  20. Controlling Culex pipiens: antagonists are more efficient than a neonicotinoid insecticide.

    PubMed

    Meyabeme Elono, Alvine Larissa; Foit, Kaarina; Duquesne, Sabine; Liess, Matthias

    2018-06-01

    Species vulnerability to pesticides depends on physiological sensitivity, the potential to recover, and the ecological context. We assessed the vulnerability of the mosquito Culex pipiens to a repeated treatment with thiacloprid in outdoor microcosms with and without antagonists (competitive and predatory invertebrates). Microcosms were treated repeatedly (three times) with thiacloprid at a concentration of 0.1, 1, or 10 µg/liter. In microcosms without antagonists, the abundance of Cx. pipiens larvae decreased moderately after the second and the third exposures to 10 µg/liter thiacloprid. In microcosms with antagonists, the abundance of Cx. pipiens larvae declined to approximately zero in the control group and the low concentration treatments during the five weeks of observation. By contrast, the abundance of Cx. pipiens larvae temporarily increased at 10 µg/liter thiacloprid after the second and third contamination. We explained this positive effect on the development of Cx. pipiens because of the decrease in competition due to the elimination of sensitive antagonists combined with the high recovery potential of Cx. pipiens. Based on these results, natural antagonists must be supported for the sustainable control of mosquitoes. © 2018 The Society for Vector Ecology.

  1. Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists

    NASA Astrophysics Data System (ADS)

    Tsuji, Motonori

    2017-06-01

    HX531, which contains a dibenzodiazepine skeleton, is one of the first retinoid X receptor (RXR) antagonists. Functioning via RXR-PPARγ heterodimer, this compound is receiving a lot of attention as a therapeutic drug candidate for diabetic disease controlling differentiation of adipose tissue. However, the active conformation of HX531 for RXRs is not well established. In the present study, quantum mechanics calculations and molecular mechanical docking simulations were carried out to precisely study the docking mode of HX531 with the human RXRα ligand-binding domain, as well as to provide a new approach to drug design using a structure-based perspective. It was suggested that HX531, which has the R configuration for the bent dibenzodiazepine plane together with the equatorial configuration for the N-methyl group attached to the nitrogen atom in the seven-membered diazepine ring, is a typical activation function-2 (AF-2) fixed motif perturbation type antagonist, which destabilizes the formation of AF-2 fixed motifs. On the other hand, the docking simulations supported the experimental result that LG100754 is an RXR homodimer antagonist and an RXR heterodimer agonist.

  2. Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses.

    PubMed

    Courtin, Noémie; Fotso, Aurélien Fotso; Fautrad, Pierre; Mas, Floriane; Alessi, Marie-Christine; Riteau, Béatrice

    2017-07-01

    Influenza viruses are one of the most important respiratory pathogens worldwide, causing both epidemic and pandemic infections. The aim of the study was to evaluate the effect of FPR2 antagonists PBP10 and BOC2 on influenza virus replication. We determined that these molecules exhibit antiviral effects against influenza A (H1N1, H3N2, H6N2) and B viruses. FPR2 antagonists used in combination with oseltamivir showed additive antiviral effects. Mechanistically, the antiviral effect of PBP10 and BOC2 is mediated through early inhibition of virus-induced ERK activation. Finally, our preclinical studies showed that FPR2 antagonists protected mice from lethal infections induced by influenza, both in a prophylactic and therapeutic manner. Thus, FPR2 antagonists might be explored for novel treatments against influenza. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains.

    PubMed

    Kolisnyk, Benjamin; Guzman, Monica S; Raulic, Sanda; Fan, Jue; Magalhães, Ana C; Feng, Guoping; Gros, Robert; Prado, Vania F; Prado, Marco A M

    2013-06-19

    Acetylcholine (ACh) is an important neuromodulator in the nervous system implicated in many forms of cognitive and motor processing. Recent studies have used bacterial artificial chromosome (BAC) transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2-EYFP) to dissect cholinergic circuit connectivity and function using optogenetic approaches. We report that a mouse line used for this purpose also carries several copies of the vesicular acetylcholine transporter gene (VAChT), which leads to overexpression of functional VAChT and consequently increased cholinergic tone. We demonstrate that these mice have marked improvement in motor endurance. However, they also present severe cognitive deficits, including attention deficits and dysfunction in working memory and spatial memory. These results suggest that increased VAChT expression may disrupt critical steps in information processing. Our studies demonstrate that ChAT-ChR2-EYFP mice show altered cholinergic tone that fundamentally differentiates them from wild-type mice.

  4. CH4 production via CO2 reduction in a temperate bog - A source of (C-13)-depleted CH4

    NASA Technical Reports Server (NTRS)

    Lansdown, J. M.; Quay, P. D.; King, S. L.

    1992-01-01

    The paper reports measurements, taken over two annual cycles, of the flux and delta(C-13) of CH4 released from an acidic peat bog located in the foothills of the Cascade Range in Washington state, U.S. Measurements of the rate of aceticlastic methanogenesis and CO2 reduction in peat soil, using (C-14)-labeled acetate and sodium bicarbonate, show that acetate was not an important CH4 precursor and that CO2 reduction could account for all of the CH4 production. The in situ kinetic isotope effect for CO2 reduction, calculated using the delta-(C-13) of soil water CO2 and CH4 flux, was 0.932 +/- 0.007.

  5. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists.

    PubMed

    Foster, William R; Car, Bruce D; Shi, Hong; Levesque, Paul C; Obermeier, Mary T; Gan, Jinping; Arezzo, Joseph C; Powlin, Stephanie S; Dinchuk, Joseph E; Balog, Aaron; Salvati, Mark E; Attar, Ricardo M; Gottardis, Marco M

    2011-04-01

    Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs. Copyright © 2010 Wiley-Liss, Inc.

  6. ChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus

    PubMed Central

    Wu, Dongliang; Oide, Shinichi; Zhang, Ning; Choi, May Yee; Turgeon, B. Gillian

    2012-01-01

    LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal

  7. Antihypertensive medication exposure and cardiovascular outcomes in hemodialysis patients.

    PubMed

    Shireman, Theresa I; Phadnis, Milind A; Wetmore, James B; Zhou, Xinhua; Rigler, Sally K; Spertus, John A; Ellerbeck, Edward F; Mahnken, Jonathan D

    2014-01-01

    Our understanding of the effectiveness of cardioprotective medications in maintenance dialysis patients is based upon drug exposures assessed at a single point in time. We employed a novel, time-dependent approach to modeling medication use over time to examine outcomes in a large national cohort. We linked Medicaid prescription claims with United States Renal Data System registry data and Medicare claims for 52,922 hypertensive maintenance dialysis patients. All-cause mortality and a combined cardiovascular disease (CVD)-endpoint were modeled as functions of exposure to cardioprotective antihypertensive medications (renin angiotensin system antagonists, β-adrenergic blockers, and calcium channel blockers) measured with three time-dependent covariates (weekly exposure status, proportion of prior weeks with exposure, and number of switches in exposure status) and with propensity adjustment. Current cardioprotective medication exposure status as compared to not exposed was associated with lower adjusted hazard ratios (AHRs) for mortality, though the magnitude depended upon the proportion of prior weeks with medication (duration) and the number of switches between active and non-active use (switches) (AHR range 0.54-0.90). Combined CVD-endpoints depended upon the proportion of weeks on medication: AHR = 1.18 for 10% and AHR = 0.90 for 90% of weeks. Combined CVD-endpoint was also lower for patients with fewer switches. Effectiveness depends not only on having a drug available but is tempered by duration and stability of use, likely reflecting variation in clinical stability and patient behavior. © 2014 S. Karger AG, Basel

  8. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  9. Cancer in patients with rheumatic diseases exposed to TNF antagonists.

    PubMed

    Carmona, Loreto; Abasolo, Lydia; Descalzo, Miguel A; Pérez-Zafrilla, Beatriz; Sellas, Agustí; de Abajo, Francisco; Gomez-Reino, Juan J

    2011-08-01

    To describe the risk of cancer in patients exposed to tumor necrosis factor (TNF) antagonists. The following 2 clinical cohorts were studied: (1) BIOBADASER 2.0: a registry of patients suffering from rheumatic diseases exposed to TNF antagonists (2531 rheumatoid arthritis (RA), 1488 spondyloarthropathies, and 675 other rheumatic conditions); and (2) EMECAR: a cohort of 789 RA patients not exposed to TNF antagonists. Cancer incidence rates (IR) per 1000 patient-years and incidence rate ratios (IRR) were calculated for BIOBADASER 2.0 and EMECAR patients. The IR over time in BIOBADASER 2.0 patients was analyzed by joinpoint regression. The IRR was estimated to compare cancer rates in exposed versus nonexposed RA patients. Standardized incidence and mortality ratios (SIR, SMR) were also estimated. Risk factors for cancer in patients exposed to TNF antagonists were investigated by generalized linear models. The SMR for cancer in BIODASER 2.0 was 0.67 (95% CI: 0.51-0.86), and the SIR was 0.1 (95% CI 0.03-0.23). The IR in RA patients exposed to TNF antagonists was 5.8 (95% CI: 4.4-7.6), and the adjusted IRR was 0.48 (95% CI: 0.09-2.45). The IR in patients with previous cancer was 26.4 (95% CI: 4.1-171.5). Age, chronic obstructive pulmonary disease, and steroids were associated with a higher risk of developing cancer. The IR decreased after the first 4 months of exposure, without statistical significance. Overall cancer and mortality rates in patients with rheumatic diseases exposed to TNF antagonists are no higher than in the background Spanish population. However special attention should be paid to elderly patients, those with previous cancers, and patients treated with steroids. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  11. POST-NOAC: Portuguese observational study of intracranial hemorrhage on non-vitamin K antagonist oral anticoagulants.

    PubMed

    Marques-Matos, Cláudia; Alves, José Nuno; Marto, João Pedro; Ribeiro, Joana Afonso; Monteiro, Ana; Araújo, José; Silva, Fernando; Grenho, Fátima; Viana-Baptista, Miguel; Sargento-Freitas, João; Pinho, João; Azevedo, Elsa

    2017-08-01

    Background There is a lower reported incidence of intracranial hemorrhage with non-vitamin K antagonist oral anticoagulants compared with vitamin K antagonist. However, the functional outcome and mortality of intracranial hemorrhage patients were not assessed. Aims To compare the outcome of vitamin K antagonists- and non-vitamin K antagonist oral anticoagulants-related intracranial hemorrhage. Methods We included consecutive patients with acute non-traumatic intracranial hemorrhage on oral anticoagulation therapy admitted between January 2013 and June 2015 at four university hospitals. Clinical and demographic data were obtained from individual medical records. Intracranial hemorrhage was classified as intracerebral, extra-axial, or multifocal using brain computed tomography. Three-month functional outcome was assessed using the modified Rankin Scale. Results Among 246 patients included, 24 (9.8%) were anticoagulated with a non-vitamin K antagonist oral anticoagulants and 222 (90.2%) with a vitamin K antagonists. Non-vitamin K antagonist oral anticoagulants patients were older (81.5 vs. 76 years, p = 0.048) and had intracerebral hemorrhage more often (83.3% vs. 63.1%, p = 0.048). We detected a non-significant trend for larger intracerebral hemorrhage volumes in vitamin K antagonists patients ( p = 0.368). Survival analysis adjusted for age, CHA 2 DS 2 VASc, HAS-BLED, and anticoagulation reversal revealed that non-vitamin K antagonist oral anticoagulants did not influence three-month mortality (hazard ratio (HR) = 0.83, 95% confidence interval (CI) = 0.39-1.80, p = 0.638). Multivariable ordinal regression for three-month functional outcome did not show a significant shift of modified Rankin Scale scores in non-vitamin K antagonist oral anticoagulants patients (odds ratio (OR) 1.26, 95%CI 0.55-2.87, p = 0.585). Conclusions We detected no significant differences in the three-month outcome between non-vitamin K antagonist oral anticoagulants

  12. Infrared absorption of 1-chloro-2-methyl-2-propyl [⋅C(CH3)2CH2Cl] and 2-chloro-2-methylpropyl [⋅CH2C(CH3)2Cl] radicals produced in the addition reactions of Cl with isobutene (i-C4H8) in solid para-hydrogen.

    PubMed

    Chou, Ching-Yin; Lee, Yuan-Pern

    2016-10-07

    The addition reactions of chlorine atom with isobutene (i-C 4 H 8 ) in solid para-hydrogen (p-H 2 ) were investigated with infrared (IR) absorption spectra. When a p-H 2 matrix containing Cl 2 and isobutene was irradiated with ultraviolet light at 365 nm, intense lines in a set at 534.5, 1001.0, 1212.9, 1366.0, 2961.6, and 2934.7 cm -1 , and several weaker others due to the 1-chloro-2-methyl-2-propyl radical, ⋅ C(CH 3 ) 2 CH 2 Cl, and those in a second set including intense ones at 642.7, 799.2, 1098.2, 1371.8, and 3027.3 cm -1 due to the 2-chloro-2-methylpropyl radical, ⋅ CH 2 C(CH 3 ) 2 Cl, appeared; the ratio of ⋅ C(CH 3 ) 2 CH 2 Cl to ⋅ CH 2 C(CH 3 ) 2 Cl was approximately (3 ± 1):1. The observed wavenumbers and relative intensities agree with the vibrational wavenumbers and IR intensities predicted with the B3PW91/aug-cc-pVTZ method. That the Cl atom adds to both carbons of the C=C bond of isobutene with the terminal site slightly favored is consistent with the energies of products predicted theoretically, but is in contrast to the reaction of Cl + propene in solid p-H 2 in which the addition of Cl to mainly the central C atom was previously reported. The role of the p-H 2 matrix in affecting the reaction paths is discussed. Absorption lines of the complex i-C 4 H 8 ⋅Cl 2 and the dichloro-product anti-1,2-dichloro-2-methylpropane, a-CH 2 ClCCl(CH 3 ) 2 , are also characterized.

  13. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem

    USGS Publications Warehouse

    West, A.E.; Brooks, P.D.; Fisk, M.C.; Smith, Lesley K.; Holland, E.A.; Jaeger, C. H.; Babcock, S.; Lai, R.S.; Schmidt, S.K.

    1999-01-01

    We measured CH4 fluxes from three major plant communities characteristic of alpine tundra in the Colorado Front Range. Plant communities in this ecosystem are determined by soil moisture regimes induced by winter snowpack distribution. Spatial patterns of CH4 flux during the snow-free season corresponded roughly with these plant communities. In Carex-dominated meadows, which receive the most moisture from snowmelt, net CH4 production occurred. However, CH4 production in one Carex site (seasonal mean = +8.45 mg CH4 m-2 d-1) was significantly larger than in the other Carex sites (seasonal means = -0.06 and +0.05 mg CH4 m-2 d-1). This high CH4 flux may have resulted from shallower snowpack during the winter. In Acomastylis meadows, which have an intermediate moisture regime, CH4 oxidation dominated (seasonal mean = -0.43 mg CH4 m-2 d-1). In the windswept Kobresia meadow plant community, which receive the least amount of moisture from snowmelt, only CH4 oxidation was observed (seasonal mean = -0.77 mg CH4 m-2 d-1). Methane fluxes correlated with a different set of environmental factors within each plant community. In the Carex plant community, CH4 emission was limited by soil temperature. In the Acomastylis meadows, CH4 oxidation rates correlated positively with soil temperature and negatively with soil moisture. In the Kobresia community, CH4 oxidation was stimulated by precipitation. Thus, both snow-free season CH4 fluxes and the controls on those CH4 fluxes were related to the plant communities determined by winter snowpack.

  14. Parallel factor ChIP provides essential internal control for quantitative differential ChIP-seq.

    PubMed

    Guertin, Michael J; Cullen, Amy E; Markowetz, Florian; Holding, Andrew N

    2018-04-17

    A key challenge in quantitative ChIP combined with high-throughput sequencing (ChIP-seq) is the normalization of data in the presence of genome-wide changes in occupancy. Analysis-based normalization methods were developed for transcriptomic data and these are dependent on the underlying assumption that total transcription does not change between conditions. For genome-wide changes in transcription factor (TF) binding, these assumptions do not hold true. The challenges in normalization are confounded by experimental variability during sample preparation, processing and recovery. We present a novel normalization strategy utilizing an internal standard of unchanged peaks for reference. Our method can be readily applied to monitor genome-wide changes by ChIP-seq that are otherwise lost or misrepresented through analytical normalization. We compare our approach to normalization by total read depth and two alternative methods that utilize external experimental controls to study TF binding. We successfully resolve the key challenges in quantitative ChIP-seq analysis and demonstrate its application by monitoring the loss of Estrogen Receptor-alpha (ER) binding upon fulvestrant treatment, ER binding in response to estrodiol, ER mediated change in H4K12 acetylation and profiling ER binding in patient-derived xenographs. This is supported by an adaptable pipeline to normalize and quantify differential TF binding genome-wide and generate metrics for differential binding at individual sites.

  15. ChIPnorm: a statistical method for normalizing and identifying differential regions in histone modification ChIP-seq libraries.

    PubMed

    Nair, Nishanth Ulhas; Sahu, Avinash Das; Bucher, Philipp; Moret, Bernard M E

    2012-01-01

    The advent of high-throughput technologies such as ChIP-seq has made possible the study of histone modifications. A problem of particular interest is the identification of regions of the genome where different cell types from the same organism exhibit different patterns of histone enrichment. This problem turns out to be surprisingly difficult, even in simple pairwise comparisons, because of the significant level of noise in ChIP-seq data. In this paper we propose a two-stage statistical method, called ChIPnorm, to normalize ChIP-seq data, and to find differential regions in the genome, given two libraries of histone modifications of different cell types. We show that the ChIPnorm method removes most of the noise and bias in the data and outperforms other normalization methods. We correlate the histone marks with gene expression data and confirm that histone modifications H3K27me3 and H3K4me3 act as respectively a repressor and an activator of genes. Compared to what was previously reported in the literature, we find that a substantially higher fraction of bivalent marks in ES cells for H3K27me3 and H3K4me3 move into a K27-only state. We find that most of the promoter regions in protein-coding genes have differential histone-modification sites. The software for this work can be downloaded from http://lcbb.epfl.ch/software.html.

  16. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists

    PubMed Central

    Beier, Sara; Grabherr, Manfred

    2017-01-01

    ABSTRACT Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species

  17. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists.

    PubMed

    Osman, Omneya Ahmed; Beier, Sara; Grabherr, Manfred; Bertilsson, Stefan

    2017-04-01

    Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas , Stenotrophomonas , Acinetobacter , and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses

  18. Room-temperature enantioselective C-H iodination via kinetic resolution.

    PubMed

    Chu, Ling; Xiao, Kai-Jiong; Yu, Jin-Quan

    2014-10-24

    Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. Copyright © 2014, American Association for the Advancement of Science.

  19. Direct dynamics simulation of dioxetane formation and decomposition via the singlet .O-O-CH2-CH2. biradical: Non-RRKM dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Park, Kyoyeon; de Jong, Wibe A.; Lischka, Hans; Windus, Theresa L.; Hase, William L.

    2012-07-01

    Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet .O-O-CH2-CH2. biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche .O-CH2-CH2-O. biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the .O-O-CH2-CH2. biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ˜ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the .O-O-CH2-CH2. biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice-Ramsperger-Kassel-Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche .O-CH2-CH2-O. biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.

  20. C-H bond activation of hydrocarbons by an imidozirconocene complex.

    PubMed

    Hoyt, Helen M; Michael, Forrest E; Bergman, Robert G

    2004-02-04

    Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.

  1. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  2. Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins

    PubMed Central

    Owen, D. Des. R.; Shouakar-Stash, O.; Morgenstern, U.; Aravena, R.

    2016-01-01

    Using a comprehensive data set (dissolved CH4, δ13C-CH4, δ2H-CH4, δ13C-DIC, δ37Cl, δ2H-H2O, δ18O-H2O, Na, K, Ca, Mg, HCO3, Cl, Br, SO4, NO3 and DO), in combination with a novel application of isometric log ratios, this study describes hydrochemical and thermodynamic controls on dissolved CH4 from a coal seam gas reservoir and an alluvial aquifer in the Condamine catchment, eastern Surat/north-western Clarence-Moreton basins, Australia. δ13C-CH4 data in the gas reservoir (−58‰ to −49‰) and shallow coal measures underlying the alluvium (−80‰ to −65‰) are distinct. CO2 reduction is the dominant methanogenic pathway in all aquifers, and it is controlled by SO4 concentrations and competition for reactants such as H2. At isolated, brackish sites in the shallow coal measures and alluvium, highly depleted δ2H-CH4 (<310‰) indicate acetoclastic methanogenesis where SO4 concentrations inhibit CO2 reduction. Evidence of CH4 migration from the deep gas reservoir (200–500 m) to the shallow coal measures (<200 m) or the alluvium was not observed. The study demonstrates the importance of understanding CH4 at different depth profiles within and between aquifers. Further research, including culturing studies of microbial consortia, will improve our understanding of the occurrence of CH4 within and between aquifers in these basins. PMID:27578542

  3. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH 4): Determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH 4 and CH 4 +

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yih -Chung; Xiong, Bo; Bross, David H.

    Here, we report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE 0) for the formation of methylium, CH 3 +, from methane, CH 4, as AE 0 (CH 3 +/CH 4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV lasermore » PFI-PI spectra obtained for the parent CH 4 + ion and the fragment CH 3 + ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE 0 (CH 3 +/CH 4) threshold ensues because of higher PFI detection efficiency for fragment CH 3 + than for parent CH 4 +. This, in turn, is a consequence of the underlying high- n Rydberg dissociation mechanism for the dissociative photoionization of CH 4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH 4. The present highly accurate 0 K dissociative ionization threshold for CH 4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D 0 (H-CH 3) = 432.463 ± 0.027 kJ/mol and D 0(H-CH 3 +) = 164.701 ± 0.038 kJ/mol.« less

  4. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH 4): Determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH 4 and CH 4 +

    DOE PAGES

    Chang, Yih -Chung; Xiong, Bo; Bross, David H.; ...

    2017-03-27

    Here, we report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE 0) for the formation of methylium, CH 3 +, from methane, CH 4, as AE 0 (CH 3 +/CH 4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV lasermore » PFI-PI spectra obtained for the parent CH 4 + ion and the fragment CH 3 + ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE 0 (CH 3 +/CH 4) threshold ensues because of higher PFI detection efficiency for fragment CH 3 + than for parent CH 4 +. This, in turn, is a consequence of the underlying high- n Rydberg dissociation mechanism for the dissociative photoionization of CH 4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH 4. The present highly accurate 0 K dissociative ionization threshold for CH 4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D 0 (H-CH 3) = 432.463 ± 0.027 kJ/mol and D 0(H-CH 3 +) = 164.701 ± 0.038 kJ/mol.« less

  5. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  6. In vivo effects of a GPR30 antagonist.

    PubMed

    Dennis, Megan K; Burai, Ritwik; Ramesh, Chinnasamy; Petrie, Whitney K; Alcon, Sara N; Nayak, Tapan K; Bologa, Cristian G; Leitao, Andrei; Brailoiu, Eugen; Deliu, Elena; Dun, Nae J; Sklar, Larry A; Hathaway, Helen J; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R

    2009-06-01

    Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized G-1 (1), a selective agonist of GPR30. To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of G15 (2), a G-1 analog that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 revealed that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.

  7. FunChIP: an R/Bioconductor package for functional classification of ChIP-seq shapes.

    PubMed

    Parodi, Alice C L; Sangalli, Laura M; Vantini, Simone; Amati, Bruno; Secchi, Piercesare; Morelli, Marco J

    2017-08-15

    Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) generates local accumulations of sequencing reads on the genome ("peaks"), which correspond to specific protein-DNA interactions or chromatin modifications. Peaks are detected by considering their total area above a background signal, usually neglecting their shapes, which instead may convey additional biological information. We present FunChIP, an R/Bioconductor package for clustering peaks according to a functional representation of their shapes: after approximating their profiles with cubic B-splines, FunChIP minimizes their functional distance and classifies the peaks applying a k-mean alignment and clustering algorithm. The whole pipeline is user-friendly and provides visualization functions for a quick inspection of the results. An application to the transcription factor Myc in 3T9 murine fibroblasts shows that clusters of peaks with different shapes are associated with different genomic locations and different transcriptional regulatory activity. The package is implemented in R and is available under Artistic Licence 2.0 from the Bioconductor website (http://bioconductor.org/packages/FunChIP). marco.morelli@iit.it. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. A laser flash photolysis-resonance fluorescence kinetics study of the reaction Cl/2P/ + CH4 yields CH3 + HCl

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.

    1980-01-01

    The technique of laser flash photolysis-resonance fluorescence is employed to study the kinetics of the reaction Cl(2P) + CH4 yields CH3 + HCl over the temperature range 221-375 K. At temperatures less than or equal to 241 K the apparent bimolecular rate constant is found to be dependent upon the identity of the chemically inert gases in the reaction mixture. For Cl2/CH4/He reaction mixtures (total pressure = 50 torr) different bimolecular rate constants are measured at low and high methane concentrations. For Cl2/CH4/CCl/He and Cl2/CH4/Ar reaction mixtures, the bimolecular rate constant is independent of methane concentration, being approximately equal to the rate constant measured at low methane concentrations for Cl2/CH4/He mixtures. These rate constants are in good agreement with previous results obtained using the discharge flow-resonance fluorescence and competitive chlorination techniques. At 298 K the measured bimolecular rate constant is independent of the identity of the chemically inert gases in the reaction mixture and in good agreement with all previous investigations. The low-temperature results obtained in this investigation and all previous investigations can be rationalized in terms of a model which assumes that the Cl(2P 1/2) state reacts with CH4 much faster than the Cl(2P 3/2) state. Extrapolation of this model to higher temperatures, however, is not straightforward.

  9. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  10. The ChArMEx database

    NASA Astrophysics Data System (ADS)

    Ferré, Hélène; Descloitres, Jacques; Fleury, Laurence; Boichard, Jean-Luc; Brissebrat, Guillaume; Focsa, Loredana; Henriot, Nicolas; Mastrorillo, Laurence; Mière, Arnaud; Vermeulen, Anne

    2013-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project includes long term monitoring of environmental parameters, intensive field campaigns, use of satellite data and modelling studies. Therefore ChARMEx scientists produce and need to access a wide diversity of data. In this context, the objective of the database task is to organize data management, distribution system and services such as facilitating the exchange of information and stimulating the collaboration between researchers within the ChArMEx community, and beyond. The database relies on a strong collaboration between OMP and ICARE data centres and falls within the scope of the Mediterranean Integrated Studies at Regional And Locals Scales (MISTRALS) program data portal. All the data produced by or of interest for the ChArMEx community will be documented in the data catalogue and accessible through the database website: http://mistrals.sedoo.fr/ChArMEx. The database website offers different tools: - A registration procedure which enables any scientist to accept the data policy and apply for a user database account. - Forms to document observations or products that will be provided to the database in compliance with metadata international standards (ISO 19115-19139; INSPIRE; Global Change Master Directory Thesaurus). - A search tool to browse the catalogue using thematic, geographic and/or temporal criteria. - Sorted lists of the datasets by thematic keywords, by measured parameters, by instruments or by platform type. - A shopping-cart web interface to order in situ data files. At present datasets from the background monitoring station of Ersa, Cape Corsica and from the 2012 ChArMEx pre-campaign are available. - A user-friendly access to satellite products

  11. Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro.

    PubMed

    Heintze, S D; Cavalleri, A; Forjanic, M; Zellweger, G; Rousson, V

    2008-04-01

    (1) To systematically review the existing literature on in vitro assessments of antagonist wear of ceramic materials; (2) To systematically evaluate possible influencing factors on material and antagonist wear of ceramic specimens. The database MEDLINE was searched with the terms "enamel," "wear" and "antagonist." The selected studies were analyzed with regard to wear parameters, type of antagonist and outcome. In the laboratory study, three ceramic materials were selected with different compositions and physical properties: IPS d.SIGN low-fusing metal ceramic, IPS Empress leucite ceramic, e.max Press lithium disilicate ceramic. These materials were subjected to the Ivoclar wear method (Willytec chewing simulator, 120,000cycles, 5kg weight) by systematically modifying the following variables which resulted in 36 tests with 8 specimens in each group: (1) configuration (flat, crown specimen), (2) surface treatment (polish, glaze), (3) type of antagonist (ceramic, two types of enamel stylus). Furthermore, the enamel styluses were cut to measure the enamel thickness and cusp width. Wear of both the material and the antagonist was quantified by scanning plaster replicas of the specimens with a laser scanner (etkon es1) and matching baseline and follow-up data with the Match 3D software (Willytec). The data were log-transformed to stabilize the variance and achieve near normality. To test the influence of specific test parameters, a four-way ANOVA with post hoc tests and Bonferroni correction was applied. The systematic review revealed 20 in vitro studies in which a material and the antagonist wear of the same material was examined. However, the results were inconsistent mainly due to the fact that the test parameters differed widely. Most studies used prepared enamel from extracted molars as the antagonist and flat polished ceramic specimens. The test chamber was filled with water and some sort of sliding movement was integrated in the wear generating process. However

  12. Cocontraction of pairs of antagonistic muscles: analytical solution for planar static nonlinear optimization approaches.

    PubMed

    Herzog, W; Binding, P

    1993-11-01

    It has been stated in the literature that static, nonlinear optimization approaches cannot predict coactivation of pairs of antagonistic muscles; however, numerical solutions of such approaches have predicted coactivation of pairs of one-joint and multijoint antagonists. Analytical support for either finding is not available in the literature for systems containing more than one degree of freedom. The purpose of this study was to investigate analytically the possibility of cocontraction of pairs of antagonistic muscles using a static nonlinear optimization approach for a multidegree-of-freedom, two-dimensional system. Analytical solutions were found using the Karush-Kuhn-Tucker conditions, which were necessary and sufficient for optimality in this problem. The results show that cocontraction of pairs of one-joint antagonistic muscles is not possible, whereas cocontraction of pairs of multijoint antagonists is. These findings suggest that cocontraction of pairs of antagonistic muscles may be an "efficient" way to accomplish many movement tasks.

  13. Photolysis of CH{sub 3}CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH{sub 3} and HCO radicals and H atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morajkar, Pranay; Schoemaecker, Coralie; Fittschen, Christa, E-mail: christa.fittschen@univ-lille1.fr

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH{sub 3}CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO{sub 2} radicals by reaction with O{sub 2}. The CH{sub 3} radical yield has been determined using the same technique following their conversion into CH{sub 3}O{sub 2}. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO{sub 2} profiles, obtained under various O{sub 2} concentrations, to a complex model, while the CH{submore » 3} yield has been determined relative to the CH{sub 3} yield from 248 nm photolysis of CH{sub 3}I. Time resolved HO{sub 2} profiles under very low O{sub 2} concentrations suggest that another unknown HO{sub 2} forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O{sub 2}. HO{sub 2} profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH{sub 3}CHO + hν{sub 248nm} → CH{sub 3}CHO{sup *}, CH{sub 3}CHO{sup *} → CH{sub 3} + HCO ϕ{sub 1a} = 0.125 ± 0.03, CH{sub 3}CHO{sup *} → CH{sub 3} + H + CO ϕ{sub 1e} = 0.205 ± 0.04, CH{sub 3}CHO{sup *}→{sup o{sub 2}}CH{sub 3}CO + HO{sub 2} ϕ{sub 1f} = 0.07 ± 0.01. The CH{sub 3}O{sub 2} quantum yield has been determined in separate experiments as ϕ{sub CH{sub 3}} = 0.33 ± 0.03 and is in excellent agreement with the CH{sub 3} yields derived from the HO{sub 2} measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH{sub 3}CHO. From arithmetic considerations taking into account the HO{sub 2} and CH{sub 3} measurements we deduce a remaining quantum yield for the molecular pathway: CH{sub 3}CHO{sup *} → CH{sub 4} + CO ϕ{sub 1b} = 0.6. All experiments

  14. Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics

    PubMed Central

    Manning, M; Misicka, A; Olma, A; Bankowski, K; Stoev, S; Chini, B; Durroux, T; Mouillac, B; Corbani, M; Guillon, G

    2012-01-01

    We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V1a, V1b and V2 receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V1b receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V1a agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V2/V1a antagonist, conivaptan and the V2 antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V1a, V1b and V2 antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences. PMID:22375852

  15. Melanocortin Antagonist Tetrapeptides with Minimal Agonist Activity at the Mouse Melanocortin-3 Receptor

    PubMed Central

    2014-01-01

    The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure–activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors. PMID:25699138

  16. Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH3Br) and dibromomethane (CH2Br2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellouki, A.; Talukdar, R.K.; Schmoltner, A.

    The rate coefficients for the reactions of OH radical with CH3Br and CH2Br2 were measured as functions of temperature using the laser photolysis - laser induced fluorescence method. This data was incorporated into a semiempirical model (Solomon et al., 1992) and a 2D model to calculate the steady-state ozone depletion potentials (ODP) and atmospheri lifetimes, tau, with greatly improved accuracy as compared to earlier studies. The calculated ODPs and tau are 0.65 and 1.7 years and 0.17 and 0.41 years for CH3Br and CH2Br2, respectively, using the semiempirical model. These lifetimes agree well with those calculated using a 2D model.more » This study better quantifies the ODPs and tau of these species which are needed inputs for discussion of possible regulation of human emissions currently under international considerations. 29 refs.« less

  17. Comparative effectiveness of switching to alternative tumour necrosis factor (TNF) antagonists versus switching to rituximab in patients with rheumatoid arthritis who failed previous TNF antagonists: the MIRAR Study.

    PubMed

    Gomez-Reino, Juan J; Maneiro, Jose Ramon; Ruiz, Jorge; Roselló, Rosa; Sanmarti, Raimon; Romero, Ana Belen

    2012-11-01

    To compare the effectiveness of switching to rituximab (RTX) with switching to alternative tumour necrosis factor (TNF) antagonists in patients with rheumatoid arthritis (RA) failing on TNF antagonists. A multicentre prospective 3-year observational study was performed in patients with RA treated with RTX or an alternative TNF antagonist. The baseline 28-joint disease activity score (DAS28) and Health Assessment Questionnaire (HAQ) score were compared with 6, 9 and 12 month values, adjusting for propensity score quintiles. Propensity scores were estimated for each patient using logistic regression with treatment as the dependent variable and baseline prior number of TNFs >1, years from diagnosis >5, extra-articular manifestations, previous toxicity, use of ≥2 disease-modifying antirheumatic drugs, age and sex as independent variables. 1124 patients were treated with either RTX (n=591, 52.6%) or alternative TNF antagonists (n=533, 47.4%). RTX-treated patients had longer disease duration (p=0.0001), larger numbers of previous TNF antagonists (p<0.0001) and tender and swollen joints (p<0.0001). There was no significant difference in the reduction in DAS28 at 6, 9 and 12 months between RTX-treated patients and those treated with TNF antagonists. However, the reduction in DAS28 was significantly different between RTX-treated patients and adalimumab/infliximab-treated patients (p=0.001 and p=0.05, respectively). There was a marginally significant difference at any time period in the proportion of patients achieving an improvement in the HAQ score of >0.22 (p=0.06). Optimal treatment for patients with RA failing on treatment with TNF antagonists may include RTX. This study suggests that the improvement in DAS28 is larger in patients treated with RTX than in those treated with monoclonal anti-TNF agents.

  18. Methanesulfonates of high-valent metals: syntheses and structural features of MoO2(CH3SO3)2, UO2(CH3SO3)2, ReO3(CH3SO3), VO(CH3SO3)2, and V2O3(CH3SO3)4 and their thermal decomposition under N2 and O2 atmosphere.

    PubMed

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S

    2011-11-04

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed. Copyright

  19. 36 CFR 223.191 - Sourcing area disapproval and review procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 20, 1990, and was disapproved could either phase out of purchasing Federal timber or phase out of... approved, as follows: (1) Phase-out of Federal timber purchasing. The applicant could purchase, in the 9... such person's purchases of unprocessed Federal timber in such area during the 5 full fiscal years...

  20. Analysis of the heat capacity for pure CH4 and CH4/CCl4 on graphite near the melting point and calculation of the T-X phase diagram for (CH3)CCl3 + CCl4

    NASA Astrophysics Data System (ADS)

    Yurtseven, Hamit; Yılmaz, Aygül

    2016-06-01

    We study the temperature dependence of the heat capacity Cp for the pure CH4 and the coadsorbed CH4/CCl4 on graphite near the melting point. The heat capacity peaks are analyzed using the experimental data from the literature by means of the power-law formula. The critical exponents for the heat capacity are deduced below and above the melting point for CH4 (Tm = 104.8 K) and CH4/CCl4 (Tm = 99.2 K). Our exponent values are larger as compared with the predicted values of some theoretical models exhibiting second order transition. Our analyses indicate that the pure methane shows a nearly second order (weak discontinuity in the heat capacity peak), whereas the transition in coadsorbed CH4/CCl4 is of first order (apparent discontinuity in Cp). We also study the T - X phase diagram of a two-component system of CH3CCl3+CCl4 using the Landau phenomenological model. Phase lines of the R+L (rhombohedral+liquid) and FCC+L (face-centred cubic + liquid) are calculated using the observed T - X phase diagram of this binary mixture. Our results show that the Landau mean field theory describes the observed behavior of CH3CCl3+CCl4 adequately. From the calculated T - X phase diagram, critical behavior of some thermodynamic quantities can be predicted at various temperatures and concentrations (CCl4) for a binary mixture of CH3CCl3+CCl4.

  1. N-Methyl-D-aspartate receptor antagonist MK-801 and radical scavengers protect cholinergic nucleus basalis neurons against beta-amyloid neurotoxicity.

    PubMed

    Harkany, T; Mulder, J; Sasvári, M; Abrahám, I; Kónya, C; Zarándi, M; Penke, B; Luiten, P G; Nyakas, C

    1999-04-01

    Previous experimental data indicate the involvement of Ca(2+)-related excitotoxic processes, possibly mediated by N-Methyl-D-Aspartate (NMDA) receptors, in beta-amyloid (beta A) neurotoxicity. On the other hand, other lines of evidence support the view that free radical generation is a critical step in the beta A-induced neurodegenerative cascade. In the present study, therefore, a neuroprotective strategy was applied to explore the contributions of each of these pathways in beta A toxicity. beta A(1-42) was injected into the magnocellular nucleus basalis of rats, while neuroprotection was achieved by either single or combined administration of the NMDA receptor antagonist MK-801 (2.5 mg/kg) and/or a vitamin E and C complex (150 mg/kg). The degree of neurodegeneration was determined by testing the animals in consecutive series of behavioral tasks, including elevated plus maze, passive avoidance learning, small open-field and open-field paradigms, followed by acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), and superoxide dismutase (SOD) biochemistry. beta A injected in the nucleus basalis elicited significant anxiety in the elevated plus maze, derangement of passive avoidance learning, and altered spontaneous behaviors in both open-field tasks. A significant decrease in both AChE and ChAT accompanied by a similar decrement of MnSOD, but not of Cu/ZnSOD provided neurochemical substrates for the behavioral changes. Each of the single drug administrations protected against the neurotoxic events, whereas the combined treatment failed to ameliorate beta A toxicity.

  2. Computational Studies Of Chemical Reactions: The Hnc-Hcn And Ch[subscript3]Nc-Ch[subscript3]Cn Isomerizations

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2006-01-01

    The application of computational methods to the isomerization of hydrogen isocyanide to hydrogen cyanide, HNC-HCN is described. The logical extension to the exercise is presented to the isomerization of the methyl-substituted compounds, methylisocyanide and methylcyanide, Ch[subscript 3]NC-CH[subscript3]CN.

  3. Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsa, D.M.; Brot, M.D.; Shewey, L.M.

    1988-01-01

    The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /supmore » 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.« less

  4. 7 CFR 1.411 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Sourcing area applicant means a person who submits a sourcing area application pursuant to these rules, or a person who sourcing area is subject to formal review pursuant to 36 CFR 223.191(e). (b) Decision... Sourcing Area Applications and Formal Review of Sourcing Areas Pursuant to the Forest Resources...

  5. Synthesis, characterization, structural and biological aspects of copper(II) dithiocarbamate complexes - Part II, [Cu{S2CN(Me)(R1)}2], [Cu{S2CN(Me)(R2)}2] and [Cu{S2CN(R3)(R4)}2] {R1 = CH2CH(OMe)2, R2 = 2-methyl-1,3-dioxolane, R3 = CH2(CH2)2NCHPhOCH2Ph and R4 = CH2CH2OH}

    NASA Astrophysics Data System (ADS)

    Ferreira, Isabella P.; de Lima, Geraldo M.; Paniago, Eucler B.; Takahashi, Jacqueline A.; Krambrock, Klaus; Pinheiro, Carlos B.; Wardell, James L.; Visentin, Lorenzo C.

    2013-09-01

    Three new copper(II) dithiocarbamates (DTC), [Cu{S2CN(Me)(R1)}2] (1), [Cu{S2CN(Me)(R2)}2] (2) and [Cu{S2CN(R3)(R4)}2] (3) with R1 = CH2CH(OMe)2, R2 = 2-methyl-1,3-dioxolane, R3 = CH2(CH2)2NCHPhOCH2Ph and R4 = CH2CH2OH, have been synthesized and characterized by different spectroscopic techniques. Complexes (1) and (2) display typical EPR spectra for separated Cu(II) centers, and the spectrum of (3) is characteristic of two magnetically coupled Cu(II) ions with S = 1. The X-ray crystallographic determination has shown that complexes (1) and (2) crystallise in the triclinic and monoclinic systems. In addition both complexes are monomers in which the geometry at each Cu(II) is square planar. The in vitro antimicrobial activity of the sodium salts of ligands, and of the Cu(II)-DTC complexes have been screened against Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Penicillium citrinum and Curvularia senegalensis, as well as Gram positive and Gram negative bacteria. Finally, the toxic effects of complexes (1)-(3) were performed using Chlorella vulgaris.

  6. Effect of vibration frequency on agonist and antagonist arm muscle activity.

    PubMed

    Rodríguez Jiménez, Sergio; Benítez, Adolfo; García González, Miguel A; Moras Feliu, Gerard; Maffiuletti, Nicola A

    2015-06-01

    This study aimed to assess the effect of vibration frequency (f out) on the electromyographic (EMG) activity of the biceps brachii (BB) and triceps brachii (TB) muscles when acting as agonist and antagonist during static exercises with different loads. Fourteen healthy men were asked to hold a vibratory bar as steadily as possible for 10 s during lying row (pulling) and bench press (pushing) exercise at f out of 0 (non-vibration condition), 18, 31 and 42 Hz with loads of 20, 50, and 80 % of the maximum sustainable load (MSL). The root mean square of the EMG activity (EMGRMS) of the BB and TB muscles was expressed as a function of the maximal EMGRMS for respective muscles to characterize agonist activation and antagonist coactivation. We found that (1) agonist activation was greater during vibration (42 Hz) compared to non-vibration exercise for the TB but not for the BB muscle (p < 0.05); (2) antagonist activation was greater during vibration compared to non-vibration exercise for both BB (p < 0.01) and TB (p < 0.05) muscles; (3) the vibration-induced increase in antagonist coactivation was proportional to vibration f out in the range 18-42 Hz and (4) the vibration-induced increase in TB agonist activation and antagonist coactivation occurred at all loading conditions in the range 20-80 % MSL. The use of high vibration frequencies within the range of 18-42 Hz can maximize TB agonist activation and antagonist activation of both BB and TB muscles during upper limb vibration exercise.

  7. The Relative Abundances of Resolved 12CH2D2 and 13CH3D and Mechanisms Controlling Isotopic Bond Ordering in Abiotic and Biotic Methane Gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Sherwood Lollar, B.; Etiope, G.; Rumble, D.; Li, S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K.; Foustoukos, D.; Sutcliffe, C. N.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Perez-Rodriguez, I. M.; Rowe, A. R.; LaRowe, D.; Magnabosco, C.; Bryndzia, T.

    2016-12-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide important information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis versus biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature of abiotic CH4 formation may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of

  8. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    PubMed

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the

  9. a Theoretical Characterization of Electronic States of CH2IOO and CH2OO Radicals Relevant to the Near IR Region

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Lolur, Phalgun; Huang, Meng; Kline, Neal; Miller, Terry A.

    2015-06-01

    Criegee intermediates (R1R2COO or CIs) arise from ozonolysis of biogenic and anthropogenic alkenes, which is an important process in the atmosphere. Recent breakthroughs in producing them in the gas phase have resulted in a flurry of experimental and theoretical studies. Producing the simplest CI (CH2OO) in the lab via photolysis of CH2I2 in the presence of O2 yields both CH2OO and CH2IOO with pressure dependent branching. As discussed in the preceding talk, both species might be expected to have electronic transitions in the near IR (NIR). Here we discuss electronic structure calculations used to characterize the electronic states of both systems in the relevant energy range. Using explicitly-correlated multireference configuration interaction (MRCI-F12) and coupled-cluster (UCCSD(T)-F12b) calculations we were first able to exclude CH2OO as the carrier of the observed NIR spectrum. Next, by computing frequencies and relaxed full torsional scans for the ~A and ~X states, we were able to aid in analysis and assignment of the NIR spectrum attributed to CH2IOO.

  10. Theoretical study on the reaction mechanism of CH 4 with CaO

    NASA Astrophysics Data System (ADS)

    Yang, Hua-Qing; Hu, Chang-Wei; Qin, Song

    2006-11-01

    The reaction pathways and energetics for the reaction of methane with CaO are discussed on the singlet spin state potential energy surface at the B3LYP/6-311+G(2df,2p) and QCISD/6-311++G(3df,3pd)//B3LYP/6-311+G(2df,2p) levels of theory. The reaction of methane with CaO is proposed to proceed in the following reaction pathways: CaO + CH 4 → CaOCH 4 → [TS] → CaOH + CH 3, CaO + CH 4 → OCaCH 4 → [TS] → HOCaCH 3 → CaOH + CH 3 or [TS] → CaCH 3OH → Ca + CH 3OH, and OCaCH 4 → [TS] → HCaOCH 3 → CaOCH 3 + H or [TS] → CaCH 3OH → Ca + CH 3OH. The gas-phase methane-methanol conversion by CaO is suggested to proceed via two kinds of important reaction intermediates, HOCaCH 3 and HCaOCH 3, and the reaction pathway via the hydroxy intermediate (HOCaCH 3) is energetically more favorable than the other one via the methoxy intermediate (HCaOCH 3). The hydroxy intermediate HOCaCH 3 is predicted to be the energetically most preferred configuration in the reaction of CaO + CH 4. Meanwhile, these three product channels (CaOH + CH 3, CaOCH 3 + H and Ca + CH 3OH) are expected to compete with each other, and the formation of methyl radical is the most preferable pathway energetically. On the other hand, the intermediates HCaOCH 3 and HOCaCH 3 are predicted to be the energetically preferred configuration in the reaction of Ca + CH 3OH, which is precisely the reverse reaction of methane hydroxylation.

  11. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sung Gu; Department of Animal and Food Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40536; Han, Seong-Su

    Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCBmore » 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants.

  12. Tree CH4 fluxes in forestry drained peatland in southern Finland

    NASA Astrophysics Data System (ADS)

    Haikarainen, Iikka; Putkinen, Anuliina; Pyykkö, Petteri; Halmeenmäki, Elisa; Pihlatie, Mari

    2017-04-01

    Methane (CH4) is among the most important greenhouse gases and its atmospheric concentration is increasing. Boreal forests are commonly considered a net sink of atmospheric CH4 due to CH4 consuming bacteria in aerated soil layers. Recent studies have, however, demonstrated that trees are capable of emitting CH4 from their stems and shoots by transporting anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may act as independent sources of CH4. We have measured tree stem CH4 exchange of boreal tree species at Lettosuo, a nutrient rich peatland forest in Tammela, southern Finland (60˚ 38' N, 23˚ 57' E), using the static chamber technique. Three species, downy birch (Betula pubescens), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), were selected under investigation as they represent common boreal tree species. Fluxes of CH4 were measured during 7.6.2016 - 17.10.2016 from in total 25 sample trees growing on two different plots: a treatment plot where all the pines were removed to raise the water table level (WTL) and a control plot. Three birches from the treatment plot were selected to measure CH4 flux variation within vertical profile of the trees. Characterization of microbial communities, quantification of methanogenic and methanotrophic functional genes, and measurements of potential CH4 production and consumption from peat profile and forest floor moss samples were also carried out to obtain insight to the CH4 flux dynamics at the studied sites. The pine removal treatment did not markedly change the average WTL, but it made the WTL more variable with frequently 10-15 cm closer to soil surface compared to the WTL on the control plot. We found small and variable CH4 emissions from the stems of trees on both of the plots, while occasional consumption of CH4 was also present. Generally the CH4 emissions were higher and more dominant at the treatment plot compared to the control plot, and the fluxes were

  13. Polychlorinated biphenyls (PCBs) contamination and aryl hydrocarbon receptor (AhR) agonist activity of Omega-3 polyunsaturated fatty acid supplements: implications for daily intake of dioxins and PCBs.

    PubMed

    Bourdon, J A; Bazinet, T M; Arnason, T T; Kimpe, L E; Blais, J M; White, P A

    2010-11-01

    Omega-3 polyunsaturated fatty acid (n-3 PUFA) rich oils derived primarily from fish are frequently consumed as supplements. Due to the tendency of persistent organic pollutants (POPs) to accumulate in exposed organisms, n-3 PUFA supplements can contain sufficient POPs to present a risk to consumers. Here we investigated PCB concentrations and aryl hydrocarbon receptor (AhR) agonist activity in 17 n-3 PUFA supplements available in Canada. PCBs ranged from <0.8 to 793 ng g(-1) oil, with salmon- and seal-derived products yielding the highest values. AhR agonist activity from a reporter gene assay ranged from 1.3 to 72.2 pg TEQ g(-1) oil, with salmon and tuna yielding the highest values. When consumed at the recommended doses and as a supplement to the average Canadian diet, seal-derived oil can contribute to exceedance of the tolerable daily intake of 20 ng PCBs kg-BW(-1)day(-1), and salmon-, tuna-, and sea herring-derived oils can contribute to exceedance of the tolerable daily intake limit of 2.3 pg TEQ kg-BW(-1)day(-1). The beneficial properties of fish and n-3 PUFA supplements, and the results of this study suggest that it is prudent to consume supplements derived from small, cold-water fatty fish. Further research will be necessary to draw firm conclusions. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  14. Raman spectroscopy measurement of CH4 gas and CH4 dissolved in water for laser remote sensing in water

    NASA Astrophysics Data System (ADS)

    Somekawa, Toshihiro; Fujita, Masayuki

    2018-04-01

    We examined the applicability of Raman spectroscopy as a laser remote sensing tool for monitoring CH4 in water. The Raman technique has already been used successfully for measurements of CO2 gas in water. In this paper, considering the spectral transmittance of water, third harmonics of Q-switched Nd:YAG laser at 355 nm (UV region) was used for detection of CH4 Raman signals. The Raman signal at 2892 cm-1 from CH4 dissolved in water was detected at a tail of water Raman signal.

  15. Effects of Cannabinoid Agonists and Antagonists on Sleep and Breathing in Sprague-Dawley Rats.

    PubMed

    Calik, Michael W; Carley, David W

    2017-09-01

    There are no pharmacological treatments for obstructive sleep apnea syndrome, but dronabinol showed promise in a small pilot study. In anesthetized rats, dronabinol attenuates reflex apnea via activation of cannabinoid (CB) receptors located on vagal afferents; an effect blocked by cannabinoid type 1 (CB1) and/or type 2 (CB2) receptor antagonists. Here, using a natural model of central sleep apnea, we examine the effects of dronabinol, alone and in combination with selective antagonists in conscious rats chronically instrumented to stage sleep and measure cessation of breathing. Adult male Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography on multiple occasions separated by at least 3 days. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections: vehicle; vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol; dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonist. Dronabinol decreased the percent time spent in rapid eye movement (REM) sleep. CB receptor antagonists did not reverse this effect. Dronabinol also decreased apneas during sleep, and this apnea suppression was reversed by CB1 or CB1/CB2 receptor antagonism. Dronabinol's effects on apneas were dependent on CB1 receptor activation, while dronabinol's effects on REM sleep were CB receptor-independent. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Changing concentrations of CO, CH(4), C(5)H(8), CH(3)Br, CH(3)I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments.

    PubMed

    Wingenter, Oliver W; Haase, Karl B; Strutton, Peter; Friederich, Gernot; Meinardi, Simone; Blake, Donald R; Rowland, F Sherwood

    2004-06-08

    Oceanic iron (Fe) fertilization experiments have advanced the understanding of how Fe regulates biological productivity and air-sea carbon dioxide (CO(2)) exchange. However, little is known about the production and consumption of halocarbons and other gases as a result of Fe addition. Besides metabolizing inorganic carbon, marine microorganisms produce and consume many other trace gases. Several of these gases, which individually impact global climate, stratospheric ozone concentration, or local photochemistry, have not been previously quantified during an Fe-enrichment experiment. We describe results for selected dissolved trace gases including methane (CH(4)), isoprene (C(5)H(8)), methyl bromide (CH(3)Br), dimethyl sulfide, and oxygen (O(2)), which increased subsequent to Fe fertilization, and the associated decreases in concentrations of carbon monoxide (CO), methyl iodide (CH(3)I), and CO(2) observed during the Southern Ocean Iron Enrichment Experiments.

  17. The Drivers of the CH4 Seasonal Cycle in the Arctic and What Long-Term Observations of CH4 Imply About Trends in Arctic CH4 Fluxes

    NASA Astrophysics Data System (ADS)

    Sweeney, C.; Karion, A.; Bruhwiler, L.; Miller, J. B.; Wofsy, S. C.; Miller, C. E.; Chang, R. Y.; Dlugokencky, E. J.; Daube, B.; Pittman, J. V.; Dinardo, S. J.

    2012-12-01

    The large seasonal change in the atmospheric column for CH4 in the Arctic is driven by two dominant processes: transport of CH4 from low latitudes and surface emissions throughout the Arctic region. The NOAA ESRL Carbon Cycle Group Aircraft Program along with the NASA funded Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) have initiated an effort to better understand the factors controlling the seasonal changes in the mole fraction of CH4 in the Arctic with a multi-scale aircraft observing network in Alaska. The backbone of this network is multi-species flask sampling from 500 to 8000 masl that has been conducted every two weeks for the last 10 years over Poker Flat, AK. In addition regular profiles at the interior Alaska site at Poker Flat, NOAA has teamed up with the United States Coast Guard to make profiling flights with continuous observations of CO2, CO, CH4 and Ozone between Kodiak and Barrow every 2 weeks. More recently, CARVE has significantly added to this observational network with targeted flights focused on exploring the variability of CO2, CH4 and CO in the boundary layer both in the interior and the North Slope regions of Alaska. Taken together with the profiling of HIAPER Pole-to-Pole Observations (HIPPO), ground sites at Barrow and a new CARVE interior Alaska surface site just north of Fairbanks, AK, we now have the ability to investigate the full evolution of the seasonal cycle in the Arctic using both the multi-scale sampling offered by the different aircraft platforms as well as the multi-species sampling offered by in-situ and flask sampling. The flasks also provide a valuable tie-point between different platforms so that spatial and temporal gradients can be properly interpreted. In the context of the seasonal cycle observed by the aircraft platforms we will look at long term ground observations over the last 20 years to assess changes in Arctic CH4 emissions which have occurred as a result of 0.6C/decade changes in mean surface

  18. How to Combine ChIP with qPCR.

    PubMed

    Asp, Patrik

    2018-01-01

    Chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR) has in the last 15 years become a basic mainstream tool in genomic research. Numerous commercially available ChIP kits, qPCR kits, and real-time PCR systems allow for quick and easy analysis of virtually anything chromatin-related as long as there is an available antibody. However, the highly accurate quantitative dimension added by using qPCR to analyze ChIP samples significantly raises the bar in terms of experimental accuracy, appropriate controls, data analysis, and data presentation. This chapter will address these potential pitfalls by providing protocols and procedures that address the difficulties inherent in ChIP-qPCR assays.

  19. The ChArMEx database

    NASA Astrophysics Data System (ADS)

    Ferré, Helene; Belmahfoud, Nizar; Boichard, Jean-Luc; Brissebrat, Guillaume; Descloitres, Jacques; Fleury, Laurence; Focsa, Loredana; Henriot, Nicolas; Mastrorillo, Laurence; Mière, Arnaud; Vermeulen, Anne

    2014-05-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project includes long term monitoring of environmental parameters, intensive field campaigns, use of satellite data and modelling studies. Therefore ChARMEx scientists produce and need to access a wide diversity of data. In this context, the objective of the database task is to organize data management, distribution system and services, such as facilitating the exchange of information and stimulating the collaboration between researchers within the ChArMEx community, and beyond. The database relies on a strong collaboration between OMP and ICARE data centres and has been set up in the framework of the Mediterranean Integrated Studies at Regional And Locals Scales (MISTRALS) program data portal. All the data produced by or of interest for the ChArMEx community will be documented in the data catalogue and accessible through the database website: http://mistrals.sedoo.fr/ChArMEx. At present, the ChArMEx database contains about 75 datasets, including 50 in situ datasets (2012 and 2013 campaigns, Ersa background monitoring station), 25 model outputs (dust model intercomparison, MEDCORDEX scenarios), and a high resolution emission inventory over the Mediterranean. Many in situ datasets have been inserted in a relational database, in order to enable more accurate data selection and download of different datasets in a shared format. The database website offers different tools: - A registration procedure which enables any scientist to accept the data policy and apply for a user database account. - A data catalogue that complies with metadata international standards (ISO 19115-19139; INSPIRE European Directive; Global Change Master Directory Thesaurus). - Metadata forms to document

  20. Characterization and bioactivity of novel calcium antagonists - N-methoxy-benzyl haloperidol quaternary ammonium salt

    PubMed Central

    Chen, Yi-Cun; Zhu, Wei; Zhong, Shu-Ping; Zheng, Fu-Chun; Gao, Fen-Fei; Zhang, Yan-Mei; Xu, Han; Zheng, Yan-Shan; Shi, Gang-Gang

    2015-01-01

    BACKGROUND AND PURPOSE Calcium antagonists play an important role in clinical practice. However, most of them have serious side effects. We have synthesized a series of novel calcium antagonists, quaternary ammonium salt derivatives of haloperidol with N-p-methoxybenzyl (X1), N-m-methoxybenzyl (X2) and N-o-methoxybenzyl (X3) groups. The objective of this study was to investigate the bioactivity of these novel calcium antagonists, especially the vasodilation activity and cardiac side-effects. The possible working mechanisms of these haloperidol derivatives were also explored. EXPERIMENTAL APPROACH Novel calcium antagonists were synthesized by amination. Compounds were screened for their activity of vasodilation on isolated thoracic aortic ring of rats. Their cardiac side effects were explored. The patch-clamp, confocal laser microscopy and the computer-fitting molecular docking experiments were employed to investigate the possible working mechanisms of these calcium antagonists. RESULTS The novel calcium antagonists, X1, X2 and X3 showed stronger vasodilation effect and less cardiac side effect than that of classical calcium antagonists. They blocked L-type calcium channels with an potent effect order of X1 > X2 > X3. Consistently, X1, X2 and X3 interacted with different regions of Ca2+-CaM-CaV1.2 with an affinity order of X1 > X2 > X3. CONCLUSIONS The new halopedidol derivatives X1, X2 and X3 are novel calcium antagonists with stronger vasodilation effect and less cardiac side effect. They could have wide clinical application. PMID:26544729