Science.gov

Sample records for ahr target genes

  1. TCDD dysregulation of 13 AHR-target genes in rat liver

    SciTech Connect

    Watson, John D.; Prokopec, Stephenie D.; Smith, Ashley B.; Okey, Allan B.; Pohjanvirta, Raimo; Boutros, Paul C.

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules

  2. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    SciTech Connect

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  3. Dioxin-dependent and dioxin-independent gene batteries: comparison of liver and kidney in AHR-null mice.

    PubMed

    Boutros, Paul C; Bielefeld, Kirsten A; Pohjanvirta, Raimo; Harper, Patricia A

    2009-11-01

    The aryl hydrocarbon receptor (AHR) is a widely expressed ligand-dependent transcription factor that mediates cellular responses to dioxins and other planar aromatic hydrocarbons. Ahr-null mice are refractory to the toxic effects of dioxin exposure. Although some mechanistic aspects of AHR activity are well understood, the tissue specificity of AHR effects remains unclear, both during development and following administration of exogenous ligands. To address the latter issue, we defined and compared transcriptional responses to dioxin exposure in the liver and kidney of wild-type and Ahr-null adult C57BL/6J mice treated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin or corn-oil vehicle. In both tissues, essentially all effects of dioxin on hepatic mRNA levels were mediated by the AHR. Although 297 genes were altered by dioxin exposure in the liver, only 17 were changed in the kidney, including a number of well-established AHR target genes. Ahr genotype had a large effect in both tissues, profoundly remodeling both the renal and hepatic transcriptomes. Surprisingly, a large number of genes were affected by Ahr genotype in both tissues, suggesting the presence of a basal AHR gene battery. Alterations of the renal transcriptome in Ahr-null animals were associated with perturbation of specific functional pathways and enrichment of specific DNA motifs. Our results demonstrate the importance of intertissue comparisons, highlight the basal role of the AHR in liver and kidney, and support a role in development or normal physiology.

  4. Dioxin-Dependent and Dioxin-Independent Gene Batteries: Comparison of Liver and Kidney in AHR-Null Mice

    PubMed Central

    Boutros, Paul C.; Bielefeld, Kirsten A.; Pohjanvirta, Raimo; Harper, Patricia A.

    2009-01-01

    The aryl hydrocarbon receptor (AHR) is a widely expressed ligand-dependent transcription factor that mediates cellular responses to dioxins and other planar aromatic hydrocarbons. Ahr-null mice are refractory to the toxic effects of dioxin exposure. Although some mechanistic aspects of AHR activity are well understood, the tissue specificity of AHR effects remains unclear, both during development and following administration of exogenous ligands. To address the latter issue, we defined and compared transcriptional responses to dioxin exposure in the liver and kidney of wild-type and Ahr-null adult C57BL/6J mice treated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin or corn-oil vehicle. In both tissues, essentially all effects of dioxin on hepatic mRNA levels were mediated by the AHR. Although 297 genes were altered by dioxin exposure in the liver, only 17 were changed in the kidney, including a number of well-established AHR target genes. Ahr genotype had a large effect in both tissues, profoundly remodeling both the renal and hepatic transcriptomes. Surprisingly, a large number of genes were affected by Ahr genotype in both tissues, suggesting the presence of a basal AHR gene battery. Alterations of the renal transcriptome in Ahr-null animals were associated with perturbation of specific functional pathways and enrichment of specific DNA motifs. Our results demonstrate the importance of intertissue comparisons, highlight the basal role of the AHR in liver and kidney, and support a role in development or normal physiology. PMID:19759094

  5. Deficiency in Aryl Hydrocarbon Receptor (AHR) Expression throughout Aging Alters Gene Expression Profiles in Murine Long-Term Hematopoietic Stem Cells

    PubMed Central

    Bennett, John A.; Singh, Kameshwar P.; Unnisa, Zeenath; Welle, Stephen L.; Gasiewicz, Thomas A.

    2015-01-01

    Dysregulation of hematopoietic stem cell (HSC) signaling can contribute to the development of diseases of the blood system. Lack of aryl hydrocarbon receptor (AhR) has been associated with alterations in gene expression related to HSC function and the subsequent development of a myeloproliferative disorder in aging female mice. We sorted the most primitive population of HSCs with the highest stem cell potential (Long-term, or LT-HSCs) from 18-month-old AhR-null-allele (AhR-KO) and WT mice and analyzed gene expression using microarray to determine alterations in gene expression and cell signaling networks in HSCs that could potentially contribute to the aging phenotype of AhR-KO mice. Comparisons with previous array data from 8-week old mice indicated that aging alone is sufficient to alter gene expression. In addition, a significant number of gene expression differences were observed in aged LT-HSCs that are dependent on both aging and lack of AhR. Pathway analysis of these genes revealed networks related to hematopoietic stem cell activity or function. qPCR was used to confirm the differential expression of a subset of these genes, focusing on genes that may represent novel AhR targets due to the presence of a putative AhR binding site in their upstream regulatory region. We verified differential expression of PDGF-D, Smo, Wdfy1, Zbtb37 and Zfp382. Pathway analysis of this subset of genes revealed overlap between cellular functions of the novel AhR targets and AhR itself. Lentiviral-mediated knockdown of AhR in lineage-negative hematopoietic cells was sufficient to induce changes in all five of the candidate AhR targets identified. Taken together, these data suggest a role for AhR in HSC functional regulation, and identify novel HSC AhR target genes that may contribute to the phenotypes observed in AhR-KO mice. PMID:26208102

  6. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver

    SciTech Connect

    Qu Xiaoyu; Metz, Richard P.; Porter, Weston W.; Cassone, Vincent M.; Earnest, David J.

    2009-02-01

    The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1{sup ldc} and Per1{sup ldc}/Per2{sup ldc}). In vitro experiments yielded similar results demonstrating that siRNA inhibition of Per1 significantly increases the TCDD-induced expression of Cyp1A1 and Cyp1B1 in Hepa1c1c7 cells. Per2 inhibition in siRNA-infected Hepa1c1c7 cells had the opposite effect and significantly decreased both the induction of these p450 genes as well as AhR and Arnt expression in response to TCDD treatment. These findings suggest that Per1 may play a distinctive role in modulating AhR-regulated responses to TCDD in the liver.

  7. Acromegaly Is More Severe in Patients With AHR or AIP Gene Variants Living in Highly Polluted Areas.

    PubMed

    Cannavo, S; Ragonese, M; Puglisi, S; Romeo, P D; Torre, M L; Alibrandi, A; Scaroni, C; Occhi, G; Ceccato, F; Regazzo, D; De Menis, E; Sartorato, P; Arnaldi, G; Trementino, L; Trimarchi, F; Ferrau, F

    2016-04-01

    In this multicentric study, we aimed to correlate the occurrence of AHR and/or AIP. genes variants in acromegalic patients with the disease severity and/or with the response to somatostatin analogs (SSa) treatment, according to pollution exposition.

  8. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  9. Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines

    SciTech Connect

    Dumont, Julie Josse, Rozenn Lambert, Carine Antherieu, Sebastien Laurent, Veronique Loyer, Pascal Robin, Marie-Anne Guillouzo, Andre

    2010-11-15

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are two of the most common heterocyclic aromatic amines (HAA) produced during cooking of meat, fish and poultry. Both HAA produce different tumor profiles in rodents and are suspected to be carcinogenic in humans. In order to better understand the molecular basis of HAA toxicity, we have analyzed gene expression profiles in the metabolically competent human HepaRG cells using pangenomic oligonucleotide microarrays, after either a single (24-h) or a repeated (28-day) exposure to 10 {mu}M PhIP or MeIQx. The most responsive genes to both HAA were downstream targets of the arylhydrocarbon receptor (AhR): CYP1A1 and CYP1A2 after both time points and CYP1B1 and ALDH3A1 after 28 days. Accordingly, CYP1A1/1A2 induction in HAA-treated HepaRG cells was prevented by chemical inhibition or small interference RNA-mediated down-regulation of the AhR. Consistently, HAA induced activity of the CYP1A1 promoter, which contains a consensus AhR-related xenobiotic-responsive element (XRE). In addition, several other genes exhibited both time-dependent and compound-specific expression changes with, however, a smaller magnitude than previously reported for the prototypical AhR target genes. These changes concerned genes mainly related to cell growth and proliferation, apoptosis, and cancer. In conclusion, these results identify the AhR gene battery as the preferential target of PhIP and MeIQx in HepaRG cells and further support the hypothesis that intake of HAA in diet might increase human cancer risk.

  10. The Role of AhR in Autoimmune Regulation and Its Potential as a Therapeutic Target against CD4 T Cell Mediated Inflammatory Disorder

    PubMed Central

    Zhu, Conghui; Xie, Qunhui; Zhao, Bin

    2014-01-01

    AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently. PMID:24905409

  11. The role of AhR in autoimmune regulation and its potential as a therapeutic target against CD4 T cell mediated inflammatory disorder.

    PubMed

    Zhu, Conghui; Xie, Qunhui; Zhao, Bin

    2014-06-05

    AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently.

  12. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  13. A Dominant Negative Zebrafish Ahr2 Partially Protects Developing Zebrafish from Dioxin Toxicity

    PubMed Central

    Lanham, Kevin A.; Prasch, Amy L.; Weina, Kasia M.; Peterson, Richard E.; Heideman, Warren

    2011-01-01

    The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is thought to be caused by activation of the aryl hydrocarbon receptor (AHR). However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs). This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity. PMID:22194803

  14. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer.

    PubMed

    Spink, Barbara C; Bloom, Michael S; Wu, Susan; Sell, Stewart; Schneider, Erasmus; Ding, Xinxin; Spink, David C

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC)n, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC)2 alleles were observed; however, in western gorilla, (GGGGC)n alleles with n=2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC)n was n=4>5≫2, 6. When frequencies of the (GGGGC)n alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC)2 was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC)n short tandem repeats are inherited, and that the (GGGGC)2 allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility.

  15. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    PubMed Central

    Spink, Barbara C.; Bloom, Michael S.; Wu, Susan; Sell, Stewart; Schneider, Erasmus; Ding, Xinxin; Spink, David C.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC)n, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC)2 alleles were observed; however, in western gorilla, (GGGGC)n alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC)n was n = 4>5≫2, 6. When frequencies of the (GGGGC)n alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC)2 was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC)n short tandem repeats are inherited, and that the (GGGGC)2 allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. PMID:25447411

  16. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    SciTech Connect

    Spink, Barbara C.; Bloom, Michael S.; Wu, Susan; Sell, Stewart; Schneider, Erasmus; Ding, Xinxin; Spink, David C.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC){sub n}, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC){sub 2} alleles were observed; however, in western gorilla, (GGGGC){sub n} alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC){sub n} was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC){sub n} alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC){sub 2} was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC){sub n} short tandem repeats are inherited, and that the (GGGGC){sub 2} allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC){sub n}, where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC){sub n} microsatellite instability • AHR promoter activity of a construct with (GGGGC){sub 2} was lower than that of (GGGGC){sub 4} • The frequency of (GGGGC){sub 2} in lung

  17. 4-Nitrophenol exposure alters the AhR signaling pathway and related gene expression in the rat liver.

    PubMed

    Li, Ruonan; Song, Meiyan; Li, Zhi; Li, Yansen; Watanabe, Gen; Nagaoka, Kentaro; Taya, Kazuyoshi; Li, Chunmei

    2017-02-01

    4-Nitrophenol (PNP) is well known as an environmental endocrine disruptor. The aim of this study was to clarify the mechanism of PNP-induced liver damage and determine the regulatory involvement of the aryl hydrocarbon receptor (AhR) signaling pathway and associated gene expression. Immature male Wistar-Imamichi rats (28 days old) were randomly divided into control and PNP groups, which consisted of 1- and 3-day exposure (1 DE and 3 DE, respectively) and 3-day exposure followed by 3-day recovery (3 DE + 3 DR), groups. Each group was administered the vehicle or PNP (200 mg kg(-1) body weight). The body and liver weight were significantly decreased in the 3 DE group. The mRNA expression levels of estrogen receptor-α (ERα), glutathione S-transferase (GST) and AhR exhibited a significant increase in the 1 DE group whereas, in contrast, that of cytochrome P450 (CYP) 1A1 decreased significantly in the 3 DE +3 DR group. AhR and CYP1A1 proteins were detected in the cytoplasm of hepatocytes of the 1 DE and 3 DE +3 DR groups whereas the ERα protein was found in the hepatocyte nuclei of the 1 DE and 3 DE groups. The present study demonstrates that PNP activated the AhR signaling pathway and regulated related CYP1A1 and GST gene expression in the liver. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Modeling of the Aryl Hydrocarbon Receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands

    PubMed Central

    Bisson, William; Koch, Daniel; O’Donnell, Edmond; Khalil, Sammy M.; Kerkvliet, Nancy; Tanguay, Robert; Abagyan, Ruben; Kolluri, Siva Kumar

    2012-01-01

    The Aryl Hydrocarbon Receptor (AhR) is a ligand-activated transcription factor; the AhR Per-AhR/Arnt-Sim (PAS) domain binds ligands. We developed homology models of the AhR PAS domain to characterize previously observed intra- and inter-species differences in ligand binding using Molecular Docking. In silico structure-based virtual ligand screening using our model resulted in the identification of pinocembrin and 5-hydroxy-7-methoxyflavone, which promoted nuclear translocation and transcriptional activation of AhR and AhR-dependent induction of endogenous target genes. PMID:19719119

  19. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  20. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Franks, Diana G; Nacci, Diane; Champlin, Denise; Hahn, Mark E

    2015-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off-target

  1. Promoter analysis of TCDD-inducible genes in a thymic epithelial cell line indicates the potential for cell-specific transcription factor crosstalk in the AhR response

    SciTech Connect

    Frericks, Markus; Burgoon, Lyle D.; Zacharewski, Timothy R.; Esser, Charlotte

    2008-10-15

    Activation of the aryl hydrocarbon receptor (AhR{sup 1}) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits severe immunosuppression accompanied by thymic atrophy. Previous evidence suggests that TCDD targets both thymocytes and thymic epithelial cells. The AhR induces cell-specific changes in gene transcription via binding to the dioxin response element DRE; however, the underlying specificity-mechanisms, in particular with regard to the role of promoter element context, and possible transcription factor crosstalk remain poorly understood. Global gene expression in the cortical thymic epithelial cell line ET at 2, 4, and 6 h following 5 nM TCDD exposure resulted in differential regulation of 201 genes. JASPAR and TRANSFAC mapped the statistically over-represented promoter elements in the regulated genes to specific transcription factor binding sites, suggesting a regulatory role in AhR signaling. Over-represented elements included the xenobiotic response element XRE, NF{kappa}B-Rel, HRE, PPAR{gamma}, GR, PAX-4 and estrogen receptor binding sites. Co-treatment experiments with TCDD and CoCl{sub 2}, to induce hypoxia, or TCDD and 17-{beta}-estradiol (E2) indicated crosstalk between AhR and Hif or ER, in agreement with other experimental models. The computational identification of TFBS and the demonstration of interaction confirm their interactions with AhR signaling and suggest that the other over-represented elements may also be important in the immunosuppressive effects elicited by TCDD. In conclusion, we demonstrated the importance of promoter element cooperation in the shaping of a cell-specific AhR response. Our findings regarding the transcriptional changes in cortical epithelial cells are congruent with the well-known thymotoxic TCDD-phenotype, and useful in new hypothesis generation of the role of cortical TECs in TCDD toxicity.

  2. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin.

    PubMed

    Hidaka, Takanori; Ogawa, Eisaku; Kobayashi, Eri H; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Fujimura, Taku; Aiba, Setsuya; Nakayama, Keiko; Okuyama, Ryuhei; Yamamoto, Masayuki

    2017-01-01

    Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.

  3. INSIGHTS FROM AHR AND ARNT GENE KNOCKOUT STUDIES REGARDING RESPONSES TO TCDD AND REGULATION OF NORMAL EMBRYONIC DEVELOPMENT

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) and the AhR nuclear translocator (ARNT) are members of the Per-ARNT-Sim (PAS) family of proteins. The AhR binds members of the chemical family that includes dioxins, furans and coplanar polychlorinated biphenyls (PCBs). A ligand-AhR-ARNT comp...

  4. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    PubMed Central

    Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  5. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC.

    PubMed

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-10-13

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice.

  6. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica.

    PubMed

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-12-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.

  7. Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor

    SciTech Connect

    Ikuta, Togo; Kawajiri, Kaname . E-mail: kawajiri@cancer-c.pref.saitama.jp

    2006-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. We previously showed that AhR localizes predominantly in the cytoplasm under high cell densities of a keratinocytes cell line, HaCaT, but accumulates in the nucleus at low cell densities. In the current report, we show that the Slug, which is a member of the snail/slug family of zinc finger transcriptional repressors critical for induction of epithelial-mesenchymal transitions (EMT), is activated transcriptionally in accordance with nuclear accumulation of AhR. By reporter assay of the promoter of the Slug gene, gel shift and chromatin immunoprecipitation analyses showed AhR directly binds to xenobiotic responsive element 5 at - 0.7 kb of the gene. AhR-targeted gene silencing by small interfering RNA duplexes led to the abolishment of not only CYP1A1 but also Slug induction by 3-methycholanthrene. The Slug was co-localized to the AhR at the wound margins of HaCaT cells, where apparent nuclear distribution of AhR and Slug was observed. The induced Slug was associated with reduction of an epithelial marker of cytokeratin-18 and with an increase in the mesenchymal marker, fibronectin. Taken together, these findings suggest that AhR participated in Slug induction, which, in turn, regulates cellular physiology including cell adhesion and migration.

  8. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats.

    PubMed

    Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei

    2016-09-01

    4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine.

  9. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology.

  10. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    SciTech Connect

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia R.; Woodin, Bruce; Stegeman, John J.

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  11. New CYP1 genes in the frog Xenopus (Silurana) tropicalis: Induction patterns and effects of AHR agonists during development

    SciTech Connect

    Joensson, Maria E.; Berg, Cecilia; Goldstone, Jared V.; Stegeman, John J.

    2011-01-15

    The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), {beta}-naphthoflavone ({beta}NF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versus the control, respectively). {beta}NF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and {beta}NF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 {mu}M PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 {mu}M PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.

  12. New CYP1 genes in the frog Xenopus (Silurana) tropicalis: Induction patterns and effects of AHR agonists during development

    PubMed Central

    Jönsson, Maria E.; Berg, Cecilia; Goldstone, Jared V.; Stegeman, John J.

    2010-01-01

    The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), β-naphthoflavone (βNF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versus the control, respectively). βNF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and βNF was positively correlated to the number of putative dioxin response elements 0–20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 µM PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 µM PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions. PMID:20965207

  13. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish.

    PubMed

    Jönsson, Maria E; Kubota, Akira; Timme-Laragy, Alicia R; Woodin, Bruce; Stegeman, John J

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR(2)) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC(50) values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2nM PCB126 approximately 30% of eleutheroembryos(3) failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells.

  14. Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats

    PubMed Central

    2014-01-01

    Background The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. Results We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Conclusion Together, these data suggest that F. heteroclitus populations in reference

  15. In vivo characterization of an AHR-dependent long non-coding RNA required for proper Sox9b expression.

    PubMed

    Garcia, Gloria R; Goodale, Britton C; Wiley, Michelle W; La Du, Jane K; Hendrix, David A; Tanguay, Robert L

    2017-04-06

    Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long non-coding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2-dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests a relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurological and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway.

  16. PAHs Target Hematopoietic Linages in Bone Marrow through Cyp1b1 Primarily in Mesenchymal Stromal Cells but Not AhR: A Reconstituted In Vitro Model

    PubMed Central

    Larsen, Michele Campaigne; N'jai, Alhaji; Czuprynski, Charles J.

    2016-01-01

    7,12-Dimethylbenz(a)anthracene (DMBA) rapidly suppresses hematopoietic progenitors, measured as colony forming units (CFU), in mouse bone marrow (BM) leading to mature cell losses as replenishment fails. These losses are mediated by Cyp1b1, independent of the AhR, despite induction of Cyp1b1. BM mesenchymal progenitor cells (MPC) may mediate these responses since basal Cyp1b1 is minimally induced. PreB colony forming unit activity (PreB CFU) is lost within 24 hours in isolated BM cells (BMC) unless cocultured with cells derived from primary MPC (BMS2 line). The mouse embryonic OP9 line, which provides more efficient coculture support, shares similar induction-resistant Cyp1b1 characteristics. This OP9 support is suppressed by DMBA, which is then prevented by Cyp1b1 inhibitors. OP9-enriched medium partially sustains CFU activities but loses DMBA-mediated suppression, consistent with mediation by OP9 Cyp1b1. PreB CFU activity in BMC from Cyp1b1-ko mice has enhanced sensitivity to DMBA. BMC gene expression profiles identified cytokines and developmental factors that are substantially changed in Cyp1b1-ko mice. DMBA had few effects in WT mice but systematically modified many clustered responses in Cyp1b1-ko mice. Typical BMC AhR-responsive genes were insensitive to Cyp1b1 deletion. TCDD replicated Cyp1b1 interventions, suggesting alternative AhR mediation. Cyp1b1 also diminishes oxidative stress, a key cause of stem cell instability. PMID:27891153

  17. AIP mutations impair AhR signaling in pituitary adenoma patients fibroblasts and in GH3 cells.

    PubMed

    Lecoq, Anne-Lise; Viengchareun, Say; Hage, Mirella; Bouligand, Jérôme; Young, Jacques; Boutron, Audrey; Zizzari, Philippe; Lombès, Marc; Chanson, Philippe; Kamenický, Peter

    2016-05-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas through unknown molecular mechanisms. The best-known interacting partner of AIP is the aryl hydrocarbon receptor (AhR), a transcription factor that mediates the effects of xenobiotics implicated in carcinogenesis. As 75% of AIP mutations disrupt the physical and/or functional interaction with AhR, we postulated that the tumorigenic potential of AIP mutations might result from altered AhR signaling. We evaluated the impact of AIP mutations on the AhR signaling pathway, first in fibroblasts from AIP-mutated patients with pituitary adenomas, by comparison with fibroblasts from healthy subjects, then in transfected pituitary GH3 cells. The AIP protein level in mutated fibroblasts was about half of that in cells from healthy subjects, but AhR expression was unaffected. Gene expression analyses showed significant modifications in the expression of the AhR target genes CYP1B1 and AHRR in AIP-mutated fibroblasts, both before and after stimulation with the endogenous AhR ligand kynurenine. Kynurenine increased Cyp1b1 expression to a greater extent in GH3 cells overexpressing wild type compared with cells expressing mutant AIP Knockdown of endogenous Aip in these cells attenuated Cyp1b1 induction by the AhR ligand. Both mutant AIP expression and knockdown of endogenous Aip affected the kynurenine-dependent GH secretion of GH3 cells. This study of human fibroblasts bearing endogenous heterozygous AIP mutations and transfected pituitary GH3 cells shows that AIP mutations affect the AIP protein level and alter AhR transcriptional activity in a gene- and tissue-dependent manner.

  18. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    NASA Astrophysics Data System (ADS)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  19. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    PubMed Central

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-01-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress. PMID:27713569

  20. Conventional murine gene targeting.

    PubMed

    Zimmermann, Albert G; Sun, Yue

    2013-01-01

    Murine gene knockout models engineered over the last two decades have continued to demonstrate their potential as invaluable tools in understanding the role of gene function in the context of normal human development and disease. The more recent elucidation of the human and mouse genomes through sequencing has opened up the capability to elucidate the function of every human gene. State-of-the-art mouse model generation allows, through a multitude of experimental steps requiring careful standardization, gene function to be reliably and predictably ablated in a live model system. The application of these standardized methodologies to directly target gene function through murine gene knockout has to date provided comprehensive and verifiable genetic models that have contributed tremendously to our understanding of the cellular and molecular pathways underlying normal and disease states in humans. The ensuing chapter provides an overview of the latest steps and procedures required to ablate gene function in a murine model.

  1. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    SciTech Connect

    Manning, Gillian E.; Mundy, Lukas J.; Crump, Doug; Jones, Stephanie P.; Chiu, Suzanne; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, in combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity than CYP

  2. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis

    PubMed Central

    van den Bogaard, Ellen H.; Bergboer, Judith G.M.; Vonk-Bergers, Mieke; van Vlijmen-Willems, Ivonne M.J.J.; Hato, Stanleyson V.; van der Valk, Pieter G.M.; Schröder, Jens Michael; Joosten, Irma; Zeeuwen, Patrick L.J.M.; Schalkwijk, Joost

    2013-01-01

    Topical application of coal tar is one of the oldest therapies for atopic dermatitis (AD), a T helper 2 (Th2) lymphocyte–mediated skin disease associated with loss-of-function mutations in the skin barrier gene, filaggrin (FLG). Despite its longstanding clinical use and efficacy, the molecular mechanism of coal tar therapy is unknown. Using organotypic skin models with primary keratinocytes from AD patients and controls, we found that coal tar activated the aryl hydrocarbon receptor (AHR), resulting in induction of epidermal differentiation. AHR knockdown by siRNA completely abrogated this effect. Coal tar restored filaggrin expression in FLG-haploinsufficient keratinocytes to wild-type levels, and counteracted Th2 cytokine–mediated downregulation of skin barrier proteins. In AD patients, coal tar completely restored expression of major skin barrier proteins, including filaggrin. Using organotypic skin models stimulated with Th2 cytokines IL-4 and IL-13, we found coal tar to diminish spongiosis, apoptosis, and CCL26 expression, all AD hallmarks. Coal tar interfered with Th2 cytokine signaling via dephosphorylation of STAT6, most likely due to AHR-regulated activation of the NRF2 antioxidative stress pathway. The therapeutic effect of AHR activation herein described opens a new avenue to reconsider AHR as a pharmacological target and could lead to the development of mechanism-based drugs for AD. PMID:23348739

  3. Genetic and epigenetic regulation of AHR gene expression in MCF-7 breast cancer cells: role of the proximal promoter GC-rich region

    PubMed Central

    Englert, Neal A.; Turesky, Robert J.; Han, Weiguo; Bessette, Erin E.; Spivack, Simon D.; Caggana, Michele; Spink, David C.; Spink, Barbara C.

    2014-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, contributes to carcinogenesis through its role in the regulation of cytochrome P450 1 (CYP1)-catalyzed metabolism of carcinogens. Here, we investigated genetic and epigenetic mechanisms that affect AhR expression. Analyses of the human AHR proximal promoter in MCF-7 human breast cancer cells using luciferase assays and electrophoretic mobility shift assays revealed multiple specificity protein (Sp) 1 binding sequences that are transcriptional activators in vitro. The regulation of AhR expression was evaluated in long-term estrogen exposed (LTEE) MCF-7 cells, which showed increased AhR expression, enhanced CYP1 inducibility, and increased capacity to form DNA adducts when exposed to the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. The increased AhR expression in LTEE cells was found not to result from increased mRNA stability, differential RNA processing, or decreased DNA methylation. Analysis of the AHR proximal promoter region using chromatin immunoprecipitation confirmed that enhanced expression of AhR in LTEE cells involves changes in histone modifications, notably decreased trimethylation of histone 3, lysine 27. Upon further examination of the GC-rich Sp1-binding region, we confirmed that it contains a polymorphic (GGGGC)n repeat. In a population of newborns from New York State, the allele frequency of (GGGGC)n was n = 4>5≫6, 2. Circular dichroism spectroscopy revealed the ability of sequences of this GC-rich region to form guanine-quadruplex structures in vitro. These studies revealed multiple levels at which AhR expression may be controlled, and offer additional insights into mechanisms regulating AhR expression that can ultimately impact carcinogenesis. PMID:22728919

  4. Genetic and epigenetic regulation of AHR gene expression in MCF-7 breast cancer cells: role of the proximal promoter GC-rich region.

    PubMed

    Englert, Neal A; Turesky, Robert J; Han, Weiguo; Bessette, Erin E; Spivack, Simon D; Caggana, Michele; Spink, David C; Spink, Barbara C

    2012-09-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, contributes to carcinogenesis through its role in the regulation of cytochrome P450 1 (CYP1)-catalyzed metabolism of carcinogens. Here, we investigated genetic and epigenetic mechanisms that affect AhR expression. Analyses of the human AHR proximal promoter in MCF-7 human breast cancer cells using luciferase assays and electrophoretic mobility shift assays revealed multiple specificity protein (Sp) 1 binding sequences that are transcriptional activators in vitro. The regulation of AhR expression was evaluated in long-term estrogen exposed (LTEE) MCF-7 cells, which showed increased AhR expression, enhanced CYP1 inducibility, and increased capacity to form DNA adducts when exposed to the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. The increased AhR expression in LTEE cells was found not to result from increased mRNA stability, differential RNA processing, or decreased DNA methylation. Analysis of the AHR proximal promoter region using chromatin immunoprecipitation confirmed that enhanced expression of AhR in LTEE cells involves changes in histone modifications, notably decreased trimethylation of histone 3, lysine 27. Upon further examination of the GC-rich Sp1-binding region, we confirmed that it contains a polymorphic (GGGGC)(n) repeat. In a population of newborns from New York State, the allele frequency of (GGGGC)(n) was n = 4 > 5 ≫ 6, 2. Circular dichroism spectroscopy revealed the ability of sequences of this GC-rich region to form guanine-quadruplex structures in vitro. These studies revealed multiple levels at which AhR expression may be controlled, and offer additional insights into mechanisms regulating AhR expression that can ultimately impact carcinogenesis.

  5. Role of DNA methylation of AHR1 and AHR2 promoters in differential sensitivity to PCBs in Atlantic Killifish, Fundulus heteroclitus.

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Hahn, Mark E

    2011-01-17

    Atlantic killifish (Fundulus heteroclitus) inhabiting the PCB-contaminated Superfund site in New Bedford Harbor (MA, USA) have evolved genetic resistance to the toxic effects of these compounds. They also lack induction of cytochrome P4501A (CYP1A) and other aryl hydrocarbon receptor (AHR)-dependent responses after exposure to AHR agonists, suggesting an overall down-regulation of the AHR signaling pathway. In this study, we hypothesized that the genetic resistance is due to altered AHR expression resulting from hypermethylation of DNA in the promoter region of AHR genes in fish inhabiting New Bedford Harbor. To test this hypothesis, we cloned and sequenced AHR1 and AHR2 promoter regions and employed bisulfite conversion-polymerase chain reaction (BS-PCR) followed by clonal analysis to compare the methylation status of CpG islands of AHR1 and AHR2 in livers of adult killifish collected from New Bedford Harbor and a reference site (Scorton Creek, MA). No significant differences in methylation profiles were observed in either AHR1 or AHR2 promoter regions between NBH and SC fish. However, hypermethylation of the AHR1 promoter correlated with low expression of transcripts in the liver in both populations. In comparison to AHR1, hepatic mRNA expression of AHR2 is high and its promoter is hypomethylated. Taken together, our results suggest that genetic resistance to contaminants in NBH fish is not due to altered methylation of AHR promoter regions, but that promoter methylation may control tissue-specific expression of AHR genes in killifish.

  6. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes

    SciTech Connect

    Han, Sung Gu; Han, Seong-Su; Toborek, Michal; Hennig, Bernhard

    2012-06-01

    Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCB 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants. ► We

  7. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    SciTech Connect

    Lo, Raymond; Celius, Trine; Forgacs, Agnes L.; Dere, Edward; MacPherson, Laura; Harper, Patricia; Zacharewski, Timothy; Matthews, Jason

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed an over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched with

  8. Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers

    SciTech Connect

    Yongwen Chen; Yun Bai; Jing Yuan; Weihong Chen; Jianya Sun; Hong Wang; Huashan Liang; Liang Guo; Xiaobo Yang; Hao Tan; Yougong Su; Qingyi Wei; Tangchun Wu

    2006-09-15

    Accumulating evidence has shown that both DNA damage caused by the metabolites of polycyclic aromatic hydrocarbons (PAH) and genetic polymorphisms in PAH-metabolic genes contribute to individual susceptibility to PAH-induced carcinogenesis. However, the functional relevance of genetic polymorphisms in PAH-metabolic genes in exposed individuals is still unclear. In this study of 240 coke-oven workers (the exposed group) and 123 non-coke-oven workers (the control group), we genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and GSTT1 genes by PCR methods, and determined the levels of DNA damage in peripheral blood lymphocytes using the alkaline comet assay. It was found that the ln-transformed Olive tail moment (Olive TM) values in the exposed group were significantly higher than those in the control group. Furthermore, in the exposed group, the Olive TM values in subjects with the AhR Lys{sup 554} variant genotype were higher than those with the AhR Arg{sup 554}/Arg{sup 554} genotype. Similarly, the Olive TM values in the non-coke-oven workers with the CYP1A1 MspI CC + CT genotype were lower than the values of those with the CYP1A1 MspI TT genotype. However, these differences were not evident for GSTM1 and GSTT1. These results suggested that the polymorphism of AhR might modulate the effects of PAHs in the exposed group; however, the underlying molecular mechanisms by which this polymorphism may have affected the levels of PAH-induced DNA damage warrant further investigation.

  9. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR

    PubMed Central

    Sahm, Felix; Rauschenbach, Katharina J.; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-01-01

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR–IL-6–STAT3 signaling loop. Inhibition of the AHR–IL-6–STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients. PMID:24657910

  10. Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR).

    PubMed

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-09-14

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics.

  11. Ahr function in lymphocytes: emerging concepts

    PubMed Central

    Zhou, Liang

    2015-01-01

    The aryl hydrocarbon receptor (Ahr) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with Ahr's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for Ahr in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate Ahr transcription and function. I propose a conceptual framework in which Ahr function is determined by three factors: the amount of Ahr in any given cell, the abundance and potency of Ahr ligands within certain tissues, and the tissue microenvironment wherein Ahr+ cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of Ahr function. PMID:26700314

  12. The emerging roles of AhR in physiology and immunity.

    PubMed

    Hao, Nan; Whitelaw, Murray L

    2013-09-01

    The aryl hydrocarbon receptor (AhR) is traditionally defined as a transcriptional regulator involved in adaptive xenobiotic response, however, emerging evidence supports physiological functions of AhR in normal cell development and immune response. The role of AhR in immunomodulation is multi-dimensional. On the one hand, activation of AhR by TCDD and other ligands leads to profound immunosuppression, potentially via skewed Th1/Th2 cell balance toward Th1 dominance, and boosted Treg cell differentiation. On the other hand, activation of AhR can also induce Th17 cell polarization and increase the severity of autoimmune disease. In addition to T lymphocytes, the AhR also appears to play a vital role in B cell maturation, and regulates the activity of macrophages, dendritic cells and neutrophils following lipopolysaccharide challenge or influenza virus infection. In these scenarios, activation of AhR is associated with decreased host response and reduced survival. Furthermore, gene knock out studies suggest that AhR is indispensable for the postnatal maintenance of intestinal intraepithelial lymphocytes and skin-resident dendritic epidermal gamma delta T cells, providing a potential link between AhR and gut immunity and wound healing. It is well accepted that the magnitude and the type of immune response is dependent on the local cytokine milieu and the AhR appears to be one of the key factors involved in the fine turning of this cytokine balance.

  13. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  14. Regulation of Ahr signaling by Nrf2 during development: Effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio).

    PubMed

    Rousseau, Michelle E; Sant, Karilyn E; Borden, Linnea R; Franks, Diana G; Hahn, Mark E; Timme-Laragy, Alicia R

    2015-10-01

    The embryotoxicity of co-planar PCBs is regulated by the aryl hydrocarbon receptor (Ahr), and has been reported to involve oxidative stress. Ahr participates in crosstalk with another transcription factor, Nfe2l2, or Nrf2. Nrf2 binds to antioxidant response elements to regulate the adaptive response to oxidative stress. To explore aspects of the crosstalk between Nrf2 and Ahr and its impact on development, we used zebrafish (Danio rerio) with a mutated DNA binding domain in Nrf2a (nrf2a(fh318/fh318)), rendering these embryos more sensitive to oxidative stress. Embryos were exposed to 2 nM or 5 nM PCB126 at 24 h post fertilization (prim-5 stage of pharyngula) and examined for gene expression and morphology at 4 days post fertilization (dpf; protruding - mouth stage). Nrf2a mutant eleutheroembryos were more sensitive to PCB126 toxicity at 4 dpf, and in the absence of treatment also displayed some subtle developmental differences from wildtype embryos, including delayed inflation of the swim bladder and smaller yolk sacs. We used qPCR to measure changes in expression of the nrf gene family, keap1a, keap1b, the ahr gene family, and known target genes. cyp1a induction by PCB126 was enhanced in the Nrf2a mutants (156-fold in wildtypes vs. 228-fold in mutants exposed to 5 nM). Decreased expression of heme oxygenase (decycling) 1 (hmox1) in the Nrf2a mutants was accompanied by increased nrf2b expression. Target genes of Nrf2a and AhR2, NAD(P)H:quinone oxidoreductase 1 (nqo1) and glutathione S-transferase, alpha-like (gsta1), showed a 2-5-fold increase in expression in the Nrf2a mutants as compared to wildtype. This study elucidates the interaction between two important transcription factor pathways in the developmental toxicity of co-planar PCBs.

  15. Genome-Wide RNAi High-Throughput Screen Identifies Proteins Necessary for the AHR-Dependent Induction of CYP1A1 by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

    PubMed Central

    Hankinson, Oliver

    2013-01-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  16. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  17. Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: preventive effects of resveratrol.

    PubMed

    Papoutsis, Andreas J; Selmin, Ornella I; Borg, Jamie L; Romagnolo, Donato F

    2015-04-01

    Studies with murine models suggest that maternal exposure to aromatic hydrocarbon receptor (AhR) agonists may impair mammary gland differentiation and increase the susceptibility to mammary carcinogenesis in offspring. However, the molecular mechanisms responsible for these perturbations remain largely unknown. Previously, we reported that the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CpG methylation of the breast cancer-1 (BRCA-1) gene and reduced BRCA-1 expression in breast cancer cell lines. Based on the information both the human and rat BRCA-1 genes harbor xenobiotic responsive elements (XRE = 5'-GCGTG-3'), which are binding targets for the AhR, we extended our studies to the analysis of offspring of pregnant Sprague-Dawley rats treated during gestation with TCDD alone or in combination with the dietary AhR antagonist resveratrol (Res). We report that the in utero exposure to TCDD increased the number of terminal end buds (TEB) and reduced BRCA-1 expression in mammary tissue of offspring. The treatment with TCDD induced occupancy of the BRCA-1 promoter by DNA methyltransferase-1 (DNMT-1), CpG methylation of the BRCA-1 promoter, and expression of cyclin D1 and cyclin-dependent kinase-4 (CDK4). These changes were partially overridden by pre-exposure to Res, which stimulated the expression of the AhR repressor (AhRR) and its recruitment to the BRCA-1 gene. These findings point to maternal exposure to AhR agonists as a risk factor for breast cancer in offspring through epigenetic inhibition of BRCA-1 expression, whereas dietary antagonists of the AhR may exert protective effects.

  18. Bacteriophage gene targeting vectors generated by transplacement.

    PubMed

    Aoyama, C; Woltjen, K; Mansergh, F C; Ishidate, K; Rancourt, D E

    2002-10-01

    A rate-determining step in gene targeting is the generation of the targeting vector. We have developed bacteriophage gene targeting vectorology, which shortens the timeline of targeting vector construction. Using retro-recombination screening, we can rapidly isolate targeting vectors from an embryonic stem cell genomic library via integrative and excisive recombination. We have demonstrated that recombination can be used to introduce specific point mutations or unique restriction sites into gene targeting vectors via transplacement. Using the choline/ethanolamine kinase alpha and beta genes as models, we demonstrate that transplacement can also be used to introduce specifically a neo resistance cassette into a gene targeting phage. In our experience, the lambdaTK gene targeting system offers considerable flexibility and efficiency in TV construction, which makes generating multiple vectors in one week's time possible.

  19. Cancer gene therapy targeting cellular apoptosis machinery.

    PubMed

    Jia, Lin-Tao; Chen, Si-Yi; Yang, An-Gang

    2012-11-01

    The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.

  20. Targeting Radiotherapy to Cancer by Gene Transfer

    PubMed Central

    2003-01-01

    Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer with low molecular weight radiopharmaceuticals. PMID:12721515

  1. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    SciTech Connect

    Wincent, Emma; Stegeman, John J.; Jönsson, Maria E.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.

  2. The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates

    PubMed Central

    Fritz, Wayne A.; Lin, Tien-Min; Peterson, Richard E.

    2008-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1α) and aryl hydrocarbon receptor nuclear translocator (ARNT) are basic helix-loop-helix/per-arnt-sim (PAS) family transcription factors. During angiogenesis and tumor growth, HIF-1α dimerizes with ARNT, inducing expression of many genes, including vascular endothelial growth factor (VEGF). ARNT also dimerizes with the aryl hydrocarbon receptor (AhR). AhR-null (Ahr−/−) transgenic adenocarcinoma of the mouse prostate (TRAMP) mice develop prostate tumors with greater frequency than AhR wild-type (Ahr+/+) TRAMP mice, even though prevalence of prostate epithelial hyperplasia is not inhibited. This suggests that Ahr inhibits prostate carcinogenesis. In TRAMP mice, prostatic epithelial hyperplasia results in stabilized HIF-1α, inducing expression of VEGF, a prerequisite for tumor growth and angiogenesis. Since ARNT is a common dimerization partner of AhR and HIF-1α, we hypothesized that the AhR inhibits prostate tumor formation by competing with HIF-1α for ARNT, thereby limiting VEGF production. Prostates from Ahr+/+, Ahr+/− and Ahr−/− C57BL/6J TRAMP mice were cultured in the presence of graded concentrations of vanadate, an inducer of VEGF through the HIF-1α–ARNT pathway. Vanadate induced VEGF protein in a dose-dependent fashion in Ahr+/− and Ahr−/− TRAMP cultures, but not in Ahr+/+ cultures. However, vanadate induced upstream proteins in the phosphatidylinositol 3-kinase-signaling cascade to a similar extent in TRAMPs of each Ahr genotype, evidenced by v-akt murine thymoma viral oncogene homolog (Akt) phosphorylation. These findings suggest that AhR sequesters ARNT, decreasing interaction with HIF-1α reducing VEGF production. Since VEGF is required for tumor vascularization and growth, these studies further suggest that reduction in VEGF correlates with inhibited prostate carcinogenesis in Ahr+/+ TRAMP mice. PMID:18359762

  3. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  4. Therapeutic targeting of tumor suppressor genes.

    PubMed

    Morris, Luc G T; Chan, Timothy A

    2015-05-01

    Carcinogenesis is a multistep process attributable to both gain-of-function mutations in oncogenes and loss-of-function mutations in tumor suppressor genes. Currently, most molecular targeted therapies are inhibitors of oncogenes, because inactivated tumor suppressor genes have proven harder to "drug." Nevertheless, in cancers, tumor suppressor genes undergo alteration more frequently than do oncogenes. In recent years, several promising strategies directed at tumor suppressor genes, or the pathways controlled by these genes, have emerged. Here, we describe advances in a number of different methodologies aimed at therapeutically targeting tumors driven by inactivated tumor suppressor genes.

  5. The activation mechanism of the aryl hydrocarbon receptor (AhR) by molecular chaperone HSP90

    PubMed Central

    Tsuji, Noriko; Fukuda, Kana; Nagata, Yuhtaroh; Okada, Hirotaka; Haga, Asami; Hatakeyama, Shiori; Yoshida, Shiho; Okamoto, Tomoya; Hosaka, Miki; Sekine, Kazuhiro; Ohtaka, Kei; Yamamoto, Soh; Otaka, Michiro; Grave, Ewa; Itoh, Hideaki

    2014-01-01

    The aryl hydrocarbon receptor is a member of the nuclear receptor superfamily that associates with the molecular chaperone HSP90 in the cytoplasm. The activation mechanism of the AhR is not yet fully understood. It has been proposed that after binding of ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3methylcholanthrene (3-MC), or β-naphthoflavone (β-NF), the AhR dissociates from HSP90 and translocates to the nucleus. It has also been hypothesized that the AhR translocates to the nucleus and forms a complex with HSP90 and other co-chaperones. There are a few reports about the direct association or dissociation of AhR and HSP90 due to difficulties in purifying AhR. We constructed and purified the PAS domain from AhR. Binding of the AhR-PAS domain to β-NF affinity resin suggested that it possesses ligand-binding affinity. We demonstrated that the AhR-PAS domain binds to HSP90 and the association is not affected by ligand binding. The ligand 17-DMAG inhibited binding of HSP90 to GST-PAS. In an immunoprecipitation assay, HSP90 was co-immunoprecipitated with AhR both in the presence or absence of ligand. Endogenous AhR decreased in the cytoplasm and increased in the nucleus of HeLa cells 15 min after treatment with ligand. These results suggested that the ligand-bound AhR is translocated to nucleus while in complex with HSP90. We used an in situ proximity ligation assay to confirm whether AhR was translocated to the nucleus alone or together with HSP90. HSP90 was co-localized with AhR after the nuclear translocation. It has been suggested that the ligand-bound AhR was translocated to the nucleus with HSP90. Activated AhR acts as a transcription factor, as shown by the transcription induction of the gene CYP1A1 8 h after treatment with β-NF. PMID:25349783

  6. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1998-08-01

    AD AWARD NUMBER DAMD17-97-1-7232 TITLE: Targeted Gene Therapy for Breast Cancer PRINCIPAL INVESTIGATOR: Jinha M. Park CONTRACTING ORGANIZATION...FUNDING NUMBERS Targeted Gene Therapy for Breast Cancer DAMD17-97-1-7232 6. AUTHOR(S) Jinha M. Park 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...of surface mAb has been internalized by receptor-mediated endocytosis. These mAbs show promise in the specific delivery of gene therapy vectors

  7. Engineering targeted viral vectors for gene therapy.

    PubMed

    Waehler, Reinhard; Russell, Stephen J; Curiel, David T

    2007-08-01

    To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.

  8. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  9. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  10. AHR-11797: a novel benzodiazepine antagonist

    SciTech Connect

    Johnson, D.N.; Kilpatrick, B.F.; Hannaman, P.K.

    1986-03-01

    AHR-11797(5,6-dihydro-6-methyl-1-phenyl-/sup 3/H-pyrrolo(3,2,1-ij)quinazolin-3-one) displaced /sup 3/H-flunitrazepam (IC/sub 50/ = 82 nM) and /sup 3/H-Ro 15-1877 (IC/sub 50/ = 104 nM) from rat brain synaptosomes. AHR-11797 did not protect mice from seizures induced by maximal electroshock or subcutaneous Metrazol (scMET), nor did it induce seizures in doses up to the lethal dose. However, at 31.6 mg/kg, IP, it significantly increased the anticonvulsant ED/sub 50/ of chlordiazepoxide (CDPX) from 1.9 to 31.6 mg/kg, IP. With 56.7 mg/kg, IP, of AHR-11797, CDPX was inactive in doses up to 100 mg/kg, IP. AHR-11797 did not significantly increase punished responding in the Geller and Seifter conflict procedure, but it did attenuate the effects of diazepam. Although the compound is without anticonvulsant or anxiolytic activity, it did have muscle relaxant properties. AHR-11797 blocked morphine-induced Straub tail in mice (ED/sub 50/ = 31 mg/kg, IP) and it selectively suppressed the polysnaptic linguomandibular reflex in barbiturate-anesthetized cats. The apparent muscle relaxant activity of AHR-11797 suggests that different receptor sites are involved for muscle relaxant vs. anxiolytic/anticonvulsant activities of the benzodiazepines.

  11. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast.

    PubMed

    Mexia, Nikitia; Gaitanis, Georgios; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S; Magiatis, Prokopios

    2015-04-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in the human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on l-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assay in recombinant cell lines derived from four different species, although significant species differences in relative potency were observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. M. furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.

  12. Targeting tumor suppressor genes for cancer therapy.

    PubMed

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  13. Regulation of zebrafish CYP3A65 transcription by AHR2

    SciTech Connect

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin; Tzou, Wen-Shyong; Hu, Chin-Hwa

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  14. Progesterone, as well as 17β-estradiol, is important for regulating AHR battery homoeostasis in the rat uterus.

    PubMed

    Rataj, Felicitas; Möller, Frank Josef; Jähne, Maria; Hönscheid, Pia; Zierau, Oliver; Vollmer, Günter; Kretzschmar, Georg

    2015-03-01

    Several studies indicate that the aryl hydrocarbon receptor (AHR), which plays an important role in mediating the toxicity of many industrial chemicals, plays an important role in the physiology of female reproductive tract organs. This makes it likely that the AHR and additional components of the AHR signalling pathway are under the control of female sex steroids. In a previous study, we could already demonstrate the regulation of many members of the AHR battery by 17β-estradiol (E2) in the uterus of rats. In this study, we addressed the potential role of progesterone (P4) in this context. In a comparative approach using ovariectomized rats which were treated for 3 days with either vehicle control, E2, progesterone (P4) or the combination of both hormones in addition to sham-operated animals, we could demonstrate that in addition to E2, P4 is also an important factor in regulating AHR signalling in the rat uterus. P4 has effects similar to E2 on uterine Ahr, Arnt and Arnt2 mRNA levels, resulting in a downregulation of these genes, while the E2-mediated downregulation of key AHR response genes Cyp1a1, Gsta2 and Ugt1 is completely antagonized by P4. As with E2, P4 leads to an increase in uterine AHR levels, especially in the endometrial epithelium despite the decrease in corresponding mRNA levels. This indicates a complex gene-specific regulatory network involving E2, P4 and possibly AHR itself to maintain all components of the AHR signalling cascade at the required levels during all stages of the oestrous cycle and pregnancy.

  15. Gene therapy and targeted toxins for glioma.

    PubMed

    Castro, Maria G; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D; Curtin, James F; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Ghulam Muhammad, A K M; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R

    2011-06-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.

  16. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  17. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism.

    PubMed

    Klingel, U; Miller, C M; North, A K; Stockley, P G; Baumberg, S

    1995-08-21

    In Bacillus subtilis, the AhrC protein represses genes encoding enzymes of arginine biosynthesis and activates those mediating its catabolism. To determine how this repressor also functions as an activator, we attempted to clone catabolic genes by searching for insertions of the Tn917-lacZ transposon that express AhrC-dependent, arginine-inducible beta-galactosidase activity. One such isolate was obtained. The region upstream of lacZ was subcloned in Escherichia coli in such a way that it could be replaced in the B. subtilis chromosome after appropriate manipulation. Analysis of exonuclease III-derived deletions located an AhrC-dependent, arginine-inducible promoter to within a ca. 1.9 kb fragment. The sequence revealed: the 3' end of an ORF homologous to gdh genes encoding glutamate dehydrogenase, with highest homology to the homologue from Clostridium difficile; the 5' end of an ORF homologous to a Saccharomyces cerevisiae gene encoding delta 1-pyrroline 5-carboxylate dehydrogenase (P5CDH), an enzyme of arginine catabolism; and just upstream of the latter, a sequence with homology to known AhrC binding sites in the upstream part of the biosynthetic argCJBD-cpa-F cluster. The same region has also been sequenced by others as part of the B. subtilis genome sequencing project, revealing that the P5CDH gene is the first in a cluster termed rocABC. Restriction fragments containing the putative AhrC-binding sequence, but not those lacking it, showed retarded electrophoretic mobility in the presence of purified AhrC. A 277 bp AhrC-binding fragment also showed anomalous mobility in the absence of AhrC, consistent with its being intrinsically bent. DNAse I footprinting localized AhrC binding to bp -16/-22 to +1 (the transcription startpoint). Such a location for an activator binding site, i.e. overlapping the transcription start, is unusual.

  18. Studies on the Role of The Ah Receptor (AhR) on the Etiology of Breast Cancer: A Novel Idea of Identifying this Receptor as a New Therapeutic Target

    DTIC Science & Technology

    2010-09-01

    and resistance to UV-irradiation induced apoptosis such as: luteolin curcumin, zerumbone and resveratrol . Second we tested the effectiveness of a...transplanted AHR overexpressing human breast cancer cells. Figures P20C P20E 0 25 50 75 100 125 150 Control Curcumin Luteolin Resveratrol ...treated with curcumin (10 µM), luteolin (5 µM), resveratrol (10 µM) or zerumbone (5 µM) for 48 h, respectively. CYP1A1 Co ntr ol TC DD Lu teo lin

  19. AHR2-Mediated Transcriptomic Responses Underlying the Synergistic Cardiac Developmental Toxicity of PAHs

    PubMed Central

    Jayasundara, Nishad; Van Tiem Garner, Lindsey; Meyer, Joel N.; Erwin, Kyle N.; Di Giulio, Richard T.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) induce developmental defects including cardiac deformities in fish. The aryl hydrocarbon receptor (AHR) mediates the toxicity of some PAHs. Exposure to a simple PAH mixture during embryo development consisting of an AHR agonist (benzo(a)pyrene-BaP) with fluoranthene (FL), an inhibitor of cytochrome p450 1(CYP1)—a gene induced by AHR activation—results in cardiac deformities. Exposure to BaP or FL alone at similar concentrations alters heart rates, but does not induce morphological deformities. Furthermore, AHR2 knockdown prevents the toxicity of BaP + FL mixture. Here, we used a zebrafish microarray analysis to identify heart-specific transcriptomic changes during early development that might underlie cardiotoxicity of BaP + FL. We used AHR2 morphant embryos to determine the role of this receptor in mediating toxicity. Control and knockdown embryos at 36 h post-fertilization were exposed to DMSO, 100 μg/l BaP, 500 μg/l FL, or 100 μg/l BaP + 500 μg/l FL, and heart tissues for RNA were extracted at 2, 6, 12, and 18 h-post-exposure (hpe), prior to the appearance of cardiac deformities. Data show AHR2-dependent BaP + FL effects on expression of genes involved in protein biosynthesis and neuronal development in addition to signaling molecules and their associated molecular pathways. Ca2+-cycling and muscle contraction genes were the most significantly differentially expressed category of transcripts when comparing BaP + FL-treated AHR2 morphant and control embryos. These differences were most prominent at 2 and 6 hpe. Therefore, we postulate that BaP + FL may affect cellular Ca2+ levels and subsequently cardiac muscle function, potentially underlying BaP + FL cardiotoxicity. PMID:25412620

  20. Targeting adipose tissue via systemic gene therapy.

    PubMed

    O'Neill, S M; Hinkle, C; Chen, S-J; Sandhu, A; Hovhannisyan, R; Stephan, S; Lagor, W R; Ahima, R S; Johnston, J C; Reilly, M P

    2014-07-01

    Adipose tissue has a critical role in energy and metabolic homeostasis, but it is challenging to adapt techniques to modulate adipose function in vivo. Here we develop an in vivo, systemic method of gene transfer specifically targeting adipose tissue using adeno-associated virus (AAV) vectors. We constructed AAV vectors containing cytomegalovirus promoter-regulated reporter genes, intravenously injected adult mice with vectors using multiple AAV serotypes, and determined that AAV2/8 best targeted adipose tissue. Altering vectors to contain adiponectin promoter/enhancer elements and liver-specific microRNA-122 target sites restricted reporter gene expression to adipose tissue. As proof of efficacy, the leptin gene was incorporated into the adipose-targeted expression vector, package into AAV2/8 and administered intravenously to 9- to 10-week-old ob/ob mice. Phenotypic changes were measured over an 8-week period. Leptin mRNA and protein were expressed in adipose and leptin protein was secreted into plasma. Mice responded with reversal of weight gain, decreased hyperinsulinemia and improved glucose tolerance. AAV2/8-mediated systemic delivery of an adipose-targeted expression vector can replace a gene lacking in adipose tissue and correct a mouse model of human disease, demonstrating experimental application and therapeutic potential in disorders of adipose.

  1. Regulation of Ahr signaling by Nrf2 during development: Effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio)

    PubMed Central

    Rousseau, Michelle E.; Sant, Karilyn E.; Borden, Linnea R.; Franks, Diana G.; Hahn, Mark E.; Timme-Laragy, Alicia R.

    2015-01-01

    The embryotoxicity of co-planar PCBs is regulated by the aryl hydrocarbon receptor (Ahr), and has been reported to involve oxidative stress. Ahr participates in crosstalk with another transcription factor, Nfe2l2, or Nrf2. Nrf2 binds to antioxidant response elements to regulate the adaptive response to oxidative stress. To explore aspects of the crosstalk between Nrf2 and Ahr and its impact on development, we used zebrafish (Danio rerio) with a mutated DNA binding domain in Nrf2a (nrf2afh318/fh318), rendering these embryos more sensitive to oxidative stress. Embryos were exposed to 2 nM or 5 nM PCB126 at 24 hours post fertilization (prim-5 stage of pharyngula) and examined for gene expression and morphology at 4 days post fertilization (dpf; protruding –mouth stage). Nrf2a mutant eleutheroembryos were more sensitive to PCB126 toxicity at 4 dpf, and in the absence of treatment also displayed some subtle developmental differences from wildtype embryos, including delayed inflation of the swim bladder and smaller yolk sacs. We used qPCR to measure changes in expression of the nrf gene family, keap1a, keap1b, the ahr gene family, and known target genes. cyp1a induction by PCB126 was enhanced in the Nrf2a mutants (156-fold in wildtypes vs. 228-fold in mutants exposed to 5 nM). Decreased expression of heme oxygenase (decycling) 1 (hmox1) in the Nrf2a mutants was accompanied by increased nrf2b expression. Target genes of Nrf2a and AhR2, NAD(P)H:quinone oxidoreductase 1 (nqo1) and glutathione S-transferase, alpha-like (gsta1), showed a 2-5-fold increase in expression in the Nrf2a mutants as compared to wildtype. This study elucidates the interaction between two important transcription factor pathways in the developmental toxicity of co-planar PCBs. PMID:26325326

  2. AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Clark, Bryan W; Matson, Cole W; Jung, Dawoon; Di Giulio, Richard T

    2010-08-15

    Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by beta-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3',4,4',5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in Fundulus.

  3. Gene targeting in primary human trophoblasts

    PubMed Central

    Rosario, Fredrick J; Sadovsky, Yoel; Jansson, Thomas

    2012-01-01

    Studies in primary human trophoblasts provide critical insights into placental function in normal and complicated pregnancies. Mechanistic studies in these cells require experimental tools to modulate gene expression. Lipid-based methods to transfect primary trophoblasts are fairly simple to use and allow for the efficient delivery of nucleic acids, but potential toxic effects limit these methods. Viral vectors are versatile transfection tools of native trophoblastic or foreign cDNAs, providing high transfection efficiency, low toxicity and stable DNA integration into the trophoblast genome. RNA interference (RNAi), using small interfering RNA (siRNA) or microRNA, constitutes a powerful approach to silence trophoblast genes. However, off-target effects, such as regulation of unintended complementary transcripts, inflammatory responses and saturation of the endogenous RNAi machinery, are significant concerns. Strategies to minimize off-target effects include using multiple individual siRNAs, elimination of pro-inflammatory sequences in the siRNA construct and chemical modification of a nucleotide in the guide strand or of the ribose moiety. Tools for efficient gene targeting in primary human trophoblasts are currently available, albeit not yet extensively validated. These methods are critical for exploring the function of human trophoblast genes and may provide a foundation for the future application of gene therapy that targets placental trophoblasts. PMID:22831880

  4. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism

    PubMed Central

    Kung, Tiffany; Murphy, K.A.; White, L.A.

    2009-01-01

    The aryl hydrocarbon receptor (AhR) is an orphan receptor in the basic-helix-loop-helix PAS family of transcriptional regulators. Although the endogenous regulator of this pathway has not been identified, the AhR is known to bind and be activated by a variety of compounds ranging from environmental contaminants to flavanoids. The function of this receptor is still unclear; however, animal models indicate that the AhR is important for normal development. One hypothesis is that the AhR senses cellular stress and initiates the cellular response by altering gene expression and inhibiting cell cycle progression and that activation of the AhR by exogenous environmental chemicals results in the dysregulation of this normal function. In this review we will examine the role of the AhR in the regulation of genes and proteins involved in cell adhesion and matrix remodeling, and discuss the implications of these changes in development and disease. In addition, we will discuss evidence suggesting that the AhR pathway is responsive to changes in matrix composition as well as cell-cell and cell-matrix interactions. PMID:18940186

  5. The aryl hydrocarbon receptor-interacting protein (AIP) is required for dioxin-induced hepatotoxicity but not for the induction of the Cyp1a1 and Cyp1a2 genes.

    PubMed

    Nukaya, Manabu; Lin, Bernice C; Glover, Edward; Moran, Susan M; Kennedy, Gregory D; Bradfield, Christopher A

    2010-11-12

    The aryl hydrocarbon receptor (AHR) plays an essential role in the toxic response to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), in the adaptive up-regulation of xenobiotic metabolizing enzymes, and in hepatic vascular development. In our model of AHR signaling, the receptor is found in a cytosolic complex with a number of molecular chaperones, including Hsp90, p23, and the aryl hydrocarbon receptor-interacting protein (AIP), also known as ARA9 and XAP2. To understand the role of AIP in adaptive and toxic aspects of AHR signaling, we generated a conditional mouse model where the Aip locus can be deleted in hepatocytes. Using this model, we demonstrate two important roles for the AIP protein in AHR biology. (i) The expression of AIP in hepatocytes is essential to maintain high levels of functional cytosolic AHR protein in the mammalian liver. (ii) Expression of the AIP protein is essential for dioxin-induced hepatotoxicity. Interestingly, classical AHR-driven genes show differential dependence on AIP expression. The Cyp1b1 and Ahrr genes require AIP expression for normal up-regulation by dioxin, whereas Cyp1a1 and Cyp1a2 do not. This differential dependence on AIP provides evidence that the mammalian genome contains more than one class of AHR-responsive genes and suggests that a search for AIP-dependent, AHR-responsive genes may guide us to the targets of the dioxin-induced hepatotoxicity.

  6. The Role of AhR in Breast Cancer Development

    DTIC Science & Technology

    2006-07-01

    other cell types, galangin is a potent inhibitor of the aryl hydrocarbon receptor (AhR), an environmental carcinogen-responsive transcription factor...constitutively active AhR. Constitutive and environmental chemical-inducible AhR activity was profoundly suppressed by galangin as was cell growth...However, the failure of a-naphthoflavone or FhAhRR transfection to block growth indicated that galangin -mediated AhR inhibition was either insufficient

  7. Transcriptional Targeting in Cancer Gene Therapy

    PubMed Central

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future. PMID:12721516

  8. Feedback control of AHR signalling regulates intestinal immunity.

    PubMed

    Schiering, Chris; Wincent, Emma; Metidji, Amina; Iseppon, Andrea; Li, Ying; Potocnik, Alexandre J; Omenetti, Sara; Henderson, Colin J; Wolf, C Roland; Nebert, Daniel W; Stockinger, Brigitta

    2017-02-09

    The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation.

  9. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin

    PubMed Central

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I.

    2012-01-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response. PMID:22442413

  10. Targeted Gene Silencing to Induce Permanent Sterility

    PubMed Central

    Dissen, Gregory A.; Lomniczi, Alejandro; Boudreau, Ryan L.; Chen, Yong Hong; Davidson, Beverly L.; Ojeda, Sergio R.

    2012-01-01

    Contents A nonsurgical method to induce sterility would be a useful tool to control feral populations of animals. Our laboratories have experience with approaches aimed at targeting brain cells in vivo with vehicles that deliver a payload of either inhibitory RNAs or genes intended to correct cellular dysfunction. A combination/modification of these methods may provide a useful framework for the design of approaches that can be used to sterilize cats and dogs. For this approach to succeed it has to meet several conditions: It needs to target a gene essential for fertility. It must involve a method that can selectively silence the gene of interest. It also needs to deliver the silencing agent via a minimally invasive method. Finally, the silencing effect needs to be sustained for many years, so that expansion of the targeted population can be effectively prevented. In this article we discuss this subject and provide a succinct account of our previous experience with: a) molecular reagents able to disrupt reproductive cyclicity when delivered to regions of the brain involved in the control of reproduction, and b) molecular reagents able to ameliorate neuronal disease when delivered systemically using a novel approach of gene therapy. PMID:22827375

  11. A maternal Ahr null genotype sensitizes embryos to chemical teratogenesis.

    PubMed

    Thomae, Tami L; Glover, Edward; Bradfield, Christopher A

    2004-07-16

    The aryl hydrocarbon receptor (encoded by the Ahr locus) is a ligand-activated transcription factor that mediates the toxicology and teratology of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin). In an effort to understand the role of the maternal compartment in dioxin teratology, we designed a breeding strategy that allowed us to compare the teratogenic response in embryos from Ahr(-/-) (null) and Ahr(+/+) (wild-type) dams. Using this strategy, we demonstrate that embryos from the Ahr(-/-) dams are 5-fold more sensitive to dioxin-induced cleft palate and hydronephrosis as compared with embryos from an Ahr(+/+) dam. Moreover, this increased teratogenic sensitivity extends beyond dioxin, because embryos from Ahr(-/-) dams exhibited a 9-fold increase in their sensitivity to the fetotoxic effects of the glucocorticoid, dexamethasone. In searching for an explanation for this increased sensitivity, we found that more dioxin and dexamethasone reached the embryos from Ahr(-/-) dams as compared with embryos from Ahr(+/+) dams. We propose that increased deposition of teratogens/fetotoxicants to the embryonic compartment is the result of porto-systemic shunting and/or blocked P4501A induction in Ahr(-/-) dams. In addition to demonstrating the importance of maternal AHR in teratogenesis, these data may have implications that reach beyond the mechanism of action of dioxin. In this regard, the Ahr(-/-) mouse may provide a system that allows pharmacological agents and toxicants to be more easily studied in a model where first pass clearance is a significant obstacle.

  12. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells.

    PubMed

    Gaspar-Ramírez, Octavio; Pérez-Vázquez, Francisco J; Salgado-Bustamante, Mariana; González-Amaro, Roberto; Hernandez-Castro, Berenice; Pérez-Maldonado, Ivan N

    2015-01-01

    Recent studies have demonstrated that compounds inducing pro-inflammatory cytokines enhance AhR expression. The aim of this study was 2-fold: (1) to determine if two pro-inflammatory compounds, dichlorodiphenyldichloroethylene (DDE) and 2,2',4,4',5,5'-hexa-chlorobiphenyl (PCB 153), independently affect AhR gene expression in peripheral blood mononuclear cells (PBMC); and (2) if affected, to determine whether the mechanism involved was due to AhR activation or to a pro-inflammatory effect of the chemicals. PBMC isolated from healthy individuals were incubated in the presence of DDE (10 µg/ml) and PCB 153 (20 ng/ml) over time and AhR and CYP1A1 expression was assessed with a real-time PCR technique. The results indicated there was over-expression of the AhR mRNA in PBMC when the cells were treated with DDE and PCB 153. No changes in expression levels of CYP1A1 mRNA were found. Importantly, when the cells were exposed to DDE and PCB 153 in the presence of an antagonist of tumor necrosis factor (TNF)-α, the over-expression of AhR was abolished; as expected, the expression of CYP1A1 was unaffected. In conclusion, these studies demonstrated for the first time an increment of AhR expression "in vitro" in PBMC treated with two pro-inflammatory environmental pollutants, DDE and PCB153. Moreover, the over-expression of AhR was dependent of TNFα induced by DDE and PCB 153 and was independent of AhR activation.

  13. The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator

    PubMed Central

    Bhattacharya, Soumyaroop; Zhou, Zhongyang; Yee, Min; Chu, Chin-Yi; Lopez, Ashley M.; Lunger, Valerie A.; Solleti, Siva Kumar; Resseguie, Emily; Buczynski, Bradley; O'Reilly, Michael A.

    2014-01-01

    Premature infants requiring supplemental oxygen are at increased risk for developing bronchopulmonary dysplasia (BPD). Rodent models involving neonatal exposure to excessive oxygen concentrations (hyperoxia) have helped to identify mechanisms of BPD-associated pathology. Genome-wide assessments of the effects of hyperoxia in neonatal mouse lungs could identify novel BPD-related genes and pathways. Newborn C57BL/6 mice were exposed to 100% oxygen for 10 days, and whole lung tissue RNA was used for high-throughput, sequencing-based transcriptomic analysis (RNA-Seq). Significance Analysis of Microarrays and Ingenuity Pathway Analysis were used to identify genes and pathways affected. Expression patterns for selected genes were validated by qPCR. Mechanistic relationships between genes were further tested in cultured mouse lung epithelial cells. We identified 300 genes significantly and substantially affected following acute neonatal hyperoxia. Canonical pathways dysregulated in hyperoxia lungs included nuclear fctor (erythryoid-derived-2)-like 2-mediated oxidative stress signaling, p53 signaling, eNOS signaling, and aryl hydrocarbon receptor (Ahr) pathways. Cluster analysis identified Ccnd1, Cdkn1a, and Ahr as critical regulatory nodes in the response to hyperoxia, with Ahr serving as the major effector node. A mechanistic role for Ahr was assessed in lung epithelial cells, and we confirmed its ability to regulate the expression of multiple hyperoxia markers, including Cdkn1a, Pdgfrb, and A2m. We conclude that a global assessment of gene regulation in the acute neonatal hyperoxia model of BPD-like pathology has identified Ahr as one driver of gene dysregulation. PMID:25150061

  14. Recombinant fungal entomopathogen RNAi target insect gene.

    PubMed

    Hu, Qiongbo; Wu, Wei

    2016-11-01

    RNA interference (RNAi) technology is considered as an alternative for control of pests. However, RNAi has not been used in field conditions yet, since delivering exogenous ds/siRNA to target pests is very difficult. The laboratory methods of introducing the ds/siRNA into insects through feeding, micro feeding / dripping and injecting cannot be used in fields. Transgenic crop is perhaps the most effective application of RNAi for pest control, but it needs long-time basic researches in order to reduce the cost and evaluate the safety. Therefore, transgenic microbe is maybe a better choice. Entomopathogenic fungi generally invade the host insects through cuticle like chemical insecticides contact insect to control sucking sap pests. Isaria fumosorosea is a common fungal entomopathogen in whitefly, Bemisia tabaci. We constructed a recombinant strain of I. fumosorosea expressing specific dsRNA of whitefly's TLR7 gene. It could silence the TLR7 gene and improve the virulence against whitefly. Transgenic fungal entomopathogen has shown great potential to attain the application of RNAi technology for pests control in fields. In the future, the research interests should be focused on the selection of susceptible target pests and their vital genes, and optimizing the methods for screening genes and recombinants as well.

  15. In silico predictive studies of mAHR congener binding using homology modelling and molecular docking.

    PubMed

    Panda, Roshni; Cleave, A Suneetha Susan; Suresh, P K

    2014-09-01

    The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic, nuclear receptor that is responsible for the early events involved in the transcription of a complex set of genes comprising the CYP450 gene family. In the present computational study, homology modelling and molecular docking were carried out with the objective of predicting the relationship between the binding efficiency and the lipophilicity of different polychlorinated biphenyl (PCB) congeners and the AHR in silico. Homology model of the murine AHR was constructed by several automated servers and assessed by PROCHECK, ERRAT, VERIFY3D and WHAT IF. The resulting model of the AHR by MODWEB was used to carry out molecular docking of 36 PCB congeners using PatchDock server. The lipophilicity of the congeners was predicted using the XLOGP3 tool. The results suggest that the lipophilicity influences binding energy scores and is positively correlated with the same. Score and Log P were correlated with r = +0.506 at p = 0.01 level. In addition, the number of chlorine (Cl) atoms and Log P were highly correlated with r = +0.900 at p = 0.01 level. The number of Cl atoms and scores also showed a moderate positive correlation of r = +0.481 at p = 0.01 level. To the best of our knowledge, this is the first study employing PatchDock in the docking of AHR to the environmentally deleterious congeners and attempting to correlate structural features of the AHR with its biochemical properties with regards to PCBs. The result of this study are consistent with those of other computational studies reported in the previous literature that suggests that a combination of docking, scoring and ranking organic pollutants could be a possible predictive tool for investigating ligand-mediated toxicity, for their subsequent validation using wet lab-based studies.

  16. Exposure to Diesel Exhaust Particle Extracts (DEPe) Impairs Some Polarization Markers and Functions of Human Macrophages through Activation of AhR and Nrf2

    PubMed Central

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-01-01

    Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP. PMID:25710172

  17. Zearalenone activates pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes.

    PubMed

    Ayed-Boussema, Imen; Pascussi, Jean Marc; Maurel, Patrick; Bacha, Hassen; Hassen, Wafa

    2011-01-01

    The mycotoxin zearalenone (ZEN) is found worldwide as a contaminant in cereals and grains. ZEN subchronic and chronic toxicities are dominated by reproductive disorders in different mammalian species which have made ZEN established mammalian endocrine disrupter. Over the last 30 years of ZEN biotransformation study, the toxin was thought to undergo reductive metabolism only, with the generation in several species of α- and β-isomers of zearalenol. However, recent investigations have noticed that the mycoestrogen is prone to oxidative metabolism leading to hydroxylation of ZEN though the involvement of different cytochromes P450 (CYPs) isoforms. The aim of the present study was to further explore the effect of ZEN on regulation of some CYPs using primary cultures of human hepatocytes. For this aim, using real time RT-PCR, we monitored in a first time, the effect of ZEN on mRNA levels of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AhR), nuclear receptors known to be involved in the regulation of some CYPs. In a second time, we looked for ZEN effect on expression of PXR, CAR and AhR corresponding phase I target genes (CYP3A4, CYP3A5, CYP2B6, CYP2C9, CYP1A1 and CYP1A2). Finally, we realised the luciferase assay in HepG2 treated with the toxin and transiently transfected with p-CYP3A4-Luc in the presence of a hPXR vector or transfected with p-CYPA1-Luc.Our results clearly showed that ZEN activated human PXR, CAR and AhR mRNA levels in addition to some of their phase I target genes mainly CYP3A4, CYP2B6 and CYP1A1 and at lesser extent CYP3A5 and CYP2C9 at ZEN concentrations as low as 0.1 μM.

  18. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    PubMed Central

    Perepechaeva, M. L.; Grishanova, A. Yu.; Rudnitskaya, E. A.; Kolosova, N. G.

    2014-01-01

    The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD). The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor) and Nrf2 (nuclear factor erythroid 2-related factor 2), which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1. PMID:25132985

  19. Gene therapy targeting inflammation in atherosclerosis.

    PubMed

    Van-Assche, Tim; Huygelen, Veronique; Crabtree, Mark J; Antoniades, Charalambos

    2011-12-01

    The extensive cross-talk between the immune system and vasculature leading to the infiltration of immune cells into the vascular wall is a major step in atherogenesis. In this process, reactive oxygen species play a crucial role, by inducing the oxidation of LDL and the formation of foam cells, and by activating a number of redox-sensitive transcriptional factors such as nuclear factor kappa B (NFkappa B) or activating protein 1 (AP1), that regulate the expression of multiple pro/anti inflammatory genes involved in atherogenesis. Delivery of genes encoding antioxidant defense enzymes (e.g. superoxide dismutase, catalase, glutathione peroxidase or heme oxygenase- 1) or endothelial nitric oxide synthase (eNOS), suppress atherogenesis in animal models. Similarly, delivery of genes encoding regulators of redox sensitive transcriptional factors (e.g. NF-kappa B, AP-1, Nrf2 etc) or reactive oxygen species scavengers have been successfully used in experimental studies. Despite the promising results from basic science, the clinical applicability of these strategies has proven to be particularly challenging. Issues regarding the vectors used to deliver the genes (and the development of immune responses or other side effects) and the inability of sufficient and sustained local expression of these genes at the target-tissue are some of the main reasons preventing optimism regarding the use of these strategies at a clinical level. Therefore, although premature to discuss about effective "gene therapy" in atherosclerosis at a clinical level, gene delivery techniques opened new horizons in cardiovascular research, and the development of new vectors may allow their extensive use in clinical trials in the future.

  20. Inhibition of AHR transcription by NF1C is affected by a single-nucleotide polymorphism, and is involved in suppression of human uterine endometrial cancer.

    PubMed

    Li, D; Takao, T; Tsunematsu, R; Morokuma, S; Fukushima, K; Kobayashi, H; Saito, T; Furue, M; Wake, N; Asanoma, K

    2013-10-10

    Involvement of the aryl hydrocarbon receptor (AHR) in carcinogenesis has been suggested in many studies. Upregulation of AHR has been reported in some cancer species, and an association between single-nucleotide polymorphisms (SNPs) of AHR and cancer risk or cancer development has also been reported. This evidence suggests the involvement of some specific SNPs in AHR transcriptional regulation in the process of carcinogenesis or cancer development, but there have been no studies to elucidate the mechanism involved. In this study, we identified the transcription factor Nuclear Factor 1-C (NF1C) as a candidate to regulate AHR transcription in a polymorphism-dependent manner. SNP rs10249788 was included in a consensus binding site for NF1C. Our results suggested that NF1C preferred the C allele to the T allele at rs10249788 for binding. Forced expression of NF1C suppressed the activity of the AHR promoter with C at rs10249788 stronger than that with T. Moreover, expression analysis of human uterine endometrial cancer (HEC) specimens showed greater upregulation of AHR and downregulation of NF1C than those of normal endometrium specimens. Sequence analysis showed HEC patients at advanced stages tended to possess T/T alleles more frequently than healthy women. We also demonstrated that NF1C suppressed proliferation, motility and invasion of HEC cells. This function was at least partially mediated by AHR. This study is the first to report that a polymorphism on the AHR regulatory region affected transcriptional regulation of the AHR gene in vitro. Because NF1C is a tumor suppressor, our new insights into AHR deregulation and its polymorphisms could reveal novel mechanisms of genetic susceptibility to cancer.

  1. Gene targets for fungal and mycotoxin control.

    PubMed

    Kim, J H; Campbell, B C; Molyneux, R; Mahoney, N; Chan, K L; Yu, J; Wilkinson, J; Cary, J; Bhatnagar, D; Cleveland, T E

    2006-03-01

    It was initially shown that gallic acid, from hydrolysable tannins in the pelliele of walnut kernels, dramatically inhibits biosynthesis of aflatoxin byAspergillus flavus. The mechanism of this inhibition was found to take place upstream from the gene cluster, including the regulatory gene,aflR, involved in aflatoxin biosynthesis. Additional research using other antioxidant phenolics showed similar antiaflatoxigenic activity to gallic acid. Treatment ofA. flavus withtert-butyl hydroperoxide resulted in an almost doubling of aflatoxin biosynthesis compared to untreated samples. Thus, antioxidative response systems are potentially useful molecular targets for control ofA. flavus. A high throughput screening system was developed using yeast,Saccharomyces cerevisiae, as a model fungus. This screening provided an avenue to quickly identify fungal genes that were vulnerable to treatment by phenolic compounds. The assay also provided a means to quickly assess effects of combinations of phenolics and certain fungicides affecting mitochondrial respiration. For example, theS. cerevisiae sod2† mutant was highly sensitive to treatment by certain phenolics and strobilurins/antimycin A, fungicides which inhibit complex III of the mitochondrial respiratory chain. Verification of stress to this system in the target fungus,A. flavus, was shown through complementation analysis, wherein the mitochondrial superoxide dismutase (Mn-SOD) gene (sodA) ofA. flavus in the ortholog mutant,sod2†, ofS. cerevisiae, relieved phenolic-induced stress. Mitochondrial antioxidative stress systems play an important role in fungal response to antifungals. Combined treatment of fungi with phenolics and inhibitors of mitochondrial respiration can effectively suppress growth ofA. flavus in a synergistic fashion.

  2. Human and rodent aryl hydrocarbon receptor (AHR): from mediator of dioxin toxicity to physiologic AHR functions and therapeutic options.

    PubMed

    Bock, Karl Walter

    2017-04-01

    Metabolism of aryl hydrocarbons and toxicity of dioxins led to the discovery of the aryl hydrocarbon receptor (AHR). Tremendous advances have been made on multiplicity of AHR signaling and identification of endogenous ligands including the tryptophan metabolites FICZ and kynurenine. However, human AHR functions are still poorly understood due to marked species differences as well as cell-type- and cell context-dependent AHR functions. Observations in dioxin-poisoned individuals may provide hints to physiologic AHR functions in humans. Based on these observations three human AHR functions are discussed: (1) Chemical defence and homeostasis of endobiotics. The AHR variant Val381 in modern humans leads to reduced AHR affinity to aryl hydrocarbons in comparison with Neanderthals and primates expressing the Ala381 variant while affinity to indoles remains unimpaired. (2) Homeostasis of stem/progenitor cells. Dioxins dysregulate homeostasis in sebocyte stem cells. (3) Modulation of immunity. In addition to microbial defence, AHR may be involved in a 'disease tolerance defence pathway'. Further characterization of physiologic AHR functions may lead to therapeutic options.

  3. A Highly Efficient Gene-Targeting System for Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene targeting via homologous recombination is often used to elucidate gene function. For filamentous fungi, the majority of transforming DNA integrates ectopically. Deletion of Aspergillus parasiticus ku70, a gene of the non-homologous end-joining pathway, drastically increased the gene targeting...

  4. Polyamine analogues targeting epigenetic gene regulation.

    PubMed

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  5. Effects of scorched food leachates with or without activated charcoal pretreatment on AhR activation in cultured cells.

    PubMed

    Takahashi, Satoshi; Morita, Koji; Kinoshita, Makoto; Fujimori, Shin; Ishikawa, Toshio

    2015-12-01

    Aryl hydrocarbon receptor (AhR) is a transcription factor activated by xenobiotics, including dioxins and polycyclic aromatic hydrocarbons (PAHs). Although AhR is also activated by some dietary constituents, it has not been completely clarified in what circumstances AhR ligands are ingested in our daily life. Because PAHs are formed by the incomplete combustion of organic materials, we hypothesized that scorched foods might contain and leach out AhR ligands sufficient to stimulate AhR in vitro. To test this hypothesis, scorched foods (bread, cheese, etc.) were mixed vigorously with water, and the supernatants were retrieved as samples. The samples were added to HepG2 cells stably expressing an AhR-responsive reporter gene. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was analyzed by RT-PCR in different cell lines treated with the samples. We further tested whether pretreatment of the samples with activated charcoal would alter their AhR-stimulating activity. All the supernatant samples tested induced AhR-dependent reporter gene activity and CYP1A1 mRNA expression. In some samples, these inductions were inhibited by pretreatment with activated charcoal. Our findings indicate that scorched food leachates stimulate AhR in cultured cells and that activated charcoal adsorbs the AhR-stimulating substances in some leachates. Thus, people who habitually eat scorched foods are exposed to AhR ligands on a regular basis. Further studies are needed to elucidate whether burnt foods actually exert biological effects on our health.

  6. [Monogenic hypercholesterolemias: new genes, new drug targets].

    PubMed

    Mandel'shtam, M Iu; Vasil'ev, V B

    2008-10-01

    This review is focused on recent data on structure and functions of PCSK9 proprotein convertase, a newly identified participant in cholesterol metabolism in mammalian organisms, including humans. Proprotein convertase acts as a molecular chaperone for the low density lipoprotein (LDL) receptor, targeting it to the lysosomal degradation pathway. Various mutations increasing the PCSK9 affinity toward the LDL receptor cause autosomal dominant hypercholesterolemia. In contrast, loss-of-function mutations in PCSK9 gene decrease the blood plasma cholesterol level, thus acting as a protection factor against atherosclerosis and coronary heart disease. It is supposed that pharmacological agents inhibiting the interaction between PCSK9 and LDL receptor may substantially amplify the benefits of drugs--statins and cholesterol absorption blockers--in the treatment of all types of hypercholesterolemia, including its widespread multigenic and multifactorial forms.

  7. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos.

    PubMed

    Massarsky, Andrey; Bone, Audrey J; Dong, Wu; Hinton, David E; Prasad, G L; Di Giulio, Richard T

    2016-10-15

    The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity.

  8. Identification of Stage-Specific Gene Modulation during Early Thymocyte Development by Whole-Genome Profiling Analysis after Aryl Hydrocarbon Receptor Activation

    PubMed Central

    Mills, Jeffrey H.; Lai, Zhi-Wei; Singh, Kameshwar P.; Middleton, Frank A.; Gasiewicz, Thomas A.; Silverstone, Allen E.

    2010-01-01

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor, implicated as an important modulator of the immune system and of early thymocyte development. We have shown previously that AHR activation by the environmental contaminant and potent AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to a significant decline in the percentage of S-phase cells in the CD3−CD4−CD8− triple-negative stage (TN) 3 and TN4 T-cell committed thymocytes 9 to 12 h after exposure. In the more immature TN1- or TN2-stage cells, no effect on cell cycle was observed. To identify early molecular targets, which could provide insight into how the AHR acts as a modulator of thymocyte development and cell cycle regulation, we performed gene-profiling experiments using RNA isolated from four intrathymic progenitor populations in which the AHR was activated for 6 or 12 h. This microarray analysis of AHR activation identified 108 distinct gene probes that were significantly modulated in the TN1–4 thymocyte progenitor stages. Although most of the genes identified have specific AHR recognition sequences, only seven genes were altered exclusively in the two T-cell committed stages of early thymocyte development (TN3 and TN4) in which the decline of S-phase cells is seen. Moreover, all seven of these genes were reduced in expression, and five of the seven are associated with cell cycle regulatory processes. These seven genes are novel targets for modulation by the TCDD-activated AHR and may be involved in the observed cell-cycle arrest and suppression of early thymocyte development. PMID:20159946

  9. Identification of stage-specific gene modulation during early thymocyte development by whole-genome profiling analysis after aryl hydrocarbon receptor activation.

    PubMed

    Laiosa, Michael D; Mills, Jeffrey H; Lai, Zhi-Wei; Singh, Kameshwar P; Middleton, Frank A; Gasiewicz, Thomas A; Silverstone, Allen E

    2010-05-01

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor, implicated as an important modulator of the immune system and of early thymocyte development. We have shown previously that AHR activation by the environmental contaminant and potent AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to a significant decline in the percentage of S-phase cells in the CD3(-)CD4(-)CD8(-) triple-negative stage (TN) 3 and TN4 T-cell committed thymocytes 9 to 12 h after exposure. In the more immature TN1- or TN2-stage cells, no effect on cell cycle was observed. To identify early molecular targets, which could provide insight into how the AHR acts as a modulator of thymocyte development and cell cycle regulation, we performed gene-profiling experiments using RNA isolated from four intrathymic progenitor populations in which the AHR was activated for 6 or 12 h. This microarray analysis of AHR activation identified 108 distinct gene probes that were significantly modulated in the TN1-4 thymocyte progenitor stages. Although most of the genes identified have specific AHR recognition sequences, only seven genes were altered exclusively in the two T-cell committed stages of early thymocyte development (TN3 and TN4) in which the decline of S-phase cells is seen. Moreover, all seven of these genes were reduced in expression, and five of the seven are associated with cell cycle regulatory processes. These seven genes are novel targets for modulation by the TCDD-activated AHR and may be involved in the observed cell-cycle arrest and suppression of early thymocyte development.

  10. Gene expression-targeted isoflavone therapy.

    PubMed

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  11. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  12. Teratogenic impact of dioxin-activated AHR in laboratory animals

    EPA Science Inventory

    AHR and ARNT are expressed in mouse and human palatal shelves and in the urinary tract of the mouse fetus. AHR expression, translocation to the nucleus, binding to DRE, and activation are required for mediation of TCDD-induction of CP and HN. Although the human palate requires a ...

  13. Functionality of aryl hydrocarbon receptors (AhR1 and AhR2) of white sturgeon (Acipenser transmontanus) and implications for the risk assessment of dioxin-like compounds.

    PubMed

    Doering, Jon A; Farmahin, Reza; Wiseman, Steve; Kennedy, Sean W; Giesy, John P; Hecker, Markus

    2014-07-15

    Worldwide, populations of sturgeons are endangered, and it is hypothesized that anthropogenic chemicals, including dioxin-like compounds (DLCs), might be contributing to the observed declines in populations. DLCs elicit their toxic action through activation of the aryl hydrocarbon receptor (AhR), which is believed to regulate most, if not all, adverse effects associated with exposure to these chemicals. Currently, risk assessment of DLCs in fishes uses toxic equivalency factors (TEFs) developed for the World Health Organization (WHO) that are based on studies of embryo-lethality with salmonids. However, there is a lack of knowledge of the sensitivity of sturgeons to DLCs, and it is uncertain whether TEFs developed by the WHO are protective of these fishes. Sturgeons are evolutionarily distinct from salmonids, and the AhRs of sturgeons differ from those of salmonids. Therefore, this study investigated the sensitivity of white sturgeon (Acipenser transmontanus) to DLCs in vitro via the use of luciferase reporter gene assays using COS-7 cells transfected with AhR1 or AhR2 of white sturgeon. Specifically, activation and relative potencies (RePs) of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachloro-dibenzofuran, 2,3,7,8-tetrachloro-dibenzofuran, 3,3',4,4',5-pentachlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, and 2,3,3',4,4'-pentachlorobiphenyl were determined for each AhR. It was demonstrated that white sturgeon expresses AhR1s and AhR2s that are both activated by DLCs with EC50 values for 2,3,7,8-TCDD that are lower than those of any other AhR of vertebrates tested to date. Both AhRs of white sturgeon had RePs for polychlorinated dibenzofurans more similar to TEFs for birds, while RePs for polychlorinated biphenyls were most similar to TEFs for fishes. Measured concentrations of select DLCs in tissues of white sturgeon from British Columbia, Canada, were used to calculate toxic equivalents (TEQs) by use of TEFs for fishes used by the WHO and TCDD

  14. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    PubMed Central

    Ghotbaddini, Maryam; Powell, Joann B.

    2015-01-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models. PMID:26154658

  15. The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure--effects in vital organs.

    PubMed

    Brunnberg, Sara; Andersson, Patrik; Lindstam, Maria; Paulson, Ivar; Poellinger, Lorenz; Hanberg, Annika

    2006-07-25

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most, if not all, toxic effects of dioxins and functions as a ligand-activated transcription factor regulating transcription of a battery of genes. In order to study the mechanisms behind the toxicity of ligands of the Ah receptor we have created a transgenic mouse model expressing a constitutively active Ah receptor (CA-AhR). The mutant Ah receptor is expressed and functionally active in all organs studied. The purpose of the present study was to characterize histopathologically, the phenotype of the CA-AhR with regard to the liver, kidney, lung, heart, spleen and thymus of male and female transgenic CA-AhR mice. Moreover, cell-specific activity of the CA-AhR using up-regulation of the AhR target gene CYP1A1 as a marker, was also examined. The relative weight of liver, kidney and heart were increased while relative thymus weight was decreased. Furthermore, slight morphological lesions of the liver, kidney and spleen was seen. Expression of CYP1A1 was found in cells corresponding to endothelial cells in all of the organs studied. In some tissues additional cell types, such as hepatocytes, renal tubuli cell and Clara cells expressed CYP1A1. Both the effects on organ weights and the cellular expression of CYP1A1 in CA-AhR mice correspond well to observations in TCDD-exposed mice. In conclusion, this characterization further support that the CA-AhR mouse is a useful model for life-long continuous low-level activity of the AhR, i.e. the dioxin exposure situation of humans of the general population.

  16. Cotransformation and gene targeting in mouse embryonic stem cells.

    PubMed Central

    Reid, L H; Shesely, E G; Kim, H S; Smithies, O

    1991-01-01

    We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations. Images PMID:1850104

  17. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells.

    PubMed

    To, Kenneth K W; Yu, Le; Liu, Shuwen; Fu, Jianhua; Cho, Chi Hin

    2012-06-01

    Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that is generally not responding to chemotherapy. It is particularly predominant in China. Although ESCC is significantly associated with cigarette smoking, the relationship between its molecular pathogenesis and responsiveness to chemotherapy and cigarette smoke remains elusive. This study reported the constitutive activation of aryl hydrocarbon receptor (AhR), leading to ABCG2 upregulation and the multidrug resistance (MDR) phenotype, in ESCC cell lines with acquired cisplatin resistance. Reporter gene assay, chromatin immunoprecipitation analysis and specific gene knockdown confirmed that the enhanced AhR binding to a xenobiotic response element (XRE) within the ABCG2 promoter is responsible for ABCG2 overexpression. A HSP90 inhibitor (17-AAG) and two AhR antagonists (kaempferol and salicylamide) were shown to inhibit ABCG2 upregulation, thereby reversing the ABCG2-mediated MDR. Our data therefore advocate the use of these inhibitors as novel chemosensitizers for the treatment of esophageal cancer.

  18. A superfamily of DNA transposons targeting multicopy small RNA genes.

    PubMed

    Kojima, Kenji K; Jurka, Jerzy

    2013-01-01

    Target-specific integration of transposable elements for multicopy genes, such as ribosomal RNA and small nuclear RNA (snRNA) genes, is of great interest because of the relatively harmless nature, stable inheritance and possible application for targeted gene delivery of target-specific transposable elements. To date, such strict target specificity has been observed only among non-LTR retrotransposons. We here report a new superfamily of sequence-specific DNA transposons, designated Dada. Dada encodes a DDE-type transposase that shows a distant similarity to transposases encoded by eukaryotic MuDR, hAT, P and Kolobok transposons, as well as the prokaryotic IS256 insertion element. Dada generates 6-7 bp target site duplications upon insertion. One family of Dada DNA transposons targets a specific site inside the U6 snRNA genes and are found in various fish species, water flea, oyster and polycheate worm. Other target sequences of the Dada transposons are U1 snRNA genes and different tRNA genes. The targets are well conserved in multicopy genes, indicating that copy number and sequence conservation are the primary constraints on the target choice of Dada transposons. Dada also opens a new frontier for target-specific gene delivery application.

  19. Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development

    PubMed Central

    Smith, Brenden W.; Stanford, Elizabeth A.; Sherr, David H.; Murphy, George J.

    2016-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages, we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs) to incorporate a reporter cassette at the transcription start site of one of its canonical targets, cytochrome P450 1A1 (CYP1A1). This cell line faithfully reports on CYP1A1 expression, with luciferase levels as its functional readout, when treated with an endogenous AHR ligand (FICZ) at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands, and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed, this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR. PMID:27148368

  20. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis

    PubMed Central

    Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji

    2016-01-01

    The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)–mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow–derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR−/− mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos–dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR−/− mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. PMID:27849171

  1. Bio and nanotechnological strategies for tumor-targeted gene therapy.

    PubMed

    Kang, Jeong-Hun; Toita, Riki; Katayama, Yoshiki

    2010-01-01

    Gene therapy is a new medical approach for the treatment of tumors. For safe and efficient gene therapy, therapeutic genes need to be delivered efficiently into the target tumor cells. Development of gene delivery systems to specifically recognize and target tumor cells and to distinguish them from normal cells, especially in the same tissue or organ, is one of the most important issues regarding the present gene delivery methodologies. The enhanced permeability and retention (EPR) effect using the characteristics of angiogenic tumor blood vessels, as well as gene delivery systems recognizing hyperactivated receptors or intracellular signals, is broadly applied to tumor-targeted gene therapy. In addition, bacterial vectors can be a useful means for targeting hypoxic or anoxic regions of a tumor.

  2. A novel computational approach for the prediction of networked transcription factors of aryl hydrocarbon-receptor-regulated genes.

    PubMed

    Kel, Alexander; Reymann, Susanne; Matys, Volker; Nettesheim, Paul; Wingender, Edgar; Borlak, Jürgen

    2004-12-01

    A novel computational method based on a genetic algorithm was developed to study composite structure of promoters of coexpressed genes. Our method enabled an identification of combinations of multiple transcription factor binding sites regulating the concerted expression of genes. In this article, we study genes whose expression is regulated by a ligand-activated transcription factor, aryl hydrocarbon receptor (AhR), that mediates responses to a variety of toxins. AhR-mediated change in expression of AhR target genes was measured by oligonucleotide microarrays and by reverse transcription-polymerase chain reaction in human and rat hepatocytes. Promoters and long-distance regulatory regions (>10 kb) of AhR-responsive genes were analyzed by the genetic algorithm and a variety of other computational methods. Rules were established on the local oligonucleotide context in the flanks of the AhR binding sites, on the occurrence of clusters of AhR recognition elements, and on the presence in the promoters of specific combinations of multiple binding sites for the transcription factors cooperating in the AhR regulatory network. Our rules were applied to search for yet unknown Ah-receptor target genes. Experimental evidence is presented to demonstrate high fidelity of this novel in silico approach.

  3. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.

  4. Deletion of Aryl Hydrocarbon Receptor AHR in Mice Leads to Subretinal Accumulation of Microglia and RPE Atrophy

    PubMed Central

    Kim, Soo-Young; Yang, Hyun-Jin; Chang, Yi-Sheng; Kim, Jung-Woong; Brooks, Matthew; Chew, Emily Y.; Wong, Wai T.; Fariss, Robert N.; Rachel, Rivka A.; Cogliati, Tiziana; Qian, Haohua; Swaroop, Anand

    2014-01-01

    Purpose. The aryl hydrocarbon receptor (AHR) is a ligand-activated nuclear receptor that regulates cellular response to environmental signals, including UV and blue wavelength light. This study was undertaken to elucidate AHR function in retinal homeostasis. Methods. RNA-seq data sets were examined for Ahr expression in the mouse retina and rod photoreceptors. The Ahr−/− mice were evaluated by fundus imaging, optical coherence tomography, histology, immunohistochemistry, and ERG. For light damage experiments, adult mice were exposed to 14,000 to 15,000 lux of diffuse white light for 2 hours. Results. In mouse retina, Ahr transcripts were upregulated during development, with continued increase in aging rod photoreceptors. Fundus examination of 3-month-old Ahr−/− mice revealed subretinal autofluorescent spots, which increased in number with age and following acute light exposure. Ahr−/− retina also showed subretinal microglia accumulation that correlated with autofluorescence changes, RPE abnormalities, and reactivity against immunoglobulin, complement factor H, and glial fibrillary acidic protein. Functionally, Ahr−/− mice displayed reduced ERG c-wave amplitudes. Conclusions. The Ahr−/− mice exhibited subretinal accumulation of microglia and focal RPE atrophy, phenotypes observed in AMD. Together with a recently published report on another Ahr−/− mouse model, our study suggests that AHR has a protective role in the retina as an environmental stress sensor. As such, its altered function may contribute to human AMD progression and provide a target for pharmacological intervention. PMID:25159211

  5. Aptamer-guided gene targeting in yeast and human cells

    PubMed Central

    Ruff, Patrick; Koh, Kyung Duk; Keskin, Havva; Pai, Rekha B.; Storici, Francesca

    2014-01-01

    Gene targeting is a genetic technique to modify an endogenous DNA sequence in its genomic location via homologous recombination (HR) and is useful both for functional analysis and gene therapy applications. HR is inefficient in most organisms and cell types, including mammalian cells, often limiting the effectiveness of gene targeting. Therefore, increasing HR efficiency remains a major challenge to DNA editing. Here, we present a new concept for gene correction based on the development of DNA aptamers capable of binding to a site-specific DNA binding protein to facilitate the exchange of homologous genetic information between a donor molecule and the desired target locus (aptamer-guided gene targeting). We selected DNA aptamers to the I-SceI endonuclease. Bifunctional oligonucleotides containing an I-SceI aptamer sequence were designed as part of a longer single-stranded DNA molecule that contained a region with homology to repair an I-SceI generated double-strand break and correct a disrupted gene. The I-SceI aptamer-containing oligonucleotides stimulated gene targeting up to 32-fold in yeast Saccharomyces cerevisiae and up to 16-fold in human cells. This work provides a novel concept and research direction to increase gene targeting efficiency and lays the groundwork for future studies using aptamers for gene targeting. PMID:24500205

  6. Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Wang, Qing; Zhang, Xiang; Kurita, Hisaka; Ko, Chia-I.; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    Congenital heart disease (CHD) is the most common congenital abnormality and one of the leading causes of newborn death throughout the world. Despite much emerging scientific information, the precise etiology of this disease remains elusive. Here, we show that the aryl hydrocarbon receptor (AHR) regulates the expression of crucial cardiogenesis genes and that interference with endogenous AHR functions, either by gene ablation or by agonist exposure during early development, causes overlapping structural and functional cardiac abnormalities that lead to altered fetal heart physiology, including higher heart rates, right and left ventricle dilation, higher stroke volume, and reduced ejection fraction. With striking similarity between AHR knockout (Ahr−/−) and agonist-exposed wild type (Ahr+/+) embryos, in utero disruption of endogenous AHR functions converge into dysregulation of molecular mechanisms needed for attainment and maintenance of cardiac differentiation, including the pivotal signals regulated by the cardiogenic transcription factor NKH2.5, energy balance via oxidative phosphorylation and TCA cycle and global mitochondrial function and homeostasis. Our findings suggest that AHR signaling in the developing mammalian heart is central to the regulation of pathways crucial for cellular metabolism, cardiogenesis, and cardiac function, which are potential targets of environmental factors associated with CHD. PMID:26139165

  7. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  8. Gene Targeting Without DSB Induction Is Inefficient in Barley.

    PubMed

    Horvath, Mihaly; Steinbiss, Hans-Henning; Reiss, Bernd

    2016-01-01

    Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana.

  9. Gene Targeting Without DSB Induction Is Inefficient in Barley

    PubMed Central

    Horvath, Mihaly; Steinbiss, Hans-Henning; Reiss, Bernd

    2017-01-01

    Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana. PMID:28105032

  10. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line .

  11. Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-10-14

    A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.

  12. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2004-06-01

    From the studies performed during the last one year, we determined the effects of AAV-mediated anti-angiogenic gene therapy as a combination therapy...angiogenic gene therapy in combination with chemotherapy. In the next year, we will determine whether such a combination therapy would provide regression of established tumors.

  13. Renal diseases as targets of gene therapy.

    PubMed

    Phillips, Brett; Giannoukakis, Nick; Trucco, Massimo

    2008-01-01

    A number of renal pathologies exist that have seen little or no improvement in treatment methods over the past 20 years. These pathologies include acute and chronic kidney diseases as well as posttransplant kidney survival and host rejection. A novel approach to treatment methodology may provide new insight to further progress our understanding of the disease and overall patient outcome. Recent advances in human genomics and gene delivery systems have opened the door to possible cures through the direct modulation of cellular genes. These techniques of gene therapy have not been extensively applied to renal pathologies, but clinical trials on other organ systems and kidney research in animal models hold promise. Techniques have employed viral and nonviral vectors to deliver gene modulating compounds directly into the cell. These vectors have the capability to replace defective alleles, express novel genes, or suppress the expression of pathogenic genes in a wide variety of kidney cell types. Focus has also been placed on ex vivo modification of kidney tissue to promote allograft survival and limit the resulting immune response to the transplanted organ. This could prove a valuable alternative to current immunosuppressive drugs and their deleterious effects on patients. While continued research and clinical trials are needed to identify a robust system of gene delivery, gene therapy techniques have great potential to treat kidney disease at the cellular level and improve patient quality of life.

  14. Molecular pathways: targeting ETS gene fusions in cancer.

    PubMed

    Feng, Felix Y; Brenner, J Chad; Hussain, Maha; Chinnaiyan, Arul M

    2014-09-01

    Rearrangements, or gene fusions, involving the ETS family of transcription factors are common driving events in both prostate cancer and Ewing sarcoma. These rearrangements result in pathogenic expression of the ETS genes and trigger activation of transcriptional programs enriched for invasion and other oncogenic features. Although ETS gene fusions represent intriguing therapeutic targets, transcription factors, such as those comprising the ETS family, have been notoriously difficult to target. Recently, preclinical studies have demonstrated an association between ETS gene fusions and components of the DNA damage response pathway, such as PARP1, the catalytic subunit of DNA protein kinase (DNAPK), and histone deactylase 1 (HDAC1), and have suggested that ETS fusions may confer sensitivity to inhibitors of these DNA repair proteins. In this review, we discuss the role of ETS fusions in cancer, the preclinical rationale for targeting ETS fusions with inhibitors of PARP1, DNAPK, and HDAC1, as well as ongoing clinical trials targeting ETS gene fusions.

  15. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  16. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  17. Double targeted gene replacement for creating null mutants.

    PubMed

    Cruz, A; Coburn, C M; Beverley, S M

    1991-08-15

    We have used double gene targeting to create homozygous gene replacements in the protozoan parasite Leishmania major, an asexual diploid. This method uses two independent selectable markers in successive rounds of gene targeting to replace both alleles of an endogenous gene. We developed an improved hygromycin B-resistance cassette encoding hygromycin phosphotransferase (HYG) for use as a selectable marker for Leishmania. HYG-containing vectors functioned equivalently to those containing the neomycin phosphotransferase (NEO) cassette previously used for extrachromosomal transformation or gene targeting. Drug resistances conferred by the NEO and HYG markers were independent, allowing simultaneous selection for both markers. A HYG targeting vector was utilized to replace the single dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene remaining in a line heterozygous for a NEO replacement at the dhfr-ts locus (+/neo), with a targeting efficiency comparable to that seen with wild-type recipients. The resultant dhfr-ts- line (hyg/neo) was auxotrophic for thymidine. The double targeted replacement method will enable functional genetic testing in a variety of asexual diploids, including cultured mammalian cells and fungi such as Candida albicans. Additionally, it may be possible to use Leishmania bearing conditionally auxotrophic gene replacements as safe, improved live vaccines for leishmaniasis.

  18. AhR activation underlies the CYP1A autoinduction by A-998679 in rats

    PubMed Central

    Liguori, Michael J.; Lee, Chih-Hung; Liu, Hong; Ciurlionis, Rita; Ditewig, Amy C.; Doktor, Stella; Andracki, Mark E.; Gagne, Gerard D.; Waring, Jeffrey F.; Marsh, Kennan C.; Gopalakrishnan, Murali; Blomme, Eric A. G.; Yang, Yi

    2012-01-01

    Xenobiotic-mediated induction of cytochrome P450 (CYP) drug metabolizing enzymes (DMEs) is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 [3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl) benzonitrile], was shown to enhance its own clearance via induction of Cyp1a1 and Cyp1a2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound's plasma AUC decreased at 30 mg/kg (95%) and 100 mg/kg (80%). Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of Cyp1a, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR) in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces Cyp1a1 and Cyp1a2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons (PAHs), may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A-related mechanisms of drug metabolism and toxicity. PMID:23112805

  19. Mono-Substituted Isopropylated Triaryl Phosphate, a Major Component of Firemaster 550, is an AHR Agonist that Exhibits AHR-Independent Cardiotoxicity in Zebrafish

    PubMed Central

    Gerlach, Cory V.; Das, Siba R.; Volz, David C.; Bisson, William H.; Kolluri, Siva K.; Tanguay, Robert L.

    2014-01-01

    Firemaster 550 (FM550) is an additive flame retardant mixture used within polyurethane foam and is increasingly found in house dust and the environment due to leaching. Despite the widespread use of FM550, very few studies have investigated the potential toxicity of its ingredients during early vertebrate development. In the current study, we sought to specifically investigate mono-substituted isopropylated triaryl phosphate (mITP), a component comprising approximately 32% of FM550, which has been shown to cause cardiotoxicity during zebrafish embryogenesis. Previous research showed that developmental defects are rescued using an aryl hydrocarbon receptor (AHR) antagonist (CH223191), suggesting that mITP-induced toxicity was AHR-dependent. As zebrafish have three known AHR isoforms, we used a functional AHR2 knockout line along with AHR1A-and AHR1B-specific morpholinos to determine which AHR isoform, if any, mediates mITP-induced cardiotoxicity. As in silico structural homology modeling predicted that mITP may bind favorably to both AHR2 and AHR1B isoforms, we evaluated AHR involvement in vivo by measuring CYP1A mRNA and protein expression following exposure to mITP in the presence or absence of CH223191 or AHR-specific morpholinos. Based on these studies, we found that mITP interacts with both AHR2 and AHR1B isoforms to induce CYP1A expression. However, while CH223191 blocked mITP-induced CYP1A induction and cardiotoxicity, knockdown of all three AHR isoforms failed to block mITP-induced cardiotoxicity in the absence of detectable CYP1A induction. Overall, these results suggest that, while mITP is an AHR agonist, mITP causes AHR-independent cardiotoxicity through a pathway that is also antagonized by CH223191. PMID:24865613

  20. Mono-substituted isopropylated triaryl phosphate, a major component of Firemaster 550, is an AHR agonist that exhibits AHR-independent cardiotoxicity in zebrafish.

    PubMed

    Gerlach, Cory V; Das, Siba R; Volz, David C; Bisson, William H; Kolluri, Siva K; Tanguay, Robert L

    2014-09-01

    Firemaster 550 (FM550) is an additive flame retardant mixture used within polyurethane foam and is increasingly found in house dust and the environment due to leaching. Despite the widespread use of FM550, very few studies have investigated the potential toxicity of its ingredients during early vertebrate development. In the current study, we sought to specifically investigate mono-substituted isopropylated triaryl phosphate (mITP), a component comprising approximately 32% of FM550, which has been shown to cause cardiotoxicity during zebrafish embryogenesis. Previous research showed that developmental defects are rescued using an aryl hydrocarbon receptor (AHR) antagonist (CH223191), suggesting that mITP-induced toxicity was AHR-dependent. As zebrafish have three known AHR isoforms, we used a functional AHR2 knockout line along with AHR1A- and AHR1B-specific morpholinos to determine which AHR isoform, if any, mediates mITP-induced cardiotoxicity. As in silico structural homology modeling predicted that mITP may bind favorably to both AHR2 and AHR1B isoforms, we evaluated AHR involvement in vivo by measuring CYP1A mRNA and protein expression following exposure to mITP in the presence or absence of CH223191 or AHR-specific morpholinos. Based on these studies, we found that mITP interacts with both AHR2 and AHR1B isoforms to induce CYP1A expression. However, while CH223191 blocked mITP-induced CYP1A induction and cardiotoxicity, knockdown of all three AHR isoforms failed to block mITP-induced cardiotoxicity in the absence of detectable CYP1A induction. Overall, these results suggest that, while mITP is an AHR agonist, mITP causes AHR-independent cardiotoxicity through a pathway that is also antagonized by CH223191.

  1. A novel AhR ligand, 2AI, protects the retina from environmental stress

    PubMed Central

    Gutierrez, Mark A.; Davis, Sonnet S.; Rosko, Andrew; Nguyen, Steven M.; Mitchell, Kylie P.; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y.; Mooney, Shaun; Perdew, Gary H.; Hubbard, Troy D.; Lamba, Deepak A.; Ramanathan, Arvind

    2016-01-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice. PMID:27364765

  2. Gene targeting with a replication-defective adenovirus vector.

    PubMed Central

    Fujita, A; Sakagami, K; Kanegae, Y; Saito, I; Kobayashi, I

    1995-01-01

    Wide application of the gene-targeting technique has been hampered by its low level of efficiency. A replication-defective adenovirus vector was used for efficient delivery of donor DNA in order to bypass this problem. Homologous recombination was selected between a donor neo gene inserted in the adenovirus vector and a target mutant neo gene on a nuclear papillomavirus plasmid. These recombinant adenoviruses allowed gene transfer to 100% of the treated cells without impairing their viability. Homologous recombinants were obtained at a level of frequency much higher than that obtained by electroporation or a calcium phosphate procedure. The structure of the recombinants was analyzed in detail after recovery in an Escherichia coli strain. All of the recombinants examined had experienced a precise correction of the mutant neo gene. Some of them had a nonhomologous rearrangement of their sequences as well. One type of nonhomologous recombination took place at the end of the donor-target homology. The vector adenovirus DNA was inserted into some of the products obtained at a high multiplicity of infection. The insertion was at the end of the donor-target homology with a concomitant insertion of a 10-bp-long filler sequence in one of the recombinants. The possible relationship between these rearrangements and the homologous recombination is discussed. These results demonstrate the applicability of adenovirus-mediated gene delivery in gene targeting and gene therapy. PMID:7666520

  3. Associating transcription factor-binding site motifs with target GO terms and target genes

    PubMed Central

    Bodén, Mikael; Bailey, Timothy L.

    2008-01-01

    The roles and target genes of many transcription factors (TFs) are still unknown. To predict the roles of TFs, we present a computational method for associating Gene Ontology (GO) terms with TF-binding motifs. The method works by ranking all genes as potential targets of the TF, and reporting GO terms that are significantly associated with highly ranked genes. We also present an approach, whereby these predicted GO terms can be used to improve predictions of TF target genes. This uses a novel gene-scoring function that reflects the insight that genes annotated with GO terms predicted to be associated with the TF are more likely to be its targets. We construct validation sets of GO terms highly associated with known targets of various yeast and human TF. On the yeast reference sets, our prediction method identifies at least one correct GO term for 73% of the TF, 49% of the correct GO terms are predicted and almost one-third of the predicted GO terms are correct. Results on human reference sets are similarly encouraging. Validation of our target gene prediction method shows that its accuracy exceeds that of simple motif scanning. PMID:18544606

  4. Peroxisome proliferator-activated receptor alpha target genes.

    PubMed

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  5. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    PubMed Central

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  6. Suppression of cytokine-mediated complement factor gene expression through selective activation of the Ah receptor with 3',4'-dimethoxy-α-naphthoflavone.

    PubMed

    Murray, Iain A; Flaveny, Colin A; Chiaro, Christopher R; Sharma, Arun K; Tanos, Rachel S; Schroeder, Jennifer C; Amin, Shantu G; Bisson, William H; Kolluri, Siva K; Perdew, Gary H

    2011-03-01

    We have characterized previously a class of aryl hydrocarbon receptor (AHR) ligand termed selective AHR modulators (SAhRMs). SAhRMs exhibit anti-inflammatory properties, including suppression of cytokine-mediated acute phase genes (e.g., Saa1), through dissociation of non-dioxin-response element (DRE) AHR activity from DRE-dependent xenobiotic gene expression. The partial AHR agonist α-naphthoflavone (αNF) mediates the suppressive, non-DRE dependent effects on SAA1 expression and partial DRE-mediated CYP1A1 induction. These observations suggest that αNF may be structurally modified to a derivative exhibiting only SAhRM activity. A screen of αNF derivatives identifies 3',4'-dimethoxy-αNF (DiMNF) as a candidate SAhRM. Competitive ligand binding validates DiMNF as an AHR ligand, and DRE-dependent reporter assays with quantitative mRNA analysis of AHR target genes reveal minimal agonist activity associated with AHR binding. Consistent with loss of agonist activity, DiMNF fails to promote AHR binding to DRE probes as determined through electromobility shift assay. Importantly, mRNA analysis indicates that DiMNF retains the suppressive capacity of αNF regarding cytokine-mediated SAA1 expression in Huh7 cells. Interestingly, predictive docking modeling suggests that DiMNF adopts a unique orientation within the AHR ligand binding pocket relative to αNF and may facilitate the rational design of additional SAhRMs. Microarray studies with a non-DRE binding but otherwise functional AHR mutant identified complement factor C3 as a potential SAhRM target. We confirmed this observation in Huh7 cells using 10 μM DiMNF, which significantly repressed C3 mRNA and protein. These data expand the classes of AHR ligands exerting DRE-independent anti-inflammatory SAhRM activity, suggesting SAhRMs may have application in the amelioration of inflammatory disorders.

  7. Genome-Wide Identification of KANADI1 Target Genes

    PubMed Central

    Ott, Felix; Weigel, Detlef; Bowman, John L.; Heisler, Marcus G.; Wenkel, Stephan

    2013-01-01

    Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown. PMID:24155946

  8. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  9. Viroreplicative Gene Therapy Targeted to Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining...the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this...unstable in the RCR vector ( data not shown). Accordingly, we have devoted a considerable amount of effort to optimizing the yCD suicide gene RCR vector

  10. A Flexible Approach for Highly Multiplexed Candidate Gene Targeted Resequencing

    PubMed Central

    Natsoulis, Georges; Bell, John M.; Xu, Hua; Buenrostro, Jason D.; Ordonez, Heather; Grimes, Susan; Newburger, Daniel; Jensen, Michael; Zahn, Jacob M.; Zhang, Nancy; Ji, Hanlee P.

    2011-01-01

    We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies. PMID:21738606

  11. Targeted gene deletion in Zygosaccharomyces bailii.

    PubMed

    Mollapour, M; Piper, P

    2001-01-30

    Yeasts of the genus Zygosaccharomyces are notable agents of large-scale food spoilage. Despite the economic importance of these organisms, little is known about the stress adaptations whereby they adapt to many of the more severe conditions of food preservation. In this study it was shown that genes of Z. bailii, a yeast notable for its high resistances to food preservatives and ethanol, can be isolated by complementation of the corresponding mutant strains of Saccharomyces cerevisiae. It was also discovered that the acquisition by S. cerevisiae of a single small Z. bailii gene (ZbYME2) was sufficient for the former yeast to acquire the ability to degrade two major food preservatives, benzoic acid and sorbic acid. Using DNA cassettes containing dominant selectable markers and methods originally developed for performing gene deletions in S. cerevisiae, the two copies of ZbYME2 in the Z. bailii genome were sequentially deleted. The resulting Zbyme2/Zbyme2 homozygous deletant strain had lost any ability to utilize benzoate as sole carbon source and was more sensitive to weak acid preservatives during growth on glucose. Thus, ZbYME2, probably the nuclear gene for a mitochondrial mono-oxygenase function, is essential for Z. bailii to degrade food preservatives. This ability to catabolize weak acid preservatives is a significant factor contributing to the preservative resistance of Z. bailii under aerobic conditions. This study is the first to demonstrate that it is possible to delete in Z. bailii genes that are suspected as being important for growth of this organism in preserved foods and beverages. With the construction of further mutant of Z. bailii strains, a clearer picture should emerge of how this yeast adapts to the conditions of food preservation. This information will, in turn, allow the design of new preservation strategies. GenBank Accession Nos: ZbURA3 (AF279259), ZbTIM9 (AF279260), ZbYME2 (AF279261), ZbTRP1 (AF279262), ZbHHT1(AF296170).

  12. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR)-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli

    PubMed Central

    Guruge, Keerthi S.; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I.; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki

    2015-01-01

    Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of

  13. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR)-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli.

    PubMed

    Guruge, Keerthi S; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki

    2015-01-01

    Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of

  14. Drug target prioritization by perturbed gene expression and network information

    PubMed Central

    Isik, Zerrin; Baldow, Christoph; Cannistraci, Carlo Vittorio; Schroeder, Michael

    2015-01-01

    Drugs bind to their target proteins, which interact with downstream effectors and ultimately perturb the transcriptome of a cancer cell. These perturbations reveal information about their source, i.e., drugs’ targets. Here, we investigate whether these perturbations and protein interaction networks can uncover drug targets and key pathways. We performed the first systematic analysis of over 500 drugs from the Connectivity Map. First, we show that the gene expression of drug targets is usually not significantly affected by the drug perturbation. Hence, expression changes after drug treatment on their own are not sufficient to identify drug targets. However, ranking of candidate drug targets by network topological measures prioritizes the targets. We introduce a novel measure, local radiality, which combines perturbed genes and functional interaction network information. The new measure outperforms other methods in target prioritization and proposes cancer-specific pathways from drugs to affected genes for the first time. Local radiality identifies more diverse targets with fewer neighbors and possibly less side effects. PMID:26615774

  15. Zebrafish Cardiotoxicity: The Effects of CYP1A Inhibition and AHR2 Knockdown Following Exposure to Weak Aryl Hydrocarbon Receptor Agonists

    PubMed Central

    Clark, Bryan William; Van Tiem Garner, Lindsey; Di Giulio, Richard Thomas

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and β-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio 2004; Wassenberg and Di Giulio 2004; Billiard, Timme-Laragy et al. 2006; Van Tiem and Di Giulio 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-o-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were co-exposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the

  16. The hair follicle as a target for gene therapy.

    PubMed

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  17. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men.

    PubMed

    Borgmann, Jennifer; Tüttelmann, Frank; Dworniczak, Bernd; Röpke, Albrecht; Song, Hye-Won; Kliesch, Sabine; Wilkinson, Miles F; Laurentino, Sandra; Gromoll, Jörg

    2016-09-15

    The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.

  18. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2005-06-01

    or transduced son, WI). A mouse monoclonal anti-human VEGF with 100 multiplicities of infection (MOI) of rAAV-sFlt-l. receptor-1 (FIt-1 receptor...only partial amounts of the cancer patients correlate with advanced and metastatic deficient protein/enzyme for phenotypic correction of disease and...activity of matrix metalloproteinase. Cancer Res 2000;60: 4- sulfatase to the retinal pigment epithelium of feline mucopolysacchar- 5410-3. idosis VI. J Gene Med 2002;4:613-321.

  19. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  20. Disease modeling by gene targeting using microRNAs.

    PubMed

    Lan, C-C; Leong, I U S; Lai, D; Love, D R

    2011-01-01

    Zebrafish have proved to be a popular species for the modeling of human disease. In this context, there is a need to move beyond chemical-based mutagenesis and develop tools that target genes that are orthologous to those that are implicated in human heritable diseases. Targeting can take the form of creating mutations that are nonsense or mis-sense, or to mimic haploinsufficiency through the regulated expression of RNA effector molecules. In terms of the latter, we describe here the development and investigation of microRNA (miRNA)-based directed gene silencing methods in zebrafish. Unlike small interfering RNAs (siRNAs), miRNA-based methods offer temporal and spatial regulation of gene silencing. Proof-of-concept experiments demonstrate the efficacy of the method in zebrafish embryos, which provide the foundation for developing disease models using miRNA-based gene-targeting.

  1. Gene-targeting technologies for the study of neurological disorders.

    PubMed

    Beglopoulos, Vassilios; Shen, Jie

    2004-01-01

    Studies using genetic manipulations have proven invaluable in the research of neurological disorders. In the forefront of these approaches is the knockout technology that engineers a targeted gene mutation in mice resulting in inactivation of gene expression. In many cases, important roles of a particular gene in embryonic development have precluded the in vivo study of its function in the adult brain, which is usually the most relevant experimental context for the study of neurological disorders. The conditional knockout technology has provided a tool to overcome this restriction and has been used successfully to generate viable mouse models with gene inactivation patterns in certain regions or cell types of the postnatal brain. This review first describes the methodology of gene targeting in mice, detailing the aspects of designing a targeting vector, introducing it into embryonic stem cells in culture and screening for correct recombination events, and generating chimeric and null mutant mice from the positive clones. It then discusses the special issues and considerations for the generation of conditional knockout mice, including a section about approaches for inducible gene inactivation in the brain and some of their applications. An overview of gene-targeted mouse models that have been used in the study of several neurological disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, seizure disorders, and schizophrenia, is also presented. The importance of the results obtained by these models for the understanding of the pathogenic mechanism underlying the disorders is discussed.

  2. Identification of p53-target genes in Danio rerio

    PubMed Central

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M. Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species. PMID:27581768

  3. Nanoparticle-based targeted gene therapy for lung cancer

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  4. Single molecule targeted sequencing for cancer gene mutation detection

    PubMed Central

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W.; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  5. Targeted gene correction with 5' acridine-oligonucleotide conjugates.

    PubMed

    de Piédoue, G; Andrieu-Soler, C; Concordet, J P; Maurisse, R; Sun, J-S; Lopez, B; Kuzniak, I; Leboulch, P; Feugeas, J-P

    2007-01-01

    Single-stranded oligonucleotides (SSOs) mediate gene repair of punctual chromosomal mutations at a low frequency. We hypothesized that enhancement of DNA binding affinity of SSOs by intercalating agents may increase the number of corrected cells. Several biochemical modifications of SSOs were tested for their capability to correct a chromosomally integrated and mutated GFP reporter gene in human 293 cells. SSOs of 25 nucleotide length conjugated with acridine at their 5' end increased the efficiency of gene correction up to 10-fold compared to nonmodified SSOs. Acridine and psoralen conjugates were both evaluated, and acridine-modified SSOs were the most effective. Conjugation with acridine at the 3' end of the SSO inhibited gene correction, whereas flanking the SSO by acridine on both sides provided an intermediate level of correction. These results suggest that increasing the stability of hybridization between SSO and its target without hampering a 3' extension improves gene targeting, in agreement with the "annealing-integration" model of DNA repair.

  6. Targeted inactivation of francisella tularensis genes by group II introns.

    PubMed

    Rodriguez, Stephen A; Yu, Jieh-Juen; Davis, Greg; Arulanandam, Bernard P; Klose, Karl E

    2008-05-01

    Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.

  7. Targeted gene therapy and cell reprogramming in Fanconi anemia

    PubMed Central

    Rio, Paula; Baños, Rocio; Lombardo, Angelo; Quintana-Bustamante, Oscar; Alvarez, Lara; Garate, Zita; Genovese, Pietro; Almarza, Elena; Valeri, Antonio; Díez, Begoña; Navarro, Susana; Torres, Yaima; Trujillo, Juan P; Murillas, Rodolfo; Segovia, Jose C; Samper, Enrique; Surralles, Jordi; Gregory, Philip D; Holmes, Michael C; Naldini, Luigi; Bueren, Juan A

    2014-01-01

    Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies. PMID:24859981

  8. Different Polycomb group complexes regulate common target genes in Arabidopsis.

    PubMed

    Makarevich, Grigory; Leroy, Olivier; Akinci, Umut; Schubert, Daniel; Clarenz, Oliver; Goodrich, Justin; Grossniklaus, Ueli; Köhler, Claudia

    2006-09-01

    Polycomb group (PcG) proteins convey epigenetic inheritance of repressed transcriptional states. Although the mechanism of the action of PcG is not completely understood, methylation of histone H3 lysine 27 (H3K27) is important in establishing PcG-mediated transcriptional repression. We show that the plant PcG target gene PHERES1 is regulated by histone trimethylation on H3K27 residues mediated by at least two different PcG complexes in plants, containing the SET domain proteins MEDEA or CURLY LEAF/SWINGER. Furthermore, we identify FUSCA3 as a potential PcG target gene and show that FUSCA3 is regulated by MEDEA and CURLY LEAF/SWINGER. We propose that different PcG complexes regulate a common set of target genes during the different stages of plant development.

  9. Gene regulation: ancient microRNA target sequences in plants.

    PubMed

    Floyd, Sandra K; Bowman, John L

    2004-04-01

    MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants, including bryophytes, lycopods, ferns and seed plants. We also find that the messenger RNAs from these genes are cleaved within the same microRNA-binding site in representatives of each land-plant group, as they are in Arabidopsis. Our results indicate not only that microRNAs mediate gene regulation in non-flowering as well as flowering plants, but also that the regulation of this class of plant genes dates back more than 400 million years.

  10. Alternative epigenetic chromatin states of polycomb target genes.

    PubMed

    Schwartz, Yuri B; Kahn, Tatyana G; Stenberg, Per; Ohno, Katsuhito; Bourgon, Richard; Pirrotta, Vincenzo

    2010-01-01

    Polycomb (PcG) regulation has been thought to produce stable long-term gene silencing. Genomic analyses in Drosophila and mammals, however, have shown that it targets many genes, which can switch state during development. Genetic evidence indicates that critical for the active state of PcG target genes are the histone methyltransferases Trithorax (TRX) and ASH1. Here we analyze the repertoire of alternative states in which PcG target genes are found in different Drosophila cell lines and the role of PcG proteins TRX and ASH1 in controlling these states. Using extensive genome-wide chromatin immunoprecipitation analysis, RNAi knockdowns, and quantitative RT-PCR, we show that, in addition to the known repressed state, PcG targets can reside in a transcriptionally active state characterized by formation of an extended domain enriched in ASH1, the N-terminal, but not C-terminal moiety of TRX and H3K27ac. ASH1/TRX N-ter domains and transcription are not incompatible with repressive marks, sometimes resulting in a "balanced" state modulated by both repressors and activators. Often however, loss of PcG repression results instead in a "void" state, lacking transcription, H3K27ac, or binding of TRX or ASH1. We conclude that PcG repression is dynamic, not static, and that the propensity of a target gene to switch states depends on relative levels of PcG, TRX, and activators. N-ter TRX plays a remarkable role that antagonizes PcG repression and preempts H3K27 methylation by acetylation. This role is distinct from that usually attributed to TRX/MLL proteins at the promoter. These results have important implications for Polycomb gene regulation, the "bivalent" chromatin state of embryonic stem cells, and gene expression in development.

  11. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.

    PubMed

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-09-15

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.

  12. Expression of PAX8 Target Genes in Papillary Thyroid Carcinoma

    PubMed Central

    Rosignolo, Francesca; Sponziello, Marialuisa; Durante, Cosimo; Puppin, Cinzia; Mio, Catia; Baldan, Federica; Di Loreto, Carla; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe

    2016-01-01

    PAX8 is a thyroid-specific transcription factor whose expression is dysregulated in thyroid cancer. A recent study using a conditional knock-out mouse model identified 58 putative PAX8 target genes. In the present study, we evaluated the expression of 11 of these genes in normal and tumoral thyroid tissues from patients with papillary thyroid cancer (PTC). ATP1B1, GPC3, KCNIP3, and PRLR transcript levels in tumor tissues were significantly lower in PTCs than in NT, whereas LCN2, LGALS1 and SCD1 expression was upregulated in PTC compared with NT. Principal component analysis of the expression of the most markedly dysregulated PAX8 target genes was able to discriminate between PTC and NT. Immunohistochemistry was used to assess levels of proteins encoded by the two most dyregulated PAX8 target genes, LCN2 and GPC3. Interestingly, GPC3 was detectable in all of the NT samples but none of the PTC samples. Collectively, these findings point to significant PTC-associated dysregulation of several PAX8 target genes, supporting the notion that PAX8-regulated molecular cascades play important roles during thyroid tumorigenesis. PMID:27249794

  13. Design and implementation of SMO for a nonlinear MIMO AHRS

    NASA Astrophysics Data System (ADS)

    Doostdar, Parisa; Keighobadi, Jafar

    2012-10-01

    In a low-cost attitude heading reference system (AHRS), the measurements made by MEMS inertial and magnetic sensors are affected by large parameter uncertainties, stochastic noises and unknown disturbances. In this paper, considering the robustness of the sliding mode observers (SMO) against both structured and unstructured uncertainties as well as exogenous inputs, the process of design and implementation of a nonlinear SMO is proposed for a low-cost AHRS. For simultaneous estimation of orientation variables and calibration biases of gyroscopes, a nonlinear and non-affine model of the AHRS is considered. Therefore, based on the Lie-algebraic method, the estimation algorithm is designed for a general class of non-affine nonlinear MIMO systems. In the proposed observer, owing to decreasing the required assumptions for coordinate transformation in recent literatures, the design process of the SMO is simplified. The gain matrices of the proposed SMO are obtained through ensuring the stability and the convergence of estimation errors based on Lyapunov's direct method. The expected tracking performance of the robust state and parameter estimation algorithm compared to that of the extended Kalman filter (EKF) is evaluated through simulations and real experiments of a strapped AHRS on a ground vehicle.

  14. Organ targeted prenatal gene therapy--how far are we?

    PubMed

    Mehta, Vedanta; Abi Nader, Khalil; Waddington, Simon; David, Anna L

    2011-07-01

    Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before long-term tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application can target genes to a large population of dividing stem cells, and the smaller fetal size allows a higher vector-to-target cell ratio to be achieved. Early-gestation delivery may allow the development of immune tolerance to the transgenic protein which would facilitate postnatal repeat vector administration if needed. Targeting particular organs will depend on manipulating the vector to achieve selective tropism and on choosing the most appropriate gestational age and injection method for fetal delivery. Intra-amniotic injection reaches the skin, and other organs that are bathed in the fluid however since gene transfer to the lung and gut is usually poor more direct injection methods will be needed. Delivery to the liver and blood can be achieved by systemic delivery via the umbilical vein or peritoneal cavity. Gene transfer to the central nervous system in the fetus is difficult but newer vectors are available that transduce neuronal tissue even after systemic delivery.

  15. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes.

    PubMed

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-04-25

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.

  16. Cloning, characterization and targeting of the mouse HEXA gene

    SciTech Connect

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A.

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  17. Engineering nucleases for gene targeting: safety and regulatory considerations.

    PubMed

    Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe

    2014-01-25

    Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight.

  18. Fungal virulence genes as targets for antifungal chemotherapy.

    PubMed Central

    Perfect, J R

    1996-01-01

    Fungal virulence genes have now met the age of molecular pathogenesis. The definition of virulence genes needs to be broad so that it encompasses the focus on molecular antifungal targets and vaccine epitopes. However, in the broad but simple definition of a virulence gene, there will be many complex genetic and host interactions which investigators will need to carefully define. Nevertheless, with the increasing numbers of serious fungal infections produced by old and newly reported organisms, the paucity of present antifungal drugs, and the likelihood of increasing drug resistance, the need for investigations into understanding fungal virulence at the molecular level has never been more important. PMID:8807043

  19. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins.

    PubMed

    Farmahin, Reza; Wu, Dongmei; Crump, Doug; Hervé, Jessica C; Jones, Stephanie P; Hahn, Mark E; Karchner, Sibel I; Giesy, John P; Bursian, Steven J; Zwiernik, Matthew J; Kennedy, Sean W

    2012-03-06

    There are large differences in sensitivity to the toxic and biochemical effects of dioxins and dioxin-like compounds (DLCs) among vertebrates. Previously, we demonstrated that the difference in sensitivity between domestic chicken (Gallus gallus domesticus) and common tern (Sterna hirundo) to aryl hydrocarbon receptor 1 (AHR1)-dependent changes in gene expression following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is based upon the identities of the amino acids at two sites within the ligand binding domain of AHR1 (chicken--highly sensitive; Ile324_Ser380 vs common tern--250-fold less sensitive than chicken; Val325_Ala381). Here, we tested the hypotheses that (i) the sensitivity of other avian species to TCDD, 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) is also determined by the amino acids at sites that are equivalent to sites 324 and 380 in chicken, and (ii) Ile324_Ala380 and Val324_Ser380 genotypes confer intermediate sensitivity to DLCs in birds. We compared ligand-induced transactivation function of full-length AHR1s from chicken, common tern, ring-necked pheasant (Phasianus colchicus; Ile324_Ala380) and Japanese quail (Coturnix japonica; Val324_Ala380), and three Japanese quail AHR1 mutants. The results support our hypothesis that avian species can be grouped into three general classes of sensitivity to DLCs. Both AHR1 genotype and in vitro transactivation assays predict in vivo sensitivity. Contrary to the assumption that TCDD is the most potent DLC, PeCDF was more potent than TCDD at activating Japanese quail (13- to 26-fold) and common tern (23- to 30-fold) AHR1. Our results support and expand previous in vitro and in vivo work that demonstrated ligand-dependent species differences in AHR1 affinity. The findings and methods will be of use for DLC risk assessments.

  20. Rescuing the Failing Heart by Targeted Gene Transfer

    PubMed Central

    Kawase, Yoshiaki; Ladage, Dennis; Hajjar, Roger J.

    2011-01-01

    Congestive heart failure is a major cause of morbidity and mortality in the US. While progress in conventional treatments is making steady and incremental gains to reduce heart failure mortality, there is a critical need to explore new therapeutic approaches. Gene therapy was initially applied in the clinical setting for inherited monogenic disorders. It is now apparent that gene therapy has broader potential that also includes acquired polygenic diseases, such as congestive heart failure. Recent advances in understanding of the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. Furthermore, the recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) along with the start of more recent phase 1 trials usher a new era for gene therapy for the treatment of heart failure. PMID:21371634

  1. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  2. Correction of human. beta. sup S -globin gene by gene targeting

    SciTech Connect

    Shesely, E.G.; Hyungsuk Kim; Shehee, W.R.; Smithies, O. ); Papayannopoulou, T. ); Popovich, B.W. )

    1991-05-15

    As a step toward using gene targeting for gene therapy, the authors have corrected a human {beta}{sup S}-globin gene to the normal {beta}{sup A} allele by homologous recombination in the mouse-human hybrid cell line BSM. BSM is derived from a mouse erythroleukemia cell line and carries a single human chromosome 11 with the {beta}{sup S}-globin allele. A {beta}{sup A}-globin targeting construct containing a unique oligomer and a neomycin-resistance gene was electroporated into the BSM cells, which were then placed under G418 selection. Then 126 resulting pools containing a total {approx}29,000 G418-resistant clones were screened by PCR for the presence of a targeted recombinant: 3 positive pools were identified. A targeted clone was isolated by replating one of the positive pools into smaller pools and rescreening by PCR, followed by dilution cloning. Southern blot analysis demonstrated that the isolated clone had been targeted as planned. The correction of the {beta}{sup S} allele to {beta}{sup A} was confirmed both by allele-specific PCR and by allele-specific antibodies. Expression studies comparing the uninduced and induced RNA levels in unmodified BSM cells and in the targeted clone showed no significant alteration in the ability of the targeted clone to undergo induction, despite the potentially disrupting presence of a transcriptionally active neomycin gene 5{prime} to the human {beta}{sup A}-globin gene. Thus gene targeting can correct a {beta}{sup S} allele to {beta}{sup A}, and the use of a selectable helper gene need not significantly interfere with the induction of the corrected gene.

  3. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes

    PubMed Central

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions. PMID:23002135

  4. Chromatin immunoselection defines a TAL-1 target gene.

    PubMed Central

    Cohen-Kaminsky, S; Maouche-Chrétien, L; Vitelli, L; Vinit, M A; Blanchard, I; Yamamoto, M; Peschle, C; Roméo, P H

    1998-01-01

    Despite the major functions of the basic helix-loop-helix transcription factor TAL-1 in hematopoiesis and T-cell leukemogenesis, no TAL-1 target gene has been identified. Using immunoprecipitation of genomic fragments bound to TAL-1 in the chromatin of murine erythro-leukemia (MEL) cells, we found that 10% of the immunoselected fragments contained a CAGATG or a CAGGTG E-box, followed by a GATA site. We studied one of these fragments containing two E-boxes, CAGATG and CAGGTC, followed by a GATA motif, and showed that TAL-1 binds to the CAGGTG E-box with an affinity modulated by the CAGATG or the GATA site, and that the CAGGTG-GATA motif exhibits positive transcriptional activity in MEL but not in HeLa cells. This immunoselected sequence is located within an intron of a new gene co-expressed with TAL-1 in endothelial and erythroid cells, but not expressed in fibroblasts or adult liver where no TAL-1 mRNA was detected. Finally, in vitro differentiation of embryonic stem cells towards the erythro/megakaryocytic pathways showed that the TAL-1 target gene expression followed TAL-1 and GATA-1 expression. These results establish that TAL-1 is likely to activate its target genes through a complex that binds an E-box-GATA motif and define the first gene regulated by TAL-1. PMID:9724651

  5. Myostatin gene targeting in cultured China Han ovine myoblast cells.

    PubMed

    Zhang, L; Yang, X; An, X; Chen, Y

    2007-11-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, has been shown to be a negative regulator of myogenesis. Natural mutation in beef cattle causes double-muscling phenotypes. We report an investigation designed to knockout the MSTN gene by gene targeting in ovine myoblast cells. Two promoter-trap targeting vectors MSTN-green fluorescent protein (GFP) and MSTN-neo were constructed and used to transfect foetal and neonatal ovine primary myoblast cells. Both GFP-expressing cells and drug-resistant cells were obtained. Targeted cells expressing GFP were confirmed by polymerase chain reaction (PCR) assay and drug-resistant cells were characterised by PCR and Southern blot after growing into cell clones.

  6. [The hair follicle as a target for gene therapy].

    PubMed

    Cotsarelis, G

    2002-05-01

    The hair follicle possesses progenitor cells required for continuous hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be the target of topical gene delivery in the skin of the mouse. Using a combination of liposomes and DNA, we demonstrate the feasibility of targeting hair follicle cells in human scalp xenografts. We consider liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection is possible only during the early anagen phase. Factors and obstacles for the use of gene therapy in treating alopecia and skin diseases are discussed. A theoretical framework for future treatment of cutaneous and systemic disorders using gene therapy is presented.

  7. Gene targeting in maize by somatic ectopic recombination.

    PubMed

    Ayar, Ayhan; Wehrkamp-Richter, Sophie; Laffaire, Jean-Baptiste; Le Goff, Samuel; Levy, Julien; Chaignon, Sandrine; Salmi, Hajer; Lepicard, Alexandra; Sallaud, Christophe; Gallego, Maria E; White, Charles I; Paul, Wyatt

    2013-04-01

    Low transformation efficiency and high background of non-targeted events are major constraints to gene targeting in plants. We demonstrate here applicability in maize of a system that reduces the constraint from transformation efficiency. The system requires regenerable transformants in which all of the following elements are stably integrated in the genome: (i) donor DNA with the gene of interest adjacent to sequence for repair of a defective selectable marker, (ii) sequence encoding a rare-cutting endonuclease such as I-SceI, (iii) a target locus (TL) comprising the defective selectable marker and I-SceI cleavage site. Typically, this requires additional markers for the integration of the donor and target sequences, which may be assembled through cross-pollination of separate transformants. Inducible expression of I-SceI then cleaves the TL and facilitates homologous recombination, which is assayed by selection for the repaired marker. We used bar and gfp markers to identify assembled transformants, a dexamethasone-inducible I-SceI::GR protein, and selection for recombination events that restored an intact nptII. Applying this strategy to callus permitted the selection of recombination into the TL at a frequency of 0.085% per extracted immature embryo (29% of recombinants). Our results also indicate that excision of the donor locus (DL) through the use of flanking I-SceI cleavage sites may be unnecessary, and a source of unwanted repair events at the DL. The system allows production, from each assembled transformant, of many cells that subsequently can be treated to induce gene targeting. This may facilitate gene targeting in plant species for which transformation efficiencies are otherwise limiting.

  8. Targeted Approach to Identify Genetic Loci Associated with ...

    EPA Pesticide Factsheets

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly contaminated urban/industrialized estuaries of the US Atlantic coast. We hypothesized that comparisons among tolerant populations and in contrast to their sensitive neighboring killifish might reveal genetic loci associated with DLC tolerance. Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, we identified single nucleotide polymorphisms (SNPs) from 43 genes associated with the AHR to serve as targeted markers. Wild fish from the four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Consistent with other killifish population genetic analyses, our results revealed strong genetic differentiation among populations, consistent with isolation by distance models. Pairwise comparisons of nearby tolerant and sensitive populations revealed differentiation among these loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP) 1A and 3A30, and the NADH ubiquinone oxidoreductase MLRQ subunit. By grouping tolerant versus sensitive populations, we also identified cytochrome P450 1A and the AHR2 loci as under selection, lend

  9. Developmental Activation of the AHR Increases Effector CD4+ T Cells and Exacerbates Symptoms in Autoimmune Disease-Prone Gnaq+/− Mice

    PubMed Central

    Boule, Lisbeth A.; Burke, Catherine G.; Fenton, Bruce M.; Thevenet-Morrison, Kelly; Jusko, Todd A.; Lawrence, B. Paige

    2015-01-01

    Perinatal environmental exposures are potentially important contributors to the increase in autoimmune diseases. Yet, the mechanisms by which these exposures increase self-reactive immune responses later in life are poorly understood. Autoimmune diseases require CD4+ T cells for initiation, progression, and/or clinical symptoms; thus, developmental exposures that cause durable changes in CD4+ T cells may play a role. Early life activation of the aryl hydrocarbon receptor (AHR) causes persistent changes in the response of CD4+ T cells to infection later in life but whether CD4+ T cells are affected by developmental exposure in the context of an autoimmune disease is unknown. Gnaq+/− mice develop symptoms of autoimmune disease similar to those measured clinically, and therefore can be used to evaluate gene-environment interactions during development on disease progression. Herein, we examined the effect of AHR activation in utero and via lactation, or solely via lactation, on disease onset and severity in adult Gnaq+/− offspring. Developmental activation of the AHR-accelerated disease in Gnaq+/− mice, and this correlates with increases in effector CD4+ T-cell populations. Increased symptom onset and cellular changes due to early life AHR activation were more evident in female Gnaq+/− mice compared with males. These observations suggest that developmental AHR activation by pollutants, and other exogenous ligands, may increase the likelihood that genetically predisposed individuals will develop clinical symptoms of autoimmune disease later in life. PMID:26363170

  10. Developmental Activation of the AHR Increases Effector CD4+ T Cells and Exacerbates Symptoms in Autoimmune Disease-Prone Gnaq+/- Mice.

    PubMed

    Boule, Lisbeth A; Burke, Catherine G; Fenton, Bruce M; Thevenet-Morrison, Kelly; Jusko, Todd A; Lawrence, B Paige

    2015-12-01

    Perinatal environmental exposures are potentially important contributors to the increase in autoimmune diseases. Yet, the mechanisms by which these exposures increase self-reactive immune responses later in life are poorly understood. Autoimmune diseases require CD4(+) T cells for initiation, progression, and/or clinical symptoms; thus, developmental exposures that cause durable changes in CD4(+) T cells may play a role. Early life activation of the aryl hydrocarbon receptor (AHR) causes persistent changes in the response of CD4(+) T cells to infection later in life but whether CD4(+) T cells are affected by developmental exposure in the context of an autoimmune disease is unknown. Gnaq(+/-) mice develop symptoms of autoimmune disease similar to those measured clinically, and therefore can be used to evaluate gene-environment interactions during development on disease progression. Herein, we examined the effect of AHR activation in utero and via lactation, or solely via lactation, on disease onset and severity in adult Gnaq(+/-) offspring. Developmental activation of the AHR-accelerated disease in Gnaq(+/-) mice, and this correlates with increases in effector CD4(+) T-cell populations. Increased symptom onset and cellular changes due to early life AHR activation were more evident in female Gnaq(+/-) mice compared with males. These observations suggest that developmental AHR activation by pollutants, and other exogenous ligands, may increase the likelihood that genetically predisposed individuals will develop clinical symptoms of autoimmune disease later in life.

  11. Identification of novel androgen receptor target genes in prostate cancer

    PubMed Central

    Jariwala, Unnati; Prescott, Jennifer; Jia, Li; Barski, Artem; Pregizer, Steve; Cogan, Jon P; Arasheben, Armin; Tilley, Wayne D; Scher, Howard I; Gerald, William L; Buchanan, Grant; Coetzee, Gerhard A; Frenkel, Baruch

    2007-01-01

    Background The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant) and LNCaP (androgen-dependent) PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT), Protein kinase C delta (PRKCD), Glutathione S- transferase theta 2 (GSTT2), Transient receptor potential cation channel subfamily V member 3 (TRPV3), and Pyrroline-5-carboxylate reductase 1 (PYCR1) – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT), was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are repressed. In general

  12. Targeted gene disruption in Francisella tularensis by group II introns.

    PubMed

    Rodriguez, Stephen A; Davis, Greg; Klose, Karl E

    2009-11-01

    Francisella tularensis is a highly infectious Gram-negative bacterium that is the causative agent of tularemia. Very little is known about the molecular mechanisms responsible for F. tularensis virulence, in part due to the paucity of genetic tools available for the study of F. tularensis. We have developed a gene knockout system for F. tularensis that utilizes retargeted mobile group II introns, or "targetrons". These targetrons disrupt both single and duplicated target genes at high efficiency in three different F. tularensis subspecies. Here we describe in detail the targetron-based method for insertional mutagenesis of F. tularensis genes, which should facilitate a better understanding of F. tularensis pathogenesis. Group II introns can be adapted to inactivate genes in bacteria for which few genetic tools exist, thus providing a powerful tool to study the genetic basis of bacterial pathogenesis.

  13. Muscle as a target for supplementary factor IX gene transfer.

    PubMed

    Hoffman, Brad E; Dobrzynski, Eric; Wang, Lixin; Hirao, Lauren; Mingozzi, Federico; Cao, Ou; Herzog, Roland W

    2007-07-01

    Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.

  14. Benzimidazoisoquinolines: A New Class of Rapidly Metabolized Aryl Hydrocarbon Receptor (AhR) Ligands that Induce AhR-Dependent Tregs and Prevent Murine Graft-Versus-Host Disease

    PubMed Central

    Punj, Sumit; Kopparapu, Prasad; Jang, Hyo Sang; Phillips, Jessica L.; Pennington, Jamie; Rohlman, Diana; O’Donnell, Edmond; Iversen, Patrick L.; Kolluri, Siva Kumar; Kerkvliet, Nancy I.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays multiple roles in regulation of immune and inflammatory responses. The ability of certain AhR ligands to induce regulatory T cells (Tregs) has generated interest in developing AhR ligands for therapeutic treatment of immune-mediated diseases. To this end, we designed a screen for novel Treg-inducing compounds based on our understanding of the mechanisms of Treg induction by the well-characterized immunosuppressive AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We screened a ChemBridge small molecule library and identified 10-chloro-7H-benzimidazo[2,1-a]benzo[de]Iso-quinolin-7-one (10-Cl-BBQ) as a potent AhR ligand that was rapidly metabolized and not cytotoxic to proliferating T cells. Like TCDD,10-Cl-BBQ altered donor CD4+ T cell differentiation during the early stages of a graft versus host (GVH) response resulting in expression of high levels of CD25, CTLA-4 and ICOS, as well as several genes associated with Treg function. The Treg phenotype required AhR expression in the donor CD4+ T cells. Foxp3 was not expressed in the AhR-induced Tregs implicating AhR as an independent transcription factor for Treg induction. Structure-activity studies showed that unsubstituted BBQ as well as 4, 11-dichloro-BBQ were capable of inducing AhR-Tregs. Other substitutions reduced activation of AhR. Daily treatment with 10-Cl-BBQ during the GVH response prevented development of GVH disease in an AhR-dependent manner with no overt toxicity. Together, our data provide strong support for development of select BBQs that activate the AhR to induce Tregs for treatment of immune-mediated diseases. PMID:24586378

  15. Essential Gene Identification and Drug Target Prioritization in Aspergillus fumigatus

    PubMed Central

    Hu, Wenqi; Sillaots, Susan; Lemieux, Sebastien; Davison, John; Kauffman, Sarah; Breton, Anouk; Linteau, Annie; Xin, Chunlin; Bowman, Joel; Becker, Jeff; Jiang, Bo; Roemer, Terry

    2007-01-01

    Aspergillus fumigatus is the most prevalent airborne filamentous fungal pathogen in humans, causing severe and often fatal invasive infections in immunocompromised patients. Currently available antifungal drugs to treat invasive aspergillosis have limited modes of action, and few are safe and effective. To identify and prioritize antifungal drug targets, we have developed a conditional promoter replacement (CPR) strategy using the nitrogen-regulated A. fumigatus NiiA promoter (pNiiA). The gene essentiality for 35 A. fumigatus genes was directly demonstrated by this pNiiA-CPR strategy from a set of 54 genes representing broad biological functions whose orthologs are confirmed to be essential for growth in Candida albicans and Saccharomyces cerevisiae. Extending this approach, we show that the ERG11 gene family (ERG11A and ERG11B) is essential in A. fumigatus despite neither member being essential individually. In addition, we demonstrate the pNiiA-CPR strategy is suitable for in vivo phenotypic analyses, as a number of conditional mutants, including an ERG11 double mutant (erg11BΔ, pNiiA-ERG11A), failed to establish a terminal infection in an immunocompromised mouse model of systemic aspergillosis. Collectively, the pNiiA-CPR strategy enables a rapid and reliable means to directly identify, phenotypically characterize, and facilitate target-based whole cell assays to screen A. fumigatus essential genes for cognate antifungal inhibitors. PMID:17352532

  16. All-optical regulation of gene expression in targeted cells

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; He, Hao; Li, Shiyang; Liu, Dayong; Lan, Bei; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-06-01

    Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca2+-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced ``Ca2+-comb'' (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science.

  17. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  18. Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis.

    PubMed

    Pavlopoulos, Anastasios; Akam, Michael

    2011-02-15

    Hox genes encode highly conserved transcription factors that regionalize the animal body axis by controlling complex developmental processes. Although they are known to operate in multiple cell types and at different stages, we are still missing the batteries of genes targeted by any one Hox gene over the course of a single developmental process to achieve a particular cell and organ morphology. The transformation of wings into halteres by the Hox gene Ultrabithorax (Ubx) in Drosophila melanogaster presents an excellent model system to study the Hox control of transcriptional networks during successive stages of appendage morphogenesis and cell differentiation. We have used an inducible misexpression system to switch on Ubx in the wing epithelium at successive stages during metamorphosis--in the larva, prepupa, and pupa. We have then used extensive microarray expression profiling and quantitative RT-PCR to identify the primary transcriptional responses to Ubx. We find that Ubx targets range from regulatory genes like transcription factors and signaling components to terminal differentiation genes affecting a broad repertoire of cell behaviors and metabolic reactions. Ubx up- and down-regulates hundreds of downstream genes at each stage, mostly in a subtle manner. Strikingly, our analysis reveals that Ubx target genes are largely distinct at different stages of appendage morphogenesis, suggesting extensive interactions between Hox genes and hormone-controlled regulatory networks to orchestrate complex genetic programs during metamorphosis.

  19. The Role of AHR in Breast Cancer Development

    DTIC Science & Technology

    2005-07-01

    cancer, AhR, galangin 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES USAMRMC a. REPORT...Z39.18 ABSTRACT The study described herein was designed to determine if and how a non-toxic, naturally occurring bioflavonoid, galangin , affects growth of...human mammary tumor cells. Our previous studies demonstrated that, in other cell types, galangin is a potent inhibitor of the aryl hydrocarbon

  20. Evaluation of drug-targetable genes by defining modes of abnormality in gene expression.

    PubMed

    Park, Junseong; Lee, Jungsul; Choi, Chulhee

    2015-09-04

    In the post-genomic era, many researchers have taken a systematic approach to identifying abnormal genes associated with various diseases. However, the gold standard has not been established, and most of these abnormalities are difficult to be rehabilitated in real clinical settings. In addition to identifying abnormal genes, for a practical purpose, it is necessary to investigate abnormality diversity. In this context, this study is aimed to demonstrate simply restorable genes as useful drug targets. We devised the concept of "drug targetability" to evaluate several different modes of abnormal genes by predicting events after drug treatment. As a representative example, we applied our method to breast cancer. Computationally, PTPRF, PRKAR2B, MAP4K3, and RICTOR were calculated as highly drug-targetable genes for breast cancer. After knockdown of these top-ranked genes (i.e., high drug targetability) using siRNA, our predictions were validated by cell death and migration assays. Moreover, inhibition of RICTOR or PTPRF was expected to prolong lifespan of breast cancer patients according to patient information annotated in microarray data. We anticipate that our method can be widely applied to elaborate selection of novel drug targets, and, ultimately, to improve the efficacy of disease treatment.

  1. Bioengineered Silk Gene Delivery System for Nuclear Targeting

    PubMed Central

    Yigit, Sezin; Tokareva, Olena; Varone, Antonio; Georgakoudi, Irene

    2015-01-01

    Gene delivery research has gained momentum with the use of lipophilic vectors that mimic viral systems to increase transfection efficiency. However, maintaining cell viability with these systems remains a major challenge. Therefore biocompatible and nontoxic biopolymers that are designed by combining non-immunological viral mimicking components with suitable carriers have been explored to address these limitations. In the present study recombinant DNA technology was used to design a multi-functional gene delivery system for nuclear targeting, while also supporting cell viability. Spider dragline silk recombinant proteins were modified with DNA condensing units and the proton sponge endosomal escape pathway was utilized for enhanced delivery. Short-term transfection efficiency in a COS-7 cell line (adherent kidney cells isolated from African green monkey) was enhanced compared to lipofectamine and polyethyleneimine (PEI), as was cell viability with these recombinant bio-polyplexes. Endosomal escape and consequent nuclear targeting were shown with fluorescence microscopy. PMID:24889658

  2. Targeting MicroRNAs in Cancer Gene Therapy

    PubMed Central

    Ji, Weidan; Sun, Bin; Su, Changqing

    2017-01-01

    MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer. PMID:28075356

  3. Identification of key target genes and pathways in laryngeal carcinoma

    PubMed Central

    Liu, Feng; Du, Jintao; Liu, Jun; Wen, Bei

    2016-01-01

    The purpose of the present study was to screen the key genes associated with laryngeal carcinoma and to investigate the molecular mechanism of laryngeal carcinoma progression. The gene expression profile of GSE10935 [Gene Expression Omnibus (GEO) accession number], including 12 specimens from laryngeal papillomas and 12 specimens from normal laryngeal epithelia controls, was downloaded from the GEO database. Differentially expressed genes (DEGs) were screened in laryngeal papillomas compared with normal controls using Limma package in R language, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape software and modules were analyzed using MCODE plugin from the PPI network. Furthermore, significant biological pathway regions (sub-pathway) were identified by using iSubpathwayMiner analysis. A total of 67 DEGs were identified, including 27 up-regulated genes and 40 down-regulated genes and they were involved in different GO terms and pathways. PPI network analysis revealed that Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) was a hub protein. The sub-pathway analysis identified 9 significantly enriched sub-pathways, including glycolysis/gluconeogenesis and nitrogen metabolism. Genes such as phosphoglycerate kinase 1 (PGK1), carbonic anhydrase II (CA2), and carbonic anhydrase XII (CA12) whose node degrees were >10 were identified in the disease risk sub-pathway. Genes in the sub-pathway, such as RASSF1, PGK1, CA2 and CA12 were presumed to serve critical roles in laryngeal carcinoma. The present study identified DEGs and their sub-pathways in the disease, which may serve as potential targets for treatment of laryngeal carcinoma. PMID:27446427

  4. Targeted disruption of the Lowe syndrome gene (OCRL-1)

    SciTech Connect

    Jaenne, P.A.; Olivos, I.; Grinberg, A.

    1994-09-01

    The oculocerebrorenal syndrome of Lowe (OCRL) is a rare X-linked disease characterized by congenital cataract formation, mental retardation and renal tubular dysfunction (Fanconi syndrome). The gene for OCRL (OCRL-1) has recently been identified through positional cloning techniques and is highly homologous to a previously reported gene encoding a 75 kDa inositol polyphosphate-5-phosphatase. Thus OCRL might be caused by an alteration in inositol metabolism. In order to further investigate the role of OCRL-1 in Lowe`s syndrome, we decided to use targeted disruption to create mice lacking a functional OCRL-1 protein. The murine homologue of OCRL-1 (Ocrl-1) was cloned from a 129Sv genomic library. Two targeting vectors were created from the 3{prime}-end of the gene by fusing a neomycin resistance gene (PGK-Neo) into two exons. The first vector employed a classic positive negative selection scheme whereas the second vector included a polyadenylation trap. The vectors were electroporated into CCE or J1 ES cells and recombinants were screened by Southern blotting. Targeted cells were obtained at a frequency of 1/50 (for CCE) and 1/16 (for J1 using the polyadenylation trap). Using antibodies made to an OCRL-1 fusion protein, we could demonstrate a lack of Ocrl-1 protein product in the targeted ES cell lines. Therefore, we had created a null allele at the Ocrl-1 locus. The targeted ES clones were injected into 3.5 dpc C57B1/6 blastocysts and chimeric mice were obtained. Male chimeras have been made from five targeted cell lines. The males were mated with C57B1/6 females and germline transmission has been obtained from males derived from two of the five cell lines (one from CCE and one from J1 targeted ES cells). Preliminary analysis of male Ocrl-1{sup {minus}} mice suggests the presence of a proximal renal tubular dysfunction but the absence of detectable cataracts. We are presently continuing our phenotypic analyses.

  5. Targeted gene repair: the ups and downs of a promising gene therapy approach.

    PubMed

    de Semir, David; Aran, Josep M

    2006-08-01

    As a novel form of molecular medicine based on direct actions over the genes, targeted gene repair has raised consideration recently above classical gene therapy strategies based on genetic augmentation or complementation. Targeted gene repair relies on the local induction of the cell's endogenous DNA repair mechanisms to attain a therapeutic gene conversion event within the genome of the diseased cell. Successful repair has been achieved both in vitro and in vivo with a variety of corrective molecules ranging from oligonucleotides (chimeraplasts, modified single-stranded oligonucleotides, triplex-forming oligonucleotides), to small DNA fragments (small fragment homologous replacement (SFHR)), and even viral vectors (AAV-based). However, controversy on the consistency and lack of reproducibility of early experiments regarding frequencies and persistence of targeted gene repair, particularly for chimeraplasty, has flecked the field. Nevertheless, several hurdles such as inefficient nuclear uptake of the corrective molecules, and misleading assessment of targeted repair frequencies have been identified and are being addressed. One of the key bottlenecks for exploiting the overall potential of the different targeted gene repair modalities is the lack of a detailed knowledge of their mechanisms of action at the molecular level. Several studies are now focusing on the assessment of the specific repair pathway(s) involved (homologous recombination, mismatch repair, etc.), devising additional strategies to increase their activity (using chemotherapeutic drugs, chimeric nucleases, etc.), and assessing the influence of the cell cycle in the regulation of the repair process. Until therapeutic correction frequencies for single gene disorders are reached both in cellular and animal models, precision and undesired side effects of this promising gene therapy approach will not be thoroughly evaluated.

  6. Modification of the apolipoprotein B gene in HepG2 cells by gene targeting.

    PubMed Central

    Farese, R V; Flynn, L M; Young, S G

    1992-01-01

    The HepG2 cell line has been used extensively to study the synthesis and secretion of apolipoprotein (apo) B. In this study, we tested whether gene-targeting techniques can be used to inactivate one of the apo B alleles in HepG2 cells by homologous recombination using a transfected gene-targeting vector. Our vector contained exons 1-7 of the apo B gene, in which exon 2 was interrupted by a promoterless neomycin resistance (neo(r)) gene. The recombination of this vector with the cognate gene would inactivate an apo B allele and enable the apo B promoter to activate the transcription of the neo(r) gene. To detect the rare homologous recombinant clone, we developed a novel solid phase RIA that uses the apo B-specific monoclonal antibody MB19 to analyze the apo B secreted by G418-resistant (G418r) clones. Antibody MB19 detects a two-allele genetic polymorphism in apo B by binding to the apo B allotypes MB19(1) and MB19(2) with high and low affinity, respectively. HepG2 cells normally secrete both the apo B MB19 allotypes. Using the MB19 immunoassay, we identified a G418r HepG2 clone that had lost the ability to secrete the MB19(1) allotype. The inactivation of an apo B allele of this clone was confirmed by the polymerase chain reaction amplification of an 865-bp fragment unique to the targeted apo B allele and by Southern blotting of genomic DNA. This study demonstrates that gene-targeting techniques can be used to modify the apo B gene in HepG2 cells and demonstrates the usefulness of a novel solid phase RIA system for detecting apo B gene targeting events in this cell line. Images PMID:1321843

  7. Treating psoriasis by targeting its susceptibility gene Rel.

    PubMed

    Fan, Tingting; Wang, Shaowen; Yu, Linjiang; Yi, Huqiang; Liu, Ruiling; Geng, Wenwen; Wan, Xiaochun; Ma, Yifan; Cai, Lintao; Chen, Youhai H; Ruan, Qingguo

    2016-04-01

    Psoriasis is a chronic inflammatory disorder of the skin. Accumulating evidence indicates that the Rel gene, a member of the NF-κB family, is a risk factor for the disease. We sought to investigate whether psoriasis can be prevented by directly targeting the Rel gene transcript, i.e., the c-Rel mRNA. Using chemically-modified c-Rel specific siRNA (siRel) and poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu) micelles, we successfully knocked down the expression of c-Rel, and showed that the expression of cytokine IL-23, a direct target of c-Rel that can drive the development of IL-17-producing T cells, was markedly inhibited. More importantly, treating mice with siRel not only prevented but also ameliorated imiquimod (IMQ)-induced psoriasis. Mechanistic studies showed that siRel treatment down-regulated the expression of multiple inflammatory cytokines. Taken together, these results indicate that the susceptibility gene Rel can be targeted to treat and prevent psoriasis.

  8. Identification of Targetable FGFR Gene Fusions in Diverse Cancers

    PubMed Central

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nick; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J.; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P.; Siddiqui, Javed; Tomlins, Scott A.; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H.; Feng, Felix Y.; Zalupski, Mark M.; Talpaz, Moshe; Pienta, Kenneth J.; Rhodes, Daniel R.; Robinson, Dan R.; Chinnaiyan, Arul M.

    2013-01-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2 including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR gene fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Due to the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts which incorporate transcriptome analysis for gene fusions are poised to identify rare, targetable FGFR fusions across diverse cancer types. PMID:23558953

  9. Salivary epithelial cells: an unassuming target site for gene therapeutics

    PubMed Central

    Perez, Paola; Rowzee, Anne M.; Zheng, Changyu; Adriaansen, Janik; Baum, Bruce J.

    2010-01-01

    Salivary glands are classical exocrine glands whose external secretions result in the production of saliva. However, in addition to the secretion of exocrine proteins, salivary epithelial cells are also capable of secreting proteins internally, into the bloodstream. This brief review examines the potential for using salivary epithelial cells as a target site for in situ gene transfer, with an ultimate goal of producing therapeutic proteins for treating both systemic and upper gastrointestinal tract disorders. The review discusses the protein secretory pathways reported to be present in salivary epithelial cells, the viral gene transfer vectors shown useful for transducing these cells, model transgenic secretory proteins examined, and some clinical conditions that might benefit from such salivary gland gene transfer. PMID:20219693

  10. Gene Targeting in the Rat: Advances and Opportunities

    PubMed Central

    Jacob, Howard J.; Lazar, Jozef; Dwinell, Melinda R.; Moreno, Carol; Geurts, Aron M.

    2010-01-01

    The rat has long been a model favored by physiologists, pharmacologists, and neuroscientists. However, over the last two decades, many investigators in these fields have turned to the mouse because of its gene modification technologies and extensive genomic resources. While the genomic resources of the rat have nearly caught-up, gene targeting has lagged far behind, limiting the value of the rat for many investigators. In the last two years, advances in transposon- and zinc finger nuclease-mediated gene knockout as well as the establishment and culturing of embryonic and inducible pluripotent stem cells have created new opportunities for rat genetic research. Here, we provide a high-level description and potential uses of these new technologies for investigators using the rat for biomedical research. PMID:20869786

  11. Targeting Co-Stimulatory Pathways in Gene Therapy

    PubMed Central

    Huang, Xiaopei; Yang, Yiping

    2011-01-01

    Gene therapy with recombinant viral vectors such as adenovirus and adenovirus-associated virus holds great promise in treating a wide range of diseases because of the high efficiency with which the viruses transfer their genomes into host cells in vivo. However, the activation of the host immune responses remains a major hurdle to successful gene therapy. Studies in the past two decades have elucidated the important role co-stimulation plays in the activation of both T and B cells. This review summarizes our current understanding of T cell co-stimulatory pathways, and strategies targeting these co-stimulatory pathways in gene therapy applications as well as potential future directions. PMID:22046171

  12. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting.

    PubMed

    Štafa, Anamarija; Miklenić, Marina; Zunar, Bojan; Lisnić, Berislav; Symington, Lorraine S; Svetec, Ivan-Krešimir

    2014-10-01

    Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.

  13. Molecular mechanism of transcriptional repression of AhR repressor involving ANKRA2, HDAC4, and HDAC5

    SciTech Connect

    Oshima, Motohiko; Mimura, Junsei; Yamamoto, Masayuki; Fujii-Kuriyama, Yoshiaki

    2007-12-14

    The Aryl hydrocarbon receptor repressor (AhRR) has been proposed to inhibit Aryl hydrocarbon receptor (AhR) activity by competing with AhR for forming a heterodimer with AhR nuclear translocator (Arnt) and subsequently binding to the xenobiotic responsive elements (XRE). However, the precise mechanism of AhRR inhibitory activity remains unknown. Analysis of the inhibitory activity of AhRR on the expression of a TK promoter-driven reporter has localized a core repressor domain in the sequence of amino acid residue 555-701. The inhibitory activity of AhRR is sensitive to a histone deacetylase (HDAC) inhibitor, trichostatin A. By using the yeast two-hybrid screening method with the C-terminal sequence of AhRR as bait, we identified a binding partner, Ankyrin-repeat protein2 (ANKRA2), a protein known to interact with HDAC4 and HDAC5. RNA interference experiments using ANKRA2 and AhRR siRNAs indicate that ANKRA2 is important for transcriptional repression by AhRR. We have found that under normal conditions, CYP1A1 gene is kept silent in MEF cells by AhRR/Arnt heterodimer, which binds to the XRE sequence in its promoter and recruits ANKRA2, HDAC4, and HDAC5 as co-repressors.

  14. Prospects for retinal cone-targeted gene therapy.

    PubMed

    Alexander, John J; Hauswirth, William W

    2008-06-01

    Gene therapy strategies that target therapeutic genes to retinal cones are a worthy goal both because cone photoreceptor diseases are severely vision limiting and because many retinal diseases that do not affect cones directly eventually lead to cone loss, the reason for eventual blindness. Human achromatopsia is a genetic disease of cones that renders them nonfunctional but otherwise intact. Thus, animal models of achromatopsia were used in conjunction with adeno-associated virus (AAV) vectors whose serotype efficiently transduces cones and with a promoter that limits transgene expression to cones. In the Gnat2(cpfl3) mouse model of one genetic form of human achromatopsia, we were able to demonstrate recovery of normal cone function and visual acuity after a single subretinal treatment of vector that supplied wild-type Gnat2 protein to cones. This validates the overall strategy of targeting cones using recombinant viral vectors and justifies a more complete examination of animal models of cone disease as a prelude to considering a clinical gene therapy trial.

  15. Quantitative determination of target gene with electrical sensor

    PubMed Central

    Zhang, Xuzhi; Li, Qiufen; Jin, Xianshi; Jiang, Cheng; Lu, Yong; Tavallaie, Roya; Gooding, J. Justin

    2015-01-01

    Integrating loop-mediated isothermal amplification (LAMP) with capacitively coupled contactless conductivity detection (C4D), we have developed an electrical sensor for the simultaneous amplification and detection of specific sequence DNA. Using the O26-wzy gene as a model, the amount of initial target gene could be determined via the threshold time obtained by monitoring the progression of the LAMP reaction in real time. Using the optimal conditions, a detection limit of 12.5 copy/μL can be obtained within 30 min. Monitoring the LAMP reaction by C4D has not only all the advantages that existing electrochemical methods have, but also additional attractive features including being completely free of carryover contamination risk, high simplicity and extremely low cost. These benefits all arise from the fact that the electrodes are separated from the reaction solution, that is C4D is a contactless method. Hence in proof of principle, the new strategy promises a robust, simple, cost-effective and sensitive method for quantitative determination of a target gene, that is applicable either to specialized labs or at point-of-care. PMID:26205714

  16. Quantitative determination of target gene with electrical sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xuzhi; Li, Qiufen; Jin, Xianshi; Jiang, Cheng; Lu, Yong; Tavallaie, Roya; Gooding, J. Justin

    2015-07-01

    Integrating loop-mediated isothermal amplification (LAMP) with capacitively coupled contactless conductivity detection (C4D), we have developed an electrical sensor for the simultaneous amplification and detection of specific sequence DNA. Using the O26-wzy gene as a model, the amount of initial target gene could be determined via the threshold time obtained by monitoring the progression of the LAMP reaction in real time. Using the optimal conditions, a detection limit of 12.5 copy/μL can be obtained within 30 min. Monitoring the LAMP reaction by C4D has not only all the advantages that existing electrochemical methods have, but also additional attractive features including being completely free of carryover contamination risk, high simplicity and extremely low cost. These benefits all arise from the fact that the electrodes are separated from the reaction solution, that is C4D is a contactless method. Hence in proof of principle, the new strategy promises a robust, simple, cost-effective and sensitive method for quantitative determination of a target gene, that is applicable either to specialized labs or at point-of-care.

  17. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery

    PubMed Central

    Ma, Kun; Shen, Haijun; Shen, Song; Xie, Men; Mao, Chuanbin; Qiu, Liyan; Jin, Yi

    2012-01-01

    Background A successful gene delivery system needs to breakthrough several barriers to allow efficient transgenic expression. In the present study, successive targeting liposomes (STL) were constructed by integrating various targeting groups into a nanoparticle to address this issue. Methods Polyethylenimine (PEI) 1800-triamcinolone acetonide (TA) with nuclear targeting capability was synthesized by a two-step reaction. Lactobionic acid was connected with cholesterol to obtain a compound of [(2-lactoylamido) ethylamino]formic acid cholesterol ester (CHEDLA) with hepatocyte-targeting capability. The liposome was modified with PEI 1800-TA and CHEDLA to prepare successive targeting liposome (STL). Its physicochemical properties and transfection efficiency were investigated both in vitro and in vivo. Results The diameter of STL was approximately 100 nm with 20 mV of potential. The confocal microscopy observation and potential assay verified that lipid bilayer of STL was decorated with PEI 1800-TA. Cytotoxicity of STL was significantly lower than that of PEI 1800-TA and PEI 25K. The transfection efficiency of 10% CHEDLA STL in HepG2 cells was the higher than of the latter two with serum. Its transfection efficiency was greatly reduced with excessive free galactose, indicating that STL was absorbed via galactose receptor-mediated endocytosis. The in vivo study in mice showed that 10% CHEDLA STL had better transgenic expression in liver than the other carriers. Conclusions STL with multi-ligand was able to overcome the various barriers to target nucleus and special cells and present distinctive transgenic expression. Therefore, it has a great potential for gene therapy as a nonviral carrier. PMID:21574214

  18. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    PubMed

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  19. Targeted Gene Capture by Hybridization to Illuminate Ecosystem Functioning.

    PubMed

    Ribière, Céline; Beugnot, Réjane; Parisot, Nicolas; Gasc, Cyrielle; Defois, Clémence; Denonfoux, Jérémie; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2016-01-01

    Microbial communities are extremely abundant and diverse on earth surface and play key role in the ecosystem functioning. Thus, although next-generation sequencing (NGS) technologies have greatly improved knowledge on microbial diversity, it is necessary to reduce the biological complexity to better understand the microorganism functions. To achieve this goal, we describe a promising approach, based on the solution hybrid selection (SHS) method for the selective enrichment in a target-specific biomarker from metagenomic and metatranscriptomic samples. The success of this method strongly depends on the determination of sensitive, specific, and explorative probes to assess the complete targeted gene repertoire. Indeed, in this method, RNA probes were used to capture large DNA or RNA fragments harboring biomarkers of interest that potentially allow to link structure and function of communities of interest.

  20. Identification of targetable FGFR gene fusions in diverse cancers.

    PubMed

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nickolay; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P; Siddiqui, Javed; Tomlins, Scott A; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H; Feng, Felix Y; Zalupski, Mark M; Talpaz, Moshe; Pienta, Kenneth J; Rhodes, Daniel R; Robinson, Dan R; Chinnaiyan, Arul M

    2013-06-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2, including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR fusions across diverse cancer types.

  1. Cardiac-Specific Inducible and Conditional Gene Targeting in Mice

    PubMed Central

    Doetschman, Thomas; Azhar, Mohamad

    2013-01-01

    Mouse genetic engineering has revolutionized our understanding of the molecular and genetic basis of heart development and disease. This technology involves conditional tissue-specific and temporal transgenic and gene targeting approaches, as well as introduction of polymorphisms into the mouse genome. These approaches are increasingly used to elucidate the genetic pathways underlying tissue homeostasis, physiology, and pathophysiology of adult heart. They have also led to the development of clinically relevant models of human cardiac diseases. Here, we review the technologies and their limitations in general and the cardiovascular research community in particular. PMID:22628574

  2. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  3. Gene expression profiling in bladder cancer identifies potential therapeutic targets

    PubMed Central

    Hussain, Syed A.; Palmer, Daniel H.; Syn, Wing-Kin; Sacco, Joseph J.; Greensmith, Richard M.D.; Elmetwali, Taha; Aachi, Vijay; Lloyd, Bryony H.; Jithesh, Puthen V.; Arrand, John; Barton, Darren; Ansari, Jawaher; Sibson, D. Ross; James, Nicholas D.

    2017-01-01

    Despite advances in management, bladder cancer remains a major cause of cancer related complications. Characterisation of gene expression patterns in bladder cancer allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Hypergeometric analysis was used to identify canonical pathways and curated networks having statistically significant enrichment of differentially expressed genes. Osteopontin (OPN) expression was validated by immunohistochemistry. Hierarchical clustering defined signatures, which differentiated between cancer and healthy tissue, muscle-invasive or non-muscle invasive cancer and healthy tissue, grade 1 and grade 3. Pathways associated with cell cycle and proliferation were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer compared to healthy tissue. The present study contributes to a growing body of work on gene expression signatures in bladder cancer. The data support an important role for osteopontin in bladder cancer, and identify several pathways worthy of further investigation. PMID:28259975

  4. Characterization of AhR agonists reveals antagonistic activity in European herring gull (Larus argentatus) eggs.

    PubMed

    Muusse, Martine; Christensen, Guttorm; Gomes, Tânia; Kočan, Anton; Langford, Katherine; Tollefsen, Knut Erik; Vaňková, Lenka; Thomas, Kevin V

    2015-05-01

    European herring gull (Larus argentatus) eggs from two Norwegian islands, Musvær in the south east and Reiaren in Northern Norway, were screened for dioxins, furans, and dioxin-like and selected non-dioxin-like polychlorinated biphenyls (PCBs), and subjected to non-target analysis to try to identify the aryl hydrocarbon receptor (AhR) agonists, responsible for elevated levels measured using the dioxin responsive chemically activated luciferase expression (DR-CALUX) assay. Eggs from Musvær contained chemically calculated toxic equivalent (WHO TEQ) levels of between 109 and 483 pg TEQ/g lw, and between 82 and 337 pg TEQ/g lw was determined in eggs from Reiaren. In particular PCB126 contributed highly to the total TEQ (69-82%). In 19 of the 23 samples the calculated WHO TEQ was higher than the TEQCALUX. Using CALUX specific relative effect potencies (REPs), the levels were lower at between 77 and 292 pg/g lw in eggs from Musvær and between 55 and 223 pg/g lw in eggs from Reiaren, which was higher than the TEQCALUX in 16 of the 23 samples. However, the means of the REP values and the TEQCALUX were not significantly different. This suggests the presence of compounds that can elicit antagonist effects, with a low binding affinity to the AhR. Non-target analysis identified the presence of hexachlorobenzene (HCB) (quantified at 9.6-185 pg/g lw) but neither this compound nor high concentrations of PCB126 and non-dioxin-like PCBs could explain the differences between the calculated TEQ or REP values and the TEQCALUX. Even though, for most AhR agonists, the sensitivity of herring gulls is not known, the reported levels can be considered to represent a risk for biological effects in the developing embryo, compared to LC50 values in chicken embryos. For human consumers of herring gull eggs, these eggs contain TEQ levels up to four times higher than the maximum tolerable weekly intake.

  5. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient.

    PubMed

    Salazar-Blas, Amed; Noriega-Calixto, Laura; Campos, María E; Eapen, Delfeena; Cruz-Vázquez, Tania; Castillo-Olamendi, Luis; Sepulveda-Jiménez, Gabriela; Porta, Helena; Dubrovsky, Joseph G; Cassab, Gladys I

    2017-01-01

    Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding

  6. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes.

    PubMed

    Li, Ting; Huang, Sheng; Zhao, Xuefeng; Wright, David A; Carpenter, Susan; Spalding, Martin H; Weeks, Donald P; Yang, Bing

    2011-08-01

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  7. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    SciTech Connect

    Li, T; Huang, S; Zhao, XF; Wright, DA; Carpenter, S; Spalding, MH; Weeks, DP; Yang, B

    2011-08-08

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  8. AAC as a Potential Target Gene to Control Verticillium dahliae

    PubMed Central

    Su, Xiaofeng; Rehman, Latifur; Guo, Huiming; Li, Xiaokang; Zhang, Rui; Cheng, Hongmei

    2017-01-01

    Verticillium dahliae invades the roots of host plants and causes vascular wilt, which seriously diminishes the yield of cotton and other important crops. The protein AAC (ADP, ATP carrier) is responsible for transferring ATP from the mitochondria into the cytoplasm. When V. dahliae protoplasts were transformed with short interfering RNAs (siRNAs) targeting the VdAAC gene, fungal growth and sporulation were significantly inhibited. To further confirm a role for VdAAC in fungal development, we generated knockout mutants (ΔVdACC). Compared with wild-type V. dahliae (Vd wt), ΔVdAAC was impaired in germination and virulence; these impairments were rescued in the complementary strains (ΔVdAAC-C). Moreover, when an RNAi construct of VdAAC under the control of the 35S promoter was used to transform Nicotiana benthamiana, the expression of VdAAC was downregulated in the transgenic seedlings, and they had elevated resistance against V. dahliae. The results of this study suggest that VdAAC contributes to fungal development, virulence and is a promising candidate gene to control V. dahliae. In addition, RNAi is a highly efficient way to silence fungal genes and provides a novel strategy to improve disease resistance in plants. PMID:28075391

  9. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  10. Evaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance

    PubMed Central

    Frank, Kristi L.; Vergidis, Paschalis; Brinkman, Cassandra L.; Greenwood Quaintance, Kerryl E.; Barnes, Aaron M. T.; Mandrekar, Jayawant N.; Schlievert, Patrick M.; Dunny, Gary M.; Patel, Robin

    2015-01-01

    Enterococcus faecalis can cause healthcare-associated biofilm infections, including those of orthopedic devices. Treatment of enterococcal prosthetic joint infection is difficult, in part, due to biofilm-associated antimicrobial resistance. We previously showed that the E. faecalis OG1RF genes ahrC and eep are in vitro biofilm determinants and virulence factors in animal models of endocarditis and catheter-associated urinary tract infection. In this study, we evaluated the role of these genes in a rat acute foreign body osteomyelitis model and in in vitro biofilm-associated antimicrobial resistance. Osteomyelitis was established for one week following the implantation of stainless steel orthopedic wires inoculated with E. faecalis strains OG1RF, ΩahrC, and ∆eep into the proximal tibiae of rats. The median bacterial loads recovered from bones and wires did not differ significantly between the strains at multiple inoculum concentrations. We hypothesize that factors present at the infection site that affect biofilm formation, such as the presence or absence of shear force, may account for the differences in attenuation in the various animal models we have used to study the ΩahrC and ∆eep strains. No differences among the three strains were observed in the planktonic and biofilm antimicrobial susceptibilities to ampicillin, vancomycin, daptomycin, linezolid, and tetracycline. These findings suggest that neither ahrC nor eep directly contribute to E. faecalis biofilm-associated antimicrobial resistance. Notably, the experimental evidence that the biofilm attachment mutant ΩahrC displays biofilm-associated antimicrobial resistance suggests that surface colonization alone is sufficient for E. faecalis cells to acquire the biofilm antimicrobial resistance phenotype. PMID:26076451

  11. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    PubMed

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1.

  12. Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene

    SciTech Connect

    Carrer, H.; Maliga, P.

    1995-08-01

    To determine whether targeted DNA insertion into the tobacco plastid genome can be obtained without physical linkage to a selectable marker gene, we carried out biolistic transformation of chloroplasts in tobacco leaf segments with a 1:1 mix of two independently targeted antibiotic resistance genes. Plastid transformants were selected by spectinomycin resistance due to expression of an integrated aadA gene. Integration of the unselected kanamycin resistance (kan) gene into the same plastid genome was established by Southern probing in {approx}20% of the spectinomycin-selected clones. Efficient cotransformation will facilitate targeted plastid genome modification without physical linkage to a marker gene. 26 refs., 5 figs., 1 tab.

  13. Targeted disruption of the mouse Lipoma Preferred Partner gene

    SciTech Connect

    Vervenne, Hilke B.V.K.; Crombez, Koen R.M.O.; Delvaux, Els L.; Janssens, Veerle; Ven, Wim J.M. van de Petit, Marleen M.R.

    2009-02-06

    LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp{sup -/-} females. Fertility of Lpp{sup -/-} males was proven to be normal, however, females from Lpp{sup -/-} x Lpp{sup -/-} crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp{sup -/-} mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp{sup -/-} mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.

  14. Il2rg gene-targeted severe combined immunodeficiency pigs.

    PubMed

    Suzuki, Shunichi; Iwamoto, Masaki; Saito, Yoriko; Fuchimoto, Daiichiro; Sembon, Shoichiro; Suzuki, Misae; Mikawa, Satoshi; Hashimoto, Michiko; Aoki, Yuki; Najima, Yuho; Takagi, Shinsuke; Suzuki, Nahoko; Suzuki, Emi; Kubo, Masanori; Mimuro, Jun; Kashiwakura, Yuji; Madoiwa, Seiji; Sakata, Yoichi; Perry, Anthony C F; Ishikawa, Fumihiko; Onishi, Akira

    2012-06-14

    A porcine model of severe combined immunodeficiency (SCID) promises to facilitate human cancer studies, the humanization of tissue for xenotransplantation, and the evaluation of stem cells for clinical therapy, but SCID pigs have not been described. We report here the generation and preliminary evaluation of a porcine SCID model. Fibroblasts containing a targeted disruption of the X-linked interleukin-2 receptor gamma chain gene, Il2rg, were used as donors to generate cloned pigs by serial nuclear transfer. Germline transmission of the Il2rg deletion produced healthy Il2rg(+/-) females, while Il2rg(-/Y) males were athymic and exhibited markedly impaired immunoglobulin and T and NK cell production, robustly recapitulating human SCID. Following allogeneic bone marrow transplantation, donor cells stably integrated in Il2rg(-/Y) heterozygotes and reconstituted the Il2rg(-/Y) lymphoid lineage. The SCID pigs described here represent a step toward the comprehensive evaluation of preclinical cellular regenerative strategies.

  15. Transcription factors and target genes of pre-TCR signaling.

    PubMed

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa

    2015-06-01

    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  16. Strategies on the nuclear-targeted delivery of genes

    PubMed Central

    Yao, Jing; Fan, Ying; Li, Yuanke; Huang, Leaf

    2016-01-01

    To improve the nuclear-targeted delivery of non-viral vectors, extensive effort has been carried out on the development of smart vectors which could overcome multiple barriers. The nuclear envelope presents a major barrier to transgene delivery. Viruses are capable of crossing the nuclear envelope to efficiently deliver their genome into the nucleus through the specialized protein components. However, non-viral vectors are preferred over viral ones because of the safety concerns associated with the latter. Non-viral delivery systems have been designed to include various types of components to enable nuclear translocation at the periphery of the nucleus. This review summarizes the progress of research regarding nuclear transport mechanisms. “Smart” non-viral vectors that have been modified by peptides and other small molecules are able to facilitate the nuclear translocation and enhance the efficacy of gene expression. The resulting technology may also enhance delivery of other macromolecules to the nucleus. PMID:23964565

  17. 76 FR 80447 - Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Special Committee 219: Attitude and Heading Reference Systems (AHRS) AGENCY: Federal Aviation...: Attitude and Heading Reference Systems (AHRS). SUMMARY: The FAA is issuing this notice to advise the public of the eighth meeting of RTCA Special Committee 219: Attitude and Heading Reference Systems...

  18. Musashi-2 Attenuates AHR Signaling to Expand Human Hematopoietic Stem Cells

    PubMed Central

    Rentas, Stefan; Voisin, Veronique; Wilhelm, Brian T; Bader, Gary D; Yeo, Gene W; Hope, Kristin J

    2016-01-01

    Umbilical cord blood (CB)-derived hematopoietic stem cells (HSCs) are essential in many life saving regenerative therapies, but their low number in CB units has significantly restricted their clinical use despite the advantages they provide during transplantation1. Select small molecules that enhance hematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified2,3, however, in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular pathways that underpin the unique human HSC self-renewal program will facilitate the development of targeted strategies that expand these critical cell types for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs4,5, the post-transcriptional mechanisms guiding HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein (RBP) Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we determined that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signaling through post-transcriptional downregulation of canonical AHR pathway components in CB HSPCs. Our study provides new mechanistic insight into RBP-controlled RNA networks that underlie the self-renewal process and give evidence that manipulating such networks ex vivo can provide a novel means to enhance the regenerative potential of human HSCs. PMID:27121842

  19. The Aryl Hydrocarbon Receptor is a Critical Regulator of Tissue Factor Stability and an Antithrombotic Target in Uremia

    PubMed Central

    Shivanna, Sowmya; Kolandaivelu, Kumaran; Shashar, Moshe; Belghasim, Mostafa; Al-Rabadi, Laith; Balcells, Mercedes; Zhang, Anqi; Weinberg, Janice; Francis, Jean; Pollastri, Michael P.; Edelman, Elazer R.; Sherr, David H.

    2016-01-01

    Patients with CKD suffer high rates of thrombosis, particularly after endovascular interventions, yet few options are available to improve management and reduce thrombotic risk. We recently demonstrated that indoxyl sulfate (IS) is a potent CKD-specific prothrombotic metabolite that induces tissue factor (TF) in vascular smooth muscle cells (vSMCs), although the precise mechanism and treatment implications remain unclear. Because IS is an agonist of the aryl hydrocarbon receptor (AHR), we first examined the relationship between IS levels and AHR-inducing activity in sera of patients with ESRD. IS levels correlated significantly with both vSMC AHR activity and TF activity. Mechanistically, we demonstrated that IS activates the AHR pathway in primary human aortic vSMCs, and further, that AHR interacts directly with and stabilizes functional TF. Antagonists directly targeting AHR enhanced TF ubiquitination and degradation and suppressed thrombosis in a postinterventional model of CKD and endovascular injury. Furthermore, AHR antagonists inhibited TF in a manner dependent on circulating IS levels. In conclusion, we demonstrated that IS regulates TF stability through AHR signaling and uncovered AHR as an antithrombotic target and AHR antagonists as a novel class of antithrombotics. Together, IS and AHR have potential as uremia-specific biomarkers and targets that may be leveraged as a promising theranostic platform to better manage the elevated thrombosis rates in patients with CKD. PMID:26019318

  20. The Aryl Hydrocarbon Receptor is a Critical Regulator of Tissue Factor Stability and an Antithrombotic Target in Uremia.

    PubMed

    Shivanna, Sowmya; Kolandaivelu, Kumaran; Shashar, Moshe; Belghasim, Mostafa; Al-Rabadi, Laith; Balcells, Mercedes; Zhang, Anqi; Weinberg, Janice; Francis, Jean; Pollastri, Michael P; Edelman, Elazer R; Sherr, David H; Chitalia, Vipul C

    2016-01-01

    Patients with CKD suffer high rates of thrombosis, particularly after endovascular interventions, yet few options are available to improve management and reduce thrombotic risk. We recently demonstrated that indoxyl sulfate (IS) is a potent CKD-specific prothrombotic metabolite that induces tissue factor (TF) in vascular smooth muscle cells (vSMCs), although the precise mechanism and treatment implications remain unclear. Because IS is an agonist of the aryl hydrocarbon receptor (AHR), we first examined the relationship between IS levels and AHR-inducing activity in sera of patients with ESRD. IS levels correlated significantly with both vSMC AHR activity and TF activity. Mechanistically, we demonstrated that IS activates the AHR pathway in primary human aortic vSMCs, and further, that AHR interacts directly with and stabilizes functional TF. Antagonists directly targeting AHR enhanced TF ubiquitination and degradation and suppressed thrombosis in a postinterventional model of CKD and endovascular injury. Furthermore, AHR antagonists inhibited TF in a manner dependent on circulating IS levels. In conclusion, we demonstrated that IS regulates TF stability through AHR signaling and uncovered AHR as an antithrombotic target and AHR antagonists as a novel class of antithrombotics. Together, IS and AHR have potential as uremia-specific biomarkers and targets that may be leveraged as a promising theranostic platform to better manage the elevated thrombosis rates in patients with CKD.

  1. Rationale for stimulator of interferon genes-targeted cancer immunotherapy.

    PubMed

    Rivera Vargas, Thaiz; Benoit-Lizon, Isis; Apetoh, Lionel

    2017-02-17

    The efficacy of checkpoint inhibitor therapy illustrates that cancer immunotherapy, which aims to foster the host immune response against cancer to achieve durable anticancer responses, can be successfully implemented in a routine clinical practice. However, a substantial proportion of patients does not benefit from this treatment, underscoring the need to identify alternative strategies to defeat cancer. Despite the demonstration in the 1990's that the detection of danger signals, including the nucleic acids DNA and RNA, by dendritic cells (DCs) in a cancer setting is essential for eliciting host defence, the molecular sensors responsible for recognising these danger signals and eliciting anticancer immune responses remain incompletely characterised, possibly explaining the disappointing results obtained so far upon the clinical implementation of DC-based cancer vaccines. In 2008, STING (stimulator of interferon genes), was identified as a protein that is indispensable for the recognition of cytosolic DNA. The central role of STING in controlling anticancer immune responses was exemplified by observations that spontaneous and radiation-induced adaptive anticancer immunity was reduced in the absence of STING, illustrating the potential of STING-targeting for cancer immunotherapy. Here, we will discuss the relevance of manipulating the STING signalling pathway for cancer treatment and integrating STING-targeting based strategies into combinatorial therapies to obtain long-lasting anticancer immune responses.

  2. Stress sensor Gadd45 genes as therapeutic targets in cancer.

    PubMed

    Cretu, Alexandra; Sha, Xiaojin; Tront, Jennifer; Hoffman, Barbara; Liebermann, Dan A

    2009-01-01

    Gadd45 genes have been implicated in stress signaling responses to various physiological or environmental stressors, resulting in cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated up to date suggests that Gadd45 proteins function as stress sensors, mediating their activity through a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. Disregulated expression of Gadd45 has been observed in multiple types of solid tumors as well as in hematopoietic malignancies. Also, evidence has accumulated that Gadd45 proteins are intrinsically associated with the response of tumor cells to a variety of cancer therapeutic agents. Thus, Gadd45 proteins may represent a novel class of targets for therapeutic intervention in cancer. Additional research is needed to better understand which of the Gadd45 stress response functions may be targeted for chemotherapeutic drug design in cancer therapy.

  3. Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    Transdisciplinary Research in Epigenetics and Cancer Journal Clubs and Transdisciplinary Science Meetings, biweekly and monthly 3. To gain expertise...Target Genes in Prostate and Prostate Cancer PRINCIPAL INVESTIGATOR: Laura Lamb CONTRACTING ORGANIZATION: Washington University...TITLE AND SUBTITLE Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer 5a. CONTRACT NUMBER Genes in

  4. Reduction of Nfia gene expression and subsequent target genes by binge alcohol in the fetal brain.

    PubMed

    Mandal, Chanchal; Park, Ji Hyun; Lee, Hyung Tae; Seo, Hyemyung; Chung, Il Yup; Choi, Ihn Geun; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-06-26

    The objective of the present study was to investigate the changes in gene expression in the fetal brain (forebrain and hippocampus) caused by maternal binge alcohol consumption. Pregnant C57BL/6J mice were treated intragastrically with distilled phosphate-buffered saline (PBS) or ethanol (2.9 g/kg) from embryonic day (ED) 8-12. Microarray analysis revealed that a significant number of genes were altered at ED 18 in the developing brain. Specifically, in hippocampus, nuclear factor one alpha (Nfia) and three N-methyl-D-aspartate (Nmda) receptors (Nmdar1, Nmdar2b, and Nmdar2d) were down-regulated. The transcription factor Nfia controls gliogenesis, cell proliferation and Nmda-induced neuronal survival by regulating the expression of target genes. Some of the Nfia-target gene (Aldh1a, Folh1, Gjb6, Fgf1, Neurod1, Sept4, and Ntsr2) expressions were also altered as expected. These results suggest that the altered expression of Nfia and Nmda receptors may be associated with the etiology of fetal alcohol syndrome (FAS). The data presented in this report will contribute to the understanding of the molecular mechanisms associated with the effects of alcohol in FASD individuals.

  5. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    PubMed Central

    2012-01-01

    Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro) than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system. PMID:22321574

  6. A gene with major phenotypic effects as a target for selection vs. homogenizing gene flow.

    PubMed

    Raeymaekers, Joost A M; Konijnendijk, Nellie; Larmuseau, Maarten H D; Hellemans, Bart; De Meester, Luc; Volckaert, Filip A M

    2014-01-01

    Genes with major phenotypic effects facilitate quantifying the contribution of genetic vs. plastic effects to adaptive divergence. A classical example is Ectodysplasin (Eda), the major gene controlling lateral plate phenotype in three-spined stickleback. Completely plated marine stickleback populations evolved repeatedly towards low-plated freshwater populations, representing a prime example of parallel evolution by natural selection. However, many populations remain polymorphic for lateral plate number. Possible explanations for this polymorphism include relaxation of selection, disruptive selection or a balance between divergent selection and gene flow. We investigated 15 polymorphic stickleback populations from brackish and freshwater habitats in coastal North-western Europe. At each site, we tracked changes in allele frequency at the Eda gene between subadults in fall, adults in spring and juveniles in summer. Eda genotypes were also compared for body size and reproductive investment. We observed a fitness advantage for the Eda allele for the low morph in freshwater and for the allele for the complete morph in brackish water. Despite these results, the differentiation at the Eda gene was poorly correlated with habitat characteristics. Neutral population structure was the best predictor of spatial variation in lateral plate number, suggestive of a substantial effect of gene flow. A meta-analysis revealed that the signature of selection at Eda was weak compared to similar studies in stickleback. We conclude that a balance between divergent selection and gene flow can maintain stickleback populations polymorphic for lateral plate number and that ecologically relevant genes may not always contribute much to local adaptation, even when targeted by selection.

  7. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    DOEpatents

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  8. The bereft gene, a potential target of the neural selector gene cut, contributes to bristle morphogenesis.

    PubMed Central

    Hardiman, Kirsten E; Brewster, Rachel; Khan, Shaema M; Deo, Monika; Bodmer, Rolf

    2002-01-01

    The neural selector gene cut, a homeobox transcription factor, is required for the specification of the correct identity of external (bristle-type) sensory organs in Drosophila. Targets of cut function, however, have not been described. Here, we study bereft (bft) mutants, which exhibit loss or malformation of a majority of the interommatidial bristles of the eye and cause defects in other external sensory organs. These mutants were generated by excising a P element located at chromosomal location 33AB, the enhancer trap line E8-2-46, indicating that a gene near the insertion site is responsible for this phenotype. Similar to the transcripts of the gene nearest to the insertion, reporter gene expression of E8-2-46 coincides with Cut in the support cells of external sensory organs, which secrete the bristle shaft and socket. Although bft transcripts do not obviously code for a protein product, its expression is abolished in bft deletion mutants, and the integrity of the bft locus is required for (interommatidial) bristle morphogenesis. This suggests that disruption of the bft gene is the cause of the observed bristle phenotype. We also sought to determine what factors regulate the expression of bft and the enhancer trap line. The correct specification of individual external sensory organ cells involves not only cut, but also the lineage genes numb and tramtrack. We demonstrate that mutations of these three genes affect the expression levels at the bft locus. Furthermore, cut overexpression is sufficient to induce ectopic bft expression in the PNS and in nonneuronal epidermis. On the basis of these results, we propose that bft acts downstream of cut and tramtrack to implement correct bristle morphogenesis. PMID:12019237

  9. 'Energy expenditure genes' or 'energy absorption genes': a new target for the treatment of obesity and Type II diabetes.

    PubMed

    Braud, Sandrine; Ciufolini, Marco; Harosh, Itzik

    2010-12-01

    Several hundred genes associated or linked to obesity have been described in the scientific literature. Whereas many of these genes are potential targets for the treatment of obesity and associated conditions, none of them have permitted the developement of an efficient drug therapy. As proposed by the 'thrifty genotype' theory, obesity genes may have conferred an evolutionary advantage in times of food shortage through efficient energy exploitation, while 'lean' or 'energy expenditure' genes may have become very rare during the same periods. It is therefore a challenge to identify 'energy expenditure genes' or 'energy absorption genes,' whose mutations or single nucleotide polymorphisms do result in reduced energy intake. We submit that such 'energy absorption' or 'energy expenditure' genes (crucial genes) are potential new targets for the treatment of obesity. These genes can be identified in rare genetic diseases that produce a lean, failure-to-thrive, energy malabsorption or starvation phenotype.

  10. Gene targeting, genome editing: from Dolly to editors.

    PubMed

    Tan, Wenfang; Proudfoot, Chris; Lillico, Simon G; Whitelaw, C Bruce A

    2016-06-01

    One of the most powerful strategies to investigate biology we have as scientists, is the ability to transfer genetic material in a controlled and deliberate manner between organisms. When applied to livestock, applications worthy of commercial venture can be devised. Although initial methods used to generate transgenic livestock resulted in random transgene insertion, the development of SCNT technology enabled homologous recombination gene targeting strategies to be used in livestock. Much has been accomplished using this approach. However, now we have the ability to change a specific base in the genome without leaving any other DNA mark, with no need for a transgene. With the advent of the genome editors this is now possible and like other significant technological leaps, the result is an even greater diversity of possible applications. Indeed, in merely 5 years, these 'molecular scissors' have enabled the production of more than 300 differently edited pigs, cattle, sheep and goats. The advent of genome editors has brought genetic engineering of livestock to a position where industry, the public and politicians are all eager to see real use of genetically engineered livestock to address societal needs. Since the first transgenic livestock reported just over three decades ago the field of livestock biotechnology has come a long way-but the most exciting period is just starting.

  11. Ultrasound-targeted HSVtk and Timp3 gene delivery for synergistically enhanced antitumor effects in hepatoma.

    PubMed

    Yu, B-F; Wu, J; Zhang, Y; Sung, H-W; Xie, J; Li, R-K

    2013-05-01

    Cancer gene therapy has great potential for decreasing tumor-induced mortality but has been clinically limited by non-targeted and insufficient gene transfer. We evaluated gene therapy targeting hepatocellular carcinoma (HCC) using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system and the tissue inhibitor of metalloproteinase 3 (Timp3) gene. Ultrasound-targeted microbubble destruction (UTMD) targeted gene delivery to the tumor tissue, and the α-fetoprotein promoter targeted HSVtk expression to the HCC cells. Human HepG2 cells transfected with the HSVtk or Timp3 gene demonstrated a reduction in cell viability by >40% compared with the vector control. Cell viability was further inhibited by over 50% with co-transfection of the genes. HepG2 cells were inoculated subcutaneously into athymic mice to induce tumors. UTMD-mediated delivery of HSVtk or Timp3 suppressed tumor growth by >45% and increased survival of tumor-bearing animals (P<0.01 vs vector control). Co-delivery of the genes resulted in a further 30% improvement in tumor suppression and significant extension of animal survival (P<0.01 vs vector control). Targeted gene delivery increased the number of apoptotic cells and decreased the vascular density of the tumors. Targeted co-delivery of the genes synergistically improved the antitumor effects and may provide an effective therapy for HCC.

  12. Using PCR to Target Misconceptions about Gene Expression †

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  13. Estimation of weekly 99Mo production by AHR 200 kW

    NASA Astrophysics Data System (ADS)

    Siregar, I. H.; Suharyana; Khakim, A.; Siregar, D.; Frida, A. R.

    2016-11-01

    The estimation of weekly 99Mo production by AHR 200 kW fueled with Low Enriched Uranium Uranyl Nitrate solution has been simulated by using MCNPX computer code. We have employed the AHR design of Babcock & Wilcox Medical Isotope Production System with 9Be Reflector and Stainless steel vessel. We found that when the concentration of uranium in the fresh fuel was 108 gr U/L of UO2(NO3)2 fuel solution, the multiplication factor was 1.0517. The 99Mo concentration reached saturated at tenth day operation. The AHR can produce approximately 1.96×103 6-day-Ci weekly.

  14. Differential gene expression, GATA1 target genes, and the chemotherapy sensitivity of Down syndrome megakaryocytic leukemia.

    PubMed

    Ge, Yubin; Dombkowski, Alan A; LaFiura, Katherine M; Tatman, Dana; Yedidi, Ravikiran S; Stout, Mark L; Buck, Steven A; Massey, Gita; Becton, David L; Weinstein, Howard J; Ravindranath, Yaddanapudi; Matherly, Larry H; Taub, Jeffrey W

    2006-02-15

    Children with Down syndrome (DS) with acute megakaryocytic leukemia (AMkL) have very high survival rates compared with non-DS AMkL patients. Somatic mutations identified in the X-linked transcription factor gene, GATA1, in essentially all DS AMkL cases result in the synthesis of a shorter (40 kDa) protein (GATA1s) with altered transactivation activity and may lead to altered expression of GATA1 target genes. Using the Affymetrix U133A microarray chip, we identified 551 differentially expressed genes between DS and non-DS AMkL samples. Transcripts for the bone marrow stromal-cell antigen 2 (BST2) gene, encoding a transmembrane glycoprotein potentially involved in interactions between leukemia cells and bone marrow stromal cells, were 7.3-fold higher (validated by real-time polymerase chain reaction) in the non-DS compared with the DS group. Additional studies confirmed GATA1 protein binding and transactivation of the BST2 promoter; however, stimulation of BST2 promoter activity by GATA1s was substantially reduced compared with the full-length GATA1. CMK sublines, transfected with the BST2 cDNA and incubated with HS-5 bone marrow stromal cells, exhibited up to 1.7-fold reduced cytosine arabinoside (ara-C)-induced apoptosis, compared with mock-transfected cells. Our results demonstrate that genes that account for differences in survival between DS and non-DS AMkL cases may be identified by microarray analysis and that differential gene expression may reflect relative transactivation capacities of the GATA1s and full-length GATA1 proteins.

  15. Differential gene expression, GATA1 target genes, and the chemotherapy sensitivity of Down syndrome megakaryocytic leukemia

    PubMed Central

    Ge, Yubin; Dombkowski, Alan A.; LaFiura, Katherine M.; Tatman, Dana; Yedidi, Ravikiran S.; Stout, Mark L.; Buck, Steven A.; Massey, Gita; Becton, David L.; Weinstein, Howard J.; Ravindranath, Yaddanapudi; Matherly, Larry H.; Taub, Jeffrey W.

    2006-01-01

    Children with Down syndrome (DS) with acute megakaryocytic leukemia (AMkL) have very high survival rates compared with non-DS AMkL patients. Somatic mutations identified in the X-linked transcription factor gene, GATA1, in essentially all DS AMkL cases result in the synthesis of a shorter (40 kDa) protein (GATA1s) with altered transactivation activity and may lead to altered expression of GATA1 target genes. Using the Affymetrix U133A microarray chip, we identified 551 differentially expressed genes between DS and non-DS AMkL samples. Transcripts for the bone marrow stromal-cell antigen 2 (BST2) gene, encoding a transmembrane glycoprotein potentially involved in interactions between leukemia cells and bone marrow stromal cells, were 7.3-fold higher (validated by real-time polymerase chain reaction) in the non-DS compared with the DS group. Additional studies confirmed GATA1 protein binding and transactivation of the BST2 promoter; however, stimulation of BST2 promoter activity by GATA1s was substantially reduced compared with the full-length GATA1. CMK sublines, transfected with the BST2 cDNA and incubated with HS-5 bone marrow stromal cells, exhibited up to 1.7-fold reduced cytosine arabinoside (ara-C)-induced apoptosis, compared with mock-transfected cells. Our results demonstrate that genes that account for differences in survival between DS and non-DS AMkL cases may be identified by microarray analysis and that differential gene expression may reflect relative transactivation capacities of the GATA1s and full-length GATA1 proteins. PMID:16249385

  16. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction

    PubMed Central

    Dubrulle, Julien; Jordan, Benjamin M; Akhmetova, Laila; Farrell, Jeffrey A; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Schier, Alexander F

    2015-01-01

    Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI: http://dx.doi.org/10.7554/eLife.05042.001 PMID:25869585

  17. Advances in the Development of Gene-Targeting Vectors to Increase the Efficiency of Genetic Modification.

    PubMed

    Saito, Shinta; Adachi, Noritaka

    2016-01-01

    Gene targeting via homologous recombination, albeit highly inefficient in human cells, is considered a powerful tool for analyzing gene functions. Despite recent progress in the application of artificial nucleases for genome editing, safety issues remain a concern, particularly when genetic modification is used for therapeutic purposes. Therefore, the development of gene-targeting vectors is necessary for safe and sophisticated genetic modification. In this paper, we describe the effect of vector structure on random integration, which is a major obstacle in efficient gene targeting. In addition, we focus on the features of exon-trapping-type gene-targeting vectors, and discuss a novel strategy for negative selection to enhance gene targeting in human cells.

  18. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92

    PubMed Central

    Jin, Hyun Yong; Oda, Hiroyo; Chen, Pengda; Kang, Seung Goo; Valentine, Elizabeth; Liao, Lujian; Zhang, Yaoyang; Gonzalez-Martin, Alicia; Shepherd, Jovan; Head, Steven R.; Kim, Pyeung-Hyeun; Fu, Guo; Liu, Wen-Hsien; Han, Jiahuai

    2017-01-01

    MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. PMID:28241004

  19. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression

    PubMed Central

    Adkisson, Michael; Nava, A. J.; Kirov, Julia V.; Cipollone, Andreanna; Willis, Brandon; Rapp, Jared; de Jong, Pieter J.; Lloyd, Kent C.

    2016-01-01

    The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3’ UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels. PMID:26839965

  20. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  1. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes

    PubMed Central

    Park, Wonkeun; Zhai, Jixian; Lee, Jung-Youn

    2009-01-01

    Gene silencing is a useful technique for elucidating biological function of genes by knocking down their expression. A recently developed artificial microRNAs (amiRNAs) exploits an endogenous gene silencing mechanism that processes natural miRNA precursors to small silencing RNAs that target transcripts for degradation. Based on natural miRNA structures, amiRNAs are commonly designed such that they have a few mismatching nucleotides with respect to their target sites as well as within mature amiRNA duplexes. In this study, we performed an analysis in which the conventional and modified form of an amiRNA was compared side by side. We showed that the amiRNA containing 5′ mismatch with its amiRNA* and perfect complementarity to its target gene acted as a highly potent gene silencing agent against AP1, achieving a desired null mutation effect. In addition, a simultaneous silencing of two independent genes, AP1 and CAL1 wastested by employing a multimeric form of amiRNAs. Advantages and potential disadvantages of using amiRNAs with perfect complementarity to the target gene are discussed. The results presented here should be helpful in designing more specific and effective gene silencing agents. PMID:19066901

  2. Targeted approach to identify genetic loci associated with evolved dioxin tolerance in Atlantic Killifish (Fundulus heteroclitus)

    PubMed Central

    2014-01-01

    Background The most toxic aromatic hydrocarbon pollutants are categorized as dioxin-like compounds (DLCs) to which extreme tolerance has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly aromatic hydrocarbon-contaminated urban/industrialized estuaries of the US Atlantic coast. Multiple tolerant and neighboring sensitive killifish populations were compared with the expectation that genetic loci associated with DLC tolerance would be revealed. Results Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, single nucleotide polymorphisms (SNPs) from 42 genes associated with the AHR pathway were identified to serve as targeted markers. Wild fish (N = 36/37) from four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Similar to other killifish population genetic analyses, strong genetic differentiation among populations was detected, consistent with isolation by distance models. When DLC-sensitive populations were pooled and compared to pooled DLC-tolerant populations, multi-locus analyses did not distinguish the two groups. However, pairwise comparisons of nearby tolerant and sensitive populations revealed high differentiation among sensitive and tolerant populations at these specific loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP1A and 3A30), and the NADH dehydrogenase subunits. In addition, significant shifts in minor allele frequency were observed at AHR2 and CYP1A loci across most sensitive/tolerant pairs, but only AHR2 exhibited shifts in the same direction across all pairs. Conclusions The observed differences in allelic composition at the AHR2 and CYP1A SNP loci were identified as significant among paired sensitive

  3. Novel cDNA sequences of aryl hydrocarbon receptors and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments

    PubMed Central

    Marquez, Emily C.; Traylor-Knowles, Nikki; Novillo-Villajos, Apolonia; Callard, Ian P.

    2011-01-01

    Reproductive changes have been observed in painted turtles from a site with known contamination located on Cape Cod, MA, USA. We hypothesize that these changes are caused by exposure to endocrine-disrupting compounds and that genes involved in reproduction are affected. The aryl hydrocarbon receptor (AHR) is an orphan receptor that is activated by environmental contaminants. AHR mRNA was measured in turtles exposed to soil collected from a contaminated site. Adult turtles were trapped from the study site (Moody Pond, MP) or a reference site and exposed to laboratory environments containing soil from either site. The red-eared slider was used to assess neonatal exposure to soil and water from the sites. The environmental exposures occurred over a 13-month period. Juveniles showed an age-dependent increase in brain AHR1. Juvenile turtles exposed to the MP environment had elevated gonadal AHR1. Adult turtles exposed to the MP environment showed significantly decreased brain AHR2. The painted turtle AHR is the first complete reptile AHR cDNA sequence. Phylogenetic analysis of the painted turtle AHR showed that it clusters with other AHR2s. Partial AHR1 and partial AHR2 cDNA sequences were cloned from the red-eared slider. MEME analysis identified 18 motifs in the turtle AHRs, showing high conservation between motifs that overlapped functional regions in both AHR isoforms. PMID:21763458

  4. A gene locus for targeted ectopic gene integration in Zymoseptoria tritici☆

    PubMed Central

    Kilaru, S.; Schuster, M.; Latz, M.; Das Gupta, S.; Steinberg, N.; Fones, H.; Gurr, S.J.; Talbot, N.J.; Steinberg, G.

    2015-01-01

    Understanding the cellular organization and biology of fungal pathogens requires accurate methods for genomic integration of mutant alleles or fluorescent fusion-protein constructs. In Zymoseptoria tritici, this can be achieved by integrating of plasmid DNA randomly into the genome of this wheat pathogen. However, untargeted ectopic integration carries the risk of unwanted side effects, such as altered gene expression, due to targeting regulatory elements, or gene disruption following integration into protein-coding regions of the genome. Here, we establish the succinate dehydrogenase (sdi1) locus as a single “soft-landing” site for targeted ectopic integration of genetic constructs by using a carboxin-resistant sdi1R allele, carrying the point-mutation H267L. We use various green and red fluorescent fusion constructs and show that 97% of all transformants integrate correctly into the sdi1 locus as single copies. We also demonstrate that such integration does not affect the pathogenicity of Z. tritici, and thus the sdi1 locus is a useful tool for virulence analysis in genetically modified Z. tritici strains. Furthermore, we have developed a vector which facilitates yeast recombination cloning and thus allows assembly of multiple overlapping DNA fragments in a single cloning step for high throughput vector and strain generation. PMID:26092798

  5. Synthetic Lethal Gene for PTEN as a Therapeutic Target

    DTIC Science & Technology

    2013-09-01

    patients and prepare PTEN-deficient cells. We will then screen genes that play critical roles in the PTEN pathway using a technique called shRNA library ... screening , with or without radiation treatment of these cells. When we identify a gene, we will then test the effect of such gene in an animal model to

  6. The AhR and NF-κB/Rel Proteins Mediate the Inhibitory Effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3' Immunoglobulin Heavy Chain Regulatory Region.

    PubMed

    Salisbury, Richard L; Sulentic, Courtney E W

    2015-12-01

    Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3'Igh regulatory region (3'IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3'IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3'IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3'IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3'IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3'IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3'IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels.

  7. The AhR and NF-κB/Rel Proteins Mediate the Inhibitory Effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3′ Immunoglobulin Heavy Chain Regulatory Region

    PubMed Central

    Salisbury, Richard L.; Sulentic, Courtney E. W.

    2015-01-01

    Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3′Igh regulatory region (3′IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3′IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3′IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3′IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3′IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3′IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3′IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels. PMID:26377645

  8. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  9. STAT3 or USF2 contributes to HIF target gene specificity.

    PubMed

    Pawlus, Matthew R; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein.

  10. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases

    PubMed Central

    Santiago, Yolanda; Chan, Edmond; Liu, Pei-Qi; Orlando, Salvatore; Zhang, Lin; Urnov, Fyodor D.; Holmes, Michael C.; Guschin, Dmitry; Waite, Adam; Miller, Jeffrey C.; Rebar, Edward J.; Gregory, Philip D.; Klug, Aaron; Collingwood, Trevor N.

    2008-01-01

    Gene knockout is the most powerful tool for determining gene function or permanently modifying the phenotypic characteristics of a cell. Existing methods for gene disruption are limited by their efficiency, time to completion, and/or the potential for confounding off-target effects. Here, we demonstrate a rapid single-step approach to targeted gene knockout in mammalian cells, using engineered zinc-finger nucleases (ZFNs). ZFNs can be designed to target a chosen locus with high specificity. Upon transient expression of these nucleases the target gene is first cleaved by the ZFNs and then repaired by a natural—but imperfect—DNA repair process, nonhomologous end joining. This often results in the generation of mutant (null) alleles. As proof of concept for this approach we designed ZFNs to target the dihydrofolate reductase (DHFR) gene in a Chinese hamster ovary (CHO) cell line. We observed biallelic gene disruption at frequencies >1%, thus obviating the need for selection markers. Three new genetically distinct DHFR−/− cell lines were generated. Each new line exhibited growth and functional properties consistent with the specific knockout of the DHFR gene. Importantly, target gene disruption is complete within 2–3 days of transient ZFN delivery, thus enabling the isolation of the resultant DHFR−/− cell lines within 1 month. These data demonstrate further the utility of ZFNs for rapid mammalian cell line engineering and establish a new method for gene knockout with application to reverse genetics, functional genomics, drug discovery, and therapeutic recombinant protein production. PMID:18359850

  11. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA.

    PubMed

    Svitashev, Sergei; Young, Joshua K; Schwartz, Christine; Gao, Huirong; Falco, S Carl; Cigan, A Mark

    2015-10-01

    Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)-guide RNA technology are reported in maize. DNA vectors expressing maize codon-optimized Streptococcus pyogenes Cas9 endonuclease and single guide RNAs were cointroduced with or without DNA repair templates into maize immature embryos by biolistic transformation targeting five different genomic regions: upstream of the liguleless1 (LIG1) gene, male fertility genes (Ms26 and Ms45), and acetolactate synthase (ALS) genes (ALS1 and ALS2). Mutations were subsequently identified at all sites targeted, and plants containing biallelic multiplex mutations at LIG1, Ms26, and Ms45 were recovered. Biolistic delivery of guide RNAs (as RNA molecules) directly into immature embryo cells containing preintegrated Cas9 also resulted in targeted mutations. Editing the ALS2 gene using either single-stranded oligonucleotides or double-stranded DNA vectors as repair templates yielded chlorsulfuron-resistant plants. Double-strand breaks generated by RNA-guided Cas9 endonuclease also stimulated insertion of a trait gene at a site near LIG1 by homology-directed repair. Progeny showed expected Mendelian segregation of mutations, edits, and targeted gene insertions. The examples reported in this study demonstrate the utility of Cas9-guide RNA technology as a plant genome editing tool to enhance plant breeding and crop research needed to meet growing agriculture demands of the future.

  12. Targeted gene transfer of different genes to presynaptic and postsynaptic neocortical neurons connected by a glutamatergic synapse.

    PubMed

    Zhang, Guo-rong; Zhao, Hua; Cao, Haiyan; Li, Xu; Geller, Alfred I

    2012-09-14

    Genetic approaches to analyzing neuronal circuits and learning would benefit from a technology to first deliver a specific gene into presynaptic neurons, and then deliver a different gene into an identified subset of their postsynaptic neurons, connected by a specific synapse type. Here, we describe targeted gene transfer across a neocortical glutamatergic synapse, using as the model the projection from rat postrhinal to perirhinal cortex. The first gene transfer, into the presynaptic neurons in postrhinal cortex, used a virus vector and standard gene transfer procedures. The vector expresses an artificial peptide neurotransmitter containing a dense core vesicle targeting domain, a NMDA NR1 subunit binding domain (from a monoclonal antibody), and the His tag. Upon release, this peptide neurotransmitter binds to NMDA receptors on the postsynaptic neurons. Antibody-mediated targeted gene transfer to these postsynaptic neurons in perirhinal cortex used a His tag antibody, as the peptide neurotransmitter contains the His tag. Confocal microscopy showed that with untargeted gene transfer, ~3% of the transduced presynaptic axons were proximal to a transduced postsynaptic dendrite. In contrast, with targeted gene transfer, ≥ 20% of the presynaptic axons were proximal to a transduced postsynaptic dendrite. Targeting across other types of synapses might be obtained by modifying the artificial peptide neurotransmitter to contain a binding domain for a different neurotransmitter receptor. This technology may benefit elucidating how specific neurons and subcircuits contribute to circuit physiology, behavior, and learning.

  13. Specific Ligand Binding Domain Residues Confer Low Dioxin Responsiveness to AHR1β of Xenopus laevis

    PubMed Central

    Odio, Camila; Holzman, Sarah A.; Denison, Michael S.; Fraccalvieri, Domenico; Bonati, Laura; Franks, Diana G.; Hahn, Mark E.; Powell, Wade H.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a PAS-family protein that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in vertebrates. Frogs are remarkably insensitive to TCDD, and AHRs from Xenopus laevis bind TCDD with low affinity. We sought to identify structural features of X. laevis AHR1β associated with low TCDD sensitivity. Substitution of the entire ligand-binding domain (LBD) with the corresponding sequence from mouse AHRb-1 dramatically increased TCDD responsiveness in transactivation assays. To identify amino acid residues responsible, we constructed a comparative model of the AHR1β LBD using homologous domains of PAS proteins HIF2α and ARNT. The model revealed an internal cavity of similar dimensions to the putative binding cavity of mouse AHRb-1, suggesting the importance of side-chain interactions over cavity size. Of residues with side chains clearly pointing into the cavity, only two differed from the mouse sequence. When A354, located within a conserved β-strand, was changed to serine, the corresponding mouse residue, the EC50 for TCDD decreased more than 15-fold. When N325 was changed to serine, EC50 declined 3-fold. When the mutations were combined, the EC50 declined from 18.6 nM to 0.8 nM, nearly matching mouse AHR for TCDD sensitivity. Velocity sedimentation analysis confirmed that mutant frog AHRs exhibited correspondingly increased TCDD binding. We also assayed mutant AHRs for responsiveness to a candidate endogenous ligand, 6-formylindolo[3,2b]carbazole (FICZ). Mutations that increased TCDD sensitivity also increased sensitivity to FICZ. This comparative study represents a novel approach to discerning fundamental information about the structure of AHR and its interactions with biologically important agonists. PMID:23394719

  14. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner.

    PubMed

    Al-Salman, Fadheela; Plant, Nick

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs.

  15. Network and pathway analysis of microRNAs, transcription factors, target genes and host genes in human glioma

    PubMed Central

    ZHANG, YING; ZHAO, SHISHUN; XU, ZHIWEN

    2016-01-01

    To date, there has been rapid development with regard to gene and microRNA (miR/miRNA) research in gliomas. However, the regulatory mechanisms of the associated genes and miRNAs remain unclear. In the present study, the genes, miRNAs and transcription factors (TFs) were considered as elements in the regulatory network, and focus was placed on the associations between TFs and miRNAs, miRNAs and target genes, and miRNAs and host genes. In order to show the regulatory correlation clearly, all the elements were investigated and three regulatory networks, namely the differentially-expressed, related and global networks, were constructed. Certain important pathways were highlighted, with analysis of the similarities and differences among the networks. Next, the upstream and downstream elements of differentially-expressed genes, miRNAs and predicted TFs were listed. The most notable aspect of the present study was the three levels of network, particularly the differentially-expressed network, since the differentially-expressed associations that these networks provide appear at the initial stages of cancers such as glioma. If the states of the differentially-expressed associations can be adjusted to the normal state via alterations in regulatory associations, which were also recorded in the study networks and tables, it is likely that cancer can be regulated or even avoided. In the present study, the differentially-expressed network illuminated the pathogenesis of glioma; for example, a TF can regulate one or more miRNAs, and a target gene can be targeted by one or more miRNAs. Therefore, the host genes and target genes, the host genes and TFs, and the target genes and TFs indirectly affect each other through miRNAs. The association also exists between TFs and TFs, target genes and target genes, and host genes and host genes. The present study also demonstrated self-adaption associations and circle-regulations. The related network further described the regulatory mechanism

  16. [Progress on study of achromatopsia and targeted gene therapy].

    PubMed

    Dai, Xu-feng; Pang, Ji-jing

    2012-08-01

    Achromatopsia is an early onset retinal dystrophy that causes severe visual impairment. To date, four genes have been found to be implicated in achromatopsia-associated mutations: guanine nucleotide-binding protein (GNAT2), cyclic nucleotide-gated channel alpha-3 (CNGA3), cyclic nucleotide-gated channel beta-3 (CNGB3) and phosphodiesterase 6C (PDE6C). Even with early onset, the slow progress and the good responses to gene therapy in animal models render achromatopsia a very attractive candidate for human gene therapy after the successful of the Phase I clinical trials of Leber's congenital amaurosis. With the development of molecular genetics and the therapeutic gene replacement technology, the adeno-associated viral (AAV) vector-mediated gene therapy for achromatopsia in the preclinical animal experiments achieved encouraging progress in the past years. This article briefly reviews the recent research achievements of achromatopsia with gene therapy.

  17. Applications of Gene Targeting Technology to Mental Retardation and Developmental Disability Research

    ERIC Educational Resources Information Center

    Pimenta, Aurea F.; Levitt, Pat

    2005-01-01

    The human and mouse genome projects elucidated the sequence and position map of innumerous genes expressed in the central nervous system (CNS), advancing our ability to manipulate these sequences and create models to investigate regulation of gene expression and function. In this article, we reviewed gene targeting methodologies with emphasis on…

  18. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-01-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  19. Targeting metastatic cancer from the inside: a new generation of targeted gene delivery vectors enables personalized cancer vaccination in situ.

    PubMed

    Gordon, Erlinda M; Levy, John P; Reed, Rebecca A; Petchpud, W Nina; Liu, Liqiong; Wendler, Carlan B; Hall, Frederick L

    2008-10-01

    The advent of pathotropic (disease-seeking) targeting technologies, combined with advanced gene delivery vectors, provides a unique opportunity for the systemic delivery of immunomodulatory cytokine genes to remote sites of cancer metastasis. When injected intravenously, such pathotropic nanoparticles seek out and accumulate selectively at sites of tumor invasion and neo-angiogenesis, resulting in enhanced gene delivery, and thus cytokine production, within the tumor nodules. Used in conjunction with a primary tumoricidal agent (e.g., Rexin-G) that exposes tumor neoantigens, the tumor-targeted immunotherapy vector is intended to promote the recruitment and activation of host immune cells into the metastastic site(s), thereby initiating cancer immunization in situ. In this study, we examine the feasibility of cytokine gene delivery to cancerous lesions in vivo using intravenously administered pathotropically targeted nanoparticles bearing the gene encoding granulocyte/macrophage colony-stimulating factor (GM-CSF; i.e., Reximmune-C). In vitro, transduction of target cancer cells with Reximmune-C resulted in the quantitative production of bioactive and immunoreactive GM-CSF protein. In tumor-bearing nude mice, intravenous infusions of Reximmune-C-induced GM-CSF production by transduced cancer cells and paracrine secretion of the cytokine within the tumor nodules, which promoted the recruitment of host mononuclear cells, including CD40+ B cells and CD86+ dendritic cells, into the tumors. With the first proofs of principle established in preclinical studies, we generated an optimized vector configuration for use in advanced clinical trial designs, and extended the feasibility studies to the clinic. Targeted delivery and localized expression of the GM-CSF transgene was confirmed in a patient with metastatic cancer, as was the recruitment of significant tumor-infiltrating lymphocytes (TILs). Taken together, these studies provide the first demonstrations of cytokine gene

  20. Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells.

    PubMed

    Lévy, Camille; Verhoeyen, Els; Cosset, François-Loïc

    2015-10-01

    Since they allow gene integration into their host genome, lentiviral vectors (LVs) have strong therapeutic potentials, as emphasized by recent clinical trials. The surface-display of the pantropic vesicular stomatitis virus G glycoprotein (VSV-G) on LVs resulted in powerful tools for fundamental and clinical research. However, improved LVs are required either to genetically modify cell types not permissive to classical VSV-G-LVs or to restrict entry to specific cell types. Incorporation of heterologous viral glycoproteins (gps) on LVs often require modification of their cytoplasmic tails and ligands can be inserted into their ectodomain to target LVs to specific receptors. Recently, measles virus (MV) gps have been identified as strong candidates for LV-retargeting to multiple cell types, with the potential to evolve toward clinical applications.

  1. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses.

    PubMed

    Jia, Yujie; Nie, Kun; Li, Jing; Liang, Xinyue; Zhang, Xuezhu

    2016-11-01

    In order to investigate the pathogenic targets and associated biological process of Alzheimer's disease in the present study, mRNA expression profiles (GSE28146) and microRNA (miRNA) expression profiles (GSE16759) were downloaded from the Gene Expression Omnibus database. In GSE28146, eight control samples, and Alzheimer's disease samples comprising seven incipient, eight moderate, seven severe Alzheimer's disease samples, were included. The Affy package in R was used for background correction and normalization of the raw microarray data. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified using the Limma package. In addition, mRNAs were clustered using weighted gene correlation network analysis, and modules found to be significantly associated with the stages of Alzheimer's disease were screened out. The Database for Annotation, Visualization, and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The target genes of the differentially expressed miRNAs were identified using the miRWalk database. Compared with the control samples, 175,59 genes and 90 DEGs were identified in the incipient, moderate and severe Alzheimer's disease samples, respectively. A module, which contained 1,592 genes was found to be closely associated with the stage of Alzheimer's disease and biological processes. In addition, pathways associated with Alzheimer's disease and other neurological diseases were found to be enriched in those genes. A total of 139 overlapped genes were identified between those genes and the DEGs in the three groups. From the miRNA expression profiles, 189 miRNAs were found differentially expressed in the samples from patients with Alzheimer's disease and 1,647 target genes were obtained. In addition, five overlapped genes were identified between those 1,647 target genes and the 139 genes, and these genes may be important pathogenic targets for Alzheimer

  2. Targeted systemic gene therapy and molecular imaging of cancer contribution of the vascular-targeted AAVP vector.

    PubMed

    Hajitou, Amin

    2010-01-01

    Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies.

  3. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing.

    PubMed

    Amabile, Angelo; Migliara, Alessandro; Capasso, Paola; Biffi, Mauro; Cittaro, Davide; Naldini, Luigi; Lombardo, Angelo

    2016-09-22

    Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine.

  4. Identification of MicroRNAs and target genes involvement in hepatocellular carcinoma with microarray data.

    PubMed

    Wang, Dadong; Tan, Jingwang; Xu, Yong; Tan, Xianglong; Han, Mingming; Tu, Yuliang; Zhu, Ziman; Zen, Jianping; Dou, Chunqing; Cai, Shouwang

    2015-01-01

    The aim of the study is to identify the differentially expressed microRNAs (miRNAs) between hepatocellular carcinoma (HCC) samples and controls and provide new diagnostic potential miRNAs for HCC. The miRNAs expression profile data GSE20077 included 7 HCC samples, 1 HeLa sample and 3 controls. Differentially expressed miRNAs (DE-miRNAs) were identified by t-test and wilcox test. The miRNA with significantly differential expression was chosen for further analysis. Target genes for this miRNA were selected using TargetScan and miRbase database. STRING software was applied to construct the target genes interaction network and topology analysis was carried out to identify the hub gene in the network. And we identified the mechanism for affecting miRNA function. A total of 54 differentially expressed miRNAs were identified, in which there were 13 miRNAs published to be related to HCC. The differentially expressed hsa-miR-106b was chosen for further analysis and PTPRT (Receptor-type tyrosine-protein phosphatase T) was its potential target gene. The target genes interaction network was constructed among 33 genes, in which PTPRT was the hub gene. We got the conclusion that the differentially expressed hsa-miR-106b may play an important role in the development of HCC by regulating the expression of its potential target gene PT-PRT.

  5. Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection

    PubMed Central

    Watkins-Chow, Dawn E.; Varshney, Gaurav K.; Garrett, Lisa J.; Chen, Zelin; Jimenez, Erin A.; Rivas, Cecilia; Bishop, Kevin S.; Sood, Raman; Harper, Ursula L.; Pavan, William J.; Burgess, Shawn M.

    2016-01-01

    Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity. PMID:28040780

  6. Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection.

    PubMed

    Watkins-Chow, Dawn E; Varshney, Gaurav K; Garrett, Lisa J; Chen, Zelin; Jimenez, Erin A; Rivas, Cecilia; Bishop, Kevin S; Sood, Raman; Harper, Ursula L; Pavan, William J; Burgess, Shawn M

    2017-02-09

    Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity.

  7. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    SciTech Connect

    Hayakawa, Kazuo; Ikeya, Makoto; Fukuta, Makoto; Woltjen, Knut; Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo; Otsuka, Takanobu; Toguchida, Junya

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly

  8. Peptide targeting of adenoviral vectors to augment tumor gene transfer.

    PubMed

    Ballard, E N; Trinh, V T; Hogg, R T; Gerard, R D

    2012-07-01

    Adenovirus serotype 5 remains one of the most promising vectors for delivering genetic material to cancer cells for imaging or therapy, but optimization of these agents to selectively promote tumor cell infection is needed to further their clinical development. Peptide sequences that bind to specific cell surface receptors have been inserted into adenoviral capsid proteins to improve tumor targeting, often in the background of mutations designed to ablate normal ligand:receptor interactions and thereby reduce off target effects and toxicities in non-target tissues. Different tumor types also express highly variable complements of cell surface receptors, so a customized targeting strategy using a particular peptide in the context of specific adenoviral mutations may be needed to achieve optimal efficacy. To further investigate peptide targeting strategies in adenoviral vectors, we used a set of peptide motifs originally isolated using phage display technology that evince tumor specificity in vivo. To demonstrate their abilities as targeting motifs, we genetically incorporated these peptides into a surface loop of the fiber capsid protein to construct targeted adenovirus vectors. We then systematically evaluated the ability of these peptide targeted vectors to infect several tumor cell types, both in vitro and in vivo, in a variety of mutational backgrounds designed to reduce CAR and/or HSG-mediated binding. Results from this study support previous observations that peptide insertions in the HI loop of the fiber knob domain are generally ineffective when used in combination with HSG detargeting mutations. The evidence also suggests that this strategy can attenuate other fiber knob interactions, such as CAR-mediated binding, and reduce overall viral infectivity. The insertion of peptides into fiber proved more effective for targeting tumor cell types expressing low levels of CAR receptor, as this strategy can partially compensate for the very low infectivity of wild

  9. The neurotensin gene is a downstream target for Ras activation.

    PubMed Central

    Evers, B M; Zhou, Z; Celano, P; Li, J

    1995-01-01

    Ras regulates novel patterns of gene expression and the differentiation of various eukaryotic cell types. Stable transfection of Ha-ras into the human colon cancer line CaCo2 results in the morphologic differentiation to a small bowel phenotype. The purpose of our study was to determine whether the Ras regulatory pathway plays a role in the expression of the neurotensin gene (NT/N), a terminally differentiated endocrine product specifically localized in the gastrointestinal tract to the adult small bowel. We found that CaCo2-ras cells, but not parental CaCo2, express high levels of the human NT/N gene and, moreover, that this increase in gene expression is regulated at the level of transcription. Transfection experiments using NT/N-CAT mutation constructs identify the proximal 200 bp of NT/N flanking sequence as sufficient for maximal Ras-mediated NT/N reporter gene induction. Furthermore, a proximal AP-1/CRE motif is crucial for this Ras-mediated NT/N activation. Wild-type Ha-ras induces NT/N gene expression, albeit at lower levels than activated Ras; a dominant-negative Raf blocks this NT/N induction, suggesting that Raf lies down-stream of Ras in this pathway. In addition, postconfluent cultures of CaCo2 cells, which are differentiated to a small bowel phenotype, express the NT/N gene by 6 d after reaching confluency; this increase of NT/N expression is associated with concomitant increases of cellular p21ras protein. We conclude that Ras (both wild-type and activated) enhances expression of the NT/N gene in the gut-derived CaCo2 cell line, suggesting an important role for the Ras signaling pathway in NT/N gene transcription. Our results underscore the possibility that tissue-specific genes (such as NT/N) expressed in distinct subpopulations of the gut may be subject to Ras regulation. Finally, we speculate that the NT/N gene and the CaCo2 and CaCo2-ras cell systems will provide unique models to further define the cellular mechanisms leading to mammalian

  10. AHR Over-Expression in Papillary Thyroid Carcinoma: Clinical and Molecular Assessments in a Series of Italian Acromegalic Patients with a Long-Term Follow-Up

    PubMed Central

    Mian, Caterina; Ceccato, Filippo; Barollo, Susi; Watutantrige-Fernando, Sara; Albiger, Nora; Regazzo, Daniela; de Lazzari, Paola; Pennelli, Gianmaria; Rotondi, Sandra; Nacamulli, Davide; Pelizzo, Maria Rosa; Jaffrain-Rea, Marie-Lise; Grimaldi, Franco; Occhi, Gianluca; Scaroni, Carla

    2014-01-01

    Aim Acromegaly reportedly carries an increased risk of malignant and benign thyroid tumors, with a prevalence of thyroid cancer of around 3–7%. Germline mutations in the aryl-hydrocarbon receptor (AHR) interacting protein (AIP) have been identified in familial forms of acromegaly. The molecular and endocrine relationships between follicular thyroid growth and GH-secreting pituitary adenoma have yet to be fully established. Our aim was to study the prevalence of differentiated thyroid cancer (DTC) in acromegaly, focusing on the role of genetic events responsible for the onset of thyroid cancer. Methods Germline mutations in the AIP gene were assessed in all patients; BRAF and H-N-K RAS status was analyzed by direct sequencing in thyroid specimens, while immunohistochemistry was used to analyze the protein expression of AIP and AHR. A set of PTCs unrelated to acromegaly was also studied. Results 12 DTCs (10 papillary and 2 follicular carcinomas) were identified in a cohort of 113 acromegalic patients. No differences in GH/IGF-1 levels or disease activity emerged between patients with and without DTC, but the former were older and more often female. BRAF V600E was found in 70% of the papillary thyroid cancers; there were no RAS mutations. AIP protein expression was similar in neoplastic and normal cells, while AHR protein was expressed more in PTCs carrying BRAF mutations than in normal tissue, irrespective of acromegaly status. Conclusions The prevalence of DTC in acromegaly is around 11% and endocrinologists should bear this in mind, especially when examining elderly female patients with uninodular goiter. The DTC risk does not seem to correlate with GH/IGF-1 levels, while it may be associated with BRAF mutations and AHR over-expression. Genetic or epigenetic events probably play a part in promoting thyroid carcinoma. PMID:25019383

  11. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations

    SciTech Connect

    Moore, R.C.; Redhead, N.J.; Selfridge, J.

    1995-09-01

    We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector to reconstruct the inactivated allele, concomitantly introducing an engineered mutation. Five independent embryonic stem cell lines have been produced bearing different targeted alterations to the prion protein gene, including one which raises the level of expression. We have constructed mice bearing the codon 101 proline to leucine substitution linked to the human familial prion disease, Gerstmann-Straussler-Scheinker syndrome. We anticipate that this procedure will have applications to the study of human inherited diseases and the development of therapies. 43 refs., 6 figs., 1 tab.

  12. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data

    PubMed Central

    Essaghir, Ahmed; Toffalini, Federica; Knoops, Laurent; Kallin, Anders; van Helden, Jacques; Demoulin, Jean-Baptiste

    2010-01-01

    Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining. PMID:20215436

  13. Identifying Context-Specific Transcription Factor Targets from Prior Knowledge and Gene Expression Data

    PubMed Central

    Fertig, Elana J; Favorov, Alexander V; Ochs, Michael F

    2013-01-01

    Numerous methodologies, assays, and databases presently provide candidate targets of transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of activation of a TF can change the transcriptional response of targets. Direct multiple regulation typical to mammalian genes complicates direct inference of TF targets from gene expression data. We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS algorithm, which infers overlapping gene expression patterns resulting from coregulation. Numerical experiments with simulated data showed that this statistic correctly inferred targets that are common to multiple TFs, except in cases where the signal from a TF is negligible relative to noise level and signal from other TFs. The statistic is robust to moderate levels of error in the simulated gene sets, identifying fewer false positives than false negatives. Significantly, the regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in previous studies. As formulated, the proposed regulatory statistic has wide applicability to inferring set membership in integrated datasets. This statistic could be naturally extended to account for prior probabilities of set membership or to add candidate gene targets. PMID:23694699

  14. Identifying context-specific transcription factor targets from prior knowledge and gene expression data.

    PubMed

    Fertig, Elana J; Favorov, Alexander V; Ochs, Michael F

    2013-09-01

    Numerous methodologies, assays, and databases presently provide candidate targets of transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of activation of a TF can change the transcriptional response of targets. Direct multiple regulation typical to mammalian genes complicates direct inference of TF targets from gene expression data. We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS algorithm, which infers overlapping gene expression patterns resulting from coregulation. Numerical experiments with simulated data showed that this statistic correctly inferred targets that are common to multiple TFs, except in cases where the signal from a TF is negligible relative to noise level and signal from other TFs. The statistic is robust to moderate levels of error in the simulated gene sets, identifying fewer false positives than false negatives. Significantly, the regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in previous studies. As formulated, the proposed regulatory statistic has wide applicability to inferring set membership in integrated datasets. This statistic could be naturally extended to account for prior probabilities of set membership or to add candidate gene targets.

  15. New Approaches for Cancer Treatment: Antitumor Drugs Based on Gene-Targeted Nucleic Acids

    PubMed Central

    Patutina, O.A.; Mironova, N.L.; Vlassov, V.V.

    2009-01-01

    Currently, the main way to fight cancer is still chemotherapy. This method of treatment is at the height of its capacity, so, setting aside the need for further improvements in traditional treatments for neoplasia, it is vital to develop now approaches toward treating malignant tumors. This paper reviews innovational experimental approaches to treating malignant malformations based on the use of gene-targeted drugs, such as antisense oligonucleotides (asON), small interfering RNA (siRNA), ribozymes, and DNAzymes, which can all inhibit oncogene expression. The target genes for these drugs are thoroughly characterized, and the main results from pre-clinical and first-step clinical trials of these drugs are presented. It is shown that the gene-targeted oligonucleotides show considerable variations in their effect on tumor tissue, depending on the target gene in question. The effects range from slowing and stopping the proliferation of tumor cells to suppressing their invasive capabilities. Despite their similarity, not all the antisense drugs targeting the same region of the mRNA of the target-gene were equally effective. The result is determined by the combination of the drug type used and the region of the target-gene mRNA that it complements. PMID:22649602

  16. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    PubMed

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  17. Stable gene replacement in barley by targeted double-strand break induction

    PubMed Central

    Watanabe, Koichi; Breier, Ulrike; Hensel, Götz; Kumlehn, Jochen; Schubert, Ingo; Reiss, Bernd

    2016-01-01

    Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley. PMID:26712824

  18. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    PubMed Central

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior. PMID:27148349

  19. Target gene analyses of 39 amelogenesis imperfecta kindreds

    PubMed Central

    Chan, Hui-Chen; Estrella, Ninna M. R. P.; Milkovich, Rachel N.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C-C.

    2012-01-01

    Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred. PMID:22243262

  20. Target gene analyses of 39 amelogenesis imperfecta kindreds.

    PubMed

    Chan, Hui-Chen; Estrella, Ninna M R P; Milkovich, Rachel N; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2011-12-01

    Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.

  1. Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics.

    PubMed

    Linehan, W Marston; Pinto, Peter A; Srinivasan, Ramaprasad; Merino, Maria; Choyke, Peter; Choyke, Lynda; Coleman, Jonathan; Toro, Jorge; Glenn, Gladys; Vocke, Cathy; Zbar, Bert; Schmidt, Laura S; Bottaro, Donald; Neckers, Len

    2007-01-15

    Recent advances in understanding the kidney cancer gene pathways has provided the foundation for the development of targeted therapeutic approaches for patients with this disease. Kidney cancer is not a single disease; it includes a number of different types of renal cancers, each with different histologic features, a different clinical course, a different response to therapy, and different genes causing the defects. Most of what is known about the genetic basis of kidney cancer has been learned from study of the inherited forms of kidney cancer: von Hippel Lindau (VHL gene), hereditary papillary renal carcinoma (c-Met gene), Birt Hogg Dubé (BHD gene), and hereditary leiomyomatosis renal cell cancer (fumarate hydratase gene). These Mendelian single-gene syndromes provide a unique opportunity to evaluate the effectiveness of agents that target the VHL, c-Met, BHD, and fumarate hydratase pathways.

  2. Tetrachlorodibenzo-p-dioxin exposure alters radial arm maze performance and hippocampal morphology in female AhR mice.

    PubMed

    Powers, B E; Lin, T-M; Vanka, A; Peterson, R E; Juraska, J M; Schantz, S L

    2005-02-01

    Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter spatial learning in rats tested on a radial arm maze (RAM). TCDD is believed to exert most of its effects through binding to the aryl hydrocarbon receptor (AhR). To determine whether the AhR mediates TCDD-induced alterations in spatial learning, we tested male and female AhR-knockout (AhR-/-), heterozygous (AhR+/-) and wild-type (AhR+/+) mice on the RAM. AhR+/- male and female mice were time mated, and treated dams were dosed with 5 microg TCDD/kg body weight on day 13 of gestation. When offspring reached adulthood, male and female AhR+/+, AhR+/- and AhR-/- mice from TCDD-exposed and unexposed litters were tested on the eight-arm RAM. After testing, we examined hippocampal morphology as visualized by the Timm's silver sulfide stain. TCDD-exposed female AhR+/- mice made more errors than their respective controls on the RAM and exhibited a decrease in the size of the intra- and infrapyramidal mossy fiber (IIP-MF) field of the hippocampus. None of the other TCDD-exposed groups differed from their respective control groups with regard to maze performance or hippocampal morphology. The reduction of IIP-MF field indicates a possible morphological basis for the learning deficit that was observed in the female AhR+/- mice. It is hypothesized that the effect of TCDD exposure is AhR dependent and that TCDD may alter GABAergic activity in the hippocampus of female mice during development.

  3. Network analysis of microRNAs, transcription factors, target genes and host genes in human anaplastic astrocytoma

    PubMed Central

    XUE, LUCHEN; XU, ZHIWEN; WANG, KUNHAO; WANG, NING; ZHANG, XIAOXU; WANG, SHANG

    2016-01-01

    Numerous studies have investigated the roles played by various genes and microRNAs (miRNAs) in neoplasms, including anaplastic astrocytoma (AA). However, the specific regulatory mechanisms involving these genes and miRNAs remain unclear. In the present study, associated biological factors (miRNAs, transcription factors, target genes and host genes) from existing studies of human AA were combined methodically through the interactions between genes and miRNAs, as opposed to studying one or several. Three regulatory networks, including abnormally expressed, related and global networks were constructed with the aim of identifying significant gene and miRNA pathways. Each network is composed of three associations between miRNAs targeted at genes, transcription factors (TFs) regulating miRNAs and miRNAs located on their host genes. Among these, the abnormally expressed network, which involves the pathways of previously identified abnormally expressed genes and miRNAs, partially indicated the regulatory mechanism underlying AA. The network contains numerous abnormal regulation associations when AA emerges. By modifying the abnormally expressed network factors to a normal expression pattern, the faulty regulation may be corrected and tumorigenesis of AA may be prevented. Certain specific pathways are highlighted in AA, for example PTEN which is targeted by miR-21 and miR-106b, regulates miR-25 which in turn targets TP53. PTEN and miR-21 have been observed to form feedback loops. Furthermore, by comparing and analyzing the pathway predecessors and successors of abnormally expressed genes and miRNAs in three networks, similarities and differences of regulatory pathways may be identified and proposed. In summary, the present study aids in elucidating the occurrence, mechanism, prevention and treatment of AA. These results may aid further investigation into therapeutic approaches for this disease. PMID:27347075

  4. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    PubMed Central

    Park, Yoon-Dong; Sun, Wei; Salas, Antonio; Antia, Avan; Carvajal, Cindy; Wang, Amy; Xu, Xin; Meng, Zhaojin; Zhou, Ming; Tawa, Gregory J.; Dehdashti, Jean; Zheng, Wei; Henderson, Christina M.; Zelazny, Adrian M.

    2016-01-01

    ABSTRACT Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. PMID:27486194

  5. RNA-guided genome editing for target gene mutations in wheat.

    PubMed

    Upadhyay, Santosh Kumar; Kumar, Jitesh; Alok, Anshu; Tuli, Rakesh

    2013-12-09

    The clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system has been used as an efficient tool for genome editing. We report the application of CRISPR-Cas-mediated genome editing to wheat (Triticum aestivum), the most important food crop plant with a very large and complex genome. The mutations were targeted in the inositol oxygenase (inox) and phytoene desaturase (pds) genes using cell suspension culture of wheat and in the pds gene in leaves of Nicotiana benthamiana. The expression of chimeric guide RNAs (cgRNA) targeting single and multiple sites resulted in indel mutations in all the tested samples. The expression of Cas9 or sgRNA alone did not cause any mutation. The expression of duplex cgRNA with Cas9 targeting two sites in the same gene resulted in deletion of DNA fragment between the targeted sequences. Multiplexing the cgRNA could target two genes at one time. Target specificity analysis of cgRNA showed that mismatches at the 3' end of the target site abolished the cleavage activity completely. The mismatches at the 5' end reduced cleavage, suggesting that the off target effects can be abolished in vivo by selecting target sites with unique sequences at 3' end. This approach provides a powerful method for genome engineering in plants.

  6. Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans.

    PubMed

    Katic, Iskra; Großhans, Helge

    2013-11-01

    We have achieved targeted heritable genome modification in Caenorhabditis elegans by injecting mRNA of the nuclease Cas9 and Cas9 guide RNAs. This system rapidly creates precise genomic changes, including knockouts and transgene-instructed gene conversion.

  7. Two Maize Genes Are Each Targeted Predominantly by Distinct Classes of Mu Elements

    PubMed Central

    Hardeman, K. J.; Chandler, V. L.

    1993-01-01

    The Mutator transposable element system of maize has been used to isolate mutations at many different genes. Six different classes of Mu transposable elements have been identified. An important question is whether particular classes of Mu elements insert into different genes at equivalent frequencies. To begin to address this question, we used a small number of closely related Mutator plants to generate multiple independent mutations at two different genes. The overall mutation frequency was similar for the two genes. We then determined what types of Mu elements inserted into the genes. We found that each of the genes was preferentially targeted by a different class of Mu element, even when the two genes were mutated in the same plant. Possible explanations for these findings are discussed. These results have important implications for cloning Mu-tagged genes as other genes may also be resistant or susceptible to the insertion of particular classes of Mu elements. PMID:8307329

  8. Phenotype refinement strengthens the association of AHR and CYP1A1 genotype with caffeine consumption.

    PubMed

    McMahon, George; Taylor, Amy E; Davey Smith, George; Munafò, Marcus R

    2014-01-01

    Two genetic loci, one in the cytochrome P450 1A1 (CYP1A1) and 1A2 (CYP1A2) gene region (rs2472297) and one near the aryl-hydrocarbon receptor (AHR) gene (rs6968865), have been associated with habitual caffeine consumption. We sought to establish whether a more refined and comprehensive assessment of caffeine consumption would provide stronger evidence of association, and whether a combined allelic score comprising these two variants would further strengthen the association. We used data from between 4,460 and 7,520 women in the Avon Longitudinal Study of Parents and Children, a longitudinal birth cohort based in the United Kingdom. Self-report data on coffee, tea and cola consumption (including consumption of decaffeinated drinks) were available at multiple time points. Both genotypes were individually associated with total caffeine consumption, and with coffee and tea consumption. There was no association with cola consumption, possibly due to low levels of consumption in this sample. There was also no association with measures of decaffeinated drink consumption, indicating that the observed association is most likely mediated via caffeine. The association was strengthened when a combined allelic score was used, accounting for up to 1.28% of phenotypic variance. This was not associated with potential confounders of observational association. A combined allelic score accounts for sufficient phenotypic variance in caffeine consumption that this may be useful in Mendelian randomization studies. Future studies may therefore be able to use this combined allelic score to explore causal effects of habitual caffeine consumption on health outcomes.

  9. NIH tools facilitate matching cancer drugs with gene targets

    Cancer.gov

    A new study details how a suite of web-based tools provides the research community with greatly improved capacity to compare data derived from large collections of genomic information against thousands of drugs. By comparing drugs and genetic targets, re

  10. Construction of gene-targeting vectors by recombineering.

    PubMed

    Lee, Song-Choon; Wang, Wei; Liu, Pentao

    2009-01-01

    Recombineering is a technology that utilizes the efficient homologous recombination functions encoded by gamma phage to manipulate DNA in Escherichia coli. Construction of knockout vectors has been greatly facilitated by recombineering as it allows one to choose any genomic region to manipulate. We describe here an efficient recombineering-based protocol for making mouse conditional knockout targeting vectors.

  11. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.

    PubMed

    Fang, J; Cai, C; Wang, Q; Lin, P; Zhao, Z; Cheng, F

    2017-03-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products.

  12. Systems Pharmacology‐Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes

    PubMed Central

    Fang, J; Cai, C; Wang, Q; Lin, P

    2017-01-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration‐approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. PMID:28294568

  13. Targeted disruption of exogenous EGFP gene in medaka using zinc-finger nucleases.

    PubMed

    Ansai, Satoshi; Ochiai, Hiroshi; Kanie, Yuta; Kamei, Yasuhiro; Gou, Yuki; Kitano, Takeshi; Yamamoto, Takashi; Kinoshita, Masato

    2012-06-01

    Zinc-finger nucleases (ZFNs) are artificial enzymes that create site-specific double-strand breaks and thereby induce targeted genome editing. Here, we demonstrated successful gene disruption in somatic and germ cells of medaka (Oryzias latipes) using ZFN to target exogenous EGFP genes. Embryos that were injected with an RNA sequence pair coding for ZFNs showed mosaic loss of green fluorescent protein fluorescence in skeletal muscle. A number of mutations that included both deletions and insertions were identified within the ZFN target site in each embryo, whereas no mutations were found at the non-targeted sites. In addition, ZFN-induced mutations were introduced in germ cells and efficiently transmitted to the next generation. The mutation frequency varied (6-100%) in the germ cells from each founder, and a founder carried more than two types of mutation in germ cells. Our results have introduced the possibility of targeted gene disruption and reverse genetics in medaka.

  14. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes.

    PubMed

    McGrath, Patrick T; Xu, Yifan; Ailion, Michael; Garrison, Jennifer L; Butcher, Rebecca A; Bargmann, Cornelia I

    2011-08-17

    Evolution can follow predictable genetic trajectories, indicating that discrete environmental shifts can select for reproducible genetic changes. Conspecific individuals are an important feature of an animal's environment, and a potential source of selective pressures. Here we show that adaptation of two Caenorhabditis species to growth at high density, a feature common to domestic environments, occurs by reproducible genetic changes to pheromone receptor genes. Chemical communication through pheromones that accumulate during high-density growth causes young nematode larvae to enter the long-lived but non-reproductive dauer stage. Two strains of Caenorhabditis elegans grown at high density have independently acquired multigenic resistance to pheromone-induced dauer formation. In each strain, resistance to the pheromone ascaroside C3 results from a deletion that disrupts the adjacent chemoreceptor genes serpentine receptor class g (srg)-36 and -37. Through misexpression experiments, we show that these genes encode redundant G-protein-coupled receptors for ascaroside C3. Multigenic resistance to dauer formation has also arisen in high-density cultures of a different nematode species, Caenorhabditis briggsae, resulting in part from deletion of an srg gene paralogous to srg-36 and srg-37. These results demonstrate rapid remodelling of the chemoreceptor repertoire as an adaptation to specific environments, and indicate that parallel changes to a common genetic substrate can affect life-history traits across species.

  15. Gene targeting in embryonic stem cells, II: conditional technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  16. Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos

    PubMed Central

    Madissoon, Elo; Jouhilahti, Eeva-Mari; Vesterlund, Liselotte; Töhönen, Virpi; Krjutškov, Kaarel; Petropoulous, Sophie; Einarsdottir, Elisabet; Linnarsson, Sten; Lanner, Fredrik; Månsson, Robert; Hovatta, Outi; Bürglin, Thomas R.; Katayama, Shintaro; Kere, Juha

    2016-01-01

    PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes, ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB, NOBOX, TPRX1 and TPRX2, were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1, CPHX2, ARGFX) or repressors (DPRX, DUXA, TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development. PMID:27412763

  17. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    SciTech Connect

    Al-Salman, Fadheela; Plant, Nick

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  18. Conserved Fungal Genes as Potential Targets for Broad-Spectrum Antifungal Drug Discovery†

    PubMed Central

    Liu, Mengping; Healy, Matthew D.; Dougherty, Brian A.; Esposito, Kim M.; Maurice, Trina C.; Mazzucco, Charles E.; Bruccoleri, Robert E.; Davison, Daniel B.; Frosco, Marybeth; Barrett, John F.; Wang, Ying-Kai

    2006-01-01

    The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors. PMID:16607011

  19. Targeted gene deletion of miRNAs in mice by TALEN system.

    PubMed

    Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi

    2013-01-01

    Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  20. Tissue specificity of aryl hydrocarbon receptor (AhR) mediated responses and relative sensitivity of white sturgeon (Acipenser transmontanus) to an AhR agonist.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Tendler, Brett J; Giesy, John P; Hecker, Markus

    2012-06-15

    Sturgeons are endangered in some parts of the world. Due to their benthic nature and longevity sturgeon are at greater risk of exposure to bioaccumulative contaminants such as dioxin-like compounds that are associated with sediments. Despite their endangered status, little research has been conducted to characterize the relative responsiveness of sturgeon to dioxin-like compounds. In an attempt to study the biological effects and possible associated risks of exposure to dioxin-like compounds in sturgeon, the molecular and biochemical responses of white sturgeon (Acipenser transmontanus) to a model aryl hydrocarbon receptor (AhR) agonist, β-naphthoflavone (βNF) were investigated. White sturgeon were injected intraperitoneally with one of three doses of βNF (0, 50, or 500mg/kg, bw). Rainbow trout (Oncorhynchus mykiss) were used as a reference species since their responses have been well characterized in the past. Three days following injection with βNF, fish were euthanized and livers, gills, and intestines collected for biochemical and molecular analyses. White sturgeon exposed to βNF had significantly greater ethoxyresorufin O-deethylase (EROD) activity in liver (up to 37-fold), gill (up to 41-fold), and intestine (up to 36-fold) than did unexposed controls. Rainbow trout injected with βNF exhibited EROD activity that was significantly greater in liver (88-fold), than that of controls, but was undetectable in gills or intestine. Abundance of CYP1A transcript displayed a comparable pattern of tissue-specific induction with intestine (up to 189-fold), gills (up to 53-fold), and liver (up to 21-fold). Methoxyresorufin O-deethylase (MROD) and pentoxyresorufin O-deethylase (PROD) activities were undetectable in unexposed white sturgeon tissues while exposed tissues displayed MROD activity that was only moderately greater than the activity that could be detected. Differential inducibility among liver, gill, and intestine following exposure to an AhR agonist is

  1. Targetfinder.org: a resource for systematic discovery of transcription factor target genes

    PubMed Central

    Kiełbasa, Szymon M.; Blüthgen, Nils; Fähling, Michael

    2010-01-01

    Targetfinder.org (http://targetfinder.org/) provides a web-based resource for finding genes that show a similar expression pattern to a group of user-selected genes. It is based on a large-scale gene expression compendium (>1200 experiments, >13 000 genes). The primary application of Targetfinder.org is to expand a list of known transcription factor targets by new candidate target genes. The user submits a group of genes (the ‘seed’), and as a result the web site provides a list of other genes ranked by similarity of their expression to the expression of the seed genes. Additionally, the web site provides information on a recovery/cross-validation test to check for consistency of the provided seed and the quality of the ranking. Furthermore, the web site allows to analyse affinities of a selected transcription factor to the promoter regions of the top-ranked genes in order to select the best new candidate target genes for further experimental analysis. PMID:20460454

  2. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  3. Cancer-targeted BikDD gene therapy elicits protective antitumor immunity against lung cancer.

    PubMed

    Sher, Yuh-Pyng; Liu, Shih-Jen; Chang, Chun-Mien; Lien, Shu-Pei; Chen, Chien-Hua; Han, Zhenbo; Li, Long-Yuan; Chen, Jin-Shing; Wu, Cheng-Wen; Hung, Mien-Chie

    2011-04-01

    Targeted cancer-specific gene therapy is a promising strategy for treating metastatic lung cancer, which is a leading cause of lung cancer-related deaths. Previously, we developed a cancer-targeted gene therapy expression system with high tumor specificity and strong activity that selectively induced lung cancer cell killing without affecting normal cells in immunocompromised mice. Here, we found this cancer-targeted gene therapy, SV-BikDD, composed of the survivin promoter in the VP16-GAL4-WPRE integrated systemic amplifier system to drive the apoptotic gene BikDD, not only caused cytotoxic effects in cancer cells but also elicited a cancer-specific cytotoxic T lymphocyte response to synergistically increase the therapeutic effect and further develop an effective systemic antitumoral immunity against rechallenges of tumorigenic dose of parental tumor cells inoculated at distant sites in immunocompetent mice. In addition, this cancer-targeted gene therapy does not elicit an immune response against normal tissues, but CMV-BikDD treatment does. The therapeutic vector could also induce proinflammatory cytokines to activate innate immunity and provide some benefits in antitumor gene therapy. Thus, this study provides a promising strategy with benefit of antitumoral immune response worthy of further development in clinical trials for treating lung cancer via cancer-targeted gene therapy.

  4. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.

    PubMed

    Berndt, Anthony J E; Tang, Jonathan C Y; Ridyard, Marc S; Lian, Tianshun; Keatings, Kathleen; Allan, Douglas W

    2015-12-01

    Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly

  5. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons

    PubMed Central

    Ridyard, Marc S.; Lian, Tianshun; Keatings, Kathleen; Allan, Douglas W.

    2015-01-01

    Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE) that binds BMP-activated pMad, and a homeodomain-response element (HD-RE) that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp), as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP signaling directly

  6. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi Tomita, Shuhei; Ohsaki, Yusuke; Haketa, Keiichi; Tooi, Osamu; Santo, Noriaki; Tohkin, Masahiro; Furukawa, Yuji; Gonzalez, Frank J.; Komai, Michio

    2008-05-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day{sup -1}) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day{sup -1}. DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression.

  7. Expression of RNA-Interference/Antisense Transgenes by the Cognate Promoters of Target Genes Is a Better Gene-Silencing Strategy to Study Gene Functions in Rice

    PubMed Central

    Zhou, Hai; Li, Feng; Yang, Jiawei; Hong, Laifa; Fu, Xiao; Li, Zhibin; Liu, Zhenlan; Li, Jianming; Zhuang, Chuxiong

    2011-01-01

    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice. PMID:21408609

  8. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    PubMed

    Li, Jing; Jiang, Dagang; Zhou, Hai; Li, Feng; Yang, Jiawei; Hong, Laifa; Fu, Xiao; Li, Zhibin; Liu, Zhenlan; Li, Jianming; Zhuang, Chuxiong

    2011-03-03

    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  9. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria.

    PubMed

    Alexander, Johannes; Bollmann, Anna; Seitz, Wolfram; Schwartz, Thomas

    2015-04-15

    The dissemination of medically relevant antibiotic resistance genes (ARGs) (blaVIM-1, vanA, ampC, ermB, and mecA) and opportunistic bacteria (Enterococcus faecium/faecalis, Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus aureus, and CNS) was determined in different anthropogenically influenced aquatic habitats in a selected region of Germany. Over a period of two years, four differently sized wastewater treatment plants (WWTPs) with and without clinical influence, three surface waters, four rain overflow basins, and three groundwater sites were analyzed by quantitative Polymerase Chain Reaction (qPCR). Results were calculated in cell equivalents per 100 ng of total DNA extracted from water samples and per 100 mL sample volume, which seems to underestimate the abundance of antibiotic resistance and opportunistic bacteria. High abundances of opportunistic bacteria and ARG were quantified in clinical wastewaters and influents of the adjacent WWTP. The removal capacities of WWTP were up to 99% for some, but not all investigated bacteria. The abundances of most ARG targets were found to be increased in the bacterial population after conventional wastewater treatment. As a consequence, downstream surface water and also some groundwater compartments displayed high abundances of all four ARGs. It became obvious that the dynamics of the ARG differed from the fate of the opportunistic bacteria. This underlines the necessity of an advanced microbial characterization of anthropogenically influenced environments.

  10. Gene targeting for chromosome engineering applications in eukaryotic cells.

    PubMed

    Lyznik, Leszek A; Dress, Virginia

    2008-01-01

    As biotechnology advances, there is an increasing need to develop new technologies that may assist in more precise genetic engineering manipulations. Whether a placement of single genes in the proper chromosomal context, stacking a number of genes in the same chromosomal locus, rearrangement of existing chromosomal elements, or a global reconfiguration of the chromosomal structures is contemplated, the new genetic tools being developed provide technical capabilities to achieve goals that were only theoretical not long ago. We use examples of recent patent literature (issued patents and published patent applications) to illustrate trends in this fast advancing area of genetic technology. If one wants to engage in the development and utilization of such technologies, the complexity of genetic manipulations requires a careful evaluation and navigation across the legal/patent landscape of chromosomal modification/remodeling. While this review is mostly focused on the basic laboratory tools of chromosomal manipulations, their specific applications for biomedical, pharmaceutical, or agricultural purposes may deserve an additional compilation.

  11. Gene therapy targets in Heart Failure: the Path to translation

    PubMed Central

    Raake, PWJ; Tscheschner, H; Reinkober, J; Ritterhoff, J; Katus, HA; Koch, WJ; Most, P

    2014-01-01

    Heart failure (HF) is the common end point of cardiac diseases. Despite the optimization of therapeutic strategies and the consequent overall reduction in HF-related mortality, the key underlying intracellular signal transduction abnormalities have not been addressed directly. In this regard, the gaps in modern HF therapy include derangement of β-adrenergic receptor (β-AR) signaling, Ca2+ disbalances, cardiac myocyte death, diastolic dysfunction, and monogenetic cardiomyopathies. In this review we discuss the potential of gene therapy to fill these gaps and rectify abnormalities in intracellular signaling. We also examine current vector technology and currently available vector-delivery strategies, and related to the transfer of successful preclinical gene therapy approaches to HF treatment in the clinic, as well as impending strategies aimed at overcoming these limitations. PMID:21866097

  12. Analysis of Gene Targeting & Nonhomologous End-joining. Final Report

    SciTech Connect

    Haber, J. E.

    2002-11-30

    Overall, we identified a number of new proteins that participate in nonhomologous end-joining and also in telomere addition to the ends of broken chromosomes. We showed that NHEJ is severely reduced in cells expressing both yeast mating-type genes and then went on to identify the NEJ1 gene that was under this control. We showed the epistasis relations among a set of mutations that impair telomere addition and we showed that there are in fact two pathways to repair broken chromosomes in the absence of telomerase. We characterized the DNA damage checkpoint pathway in response to a single broken chromosome and characterized especially the adaptation of cells arrested by an unrepaired DSB. We demonstrated that the DNA damage response is nuclear-limited. We showed adaptation defects for Tid1and Srs2 proteins and showed that Srs2 was also recovery-defective, even when DNA was repaired.

  13. MicroRNA-122 targets genes related to liver metabolism in chickens.

    PubMed

    Wang, Xingguo; Shao, Fang; Yu, Jianfeng; Jiang, Honglin; Gong, Daoqing; Gu, Zhiliang

    2015-06-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting mRNAs. MicroRNA-122 (miR-122) has important functions in mammalian and fish livers, but its functions in the poultry liver are largely unknown. In this study, we determined the expression patterns of miR-122 in the chicken and identified its target genes in the chicken liver. We found that chicken miR-122 was highly expressed in the liver and that its expression in the liver was up-regulated during the early posthatch life. By bioinformatics and reporter gene analyses, we identified PKM2, TGFB3, FABP5 and ARCN1 as miR-122 target genes in the chicken liver. miR-122 knockdown in primary chicken hepatocytes and expression analysis of miR-122 and predicted target mRNAs in the chicken liver suggested that the expression of PKM2 and FABP5 in the chicken liver is regulated by miR-122. Knockdown of miR-122 affected the expression of 123 genes in cultured chicken hepatocytes. Among these genes, the largest cluster, which consisted of 21 genes, was involved in liver metabolism. These findings suggest that miR-122 plays a role in liver metabolism in the chicken by directly or indirectly regulating the expression of genes involved in liver metabolism.

  14. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes

    PubMed Central

    Yao, Lijing; Berman, Benjamin P.; Farnham, Peggy J.

    2015-01-01

    Abstract Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer–target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers. PMID:26446758

  15. RYP1 gene as a target for molecular diagnosis of histoplasmosis.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Guedes, Glaucia Morgana de Melo; Riello, Giovanna Barbosa; Ribeiro, Joyce Fonteles; Alencar, Lucas Pereira; Bandeira, Silviane Praciano; Castelo-Branco, Débora Souza Collares Maia; Oliveira, Jonathas Sales; Freire, Janaína Maria Maia; Mesquita, Jacó Ricarte Lima de; Camargo, Zoilo Pires de; Cordeiro, Rossana de Aguiar; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2016-11-01

    This study analyzed the RYP1 gene as a target for the molecular diagnosis of histoplasmosis. This assay detected fungal DNA in 13/13 blood samples from HIV/AIDS-patients with histoplasmosis. Therefore, the detection of RYP1 gene in whole blood sample is a quick and sensitive test to diagnose histoplasmosis.

  16. Automated target preparation for microarray-based gene expression analysis.

    PubMed

    Raymond, Frédéric; Metairon, Sylviane; Borner, Roland; Hofmann, Markus; Kussmann, Martin

    2006-09-15

    DNA microarrays have rapidly evolved toward a platform for massively paralleled gene expression analysis. Despite its widespread use, the technology has been criticized to be vulnerable to technical variability. Addressing this issue, recent comparative, interplatform, and interlaboratory studies have revealed that, given defined procedures for "wet lab" experiments and data processing, a satisfactory reproducibility and little experimental variability can be achieved. In view of these advances in standardization, the requirement for uniform sample preparation becomes evident, especially if a microarray platform is used as a facility, i.e., by different users working in the laboratory. While one option to reduce technical variability is to dedicate one laboratory technician to all microarray studies, we have decided to automate the entire RNA sample preparation implementing a liquid handling system coupled to a thermocycler and a microtiter plate reader. Indeed, automated RNA sample preparation prior to chip analysis enables (1) the reduction of experimentally caused result variability, (2) the separation of (important) biological variability from (undesired) experimental variation, and (3) interstudy comparison of gene expression results. Our robotic platform can process up to 24 samples in parallel, using an automated sample preparation method that produces high-quality biotin-labeled cRNA ready to be hybridized on Affymetrix GeneChips. The results show that the technical interexperiment variation is less pronounced than with manually prepared samples. Moreover, experiments using the same starting material showed that the automated process yields a good reproducibility between samples.

  17. Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs

    PubMed Central

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J. Kim; Hayward, Jessica J.; Cohen, Paula E.; Greally, John M.; Wang, Jun; Bustamante, Carlos D.; Boyko, Adam R.

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred. PMID:24348265

  18. Rebalancing gene haploinsufficiency in vivo by targeting chromatin

    PubMed Central

    Fulcoli, Filomena Gabriella; Franzese, Monica; Liu, Xiangyang; Zhang, Zhen; Angelini, Claudia; Baldini, Antonio

    2016-01-01

    Congenital heart disease (CHD) affects eight out of 1,000 live births and is a major social and health-care burden. A common genetic cause of CHD is the 22q11.2 deletion, which is the basis of the homonymous deletion syndrome (22q11.2DS), also known as DiGeorge syndrome. Most of its clinical spectrum is caused by haploinsufficiency of Tbx1, a gene encoding a T-box transcription factor. Here we show that Tbx1 positively regulates monomethylation of histone 3 lysine 4 (H3K4me1) through interaction with and recruitment of histone methyltransferases. Treatment of cells with tranylcypromine (TCP), an inhibitor of histone demethylases, rebalances the loss of H3K4me1 and rescues the expression of approximately one-third of the genes dysregulated by Tbx1 suppression. In Tbx1 mouse mutants, TCP treatment ameliorates substantially the cardiovascular phenotype. These data suggest that epigenetic drugs may represent a potential therapeutic strategy for rescue of gene haploinsufficiency phenotypes, including structural defects. PMID:27256596

  19. Genetic recombination is targeted towards gene promoter regions in dogs.

    PubMed

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  20. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.

    PubMed

    Zhou, Xiaoqing; Xin, Jige; Fan, Nana; Zou, Qingjian; Huang, Jiao; Ouyang, Zhen; Zhao, Yu; Zhao, Bentian; Liu, Zhaoming; Lai, Sisi; Yi, Xiaoling; Guo, Lin; Esteban, Miguel A; Zeng, Yangzhi; Yang, Huaqiang; Lai, Liangxue

    2015-03-01

    The domestic pig has been widely used as an important large animal model. Precise and efficient genetic modification in pig provides a great promise in biomedical research. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been successfully used to produce many gene-targeted animals. However, these animals have been generated by co-injection of Cas9 mRNA and single-guide RNA (sgRNA) into one-cell stage embryos, which mostly resulted in mosaicism of the modification. One or two rounds of further breeding should be performed to obtain homozygotes with identical genotype and phenotype. To address this issue, gene-targeted somatic cells can be used as donor for somatic cell nuclear transfer (SCNT) to produce gene-targeted animals with single and identical mutations. In this study, we applied Cas9/sgRNAs to effectively direct gene editing in porcine fetal fibroblasts and then mutant cell colonies were used as donor to generate homozygous gene-targeted pigs through single round of SCNT. As a result, we successfully obtained 15 tyrosinase (TYR) biallelic mutant pigs and 20 PARK2 and PINK1 double-gene knockout (KO) pigs. They were all homozygous and no off-target mutagenesis was detected by comprehensive analysis. TYR (-/-) pigs showed typical albinism and the expression of parkin and PINK1 were depleted in PARK2 (-/-)/PINK1 (-/-) pigs. The results demonstrated that single- or double-gene targeted pigs can be effectively achieved by using the CRISPR/Cas9 system combined with SCNT without mosaic mutation and detectable off-target effects. This gene-editing system provides an efficient, rapid, and less costly manner to generate genetically modified pigs or other large animals.

  1. Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae.

    PubMed

    Dilova, Ivanka; Powers, Ted

    2006-01-01

    Mitochondrial dysfunction results in the expression, via the retrograde response pathway, of a concise set of genes (RTG target genes) that encode enzymes involved in the anapleurotic production of alpha-ketoglutarate. Inhibiting the rapamycin-sensitive TOR kinases, important regulators of cell growth, similarly results in RTG target gene expression under rich nutrient conditions. Retrograde and TOR-dependent regulation of RTG target genes requires a number of shared components, including the heterodimeric bZip/HLH transcription factors Rtg1p and Rtg3p, as well as their upstream regulator Mks1p. Two unresolved discrepancies exist with regard to the mechanism of RTG target gene control: (1) deletion of MKS1 results in constitutive expression of RTG target genes in most but not all strain backgrounds; and (2) RTG target gene expression has been correlated with both decreased as well as increased Rtg3p phosphorylation. Here we have addressed both of these issues. First, we demonstrate that the mks1 deletion strain used in a previous study by Shamji and coworkers contains a nonsense mutation within codon Ser 231 in RTG3 that likely accounts for the inactivity of the RTG system in this strain. Second, we confirm results by Butow and coworkers that Rtg3p is dephosphorylated as a primary response to induction of the pathway. Hyper-phosphorylation of this protein appears to be a secondary consequence of rapamycin treatment and is influenced both by strain background as well as by specific supplied nutrients. That hyper-phosphorylation of Rtg3p is also caused by heat shock suggests that it may reflect a more generalized response to cell stress. Together these results contribute toward a uniform view of RTG target gene regulation.

  2. Transgenic gene knock-outs: functional genomics and therapeutic target selection.

    PubMed

    Harris, S; Foord, S M

    2000-11-01

    The completion of the first draft of the human genome presents both a tremendous opportunity and enormous challenge to the pharmaceutical industry since the whole community, with few exceptions, will soon have access to the same pool of candidate gene sequences from which to select future therapeutic targets. The commercial imperative to select and pursue therapeutically relevant genes from within the overall content of the genome will be particularly intense for those gene families that currently represent the chemically tractable or 'drugable' gene targets. As a consequence the emphasis within exploratory research has shifted towards the evaluation and adoption of technology platforms that can add additional value to the gene selection process, either through functional studies or direct/indirect measures of disease alignment e.g., genetics, differential gene expression, proteomics, tissue distribution, comparative species data etc. The selection of biological targets for the development of potential new medicines relies, in part, on the quality of the in vivo biological data that correlates a particular molecular target with the underlying pathophysiology of a disease. Within the pharmaceutical industry, studies employing transgenic animals and, in particular, animals with specific gene deletions are playing an increasingly important role in the therapeutic target gene selection, drug candidate selection and product development phases of the overall drug discovery process. The potential of phenotypic information from gene knock-outs to contribute to a high-throughput target selection/validation strategy has hitherto been limited by the resources required to rapidly generate and characterise a large number of knock-out transgenics in a timely fashion. The offerings of several companies that provide an opportunity to overcome these hurdles, albeit at a cost, are assessed with respect to the strategic business needs of the pharmaceutical industry.

  3. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    SciTech Connect

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  4. Simple and Efficient Targeting of Multiple Genes Through CRISPR-Cas9 in Physcomitrella patens

    PubMed Central

    Lopez-Obando, Mauricio; Hoffmann, Beate; Géry, Carine; Guyon-Debast, Anouchka; Téoulé, Evelyne; Rameau, Catherine; Bonhomme, Sandrine; Nogué, Fabien

    2016-01-01

    Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants. PMID:27613750

  5. Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors.

    PubMed

    Chang, En-Ling; Ting, Chien-Yu; Hsu, Po-Hong; Lin, Yu-Chun; Liao, En-Chi; Huang, Chiung-Yin; Chang, Yuan-Chih; Chan, Hong-Lin; Chiang, Chi-Shiun; Liu, Hao-Li; Wei, Kuo-Chen; Fan, Ching-Hsiang; Yeh, Chih-Kuang

    2017-04-10

    The major challenges in gene therapy for brain cancer are poor transgene expression due to the blood-brain barrier (BBB) and neurologic damage caused by conventional intracerebral injection. Non-viral gene delivery using ultrasound-targeted microbubble (MB) oscillation via the systematic transvascular route is attractive, but there is currently no high-yielding and targeted gene expression method. In this study, we developed a non-viral and angiogenesis-targeting gene delivery approach for efficient brain tumor gene therapy without brain damage. We developed a VEGFR2-targeted and cationic microbubble (VCMB) gene vector for use with transcranial focused ultrasound (FUS) exposure to allow transient gene delivery. The system was tested in a brain tumor model using the firefly luciferase gene and herpes simplex virus type 1 thymidine kinase/ganciclovir (pHSV-TK/GCV) with VCMBs under FUS exposure for transgene expression and anti-tumor effect. In vitro data showed that VCMBs have a high DNA-loading efficiency and high affinity for cancer cells. In vivo data confirmed that this technique enhanced gene delivery into tumor tissues without affecting normal brain tissues. The VCMB group resulted in higher luciferase expression (3.8 fold) relative to the CMB group (1.9 fold), and the direct injection group. The tumor volume on day 25 was significantly smaller in rats treated with the pHSV-TK/GCV system using VCMBs under FUS (9.7±5.2mm(3)) than in the direct injection group (40.1±4.3mm(3)). We demonstrated the successful use of DNA-loaded VCMBs and FUS for non-viral, non-invasive and targeted gene delivery to brain tumors.

  6. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases.

    PubMed

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Cheng, Shin-Nan; Lee, Hsiu-Fen; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2015-12-25

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  7. Manipulating the in vivo immune response by targeted gene knockdown.

    PubMed

    Lieberman, Judy

    2015-08-01

    Aptamers, nucleic acids selected for high affinity binding to proteins, can be used to activate or antagonize immune mediators or receptors in a location and cell-type specific manner and to enhance antigen presentation. They can also be linked to other molecules (other aptamers, siRNAs or miRNAs, proteins, toxins) to produce multifunctional compounds for targeted immune modulation in vivo. Aptamer-siRNA chimeras (AsiCs) that induce efficient cell-specific knockdown in immune cells in vitro and in vivo can be used as an immunological research tool or potentially as an immunomodulating therapeutic.

  8. Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms

    PubMed Central

    Maronova, Monika; Kalyna, Maria

    2016-01-01

    The moss Physcomitrella patens possesses highly efficient homologous recombination allowing targeted gene manipulations and displays many features of the early land plants including high tolerance to abiotic stresses. It is therefore an invaluable model organism for studies of gene functions and comparative studies of evolution of stress responses in plants. Here, we describe a method for generating targeted gene knockout lines in P. patens using a polyethylene glycol-mediated transformation of protoplasts including basic in vitro growth, propagation, and maintenance techniques. PMID:26867627

  9. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins

    PubMed Central

    Kfoury, N.; Kapatos, G.

    2009-01-01

    CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292

  10. SLC7A5 act as a potential leukemic transformation target gene in myelodysplastic syndrome

    PubMed Central

    Ma, Yan; Song, Jing; Chen, Bobin; Xu, Xiaoping; Lin, Guowei

    2016-01-01

    Objective Myelodysplastic syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell disorders characterized by increased risk of leukemic transformation. This study identifies microRNAs(miRNA) and miRNA targets that might represent leukemic transformation markers for MDS. Methods Based on our previously established nested case-control study cohort of MDS patients, we chose paired patients to undergo Angilent 8 × 15K human miRNA microarrays. Target prediction analysis was administrated using targetscan 5.1 software. We further investigated the function of target gene in MDS cell line using siRNA method, including cell proliferation, cell apoptosis, cell cycle and electron microscope. Results Finally we screened a subset of 7 miRNAs to be significantly differentially expressed between the case (at the end of follow up with leukemic transformation) and control group (at the end of follow up without leukemic transformation). Target prediction analysis revealed SLC7A5 was the common target gene of these 7 miRNAs. Further study on the function of SLC7A5 gene in SKM-1 cell line showed that downregulation of SLC7A5 inhibited SKM-1 cells proliferation, increased apoptosis and caused cell cycle arrest in the G0/G1 stage. Conclusion Our data indicate that SLC7A5 gene may act as a potential leukemic transformation target gene in MDS. PMID:26657287

  11. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells

    PubMed Central

    Byrne, Susan M.; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M.

    2015-01-01

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient ‘knock-in’ targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. PMID:25414332

  12. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection

    PubMed Central

    Cheng, Lin; Yu, Honghua; Yan, Naihong; Lai, Kunbei; Xiang, Mengqing

    2017-01-01

    Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions. PMID:28289375

  13. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  14. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9.

    PubMed

    Chakrapani, Vemulawada; Patra, Swagat Kumar; Panda, Rudra Prasanna; Rasal, Kiran Dashrath; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2016-08-01

    Recent advances in gene editing techniques have not been exploited in farmed fishes. We established a gene targeting technique, using the CRISPR/Cas9 system in Labeo rohita, a farmed carp (known as rohu). We demonstrated that donor DNA was integrated via homologous recombination (HR) at the site of targeted double-stranded nicks created by CRISPR/Cas9 nuclease. This resulted in the successful disruption of rohu Toll-like receptor 22 (TLR22) gene, involved in innate immunity and exclusively present in teleost fishes and amphibians. The null mutant, thus, generated lacked TLR22 mRNA expression. Altogether, this is the first evidence that the CRISPR/Cas9 system is a highly efficient tool for targeted gene disruption via HR in teleosts for generating model large-bodied farmed fishes.

  15. Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called “target mimicry” was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)—miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes. Results In this study, genome-wide computational prediction of endogenous miRNA mimics was performed in Arabidopsis and rice, and dozens of target mimics were identified. In contrast to a recent report, the densities of target mimic sites were found to be much higher within the untranslated regions (UTRs) when compared to those within the coding sequences (CDSs) in both plants. Some novel sequence characteristics were observed for the miRNAs that were potentially regulated by the target mimics. GO (Gene Ontology) term enrichment analysis revealed some functional insights into the predicted mimics. After degradome sequencing data-based identification of miRNA targets, the regulatory networks constituted by target mimics, miRNAs and their downstream targets were constructed, and some intriguing subnetworks were further exploited. Conclusions These results together suggest that target mimicry may be widely implicated in regulating miRNA activities in planta, and we hope this study could expand the current understanding of miRNA-involved regulatory networks. PMID:22613869

  16. Resveratrol and its methoxy derivatives modulate the expression of estrogen metabolism enzymes in breast epithelial cells by AhR down-regulation.

    PubMed

    Licznerska, Barbara; Szaefer, Hanna; Wierzchowski, Marcin; Sobierajska, Hanna; Baer-Dubowska, Wanda

    2017-01-01

    Our earlier studies have shown that compared to resveratrol, its analogs with ortho-methoxy substituents exert stronger antiproliferative and proapoptotic activity. Since estrogens are considered the major risk factors of breast carcinogenesis, the aim of this study was to evaluate the effect of 3,4,2'-trimethoxy (3MS), 3,4,2',4'-tetramethoxy (4MS), and 3,4,2',4',6'-pentamethoxy (5MS) trans-stilbenes on the constitutive expression of the enzymes involved in estrogen metabolism, as well as receptors: AhR and HER2 in breast epithelial cell line MCF10A. The results showed different effect of resveratrol and its methoxy derivatives on the expression of genes encoding key enzymes of estrogen synthesis and catabolism. Resveratrol at the doses of 1 and 5 µmol/L increased the level of CYP19 transcript and protein level, while 5MS reduced mRNA transcript of both CYP19 and STS genes. Resveratrol and all its derivatives reduced also SULT1E1 mRNA transcript level. The reduced expression of AhR, CYP1A1, and 1B1 was also found as a result of treatment with these compounds. The most significant changes were found in the case of AhR. The most potent inhibitor of CYP1A1 and 1B1 genes expression was 5MS, which reduced the levels of mRNA transcript and protein of both CYPs from 31 to 89% of the initial levels. These results indicate that methoxy derivatives of resveratrol might be efficient modulators of estrogen metabolism. Moreover, the number of methoxy groups introduced to stilbene structure may play a certain role in this effect.

  17. Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum.

    PubMed

    Kawahigashi, Hiroyuki; Kasuga, Shigemitsu; Ando, Tsuyu; Kanamori, Hiroyuki; Wu, Jianzhong; Yonemaru, Jun-ichi; Sazuka, Takashi; Matsumoto, Takashi

    2011-06-01

    Target leaf spot is one of the major sorghum diseases in southern Japan and caused by a necrotrophic fungus, Bipolaris sorghicola. Sorghum resistance to target leaf spot is controlled by a single recessive gene (ds1). A high-density genetic map of the ds1 locus was constructed with simple sequence repeat markers using progeny from crosses between a sensitive variety, bmr-6, and a resistant one, SIL-05, which allowed the ds1 gene to be genetically located within a 26-kb region on the short arm of sorghum chromosome 5. The sorghum genome annotation database for BTx623, for which the whole genome sequence was recently published, indicated a candidate gene from the Leucine-Rich Repeat Receptor Kinase family in this region. The candidate protein kinase gene was expressed in susceptible plants but was not expressed or was severely reduced in resistant plants. The expression patterns of ds1 gene and the phenotype of target leaf spot resistance were clearly correlated. Genomic sequences of this region in parental varieties showed a deletion in the promoter region of SIL-05 that could cause reduction of gene expression. We also found two ds1 alleles for resistant phenotypes with a stop codon in the coding region. The results shown here strongly suggest that the loss of function or suppression of the ds1 protein kinase gene leads to resistance to target leaf spot in sorghum.

  18. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens

    PubMed Central

    2012-01-01

    Background Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. Results Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. Conclusion This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene delivery in pancreatic tumors

  19. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    PubMed Central

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Cheng, Shin-Nan; Lee, Hsiu-Fen; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2015-01-01

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases. PMID:26712747

  20. Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence

    PubMed Central

    Gavrilov, Kseniya; Seo, Young-Eun; Tietjen, Gregory T.; Cui, Jiajia; Cheng, Christopher J.; Saltzman, W. Mark

    2015-01-01

    Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities. PMID:26627251

  1. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases.

    PubMed

    Kasparek, Petr; Krausova, Michaela; Haneckova, Radka; Kriz, Vitezslav; Zbodakova, Olga; Korinek, Vladimir; Sedlacek, Radislav

    2014-11-03

    Gene targeting in mice mainly employs homologous recombination (HR) in embryonic stem (ES) cells. Although it is a standard way for production of genetically modified mice, the procedure is laborious and time-consuming. This study describes targeting of the mouse Rosa26 locus by transcription activator-like effector nucleases (TALENs). We employed TALEN-assisted HR in zygotes to introduce constructs encoding TurboRFP and TagBFP fluorescent proteins into the first intron of the Rosa26 gene, and in this way generated two transgenic mice. We also demonstrated that these Rosa26-specific TALENs exhibit high targeting efficiency superior to that of zinc-finger nucleases (ZFNs) specific for the same targeting sequence. Moreover, we devised a reporter assay to assess TALENs activity and specificity to improve the quality of TALEN-assisted targeting.

  2. Multiple-to-Multiple Relationships between MicroRNAs and Target Genes in Gastric Cancer

    PubMed Central

    Hashimoto, Yutaka; Akiyama, Yoshimitsu; Yuasa, Yasuhito

    2013-01-01

    MicroRNAs (miRNAs) act as transcriptional regulators and play pivotal roles in carcinogenesis. According to miRNA target databases, one miRNA may regulate many genes as its targets, while one gene may be targeted by many miRNAs. These findings indicate that relationships between miRNAs and their targets may not be one-to-one. However, many reports have described only a one-to-one, one-to-multiple or multiple-to-one relationship between miRNA and its target gene in human cancers. Thus, it is necessary to determine whether or not a combination of some miRNAs would regulate multiple targets and be involved in carcinogenesis. To find some groups of miRNAs that may synergistically regulate their targets in human gastric cancer (GC), we re-analyzed our previous miRNA expression array data and found that 50 miRNAs were up-regulated on treatment with 5-aza-2'-deoxycytidine in a GC cell line. The “TargetScan” miRNA target database predicted that some of these miRNAs have common target genes. We also referred to the GEO database for expression of these common target genes in human GCs, which might be related to gastric carcinogenesis. In this study, we analyzed two miRNA combinations, miR-224 and -452, and miR-181c and -340. Over-expression of both miRNA combinations dramatically down-regulated their target genes, DPYSL2 and KRAS, and KRAS and MECP2, respectively. These miRNA combinations synergistically decreased cell proliferation upon transfection. Furthermore, we revealed that these miRNAs were down-regulated through promoter hypermethylation in GC cells. Thus, it is likely that the relationships between miRNAs and their targets are not one-to-one but multiple-to-multiple in GCs, and that these complex relationships may be related to gastric carcinogenesis. PMID:23667495

  3. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases.

    PubMed

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-03-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  4. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    PubMed Central

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-01-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals. PMID:26950874

  5. De-repressing LncRNA-Targeted Genes to Upregulate Gene Expression: Focus on Small Molecule Therapeutics.

    PubMed

    Fatemi, Roya Pedram; Velmeshev, Dmitry; Faghihi, Mohammad Ali

    2014-11-18

    Non-protein coding RNAs (ncRNAs) make up the overwhelming majority of transcripts in the genome and have recently gained attention for their complex regulatory role in cells, including the regulation of protein-coding genes. Furthermore, ncRNAs play an important role in normal development and their expression levels are dysregulated in several diseases. Recently, several long noncoding RNAs (lncRNAs) have been shown to alter the epigenetic status of genomic loci and suppress the expression of target genes. This review will present examples of such a mechanism and focus on the potential to target lncRNAs for achieving therapeutic gene upregulation by de-repressing genes that are epigenetically silenced in various diseases. Finally, the potential to target lncRNAs, through their interactions with epigenetic enzymes, using various tools, such as small molecules, viral vectors and antisense oligonucleotides, will be discussed. We suggest that small molecule modulators of a novel class of drug targets, lncRNA-protein interactions, have great potential to treat some cancers, cardiovascular disease, and neurological disorders.

  6. [Melanoma: surface markers as the first point of targeted delivery of therapeutic genes in multilevel gene therapy].

    PubMed

    Pleshkan, V V; Zinov'eva, M V; Sverdlov, E D

    2011-01-01

    Melanoma is one of the most malignant tumors, aggressively metastasizing by lymphatic and hematogenous routes. Due to the resistance of melanoma cells to many types of chemotherapy, this disease causes high mortality rate. High hopes are pinned on gene therapeutic approaches to melanoma treatment. At present, one of the main problems of the efficient use of the post-genomic generation therapeutic means is the lack of optimal techniques of delivery of foreign genetic material to the patient's target cells. Surface specific markers of melanoma cells can be considered as promising therapeutic targets. This review describes currently known melanoma specific receptors and its stem cells, as well as contains data on melanoma antigens presented on the cell surface by major histocompatibility complex proteins. The ability of surface proteins to internalize might be successfully used for the development of methods of targeted delivery of gene therapeutic constructs. In conclusion, a concept of multilevel gene therapy and the possible role therein of surface determinants as targets of gene systems delivery to the tumor are discussed.

  7. In silico analysis of polymorphisms in microRNAs that target genes affecting aerobic glycolysis

    PubMed Central

    Venkatesh, Thejaswini; Tsutsumi, Rie

    2016-01-01

    Background Cancer cells preferentially metabolize glucose through aerobic glycolysis, an observation known as the Warburg effect. Recently, studies have deciphered the role of oncogenes and tumor suppressor genes in regulating the Warburg effect. Furthermore, mutations in glycolytic enzymes identified in various cancers highlight the importance of the Warburg effect at the molecular and cellular level. MicroRNAs (miRNAs) are non-coding RNAs that posttranscriptionally regulate gene expression and are dysregulated in the pathogenesis of various types of human cancers. Single nucleotide polymorphisms (SNPs) in miRNA genes may affect miRNA biogenesis, processing, function, and stability and provide additional complexity in the pathogenesis of cancer. Moreover, mutations in miRNA target sequences in target mRNAs can affect expression. Methods In silico analysis and cataloguing polymorphisms in miRNA genes that target genes directly or indirectly controlling aerobic glycolysis was carried out using different publically available databases. Results miRNA SNP2.0 database revealed several SNPs in miR-126 and miR-25 in the upstream and downstream pre-miRNA flanking regions respectively should be inserted after flanking regions and miR-504 and miR-451 had the fewest. These miRNAs target genes that control aerobic glycolysis indirectly. SNPs in premiRNA genes were found in miR-96, miR-155, miR-25 and miR34a by miRNASNP. Dragon database of polymorphic regulation of miRNA genes (dPORE-miRNA) database revealed several SNPs that modify transcription factor binding sites (TFBS) or creating new TFBS in promoter regions of selected miRNA genes as analyzed by dPORE-miRNA. Conclusions Our results raise the possibility that integration of SNP analysis in miRNA genes with studies of metabolic adaptations in cancer cells could provide greater understanding of oncogenic mechanisms. PMID:27004216

  8. Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes.

    PubMed Central

    Quattrocchio, F; Wing, JF; Leppen, H; Mol, J; Koes, RE

    1993-01-01

    In this study, we demonstrate that in petunia at least four regulatory genes (anthocyanin-1 [an1], an2, an4, and an11) control transcription of a subset of structural genes from the anthocyanin pathway by using a combination of RNA gel blot analysis, transcription run-on assays, and transient expression assays. an2- and an11- mutants could be transiently complemented by the maize regulatory genes Leaf color (Lc) or Colorless-1 (C1), respectively, whereas an1- mutants only by Lc and C1 together. In addition, the combination of Lc and C1 induces pigment accumulation in young leaves. This indicates that Lc and C1 are both necessary and sufficient to produce pigmentation in leaf cells. Regulatory pigmentation genes in maize and petunia control different sets of structural genes. The maize Lc and C1 genes expressed in petunia differentially activate the promoters of the chalcone synthase genes chsA and chsJ in the same way that the homologous petunia genes do. This suggests that the regulatory proteins in both species are functionally similar and that the choice of target genes is determined by their promoter sequences. We present an evolutionary model that explains the differences in regulation of pigmentation pathways of maize, petunia, and snapdragon. PMID:12271045

  9. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus.

    PubMed

    Tingting, Liu; Di, Fan; Lingyu, Ran; Yuanzhong, Jiang; Rui, Liu; Keming, Luo

    2015-10-01

    The typeⅡCRISPR/Cas9 system (Clustered regularly interspaced short palindromic repeats /CRISPR-associated 9) has been widely used in bacteria, yeast, animals and plants as a targeted genome editing technique. In previous work, we have successfully knocked out the endogenous phytoene dehydrogenase (PDS) gene in Populus tomentosa Carr. using this system. To study the effect of target design on the efficiency of CRISPR/Cas9-mediated gene knockout in Populus, we analyzed the efficiency of mutagenesis using different single-guide RNA (sgRNA) that target PDS DNA sequence. We found that mismatches between the sgRNA and the target DNA resulted in decreased efficiency of mutagenesis and even failed mutagenesis. Moreover, complementarity between the 3' end nucleotide of sgRNA and target DNA is especially crucial for efficient mutagenesis. Further sequencing analysis showed that two PDS homologs in Populus, PtPDS1 and PtPDS2, could be knocked out simultaneously using this system with 86.4% and 50% efficiency, respectively. These results indicated the possibility of introducing mutations in two or more endogenous genes efficiently and obtaining multi-mutant strains of Populus using this system. We have indeed generated several knockout mutants of transcription factors and structural genes in Populus, which establishes a foundation for future studies of gene function and genetic improvement of Populus.

  10. Genes associated with SLE are targets of recent positive selection.

    PubMed

    Ramos, Paula S; Shaftman, Stephanie R; Ward, Ralph C; Langefeld, Carl D

    2014-01-01

    The reasons for the ethnic disparities in the prevalence of systemic lupus erythematosus (SLE) and the relative high frequency of SLE risk alleles in the population are not fully understood. Population genetic factors such as natural selection alter allele frequencies over generations and may help explain the persistence of such common risk variants in the population and the differential risk of SLE. In order to better understand the genetic basis of SLE that might be due to natural selection, a total of 74 genomic regions with compelling evidence for association with SLE were tested for evidence of recent positive selection in the HapMap and HGDP populations, using population differentiation, allele frequency, and haplotype-based tests. Consistent signs of positive selection across different studies and statistical methods were observed at several SLE-associated loci, including PTPN22, TNFSF4, TET3-DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes. This study is the first to evaluate and report that several SLE-associated regions show signs of positive natural selection. These results provide corroborating evidence in support of recent positive selection as one mechanism underlying the elevated population frequency of SLE risk loci and supports future research that integrates signals of natural selection to help identify functional SLE risk alleles.

  11. Embryonic stem cell gene targeting using bacteriophage lambda vectors generated by phage-plasmid recombination.

    PubMed Central

    Tsuzuki, T; Rancourt, D E

    1998-01-01

    Targeted mutagenesis is an extremely useful experimental approach in molecular medicine, allowing the generation of specialized animals that are mutant for any gene of interest. Currently the rate determining step in any gene targeting experiment is construction of the targeting vector (TV). In order to streamline gene targeting methods and avoid problems encountered with plasmid TVs, we describe the direct application of lambda phage in targeted mutagenesis. The recombination-proficient phage vector lambda2TK permits generation of TVs by conventional restriction-ligation or recombination-mediated methods. The resulting lambdaTV DNA can then be cleaved with restriction endonucleases to release the bacteriophage arms and can subsequently be electroporated directly into ES cells to yield gene targets. We demonstrate that in vivo phage-plasmid recombination can be used to introduce neo and lacZ - neo mutations into precise positions within a lambda2TK subclone via double crossover recombination. We describe two methods for eliminating single crossover recombinants, spi selection and size restriction, both of which result in phage TVs bearing double crossover insertions. Thus TVs can be easily and quickly generated in bacteriophage without plasmid subcloning and with little genomic sequence or restriction site information. PMID:9461458

  12. Genome-wide discovery of Pax7 target genes during development.

    PubMed

    White, Robert B; Ziman, Melanie R

    2008-03-14

    Pax7 plays critical roles in development of brain, spinal cord, neural crest, and skeletal muscle. As a sequence-specific DNA-binding transcription factor, any direct functional role played by Pax7 during development is mediated through target gene selection. Thus, we have sought to identify genes targeted by Pax7 during embryonic development using an unbiased chromatin immunoprecipitation (ChIP) cloning assay to isolate cis-regulatory regions bound by Pax7 in vivo. Sequencing and genomic localization of a library of chromatin-DNA fragments bound by Pax7 has identified 34 candidate Pax7 target genes, with occupancy of a selection confirmed with independent chromatin enrichment tests (ChIP-PCR). To assess the capacity of Pax7 to regulate transcription from these loci, we have cloned alternate transcripts of Pax7 (differing significantly in their DNA binding domain) into expression vectors and transfected cultured cells with these constructs, then analyzed target gene expression levels using RT-PCR. We show that Pax7 directly occupies sites within genes encoding transcription factors Gbx1 and Eya4, the neurogenic cytokine receptor ciliary neurotrophic factor receptor, the neuronal potassium channel Kcnk2, and the signal transduction kinase Camk1d in vivo and regulates the transcriptional state of these genes in cultured cells. This analysis gives us greater insight into the direct functional role played by Pax7 during embryonic development.

  13. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein.

    PubMed

    Jung, Chris J; Zhang, Junli; Trenchard, Elizabeth; Lloyd, Kent C; West, David B; Rosen, Barry; de Jong, Pieter J

    2017-04-01

    The CRISPR/Cas9 system has rapidly advanced targeted genome editing technologies. However, its efficiency in targeting with constructs in mouse zygotes via homology directed repair (HDR) remains low. Here, we systematically explored optimal parameters for targeting constructs in mouse zygotes via HDR using mouse embryonic stem cells as a model system. We characterized several parameters, including single guide RNA cleavage activity and the length and symmetry of homology arms in the construct, and we compared the targeting efficiency between Cas9, Cas9nickase, and dCas9-FokI. We then applied the optimized conditions to zygotes, delivering Cas9 as either mRNA or protein. We found that Cas9 nucleo-protein complex promotes highly efficient, multiplexed targeting of circular constructs containing reporter genes and floxed exons. This approach allows for a one-step zygote injection procedure targeting multiple genes to generate conditional alleles via homologous recombination, and simultaneous knockout of corresponding genes in non-targeted alleles via non-homologous end joining.

  14. Locally Targeted Cardiac Gene Delivery by AAV Microbubble Destruction in a Large Animal Model.

    PubMed

    Schlegel, Philipp; Huditz, Regina; Meinhardt, Eric; Rapti, Kleopatra; Geis, Nicolas; Most, Patrick; Katus, Hugo A; Müller, Oliver J; Bekeredjian, Raffi; Raake, Philip W

    2016-04-01

    Cardiac gene therapy is a promising approach for treating heart diseases. Although clinical studies are ongoing, effective and targeted transgene delivery is still a major obstacle. We sought to improve and direct transgene expression in myocardium by ultrasound-targeted microbubble destruction (UTMD). In pigs, adeno-associated virus-derived (AAV) vectors harboring the luciferase reporter gene were delivered via retroinfusion into the anterior interventricular coronary vein (AIV). AAV vectors were either loaded to lipid microbubbles before injection or injected unmodified. Upon injection of AAV/microbubble solution, UTMD was performed. After 4 weeks, reporter gene expression levels in the anterior wall (target area), in the posterior wall (control area), and in noncardiac organs were analyzed. Retroinfusion of AAV-luciferase vectors loaded to lipid microbubbles led to a significant increase in transgene expression, with an increase in UTMD targeted areas of the anterior wall. Moreover, off-target expression was reduced in comparison to control animals, receiving AAV-luciferase without microbubbles. Besides an increase in overall target area transgene expression, UTMD alters the spatial expression of the luciferase transgene, focusing expression to ultrasound-targeted left ventricular wall. These data suggest UTMD as a promising approach for directing AAV to specific cardiac segments.

  15. 75 FR 49550 - Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference System (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference...: Notice of RTCA Special Committee 219: Attitude and Heading Reference System (AHRS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of ] RTCA Special Committee 219: Attitude...

  16. RELATIONSHIPS BETWEEN RESIDUES OF AHR AGONISTS IN FISH AND CONCENTRATIONS IN WATER AND SEDIMENTS

    EPA Science Inventory

    Relationships between Residues of AhR Agonists in Fish and Concentrations in Water and Sediment. Cook, PM*, Burkhard, LP, Mount, DR, US-EPA, NHEERL, MED, Duluth, MN. The bioaccumulation visualization approach of Burkhard et al. (2002) can be effectively used to describe the bioa...

  17. EXPRESSION OF AHR AND ARNT MRNA IN CULTURED HUMAN ENDOMETRIAL EXPLANTS EXPOSED TO TCDD

    EPA Science Inventory

    Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD.

    Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG, Koury ST, Bofinger DP.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.

    Endom...

  18. Intersection of AHR and Wnt Signaling in Development, Health, and Disease

    PubMed Central

    Schneider, Andrew J.; Branam, Amanda M.; Peterson, Richard E.

    2014-01-01

    The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development. PMID:25286307

  19. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology.

    PubMed

    Aragon, Andrea C; Kopf, Phillip G; Campen, Matthew J; Huwe, Janice K; Walker, Mary K

    2008-02-01

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure would disrupt cardiac ECM expression and be associated with changes in cardiac morphology in adulthood. In one study, time-pregnant C57BL/6 mice were dosed with corn oil or 1.5, 3.0, or 6.0 microg TCDD/kg on gestation day (GD) 14.5 and sacrificed on GD 17.5, when changes in fetal cardiac mRNA expression were analyzed using quantitative PCR. TCDD induced mRNA expression of genes associated with ECM remodeling (matrix metalloproteinase 9 and 13, preproendothelin-1 [preproET-1]), cardiac hypertrophy (atrial natriuretic peptide, beta-myosin heavy chain, osteopontin), and aryl hydrocarbon receptor (AHR) activation (cytochrome P4501A1, AHR repressor). Further, all TCDD-induced changes required the AHR since gene expression was not altered in AHR knockout fetuses. In a second study, time-pregnant mice were treated with corn oil or 6.0 microg TCDD/kg on GD 14.5, and male offspring were assessed for changes in cardiac gene expression and cardiac and renal morphology at 3 months. All TCDD-induced changes in cardiac gene expression observed fetally, except for preproET-1, remained induced in the hearts of adult male offspring. Adult male offspring of TCDD-exposed dams also displayed cardiac hypertrophy, decreased plasma volume, and mild hydronephrosis. These results demonstrate that in utero and lactational TCDD exposures alter cardiac gene expression and cardiac and renal morphology in adulthood, which may increase the susceptibility to cardiovascular dysfunction.

  20. An Encapsulation of Gene Signatures for Hepatocellular Carcinoma, MicroRNA-132 Predicted Target Genes and the Corresponding Overlaps

    PubMed Central

    Chen, Gang; Ren, Fanghui; Liang, Haiwei; Dang, Yiwu; Rong, Minhua

    2016-01-01

    Objectives Previous studies have demonstrated that microRNA-132 plays a vital part in and is actively associated with several cancers, with its tumor-suppressive role in hepatocellular carcinoma confirmed. The current study employed multiple bioinformatics techniques to establish gene signatures for hepatocellular carcinoma, microRNA-132 predicted target genes and the corresponding overlaps. Methods Various assays were performed to explore the role and cellular functions of miR-132 in HCC and a successive panel of tasks was completed, including NLP analysis, miR-132 target genes prediction, comprehensive analyses (gene ontology analysis, pathway analysis, network analysis and connectivity analysis), and analytical integration. Later, HCC-related and miR-132-related potential targets, pathways, networks and highlighted hub genes were revealed as well as those of the overlapped section. Results MiR-132 was effective in both impeding cell growth and boosting apoptosis in HCC cell lines. A total of fifty-nine genes were obtained from the analytical integration, which were considered to be both HCC- and miR-132-related. Moreover, four specific pathways were unveiled in the network analysis of the overlaps, i.e. adherens junction, VEGF signaling pathway, neurotrophin signaling pathway, and MAPK signaling pathway. Conclusions The tumor-suppressive role of miR-132 in HCC has been further confirmed by in vitro experiments. Gene signatures in the study identified the potential molecular mechanisms of HCC, miR-132 and their established associations, which might be effective for diagnosis, individualized treatments and prognosis of HCC patients. However, combined detections of miR-132 with other bio-indicators in clinical practice and further in vitro experiments are needed. PMID:27467251

  1. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene.

    PubMed

    Luo, Yumei; Zhu, Detu; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction.

  2. Primer and interviews: advances in targeted gene modification. Interview by Julie C. Kiefer.

    PubMed

    Caroll, Dana; Zhang, Bo

    2011-12-01

    Gene targeting in mice, first reported 25 years ago, has led to monumental advances in the understanding of basic biology and human disease. The ability to employ a similarly straightforward method for gene manipulation in other experimental organisms would make their already significant contributions all the more powerful. Here, we briefly outline the strengths and weaknesses of reverse genetics techniques in non-murine model organisms, ending with a more detailed description of two that promise to bring targeted gene modification to the masses: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Dana Caroll, a forefather of zinc finger technology, and Bo Zhang, among the first to introduce TALEN-targeted mutagenesis to zebrafish, discuss their experience with these techniques, and speculate about the future of the field.

  3. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs).

    PubMed

    Lei, Yong; Guo, Xiaogang; Liu, Yun; Cao, Yang; Deng, Yi; Chen, Xiongfeng; Cheng, Christopher H K; Dawid, Igor B; Chen, Yonglong; Zhao, Hui

    2012-10-23

    Transcription activator-like effector nucleases (TALENs) are an approach for directed gene disruption and have been proved to be effective in various animal models. Here, we report that TALENs can induce somatic mutations in Xenopus embryos with reliably high efficiency and that such mutations are heritable through germ-line transmission. We modified the Golden Gate method for TALEN assembly to make the product suitable for RNA transcription and microinjection into Xenopus embryos. Eight pairs of TALENs were constructed to target eight Xenopus genes, and all resulted in indel mutations with high efficiencies of up to 95.7% at the targeted loci. Furthermore, mutations induced by TALENs were highly efficiently passed through the germ line to F(1) frogs. Together with simple and reliable PCR-based approaches for detecting TALEN-induced mutations, our results indicate that TALENs are an effective tool for targeted gene editing/knockout in Xenopus.

  4. Synthetic neomycin-kanamycin phosphotransferase, type II coding sequence for gene targeting in mammalian cells.

    PubMed

    Jin, Seung-Gi; Mann, Jeffrey R

    2005-07-01

    The bacterial neomycin-kanamycin phosphotransferase, type II enzyme is encoded by the neo gene and confers resistance to aminoglycoside drugs such as neomycin and kanamycin-bacterial selection and G418-eukaryotic cell selection. Although widely used in gene targeting in mouse embryonic stem cells, the neo coding sequence contains numerous cryptic splice sites and has a high CpG content. At least the former can cause unwanted effects in cis at the targeted locus. We describe a synthetic sequence, sneo, which encodes the same protein as that encoded by neo. This synthetic sequence has no predicted splice sites in either strand, low CpG content, and increased mammalian codon usage. In mouse embryonic stem cells sneo expressability is similar to neo. The use of sneo in gene targeting experiments should substantially reduce the probability of unwanted effects in cis due to splicing, and perhaps CpG methylation, within the coding sequence of the selectable marker.

  5. Barriers to Liposomal Gene Delivery: from Application Site to the Target

    PubMed Central

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review. PMID:28228799

  6. NF-κB target microRNAs and their target genes in TNFα-stimulated HeLa cells.

    PubMed

    Zhou, Fei; Wang, Wei; Xing, Yujun; Wang, Tingting; Xu, Xinhui; Wang, Jinke

    2014-01-01

    As a transcription factor, NF-κB was demonstrated to regulate the expressions of miRNAs. However, only a few miRNAs have been identified as its targets so far. In this study, by using ChIP-Seq, Genechip and miRNA-Seq techniques, we identified 14 NF-κB target miRNAs in TNFα-stimulated HeLa Cells, including miR-1276, miR-1286, miR-125b-1-3p, miR-219-1-3p, miR-2467-5p, miR-3200-3p, miR-449c-5p, miR-502-5p, miR-548d-5p, miR-30b-3p, miR-3620-5p, miR-340-3p, miR-4454 and miR-4485. Of these miRNAs, 8 detected miRNAs were also NF-κB target misRNAs in TNFα-stimulated HepG2 cells. We also identified 16 target genes of 6 miRNAs including miR-125b-1-3p, miR-1286, miR-502-5p, miR-1276, miR-219-1-3p and miR-30b-3p, in TNFα-stimulated HeLa cells. Target genes of miR-125b-1-3p and miR-1276 were validated in HeLa and HepG2 cells by transfecting their expression plasmids and mimics. Bioinformatic analysis revealed that two potential target genes of miR-1276, BMP2 and CASP9, were enriched in disease phenotypes. The former is enriched in osteoarthritis, and the latter is enriched in Type 2 diabetes and lung cancer, respectively. These findings suggested that this little known miRNA might play roles in these diseases via its two target genes of BMP2 and CASP9. The expression of miR-125b-1 regulated by NF-κB has been reported in diverse cell types under various stimuli, this study found that its expression was also significantly regulated by NF-κB in TNFα-stimulated HeLa and HepG2 cells. Therefore, this miRNA was proposed as a central mediator of NF-κB pathway. These findings provide new insights into the functions of NF-κB in its target miRNA-related biological processes and the mechanisms underlying the regulation of these miRNAs.

  7. A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets.

    PubMed

    Grade, Marian; Hummon, Amanda B; Camps, Jordi; Emons, Georg; Spitzner, Melanie; Gaedcke, Jochen; Hoermann, Patrick; Ebner, Reinhard; Becker, Heinz; Difilippantonio, Michael J; Ghadimi, B Michael; Beissbarth, Tim; Caplen, Natasha J; Ried, Thomas

    2011-03-01

    Genes that are highly overexpressed in tumor cells can be required for tumor cell survival and have the potential to be selective therapeutic targets. In an attempt to identify such targets, we combined a functional genomics and a systems biology approach to assess the consequences of RNAi-mediated silencing of overexpressed genes that were selected from 140 gene expression profiles from colorectal cancers (CRCs) and matched normal mucosa. In order to identify credible models for in-depth functional analysis, we first confirmed the overexpression of these genes in 25 different CRC cell lines. We then identified five candidate genes that profoundly reduced the viability of CRC cell lines when silenced with either siRNAs or short-hairpin RNAs (shRNAs), i.e., HMGA1, TACSTD2, RRM2, RPS2 and NOL5A. These genes were further studied by systematic analysis of comprehensive gene expression profiles generated following siRNA-mediated silencing. Exploration of these RNAi-specific gene expression signatures allowed the identification of the functional space in which the five genes operate and showed enrichment for cancer-specific signaling pathways, some known to be involved in CRC. By comparing the expression of the RNAi signature genes with their respective expression levels in an independent set of primary rectal carcinomas, we could recapitulate these defined RNAi signatures, therefore, establishing the biological relevance of our observations. This strategy identified the signaling pathways that are affected by the prominent oncogenes HMGA1 and TACSTD2, established a yet unknown link between RRM2 and PLK1 and identified RPS2 and NOL5A as promising potential therapeutic targets in CRC.

  8. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.

  9. Identification of Primary Gene Targets of TFAP2C in Hormone Responsive Breast Carcinoma Cells

    PubMed Central

    Woodfield, George W.; Chen, Yizhen; Bair, Thomas B.; Domann, Frederick E.; Weigel, Ronald J.

    2010-01-01

    The TFAP2C transcription factor is involved in mammary development, differentiation and oncogenesis. Previous studies established a role for TFAP2C in the regulation of ESR1 (ERα) and ERBB2 (Her2) in breast carcinomas. However, the role of TFAP2C in different breast cancer phenotypes has not been examined in detail. To develop a more complete characterization of TFAP2C target genes, ChIP-seq with anti-TFAP2C antibody and expression arrays with TFAP2C knock down were analyzed in MCF-7 breast carcinoma cells. Genomic sequences common to the ChIP-seq data set defined the consensus sequence for TFAP2C chromatin binding as the nine base sequence SCCTSRGGS (S=G/C, R=A/G), which closely matches the previously defined optimal in vitro binding site. Comparing expression arrays before and after knock down of TFAP2C with ChIP-seq data demonstrated a conservative estimate that 8% of genes altered by TFAP2C expression are primary target genes and includes genes that are both induced and repressed by TFAP2C. A set of 447 primary target genes of TFAP2C was identified, which included ESR1 (ERα), FREM2, RET, FOXA1, WWOX, GREB1, MYC and members of the retinoic acid response pathway. The identification of ESR1, WWOX, GREB1 and FOXA1 as primary targets confirmed the role of TFAP2C in hormone response. TFAP2C plays a critical role in gene regulation in hormone responsive breast cancer and its target genes are different than for the Her2 breast cancer phenotype. PMID:20629094

  10. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting

    PubMed Central

    2012-01-01

    Background The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal muscle-specific Cre transgenic mouse strain. Methods To achieve skeletal muscle-specific expression, the human α-skeletal actin promoter was used to drive expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains. Results Western blot analysis, PCR and β-galactosidase staining confirmed that Cre-mediated recombination was restricted to limb and craniofacial skeletal muscles only after tamoxifen administration. Conclusions A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle community. PMID:22564549

  11. NFAT Targets Signaling Molecules to Gene Promoters in Pancreatic β-Cells

    PubMed Central

    Borenstein-Auerbach, Nofit; McGlynn, Kathleen; Kunnathodi, Faisal; Shahbazov, Rauf; Syed, Ilham; Kanak, Mazhar; Takita, Morihito; Levy, Marlon F.; Naziruddin, Bashoo

    2015-01-01

    Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1β. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic β-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation. PMID:25496032

  12. An efficient strategy for gene targeting and phenotypic assessment in the Plasmodium yoelii rodent malaria model.

    PubMed

    Mikolajczak, Sebastian A; Aly, Ahmed S I; Dumpit, Ronald F; Vaughan, Ashley M; Kappe, Stefan H I

    2008-04-01

    In this report, we describe a cloning procedure for gene replacement by double homologous recombination in Plasmodium yoelii, which requires only one digestion and ligation step. This significantly shortens the time required to complete the production of the targeting vector. Furthermore, for more efficient phenotypic evaluation of the gene knockout parasites, we have also introduced a fluorescent protein cassette into the targeting vector. This allows for a more rapid assessment of parasite growth in all of its developmental stages. In addition, the introduction of the fluorescent marker via the replacement strategy confers the stable integration of the marker.

  13. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    PubMed

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies.

  14. Poly-sgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption.

    PubMed

    Ha, Jong Seong; Lee, Jae Sung; Jeong, Jaepil; Kim, Hejin; Byun, Juyoung; Kim, Sang Ah; Lee, Hee Jae; Chung, Hak Suk; Lee, Jong Bum; Ahn, Dae-Ro

    2017-02-04

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) can be used for the specific disruption of a target gene to permanently suppress the expression of the protein encoded by the target gene. Efficient delivery of the system to an intracellular target site should be achieved to utilize the tremendous potential of the genome-editing tool in biomedical applications such as the knock-out of disease-related genes and the correction of defect genes. Here, we devise polymeric CRISPR/Cas9 system based on poly-ribonucleoprotein (RNP) nanoparticles consisting of polymeric sgRNA, siRNA, and Cas9 endonuclease in order to improve the delivery efficiency. When delivered by cationic lipids, the RNP nanoparticles built with chimeric poly-sgRNA/siRNA sequences generate multiple sgRNA-Cas9 RNP complexes upon the Dicer-mediated digestion of the siRNA parts, leading to more efficient disruption of the target gene in cells and animal models, compared with the monomeric sgRNA-Cas9 RNP complex.

  15. Meta-analysis of primary target genes of peroxisome proliferator-activated receptors

    PubMed Central

    Heinäniemi, Merja; Uski, J Oskari; Degenhardt, Tatjana; Carlberg, Carsten

    2007-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are known for their critical role in the development of diseases, such as obesity, cardiovascular disease, type 2 diabetes and cancer. Here, an in silico screening method is presented, which incorporates experiment- and informatics-derived evidence, such as DNA-binding data of PPAR subtypes to a panel of PPAR response elements (PPREs), PPRE location relative to the transcription start site (TSS) and PPRE conservation across multiple species, for more reliable prediction of PPREs. Results In vitro binding and in vivo functionality evidence agrees with in silico predictions, validating the approach. The experimental analysis of 30 putative PPREs in eight validated PPAR target genes indicates that each gene contains at least one functional, strong PPRE that occurs without positional bias relative to the TSS. An extended analysis of the cross-species conservation of PPREs reveals limited conservation of PPRE patterns, although PPAR target genes typically contain strong or multiple medium strength PPREs. Human chromosome 19 was screened using this method, with validation of six novel PPAR target genes. Conclusion An in silico screening approach is presented, which allows increased sensitivity of PPAR binding site and target gene detection. PMID:17650321

  16. Transcriptional Analysis of Gli3 Mutants Identifies Wnt Target Genes in the Developing Hippocampus

    PubMed Central

    Hasenpusch-Theil, Kerstin; Magnani, Dario; Amaniti, Eleni-Maria; Han, Lin; Armstrong, Douglas

    2012-01-01

    Early development of the hippocampus, which is essential for spatial memory and learning, is controlled by secreted signaling molecules of the Wnt gene family and by Wnt/β-catenin signaling. Despite its importance, little is known, however, about Wnt-regulated genes during hippocampal development. Here, we used the Gli3 mutant mouse extra-toes (XtJ), in which Wnt gene expression in the forebrain is severely affected, as a tool in a microarray analyses to identify potential Wnt target genes. This approach revealed 53 candidate genes with restricted or graded expression patterns in the dorsomedial telencephalon. We identified conserved Tcf/Lef-binding sites in telencephalon-specific enhancers of several of these genes, including Dmrt3, Gli3, Nfia, and Wnt8b. Binding of Lef1 to these sites was confirmed using electrophoretic mobility shift assays. Mutations in these Tcf/Lef-binding sites disrupted or reduced enhancer activity in vivo. Moreover, ectopic activation of Wnt/β-catenin signaling in an ex vivo explant system led to increased telencephalic expression of these genes. Finally, conditional inactivation of Gli3 results in defective hippocampal growth. Collectively, these data strongly suggest that we have identified a set of direct Wnt target genes in the developing hippocampus and provide inside into the genetic hierarchy underlying Wnt-regulated hippocampal development. PMID:22235033

  17. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    PubMed Central

    Bracken, Adrian P.; Dietrich, Nikolaj; Pasini, Diego; Hansen, Klaus H.; Helin, Kristian

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Polycomb-Repressive Complex 1 (PRC1), PRC2, and tri-methylated histone H3K27 co-occupy >1000 silenced genes with a strong functional bias for embryonic development and cell fate decisions. We functionally identify 40 genes derepressed in human embryonic fibroblasts depleted of the PRC2 components (EZH2, EED, SUZ12) and the PRC1 component, BMI-1. Interestingly, several markers of osteogenesis, adipogenesis, and chrondrogenesis are among these genes, consistent with the mesenchymal origin of fibroblasts. Using a neuronal model of differentiation, we delineate two different mechanisms for regulating PcG target genes. For genes activated during differentiation, PcGs are displaced. However, for genes repressed during differentiation, we paradoxically find that they are already bound by the PcGs in nondifferentiated cells despite being actively transcribed. Our results are consistent with the hypothesis that PcGs are part of a preprogrammed memory system established during embryogenesis marking certain key genes for repressive signals during subsequent developmental and differentiation processes. PMID:16618801

  18. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior.

    PubMed

    Evans, Daniel S; Cline, Thomas W

    2013-11-19

    The switch gene Sex-lethal (Sxl) was thought to elicit all aspects of Drosophila female somatic differentiation other than size dimorphism by controlling only the switch gene transformer (tra). Here we show instead that Sxl controls an aspect of female sexual behavior by acting on a target other than or in addition to tra. We inferred the existence of this unknown Sxl target from the observation that a constitutively feminizing tra transgene that restores fertility to tra(-) females failed to restore fertility to Sxl-mutant females that were adult viable but functionally tra(-). The sterility of these mutant females was caused by an ovulation failure. Because tra expression is not sufficient to render these Sxl-mutant females fertile, we refer to this pathway as the tra-insufficient feminization (TIF) branch of the sex-determination regulatory pathway. Using a transgene that conditionally expresses two Sxl feminizing isoforms, we find that the TIF branch is required developmentally for neurons that also sex-specifically express fruitless, a tra gene target controlling sexual behavior. Thus, in a subset of fruitless neurons, targets of the TIF and tra pathways appear to collaborate to control ovulation. In most insects, Sxl has no sex-specific functions, and tra, rather than Sxl, is both the target of the primary sex signal and the gene that maintains the female developmental commitment via positive autoregulation. The TIF pathway may represent an ancestral female-specific function acquired by Sxl in an early evolutionary step toward its becoming the regulator of tra in Drosophila.

  19. In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery

    PubMed Central

    Chapel, Alain; Deas, Olivier; Bensidhoum, Morad; François, Sabine; Mouiseddine, Moubarak; Poncet, Pascal; Dürrbach, Antoine; Aigueperse, Jocelyne; Gourmelon, Patrick; Gorin, Norbert C; Hirsch, François; Thierry, Dominique

    2004-01-01

    Background Targeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors. Methods Balb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates. Results By ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals. Conclusions These data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures. PMID:15509303

  20. Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target

    DTIC Science & Technology

    2015-06-01

    Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Outcome predictors based on gene signatures have been...successfully applied in breast cancer but similar predictors have not been developed for ovarian cancer. We identified a tumor microenvironment- based gene...of patients who are unlikely to benefit from standard surgery and/or chemotherapy and should be considered for clinical trials targeting specific

  1. Efficient Gene Targeting in Golden Syrian Hamsters by the CRISPR/Cas9 System

    PubMed Central

    Meng, Qinggang; Shi, Bi; Bunch, Thomas D.; White, Kenneth L.; Kong, Il-Keun; Wang, Zhongde

    2014-01-01

    The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)—three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C—and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease. PMID:25299451

  2. In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants.

    PubMed

    Kim, Hyun-Jin; Baek, Kwang-Hyun; Lee, Bong-Woo; Choi, Doil; Hur, Cheol-Goo

    2011-02-01

    MicroRNAs (miRNAs) are a class of small, single-stranded, noncoding RNAs ranging from 19 to 25 nucleotides. The miRNA control various cellular functions by negatively regulating gene expression at the post-transcriptional level. The miRNA regulation over their target genes has a central role in regulating plant growth and development; however, only a few reports have been published on the function of miRNAs in the family Solanaceae. We identified Solanaceae miRNAs and their target genes by analyzing expressed sequence tag (EST) data from five different Solanaceae species. A comprehensive bioinformatic analysis of EST data of Solanaceae species revealed the presence of at least 11 miRNAs and 54 target genes in pepper (Capsicum annuum L.), 22 miRNAs and 221 target genes in potato (Solanum tuberosum L.), 12 miRNAs and 417 target genes in tomato (Solanum lycopersicum L.), 46 miRNAs and 60 target genes in tobacco (Nicotiana tabacum L.), and 7 miRNAs and 28 target genes in Nicotiana benthamiana. The identified Solanaceae miRNAs and their target genes were deposited in the SolmiRNA database, which is freely available for academic research only at http://genepool.kribb.re.kr/SolmiRNA. Our data indicate that the Solanaceae family has both conserved and specific miRNAs and that their target genes may play important roles in growth and development of Solanaceae plants.

  3. Gene targets of mouse miR-709: regulation of distinct pools

    PubMed Central

    Surendran, Sneha; Jideonwo, Victoria N.; Merchun, Chris; Ahn, Miwon; Murray, John; Ryan, Jennifer; Dunn, Kenneth W.; Kota, Janaiah; Morral, Núria

    2016-01-01

    MicroRNA (miRNA) are short non-coding RNA molecules that regulate multiple cellular processes, including development, cell differentiation, proliferation and death. Nevertheless, little is known on whether miRNA control the same gene networks in different tissues. miR-709 is an abundant miRNA expressed ubiquitously. Through transcriptome analysis, we have identified targets of miR-709 in hepatocytes. miR-709 represses genes implicated in cytoskeleton organization, extracellular matrix attachment, and fatty acid metabolism. Remarkably, none of the previously identified targets in non-hepatic tissues are silenced by miR-709 in hepatocytes, even though several of these genes are abundantly expressed in liver. In addition, miR-709 is upregulated in hepatocellular carcinoma, suggesting it participates in the genetic reprogramming that takes place during cell division, when cytoskeleton remodeling requires substantial changes in gene expression. In summary, the present study shows that miR-709 does not repress the same pool of genes in separate cell types. These results underscore the need for validating gene targets in every tissue a miRNA is expressed. PMID:26743462

  4. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    SciTech Connect

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  5. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves.

    PubMed

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  6. Paired hormone response elements predict caveolin-1 as a glucocorticoid target gene.

    PubMed

    van Batenburg, Marinus F; Li, Hualing; Polman, J Annelies; Lachize, Servane; Datson, Nicole A; Bussemaker, Harmen J; Meijer, Onno C

    2010-01-21

    Glucocorticoids act in part via glucocorticoid receptor binding to hormone response elements (HREs), but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids.

  7. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  8. Alternative in vitro approach for assessing AHR-mediated CYP1A induction by dioxins in wild cormorant (Phalacrocorax carbo) population.

    PubMed

    Thuruthippallil, Leena Mol; Kubota, Akira; Kim, Eun-Young; Iwata, Hisato

    2013-06-18

    Our line of papers revealed that the common (great) cormorant (Phalacrocorax carbo) possesses two isoforms of the aryl hydrocarbon receptor (ccAHR1 and ccAHR2). This paper addresses in vitro tests of the ccAHR signaling pathways to solve two questions: (1) whether there are functional differences in the two ccAHR isoforms, and (2) whether a molecular perturbation, cytochrome P450 1A (ccCYP1A) induction, in the population-level can be predicted from the in vitro tests. The transactivation potencies mediated by ccAHR1 and ccAHR2 were measured in COS-7 cells treated with 15 selected dioxins and related compounds (DRCs), where ccAHR1 or ccAHR2 expression plasmid and ccCYP1A5 promoter/enhancer-linked luciferase reporter plasmid were transfected. For congeners that exhibited dose-dependent luciferase activities, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) relative potencies (REPs) and induction equivalency factors (IEFs) were estimated. ccAHR1-IEF profile was similar to WHO avian TCDD toxic equivalency factor (TEF) profile except for dioxin-like polychlorinated biphenyls that showed lower IEFs in ccAHR1-driven reporter assay. ccAHR2-IEF profile was different from WHO TEFs and ccAHR1-IEFs. Notably, 2,3,4,7,8-PeCDF was more potent than TCDD for ccAHR2-mediated response. Using ccAHR1- and ccAHR2-IEFs and hepatic DRC concentrations in the Lake Biwa cormorant population, total TCDD induction equivalents (IEQs) were calculated for each ccAHR-mediated response. Nonlinear regression analyses provided significant sigmoidal relationships of ccAHR1- and ccAHR2-derived IEQs with hepatic ccCYP1A5 mRNA levels, supporting the results of in vitro ccAHR-mediated TCDD dose-response curves. Collectively, our in vitro AHR reporter assay potentially could be an alternative to molecular epidemiology of the species of concern regarding CYP1A induction by AHR ligands.

  9. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    PubMed

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety.

  10. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.

    PubMed

    Baccarini, Leticia; Martínez-Montañés, Fernando; Rossi, Silvia; Proft, Markus; Portela, Paula

    2015-11-01

    Gene expression regulation by intracellular stimulus-activated protein kinases is essential for cell adaptation to environmental changes. There are three PKA catalytic subunits in Saccharomyces cerevisiae: Tpk1, Tpk2, and Tpk3 and one regulatory subunit: Bcy1. Previously, it has been demonstrated that Tpk1 and Tpk2 are associated with coding regions and promoters of target genes in a carbon source and oxidative stress dependent manner. Here we studied five genes, ALD6, SED1, HSP42, RPS29B, and RPL1B whose expression is regulated by saline stress. We found that PKA catalytic and regulatory subunits are associated with both coding regions and promoters of the analyzed genes in a stress dependent manner. Tpk1 and Tpk2 recruitment was completely abolished in catalytic inactive mutants. BCY1 deletion changed the binding kinetic to chromatin of each Tpk isoform and this strain displayed a deregulated gene expression in response to osmotic stress. In addition, yeast mutants with high PKA activity exhibit sustained association to target genes of chromatin-remodeling complexes such as Snf2-catalytic subunit of the SWI/SNF complex and Arp8-component of INO80 complex, leading to upregulation of gene expression during osmotic stress. Tpk1 accumulation in the nucleus was stimulated upon osmotic stress, while the nuclear localization of Tpk2 and Bcy1 showed no change. We found that each PKA subunit is transported into the nucleus by a different β-karyopherin pathway. Moreover, β-karyopherin mutant strains abolished the chromatin association of Tpk1 or Tpk2, suggesting that nuclear localization of PKA catalytic subunits is required for its association to target genes and properly gene expression.

  11. Construction of a mouse model of factor VIII deficiency by gene targeting

    SciTech Connect

    Bi, L.; Lawler, A.; Gearhart, J.

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  12. Evaluation of potential RNA-interference-target genes to control cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcuidae).

    PubMed

    Khan, Arif M; Ashfaq, Muhammad; Khan, Azhar A; Naseem, Muhammad T; Mansoor, Shahid

    2017-03-18

    RNA interference (RNAi) of vital insect genes is a potential tool for targeted pest control. However, selection of the right target genes is a challenge because the RNAi efficacy is known to vary among insect species. Cotton mealybug, Phenacoccus solenopsis, is a phloem-feeding economically important crop pest. We evaluated the RNAi of two vital genes, Bursicon (PsBur) and V-ATPase (PsV-ATPase) as potential targets in P. solenopsis for its control. PCR fragments of PsBur and PsV-ATPase were amplified using cDNA synthesized from the total RNA. The PCR amplicons were cloned into Potato virus X (PVX) to develop recombinant PVX for the inoculation of Nicotiana tabacum plants for bioassays with healthy P. solenopsis. Reverse-transcription-polymerase chain reaction (RT-PCR) was used to validate the expression of transgenes in the recombinant-PVX-inoculated plants (treated), and suppression of the target genes in the mealybugs exposed to them. The RT-PCR confirmed the expression of transgenes in the treated plants. Mealybug individuals on treated plants either died or showed physical deformities. Further, the population of mealybug was significantly reduced by feeding on N. tabacum expressing RNAi triggers against PsBur and PsV-ATPase. The results conclude that RNAi is activated in P. solenopsis by feeding on N. tabacum expressing RNAi triggering elements of PsBur and PsV-ATPase genes through recombinant PVX vector. Further, V-ATPase and Bursicon genes are potential targets for RNAi mediated control of P. solenopsis. This article is protected by copyright. All rights reserved.

  13. E. coli recA gene improves gene targeted homologous recombination in Mycoplasma hyorhinis.

    PubMed

    Ishag, Hassan Z A; Xiong, Qiyan; Liu, Maojun; Feng, Zhixin; Shao, Guoqing

    2017-05-01

    Mycoplasma hyorhinis is an opportunistic pathogen of pigs. Recently, it has been shown to transform cell cultures, increasing the attention of the researchers. Studies on the pathogenesis require specific genetic tool that is not yet available for the pathogen. To address this limitation, we constructed two suicide plasmids pGEMT-tetM/LR and pGEMT-recA-tetM/LR having a tetracycline resistance marker flanked by two hemolysin gene arms. The latter plasmid encodes an E. coli recA, a gene involved in DNA recombination, repair and maintenance of DNA. Using inactivation of the hemolysin gene, which results in a detectable and measurable phenotype, we found that each plasmid can disrupt the hemolysin gene of M. hyorhinis through a double cross-over homologous recombination. However, inclusion of the E. coli recA gene in the construct resulted in 9-fold increase in the frequency of hemolysin gene mutants among the screened tetracycline resistance colonies. The resultant hemolysin mutant strain lacks the ability to lyse mouse bed blood cells (RBC) when tested in vitro (p<0.001). The host-plasmid system described in this study, has applications for the genetic manipulation of this pathogen and potentially other mycoplasmas.

  14. Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences

    PubMed Central

    Leclercq, Mickael; Diallo, Abdoulaye Baniré; Blanchette, Mathieu

    2017-01-01

    MicroRNAs (miRNA) are short single-stranded RNA molecules derived from hairpin-forming precursors that play a crucial role as post-transcriptional regulators in eukaryotes and viruses. In the past years, many microRNA target genes (MTGs) have been identified experimentally. However, because of the high costs of experimental approaches, target genes databases remain incomplete. Although several target prediction programs have been developed in the recent years to identify MTGs in silico, their specificity and sensitivity remain low. Here, we propose a new approach called MirAncesTar, which uses ancestral genome reconstruction to boost the accuracy of existing MTGs prediction tools for human miRNAs. For each miRNA and each putative human target UTR, our algorithm makes uses of existing prediction tools to identify putative target sites in the human UTR, as well as in its mammalian orthologs and inferred ancestral sequences. It then evaluates evidence in support of selective pressure to maintain target site counts (rather than sequences), accounting for the possibility of target site turnover. It finally integrates this measure with several simpler ones using a logistic regression predictor. MirAncesTar improves the accuracy of existing MTG predictors by 26% to 157%. Source code and prediction results for human miRNAs, as well as supporting evolutionary data are available at http://cs.mcgill.ca/∼blanchem/mirancestar. PMID:27899600

  15. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne.

    PubMed

    van Parijs, F R D; Ruttink, T; Boerjan, W; Haesaert, G; Byrne, S L; Asp, T; Roldán-Ruiz, I; Muylle, H

    2015-07-01

    In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.

  16. Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma.

    PubMed

    Asavarut, Paladd; O'Neill, Kevin; Syed, Nelofer; Hajitou, Amin

    2014-01-01

    The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.

  17. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-02-08

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.

  18. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands

    PubMed Central

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  19. Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma.

    PubMed

    Dhungel, Bijay; Jayachandran, Aparna; Layton, Christopher J; Steel, Jason C

    2017-11-01

    Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with high incidence globally. Increasing mortality and morbidity rates combined with limited treatment options available for advanced HCC press for novel and effective treatment modalities. Gene therapy represents one of the most promising therapeutic options. With the recent approval of herpes simplex virus for advanced melanoma, the field of gene therapy has received a major boost. Adeno-associated virus (AAV) is among the most widely used and effective viral vectors today with safety and efficacy demonstrated in a number of human clinical trials. This review identifies the obstacles for effective AAV based gene delivery to HCC which primarily include host immune responses and off-target effects. These drawbacks could be more pronounced for HCC because of the underlying liver dysfunction in most of the patients. We discuss approaches that could be adopted to tackle these shortcomings and manufacture HCC-targeted vectors. The combination of transductional targeting by modifying the vector capsid and transcriptional targeting using HCC-specific promoters has the potential to produce vectors which can specifically seek HCC and deliver therapeutic gene without significant side effects. Finally, the identification of novel HCC-specific ligands and promoters should facilitate and expedite this process.

  20. Interactome of Radiation-Induced microRNA-Predicted Target Genes

    PubMed Central

    Lhakhang, Tenzin W.; Chaudhry, M. Ahmad

    2012-01-01

    The microRNAs (miRNAs) function as global negative regulators of gene expression and have been associated with a multitude of biological processes. The dysfunction of the microRNAome has been linked to various diseases including cancer. Our laboratory recently reported modulation in the expression of miRNA in a variety of cell types exposed to ionizing radiation (IR). To further understand miRNA role in IR-induced stress pathways, we catalogued a set of common miRNAs modulated in various irradiated cell lines and generated a list of predicted target genes. Using advanced bioinformatics tools we identified cellular pathways where miRNA predicted target genes function. The miRNA-targeted genes were found to play key roles in previously identified IR stress pathways such as cell cycle, p53 pathway, TGF-beta pathway, ubiquitin-mediated proteolysis, focal adhesion pathway, MAPK signaling, thyroid cancer pathway, adherens junction, insulin signaling pathway, oocyte meiosis, regulation of actin cytoskeleton, and renal cell carcinoma pathway. Interestingly, we were able to identify novel targeted pathways that have not been identified in cellular radiation response, such as aldosterone-regulated sodium reabsorption, long-term potentiation, and neutrotrophin signaling pathways. Our analysis indicates that the miRNA interactome in irradiated cells provides a platform for comprehensive modeling of the cellular stress response to IR exposure. PMID:22924026

  1. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    ERIC Educational Resources Information Center

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  2. Topical liposome targeting of dyes, melanins, genes, and proteins selectively to hair follicles.

    PubMed

    Hoffman, R M

    1998-01-01

    For therapeutic and cosmetic modification of hair, we have developed a hair-follicle-selective macromolecule and small molecule targeting system with topical application of phosphatidylcholine-based liposomes. Liposome-entrapped melanins, proteins, genes, and small-molecules have been selectively targeted to the hair follicle and hair shafts of mice. Liposomal delivery of these molecules is time dependent. Negligible amounts of delivered molecules enter the dermis, epidermis, or bloodstream thereby demonstrating selective follicle delivery. Naked molecules are trapped in the stratum corneum and are unable to enter the follicle. The potential of the hair-follicle liposome delivery system for therapeutic use for hair disease as well as for cosmesis has been demonstrated in 3-dimensional histoculture of hair-growing skin and mouse in vivo models. Topical liposome selective delivery to hair follicles has demonstrated the ability to color hair with melanin, the delivery of the active lac-Z gene to hair matrix cells and delivery of proteins as well. Liposome-targeting of molecules to hair follicles has also been achieved in human scalp in histoculture. Liposomes thus have high potential in selective hair follicle targeting of large and small molecules, including genes, opening the field of gene therapy and other molecular therapy of the hair process to restore hair growth, physiologically restore or alter hair pigment, and to prevent or accelerate hair loss.

  3. The feasibility of targeted selective gene therapy of the hair follicle.

    PubMed

    Li, L; Hoffman, R M

    1995-07-01

    Loss of hair and hair colour is associated with ageing, and when it involves the scalp hair, it can be distressing to both sexes. Hair loss resulting from cancer chemotherapy is particularly distressing. However, safe, effective therapies directed to hair have only just started to be developed. The hair follicle is a complex skin appendage composed of epidermal and dermal tissue, with specialized keratinocytes, the hair matrix cells, forming the hair shaft. Specific therapy of the hair follicle depends on selective targeting of specific cells of the hair follicle. We have developed the histoculture of intact hair-growing skin on sponge-gel matrices. We have recently found in histocultured skin that liposomes can selectively target hair follicles to deliver both small and large molecules. That liposomes can target the hair follicle for delivery has been confirmed independently. Two decades ago we introduced the technique of entrapping DNA in liposomes for use in gene therapy. In this report we describe the selective targeting of the lacZ reporter gene to the hair follicles in mice after topical application of the gene entrapped in liposomes. These results demonstrate that highly selective, safe gene therapy for the hair process is feasible.

  4. Expression analysis of the TGF-β/SMAD target genes in adenocarcinoma of esophagogastric junction

    PubMed Central

    Peng, Defeng; Fu, Lin

    2016-01-01

    Abstract The TGF-β/SMAD signaling pathway is found to play pivotal roles in cell growth, differentiation and tumorigenesis. Its target genes are closely related to the biological behaviors of some malignancies. The aim of this study was to analyze the expression of the target genes of this pathway, including growth-related c-myc, p21, p15, and metastasis-related Snail, ZEB1 and Twist1 in the adenocarcinomas of esophagogastric junction (AEJ) tissues. Clinical esophagogastric junction tissues from 25 cases of AEJ patients and 10 cases of non-tumorous tissues from the same site were collected. Quantitative real-time poly chain reactions were carried out to analyze the expression of the above referred target genes of TGF-β/SMAD pathway. A notable up-regulation in the mRNA expression of p15, Snail, ZEB1, down-regulation of c-myc, was found whereas there were no significant change of p21 and Twist1. The findings suggests that the TGF-β/SMAD pathway might be abnormally activated in AEJ since most of the target genes of this pathway exhibited altered expression at mRNA level.

  5. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The target leaf spot (TLS) is a very important fungal disease in cucumber. In this study, we conducted fine genetic mapping of a recessively inherited resistance gene, cca-2 against TLS with 1,083 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapp...

  6. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    PubMed

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  7. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets

    PubMed Central

    2012-01-01

    Background Altered networks of gene regulation underlie many complex conditions, including cancer. Inferring gene regulatory networks from high-throughput microarray expression data is a fundamental but challenging task in computational systems biology and its translation to genomic medicine. Although diverse computational and statistical approaches have been brought to bear on the gene regulatory network inference problem, their relative strengths and disadvantages remain poorly understood, largely because comparative analyses usually consider only small subsets of methods, use only synthetic data, and/or fail to adopt a common measure of inference quality. Methods We report a comprehensive comparative evaluation of nine state-of-the art gene regulatory network inference methods encompassing the main algorithmic approaches (mutual information, correlation, partial correlation, random forests, support vector machines) using 38 simulated datasets and empirical serous papillary ovarian adenocarcinoma expression-microarray data. We then apply the best-performing method to infer normal and cancer networks. We assess the druggability of the proteins encoded by our predicted target genes using the CancerResource and PharmGKB webtools and databases. Results We observe large differences in the accuracy with which these methods predict the underlying gene regulatory network depending on features of the data, network size, topology, experiment type, and parameter settings. Applying the best-performing method (the supervised method SIRENE) to the serous papillary ovarian adenocarcinoma dataset, we infer and rank regulatory interactions, some previously reported and others novel. For selected novel interactions we propose testable mechanistic models linking gene regulation to cancer. Using network analysis and visualization, we uncover cross-regulation of angiogenesis-specific genes through three key transcription factors in normal and cancer conditions. Druggabilty analysis

  8. Cyp1a reporter zebrafish reveals target tissues for dioxin.

    PubMed

    Kim, Kun-Hee; Park, Hye-Jeong; Kim, Jin Hee; Kim, Suhyun; Williams, Darren R; Kim, Myeong-Kyu; Jung, Young Do; Teraoka, Hiroki; Park, Hae-Chul; Choy, Hyon E; Shin, Boo Ahn; Choi, Seok-Yong

    2013-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.

  9. Cancer-promoting and Inhibiting Effects of Dietary Compounds: Role of the Aryl Hydrocarbon Receptor (AhR)

    PubMed Central

    Powell, Joann B.; Ghotbaddini, Maryam

    2014-01-01

    Polyaromatic hydrocarbons, heterocyclic aromatic amines and dioxin-like compounds are environmental carcinogens shown to initiate cancer in a number of tissue types including prostate and breast. These environmental carcinogens elicit their effects through interacting with the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor. Naturally occurring compounds found in fruits and vegetables shown to have anti-carcinogenic effects also interact with the AhR. This review explores dietary and environmental exposure to chemical carcinogens and beneficial natural compounds whose effects are elicited by the AhR. PMID:25258701

  10. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases.

    PubMed

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-06-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background.

  11. Effect of Polypurine Reverse Hoogsteen Hairpins on Relevant Cancer Target Genes in Different Human Cell Lines.

    PubMed

    Villalobos, Xenia; Rodríguez, Laura; Solé, Anna; Lliberós, Carolina; Mencia, Núria; Ciudad, Carlos J; Noé, Véronique

    2015-08-01

    We studied the ability of polypurine reverse Hoogsteen hairpins (PPRHs) to silence a variety of relevant cancer-related genes in several human cell lines. PPRHs are hairpins formed by two antiparallel polypurine strands bound by intramolecular Hoogsteen bonds linked by a pentathymidine loop. These hairpins are able to bind to their target DNA sequence through Watson-Crick bonds producing specific silencing of gene expression. We designed PPRHs against the following genes: BCL2, TOP1, mTOR, MDM2, and MYC and tested them for mRNA levels, cytotoxicity, and apoptosis in prostate, pancreas, colon, and breast cancer cell lines. Even though all PPRHs were effective, the most remarkable results were obtained with those against BCL2 and mammalian target of rapamycin (mTOR) in decreasing cell survival and mRNA levels and increasing apoptosis in prostate, colon, and pancreatic cancer cells. In the case of TOP1, MDM2, and MYC, their corresponding PPRHs produced a strong effect in decreasing cell viability and mRNA levels and increasing apoptosis in breast cancer cells. Thus, we confirm that the PPRH technology is broadly useful to silence the expression of cancer-related genes as demonstrated using target genes involved in metabolism (DHFR), proliferation (mTOR), DNA topology (TOP1), lifespan and senescence (telomerase), apoptosis (survivin, BCL2), transcription factors (MYC), and proto-oncogenes (MDM2).

  12. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases

    PubMed Central

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background. PMID:23630316

  13. Neural cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy.

    PubMed

    Takahashi, Shu; Kato, Kazunori; Nakamura, Kiminori; Nakano, Rika; Kubota, Kazuishi; Hamada, Hirofumi

    2011-04-01

    In adenovirus-derived gene therapy, one of the problems is the difficulty in specific targeting. We have recently demonstrated that monoclonal antibody (mAb) libraries screened by fiber-modified adenovirus vector (Adv-FZ33), which is capable of binding to immunoglobulin-G (IgG), provide a powerful approach for the identification of suitable target antigens for prostate cancer therapy. Hybridoma libraries from mice immunized with androgen-dependent prostate cancer cell line LNCaP were screened and mAb were selected. Through this screening, we obtained one mAb, designated LNI-29, that recognizes a glycoprotein with an apparent molecular mass of 100 kD. It was identified as neural cell adhesion molecule 2 (NCAM2). Some prostate and breast cancer cell lines highly expressed NCAM2 whereas normal prostate cell lines expressed NCAM2 at low levels. In contrast to the low efficiency of gene transduction by Adv-FZ33 with a control antibody, LNI-29-mediated Adv-FZ33 infection induces high rates of gene delivery in NCAM2-positive cancers. NCAM2-mediated therapeutic gene transduction of uracil phosphoribosyltransferase (UPRT) had a highly effective cytotoxic effect on NCAM2-positive cancer cells, whereas it had less of an effect in cases with a control antibody. In conclusion, NCAM2 should be a novel gene therapy target for the treatment of prostate and breast cancer.

  14. AhR-mediated Gene Expression in the Developing Mouse Telencephalon

    PubMed Central

    Gohlke, Julia M; Stockton, Pat S; Sieber, Stella; Foley, Julie; Portier, Christopher J

    2009-01-01

    We hypothesize that TCDD induced developmental neurotoxicity is modulated through an AhR dependent interaction with key regulatory neuronal differentiation pathways during telencephalon development. To test this hypothesis we examined global gene expression in both dorsal and ventral telencephalon tissues in E13.5 AhR -/- and wildtype mice exposed to TCDD or vehicle. Consistent with previous biochemical, pathological and behavioral studies, our results suggest TCDD initiated changes in gene expression in the developing telencephalon are primarily AhR dependent, as no statistically significant gene expression changes are evident after TC