Science.gov

Sample records for ahr-dependent luciferase activity

  1. Opiate analgesics' dual role in firefly luciferase activity.

    PubMed

    Sudhaharan, T; Reddy, A R

    1998-03-31

    The effects of three opiate analgesics, isolated from opium, on the firefly luciferase enzyme have been studied. Morphine (MN), 6-acetylmorphine (MAM), and diacetylmorphine (DAM) inhibited the enzyme activity at different levels. At lower concentrations, MN and MAM enhanced enzyme activity, effecting inhibition at higher concentrations. However, DAM inhibited the enzyme activity at all concentrations investigated. The stimulating activity of MN and MAM is attributed to the hydrophilic interaction of the proton donor-acceptor type with the polar regions of the luciferase located outside the binding pocket of the active site. The inhibition at higher concentrations of MN and MAM and at all concentrations of DAM is found to be competitive in nature, with the analgesics competing for the binding of the enzyme's natural substrate luciferin. The binding site of the luciferase could accommodate only one analgesic molecule. Binding constants determined from bioluminescence studies showed that the inhibitor binding site is hydrophobic in nature. The inhibition constants of analgesics are in the order MN > MAM > DAM. The greater binding of DAM to luciferase is attributed to its ability to form a ground state complex with ATP and greater hydrophobicity. At higher concentrations of ATP, the binding constants increased. The results obtained are explained assuming that the firefly luciferase acts as a subtype mu-opioid receptor model.

  2. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.

    PubMed

    Ebrahimi, Mehdi; Hosseinkhani, Saman; Heydari, Akbar; Khavari-Nejad, Ramazan Ali; Akbari, Jafar

    2012-10-01

    Firefly luciferase catalyzes production of light from luciferin in the presence of Mg(2+)-ATP and oxygen. This enzyme has wide range of applications in biotechnology and development of biosensors. The low thermal stability of wild-type firefly luciferase is a limiting factor in most applications. Improvements in activity and stability of few enzymes in the presence of ionic liquids were shown in many reports. In this study, kinetic and thermal stability of firefly luciferase from Photinus pyralis in the presence of three tetramethylguanidine-based ionic liquids was investigated. The enzyme has shown improved activity in the presence of [1, 1, 3, 3-tetramethylguanidine][acetate], but in the presence of [TMG][trichloroacetate] and [TMG][triflouroacetate] activity, it decreased or unchanged significantly. Among these ionic liquids, only [TMG][Ac] has increased the thermal stability of luciferase. Incubation of [TMG][Ac] with firefly luciferase brought about with decrease of K(m) for ATP.

  3. Proteasome inhibitors reduce luciferase and beta-galactosidase activity in tissue culture cells.

    PubMed

    Deroo, Bonnie J; Archer, Trevor K

    2002-06-01

    Reporter enzymes are commonly used in cell biology to study transcriptional activity of genes. Recently, reporter enzymes in combination with compounds that inhibit proteasome function have been used to study the effect of blocking transcription factor degradation on gene activation. While investigating the effect of proteasome inhibition on steroid receptor activation of the mouse mammary tumor virus (MMTV) promoter, we found that treatment with proteasome inhibitors enhanced glucocorticoid activation of the promoter attached to a chloramphenicol acetyltransferase (CAT) reporter, but inhibited activation of MMTV attached to a firefly luciferase or beta-galactosidase reporter. MMTV RNA levels under these conditions correlated with the promoter activity observed using the CAT reporter, suggesting that proteasome inhibitor treatment interfered with luciferase or beta-galactosidase reporter assays. Washout experiments demonstrated that the majority of luciferase activity was lost if the proteasome inhibitor was added at the same time luciferase was produced, not once the functional protein was made, suggesting that proteasome inhibition interferes with production of luciferase protein. Indeed, we found that proteasome inhibitor treatment dramatically reduced the levels of luciferase and beta-galactosidase protein produced, as determined by Western blot. Thus, treatment with proteasome inhibitors interferes with luciferase and beta-galactosidase reporter assays, possibly by inhibiting production of a functional reporter protein.

  4. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  5. A Luciferase Reporter Gene System for High-Throughput Screening of γ-Globin Gene Activators.

    PubMed

    Xie, Wensheng; Silvers, Robert; Ouellette, Michael; Wu, Zining; Lu, Quinn; Li, Hu; Gallagher, Kathleen; Johnson, Kathy; Montoute, Monica

    2016-01-01

    Luciferase reporter gene assays have long been used for drug discovery due to their high sensitivity and robust signal. A dual reporter gene system contains a gene of interest and a control gene to monitor non-specific effects on gene expression. In our dual luciferase reporter gene system, a synthetic promoter of γ-globin gene was constructed immediately upstream of the firefly luciferase gene, followed downstream by a synthetic β-globin gene promoter in front of the Renilla luciferase gene. A stable cell line with the dual reporter gene was cloned and used for all assay development and HTS work. Due to the low activity of the control Renilla luciferase, only the firefly luciferase activity was further optimized for HTS. Several critical factors, such as cell density, serum concentration, and miniaturization, were optimized using tool compounds to achieve maximum robustness and sensitivity. Using the optimized reporter assay, the HTS campaign was successfully completed and approximately 1000 hits were identified. In this chapter, we also describe strategies to triage hits that non-specifically interfere with firefly luciferase. PMID:27316998

  6. The smallest natural high-active luciferase: cloning and characterization of novel 16.5-kDa luciferase from copepod Metridia longa.

    PubMed

    Markova, Svetlana V; Larionova, Marina D; Burakova, Ludmila P; Vysotski, Eugene S

    2015-01-30

    Coelenterazine-dependent copepod luciferases containing natural signal peptide for secretion are a very convenient analytical tool as they enable monitoring of intracellular events with high sensitivity, without destroying cells or tissues. This property is well suited for application in biomedical research and development of cell-based assays for high throughput screening. We report the cloning of cDNA gene encoding a novel secreted non-allelic 16.5-kDa isoform (MLuc7) of Metridia longa luciferase, which, in fact, is the smallest natural luciferase of known for today. Despite the small size, isoform contains 10 conservative Cys residues suggesting the presence of up to 5 SS bonds. This hampers the efficient production of functionally active recombinant luciferase in bacterial expression systems. With the use of the baculovirus expression system, we produced substantial amounts of the proper folded MLuc7 luciferase with a yield of ∼3 mg/L of a high purity protein. We demonstrate that MLuc7 produced in insect cells is highly active and extremely thermostable, and is well suited as a secreted reporter when expressed in mammalian cells ensuring higher sensitivity of detection as compared to another Metridia luciferase isoform (MLuc164) which is widely employed in real-time imaging. PMID:25543059

  7. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters

    PubMed Central

    Buckley, Suzanne M. K.; Delhove, Juliette M. K. M.; Perocheau, Dany P.; Karda, Rajvinder; Rahim, Ahad A.; Howe, Steven J.; Ward, Natalie J.; Birrell, Mark A.; Belvisi, Maria G.; Arbuthnot, Patrick; Johnson, Mark R.; Waddington, Simon N.; McKay, Tristan R.

    2015-01-01

    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4−/− mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively. PMID:26138224

  8. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Maguire, William F; Inglese, James

    2009-03-01

    High-throughput screening (HTS) assays used in drug discovery frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activity. An important caveat to consider, however, is that compounds can directly affect the reporter, leading to nonspecific but highly reproducible assay signal modulation. In rare cases, this activity appears counterintuitive; for example, some FLuc inhibitors, acting through posttranslational Fluc reporter stabilization, appear to activate gene expression. Previous efforts to characterize molecules that influence luciferase activity identified a subset of 3,5-diaryl-oxadiazole-containing compounds as FLuc inhibitors. Here, we evaluate a number of compounds with this structural motif for activity against FLuc. One such compound is PTC124 {3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid}, a molecule originally identified in a cell-based FLuc assay as having nonsense codon suppression activity [Welch EM, et al., Nature (2007) 447:87-91]. We find that the potency of FLuc inhibition for the tested compounds strictly correlates with their activity in a FLuc reporter cell-based nonsense codon assay, with PTC124 emerging as the most potent FLuc inhibitor (IC(50) = 7 +/- 1 nM). However, these compounds, including PTC124, fail to show nonsense codon suppression activity when Renilla reniformis luciferase (RLuc) is used as a reporter and are inactive against the RLuc enzyme. This suggests that the initial discovery of PTC124 may have been biased by its direct effect on the FLuc reporter, implicating firefly luciferase as a molecular target of PTC124. Our results demonstrate the value of understanding potential interactions between reporter enzymes and chemical compounds and emphasize the importance of implementing the appropriate control assays before interpreting HTS results.

  9. Latent luciferase activity in the fruit fly revealed by a synthetic luciferin

    PubMed Central

    Mofford, David M.; Reddy, Gadarla Randheer; Miller, Stephen C.

    2014-01-01

    Beetle luciferases are thought to have evolved from fatty acyl-CoA synthetases present in all insects. Both classes of enzymes activate fatty acids with ATP to form acyl-adenylate intermediates, but only luciferases can activate and oxidize d-luciferin to emit light. Here we show that the Drosophila fatty acyl-CoA synthetase CG6178, which cannot use d-luciferin as a substrate, is able to catalyze light emission from the synthetic luciferin analog CycLuc2. Bioluminescence can be detected from the purified protein, live Drosophila Schneider 2 cells, and from mammalian cells transfected with CG6178. Thus, the nonluminescent fruit fly possesses an inherent capacity for bioluminescence that is only revealed upon treatment with a xenobiotic molecule. This result expands the scope of bioluminescence and demonstrates that the introduction of a new substrate can unmask latent enzymatic activity that differs significantly from an enzyme’s normal function without requiring mutation. PMID:24616520

  10. Analysis of structural changes in active site of luciferase adsorbed on nanofabricated hydrophilic Si surface by molecular-dynamics simulations

    SciTech Connect

    Nishiyama, Katsuhiko; Hoshino, Tadatsugu

    2007-05-21

    Interactions between luciferase and a nanofabricated hydrophilic Si surface were explored by molecular-dynamics simulations. The structural changes in the active-site residues, the residues affecting the luciferin binding, and the residues affecting the bioluminescence color were smaller on the nanofabricated hydrophilic Si surface than on both a hydrophobic Si surface and a hydrophilic Si surface. The nanofabrication and wet-treatment techniques are expected to prevent the decrease in activity of luciferase on the Si surface.

  11. Bioluminescence determination of enzyme activity of firefly luciferase in the presence of pesticides.

    PubMed

    Trajkovska, Snezana; Tosheska, Katerina; Aaron, Jean Jacques; Spirovski, Filip; Zdravkovski, Zoran

    2005-01-01

    Firefly luciferase (EC 1.13.12.5) (FL) is the key enzyme in the firefly bioluminescence method (FB), which is widely used to determine the viability of living cells. The FB method can also be applied to monitoring the influence of different pollutants, such as pesticides. Firefly luciferase is a hydrophobic enzyme and its activity depends on the type of solvent, pH and substances present in the reaction mixture. The influence of three aromatic pesticides, including fenoxaprop-p-ethyl (I), diclofop-methyl (II) and metsulfuron methyl (III), on the enzyme activity was indirectly evaluated through the measurement of emitted light in the bioluminescence reaction, expressed in relative luminescence units (RLU). The reaction mixture used in the bioluminescence measurements consisted of: Tris buffer (pH 7.75), adenosine triphosphate (ATP) and ATP monitoring reagent, where FL is present. Ethanol-water solutions of each pesticide were then added at concentrations of 2.4 x 10(-4)-2.4 x 10(-8) mol/L. The FL activity inhibition factors (FL In%) were determined. The FL activity was maximally inhibited in the presence of all pesticides under study at a concentration of 2.4 x 10(-4) mol/L and was lowered by about 15-26% for pesticide I at concentrations of 2.4 x 10(-5)-2.4 x 10(-8) mol/L, whereas pesticides II and III, applied in the same concentration range, showed smaller FL inhibition values (5.3-20%). The pesticide degradation products (obtained after a 1 month period), measured in the same experimental conditions, in most cases exhibited a much less inhibitory effect on the enzyme activity than the corresponding initial pesticide.

  12. Fimbrolide Natural Products Disrupt Bioluminescence of Vibrio By Targeting Autoinducer Biosynthesis and Luciferase Activity.

    PubMed

    Zhao, Weining; Lorenz, Nicola; Jung, Kirsten; Sieber, Stephan A

    2016-01-18

    Vibrio is a model organism for the study of quorum sensing (QS) signaling and is used to identify QS-interfering drugs. Naturally occurring fimbrolides are important tool compounds known to affect QS in various organisms; however, their cellular targets have so far remained elusive. Here we identify the irreversible fimbrolide targets in the proteome of living V. harveyi and V. campbellii via quantitative mass spectrometry utilizing customized probes. Among the major hits are two protein targets with essential roles in Vibrio QS and bioluminescence. LuxS, responsible for autoinducer 2 biosynthesis, and LuxE, a subunit of the luciferase complex, were both covalently modified at their active-site cysteines leading to inhibition of activity. The identification of LuxE unifies previous reports suggesting inhibition of bioluminescence downstream of the signaling cascade and thus contributes to a better mechanistic understanding of these QS tool compounds.

  13. Infection by bacterial pathogens expressing type III secretion decreases luciferase activity: ramifications for reporter gene studies.

    PubMed

    Savkovic, S D; Koutsouris, A; Wu, G; Hecht, G

    2000-09-01

    Pathogenic microbes influence gene regulation in eukaryotic hosts. Reporter gene studies can define the roles of promoter regulatory sequences. The effect of pathogenic bacteria on reporter genes has not been examined. The aim of this study was to identify which reporter genes are reliable in studies concerning host gene regulation by bacterial pathogens expressing type III secretory systems. Human intestinal epithelial cells, T84, Caco-2 and HT-29, were transfected with plasmids containing luciferase (luc), chloramphenicol acetyltransferase (CAT) or beta-galactosidase (beta-gal) as reporter genes driven by the inducible interleukin-8 (IL-8) or constitutively active simian virus 40 (SV40) promoter. Cells were infected with enteropathogenic E. coli or Salmonella typhimurium, and the reporter activity was assessed. Luc activity significantly decreased following infection, regardless of the promoter. The activity of recombinant luc was nearly ablated by incubation with either EPEC or Salmonella in a cell-free system. Activity was partially preserved by protease inhibitors, and immunoblot analysis showed a decreased amount and molecular weight of recombinant luc, suggesting protein degradation. Neither beta-gal nor CAT activity was altered by infection. Disruption of type III secretion prevented the loss of luc activity. We conclude that CAT or beta-gal, but not luc, can be used as reliable reporter genes to assess the impact of pathogenic microbes, especially those expressing type III secretion on host cell gene regulation.

  14. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    PubMed Central

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-01-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress. PMID:27713569

  15. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    NASA Astrophysics Data System (ADS)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  16. Luminescent and substrate binding activities of firefly luciferase N-terminal domain.

    PubMed

    Zako, Tamotsu; Ayabe, Keiichi; Aburatani, Takahide; Kamiya, Noriho; Kitayama, Atsushi; Ueda, Hiroshi; Nagamune, Teruyuki

    2003-07-30

    Firefly luciferase catalyzes highly efficient emission of light from the substrates luciferin, Mg-ATP, and oxygen. A number of amino acid residues are identified to be important for the luminescent activity, and almost all the key residues are thought to be located in the N-terminal domain (1-437), except one in the C-terminal domain, Lys529, which is thought to be critical for efficient substrate orientation. Here we show that the purified N-terminal domain still binds to the substrates luciferin and ATP with reduced affinity, and retains luminescent activity of up to 0.03% of the wild-type enzyme (WT), indicating that all the essential residues for the activity are located in the N-terminal domain. Also found is low luminescence enhancement by coenzyme A (CoA), which implies a lower product inhibition than in the WT enzyme. These findings have interesting implications for the light emission reaction mechanism of the enzyme, such as reaction intermediates, product inhibition, and the role of the C-terminal domain.

  17. Biophysical characterization of highly active recombinant Gaussia luciferase expressed in Escherichia coli.

    PubMed

    Rathnayaka, Tharangani; Tawa, Minako; Sohya, Shihori; Yohda, Masafumi; Kuroda, Yutaka

    2010-09-01

    Recently, the smallest bioluminescent protein (MW: 19.9 kDa), Gaussia luciferase (GLuc), has been isolated from the marine copepod Gaussia princeps and has attracted much attention as a reporter protein. However, preparation of large quantities of homogeneous natively folded recombinant GLuc appears to be difficult due to its ten cysteines. Here, we report the biophysical characterization of recombinant GLuc expressed using a novel Escherichia coli expression system based on a cold induced expression vector (pCold). Using this system, a large fraction of the protein was expressed in the soluble fraction. GLuc, purified exclusively from the supernatant using nickel affinity chromatography, yielded a large amount of pure GLuc with a native disulfide bond pattern (Soluble-GLuc). Soluble-GLuc had a strong bioluminescence activity and it retained 65% of its activity after 30 min incubation at 95 degrees C. Soluble-GLuc remained fully folded until 40 degrees C, as assessed by circular dichroism; and the thermal denaturation curve was S-shaped, indicating a cooperative transition, with a midpoint temperature of 56 degrees C. These results indicate that both the structure and bioluminescence activity of GLuc remain stable at high temperatures, and they strongly suggest GLuc's potential as a reporter protein. PMID:20452471

  18. Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity

    NASA Astrophysics Data System (ADS)

    Käkinen, Aleksandr; Ding, Feng; Chen, Pengyu; Mortimer, Monika; Kahru, Anne; Ke, Pu Chun

    2013-08-01

    We report on the dose-dependent inhibition of firefly luciferase activity induced by exposure of the enzyme to 20 nm citrate-coated silver nanoparticles (AgNPs). The inhibition mechanism was examined by characterizing the physicochemical properties and biophysical interactions of the enzyme and the AgNPs. Consistently, binding of the enzyme induced an increase in zeta potential from -22 to 6 mV for the AgNPs, triggered a red-shift of 44 nm in the absorbance peak of the AgNPs, and rendered a ‘protein corona’ of 20 nm in thickness on the nanoparticle surfaces. However, the secondary structures of the enzyme were only marginally affected upon formation of the protein corona, as verified by circular dichroism spectroscopy measurement and multiscale discrete molecular dynamics simulations. Rather, inductively coupled plasma mass spectrometry measurement revealed a significant ion release from the AgNPs. The released silver ions could readily react with the cysteine residues and N-groups of the enzyme to alter the physicochemical environment of their neighboring catalytic site and subsequently impair the enzymatic activity.

  19. Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity.

    PubMed

    Käkinen, Aleksandr; Ding, Feng; Chen, Pengyu; Mortimer, Monika; Kahru, Anne; Ke, Pu Chun

    2013-08-30

    We report on the dose-dependent inhibition of firefly luciferase activity induced by exposure of the enzyme to 20 nm citrate-coated silver nanoparticles (AgNPs). The inhibition mechanism was examined by characterizing the physicochemical properties and biophysical interactions of the enzyme and the AgNPs. Consistently, binding of the enzyme induced an increase in zeta potential from -22 to 6 mV for the AgNPs, triggered a red-shift of 44 nm in the absorbance peak of the AgNPs, and rendered a 'protein corona' of 20 nm in thickness on the nanoparticle surfaces. However, the secondary structures of the enzyme were only marginally affected upon formation of the protein corona, as verified by circular dichroism spectroscopy measurement and multiscale discrete molecular dynamics simulations. Rather, inductively coupled plasma mass spectrometry measurement revealed a significant ion release from the AgNPs. The released silver ions could readily react with the cysteine residues and N-groups of the enzyme to alter the physicochemical environment of their neighboring catalytic site and subsequently impair the enzymatic activity.

  20. Avian retroviral expression of luciferase.

    PubMed

    Garber, E A; Rosenblum, C I; Chute, H T; Scheidel, L M; Chen, H

    1991-12-01

    Biologically active replication-competent (subgroups A, B, and C) and replication-defective Rous sarcoma virus-derived vectors containing the cDNA encoding firefly luciferase as a reporter gene were constructed. In these retroviral vectors, luciferase is expressed from a spliced subgenomic mRNA. A biologically active replication-defective UR2 virus-derived vector expressing the reporter gene as a gag-luciferase fusion protein from an unspliced genomic mRNA was also constructed. The luciferase reporter gene was used because it lacks homology with chicken genomic sequences and because a rapid and sensitive direct enzymatic assay is available to monitor luciferase expression in retrovirus-infected cells. The levels of luciferase expression in luciferase recombinant retrovirus-infected chicken embryo fibroblasts are greater than 10(3) higher than that detected in uninfected cells or in cells infected with retroviral vectors carrying other genes. Endpoint dilution titration experiments demonstrated that one infected cell can be detected in a background of 10(3) uninfected cells. The vectors are stable in tissue culture and high level expression of the unselected luciferase reporter gene is maintained. The vectors were used to express luciferase in chicken embryos, demonstrating the potential utility of luciferase as a reporter in vivo.

  1. Extended-release PEG-luciferin allows for long-term imaging of firefly luciferase activity in vivo.

    PubMed

    Chandran, Sachin S; Williams, Simon A; Denmeade, Samuel R

    2009-01-01

    Bioluminescence has gained favour in the last decade as an approach for observing tumours in vivo in a non-destructive manner. This very sensitive technique is based on light emission by the reaction of luciferin with the enzyme luciferase, as measured by a photodetector. Ever since the development of recombinant tumour cell lines that have been engineered to produce luciferase, a vast number of experiments have been carried out examining tumour growth, tumour metastasis and the effect of therapeutic regimens in such cases. A primary stumbling block, however, is the relatively short circulatory half-life of luciferin. In this paper, we propose the PEGylation of 6-amino-D-luciferin to extend its in vivo circulatory half-life, thus making the possibility of long-term observations in animals possible. The covalent attachment was through a carbamate linker that is known to hydrolyse in vivo, releasing the parent compound. Based on our studies, longer emission of the PEGylated luciferin was observed, as compared to free luciferin in mice bearing PC3 prostate tumours expressing luciferase. This result suggests that this reagent can be used in applications requiring extended monitoring of luciferase activation in vivo. PMID:18780328

  2. Effect of antiangiogenic therapy on luciferase activity in a cytomegalovirus- or HSP70-promoter-transfected M21 tumor model

    NASA Astrophysics Data System (ADS)

    Hundt, Walter; Schink, Christian; Steinbach, Silke; O'Connell-Rodwell, Caitlin E.; Kiessling, Andreas; Librizzi, Damiano; Burbelko, Mykhaylo; Guccione, Samira

    2012-06-01

    We investigated the effect of targeted gene therapy on heat shock protein 70 expression (Hsp70) and protein production (HSP70) in a melanoma tumor model (M21; M21-L). M21 and M21-L cells transfected with a plasmid containing the Hsp70 (Hspa1b) or the cytomegalovirus (CMV) promoter and the luciferase reporter gene were injected into mice; the resulting tumors grew to a size of 650 mm3. Mice (five per group) were intravenously treated with an Arg-Gly-Asp peptide-nanoparticle/Raf-1 kinase inhibitor protein complex [RGD-NP/RAF(-)] or with a nanoparticle control. Bioluminescence imaging (IVIS®, Xenogen, USA) was performed at 12, 24, 48, and 72 h after the treatment cycle. Western blot analysis of HSP70 protein was performed to monitor protein expression. The size of the treated M21 tumors remained fairly constant (647.8+/-103.4 mm2 at the beginning versus 704.8+/-94.4 mm3 at the end of the experiment). The size of the M21-L tumors increased, similar to the untreated control tumors. Bioluminescent imaging demonstrated that when transcription was controlled by the CMV promoter, luciferase activity decreased to 17.9%+/-4.3% of baseline values in the treated M21 tumors. When transcription was controlled by the Hsp70 promoter, the highest luciferase activity (4.5+/-0.7-fold increase over base-line values) was seen 24 h after injection in the M21 tumors; however, no luciferase activity was seen in the M21-L tumors. In accordance with bioluminescent imaging, western blot analysis showed a peak in HSP70 production at 24 h after the injection of the RGD-NP/RAF(-) complex in the M21 tumors; however, no HSP70 protein induction was seen in the M21-L tumors. Thus, targeted antiangiogenic therapy can induce Hsp70 expression and HSP70 protein in melanoma tumors.

  3. Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii.

    PubMed

    Ruecker, Ovidiu; Zillner, Karina; Groebner-Ferreira, Regina; Heitzer, Markus

    2008-08-01

    For the model organism Chlamydomonas reinhardtii, a codon-adapted gene variant of the extracellular luciferase of Gaussia princeps was generated as a sensitive molecular tool to study gene expression from the nuclear genome. In the past, monitoring promoter activity in Chlamydomonas employing the commonly used luciferase encoded by Renilla reniformis was hampered due to the detection limit of the reporter assay, especially if analyzing weak promoters. In this work, the expression of Gaussia-luciferase from such promoters resulted in an average luminescent activity at least 500 times higher than that detected for the Renilla enzyme. The wildtype signal peptide of Gaussia princeps efficiently mediated the export of the luciferase into the culture medium of Chlamydomonas strain cw15arg ( - ), and the characterization of the secreted protein showed an unexpected temperature instability, probably arising from post-translational modifications made by the algae. To further test the utility of Gaussia-luciferase, promoter sequences originating from different viral genomes were analyzed for their ability to drive transgene expression in Chlamydomonas. Solely, the 35S-promoter of the Cauliflower mosaic virus (CaMV) displayed a significant transcriptional activity and this happened only when the shunting region of the 5'-untranslated region of the 35S-sequence was omitted from the luciferase expression cassette. Gaussia-luciferase proved to be a superior quantifiable reporter gene for the analysis of constitutive promoter sequences in Chlamydomonas reinhardtii.

  4. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    SciTech Connect

    Wang Lei; Sasai, Ken Akagi, Tsuyoshi; Tanaka, Shinya

    2008-08-29

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development.

  5. The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity.

    PubMed

    Prado, R A; Santos, C R; Kato, D I; Murakami, M T; Viviani, V R

    2016-05-11

    Beetle luciferases, the enzymes responsible for bioluminescence, are special cases of CoA-ligases which have acquired a novel oxygenase activity, offering elegant models to investigate the structural origin of novel catalytic functions in enzymes. What the original function of their ancestors was, and how the new oxygenase function emerged leading to bioluminescence remains unclear. To address these questions, we solved the crystal structure of a recently cloned Malpighian luciferase-like enzyme of unknown function from Zophobas morio mealworms, which displays weak luminescence with ATP and the xenobiotic firefly d-luciferin. The three dimensional structure of the N-terminal domain showed the expected general fold of CoA-ligases, with a unique carboxylic substrate binding pocket, permitting the binding and CoA-thioesterification activity with a broad range of carboxylic substrates, including short-, medium-chain and aromatic acids, indicating a generalist function consistent with a xenobiotic-ligase. The thioesterification activity with l-luciferin, but not with the d-enantiomer, confirms that the oxygenase activity emerged from a stereoselective impediment of the thioesterification reaction with the latter, favoring the alternative chemiluminescence oxidative reaction. The structure and site-directed mutagenesis support the involvement of the main-chain amide carbonyl of the invariant glycine G323 as the catalytic base for luciferin C4 proton abstraction during the oxygenase activity in this enzyme and in beetle luciferases (G343).

  6. The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity.

    PubMed

    Prado, R A; Santos, C R; Kato, D I; Murakami, M T; Viviani, V R

    2016-05-11

    Beetle luciferases, the enzymes responsible for bioluminescence, are special cases of CoA-ligases which have acquired a novel oxygenase activity, offering elegant models to investigate the structural origin of novel catalytic functions in enzymes. What the original function of their ancestors was, and how the new oxygenase function emerged leading to bioluminescence remains unclear. To address these questions, we solved the crystal structure of a recently cloned Malpighian luciferase-like enzyme of unknown function from Zophobas morio mealworms, which displays weak luminescence with ATP and the xenobiotic firefly d-luciferin. The three dimensional structure of the N-terminal domain showed the expected general fold of CoA-ligases, with a unique carboxylic substrate binding pocket, permitting the binding and CoA-thioesterification activity with a broad range of carboxylic substrates, including short-, medium-chain and aromatic acids, indicating a generalist function consistent with a xenobiotic-ligase. The thioesterification activity with l-luciferin, but not with the d-enantiomer, confirms that the oxygenase activity emerged from a stereoselective impediment of the thioesterification reaction with the latter, favoring the alternative chemiluminescence oxidative reaction. The structure and site-directed mutagenesis support the involvement of the main-chain amide carbonyl of the invariant glycine G323 as the catalytic base for luciferin C4 proton abstraction during the oxygenase activity in this enzyme and in beetle luciferases (G343). PMID:27101527

  7. Firefly luciferase inhibition.

    PubMed

    Leitão, João M M; Esteves da Silva, Joaquim C G

    2010-10-01

    Firefly luciferase (Luc) is the most studied of the luciferase enzymes and the mechanism and kinetics of the reactions catalyzed by this enzyme have been relatively well characterized. Luc catalyzes the bioluminescent reaction involving firefly luciferin (D-LH(2)), adenosine triphosphate (ATP), magnesium ion and molecular oxygen with the formation of an electronically excited species (oxyluciferin), inorganic pyrophosphate (PPi), carbon dioxide and adenosine monophosphate (AMP). Luc also catalyzes other non-luminescent reactions, which can interfere with the light production mechanism. Following electronic relaxation, the excited oxyluciferin emits radiation in the visible region of the electromagnetic spectrum (550-570 nm). Among the various possible compounds, several classes of inhibitory substances interfere with the activity of this enzyme: here, we consider substrate-related compounds, intermediates or products of the Luc catalyzed reactions, in addition to anesthetics and, fatty acids. This review summarizes the main inhibitors of Luc and the corresponding inhibition kinetic parameters.

  8. Epirubicin, Identified Using a Novel Luciferase Reporter Assay for Foxp3 Inhibitors, Inhibits Regulatory T Cell Activity

    PubMed Central

    Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira

    2016-01-01

    Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors. PMID:27284967

  9. Development of Neh2-Luciferase Reporter and Its Application for High Throughput Screening and Real-Time Monitoring of Nrf2 Activators

    PubMed Central

    Smirnova, Natalya A.; Haskew-Layton, Renee E.; Basso, Manuela; Hushpulian, Dmitry M.; Payappilly, Jimmy B.; Speer, Rachel E.; Ahn, Young-Hoon; Rakhman, Ilay; Cole, Philip A.; Pinto, John T.; Ratan, Rajiv R.; Gazaryan, Irina G.

    2011-01-01

    SUMMARY The NF-E2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant defense and detoxification. To directly monitor stabilization of Nrf2, we fused its Neh2 domain, responsible for the interaction with its nucleocytoplasmic regulator, Keap1, to firefly luciferase (Neh2-luciferase). We show that Neh2 domain is sufficient for recognition, ubiquitination, and proteasomal degradation of Neh2-luciferase fusion protein. The Neh2-luc reporter system allows direct monitoring of the adaptive response to redox stress and classification of drugs based on the time course of reporter activation. The reporter was used to screen the Spectrum library of 2000 biologically active compounds to identify activators of Nrf2. The most robust and yet nontoxic Nrf2 activators found—nordihydroguaiaretic acid, fisetin, and gedunin—induced astrocyte-dependent neuroprotection from oxidative stress via an Nrf2-dependent mechanism. PMID:21700211

  10. Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators.

    PubMed

    Smirnova, Natalya A; Haskew-Layton, Renee E; Basso, Manuela; Hushpulian, Dmitry M; Payappilly, Jimmy B; Speer, Rachel E; Ahn, Young-Hoon; Rakhman, Ilay; Cole, Philip A; Pinto, John T; Ratan, Rajiv R; Gazaryan, Irina G

    2011-06-24

    The NF-E2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant defense and detoxification. To directly monitor stabilization of Nrf2, we fused its Neh2 domain, responsible for the interaction with its nucleocytoplasmic regulator, Keap1, to firefly luciferase (Neh2-luciferase). We show that Neh2 domain is sufficient for recognition, ubiquitination, and proteasomal degradation of Neh2-luciferase fusion protein. The Neh2-luc reporter system allows direct monitoring of the adaptive response to redox stress and classification of drugs based on the time course of reporter activation. The reporter was used to screen the Spectrum library of 2000 biologically active compounds to identify activators of Nrf2. The most robust and yet nontoxic Nrf2 activators found--nordihydroguaiaretic acid, fisetin, and gedunin--induced astrocyte-dependent neuroprotection from oxidative stress via an Nrf2-dependent mechanism. PMID:21700211

  11. [Subunit interactions in luciferase from the firefly Luciola mingrelica. Their role in the manifestation of enzyme activity and during thermoinactivation].

    PubMed

    Brovko, L Iu; Beliaeva, E I; Ugarova, N N

    1982-05-01

    It was shown that the dimers of the firefly luciferase possess the catalytic activity, whereas the monomers do not. The dissociation constant (Kd) for active dimers was determined at pH 7.0--8.4 within the temperature range of 15--35 degrees and at MgSO4 and Na2SO4 concentrations varying from 37 to 370 mM and 49 to 490 mM, respectively. Under variable conditions the Kd value changed only insignificantly and made up to 13 nm. The substitution of Na2SO4 for MgSO4 decreased Kd 2.5 times. The effective rate constant for the enzyme inactivation (kin) was increased more than 5-fold, when the luciferase concentration was decreased from 200 down to 3.5 nM in the presence of 37 mM MgSO4. When the concentration of the latter was increased up to 185 mM, the value of kin ceased to depend on the enzyme concentration. The decrease of kin was also observed at an increase in Na2SO4. An inactivation pattern for the enzyme in solution was determined both for the monomer and for the dimer of the enzyme. The equations allowing to calculate the inactivation constant for the monomer (Ki) and dimer (k2) at different pH values, temperatures and salt concentrations were obtained. The enzyme was found to be stabilized by salts more than 10-fold, the stabilizing effect being far more pronounced for the enzyme monomer than for the dimer. The dependence of the effective kin value on pH and temperature was primarily influenced by the dependence of the inactivation rate constant for the dimer. PMID:7093378

  12. Use Of Low Light Image Microscopy To Monitor Genetically Engineered Bacterial Luciferase Gene Expression In Living Cells And Gene Activation Throughout The Development Of A Transgenic Organism

    NASA Astrophysics Data System (ADS)

    Langridge, W. H.; Escher, Alan P.; Baga, M.; O'Kane, Dennis J.; Wampler, John E.; Koncz, C.; Schell, John D.; Szalay, A. A.

    1989-12-01

    Procaryotic and eucaryotic expression vectors which contain a marker gene for selection of transformants linked to genes encoding bacterial luciferase for detection of promoter activated gene expression in vivo were used to transform the appropriate host organisms and drug resistant colonies, cells, or calli were obtained. Bacterial luciferase expression was measured by a luminescence assay for quantitative determination of promoter activation. The cellular localization of bacteria inside the host plant cell cytoplasm was achieved in a single infected plant cell based on the light emitting ability of the genetically engineered bacteria. In addition, the bacterial luciferase marker gene fusions were used to monitor cell type, tissue, and organ specific gene expression in transgenic plants in vivo. To monitor physiological changes during ontogeny of a transformed plant, low light video microscopy, aided by real time image processing techniques developed specifically to enhance extreme low light images, was successfully applied.

  13. A real-time bioluminescent HTS method for measuring protein kinase activity influenced neither by ATP concentration nor by luciferase inhibition.

    PubMed

    Lundin, Arne; Eriksson, Jonas

    2008-08-01

    The firefly luciferin-luciferase reaction has been used to set up an assay for protein kinase based on measuring ATP consumption rate as the first-order rate constant for the kinase reaction. The assay obviates the problems encountered with previous bioluminescent protein kinase assays such as interference with the luciferase reaction from library compounds, nonlinear standard curves, and limited dynamic ranges. In the assay described in the present paper luciferase and luciferin are present during the entire kinase reaction, and the light emission can be measured continuously. In an HTS situation the light emission is measured only twice, i.e., initially and after a predetermined time. After a fivefold reduction of the ATP concentration a Z' value of 0.96 was obtained. Light emission data from samples with kinase are normalized with light emission data from blanks without kinase. First-order rate constants for the kinase reaction calculated from normalized light emission are not affected by a moderate degree of inactivation of luciferase and luciferin during the measuring time. The constants have the same value at all ATP concentrations much lower than the K(m) of the luciferase and the kinase. These factors make the assay very robust and influenced neither by ATP concentration nor by luciferase inhibition. The measuring time depends on the kinase activity and can be varied from minutes to more than 8 h provided the kinase is stable and the evaporation of water from the wells is acceptable. The assay is linear with respect to kinase activity over three orders of magnitude. The new reagents also allowed us to determine K(m) values for ATP and for Kemptide.

  14. Novel Luciferase-Based Reporter System to Monitor Activation of ErbB2/Her2/neu Pathway Noninvasively During Radiotherapy

    SciTech Connect

    Wolf, Frank; Li Wenrong; Li Fang; Li Chuanyuan

    2011-01-01

    Purpose: To develop a split-luciferase-based reporter system that allows for noninvasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. Methods and Materials: Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase and of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered owing to the rationale that on activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus, the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. Results: We have shown that our reporter systems functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period after radiotherapy. Conclusions: We believe that the novel ErbB2/Her2/neu reporter we have presented is a powerful tool to study the biology of the Her2-neu pathway in vitro and in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu-targeted therapeutic agents.

  15. A novel luciferase based reporter system to monitor activation of the ErbB2/Her2/neu pathway non-invasively during radiotherapy

    PubMed Central

    Wolf, Frank; Li, Wenrong; Li, Fang; Li, Chuan-Yuan

    2010-01-01

    Purpose To develop a split-luciferase based reporter system that allows for non-invasive monitoring of activation of the Her2/neu pathway in vivo in a quantitative and sensitive manner. Methods and Materials Fusion proteins of the ErbB2/Her2/neu receptor to the N-terminal fragment of luciferase as well as of its downstream binding partner Shc to the C-terminal fragment of luciferase have been engineered based on the rationale that upon activation and binding of the Her2 receptor molecule to Shc, luciferase function will be reconstituted. Thus the resulting bioluminescence signals can serve as a surrogate measure of receptor activation. Results We show that our reporter systems functions well in vitro in breast cancer cells and in vivo in xenograft tumors. In particular, the activities of Her2/neu in xenograft tumors could be monitored serially for an extended period of time after radiotherapy. Conclusions We believe that the novel ErbB2/Her2/neu reporter presented here is a powerful tool to study the biology of the Her2-neu pathway in vitro as well as in vivo. It should also facilitate the development and rapid evaluation of new Her2/neu targeted therapeutics. PMID:20934271

  16. Knock-in Luciferase Reporter Mice for In Vivo Monitoring of CREB Activity.

    PubMed

    Akhmedov, Dmitry; Rajendran, Kavitha; Mendoza-Rodriguez, Maria G; Berdeaux, Rebecca

    2016-01-01

    The cAMP response element binding protein (CREB) is induced during fasting in the liver, where it stimulates transcription of rate-limiting gluconeogenic genes to maintain metabolic homeostasis. Adenoviral and transgenic CREB reporters have been used to monitor hepatic CREB activity non-invasively using bioluminescence reporter imaging. However, adenoviral vectors and randomly inserted transgenes have several limitations. To overcome disadvantages of the currently used strategies, we created a ROSA26 knock-in CREB reporter mouse line (ROSA26-CRE-luc). cAMP-inducing ligands stimulate the reporter in primary hepatocytes and myocytes from ROSA26-CRE-luc animals. In vivo, these animals exhibit little hepatic CREB activity in the ad libitum fed state but robust induction after fasting. Strikingly, CREB was markedly stimulated in liver, but not in skeletal muscle, after overnight voluntary wheel-running exercise, uncovering differential regulation of CREB in these tissues under catabolic states. The ROSA26-CRE-luc mouse line is a useful resource to study dynamics of CREB activity longitudinally in vivo and can be used as a source of primary cells for analysis of CREB regulatory pathways ex vivo. PMID:27336479

  17. Knock-in Luciferase Reporter Mice for In Vivo Monitoring of CREB Activity

    PubMed Central

    Akhmedov, Dmitry; Rajendran, Kavitha; Mendoza-Rodriguez, Maria G.

    2016-01-01

    The cAMP response element binding protein (CREB) is induced during fasting in the liver, where it stimulates transcription of rate-limiting gluconeogenic genes to maintain metabolic homeostasis. Adenoviral and transgenic CREB reporters have been used to monitor hepatic CREB activity non-invasively using bioluminescence reporter imaging. However, adenoviral vectors and randomly inserted transgenes have several limitations. To overcome disadvantages of the currently used strategies, we created a ROSA26 knock-in CREB reporter mouse line (ROSA26-CRE-luc). cAMP-inducing ligands stimulate the reporter in primary hepatocytes and myocytes from ROSA26-CRE-luc animals. In vivo, these animals exhibit little hepatic CREB activity in the ad libitum fed state but robust induction after fasting. Strikingly, CREB was markedly stimulated in liver, but not in skeletal muscle, after overnight voluntary wheel-running exercise, uncovering differential regulation of CREB in these tissues under catabolic states. The ROSA26-CRE-luc mouse line is a useful resource to study dynamics of CREB activity longitudinally in vivo and can be used as a source of primary cells for analysis of CREB regulatory pathways ex vivo. PMID:27336479

  18. A highly sensitive assay of IRE1 activity using the small luciferase NanoLuc: Evaluation of ALS-related genetic and pathological factors.

    PubMed

    Hikiji, Takahiro; Norisada, Junpei; Hirata, Yoko; Okuda, Kensuke; Nagasawa, Hideko; Ishigaki, Shinsuke; Sobue, Gen; Kiuchi, Kazutoshi; Oh-hashi, Kentaro

    2015-08-01

    Activation of inositol-requiring enzyme 1 (IRE1) due to abnormal conditions of the endoplasmic reticulum (ER) is responsible for the cleavage of an unspliced form of X-box binding protein 1 (uXBP1), producing its spliced form (sXBP1). To estimate IRE1 activation, several analytical procedures using green fluorescence protein and firefly luciferase have been developed and applied to clarify the roles of IRE1-XBP1 signaling pathways during development and disease progression. In this study, we established a highly sensitive assay of IRE1 activity using a small luciferase, NanoLuc, which has approximately 100-fold higher activity than firefly luciferase. The NanoLuc reporter, which contained a portion of the spliced region of XBP1 upstream of NanoLuc, was highly sensitive and compatible with several types of cell lines. We found that NanoLuc was secreted into the extracellular space independent of the ER-Golgi pathway. The NanoLuc activity of an aliquot of culture medium from the neuroblastoma-spinal neuron hybrid cell line NSC-34 reflected the toxic stimuli-induced elevation of intracellular activity well. Using this technique, we evaluated the effects of several genetic and pathological factors associated with the onset and progression of amyotrophic lateral sclerosis (ALS) on NanoLuc reporter activity. Under our experimental conditions, inhibition of ER-Golgi transport by the overexpression of mutant Sar1 activated luciferase activity, whereas the co-expression of mutant SOD1 or the C-terminal fragment of TDP-43 (TDP-25) did not. The addition of homocysteine elevated the reporter activity; however, we did not observe any synergistic effect due to the overexpression of the mutant genes described above. Taken together, these data show that our analytical procedure is highly sensitive and convenient for screening useful compounds that modulate IRE1-XBP1 signaling pathways as well as for estimating IRE1 activation in several pathophysiological diseases.

  19. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane

    PubMed Central

    2014-01-01

    Background Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene. Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. Results The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences. Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures. Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes. In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. Conclusions We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred

  20. Supramolecular Control over Split-Luciferase Complementation.

    PubMed

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.

  1. Ah-receptor controlled luciferase expression: A novel species-specific bioassay for Ah-receptor active compounds in environmental matrices

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Koeman, J.H.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) are persistent lipophilic compounds that accumulate especially in sediments and in top predators of the aquatic foodchain. PHAHs elicit a number of common toxic responses, which are highly species-specific. The most toxic, planar, PHAHs share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on this mechanism, the toxic equivalency factor (TEF) concept has been developed, allowing hazard and risk assessment for mixtures of PHAHs. The TEF-approach assumes additive responses, but also synergistic and antagonistic interactions have been observed. In addition, the often large number of compounds in a mixture, low levels of individual congeners, possible presence of unknown AhR-active substances, and species differences in inducibility, ask for an comprehensive approach in hazard assessment. A number of recombinant cell lines, including Hepa1c1c7 mouse and H411E rat hepatoma cell lines, were developed, showing AhR-mediated firefly (Photinuspyralis) luciferase gene expression. The response by 2,3,7,8-TCDD in the CALUX (chemical activated luciferase expression) assay with these cell lines is dose-dependent, and not subjected to substrate inhibition at higher ligand concentrations. The detection limit for 2,3,7,8-TCDD is below 1 pM (0.2 fmol). The luciferase assay has been successfully applied for monitoring the amount of AhR-active compounds in small aliquots of blood plasma and in both sediment and pore-water samples, of which examples will be presented.

  2. Firefly luciferase gene: structure and expression in mammalian cells.

    PubMed Central

    de Wet, J R; Wood, K V; DeLuca, M; Helinski, D R; Subramani, S

    1987-01-01

    The nucleotide sequence of the luciferase gene from the firefly Photinus pyralis was determined from the analysis of cDNA and genomic clones. The gene contains six introns, all less than 60 bases in length. The 5' end of the luciferase mRNA was determined by both S1 nuclease analysis and primer extension. Although the luciferase cDNA clone lacked the six N-terminal codons of the open reading frame, we were able to reconstruct the equivalent of a full-length cDNA using the genomic clone as a source of the missing 5' sequence. The full-length, intronless luciferase gene was inserted into mammalian expression vectors and introduced into monkey (CV-1) cells in which enzymatically active firefly luciferase was transiently expressed. In addition, cell lines stably expressing firefly luciferase were isolated. Deleting a portion of the 5'-untranslated region of the luciferase gene removed an upstream initiation (AUG) codon and resulted in a twofold increase in the level of luciferase expression. The ability of the full-length luciferase gene to activate cryptic or enhancerless promoters was also greatly reduced or eliminated by this 5' deletion. Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity. Depending on the instrumentation employed to detect luciferase activity, we estimate this assay to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression. Images PMID:3821727

  3. Superluminescent variants of marine luciferases for bioassays.

    PubMed

    Kim, Sung Bae; Suzuki, Hideyuki; Sato, Moritoshi; Tao, Hiroaki

    2011-11-15

    In this study, a rational synthesis of superluminescent variants from marine luciferases with prolonged bioluminescence has been demonstrated. A putative active site of a model marine luciferase, Gaussia princeps Luciferase (GLuc), was assigned and modified by a site-directed mutagenesis. The potent variants were found to generate up to 10 times stronger bioluminescence, emitting red shifts of up to 33 nm with natural coelenterazine than native GLuc, rendering an efficient optical signature in bioassays. The advantageous properties were demonstrated with mammalian two-hybrid assays, single-chain probes, and metastases of murine B16 melanoma in BALB/c nude mice. The unique ideas for engineering GLuc are proved to be valid even for other marine luciferases. PMID:21951281

  4. The stem-loop luciferase assay for polyadenylation (SLAP) method for determining CstF-64-dependent polyadenylation activity.

    PubMed

    Hockert, J Andrew; Macdonald, Clinton C

    2014-01-01

    Polyadenylation is an essential cellular process in eukaryotic cells (Edmonds M and Abrams R, J Biol Chem 235, 1142-1149, 1960; Zhao J et al., Microbiol Mol Biol Rev 63, 405-445, 1999; Edmonds M, Progr Nucleic Acid Res Mol Biol 71, 285-389, 2002). For this reason, it has been difficult to examine the functions of specific polyadenylation proteins in vivo. Here, we describe a cell culture assay that allows structure-function experiments on CstF-64, a protein that binds to pre-mRNAs downstream of the cleavage site for accurate and efficient polyadenylation. We also demonstrate that the stem-loop luciferase assay for polyadenylation (SLAP) accurately reflects CstF-64-dependent polyadenylation. This assay could be easily adapted to the study of other important RNA-binding proteins in polyadenylation.

  5. Luciferase reporter assay in Drosophila and mammalian tissue culture cells

    PubMed Central

    Yun, Chi

    2014-01-01

    Luciferase reporter gene assays are one of the most common methods for monitoring gene activity. Because of their sensitivity, dynamic range, and lack of endogenous activity, luciferase assays have been particularly useful for functional genomics in cell-based assays, such as RNAi screening. This unit describes delivery of two luciferase reporters with other nucleic acids (siRNA /dsRNA), measurement of the dual luciferase activities, and analysis of data generated. The systematic query of gene function (RNAi) combined with the advances in luminescent technology have made it possible to design powerful whole genome screens to address diverse and significant biological questions. PMID:24652620

  6. Discovery, adaptation and transcriptional activity of two tick promoters: Construction of a dual luciferase reporter system for optimization of RNA interference in Rhipicephalus (Boophilus) microplus cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vec...

  7. Coelenterazine-dependent luciferases.

    PubMed

    Markova, S V; Vysotski, E S

    2015-06-01

    Bioluminescence is a widespread natural phenomenon. Luminous organisms are found among bacteria, fungi, protozoa, coelenterates, worms, molluscs, insects, and fish. Studies on bioluminescent systems of various organisms have revealed an interesting feature - the mechanisms underlying visible light emission are considerably different in representatives of different taxa despite the same final result of this biochemical process. Among the several substrates of bioluminescent reactions identified in marine luminous organisms, the most commonly used are imidazopyrazinone derivatives such as coelenterazine and Cypridina luciferin. Although the substrate used is the same, bioluminescent proteins that catalyze light emitting reactions in taxonomically remote luminous organisms do not show similarity either in amino acid sequences or in spatial structures. In this review, we consider luciferases of various luminous organisms that use coelenterazine or Cypridina luciferin as a substrate, as well as modifications of these proteins that improve their physicochemical and bioluminescent properties and therefore their applicability in bioluminescence imaging in vivo. PMID:26531017

  8. Relevance of Frank's solvent classification as typically aqueous and typically non-aqueous to activities of firefly luciferase, alcohol dehydrogenase, and alpha-chymotrypsin in aqueous binaries.

    PubMed

    Fadnavis, Nitin Wasantrao; Seshadri, Ramanujam; Sheelu, Gurrala; Madhuri, Kallakunta Vasantha

    2005-01-15

    Effects of cosolvent concentration on activity of fire fly luciferase, alpha-chymotrypsin, and alcohol dehydrogenase from baker's yeast (Saccharomyces cerevisiae) have been studied for several solvents with varying hydrophobicities (logP from +1.0 to -1.65) and polarities (dielectric constant from 7.4 to 109). The inhibitory effect of the cosolvent is examined in light of Frank's classification of solvents into 'typically aqueous (TA)' and 'typically non-aqueous (TNA).' The solvent concentration at which the enzyme activity decreases to half, the C(50) values, for TA solvents such as 1-cyclohexyl-2-pyrrolidinone, 2-butoxyethanol, 1-methyl-2-pyrrolidinone, tetrahydrofuran, t-butanol, and ethanol correlate quite well with their critical hydrophobic interaction concentration, rather than logP, while those for TNA solvents such as acetonitrile, dimethyl formamide, formamide, and dimethyl sulfoxide correlate well with logP. The interactions of TA solvents with proteins appear to be governed mainly by hydrophobic interactions while both hydrophobic and hydrophilic interactions play important role in case of TNA solvents.

  9. Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid.

    PubMed Central

    Pauwels, A; Cenijn, P H; Schepens, P J; Brouwer, A

    2000-01-01

    We assessed exposure to dioxin-like compounds using chemical and bioassay analysis in different matrices in a female population. A total of 106 serum and 9 follicular fluid samples were collected from infertile women attending Centers for Reproductive Medicine in Belgium from 1996 to 1998. Major polychlorinated biphenyl (PCB) congeners were quantified by chemical analysis using gas chromatography with electron-capture detection, and the chemical-activated luciferase gene expression (CALUX) bioassay was used to determine the total dioxin-like toxic equivalence (TEQ) of mixtures of polyhalogenated aromatic hydrocarbons present in body fluids, such as serum and follicular fluid. To the best of our knowledge, this is the first investigation to determine TEQ values by the CALUX bioassay in follicular fluid. The TEQ levels in both matrices are well correlated (r = 0.83, p = 0.02). As the chemical and bioassay analysis executed in this study do not cover the same span of polyhalogenated aromatic hydrocarbons, we did not expect totally correlated results. Moreover, the sample workup and quantification of the analytes differed completely. Nonetheless, the TEQ values in human extracts correlated well with the sum of four major PCB congeners chemically determined in both serum and follicular fluid. These results indicate that the CALUX bioassay may serve as a simple, relatively inexpensive prescreening tool for exposure assessment in epidemiologic surveys. Images Figure 1 Figure 2 PMID:10856030

  10. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    PubMed

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  11. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    PubMed

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  12. Chaperones rescue luciferase folding by separating its domains.

    PubMed

    Scholl, Zackary N; Yang, Weitao; Marszalek, Piotr E

    2014-10-10

    Over the last 50 years, significant progress has been made toward understanding how small single-domain proteins fold. However, very little is known about folding mechanisms of medium and large multidomain proteins that predominate the proteomes of all forms of life. Large proteins frequently fold cotranslationally and/or require chaperones. Firefly (Photinus pyralis) luciferase (Luciferase, 550 residues) has been a model of a cotranslationally folding protein whose extremely slow refolding (approximately days) is catalyzed by chaperones. However, the mechanism by which Luciferase misfolds and how chaperones assist Luciferase refolding remains unknown. Here we combine single-molecule force spectroscopy (atomic force microscopy (AFM)/single-molecule force spectroscopy) with steered molecular dynamic computer simulations to unravel the mechanism of chaperone-assisted Luciferase refolding. Our AFM and steered molecular dynamic results show that partially unfolded Luciferase, with the N-terminal domain remaining folded, can refold robustly without chaperones. Complete unfolding causes Luciferase to get trapped in very stable non-native configurations involving interactions between N- and C-terminal residues. However, chaperones allow the completely unfolded Luciferase to refold quickly in AFM experiments, strongly suggesting that chaperones are able to sequester non-natively contacting residues. More generally, we suggest that many chaperones, rather than actively promoting the folding, mimic the ribosomal exit tunnel and physically separate protein domains, allowing them to fold in a cotranslational-like sequential process.

  13. Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase.

    PubMed

    Nazari, Mahboobeh; Hosseinkhani, Saman

    2011-07-01

    The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make three separate mutant enzymes with a single bridge. Moreover, C(81)-A(105)C mutant luciferase was modified and successfully secreted to the extracellular medium. By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red and the optimum temperature of activity was also increased (up to 10 °C more than wild type). Amongst mutants with a disulfide bridge, P(451)C-V(469)C and L(306)C-L(309)C mutants exhibit a single peak in the red region of the spectrum at pH 7.8. It is worthwhile to note that with the design of a secreted luciferase, the increased optimum temperature, thermostability and emission of red light might make mutant luciferase suitable reporters for the study of gene expression in high through-put screening.

  14. Liganded thyroid hormone receptor inhibits phorbol 12-O-tetradecanoate-13-acetate-induced enhancer activity via firefly luciferase cDNA.

    PubMed

    Misawa, Hiroko; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Iwaki, Hiroyuki; Matsunaga, Hideyuki; Suzuki, Shingo; Ishizuka, Keiko; Oki, Yutaka; Nakamura, Hirotoshi

    2012-01-01

    Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity

  15. Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties.

    PubMed

    Noori, Ali Reza; Hosseinkhani, Saman; Ghiasi, Parisa; Akbari, Jafar; Heydari, Akbar

    2014-03-01

    Ionic liquids as neoteric solvents, microwave irradiation, and alternative energy source are becoming as a solvent for many enzymatic reactions. We recently showed that the incubation of firefly luciferase from Photinus pyralis with various ionic liquids increased the activity and stability of luciferase. Magnetic nanoparticles supported ionic liquids have been obtained by covalent bonding of ionic liquids-silane on magnetic silica nanoparticles. In the present study, the effects of [γ-Fe2O3@SiO2][BMImCl] and [γ-Fe2O3@SiO2][BMImI] were investigated on the structural properties and function of luciferase using circular dichroism, fluorescence spectroscopy, and bioluminescence assay. Enzyme activity and structural stability increased in the presence of magnetic nanoparticles supported ionic liquids. Furthermore, the effect of ingredients which were used was not considerable on K(m) value of luciferase for adenosine-5'-triphosphate and also K(m) value for luciferin.

  16. Thermostabilization of firefly luciferase by in vivo directed evolution.

    PubMed

    Koksharov, Mikhail I; Ugarova, Natalia N

    2011-11-01

    Firefly luciferase is widely used in a number of areas of biotechnology and molecular biology. However, rapid inactivation of wild-type (WT) luciferases at elevated temperatures often hampers their application. A simple non-lethal in vivo screening scheme was used to identify thermostable mutants of luciferase in Escherichia coli colonies. This scheme allowed carrying out each cycle of mutagenesis in a rapid and efficient manner. Four rounds of directed evolution were conducted on a part of the gene coding for amino acid residues 130-390 of Luciola mingrelica luciferase. The resultant mutant designated 4TS had a half-life of 10 h at 42°C, which is 65-fold higher compared with the WT luciferase. Moreover, the mutant 4TS showed a 1.9-fold increase in specific activity, 5.7-fold reduction of K(m) for ATP and a higher-temperature optimum compared with the WT enzyme. 4TS contains eight mutations, four of which are suggested to be mainly responsible for the enhancement of thermostability: R211L, A217V, E356K and S364C. Thus, directed evolution with non-lethal colony screening for in vivo bioluminescence activity proved to be an effective and efficient approach for increasing thermal stability of luciferase while retaining high catalytic activity.

  17. Doubly catalytic sensing of HIV-1-related CCR5 sequence in prokaryotic cell-free translation system using riboregulator-controlled luciferase activity.

    PubMed

    Sando, Shinsuke; Narita, Atsushi; Abe, Kenji; Aoyama, Yasuhiro

    2005-04-20

    A molecular-beacon-type riboregulator (mRNA) was applied to multiply catalytic gene sensing. It consists of a reporter gene for firefly protein luciferase and, upstream thereof, a regulator hairpin domain composed of an RBS/anti-RBS stem (RBS = ribosome binding site) and a loop which is complementary to the target. The hairpin and, hence, the RBS are rendered open upon binding of a target oligonucleotide of the human CC chemokine receptor 5 sequence in a prokaryotic cell-free translation system (10 muL) to ignite ribosomal catalytic translation, or transcription/translation when using a DNA form of the probe, to produce luciferase, which is assayed by a catalytic chemiluminescence reaction. The sensing, using an unmodified RNA or even dsDNA as a probe with a chemiluminescence output, is thus doubly catalytic or amplifiable with a sensitivity at

  18. Bortezomib and ixazomib protect firefly luciferase from degradation and can flaw respective reporter gene assays.

    PubMed

    Becker, Jonas Philipp; Clemens, Jannick Robert; Theile, Dirk; Weiss, Johanna

    2016-09-15

    Firefly luciferase-based reporter gene assays are the most commonly used assays to investigate the transcriptional regulation of gene expression. However, direct interaction of tested compounds with the firefly luciferase leading to altered enzymatic activity may lead to misinterpretation of experimental data. When investigating the proteasome inhibitors bortezomib, carfilzomib, and ixazomib, we observed increased luminescence for bortezomib and ixazomib, but not for carfilzomib, in a pregnane-X-receptor (PXR) reporter gene assay, which was inconsistent with the mRNA expression levels of the main PXR target gene CYP3A4. To further scrutinize this phenomenon, we performed experiments with constitutively expressed firefly luciferase and demonstrated that the increase in cellular firefly luciferase activity is independent from PXR activation or CYP3A4 promoter. Using cell-free assays with recombinant firefly luciferase enzyme, we made the counterintuitive observation that firefly luciferase activity is inhibited by bortezomib and ixazomib in a reversible and competitive manner. This inhibition stabilizes the firefly luciferase enzyme against proteolytic degradation (e.g., toward trypsin), thereby increasing its half-life with subsequent enhancement of total cellular luminescence that eventually mimicked PXR-driven luciferase induction. These data show that particular compounds can strikingly interfere with firefly luciferase and once more illustrate the importance of careful interpretation of data obtained from luciferase-based assays. PMID:27325500

  19. Bortezomib and ixazomib protect firefly luciferase from degradation and can flaw respective reporter gene assays.

    PubMed

    Becker, Jonas Philipp; Clemens, Jannick Robert; Theile, Dirk; Weiss, Johanna

    2016-09-15

    Firefly luciferase-based reporter gene assays are the most commonly used assays to investigate the transcriptional regulation of gene expression. However, direct interaction of tested compounds with the firefly luciferase leading to altered enzymatic activity may lead to misinterpretation of experimental data. When investigating the proteasome inhibitors bortezomib, carfilzomib, and ixazomib, we observed increased luminescence for bortezomib and ixazomib, but not for carfilzomib, in a pregnane-X-receptor (PXR) reporter gene assay, which was inconsistent with the mRNA expression levels of the main PXR target gene CYP3A4. To further scrutinize this phenomenon, we performed experiments with constitutively expressed firefly luciferase and demonstrated that the increase in cellular firefly luciferase activity is independent from PXR activation or CYP3A4 promoter. Using cell-free assays with recombinant firefly luciferase enzyme, we made the counterintuitive observation that firefly luciferase activity is inhibited by bortezomib and ixazomib in a reversible and competitive manner. This inhibition stabilizes the firefly luciferase enzyme against proteolytic degradation (e.g., toward trypsin), thereby increasing its half-life with subsequent enhancement of total cellular luminescence that eventually mimicked PXR-driven luciferase induction. These data show that particular compounds can strikingly interfere with firefly luciferase and once more illustrate the importance of careful interpretation of data obtained from luciferase-based assays.

  20. Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift.

    PubMed

    Kheirabadi, Mitra; Sharafian, Zohreh; Naderi-Manesh, Hossein; Heineman, Udo; Gohlke, Ulrich; Hosseinkhani, Saman

    2013-12-01

    Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission.

  1. Comparative spectrochronography of different types of luciferases

    NASA Astrophysics Data System (ADS)

    Cherednikova, E. Y.; Chikishev, Andrey Y.; Dement'eva, E. I.; Kosobokova, O. V.

    1999-02-01

    We investigated the dynamic properties of two firefly luciferases: Luciola Mingrelica, that contains the only tryptophan residue and Photinus Pyralis, that contains two tryptophan residues by means of fluorescence spectrochronography method. Relaxation time of protein matrix for Luciola mingrelica is estimated to be 2 ns. The dynamic properties of luciferases differ in spite of similar composition. We investigated also the influence of microenvironment on spectral and kinetic properties of luciferin. Fluorescence decay curves and stationary spectra were measured in 7 different solvents and in complex with luciferase. The closest coincidence of decay curves in the solvents with the decay curve in the complex with luciferase was obtained in water. It means that microenvironment of luciferase is not hydrophobic, as it had been determined earlier.

  2. Creating a mutant luciferase resistant to HPV chemical inhibition by random mutagenesis and colony-level screening.

    PubMed

    Kim-Choi, Eileen; Danilo, Christiane; Kelly, Jeffrey; Carroll, Ronnie; Shonnard, David; Rybina, Irina

    2006-01-01

    Firefly luciferase covers a wide range of applications. One common usage of the bioluminescence assay is the measurement of intracellular concentration of adenosine triphosphate (ATP) for cell viability. However, inhibition of the enzyme reaction by chemicals in the assay has so far limited the application of luciferase for high production volume (HPV) chemical testing. The objective of this research was to obtain a mutant luciferase with increased stability to inhibition by HPV chemicals, yet retaining specific activity comparable to, or better than, wild-type luciferase. The enzymatic properties of the wild-type luciferase were improved by random mutagenesis and colony-level screening. In this paper, the detailed process of creating mutant luciferases for testing the toxicity of HPV chemicals is described. As a result, two mutant luciferases were created, with different degrees of improved tolerance to inhibition by chloroform and other HPV chemicals.

  3. The nuclear factor κB inhibitor (E)-2-fluoro-4'-methoxystilbene inhibits firefly luciferase.

    PubMed

    Braeuning, Albert; Vetter, Silvia

    2012-12-01

    Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4'-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4'-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4'-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4'-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays.

  4. Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence.

    PubMed

    Baggett, Brenda; Roy, Rupali; Momen, Shafinaz; Morgan, Sherif; Tisi, Laurence; Morse, David; Gillies, Robert J

    2004-10-01

    Luciferase from the North American firefly (Photinis pyralis) is a useful reporter gene in vivo, allowing noninvasive imaging of tumor growth, metastasis, gene transfer, drug treatment, and gene expression. Luciferase is heat labile with an in vitro halflife of approximately 3 min at 37 degrees C. We have characterized wild type and six thermostabilized mutant luciferases. In vitro, mutants showed half-lives between 2- and 25-fold higher than wild type. Luciferase transfected mammalian cells were used to determine in vivo half-lives following cycloheximide inhibition of de novo protein synthesis. This showed increased in vivo thermostability in both wild-type and mutant luciferases. This may be due to a variety of factors, including chaperone activity, as steady-state luciferase levels were reduced by geldanamycin, an Hsp90 inhibitor. Mice inoculated with tumor cells stably transfected with mutant or wild-type luciferases were imaged. Increased light production and sensitivity were observed in the tumors bearing thermostable luciferase. Thermostable proteins increase imaging sensitivity. Presumably, as more active protein accumulates, detection is possible from a smaller number of mutant transfected cells compared to wild-type transfected cells.

  5. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  6. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase.

    PubMed

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-11-01

    An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies.

  7. Bioanalytical systems based on bioluminescence resonance energy transfer using firefly luciferase.

    PubMed

    Smirnova, Darya V; Ugarova, Natalia N

    2015-01-01

    Bioanalytical systems based on the Bioluminescence Resonance Energy Transfer (BRET) are widely used in fundamental biochemical studies, as well as for screening and analysis of biologically active compounds. The Renilla luciferase is the most often used energy donor in this system despite the fact that it has low bioluminescence quantum yield and demonstrates not so stable luminescence in time as the firefly luciferase. Moreover, the bioluminescence λmax is observed in the green region of the spectrum, which complicates signal recording in tissues during in vivo experiments. The firefly luciferases do not have such drawbacks and show great promise for applications in BRET systems. Different versions of BRET systems based on firefly luciferases and the methods for increasing their efficiency are considered in this review; examples of the use of BRET systems based on the firefly luciferases for highly sensitive determination of proteases and for homogeneous immunoassays are presented. PMID:26377546

  8. Hydrophobin-1 promotes thermostability of firefly luciferase.

    PubMed

    Lohrasbi-Nejad, Azadeh; Torkzadeh-Mahani, Masoud; Hosseinkhani, Saman

    2016-07-01

    The thermal sensitivity of firefly luciferase limits its use in certain applications. Firefly luciferase has hydrophobic sites on its surface, which lead to aggregation and inactivation of the enzyme at temperatures over 30 °C. We have successfully stabilized firefly luciferase at high temperatures with the assistance of a unique protein, hydrophobin-1 (HFB1). HFB1 is a small secretory protein belonging to class II of hydrophobins with a low molecular weight (7.5 kDa) and distinct functional hydrophobic patch on its surface. The interaction of HFB1 with hydrophobic sites on the surface of luciferase was confirmed by extrinsic fluorescence studies using 8-anilino-1-naphthalenesulfonic acid (ANS) as a hydrophobic reporter probe. Calculation of thermodynamic parameters of heat inactivation of luciferase shows that conformational changes and flexibility of enzyme decreased in the presence of HFB1, and thermostability of the HFB1-treated enzyme increased. Furthermore, the addition of HFB1 into the enzymatic solution leads to an increase in catalytic efficiency of luciferase and subsequently improves the utility of the enzyme as an ATP detector. PMID:27191938

  9. Hydrophobin-1 promotes thermostability of firefly luciferase.

    PubMed

    Lohrasbi-Nejad, Azadeh; Torkzadeh-Mahani, Masoud; Hosseinkhani, Saman

    2016-07-01

    The thermal sensitivity of firefly luciferase limits its use in certain applications. Firefly luciferase has hydrophobic sites on its surface, which lead to aggregation and inactivation of the enzyme at temperatures over 30 °C. We have successfully stabilized firefly luciferase at high temperatures with the assistance of a unique protein, hydrophobin-1 (HFB1). HFB1 is a small secretory protein belonging to class II of hydrophobins with a low molecular weight (7.5 kDa) and distinct functional hydrophobic patch on its surface. The interaction of HFB1 with hydrophobic sites on the surface of luciferase was confirmed by extrinsic fluorescence studies using 8-anilino-1-naphthalenesulfonic acid (ANS) as a hydrophobic reporter probe. Calculation of thermodynamic parameters of heat inactivation of luciferase shows that conformational changes and flexibility of enzyme decreased in the presence of HFB1, and thermostability of the HFB1-treated enzyme increased. Furthermore, the addition of HFB1 into the enzymatic solution leads to an increase in catalytic efficiency of luciferase and subsequently improves the utility of the enzyme as an ATP detector.

  10. Expression and stabilization of bacterial luciferase in mammalian cells

    NASA Astrophysics Data System (ADS)

    Patterson, Stacey S.; Dionisi, Hebe M.; Gupta, Rakesh K.; Sayler, Gary S.

    2004-06-01

    Current mammalian bioreporters using either firefly luciferase (luc) or GFP constructs require lysis and/or exogenous excitation to evoke a measurable response. Consequently, these cells cannot serve as continuous, on-line monitoring devices for in vivo imaging. Bacterial luciferase, lux, produces a photonic reaction that is cyclic, resulting in autonomous signal generation without the requirement for exogenous substrates or external activation. Therefore, lux-based bioluminescent bioreporters are the only truly autonomous light-generating sensors in existence. Unfortunately, the bacterial lux system has not yet been efficiently expressed in mammalian cells. In this research, three approaches for optimal expression of the a and b subunits of the bacterial luciferase protein were compared and reporter signal stability was evaluated from stably transfected human embryonic kidney cells. Maximum light levels were obtained from cells expressing the luciferase subunits linked with an internal ribosomal entry site (IRES). Cells harboring this construct produced bioluminescence equaling 2.6 X 106 photons/sec compared to 7.2 X 104 photons/sec obtained from cells expressing the luciferase from a dual promoter vector and 3.5 X 104 photons/sec from a Lux fusion protein. Furthermore, the bioluminescence levels remained stable for more than forty cell passages (5 months) in the absence of antibiotic selection. After this time, bioluminescence signals dropped at a rate of approximately 5% per cell passage. These data indicate that mammalian cell lines can be engineered to efficiently express the bacterial lux system, thus lending themselves to possible long-term continuous monitoring or imaging applications in vivo.

  11. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity. PMID:27405166

  12. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity.

  13. Cloning and characterization of the homologous genes of firefly luciferase in the mealworm beetle, Tenebrio molitor.

    PubMed

    Oba, Y; Sato, M; Inouye, S

    2006-06-01

    Three homologous genes of firefly luciferase were cloned from the non-luminous beetle Tenebrio molitor. Three gene products for homologues, TmLL-1, TmLL-2 and TmLL-3, showed fatty acyl-coenzyme A (acyl-CoA) synthetic activity, but not luciferase activity with firefly luciferin. The transcripts were detected through the developmental stages in T. molitor. These results suggested that firefly luciferase was evolved from a fatty acyl-coenzyme A synthetase by gene duplications in the insect.

  14. Luciferase inhibition by a novel naphthoquinone.

    PubMed

    Bedford, Rebecca; LePage, Daniel; Hoffmann, Rachel; Kennedy, Steven; Gutschenritter, Tyler; Bull, Lauren; Sujijantarat, Nanthiya; DiCesare, John C; Sheaff, Robert J

    2012-02-01

    The novel naphthoquinone 12,13-dihydro-N-methyl-6,11,13-trioxo-5H-benzo[4,5]cyclohepta[1,2-b]naphthalen-5,12-imine (hereafter called TU100) was created as a potential chemotherapeutic agent. Previous work showed it is an irreversible inhibitor of type I and II topoisomerases that alkylates specific enzyme thiols. While analyzing the effect of TU100 on cancer cells, we discovered it is a potent inhibitor of luciferase derived from both Photinus pyralis (fireflies) and Renilla reniformis (sea pansy). Pre-incubation experiments showed that TU100 does not irreversibly inactivate luciferase, indicating its mechanism is different from that observed with topoisomerases. Firefly luciferase generates light using ATP and luciferin as substrates (bioluminescence). An examination of TU100 inhibition at varying substrate concentrations revealed the drug is uncompetitive with respect to ATP and competitive with respect to luciferin. The TU100 binding constant (K(I)) is 2.5±0.7 μM as determined by Dixon plot analysis. These data suggest TU100 specifically binds the luciferase-ATP complex and prevents its interaction with luciferin. Given the novel structure of TU100, unique mechanism of action, and ability to target luciferase from different species, these results identify TU100 as an important new reagent for investigating and regulating bioluminescent enzymes.

  15. Firefly luciferase genes from the subfamilies Psilocladinae and Ototretinae (Lampyridae, Coleoptera).

    PubMed

    Oba, Yuichi; Yoshida, Mayumi; Shintani, Takeru; Furuhashi, Mana; Inouye, Satoshi

    2012-02-01

    Firefly luciferase genes have been isolated from approximately 20 species of Lampyrinae, Luciolinae, and Photurinae. These are mostly nocturnal luminescent species that use light signals for sexual communication. In this study, we isolated three cDNAs for firefly luciferase from Psilocladinae (Cyphonocerus ruficollis) and Ototretinae (Drilaster axillaris and Stenocladius azumai), which are diurnal non-luminescent or weakly luminescent species that may use pheromones for communication. The amino acid sequences deduced from the three cDNAs showed 81-89% identities to each other and 60-81% identities with known firefly luciferases. The three purified recombinant proteins showed luminescence and fatty acyl-CoA synthetic activities, as observed in other firefly luciferases. The emission maxima by the three firefly luciferases (λmax, 545-546nm) were shorter than those by known luciferases from the nocturnal fireflies (λmax, 550-568nm). These results suggest that the primary structures and enzymatic properties of luciferases are conserved in Lampyridae, but the luminescence colors were red-shifted in nocturnal species compared to diurnal species.

  16. An alternative mechanism of bioluminescence color determination in firefly luciferase.

    PubMed

    Branchini, Bruce R; Southworth, Tara L; Murtiashaw, Martha H; Magyar, Rachelle A; Gonzalez, Susan A; Ruggiero, Maria C; Stroh, Justin G

    2004-06-15

    Beetle luciferases (including those of the firefly) use the same luciferin substrate to naturally display light ranging in color from green (lambda(max) approximately 530 nm) to red (lambda(max) approximately 635 nm). In a recent communication, we reported (Branchini, B. R., Murtiashaw, M. H., Magyar, R. A., Portier, N. C., Ruggiero, M. C., and Stroh, J. G. (2002) J. Am. Chem. Soc. 124, 2112-2113) that the synthetic adenylate of firefly luciferin analogue D-5,5-dimethylluciferin was transformed into the emitter 5,5-dimethyloxyluciferin in bioluminescence reactions catalyzed by luciferases from Photinus pyralis and the click beetle Pyrophorus plagiophthalamus. 5,5-Dimethyloxyluciferin is constrained to exist in the keto form and fluoresces mainly in the red. However, bioluminescence spectra revealed that green light emission was produced by the firefly enzyme, and red light was observed with the click beetle protein. These results, augmented with steady-state kinetic studies, were taken as experimental support for mechanisms of firefly bioluminescence color that require only a single keto form of oxyluciferin. We report here the results of mutagenesis studies designed to determine the basis of the observed differences in bioluminescence color with the analogue adenylate. Mutants of P. pyralis luciferase putative active site residues Gly246 and Phe250, as well as corresponding click beetle residues Ala243 and Ser247 were constructed and characterized using bioluminescence emission spectroscopy and steady state kinetics with adenylate substrates. Based on an analysis of these and recently reported (Branchini, B. R., Southworth, T. L., Murtiashaw, M. H., Boije, H., and Fleet, S. E. (2003) Biochemistry 42, 10429-10436) data, we have developed an alternative mechanism of bioluminescence color. The basis of the mechanism is that luciferase modulates emission color by controlling the resonance-based charge delocalization of the anionic keto form of the oxyluciferin excited

  17. Variable patterns of expression of luciferase in transgenic tobacco leaves.

    PubMed

    Barnes, W M

    1990-12-01

    A carboxyl-terminally modified firefly luciferase, encoded as a gene fusion to the neomycin phosphotransferase gene (which confers kanamycin resistance), was found to be enzymatically active for both enzymes when expressed in bacteria and in transgenic plants. A military-type starlight vision system was used to conveniently analyze the pattern of gene expression in transgenic tobacco plant leaves. Transgenic tobacco plants which expressed luciferase uniformly in all areas of the leaf, and assays for luciferin, demonstrated that luciferin rapidly penetrates all regions of a tobacco leaf in at least two dimensions. Depending on the test gene structure or, presumably, on the transferred DNA (T-DNA) insertional context, other transgenic plants were obtained that expressed luciferase with a wide range of nonuniform patterns from nominally the same cauliflower mosaic virus 35S promoter. For instance, the veins can be dark, while only the interveinal regions of the leaf lamina glow, or only the small capillary veins glow, or only the major veins glow. Local and/or systemic induction in response to wounding was also demonstrated. PMID:2251262

  18. Effects of 940 Hz EMF on luciferase solution: structure, function, and dielectric studies.

    PubMed

    Sefidbakht, Yahya; Hosseinkhani, Saman; Mortazavi, Mojtaba; Tavakkolnia, Iman; Khellat, Mohammad R; Shakiba-Herfeh, Mahdi; Saviz, Mehrdad; Faraji-Dana, Reza; Saboury, Ali A; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2013-09-01

    We designed a rectangular waveguide exposure system to study the effects of mobile phone frequency (940 MHz) electromagnetic fields (EMF) on luciferase structure and activity. The luciferase activity of exposed samples was significantly higher than that of unexposed samples. Dynamic light scattering of the exposed samples showed smaller hydrodynamic radii compared to unexposed samples (20 nm vs. 47 nm ± 5%). The exposed samples also showed less tendency to form aggregates, monitored by turbidity measurements at l = 360 nm. A microwave dielectric measurement was performed to study the hydration properties of luciferase solutions with a precision network analyzer over frequency ranges from 0.2 to 20 GHz before and after exposure. The change in the dielectric properties of the exposed luciferase solution was related to the disaggregation potency of the applied field. Together, our results suggested that direct interactions with luciferase molecules and its dipole moment were responsible for the reduced aggregation and enhanced luciferase activity upon exposure to the EMF. PMID:23633149

  19. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor.

    PubMed

    Gabriel, Gabriele V M; Lopes, P S; Viviani, V R

    2014-01-15

    Bioluminescence is widely used in biosensors. For water toxicity analysis, the naturally bioluminescent bacteria Vibrio fischeri have been used extensively. We investigated the suitability of two new beetle luciferases for Escherichia coli light off biosensors: Macrolampis firefly and Pyrearinus termitilluminans click beetle luciferases. The bioluminescence detection assay using this system is very sensitive, being comparable or superior to V. fischeri. The luciferase of P. termitilluminans produces a strong and sustained bioluminescence that is useful for less sensitive and inexpensive assays that require integration of the emission, whereas Macrolampis luciferase displays a flash-like luminescence that is useful for fast and more sensitive assays. The effect of heavy metals and sanitizing agents was analyzed. Zinc, copper, 1-propanol, and iodide had inhibitory effects on bioluminescence and growth assays; however, in these cases the bioluminescence was not a very reliable indicator of cell growth and metabolic activity because these agents also inhibited the luciferase. On the other hand, mercury and silver strongly affected cell bioluminescence and growth but not the luciferase activity, indicating that bioluminescence was a reliable indicator of cell growth and metabolic activity in this case. Finally, bioluminescent E. coli immobilized in agarose matrix gave a more stable format for environmental assays.

  20. Mechanism-based design of a photoactivatable firefly luciferase.

    PubMed

    Zhao, Jingyi; Lin, Shixian; Huang, Yong; Zhao, Jing; Chen, Peng R

    2013-05-22

    We developed a photoactivatable firefly luciferase (pfLuc) whose activation can be controlled by light. A photocaged Lys analogue was site-specifically incorporated into fLuc to replace its key catalytic Lys residue, Lys529, rendering fLuc inactive until light-triggered removal of the caging group. This photoinduced gain of luminescence provides a facile approach for assessing the photolysis efficiency of this valuable photosensitive Lys analogue within the context of its carrier protein in vitro and in living cells. We further took advantage of the spatial and temporal activation feature of pfLuc for intracellular measurement of labile ATP levels without impairment of cellular physiology.

  1. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo.

    PubMed

    Tiffen, Jessamy C; Bailey, Charles G; Ng, Cynthia; Rasko, John E J; Holst, Jeff

    2010-01-01

    Live animal imaging is becoming an increasingly common technique for accurate and quantitative assessment of tumor burden over time. Bioluminescence imaging systems rely on a bioluminescent signal from tumor cells, typically generated from expression of the firefly luciferase gene. However, previous reports have suggested that either a high level of luciferase or the resultant light reaction produced upon addition of D-luciferin substrate can have a negative influence on tumor cell growth. To address this issue, we designed an expression vector that allows simultaneous fluorescence and luminescence imaging. Using fluorescence activated cell sorting (FACS), we generated clonal cell populations from a human breast cancer (MCF-7) and a mouse melanoma (B16-F10) cell line that stably expressed different levels of luciferase. We then compared the growth capabilities of these clones in vitro by MTT proliferation assay and in vivo by bioluminescence imaging of tumor growth in live mice. Surprisingly, we found that neither the amount of luciferase nor biophotonic activity was sufficient to inhibit tumor cell growth, in vitro or in vivo. These results suggest that luciferase toxicity is not a necessary consideration when designing bioluminescence experiments, and therefore our approach can be used to rapidly generate high levels of luciferase expression for sensitive imaging experiments. PMID:21092230

  2. Making temporal maps using bacterial luciferase: Bacteriophage

    NASA Astrophysics Data System (ADS)

    Kuhn, Jonathan; Broza, Rachel; Verkin, Ekaterina

    2004-06-01

    A method for making temporal maps in bacteria, plasmids and bacteriophages is described. A cassette containing both the genes for bacterial luciferase and kanamycin resistance can be introduced at precise sites. The technique involves clonging followed by genetic recombination. The result is formation of structures that have the luciferase genes in place of the normal DNA and this allows the very precise measurement of transcription/translation of the substituted regions. Very low levels of transcription as well as the kinetics of induction can be easily ascertained. As a specific demonstration of this general method, the technique was used with bacteriophage λ, one of the best known organisms. By measuring light emission, the expression of luciferase was followed after induction for both early and late genes. The exact timing of initial expression of genes was also determined by sampling at very short intervals. The results show that the early genes express almost without delay implying that the function of the N antitermination system is not temporal regulation.

  3. Inhibitory effect of lipoic acid on firefly luciferase bioluminescence.

    PubMed

    Niwa, Kazuki; Ohmiya, Yoshihiro

    2004-10-15

    Lipoic acid was found to inhibit the firefly luciferin-luciferase reaction. The inhibition is competitive and is the strongest known (Ki = 0.026 +/- 0.013 microM) compared with other reported inhibitors. Considering the structure-activity correlations, the mechanism of inhibition may originate from the sulfur atom and carboxyl moiety of lipoic acid giving it structural specificity. Subsequent addition of lipoic acid and nitric oxide accelerated the inhibition in vitro, suggesting that lipoic acid may have a functional role in regulating firefly bioluminescence.

  4. Aminoluciferins extend firefly luciferase bioluminescence into the near-infrared and can be preferred substrates over D-luciferin.

    PubMed

    Mofford, David M; Reddy, Gadarla Randheer; Miller, Stephen C

    2014-09-24

    Firefly luciferase adenylates and oxidizes d-luciferin to chemically generate visible light and is widely used for biological assays and imaging. Here we show that both luciferase and luciferin can be reengineered to extend the scope of this light-emitting reaction. D-Luciferin can be replaced by synthetic luciferin analogues that increase near-infrared photon flux >10-fold over that of D-luciferin in live luciferase-expressing cells. Firefly luciferase can be mutated to accept and utilize rigid aminoluciferins with high activity in both live and lysed cells yet exhibit 10,000-fold selectivity over the natural luciferase substrate. These new luciferin analogues thus pave the way to an extended family of bioluminescent reporters.

  5. Refolding of firefly luciferase immobilized on agarose beads.

    PubMed

    Zako, T; Deguchi, H; Kitayama, A; Ueda, H; Nagamune, T

    2000-03-01

    The renaturation yield of the denatured firefly luciferase decreased strongly with increasing protein concentration in a renaturation buffer, because of aggregation. In this study, firefly luciferase was immobilized on agarose beads at a high concentration. Although the protein concentration was extremely high (about 100-fold) compared to that of soluble luciferase, the renaturation yield was comparable with that for the soluble one. Thus, immobilization was shown to be effective for avoiding aggregation of firefly luciferase. It was also shown that the optimum buffer conditions for renaturation of the immobilized luciferase were the same as those for the renaturation in solution. Also, it was indicated that electrostatic interactions between a protein and the matrix have a negative effect on renaturation of the immobilized luciferase since the renaturation yield decreased at acidic pH only for the immobilized luciferase. These novel observations are described in detail in this paper.

  6. Luciferase from Fulgeochlizus bruchi (Coleoptera:Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases.

    PubMed

    Amaral, Danilo T; Prado, Rogilene A; Viviani, Vadim R

    2012-07-01

    Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.

  7. Comparative theoretical study of the binding of luciferyl-adenylate and dehydroluciferyl-adenylate to firefly luciferase

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Vieira, João; Esteves da Silva, Joaquim C. G.

    2012-08-01

    This is the first report of a study employing a computational approach to study the binding of (D/L)-luciferyl-adenlyates and dehydroluciferyl-adenylate to firefly luciferase. A semi-empirical/molecular mechanics methodology was used to study the interaction between these ligands and active site molecules. All adenylates are complexed with the enzyme, mostly due to electrostatic interactions with cationic residues. Dehydroluciferyl-adenylate is expected to be a competitive inhibitor of luciferyl-adenylate, as their binding mechanism and affinity to luciferase are very similar. Both luciferyl-adenylates adopt the L-orientation in the active site of luciferase.

  8. Multiplex detection of protein-protein interactions using a next generation luciferase reporter.

    PubMed

    Verhoef, Lisette G G C; Mattioli, Michela; Ricci, Fernanda; Li, Yao-Cheng; Wade, Mark

    2016-02-01

    Cell-based assays of protein-protein interactions (PPIs) using split reporter proteins can be used to identify PPI agonists and antagonists. Generally, such assays measure one PPI at a time, and thus counterscreens for on-target activity must be run in parallel or at a subsequent stage; this increases both the cost and time during screening. Split luciferase systems offer advantages over those that use split fluorescent proteins (FPs). This is since split luciferase offers a greater signal:noise ratio and, unlike split FPs, the PPI can be reversed upon small molecule treatment. While multiplexed PPI assays using luciferase have been reported, they suffer from low signal:noise and require fairly complex spectral deconvolution during analysis. Furthermore, the luciferase enzymes used are large, which limits the range of PPIs that can be interrogated due to steric hindrance from the split luciferase fragments. Here, we report a multiplexed PPI assay based on split luciferases from Photinus pyralis (firefly luciferase, FLUC) and the deep-sea shrimp, Oplophorus gracilirostris (NanoLuc, NLUC). Specifically, we show that the binding of the p53 tumor suppressor to its two major negative regulators, MDM2 and MDM4, can be simultaneously measured within the same sample, without the requirement for complex filters or deconvolution. We provide chemical and genetic validation of this system using MDM2-targeted small molecules and mutagenesis, respectively. Combined with the superior signal:noise and smaller size of split NanoLuc, this multiplexed PPI assay format can be exploited to study the induction or disruption of pairwise interactions that are prominent in many cell signaling pathways. PMID:26646257

  9. Click beetle luciferases as dual reporters of gene expression in Candida albicans.

    PubMed

    Kapitan, Mario; Eichhof, Isabel; Lagadec, Quentin; Ernst, Joachim F

    2016-08-01

    Synthetic genes encoding functional luciferases of the click beetle (CB) Pyrophorus plagiophthalamus have been expressed in the human fungal pathogen Candida albicans. Both green- and red-emitting CB luciferases (CaCBGluc and CaCBRluc) were produced with high efficiency in transformants under transcriptional control of the growth-dependent ACT1 promoter, as well as by the HWP1 and UME6 promoters, which are upregulated during hyphal morphogenesis, as well as by the YWP1 and EFG1 promoters, which are downregulated. For all hyphally regulated genes, relative bioluminescence values derived from promoter fusions approximated relative transcript levels of native genes, although downregulation of YWP1 promoter activity required correction for the stability of CB luciferases (approximate half-lives 30 min for CaCBRluc and 80 min for CaCBGluc, as determined by immunoblotting). Importantly, the activity of both luciferases could be separately monitored in a single strain, in intact cells, in lysed cells or in cell extracts using luciferin as single substrate and inhibition of hypha formation by farnesol could be easily detected by the HWP1p-CaCBRluc fusion. The results suggest that CB luciferases are convenient tools to measure gene expression in C. albicans and may facilitate screenings for antifungal compounds. PMID:27339610

  10. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain.

    PubMed

    Adams, Spencer T; Mofford, David M; Reddy, G S Kiran Kumar; Miller, Stephen C

    2016-04-11

    Bioluminescence imaging is a powerful approach for visualizing specific events occurring inside live mice. Animals can be made to glow in response to the expression of a gene, the activity of an enzyme, or the growth of a tumor. But bioluminescence requires the interaction of a luciferase enzyme with a small-molecule luciferin, and its scope has been limited by the mere handful of natural combinations. Herein, we show that mutants of firefly luciferase can discriminate between natural and synthetic substrates in the brains of live mice. When using adeno-associated viral (AAV) vectors to express luciferases in the brain, we found that mutant luciferases that are inactive or weakly active with d-luciferin can light up brightly when treated with the aminoluciferins CycLuc1 and CycLuc2 or their respective FAAH-sensitive luciferin amides. Further development of selective luciferases promises to expand the power of bioluminescence and allow multiple events to be imaged in the same live animal.

  11. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain.

    PubMed

    Adams, Spencer T; Mofford, David M; Reddy, G S Kiran Kumar; Miller, Stephen C

    2016-04-11

    Bioluminescence imaging is a powerful approach for visualizing specific events occurring inside live mice. Animals can be made to glow in response to the expression of a gene, the activity of an enzyme, or the growth of a tumor. But bioluminescence requires the interaction of a luciferase enzyme with a small-molecule luciferin, and its scope has been limited by the mere handful of natural combinations. Herein, we show that mutants of firefly luciferase can discriminate between natural and synthetic substrates in the brains of live mice. When using adeno-associated viral (AAV) vectors to express luciferases in the brain, we found that mutant luciferases that are inactive or weakly active with d-luciferin can light up brightly when treated with the aminoluciferins CycLuc1 and CycLuc2 or their respective FAAH-sensitive luciferin amides. Further development of selective luciferases promises to expand the power of bioluminescence and allow multiple events to be imaged in the same live animal. PMID:26991209

  12. A Photinus pyralis and Luciola italica chimeric firefly luciferase produces enhanced bioluminescence.

    PubMed

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Davis, Audrey L; Behney, Curran E; Murtiashaw, Martha H

    2014-10-14

    We report the enhanced bioluminescence properties of a chimeric enzyme (PpyLit) that contains the N-domain of recombinant Photinus pyralis luciferase joined to the C-domain of recombinant Luciola italica luciferase. Compared to the P. pyralis enzyme, the novel PpyLit chimera exhibited 1.8-fold enhanced flash-height specific activity, 2.0-fold enhanced integration-based specific activity, 2.9-fold enhanced catalytic efficiency (kcat/Km), and a 1.4-fold greater bioluminescence quantum yield. The results of this study provide an underlying basis of this unusual example of a chimeric enzyme with enhanced catalytic properties that are not simply the sum of the contributions of the two luciferases.

  13. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology.

    PubMed

    Thorne, Natasha; Inglese, James; Auld, Douglas S

    2010-06-25

    Understanding luciferase enzymology and the structure of compounds that modulate luciferase activity can be used to improve the design of luminescence-based assays. This review provides an overview of these popular reporters with an emphasis on the commonly used firefly luciferase from Photinus pyralis (FLuc). Large-scale chemical profile studies have identified a variety of scaffolds that inhibit FLuc. In some cell-based assays, these inhibitors can act in a counterintuitive way, leading to a gain in luminescent signal. Although formerly attributed to transcriptional activation, intracellular stabilization of FLuc is the primary mechanism underlying this observation. FLuc inhibition and stabilization can be complex, as illustrated by the compound PTC124, which is converted by FLuc in the presence of ATP to a high affinity multisubstrate adduct inhibitor, PTC124-AMP. The potential influence these findings can have on drug discovery efforts is provided here.

  14. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles.

    PubMed

    Xin, Lili; Wang, Jianshu; Zhang, Leshuai W; Che, Bizhong; Dong, Guangzhu; Fan, Guoqiang; Cheng, Kaiming

    2016-08-01

    The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag(+) ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock produced a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4h of recovery, the relative luciferase activity was >98× the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5nm) AgNPs were more potent in luciferase induction than the larger (50 and 75nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag(+) ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs.

  15. Genome-wide RNAi high-throughput screen identifies proteins necessary for the AHR-dependent induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Solaimani, Parrisa; Damoiseaux, Robert; Hankinson, Oliver

    2013-11-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  16. Genome-Wide RNAi High-Throughput Screen Identifies Proteins Necessary for the AHR-Dependent Induction of CYP1A1 by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

    PubMed Central

    Hankinson, Oliver

    2013-01-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  17. A basis for reduced chemical library inhibition of firefly luciferase obtained from directed evolution.

    PubMed

    Auld, Douglas S; Zhang, Ya-Qin; Southall, Noel T; Rai, Ganesha; Landsman, Marc; MacLure, Jennifer; Langevin, Daniel; Thomas, Craig J; Austin, Christopher P; Inglese, James

    2009-03-12

    We measured the "druggability" of the ATP-dependent luciferase derived from the firefly Photuris pennsylvanica that was optimized using directed evolution (Ultra-Glo, Promega). Quantitative high-throughput screening (qHTS) was used to determine IC(50)s of 198899 samples against a formulation of Ultra-Glo luciferase (Kinase-Glo). We found that only 0.1% of the Kinase-Glo inhibitors showed an IC(50) < 10 microM compared to 0.9% found from a previous qHTS against the firefly luciferase from Photinus pyralis (lucPpy). Further, the maximum affinity identified in the lucPpy qHTS was 50 nM, while for Kinase-Glo this value increased to 600 nM. Compounds with interactions stretching outside the luciferin binding pocket were largely lost with Ultra-Glo luciferase. Therefore, Ultra-Glo luciferase will show less compound interference when used as an ATP sensor compared to lucPpy. This study demonstrates the power of large-scale quantitative analysis of structure-activity relationships (>100K compounds) in addressing important questions such as a target's druggability.

  18. How to Fabricate Functional Artificial Luciferases for Bioassays.

    PubMed

    Kim, Sung-Bae; Fujii, Rika

    2016-01-01

    The present protocol introduces fabrication of artificial luciferases (ALuc(®)) by extracting the consensus amino acids from the alignment of copepod luciferase sequences. The made ALucs have unique sequential identities that are phylogenetically distinctive from those of any existing copepod luciferase. Some ALucs exhibited heat stability, and strong and greatly prolonged optical intensities. The made ALucs are applicable to various bioassays as an optical readout, including live cell imaging, single-chain probes, and bioluminescent tags of antibodies. The present protocol guides on how to fabricate a unique artificial luciferase with designed optical properties and functionalities. PMID:27424894

  19. Molecular Cloning of Secreted Luciferases from Marine Planktonic Copepods.

    PubMed

    Takenaka, Yasuhiro; Ikeo, Kazuho; Shigeri, Yasushi

    2016-01-01

    Secreted luciferases isolated from copepod crustaceans are frequently used for nondisruptive reporter-gene assays, such as the continuous, automated and/or high-throughput monitoring of gene expression in living cells. All known copepod luciferases share highly conserved amino acid residues in two similar, repeated domains in the sequence. The similarity in the domains are ideal nature for designing PCR primers to amplify cDNA fragments of unidentified copepod luciferases from bioluminescent copepod crustaceans. Here, we introduce how to establish a cDNA encoding novel copepod luciferases from a copepod specimen by PCR with degenerated primers.

  20. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner.

  1. Use of Luciferase Chimaera to Monitor PLCζ Expression in Mouse Eggs

    NASA Astrophysics Data System (ADS)

    Swann, Karl; Campbell, Karen; Yu, Yuansong; Saunders, Christopher; Lai, F. Anthony

    The microinjection of cRNA encoding phospholipase Cζ (PLC zeta) causes Ca2+ oscillations and the activation of development in mouse eggs. The PLCζ protein that is expressed in eggs after injection of cRNA is effective in causing Ca2+ oscillations at very low concentrations. In order to measure the amount and timecourse of protein expression we have tagged PLCζ with firefly luciferase. The expression of the luciferase protein tag in eggs is then measured by incubation in luciferin combined with luminescence imaging, or by the lysis of eggs in the presence of Mg-ATP and luciferin in a luminometer. The use of luciferase to monitor protein expression after injection of cRNA is a sensitive and effective method that efficiently allows for sets of eggs to be used for PLCζ quantitation, Ca2+ imaging, and studies of embryo development.

  2. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells.

    PubMed

    Pazzagli, M; Devine, J H; Peterson, D O; Baldwin, T O

    1992-08-01

    The aim of this study was to compare three different luciferase genes by placing them in a single reporter vector and expressing them in the same mammalian cell type. The luciferase genes investigated were the luc genes from the fireflies Photinus pyralis (PP) and Luciola mingrelica (LM) and the lux AB5 gene, a translational fusion of the two subunits of the bacterial luciferase from Vibrio harveyi (VH). The chloramphenicol acetyltransferase (CAT) gene was also included in this study for comparison. The performances of the assay methods of the corresponding enzymes were evaluated using reference materials and the results of the expressed enzymes following transfection were calculated using calibration curves. All of the bioluminescent assays possess high reproducibility both within and between the batches (less than 15%). The comparison of the assay methods shows that firefly luciferases have the highest detection sensitivity (0.05 and 0.08 amol for PP and LM, respectively) whereas the VH bacterial luciferase has 5 amol and CAT 100 amol. On the other hand, the transfection of the various plasmids shows that the content of the expressed enzyme within the cells is much higher for CAT than for the other luciferase genes. VH luciferase is expressed at very low levels in mammalian cells due to the relatively high temperature of growing of the mammalian cells that seems to impair the correct folding of the active enzyme. PP and LM luciferases are both expressed at picomolar level but usually 10 to 70 times less in content with respect to CAT within the transfected cells. On the basis of these results the overall improvement in sensitivity related to the use of firefly luciferases as reporter genes in mammalian cells is about 30 to 50 times with respect to that of CAT. PMID:1443530

  3. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity. PMID:26275118

  4. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity.

  5. Rational and random mutagenesis of firefly luciferase to identify an efficient emitter of red bioluminescence

    NASA Astrophysics Data System (ADS)

    Branchini, Bruce R.; Southworth, Tara L.; Khattak, Neelum F.; Murtiashaw, Martha H.; Fleet, Sarah E.

    2004-06-01

    Firefly luciferase, which emits yellow-green (557 nm) light, and the corresponding cDNA have been used successfully as a bioluminescence reporter of gene expression. One particularly exciting application is in the area of in vivo bioluminescence imaging. Our interest is in developing improved reagents by identifying Photinus pyralis luciferase mutants that efficiently emit red bioluminescence. In this way, the proven advantages of the P. pyralis protein can be combined with the potential advantages of a red-shifted emitter. Using site-directed mutagenesis techniques, we have identified many mutants emitting red bioluminescence. Unfortunately, these enzymes generally have significantly decreased bioluminescence activity. Interestingly, we discovered a mutation, Ile351Ala, that produced a moderate 16 nm red-shift, while maintaining excellent bioluminescence activity. We then undertook a random mutagenesis approach to identify luciferase mutants that emit further red-shifted bioluminescence with minimal loss of activity. Libraries of mutants were created using an error-prone PCR method and the Ile351Ala luciferase mutant as the template DNA. The libraries were screened by in vivo bacterial assays and the promising mutants were purified to enable accurate determination of bioluminescence emission spectra and total bioluminescence activity. We will report the characterization results, including the identification of the randomly altered amino acids, of several mutants that catalyze bioluminescence with emission maxima of approximately 600 nm.

  6. Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3.

    PubMed

    Yasunaga, Mayu; Murotomi, Kazutoshi; Abe, Hiroko; Yamazaki, Tomomi; Nishii, Shigeaki; Ohbayashi, Tetsuya; Oshimura, Mitsuo; Noguchi, Takako; Niwa, Kazuki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2015-01-20

    Reporter assays that use luciferases are widely employed for monitoring cellular events associated with gene expression in vitro and in vivo. To improve the response of the luciferase reporter to acute changes of gene expression, a destabilization sequence is frequently used to reduce the stability of luciferase protein in the cells, which results in an increase of sensitivity of the luciferase reporter assay. In this study, we identified a potent destabilization sequence (referred to as the C9 fragment) consisting of 42 amino acid residues from human calpain 3 (CAPN3). Whereas the half-life of Emerald Luc (ELuc) from the Brazilian click beetle Pyrearinus termitilluminans was reduced by fusing PEST (t1/2=9.8 to 2.8h), the half-life of C9-fused ELuc was significantly shorter (t1/2=1.0h) than that of PEST-fused ELuc when measurements were conducted at 37°C. In addition, firefly luciferase (luc2) was also markedly destabilized by the C9 fragment compared with the humanized PEST sequence. These results indicate that the C9 fragment from CAPN3 is a much more potent destabilization sequence than the PEST sequence. Furthermore, real-time bioluminescence recording of the activation kinetics of nuclear factor-κB after transient treatment with tumor necrosis factor α revealed that the response of C9-fused ELuc is significantly greater than that of PEST-fused ELuc, demonstrating that the use of the C9 fragment realizes a luciferase reporter assay that has faster response speed compared with that provided by the PEST sequence. PMID:25528501

  7. Inhibition of firefly luciferase by alkane analogues.

    PubMed

    Takehara, Kô; Kamaya, Hiroshi; Ueda, Issaku

    2005-01-18

    We reported that anesthetics increased the partial molal volume of firefly luciferase (FFL), while long-chain fatty acids (LCFA) decreased it. The present study measured the actions of dodecanol (neutral), dodecanoic acid (negatively charged), and dodecylamine (positively charged) hydrophobic molecules on FFL. The interaction modes are measured by (1) ATP-induced bioluminescence of FFL and (2) fluorescence of 2-(p-toluidino)naphthalene-6-sulfonate (TNS). TNS fluoresces brightly in hydrophobic media. It competes with the substrate luciferin on the FFL binding. From the Scatchard plot of TNS titration, the maximum binding number of TNS was 0.83, and its binding constant was 8.27 x 10(5) M(-1). Job's plot also showed that the binding number is 0.89. From the TNS titration of FFL, the binding constant was estimated to be 8.8 x 10(5) M(-1). Dodecanoic acid quenched the TNS fluorescence entirely. Dodecanol quenched about 25% of the fluorescence, whereas dodecylamine increased it. By comparing the fluorescence of TNS and bioluminescence of FFL, the binding modes and the inhibition mechanisms of these dodecane analogues are classified in three different modes: competitive (dodecanoic acid), noncompetitive (dodecylamine), and mixed (dodecanol).

  8. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    SciTech Connect

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng; Li, Zhanguo; Yuan, Huihui; Zhao, Wenming

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  9. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei.

    PubMed

    Matsuoka, Hiroyuki; Tomita, Hiroyuki; Hattori, Ryuta; Arai, Meiji; Hirai, Makoto

    2015-03-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.

  10. A transgenic rat with ubiquitous expression of firefly luciferase gene

    NASA Astrophysics Data System (ADS)

    Hakamata, Yoji; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    In vivo imaging strategies provide cellular and molecular events in real time that helps us to understand biological processes in living animals. The development of molecular tags such as green fluorescent proteins and luciferase from the firefly Photinus pyralis has lead to a revolution in the visualization of complex biochemical processes. We developed a novel inbred transgenic rat strain containing firefly luciferase based on the transgenic (Tg) technique in rats. This Tg rat expressed the luciferase gene ubiquitously under control of the ROSA26 promoter. Cellular immune responsiveness against the luciferase protein was evaluated using conventional skin grafting and resulted in the long-term acceptance of Tg rat skin on wild-type rats. Strikingly, organ transplant with heart and small bowel demonstrated organ viability and graft survival, suggesting that cells from luciferase-Tg are transplantable to track their fate. Taking advantage of the less immunogenic luciferase, we also tested the role of hepatocyte-infusion in a liver injury model, and bone marrow-derived cells in a skin defect model. Employed in conjunction with modern advances in optical imaging, this luciferase-Tg rat system provides an innovative animal tool and a new means of facilitating biomedical research such as in the case of regeneration medicine.

  11. BRET-linked ATP assay with luciferase.

    PubMed

    Borghei, Golnaz; Hall, Elizabeth A H

    2014-09-01

    Taking advantage of BRET, a mutant firefly luciferase with higher pH- and thermo-stability than the wild-type could be coupled with the red-emitting fluorescent protein of mCherry in both a fused and unfused format. The BRET pair allows >40% of the light emitted to be red shifted over 600 nm to the mCherry acceptor wavelength. Taking the expected quantum yield for mCherry (0.22), a good fit to predicted light transfer is shown, with no other losses. Two measurements are considered for ATP determination: (a) a ratiometric technique for ATP measurement using both donor and acceptor emission intensities, making the calibration slope independent of protein concentration in a broad range. This measurement was limited by the BRET efficiency and the low quantum yield of the mCherry acceptor, but this detection limit might be improved with other fluorescent proteins with higher quantum yield. The fused BRET pair also resulted in a small increase in the BRET ratio. (b) An ATP dependent shift in the wavelength maximum using just the acceptor mCherry emission was also proposed for ATP determination. This did not require a high BRET efficiency and only uses emission above 600 nm to obtain the acceptor emission maximum, but not its intensity; it is independent of protein concentration across a broad range. This offers a novel and robust method for determination of ATP between 10(-11) to 10(-5) M with an easy baseline calibration with ATP concentration >10(-4) M.

  12. Engineering an enhanced, thermostable, monomeric bacterial luciferase gene as a reporter in plant protoplasts.

    PubMed

    Cui, Boyu; Zhang, Lifeng; Song, Yunhong; Wei, Jinsong; Li, Changfu; Wang, Tietao; Wang, Yao; Zhao, Tianyong; Shen, Xihui

    2014-01-01

    The application of the luxCDABE operon of the bioluminescent bacterium Photorhabdus luminescens as a reporter has been published for bacteria, yeast and mammalian cells. We report here the optimization of fused luxAB (the bacterial luciferase heterodimeric enzyme) expression, quantum yield and its application as a reporter gene in plant protoplasts. The fused luxAB gene was mutated by error prone PCR or chemical mutagenesis and screened for enhanced luciferase activity utilizing decanal as substrate. Positive luxAB mutants with superior quantum yield were subsequently shuffled by DNase I digestion and PCR assembly for generation of recombinants with additional increases in luciferase activity in bacteria. The coding sequence of the best recombinant, called eluxAB, was then optimized further to conform to Arabidopsis (Arabidopsis thaliana) codon usage. A plant expression vector of the final, optimized eluxAB gene (opt-eluxAB) was constructed and transformed into protoplasts of Arabidopsis and maize (Zea mays). Luciferase activity was dramatically increased for opt-eluxAB compared to the original luxAB in Arabidopsis and maize cells. The opt-eluxAB driven by two copies of the 35S promoter expresses significantly higher than that driven by a single copy. These results indicate that the eluxAB gene can be used as a reporter in plant protoplasts. To our knowledge, this is the first report to engineer the bacterium Photorhabdus luminescens luciferase luxAB as a reporter by directed evolution which paved the way for further improving the luxAB reporter in the future.

  13. Luciferase-dependent oxygen consumption by bioluminescent vibrios

    SciTech Connect

    Makemson, J.C.

    1986-02-01

    Oxygen uptake due to luciferase in two luminous Vibrio species was estimated in vivo by utilizing inhibitors having specificities for luciferase (decanol) and cytochromes (cyanide). Cyanide titration of respiration revealed a component of oxygen uptake less sensitive to cyanide which was completely inhibitable by low concentrations of decanol. From this it was estimated that in vivo luciferase is responsible for less than 12% (Vibrio harveyi) or 20% (Vibrio fischeri) of the total respiration. From these data in vivo bioluminescent quantum yields are estimated to be not lower than 1.7 and 2.6%, respectively.

  14. A novel dual luciferase assay for the simultaneous monitoring of HIV infection and cell viability.

    PubMed

    Mitsuki, Yu-Ya; Yamamoto, Takuya; Mizukoshi, Fuminori; Momota, Masatoshi; Terahara, Kazutaka; Yoshimura, Kazuhisa; Harada, Shigeyoshi; Tsunetsugu-Yokota, Yasuko

    2016-05-01

    Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e., live cell numbers. Here, we developed a dual luciferase assay based on a R. reniformis luciferase (hRLuc)-expressing R5-type HIV-1 (NLAD8-hRLuc) and a CEM cell line expressing CCR5 and firefly luciferase (R5CEM-FiLuc). The NLAD8-hRLuc reporter virus was replication competent in peripheral blood mononuclear cells. The level of hRLuc was correlated with p24 antigen levels (p<0.001, R=0.862). The target cell line, R5CEM-FiLuc, stably expressed the firefly luciferase (FiLuc) reporter gene and allowed the simultaneous monitoring of compound cytotoxicity. The dual reporter assay combining a NLAD8-hRLuc virus with R5CEM-FiLuc cells permitted the accurate determination of drug susceptibility for entry, reverse transcriptase, integrase, and protease inhibitors at different multiplicities of infection. This dual reporter assay provides a rapid and direct method for the simultaneous monitoring of HIV infection and cell viability. PMID:26898957

  15. Imaging CXCR4 signaling with firefly luciferase complementation.

    PubMed

    Luker, Kathryn E; Gupta, Mudit; Luker, Gary D

    2008-07-15

    Chemokines and their cognate receptors have key functions in cell growth, survival, and tissue-specific homing of cells. While these functions first were identified in normal immune cells, cancer cells may co-opt chemokine receptor signaling to promote primary tumor growth and metastasis. Our knowledge of signaling by chemokines and chemokine receptors in cancer is lacking, particularly as this signaling occurs in vivo. New insights into chemokine receptor signaling in cancer are needed to understand molecular regulation of primary and metastatic disease and develop targeted therapies to improve patient survival. To meet this need, we have developed a molecular imaging reporter to investigate activation of CXCR4, a chemokine receptor that regulates tumor growth and metastasis in a variety of common cancers. The reporter system uses a firefly luciferase-based protein fragment complementation assay to detect interactions between CXCR4 and beta-arrestin molecules, a common early step in chemokine receptor signaling. In cell-based assays, incubation with the chemokine ligand CXCL12 (SDF-1) produced dose-dependent increases in bioluminescence with >7-fold induction above basal levels of association between these proteins. Reporter activation could be blocked with specific inhibitors of CXCR4 signaling. These reporters enabled in vivo imaging of CXCR4 activation and inhibition in living mice. Overall, this research establishes a new imaging reporter for probing CXCR4 signaling in cancer and other diseases regulated by this chemokine receptor.

  16. Detection of neuroendocrine tumors using promoter-specific secreted Gaussia luciferase.

    PubMed

    Tseng, Alan Wei-Shun; Akerstrom, Victoria; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-01-01

    Accurate detection of neuroendocrine (NE) tumors is critically important for better prognosis and treatment outcomes in patients. To demonstrate the efficacy of using an adenoviral vector for the detection of NE tumors, we have constructed a pair of adenoviral vectors which, in combination, can conditionally replicate and release Gaussia luciferase into the circulation after infecting the NE tumors. The expression of these two vectors is regulated upstream by an INSM1-promoter (insulinoma-associated-1) that is specifically active in NE tumors and developing NE tissues, but silenced in normal adult tissues. In order to retain the tumor-specificity of the INSM1 promoter, we have modified the promoter using the core insulator sequence from the chicken β-globin HS4 insulator and the neuronal restrictive silencing element (NRSE). This modified INSM1-promoter can retain NE tumor specificity in an adenoviral construct while driving a mutated adenovirus E1A gene (∆24E1A), the Metridia, or Gaussia luciferase gene. The in vitro cell line and mouse xenograft human tumor studies revealed the NE specificity of the INSM1-promoter in NE lung cancer, neuroblastoma, medulloblastoma, retinoblastoma, and insulinoma. When we combined the INSM1-promoter driven Gaussia luciferase with ∆24E1A, the co-infected NE tumor secreted higher levels of Gaussia luciferase as compared to the INSM1p-Gaussia virus alone. In a mouse subcutaneous xenograft tumor model, the combination viruses secreted detectable level of Gaussia luciferase after infecting an INSM1-positive NE lung tumor for ≥12 days. Therefore, the INSM1-promoter specific conditional replicating adenovirus represents a sensitive diagnostic tool to aid clinicians in the detection of NE tumors. PMID:26530405

  17. Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites.

    PubMed

    Lundin, A

    2000-01-01

    The kinetics of ATP reagents not affected by product inhibition or other forms of inactivation of luciferase during the measurement time has been clarified. Under these conditions the decay rate of the light emission expressed as percentage per minute is a measure of luciferase activity and can be given as the rate constant k (min-1), directly reflecting the degradation of ATP in the luciferase reaction. Three types of reagents with different analytical characteristics and different application possibilities have been identified. Stable light-emitting reagents are suitable for measurements of ATP down to 1000 amol. This is the only type of reagent suitable for monitoring ATP-converting reactions, i.e., assays of enzymes or metabolites, assays of oxidative phosphorylation, photophosphorylation, and so on. A higher luciferase activity resulting in a slow decay of the light emission by approximately 10% per minute (k = 0.1 min-1) gives a reagent suitable for measurements down to 10-100 amol. The slow decay of light emission allows use of manual luminometers without reagent dispensers. A further increase of the luciferase activity resulting in a decay rate of approximately 235% per min (k = 2.35 min-1) and only 10% of the light emission remaining after 1 min is suitable for measurements down to 1 amol corresponding to half a bacterial cell. With this type of flash reagent the total light emission can be calculated from two measurements of the light intensity on the decay part of the light emission curve. This new measure is not affected by moderate variations in luciferase activity, but only by changes in quantum yield and self-absorption of the light in the sample. Flash-type reagents require the use of reagent dispensers. The stringent requirements for ATP-free cuvettes, pipette tips, and contamination-free laboratory techniques make it unlikely that flash reagents would be useful in nonlaboratory surroundings. A potential application for this type of reagent is

  18. [Cloning of mouse adam10 gene promoter and construction and identification of dual luciferase reporter system].

    PubMed

    Chen, Wei; Chen, Chong; Zhang, Huan-Xin; Cao, Jiang; Sang, Wei; Wu, Qing-Yun; Zhao, Kai; Zang, Yu; Zeng, Ling-Yu; Xu, Kai-Lin

    2012-06-01

    This study was aimed to clone mouse adam10 gene promoter and construct its dual luciferase report vector, and to investigate its transcriptional activity. Total DNA was extracted from mouse brain and used for amplifying the fragment containing adam10 gene promoter by PCR. The amplified product was inserted into pGL-4.10 vector to construct pGL4.10-adam10. The pGL4.10-adam10 and control plasmid pGL4.74 were co-transfected into HEK293 FT cells by lipofectamine 2000. The activity of adam10 gene promoter was assayed by luciferase system. The results showed that the recombinant plasmid pGL4.10-adam10 containing promoter of mouse adam10 was correctly constructed. The method was optimized by changing ratio of two plasmids. Moreover, the transcriptional activity of pGL4.10-adam10 stimulated by ionomycin increased. It is concluded that the dual luciferase reporter system is successfully established, which is useful in bioluminescence imaging technology in vitro. The effect of ionomycin can enhance the transcriptional activity of adam10 gene promoter.

  19. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications.

    PubMed

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Kohrt, Dawn; Talukder, Munya; Michelini, Elisa; Cevenini, Luca; Roda, Aldo; Grossel, Martha J

    2015-09-01

    Firefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. We previously reported the approximately 2-fold enhanced activity and 1.4-fold greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase. Subsequently, we identified 5 amino acid changes based on L. italica that are the main determinants of the improved bioluminescence properties. Further engineering to enhance thermal and pH stability produced a novel luciferase called PLG2. We present here a systematic comparison of the spectral and physical properties of the new protein with P. pyralis luciferase and demonstrate the potential of PLG2 for use in assays based on the detection of femtomole levels of ATP. In addition, we compared the performance of a mammalian codon-optimized version of the cDNA for PLG2 with the luc2 gene in HEK293T cells. Using an optimized low-cost assay system, PLG2 activity can be monitored in mammalian cell lysates and living cells with 4.4-fold and approximately 3.0-fold greater sensitivity, respectively. PLG2 could be an improved alternative to Promega's luc2 for reporter and imaging applications.

  20. [Expression of thermostable recombiant Luciola lateralis luciferase and development of heat-stable pyrosequencing system].

    PubMed

    Xu, Shu; Zou, Bingjie; Wang, Jianping; Wu, Haiping; Zhou, Guohua

    2012-06-01

    Pyrosequencing is a tool based on bioluminescence reaction for real-time analyzing DNA sequences. The sensitivity of pyrosequencing mainly depends on luciferase in reaction mixture. However, the instability of pyrosequencing reagents caused by fragile wild Photinus pyralis luciferase (PpL) in conventional pyrosequencing usually leads to unsatisfied results, which limits the application of pyrosequencing. In order to improve the stability of pyrosequencing reagents, the coding sequences of mutant thermostable Luciola lateralis luciferase (rt-LlL) was synthesized, and inserted into the plasmid of pET28a(+) to express the thermostable rt-LlL with a 6 x His-tag in the N terminal. The purified rt-LlL with the molecular mass of 60 kDa was obtained by Ni-affinity chromatography. The specific activity of rt-LlL was determined as 4.29 x 10(10) RLU/mg. Moreover, the thermostability of rt-LlL was investigated, and the results showed that rt-LlL had activity at 50 degrees C, and remained 90% of activity after incubated at 40 degrees C for 25 min. Finally, rt-LlL was used to substitute commercial Photinus pyralis luciferase in conventional pyrosequencing reagent to get thermostable pyrosequencing reagent. Comparing with conventional pyrosequencing reagent, the thermostable pyrosequencing reagent is more stable, and it's activity would not lose when incubated at 37 degrees C for 1 h. This study laid foundation of establishing reliable and stable pyrosequencing system which would be applied in Point-of-Care Testing. PMID:23016312

  1. Kinetic characterization and in vitro toxicity evaluation of a luciferase less susceptible to HPV chemical inhibition.

    PubMed

    Kim-Choi, Eileen; Danilo, Christiane; Kelly, Jeffrey; Carroll, Ronnie; Shonnard, David; Rybina, Irina

    2006-12-01

    Enzyme-based in vitro toxicity assays are often susceptible to inhibition by test compounds. A mutant luciferase selected to be less susceptible to inhibition by chloroform (CNBLuc03-06) and other high production volume (HPV) chemicals, consisting of three point mutations was created and characterized. The mutant luciferase was less inhibited by chloroform, other HPV chemicals and common surfactant release reagents (Triton-X and SDS) compared to the wild-type. Inhibition was shown to be competitive. CNBLuc03-06 was a factor of 1.5-3.2 more active than wild type and exhibited a much higher affinity for ATP. CNBLuc03-06 was more thermostable than wild-type and also more active at pH values higher than 10. Both luciferases exhibited a significant tradeoff between activation and susceptibility to chemical inhibition in the presences of the reducing agent DTT. Inhibition to HPV chemicals was eliminated using an "optimum" formulation of DTT and co-solvent ethanol. The performance of CNBLuc03-06 in cell-based in vitro toxicity assays was shown to be superior to the current commercial formulation.

  2. False positives in a reporter gene assay: identification and synthesis of substituted N-pyridin-2-ylbenzamides as competitive inhibitors of firefly luciferase.

    PubMed

    Heitman, Laura H; van Veldhoven, Jacobus P D; Zweemer, Annelien M; Ye, Kai; Brussee, Johannes; IJzerman, Adriaan P

    2008-08-14

    Luciferase reporter-gene assays are a commonly used technique in high-throughput screening campaigns. In this study, we report on a luciferase inhibitor (1), which emerged from an antagonistic G protein-coupled receptor luciferase reporter-gene assay screen. Instead of displaying receptor activity, compound 1 was shown to potently inhibit luciferase in an in vitro enzymatic assay with an IC50 value of 1.7 +/- 0.1 microM. In addition, 1 was a competitive inhibitor with respect to the substrate luciferin. A database search yielded another inhibitor (3) with a similar N-pyridin-2-ylbenzamide core. Subsequently, several analogues were prepared to investigate the structure-activity relationships of these luciferase inhibitors. This yielded the most potent inhibitor of this series (6) with an IC50 value of 0.069 +/- 0.01 microM. Further molecular modeling studies suggested that 6 can be accommodated in the luciferin binding site. This paper is meant to alert users of luciferase reporter-gene assays for possible false positive hits including highly "druglike" molecules due to direct luciferase inhibition.

  3. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA

    PubMed Central

    Johnson, Barbara W.; Olson, Ken E.; Allen-Miura, Tanya; Rayms-Keller, Alfredo; Carlson, Jonathan O.; Coates, Craig J.; Jasinskiene, Nijole; James, Anthony A.; Beaty, Barry J.; Higgs, Stephen

    1999-01-01

    A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3′2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5′ end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo. PMID:10557332

  4. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA.

    PubMed

    Johnson, B W; Olson, K E; Allen-Miura, T; Rayms-Keller, A; Carlson, J O; Coates, C J; Jasinskiene, N; James, A A; Beaty, B J; Higgs, S

    1999-11-01

    A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3'2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5' end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo. PMID:10557332

  5. The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell.

    PubMed

    Rienzo, Alessandro; Pascual-Ahuir, Amparo; Proft, Markus

    2012-06-01

    A destabilized version of firefly luciferase was used in living yeast cells as a real-time reporter for gene expression. This highly sensitive and non-invasive system can be simultaneously used upon many different experimental conditions in small culture aliquots. This allows the dose-response behaviour of gene expression driven by any yeast promoter to be reported and can be used to quantify important parameters, such as the threshold, sensitivity, response time, maximal activity and synthesis rate for a given stimulus. We applied the luciferase assay to the nutrient-regulated GAL1 promoter and the stress-responsive GRE2 promoter. We find that luciferase expression driven by the GAL1 promoter responds dynamically to growing galactose concentrations, with increasing synthesis rates determined by the light increment in the initial linear phase of activation. In the case of the GRE2 promoter, we demonstrate that the very short-lived version of luciferase used here is an excellent tool to quantitatively describe transient transcriptional activation. The luciferase expression controlled by the GRE2 promoter responds dynamically to a gradual increase of osmotic or oxidative stress stimuli, which is mainly based on the progressive increase of the time the promoter remains active. Finally, we determined the dose-response behaviour of a single transcription factor binding site in a synthetic promoter context, using the stress response element (STRE) as an example. Taken together, the luciferase assay described here is an attractive tool to rapidly and precisely determine and compare kinetic parameters of gene expression.

  6. Expression and assembly of functional bacterial luciferase in plants

    PubMed Central

    Koncz, Csaba; Olsson, Olof; Langridge, William H. R.; Schell, Jeff; Szalay, Aladar A.

    1987-01-01

    The luxA and luxB structural genes of Vibrio harveyi luciferase [alkanal,reduced FMN:oxygen oxidoreductase (1-hydroxylating, luminescing), EC 1.14.14.3] were introduced into a plant expression vector and transferred into tobacco and carrot cells by Agrobacterium-mediated or direct DNA transformation. Simultaneous expression of the luxA and luxB genes was monitored by protein immunoblot analysis. Luciferase-mediated light emission provided evidence for the assembly of the two protein subunits into a functional dimeric enzyme in plant protoplasts, in transformed calli, and in leaves of transformed plants. Bacterial luciferase may provide a useful marker-gene system for the quantitative assay of coordinate gene expression in transgenic plants. Images PMID:16593793

  7. Dual-color click beetle luciferase heteroprotein fragment complementation assays.

    PubMed

    Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David

    2010-09-24

    Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically relevant time scales. Herein, we describe a set of reversible multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discrete pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells.

  8. Implication of an unfavorable residue (Thr346) in intrinsic flexibility of firefly luciferase.

    PubMed

    Moradi, Maryam; Hosseinkhani, Saman; Emamzadeh, Rahman

    2012-09-10

    In order to better understand the functional role of an unusual residue (Thr346) of firefly luciferase mutagenesis at this residue was performed. Firefly luciferase, catalyzes the bioluminescence reaction and is an excellent tool as a reporter in nano-system biology studies. Nonetheless, the enzyme rapidly loses its activity at temperatures above 30 °C and this leads to reduced sensitivity and precision in analytical applications. Residue Thr346 in a connecting loop (341-348) of firefly luciferase is located in a disallowed region of Ramachandran plot. In this study, we have substituted this residue (T346) with anomalous dihedral angles with Val, Gly and Pro to clarify the role of this residue in structure and function of the enzyme using site-directed mutagenesis. Substitution of this unfavorable residue (T346) with atypical dihedral angles (ψ, φ) with other residues brought about an increase of thermostability and decrease of specific activity. Structural and functional properties of the mutants were analyzed using different spectroscopic methods. It seems that this residue is a critically conserved residue to support the functional flexibility for a fast kinetic bioluminescence reaction at the expense of lower stability.

  9. Dynamics of firefly luciferase inhibition by general anesthetics: Gaussian and anisotropic network analyses.

    PubMed

    Szarecka, Agnieszka; Xu, Yan; Tang, Pei

    2007-09-15

    The new crystal structures of the product-bound firefly luciferase combined with the previously determined substrate-free structures allow for a detailed analysis of the dynamics basis for the luciferase enzymatic activities. Using the Gaussian network model and the anisotropic network model, we show here that the superposition of the three slowest anisotropic network model modes, consisting of the bending, rotating, and rocking motions of the C-domain, accounts for large rearrangement of domains from the substrate-free (open) to product-bound (closed) conformation and thus constitutes a critical component of the enzyme's functions. The analysis also offers a unique platform to reexamine the molecular mechanism of the anesthetic inhibition of the firefly luciferase. Through perturbing the protein backbone network by introducing additional nodes to represent anesthetics, we found that the presence of two representative anesthetics, halothane and n-decanol, in different regions of luciferase had distinctively different effects on the protein's global motion. Only at the interface of the C- and N-domains did the anesthetics cause the most profound reduction in the overall flexibility of the C-domain and the concomitant increase in the flexibility of the loop, where the substitution of a conserved lysine residue was found experimentally to lead to >2-3 orders of magnitude reduction in activity. These anesthetic-induced dynamics changes can alter the normal function of the protein, appearing as an epiphenomenon of an "inhibition". The implication of the study is that a leading element for general anesthetic action on proteins is to disrupt the modes of motion essential to protein functions.

  10. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans.

    PubMed

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples. PMID:26313214

  11. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples.

  12. Expression vectors for the use of eukaryotic luciferases as bacterial markers with different colors of luminescence.

    PubMed Central

    Cebolla, A; Vázquez, M E; Palomares, A J

    1995-01-01

    An easy way to identify microorganisms is to provide them with gene markers that confer a unique phenotype. Several genetic constructions were developed to use eukaryotic luciferase genes for bacterial tagging. The firefly and click bettle luciferase genes, luc and lucOR, respectively, were cloned under constitutive control and regulated control from different transcriptional units driven by P1, lambda PR, and Ptrc promoters. Comparison of the expression of each gene in Escherichia coli cells from identical promoters showed that bioluminescence produced by luc could be detected luminometrically in a more sensitive manner. In contrast, luminescence from intact lucOR-expressing cells was much more stable and resistant to high temperatures than that from luc-expressing cells. To analyze the behavior of these constructions in other gram-negative bacteria, gene fusions with luc genes were cloned on broad-host-range vectors. Measurements of light emission from Rhizobium meliloti, Agrobacterium tumefaciens, and Pseudomonas putida cells indicated that both luciferases were poorly expressed from P1 in most bacterial hosts. In contrast, the lambda promoter PR yielded constitutively high levels of luciferase expression in all bacterial species tested. PR activity was not regulated by temperature when the thermosensitive repressor cI857 was present in the bacterial species tested, except for E. coli. In contrast, the regulated lacIq-Ptrc::lucOR fusion expression system behaved in a manner similar to that observed in E. coli cells. After IPTG (isopropyl-beta-D-thiogalactopyranoside) induction, this system produced the highest levels of lucOR expression in all bacterial species tested.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7574604

  13. A mutagenesis study of the putative luciferin binding site residues of firefly luciferase.

    PubMed

    Branchini, Bruce R; Southworth, Tara L; Murtiashaw, Martha H; Boije, Henrik; Fleet, Sarah E

    2003-09-01

    Firefly luciferase catalyzes the highly efficient emission of yellow-green light from substrate firefly luciferin by a sequence of reactions that require Mg-ATP and molecular oxygen. We had previously developed [Branchini, B. R., Magyar, R. A., Murtiashaw, M. H., Anderson, S. M., and Zimmer, M. (1998) Biochemistry 37, 15311-15319] a molecular graphics-based working model of the luciferase active site starting with the first X-ray structure [Conti, E., Franks, N. P., and Brick, P. (1996) Structure 4, 287-298] of the enzyme without bound substrates. In our model, the luciferin binding site contains 15 residues that are within 5 A of the substrate. Using site-directed mutagenesis, we made changes at all of these residues and report here the characterization of the corresponding expressed and purified proteins. Of the 15 residues studied, 12 had a significantly (>or=4-fold K(m) difference) altered binding affinity for luciferin and seven residues, spanning the primary sequence region Arg218-Ala348, had substantially (>or=30 nm) red-shifted bioluminescence emission maxima when mutated. We report here an interpretation of the roles of the mutated residues in substrate binding and bioluminescence color determination. The results of this study generally substantiate the accuracy of our model and provide the foundation for future experiments designed to alter the substrate specificity of firefly luciferase. PMID:12950169

  14. Construction and characterization of a red-emitting luciferase

    NASA Astrophysics Data System (ADS)

    Eames, Brian F.; Benaron, David A.; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    Red light is transmitted through live tissue more efficiently than other wavelengths of visible light, thus by red-shifting the emission of bioluminescent reporters, we may enhance their utility for in vivo monitoring of biological processes. Codon changes at positions that may shift the yellow-green emission to red, based on studies of a related luciferase, were introduced into a variant of the North American firefly luciferase. Clones containing the desired mutation were selected based on the introduction of unique restriction enzyme sites and transfected into NIH 3T3 cells. Expression levels were evaluated using an intensified charge coupled device camera. Upon spectral analysis, all mutant luciferases demonstrated red-orange emission. Two emission peaks were detected in each spectrum, each clone with different peak heights at 560 nm and 610 nm. Sequence analyses of the compete coding region of several clones confirmed the presence of the target mutations, although sequence variation was observed at several secondary sites, likely resulting from the infidelity of Taq polymerase used in the mutagenesis protocol. A clone that demonstrated a strong 610 nm peak with a minimum shoulder at 560 nm was selected for use in animals. In summary, a red-shifted mutant of a well-characterized luciferase reporter gene was generated. Red light from this enzyme may both penetrate mammalian tissues to a greater extent and provide a tool for multicolor biological assays.

  15. Determination of relative assay response factors for toxic chlorinated and bromiated dioxins/furans using an enyme immunoassay (EIA) and a chemically-activated luciferase gene expression cell bioassay (CALUX)

    EPA Science Inventory

    Determination of dioxin-like activity requires knowledge of both the concentration and toxicity to evaluate the risk of adverse human health and environmental effects. The dioxin-like response of several polybrominated dibenzo-p-dioxins/furans (PBDDs/Fs) and polybrominated/chlori...

  16. Dual-color bioluminescence imaging assay using green- and red-emitting beetle luciferases at subcellular resolution.

    PubMed

    Yasunaga, Mayu; Nakajima, Yoshihiro; Ohmiya, Yoshihiro

    2014-09-01

    Bioluminescence imaging is widely used to monitor cellular events, including gene expression in vivo and in vitro. Moreover, recent advances in luciferase technology have made possible imaging at the single-cell level. To improve the bioluminescence imaging system, we have developed a dual-color imaging system in which the green-emitting luciferase from a Brazilian click beetle (Emerald Luc, ELuc) and the red-emitting luciferase from a railroad worm (Stable Luciferase Red, SLR) were used as reporters, which were localized to the peroxisome and the nucleus, respectively. We clearly captured simultaneously the subcellular localization of ELuc in the peroxisome and SLR in the nucleus of a single cell using a high-magnification objective lens with 3-min exposure time without binning using a combination of optical filters. Furthermore, to apply this system to quantitative time-lapse imaging, the activation of nuclear factor triggered by tumor necrosis factor α was measured using nuclear-targeted SLR and peroxisome-targeted ELuc as the test and internal control reporters, respectively. We successfully quantified the kinetics of activation of nuclear factor κB using nuclear-targeted SLR and the transcriptional change of the internal control promoter using peroxisome-targeted ELuc simultaneously in a single cell, and showed that the activation kinetics, including activation rate and amplitude, differed among cells. The results demonstrated that this imaging system can visualize the subcellular localization of reporters and track the expressions of two genes simultaneously at subcellular resolution. PMID:25015042

  17. Dual-color bioluminescence imaging assay using green- and red-emitting beetle luciferases at subcellular resolution.

    PubMed

    Yasunaga, Mayu; Nakajima, Yoshihiro; Ohmiya, Yoshihiro

    2014-09-01

    Bioluminescence imaging is widely used to monitor cellular events, including gene expression in vivo and in vitro. Moreover, recent advances in luciferase technology have made possible imaging at the single-cell level. To improve the bioluminescence imaging system, we have developed a dual-color imaging system in which the green-emitting luciferase from a Brazilian click beetle (Emerald Luc, ELuc) and the red-emitting luciferase from a railroad worm (Stable Luciferase Red, SLR) were used as reporters, which were localized to the peroxisome and the nucleus, respectively. We clearly captured simultaneously the subcellular localization of ELuc in the peroxisome and SLR in the nucleus of a single cell using a high-magnification objective lens with 3-min exposure time without binning using a combination of optical filters. Furthermore, to apply this system to quantitative time-lapse imaging, the activation of nuclear factor triggered by tumor necrosis factor α was measured using nuclear-targeted SLR and peroxisome-targeted ELuc as the test and internal control reporters, respectively. We successfully quantified the kinetics of activation of nuclear factor κB using nuclear-targeted SLR and the transcriptional change of the internal control promoter using peroxisome-targeted ELuc simultaneously in a single cell, and showed that the activation kinetics, including activation rate and amplitude, differed among cells. The results demonstrated that this imaging system can visualize the subcellular localization of reporters and track the expressions of two genes simultaneously at subcellular resolution.

  18. Recombinant porcine reproductive and respiratory syndrome virus expressing luciferase genes provide a new indication of viral propagation in both permissive and target cells.

    PubMed

    Gao, Fei; Qu, Zehui; Li, Liwei; Yu, Lingxue; Jiang, Yifeng; Zhou, Yanjun; Yang, Shen; Zheng, Hao; Huang, Qinfeng; Tong, Wu; Tong, Guangzhi

    2016-08-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) has a condensed single-stranded positive-sense RNA genome that contains several overlapping regions. The transcription regulatory sequence (TRS) is the important cis-acting element participating in PRRSV discontinuous transcription process. Based on reverse genetic system of type 2 highly pathogenic PRRSV cell-passage attenuated strain pHuN4-F112, firefly luciferase or Renilla luciferase genes were inserted between ORF1b and ORF2. An extra TRS6 was embedded behind the foreign luciferase genes. pA-Fluc and pA-Rluc were constructed and successfully rescued in MARC-145 cells. The phenotypical characteristics of the progeny virus were indistinguishable from those of vHuN4-F112 and were genetically stable for at least 25 cell passages. Mutant virus-infected cells were lysed at different time points to assess luciferase activities and measure foreign gene expression levels. The results showed identical variations in the luciferase activities of the recombinants in MARC-145 cells, indicating that they were suitable for monitoring viral propagation in PRRSV-permissive cell cultures. They were also used to infect pulmonary alveolar macrophages, which yielded similar variations in luciferase activities. Therefore, vA-Fluc and vA-Rluc present powerful new tools to monitor PRRSV propagation in both passaged and target cells. PMID:27473986

  19. Pyrrolo[2,3-b]quinoxalines as inhibitors of firefly luciferase: their Cu-mediated synthesis and evaluation as false positives in a reporter gene assay.

    PubMed

    Nakhi, Ali; Rahman, Md Shafiqur; Kishore, Ravada; Meda, Chandana Lakshmi T; Deora, Girdhar Singh; Parsa, Kishore V L; Pal, Manojit

    2012-10-15

    2-Substituted pyrrolo[2,3-b]quinoxalines having free NH were prepared directly from 3-alkynyl-2-chloroquinoxalines in a single pot by using readily available and inexpensive methane sulfonamide (or p-toluene sulfonamide) as an ammonia surrogate. The reaction proceeded in the presence of Cu(OAc)(2) affording the desired product in moderate yield. The crystal structure analysis of a representative compound and its supramolecular interactions are presented. Some of the compounds synthesized exhibited inhibitory activities against luciferase that was supported by the predictive binding mode of these compounds with luciferase enzyme through molecular docking studies. The key observations disclosed here can alert users of luciferase reporter gene assays for possible false positive results due to the direct inhibition of luciferase.

  20. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  1. ATP-Releasing Nucleotides: Linking DNA Synthesis to Luciferase Signaling.

    PubMed

    Ji, Debin; Mohsen, Michael G; Harcourt, Emily M; Kool, Eric T

    2016-02-01

    A new strategy is reported for the production of luminescence signals from DNA synthesis through the use of chimeric nucleoside tetraphosphate dimers in which ATP, rather than pyrophosphate, is the leaving group. ATP-releasing nucleotides (ARNs) were synthesized as derivatives of the four canonical nucleotides. All four derivatives are good substrates for DNA polymerase, with Km values averaging 13-fold higher than those of natural dNTPs, and kcat values within 1.5-fold of those of native nucleotides. Importantly, ARNs were found to yield very little background signal with luciferase. DNA synthesis experiments show that the ATP byproduct can be harnessed to elicit a chemiluminescence signal in the presence of luciferase. When using a polymerase together with the chimeric nucleotides, target DNAs/RNAs trigger the release of stoichiometrically large quantities of ATP, thereby allowing sensitive isothermal luminescence detection of nucleic acids as diverse as phage DNAs and short miRNAs.

  2. Optimization of the firefly luciferase reaction for analytical purposes.

    PubMed

    Lundin, Arne

    2014-01-01

    The optimization of assays has two purposes: (1) to increase the sensitivity of the assay so that low levels of the analyte can be determined; and (2) to prevent small changes of the reaction conditions from having a large impact on the outcome of the assay. The two purposes are usually equally important, as has been recognized in well-established branches of analytical chemistry, such as clinical chemistry. The firefly luciferase reaction can be used for many types of assays. The way to optimize these assays is not trivial, as there are many parameters to consider. Furthermore, as there are now several types of recombinant luciferases available, one has to decide which is the most suitable for each individual assay. The optimization is influenced by the conditions and requirements under which the assay is performed. Special attention is given to ways to calibrate assays. Examples on optimization are mainly taken from the author's own work during 40 years using assays based on the firefly luciferase reaction.

  3. Engineering luciferase enzymes and substrates for novel assay capabilities

    NASA Astrophysics Data System (ADS)

    Wood, Keith V.

    2004-06-01

    In the development of HTS as a central paradigm of drug discovery, fluorescent reporter molecules have generally been adopted as the favored signal transducer. Nevertheless, luminescence has maintained a prominent position among certain methodologies, most notably genetic reporters. Recently, there has been growing partiality for luminescent assays across a broader range of applications due to their sensitivity, extensive linearity, and robustness to library compounds and complex biological samples. This trend has been fostered by development several new assay designs for diverse targets such as kinases, cytochrome p450's, proteases, apoptosis, and cytotoxicity. This review addresses recent progress made in the use of bioluminescent assays for drug discovery, highlighting new detection capabilities brought about by engineering luciferase enzymes and substrates. In reporter gene applications, modified luciferases have provided greatly improved expression efficiency in mammalian cells, improved responsiveness to changes of transcriptional rate, and increased the magnitude of the reporter response. Highly stabilized luciferase mutants have enabled new assays strategies for high-throughput screening based on detection of ATP and luciferin. Assays based on ATP support rapid analysis of cell metabolism and enzymatic processes coupled to ATP hydrolysis. Although luciferin is found natively only in luminous beetles, coupled assays have been designed using modified forms of luciferin requiring the action of second enzyme to yield luminescence. Due to the very low inherent background and protection of the photon-emitter afforded by the enzyme, bioluminescent assays often outperform the analogous fluorescent assays for analyses performed in multiwell plates.

  4. Use of new T-cell-based cell lines expressing two luciferase reporters for accurately evaluating susceptibility to anti-human immunodeficiency virus type 1 drugs.

    PubMed

    Chiba-Mizutani, Tomoko; Miura, Hideka; Matsuda, Masakazu; Matsuda, Zene; Yokomaku, Yoshiyuki; Miyauchi, Kosuke; Nishizawa, Masako; Yamamoto, Naoki; Sugiura, Wataru

    2007-02-01

    Two new T-cell-based reporter cell lines were established to measure human immunodeficiency virus type 1 (HIV-1) infectivity. One cell line naturally expresses CD4 and CXCR4, making it susceptible to X4-tropic viruses, and the other cell line, in which a CCR5 expression vector was introduced, is susceptible to both X4- and R5-tropic viruses. Reporter cells were constructed by transfecting the human T-cell line HPB-Ma, which demonstrates high susceptibility to HIV-1, with genomes expressing two different luciferase reporters, HIV-1 long terminal repeat-driven firefly luciferase and cytomegalovirus promoter-driven renilla luciferase. Upon HIV infection, the cells expressed firefly luciferase at levels that were highly correlated (r2=0.91 to 0.98) with the production of the capsid antigen p24. The cells also constitutively expressed renilla luciferase, which was used to monitor cell numbers and viability. The reliability of the cell lines for two in vitro applications, drug resistance phenotyping and drug screening, was confirmed. As HIV-1 efficiently replicated in these cells, they could be used for multiple-round replication assays as an alternative method to a single-cycle replication protocol. Coefficients of variation for drug susceptibility evaluated with the cell lines ranged from 17 to 41%. The new cell lines were beneficial for evaluating antiretroviral drug resistance. Firefly luciferase gave a wider dynamic range for evaluating virus infectivity, and the introduction of renilla luciferase improved assay reproducibility. The cell lines were also beneficial for screening new antiretroviral agents, as false inhibition caused by the cytotoxicity of test compounds was easily detected by monitoring renilla luciferase activity.

  5. Luciferase as a reporter of gene activity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their development and introduction in the early days of plant genetic engineering, reporter genes have established a proven track record as effective tools for exploring the molecular underpinnings of gene regulation. When driven by appropriate genetic control systems (e.g. transcriptional pr...

  6. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity.

    PubMed

    Omokoko, Tana A; Luxemburger, Uli; Bardissi, Shaheer; Simon, Petra; Utsch, Magdalena; Breitkreuz, Andrea; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard (51)Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the (51)Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies. PMID:27057556

  7. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    PubMed Central

    Omokoko, Tana A.; Luxemburger, Uli; Bardissi, Shaheer; Simon, Petra; Utsch, Magdalena; Breitkreuz, Andrea; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies. PMID:27057556

  8. Identification and synthesis of substituted pyrrolo[2,3-d]pyrimidines as novel firefly luciferase inhibitors.

    PubMed

    Liu, Yang; Fang, Jianping; Cai, Haiyan; Xiao, Fei; Ding, Kan; Hu, Youhong

    2012-09-15

    A novel firefly luciferase inhibitor (3a) with a pyrrolo[2,3-d]pyrimidine core was identified in a cell-based NF-κB luciferase reporter gene assay. It potently inhibited the firefly luciferase derived from Photinus pyralis with an IC(50) value of 0.36 ± 0.05 μM. Kinetic analysis of 3a inhibition showed that it is predominantly competitive with respect to D-luciferin and uncompetitive with respect to ATP. Therefore, several pyrrolo[2,3-d]pyrimidine analogues were prepared to further investigate the structure-activity relationship (SAR) for luciferase inhibition. The most potent inhibitor of this series was 4c, which showed an IC(50) value of 0.06 ± 0.01 μM. In addition, molecular docking studies suggested that both 3a and 4c could be accommodated in the D-luciferin binding pocket, which is expected for a predominantly competitive inhibitor with respect to D-luciferin.

  9. Elemental sulfur: toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase.

    PubMed

    Cetkauskaite, Anolda; Pessala, Piia; Södergren, Anders

    2004-08-01

    The aim of this research was to analyze the effects and the modes of action of elemental sulfur (S(0)) in bioluminescence and respiration of Vibrio fischeri cells and the enzymes crude luciferase, pure catalase, and alcohol dehydrogenase (ADH). Metallic copper removed sulfur and reduced the toxicity of acetone extracts of sediment samples analyzed in the bioluminescence test. The sulfur inhibition of cell bioluminescence was noncompetitive with decanal, the luciferase substrate; reversible, with maximum toxicity after 15 min (EC(50) = 11.8 microg/L); and almost totally recovered after 2 h. In vitro preincubation of crude luciferase extract with sulfur (0.28 ppm) weakly inhibited bioluminescence at 5 min, but at 30 min the inhibition reached 60%. Increasing the concentration of sulfur in the parts per million concentration range in vitro decreased bioluminescence, which was not constant, but depended on exposure time, and no dead-end/total inhibition was observed. The redox state of enzymes in the in vitro system significantly affected inhibition. Hydrogen peroxide restored fully and the reducing agent dithiothreitol, itself toxic, restored only partially luciferase activity in the presence of sulfur. Sulfur (5.5 ppm) slightly inhibited ADH and catalase, and dithiothreitol enhanced sulfur inhibition. High sulfur concentrations (2.2 ppm) inhibited the bioluminescence and enhanced the respiration rate of V. fischeri cells. Elemental sulfur data were interpreted to show that sulfur acted on at least a few V. fischeri cell sites: reversibly modifying luciferase at sites sensitive to/protected by oxidative and reducing agents and by affecting electron transport processes, resulting in enhanced oxygen consumption. Sulfur together with an enzyme reducing agent inhibited the oxidoreductive enzymes ADH and catalase, which have --SH groups, metal ion cofactors, or heme, respectively, in their active centers. PMID:15269910

  10. Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells.

    PubMed

    Czupryna, Julie; Tsourkas, Andrew

    2011-01-01

    Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MCF-7, and 293T) stably expressing fLuc were treated with staurosporine (STS), there was a rapid loss in bioluminescence. In contrast, a stable variant of Renilla luciferase (RLuc), RLuc8, exhibited significantly prolonged functionality under the same conditions. To identify the specific underlying mechanism(s) responsible for the disparate sensitivity of RLuc8 and fLuc to cellular stress, we conducted a series of inhibition studies that targeted known intracellular protein degradation/modification pathways associated with cell death. Interestingly, these studies suggested that reactive oxygen species, particularly hydrogen peroxide (H(2)O(2)), was responsible for the diminution of fLuc activity. Consistent with these findings, the direct application of H(2)O(2) to HeLa cells also led to a reduction in fLuc bioluminescence, while H(2)O(2) scavengers stabilized fLuc activity. Comparatively, RLuc8 was far less sensitive to ROS. These observations suggest that fLuc activity can be substantially altered in studies where ROS levels become elevated and can potentially lead to ambiguous or misleading findings.

  11. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate.

    PubMed

    Hall, Mary P; Unch, James; Binkowski, Brock F; Valley, Michael P; Butler, Braeden L; Wood, Monika G; Otto, Paul; Zimmerman, Kristopher; Vidugiris, Gediminas; Machleidt, Thomas; Robers, Matthew B; Benink, Hélène A; Eggers, Christopher T; Slater, Michael R; Meisenheimer, Poncho L; Klaubert, Dieter H; Fan, Frank; Encell, Lance P; Wood, Keith V

    2012-11-16

    Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp Oplophorus gracilirostris, we have improved luminescence expression in mammalian cells ~2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ~150-fold greater than that of either firefly (Photinus pyralis) or Renilla luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes. PMID:22894855

  12. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    PubMed Central

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  13. In Vivo Imaging of Human MDR1 Transcription in the Brain and Spine of MDR1-Luciferase Reporter Mice

    PubMed Central

    Yasuda, Kazuto; Cline, Cynthia; Lin, Yvonne S.; Scheib, Rachel; Ganguly, Samit; Thirumaran, Ranjit K.; Chaudhry, Amarjit; Kim, Richard B.

    2015-01-01

    P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation. PMID:26281846

  14. In Vivo Imaging of Human MDR1 Transcription in the Brain and Spine of MDR1-Luciferase Reporter Mice.

    PubMed

    Yasuda, Kazuto; Cline, Cynthia; Lin, Yvonne S; Scheib, Rachel; Ganguly, Samit; Thirumaran, Ranjit K; Chaudhry, Amarjit; Kim, Richard B; Schuetz, Erin G

    2015-11-01

    P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation.

  15. Genetic modification in organ transplantation and in vivo luciferase imaging

    NASA Astrophysics Data System (ADS)

    Murakami, Takashi; Inoue, Sei-ichiro; Sato, Yuki; Ajiki, Takashi; Ohsawa, Ichiro; Kobayashi, Eiji

    2005-04-01

    The genetic modification for organ transplantation is one of the most promising strategies to regulate allogeneic immune response. Organ-selective gene transfer has especially benefit to control local immune responses. Based on the catheter technique, we tested to deliver naked plasmid DNA to target graft organs of rats (liver and limbs) by a rapid injection (hydrodynamics-based transfection). Recent advances in transplantation have been achieved by visualization of cellular process and delivered gene expression during the inflammatory process by using non-invasive in vivo imaging. Herein, we examined the fate of genetically modified grafts using a firefly luciferase expression plasmid. For liver modification before transplantation, 6.25% of body weight PBS containing plasmid DNA was injected into the liver through the inferior vena cava using a catheter, and the liver was subsequently transplanted to the recipient rat. For limb modification, the femoral caudal epigastric vein was used. In the rat liver transplantation model, substantial luciferase expression was visualized and sustained for only a few days in the grafted liver. We also addressed stress responses by this hydrodynamics procedure using reporter plasmids containing cis-acting enhancer binding site such as NF-kappa B, cAMP, or heat shock response element. In contrast to hepatic transduction, this genetic limb targeting achieved long lasting luciferase expression in the muscle for 2 months or more. Thus, our results suggest that this catheter-based in vivo transfection technique provides an effective strategy for organ-selective gene modification in transplantation, and the bioluminescent imaging is broadening its potential for evaluation to various preclinical studies.

  16. Application of luciferase assay for ATP to antimicrobial drug susceptibility

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Vellend, H.; Tuttle, S. A.; Barza, M. J.; Weinstein, L. (Inventor)

    1977-01-01

    The susceptibility of bacteria, particularly those derived from body fluids, to antimicrobial agents is determined in terms of an ATP index measured by culturing a bacterium in a growth medium. The amount of ATP is assayed in a sample of the cultured bacterium by measuring the amount of luminescent light emitted when the bacterial ATP is reacted with a luciferase-luciferin mixture. The sample of the cultured bacterium is subjected to an antibiotic agent. The amount of bacterial adenosine triphosphate is assayed after treatment with the antibiotic by measuring the luminescent light resulting from the reaction. The ATP index is determined from the values obtained from the assay procedures.

  17. Rapid and scalable assembly of firefly luciferase substrates.

    PubMed

    McCutcheon, David C; Porterfield, William B; Prescher, Jennifer A

    2015-02-21

    Bioluminescence imaging with luciferase-luciferin pairs is a popular method for visualizing biological processes in vivo. Unfortunately, most luciferins are difficult to access and remain prohibitively expensive for some imaging applications. Here we report cost-effective and efficient syntheses of d-luciferin and 6'-aminoluciferin, two widely used bioluminescent substrates. Our approach employs inexpensive anilines and Appel's salt to generate the luciferin cores in a single pot. Additionally, the syntheses are scalable and can provide multi-gram quantities of both substrates. The streamlined production and improved accessibility of luciferin reagents will bolster in vivo imaging efforts.

  18. Rapid and scalable assembly of firefly luciferase substrates†

    PubMed Central

    McCutcheon, David C.; Porterfield, William B.; Prescher, Jennifer A.

    2015-01-01

    Bioluminescence imaging with luciferase-luciferin pairs is a popular method for visualizing biological processes in vivo. Unfortunately, most luciferins are difficult to access and remain prohibitively expensive for some imaging applications. Here we report cost-effective and efficient syntheses of D-luciferin and 6′-aminoluciferin, two widely used bioluminescent substrates. Our approach employs inexpensive anilines and Appel's salt to generate the luciferin cores in a single pot. Additionally, the syntheses are scalable and can provide multi-gram quantities of both substrates. The streamlined production and improved accessibility of luciferin reagents will bolster in vivo imaging efforts. PMID:25525906

  19. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    SciTech Connect

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  20. Detection of bacteriuria by luciferase assay of adenosine triphosphate.

    PubMed Central

    Thore, A; Anséhn, S; Lundin, A; Bergman, S

    1975-01-01

    A selective method for distinguishing bacterial and nonbacterial adenosine triphosphate (ATP) in clinical bacteriological specimens was studied. The method involved incubation of samples with the detergent Triton X-100 and the ATP-hydrolyzing enzyme apyrase. The incubation selectively destroyed ATP in suspensions of various human cells while not affecting the ATP content in microbial cells. ATP remaining in the sample after incubation was extracted in boiling buffer and assayed by the firefly luciferase assay. Application of the method to 469 clinical urine specimens showed that the ATP level after treatment with Triton/apyrase was correlated to bacterial counts and that the sensitivity of the assay was sufficient for the detection of 10(5) bacteria/ml. The ATP levels per bacterial cell remaining in the urine specimen after treatment with Triton/apyrase were close to values observed in laboratory-grown cultures. The specificity and sensitivity of the luciferase assay for the detection of urinary bacteria and its possible use as a bacteriuria screening method are discussed. PMID:1100645

  1. Co-expression of CYP27B1 enzyme with the 1.5kb CYP27B1 promoter-luciferase transgene in the mouse.

    PubMed

    Anderson, Paul H; Hendrix, Ivanka; Sawyer, Rebecca K; Zarrinkalam, Reza; Manavis, Jim; Sarvestani, Ghafar T; May, Brian K; Morris, Howard A

    2008-03-26

    The renal enzyme 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1), responsible for the synthesis of circulating. 1,25-dihydroxyvitamin D (1,25D), is also expressed in a number of non-renal tissues. The regulation of CYP27B1 expression by the short flanking promoter outside the kidney is, however, largely unknown. We have used a transgenic mice expressing the 1.5kb promoter of the human CYP27B1 gene fused to the firefly luciferase gene in order to investigate tissue-specific CYP27B1 expression. These transgenic animals demonstrated co-localised luciferase and endogenous CYP27B1 expression in kidney proximal convoluted tubular cells. Strong co-expression of luciferase and CYP27B1 also occurred in neurons and Purkinje cells of the cerebellum and in Leydig and Sertoli cells of the testes. Other tissues to exhibit CYP27B1-promoter directed luciferase activity included lung, prostate, trabecular bone and jejunum as well as the choroid epithelium. The tissue specific changes in luciferase activity were age-related. These findings demonstrate that the proximal 1.5kb 5' flanking region of the CYP27B1 gene directs the expression of CYP27B1 in a number of known and novel tissues in a specific manner. PMID:18313834

  2. A Luciferase-Based Quick Potency Assay to Predict Chondrogenic Differentiation.

    PubMed

    Oberbauer, Eleni; Steffenhagen, Carolin; Feichtinger, Georg; Hildner, Florian; Hacobian, Ara; Danzer, Martin; Gabriel, Christian; Redl, Heinz; Wolbank, Susanne

    2016-05-01

    Chondrogenic differentiation of adipose-derived stem cells (ASC) is challenging but highly promising for cartilage repair. Large donor variability of chondrogenic differentiation potential raises the risk for transplantation of cells with reduced efficacy and a low chondrogenic potential. Therefore, quick potency assays are required to control the potency of the isolated cells before cell transplantation. Current in vitro methods to analyze the differentiation capacity are time-consuming, and thus, a novel enhancer and tissue-specific promoter combination was used for the detection of chondrogenic differentiation of ASC in a novel quick potency bioassay. Human primary ASC were cotransfected with the Metridia luciferase-based collagen type II reporter gene pCMVE_ACDCII-MetLuc together with a Renilla control plasmid and analyzed for their chondrogenic potential. On day 3 after chondrogenic induction, the luciferase activity was induced in all tested donors under three-dimensional culture conditions and, in a second approach, also under two-dimensional (2D) culture conditions. With our newly developed quick potency bioassay, we can determine chondrogenic potential already after 3 days of chondrogenic induction and under 2D culture conditions. This will enhance the efficiency of testing cell functionality, which should allow in the future to predict the suitability of cells derived from individual patients for cell therapies in a very short time and at low costs. PMID:27019357

  3. Implication of Arg213 and Arg337 on the kinetic and structural stability of firefly luciferase.

    PubMed

    Riahi-Madvar, Ali; Hosseinkhani, Saman; Rezaee, Fatemeh

    2013-01-01

    Possible roles of two different Arginine (Arg; R) 213 and 337 on kinetic and structural stability of Photinus pyralis luciferase have been investigated using thermal and chemical denaturation studies. This enzyme is highly sensitive to protease digestion and temperature, which limits its fieldability, particularly for in vivo imaging. In order to generate more stable luciferases against trypsin digestion, site-directed mutagenesis was conducted to block two representative tryptic sites on the surface of N-terminal domain, via substitution of Arg213 and Arg337 by methionine (Met; M) and glutamine (Gln; Q), respectively [A. Riahi-Madvar, S. Hosseinkhani, Protein engineering, design and selection 22 (2009) 655-663]. The improvement of mutant enzymes stability against protease hydrolysis may be attributed to the more rigidity of the enzyme structure upon mutations, as can be deducted from elevated levels of m(U-N) values and decrease of activation energy. Furthermore, mutation at position 337 which is accompanied with more alteration on the basic kinetic properties relative to mutation at position 213, revealed the high values of the ΔG(H(2)O), half-time of inactivation at 30°C and T(m) for R337Q where Arg213 is maintained in structure. Based on the results, it can be concluded that whilst Arg213 affects structural stability, Arg337 is critical for kinetic stability.

  4. Luciferase-based assay for adenosine: application to S-adenosyl-L-homocysteine hydrolase.

    PubMed

    Burgos, Emmanuel S; Gulab, Shivali A; Cassera, María B; Schramm, Vern L

    2012-04-17

    S-Adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine, promoting methyltransferase activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism, and the development of SAHH inhibitors is of interest for new therapeutics with anticancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH. This luciferase-based assay is 4000-fold more sensitive than former detection methods and is well suited for continuous monitoring of ADO formation in a 96-well-plate format. The high-affinity adenosine kinase from Anopheles gambiae efficiently converts adenosine to adenosine monophosphate (AMP) in the presence of guanosine triphosphate. AMP is converted to adenosine triphosphate and coupled to firefly luciferase. With this procedure, kinetic parameters (K(m), k(cat)) for SAHH were obtained, in good agreement with literature values. Assay characteristics include sustained light output combined with ultrasensitive detection (10(-7) unit of SAHH). The assay is documented with the characterization of slow-onset inhibition for inhibitors of the hydrolase. Application of this assay may facilitate the development of SAHH inhibitors and provide an ultrasensitive detection for the formation of adenosine from other biological reactions.

  5. Truncated Variants of Gaussia Luciferase with Tyrosine Linker for Site-Specific Bioconjugate Applications

    PubMed Central

    Hunt, Eric A.; Moutsiopoulou, Angeliki; Ioannou, Stephanie; Ahern, Katelyn; Woodward, Kristen; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K.

    2016-01-01

    Gaussia luciferase (Gluc)—with its many favorable traits such as small size, bright emission, and exceptional stability—has become a prominent reporter protein for a wide range of bioluminescence-based detection applications. The ten internal cysteine residues crucial to functional structure formation, however, make expression of high quantities of soluble protein in bacterial systems difficult. In addition to this challenge, the current lack of structural data further complicates the use of Gluc for in vitro applications, such as biosensors, or cellular delivery, both of which rely heavily on robust and reproducible bioconjugation techniques. While Gluc is already appreciably small for a luciferase, a reduction in size that still retains significant bioluminescent activity, in conjunction with a more reproducible bioorthogonal method of chemical modification and facile expression in bacteria, would be very beneficial in biosensor design and cellular transport studies. We have developed truncated variants of Gluc, which maintain attractive bioluminescent features, and have characterized their spectral and kinetic properties. These variants were purified in high quantities from a bacterial system. Additionally, a C-terminal linker has been incorporated into these variants that can be used for reliable, specific modification through tyrosine-based bioconjugation techniques, which leave the sensitive network of cysteine residues undisturbed. PMID:27271118

  6. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    PubMed

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  7. Transgenic mouse model harboring the transcriptional fusion ccl20-luciferase as a novel reporter of pro-inflammatory response.

    PubMed

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.

  8. Transgenic Mouse Model Harboring the Transcriptional Fusion Ccl20-Luciferase as a Novel Reporter of Pro-Inflammatory Response

    PubMed Central

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691

  9. Immune response to firefly luciferase as a naked DNA.

    PubMed

    Jeon, Yong Hyun; Choi, Yun; Kang, Joo Hyun; Kim, Chul Woo; Jeong, Jae Min; Lee, Dong Soo; Chung, June-Key

    2007-05-01

    Firefly luciferase (Fluc) has been widely used as a reporter gene. The aim of this study was to investigate immune response to luciferase protein after an intradermal injection of pcDNA3.1-Fluc in immunocompetent BALB/c mice. We observed bioluminescence at injection sites from one to seven days post-injection when pcDNA3.1-Fluc was intradermally injected into ear-pinnae. To observe induced immune response, the percentages of CD8+IFNgamma+ cells in the draining lymphoid cells of immunocompetent BALB/c mice immunized by pcDNA3.1-Fluc were measured. And the tumor growths of CT26/Fluc in pcDNA3.1-Fluc group were monitored by observing bioluminescent signals and measuring tumor mass, and these were compared with those of the pcDNA3.1 group in immunocompetent BALB/c mice and immunodeficient Nu/Nu mice. In the immunocompetent BALB/c mice, percentages of CD8+IFNgamma+ cells in the pcDNA3.1-Fluc group were higher than those in the pcDNA3.1 group. Ten days after tumor inoculation, tumor growth inhibition was found in the pcDNA3.1-Fluc group, but not in the pcDNA3.1 group in the immunocompetent BALB/c mice. No significant difference in tumor growth inhibition was observed when CT26/Fluc was injected into immunodeficient Nu/Nu mice. In terms of cytokine profiles of draining lymphoid cells of immunized mice, IFNgamma protein levels in the pcDNA3.1-Fluc group were higher than in pcDNA3.1 group animals among the immunocompetent BALB/c mice. In conclusion, Fluc induced a Th1 immune response to Fluc protein delivered by injecting pcDNA3.1-Fluc into immunocompetent BALB/c mice. We suggest that immune response to the Fluc gene is cautionary in preclinical or clinical trials involving the Fluc gene, and that the immunologic potential of firefly luciferase as a naked DNA may be useful in cancer immunotherapy.

  10. Sensitive and convenient yeast reporter assay for high-throughput analysis by using a secretory luciferase from Cypridina noctiluca.

    PubMed

    Tochigi, Yuki; Sato, Natsuko; Sahara, Takehiko; Wu, Chun; Saito, Shinya; Irie, Tsutomu; Fujibuchi, Wataru; Goda, Takako; Yamaji, Ryoichi; Ogawa, Masahiro; Ohmiya, Yoshihiro; Ohgiya, Satoru

    2010-07-01

    The yeast reporter assay has been widely used in various applications such as detection of endocrine disruptors and analysis of protein-protein interactions by the yeast two-hybrid system. The molecular characteristics of the reporter enzyme are critical determinants for this assay. We herein report the establishment of a novel yeast reporter assay using a secretory luciferase, Cypridina noctiluca luciferase (CLuc), as an alternative to the conventional beta-galactosidase. The CLuc reporter assay in yeast is more sensitive and convenient than the conventional assay. A yeast high-throughput reporter assay was established with a laboratory automation system, and the transcriptional activity of hundreds of yeast promoter fragments was comprehensively determined. Our results indicate that the yeast CLuc reporter assay is a promising tool for large-scale and sensitive analysis in the development of new drugs and in various fields of biotechnology research.

  11. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase.

    PubMed

    Zamaraeva, M V; Sabirov, R Z; Maeno, E; Ando-Akatsuka, Y; Bessonova, S V; Okada, Y

    2005-11-01

    Apoptosis is a distinct form of cell death, which requires energy. Here, we made real-time continuous measurements of the cytosolic ATP level throughout the apoptotic process in intact HeLa, PC12 and U937 cells transfected with the firefly luciferase gene. Apoptotic stimuli (staurosporine (STS), tumor necrosis factor alpha (TNFalpha), etoposide) induced significant elevation of the cytosolic ATP level. The cytosolic ATP level remained at a higher level than in the control for up to 6 h during which activation of caspase-3 and internucleosomal DNA fragmentation took place. When the STS-induced ATP response was abolished by glucose deprivation-induced inhibition of glycolysis, both caspase activation and DNA laddering were completely inhibited. Annexin V-binding induced by STS or TNFalpha was largely suppressed by glycolysis inhibition. Thus, it is suggested that the cells die with increased cytosolic ATP, and elevation of cytosolic ATP level is a requisite to the apoptotic cell death process.

  12. High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase.

    PubMed

    Galam, Lakshmi; Hadden, M Kyle; Ma, Zeqiang; Ye, Qi-Zhuang; Yun, Bo-Geon; Blagg, Brian S J; Matts, Robert L

    2007-03-01

    Previously, we have demonstrated that the renaturation of heat denatured firefly luciferase is dependent upon the activity of Hsp90 in rabbit reticulocyte lysate. Here, we demonstrate that this assay may identify inhibitors that obstruct the chaperone activity of Hsp90 either by direct binding to its N-terminal or C-terminal nucleotide binding sites or by interference with the ability of the chaperone to switch conformations. The assay was adapted and optimized for high-throughput screening. Greater than 20,000 compounds were screened to demonstrate the feasibility of using this assay on a large scale. The assay was reproducible (av Z-factor=0.62) and identified 120 compounds that inhibited luciferase renaturation by greater than 70% at a concentration of 12.5 microg/mL. IC50 values for twenty compounds with varying structures were determined for inhibition of luciferase refolding and in cell-based assays for Hsp90 inhibition. Several compounds had IC50 values <10 microM and represent a number of new lead structures with the potential for further development and optimization as potent Hsp90 inhibitors.

  13. High-throughput titration of luciferase-expressing recombinant viruses.

    PubMed

    Garcia, Vanessa; Krishnan, Ramya; Davis, Colin; Batenchuk, Cory; Le Boeuf, Fabrice; Abdelbary, Hesham; Diallo, Jean-Simon

    2014-01-01

    Standard plaque assays to determine infectious viral titers can be time consuming, are not amenable to a high volume of samples, and cannot be done with viruses that do not form plaques. As an alternative to plaque assays, we have developed a high-throughput titration method that allows for the simultaneous titration of a high volume of samples in a single day. This approach involves infection of the samples with a Firefly luciferase tagged virus, transfer of the infected samples onto an appropriate permissive cell line, subsequent addition of luciferin, reading of plates in order to obtain luminescence readings, and finally the conversion from luminescence to viral titers. The assessment of cytotoxicity using a metabolic viability dye can be easily incorporated in the workflow in parallel and provide valuable information in the context of a drug screen. This technique provides a reliable, high-throughput method to determine viral titers as an alternative to a standard plaque assay.

  14. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    SciTech Connect

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James

    2010-04-07

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 {angstrom} cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the 'off-target' effect of a small molecule is mediated by an MAI mechanism.

  15. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124.

    PubMed

    Auld, Douglas S; Lovell, Scott; Thorne, Natasha; Lea, Wendy A; Maloney, David J; Shen, Min; Rai, Ganesha; Battaile, Kevin P; Thomas, Craig J; Simeonov, Anton; Hanzlik, Robert P; Inglese, James

    2010-03-16

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 (Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 A cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; K(D) = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the "off-target" effect of a small molecule is mediated by an MAI mechanism.

  16. Large-Scale Protein-Protein Interaction Analysis in Arabidopsis Mesophyll Protoplasts by Split Firefly Luciferase Complementation

    PubMed Central

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens. PMID:22096563

  17. Firefly luciferase inhibitor-conjugated peptide quenches bioluminescence: a versatile tool for real time monitoring cellular uptake of biomolecules.

    PubMed

    Poutiainen, Pekka K; Rönkkö, Teemu; Hinkkanen, Ari E; Palvimo, Jorma J; Närvänen, Ale; Turhanen, Petri; Laatikainen, Reino; Weisell, Janne; Pulkkinen, Juha T

    2014-01-15

    In this paper, novel firefly luciferase-specific inhibitor compounds (FLICs) are evaluated as potential tools for cellular trafficking of transporter conjugates. As a proof-of-concept, we designed FLICs that were suitable for solid phase peptide synthesis and could be covalently conjugated to peptides via an amide bond. The spacer between inhibitor and peptide was optimized to gain efficient inhibition of recombinant firefly luciferase (FLuc) without compromising the activity of the model peptides. The hypothesis of using FLICs as tools for cellular trafficking studies was ensured with U87Fluc glioblastoma cells expressing firefly luciferase. Results show that cell penetrating peptide (penetratin) FLIC conjugate 9 inhibited FLuc penetrated cells efficiently (IC50 = 1.6 μM) and inhibited bioluminescence, without affecting the viability of the cells. Based on these results, peptide-FLIC conjugates can be used for the analysis of cellular uptake of biomolecules in a new way that can at the same time overcome some downsides seen with other methods. Thus, FLICs can be considered as versatile tools that broaden the plethora of methods that take advantage of the bioluminescence phenomena.

  18. Full color modulation of firefly luciferase through engineering with unified Stark effect.

    PubMed

    Cai, Duanjun; Marques, Miguel A L; Nogueira, Fernando

    2013-11-01

    The firefly luciferase has been a unique marking tool used in various bioimaging techniques. Extensive color modulation is strongly required to meet special marking demands; however, intentional and accurate wavelength tuning has yet to be achieved. Here, we demonstrate that the color shift of the firefly chromophore (OxyLH2-1) by internal and external fields can be described as a unified Stark shift. Electrostatic microenvironmental effects on fluorescent spectroscopy are modeled in vacuo through effective electric fields by using time-dependent density functional theory. A complete visible fluorescence spectrum of firefly chromophore is depicted, which enables one to control the emission in a specific color. As an application, the widely observed pH-correlated color shift is proved to be associated with the local Stark field generated by the trace water-ions (vicinal hydronium and hydroxide ions) at active sites close to the OxyLH2-1.

  19. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase

    PubMed Central

    Si, Meng; Xu, Qing

    2016-01-01

    SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes. PMID:27658030

  20. Identification, characterization and use of two tick promoters for construction of a dual luciferase reporter vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vec...

  1. Point mutations in firefly luciferase C-domain demonstrate its significance in green color of bioluminescence.

    PubMed

    Modestova, Yulia; Koksharov, Mikhail I; Ugarova, Natalia N

    2014-09-01

    Firefly luciferase is a two-domain enzyme that catalyzes the bioluminescent reaction of firefly luciferin oxidation. Color of the emitted light depends on the structure of the enzyme, yet the exact color-tuning mechanism remains unknown by now, and the role of the C-domain in it is rarely discussed, because a very few color-shifting mutations in the C-domain were described. Recently we reported a strong red-shifting mutation E457K in the C-domain; the bioluminescence spectra of this enzyme were independent of temperature or pH. In the present study we investigated the role of the residue E457 in the enzyme using the Luciola mingrelica luciferase with a thermostabilized N-domain as a parent enzyme for site-directed mutagenesis. We obtained a set of mutants and studied their catalytic properties, thermal stability and bioluminescence spectra. Experimental spectra were represented as a sum of two components (bioluminescence spectra of putative "red" and "green" emitters); λmax of these components were constant for all the mutants, but the ratio of these emitters was defined by temperature and mutations in the C-domain. We suggest that each emitter is stabilized by a specific conformation of the active site; thus, enzymes with two forms of the active site coexist in the reactive media. The rigid structure of the C-domain is crucial for maintaining the conformation corresponding to the "green" emitter. We presume that the emitters are the keto- and enol forms of oxyluciferin.

  2. Characterizing DNA methyltransferases with an ultrasensitive luciferase-linked continuous assay.

    PubMed

    Hemeon, Ivan; Gutierrez, Jemy A; Ho, Meng-Chiao; Schramm, Vern L

    2011-06-15

    DNA (cytosine-5)-methyltransferases (DNMTs) catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the 5-position of cytosine residues and thereby silence transcription of regulated genes. DNMTs are important epigenetic targets. However, isolated DNMTs are weak catalysts and are difficult to assay. We report an ultrasensitive luciferase-linked continuous assay that converts the S-adenosyl-L-homocysteine product of DNA methylation to a quantifiable luminescent signal. Results with this assay are compared with the commonly used DNA labeling from [methyl-(3)H]AdoMet. A 5'-methylthioadenosine-adenosylhomocysteine nucleosidase is used to hydrolyze AdoHcy to adenine. Adenine phosphoribosyl transferase converts adenine to AMP and pyruvate orthophosphate dikinase converts AMP to ATP. Firefly luciferase gives a stable luminescent signal that results from continuous AMP recycling to ATP. This assay exhibits a broad dynamic range (0.1-1000 pmol of AdoHcy). The rapid response time permits continuous assays of DNA methylation detected by light output. The assay is suitable for high-throughput screening of chemical libraries for DNMT inhibition activity. The kinetic properties of human and bacterial CpG methyltransferases are characterized using this assay. Human catalytic domain DNMT3b activation by DNMT3L is shown to involve two distinct kinetic states that alter k(cat) but not K(m) for AdoMet. The assay is shown to be robust in the presence of high concentrations of the pyrimidine analogues 5-azacytidine and 5-azacytosine.

  3. A Cytoplasmic Form of Gaussia luciferase Provides a Highly Sensitive Test for Cytotoxicity.

    PubMed

    Tsuji, Saori; Ohbayashi, Tetsuya; Yamakage, Kohji; Oshimura, Mitsuo; Tada, Masako

    2016-01-01

    The elimination of unfavorable chemicals from our environment and commercial products requires a sensitive and high-throughput in vitro assay system for drug-induced hepatotoxicity. Some previous methods for evaluating hepatotoxicity measure the amounts of cytoplasmic enzymes secreted from damaged cells into the peripheral blood or culture medium. However, most of these enzymes are proteolytically digested in the extracellular milieu, dramatically reducing the sensitivity and reliability of such assays. Other methods measure the decrease in cell viability following exposure to a compound, but such endpoint assays are often confounded by proliferation of surviving cells that replace dead or damaged cells. In this study, with the goal of preventing false-negative diagnoses, we developed a sensitive luminometric cytotoxicity test using a stable form of luciferase. Specifically, we converted Gaussia luciferase (G-Luc) from an actively secreted form to a cytoplasmic form by adding an ER-retention signal composed of the four amino acids KDEL. The bioluminescent signal was >30-fold higher in transgenic HepG2 human hepatoblastoma cells expressing G-Luc+KDEL than in cells expressing wild-type G-Luc. Moreover, G-Luc+KDEL secreted from damaged cells was stable in culture medium after 24 hr at 37°C. We evaluated the accuracy of our cytotoxicity test by subjecting identical samples obtained from chemically treated transgenic HepG2 cells to the G-Luc+KDEL assay and luminometric analyses based on secretion of endogenous adenylate kinase or cellular ATP level. Time-dependent accumulation of G-Luc+KDEL in the medium increased the sensitivity of our assay above those of existing tests. Our findings demonstrate that strong and stable luminescence of G-Luc+KDEL in human hepatocyte-like cells, which have high levels of metabolic activity, make it suitable for use in a high-throughput screening system for monitoring time-dependent cytotoxicity in a limited number of cells. PMID

  4. A Cytoplasmic Form of Gaussia luciferase Provides a Highly Sensitive Test for Cytotoxicity

    PubMed Central

    Tsuji, Saori; Ohbayashi, Tetsuya; Yamakage, Kohji; Oshimura, Mitsuo; Tada, Masako

    2016-01-01

    The elimination of unfavorable chemicals from our environment and commercial products requires a sensitive and high-throughput in vitro assay system for drug-induced hepatotoxicity. Some previous methods for evaluating hepatotoxicity measure the amounts of cytoplasmic enzymes secreted from damaged cells into the peripheral blood or culture medium. However, most of these enzymes are proteolytically digested in the extracellular milieu, dramatically reducing the sensitivity and reliability of such assays. Other methods measure the decrease in cell viability following exposure to a compound, but such endpoint assays are often confounded by proliferation of surviving cells that replace dead or damaged cells. In this study, with the goal of preventing false-negative diagnoses, we developed a sensitive luminometric cytotoxicity test using a stable form of luciferase. Specifically, we converted Gaussia luciferase (G-Luc) from an actively secreted form to a cytoplasmic form by adding an ER-retention signal composed of the four amino acids KDEL. The bioluminescent signal was >30-fold higher in transgenic HepG2 human hepatoblastoma cells expressing G-Luc+KDEL than in cells expressing wild-type G-Luc. Moreover, G-Luc+KDEL secreted from damaged cells was stable in culture medium after 24 hr at 37°C. We evaluated the accuracy of our cytotoxicity test by subjecting identical samples obtained from chemically treated transgenic HepG2 cells to the G-Luc+KDEL assay and luminometric analyses based on secretion of endogenous adenylate kinase or cellular ATP level. Time-dependent accumulation of G-Luc+KDEL in the medium increased the sensitivity of our assay above those of existing tests. Our findings demonstrate that strong and stable luminescence of G-Luc+KDEL in human hepatocyte-like cells, which have high levels of metabolic activity, make it suitable for use in a high-throughput screening system for monitoring time-dependent cytotoxicity in a limited number of cells. PMID

  5. Proposed ionic bond between Arg300 and Glu270 and Glu271 are not involved in inactivation of a mutant firefly luciferase (LRR).

    PubMed

    Sobhani-Damavandifar, Zahra; Hosseinkhani, Saman; Sajedi, Reza H

    2016-05-01

    The weakness of firefly luciferase is its rapid inactivation. Many studies have been done to develop thermostable luciferases. One of these modifications was LRR mutant in which the Leu300 was substituted with Arg in the E(354)RR(356)Lampyris turkestanicus luciferase as template. LRR was more thermostable than the wild type but with only 0.02% activity. In this study, site-directed mutagenesis was used to change the proposed ionic bond between the Arg and two neighboring residues (Glu270 and Glu271), to understand if the induced interactions were responsible for inactivation in LRR. Our results showed that substitution of Glu270 and 271 with Ala removed the interactions but the activity of enzyme did not return. The E270A mutant was more active than LRR but the E271A and E270A/E271A mutants were inactive. Fluorescence and CD measurements showed that these mutations were accompanied by conformational changes. Extrinsic fluorescence measurement and obtained quenching data by KI and acrylamide also confirmed that the mutants were less compact than the LRR enzyme. In conclusion, in LRR, the interactions between Arg300 and Glu270 and Glu271 were not responsible for the enzyme inactivation and it is proposed that the enzyme inactivation is due to conformational changes of LRR mutant of firefly luciferase. PMID:26992788

  6. Searching for biomarkers: humoral response profiling with luciferase immunoprecipitation systems.

    PubMed

    Burbelo, Peter D; Ching, Kathryn H; Bren, Kathleen E; Iadarola, Michael J

    2011-06-01

    B-cell-mediated humoral responses are triggered in many human diseases, including autoimmune diseases, cancer, and neurologic and infectious diseases. However, the full exploitation of the information contained within a patient's antibody repertoire for diagnosis, monitoring and even disease prediction has been limited due to the poor diagnostic performance of many immunoassay formats. We have developed luciferase immunoprecipitation systems (LIPS) that harnesses light-emitting proteins to generate high-definition antibody profiles that are optimal for both diagnostics and biomarker discovery. Here, we describe the results and implications from a range of LIPS-antibody profiling studies performed in our laboratory. These include highly sensitive diagnostics for domestic and global pathogens, insights into infection-related diseases, discovery of new biomarkers for human diseases, subcategorization of symptoms and identification of pathogenic autoantibodies against self-proteins. These investigations highlight the types of humoral response profiles associated with different diseases, provide new information related to disease pathogenesis and offer a framework for incorporating LIPS antibody profiling into global health initiatives and disease monitoring. PMID:21679112

  7. Development of a high-throughput screening cancer cell-based luciferase refolding assay for identifying Hsp90 inhibitors.

    PubMed

    Sadikot, Takrima; Swink, Megan; Eskew, Jeffery D; Brown, Douglas; Zhao, Huiping; Kusuma, Bhaskar R; Rajewski, Roger A; Blagg, Brian S J; Matts, Robert L; Holzbeierlein, Jeffrey M; Vielhauer, George A

    2013-10-01

    The 90 kDa heat-shock protein (Hsp90) and other cochaperones allow for proper folding of nascent or misfolded polypeptides. Cancer cells exploit these chaperones by maintaining the stability of mutated and misfolded oncoproteins and allowing them to evade proteosomal degradation. Inhibiting Hsp90 is an attractive strategy for cancer therapy, as the concomitant degradation of multiple oncoproteins may lead to effective anti-neoplastic agents. Unfortunately, early clinical trials have been disappointing with N-terminal Hsp90 inhibitors, as it is unclear whether the problems that plague current Hsp90 inhibitors in clinical trials are related to on-target or off-target activity. One approach to overcome these pitfalls is to identify structurally diverse scaffolds that improve Hsp90 inhibitory activity in the cancer cell milieu. Utilizing a panel of cancer cell lines that express luciferase, we have designed an in-cell Hsp90-dependent luciferase refolding assay. The assay was optimized using previously identified Hsp90 inhibitors and experimental novobiocin analogues against prostate, colon, and lung cancer cell lines. This assay exhibits good interplate precision (% CV), a signal-to-noise ratio (S/N) of ≥7, and an approximate Z-factor ranging from 0.5 to 0.7. Novobiocin analogues that revealed activity in this assay were examined via western blot experiments for client protein degradation, a hallmark of Hsp90 inhibition. Subsequently, a pilot screen was conducted using the Prestwick library, and two compounds, biperiden and ethoxyquin, revealed significant activity. Here, we report the development of an in-cell Hsp90-dependent luciferase refolding assay that is amenable across cancer cell lines for the screening of inhibitors in their specific milieu. PMID:24127661

  8. The structural origin and biological function of pH-sensitivity in firefly luciferases.

    PubMed

    Viviani, V R; Arnoldi, F G C; Neto, A J S; Oehlmeyer, T L; Bechara, E J H; Ohmiya, Y

    2008-02-01

    Firefly luciferases are called pH-sensitive because their bioluminescence spectra display a typical red-shift at acidic pH, higher temperatures, and in the presence of heavy metal cations, whereas other beetle luciferases (click beetles and railroadworms) do not, and for this reason they are called pH-insensitive. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. This subject is revised in view of recent results. Some substitutions of amino-acid residues influencing pH-sensitivity in firefly luciferases have been identified. Sequence comparison, site-directed mutagenesis and modeling studies have shown a set of residues differing between pH-sensitive and pH-insensitive luciferases which affect bioluminescence colors. Some substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). A network of hydrogen bonds and salt bridges involving the residues N229-S284-E311-R337 was found to be important for affecting bioluminescence colors. It is suggested that these structural elements may affect the benzothiazolyl side of the luciferin-binding site affecting bioluminescence colors. Experimental evidence suggest that the residual red light emission in pH-sensitive luciferases could be a vestige that may have biological importance in some firefly species. Furthermore, the potential utility of pH-sensitivity for intracellular biosensing applications is considered.

  9. A destabilized bacterial luciferase for dynamic gene expression studies.

    PubMed

    Allen, Michael S; Wilgus, John R; Chewning, Christopher S; Sayler, Gary S; Simpson, Michael L

    2007-03-01

    Fusions of genetic regulatory elements with reporter genes have long been used as tools for monitoring gene expression and have become a major component in synthetic gene circuit implementation. A major limitation of many of these systems is the relatively long half-life of the reporter protein(s), which prevents monitoring both the initiation and the termination of transcription in real-time. Furthermore, when used as components in synthetic gene circuits, the long time constants associated with reporter protein decay may significantly degrade circuit performance. In this study, short half-life variants of LuxA and LuxB from Photorhabdus luminescens were constructed in Escherichia coli by inclusion of an 11-amino acid carboxy-terminal tag that is recognized by endogenous tail-specific proteases. Results indicated that the addition of the C-terminal tag affected the functional half-life of the holoenzyme when the tag was added to luxA or to both luxA and luxB, but modification of luxB alone did not have a significant effect. In addition, it was also found that alteration of the terminal three amino acid residues of the carboxy-terminal tag fused to LuxA generated variants with half-lives of intermediate length in a manner similar to that reported for GFP. This report is the first instance of the C-terminal tagging approach for the regulation of protein half-life to be applied to an enzyme or monomer of a multi-subunit enzyme complex and will extend the utility of the bacterial luciferase reporter genes for the monitoring of dynamic changes in gene expression. PMID:19003433

  10. Firefly luciferase as the reporter for transcriptional response to the environment in Escherichia coli.

    PubMed

    Ryo, Masashi; Oshikoshi, Yuta; Doi, Shosei; Motoki, Shogo; Niimi, Atsuko; Aoki, Setsuyuki

    2013-12-15

    We demonstrate that firefly luciferase is a good reporter in Escherichia coli for transcription dynamics in response to the environment. E. coli strains, carrying a fusion of the promoter of the ycgZ gene and the coding region of the luciferase gene, showed transient bioluminescence on receiving blue light. This response was compromised in mutants lacking known regulators in manners consistent with each regulator's function. We also show that relA, a gene encoding a (p)ppGpp synthetase, affects ycgZ dynamics when nullified. Moreover, two unstable luciferase variants showed improved response dynamics and should be useful to study quick changes of gene expression.

  11. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria

    PubMed Central

    2016-01-01

    In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei, and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12–13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 μM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages. PMID:27275010

  12. Disturbance of firefly luciferase-based bioassays by different aluminum species.

    PubMed

    Lehmann, Caroline; Sieg, Holger; Lampen, Alfonso; Braeuning, Albert

    2016-07-01

    Luciferase-dependent assays, important for biochemical analyses of cytotoxicity and reporter genes, may be perturbed by compounds interfering with the luciferase reaction. We analyzed the impact of different aluminum (Al) species on a luciferase-based assay for determination of cellular adenosine triphosphate. Al(0) nanoparticles (Al(0)-NPs) but not Al2O3-NPs decreased luminescence, correlated to high absorbance of Al(0)-NPs. By contrast, Al ions increased the luminescent signal. Data demonstrate that luciferase-dependent assays can be reciprocally disturbed by Al-NPs or Al ions in a specific manner, depending on the particular Al species. Careful interpretation of data from such experiments is essential in order to obtain conclusive results. PMID:27059752

  13. Novel screening method for potential skin-whitening compounds by a luciferase reporter assay.

    PubMed

    Shirasugi, Ichiro; Sakakibara, Yoichi; Yamasaki, Masao; Nishiyama, Kazuo; Matsui, Takashi; Liu, Ming-Cheh; Suiko, Masahito

    2010-01-01

    Measurement of the melanin content by using B16 melanoma cells is generally applied to find novel skin-whitening agents. However, this measurement method using B16 melanoma cells has such disadvantages, as the time taken, its sensitivity, and troublesomeness. We therefore attempted in the present study to establish a reporter assay system by measuring the tyrosinase promoter activity to use for convenient, high-throughput screening of new melanogenesis inhibitors. We first confirmed the validity of this reporter assay system by using such known skin-whitening agents, as arbutin, sulforaphane, and theaflavin 3,3'-digallate. We then compared the effect of 56 compounds on the tyrosinase promoter activity to test this reporter assay system. Carnosol, and rottlerin strongly inhibited the tyrosinase promoter activity. Moreover, carnosol and rottlerin decreased melanin synthesis and tyrosinase expression in a dose-dependent manner when using B16 melanoma cells. These results indicate this new luciferase reported assay system to be an effective and convenient method for screening potential skin-whitening compounds. PMID:21071833

  14. Mutant luciferase enzymes from fireflies with increased resistance to benzalkonium chloride.

    PubMed

    Hattori, Noriaki; Kajiyama, Naoki; Maeda, Masako; Murakami, Seiji

    2002-12-01

    Benzalkonium chloride (BAC), used to extract intracellular ATP, interferes with subsequent firefly luciferase-luciferin assays. There was a significant difference among wild-type luciferases with respect to BAC resistance. Luciola lateralis luciferase (LlL) was the most tolerant, followed by Luciola cruciata luciferase (LcL) and Photinus pyralis luciferase. Random mutagenesis of thermostable mutants of LcL showed that the Glu490Lys mutation contributes to improved resistance to BAC. The corresponding Glu490Lys mutation was introduced into thermostable mutants of LlL by site-directed mutagenesis. Kinetic analysis demonstrated that the resultant LlL-217L490K mutant, having both an Ala217Leu and a Glu490Lys mutation, showed the highest resistance to BAC, with an initial remaining bioluminescence intensity of 87.4% and a decay rate per minute of 29.6% in the presence of 0.1% BAC. The Glu490Lys mutation was responsible for increased resistance to inactivation but not inhibition by BAC. The LlL-217L490K had identical thermostability and pH stability to the parental thermostable mutant. From these results, it was concluded that the LlL-217L490K enzyme is advantageous for hygiene monitoring and biomass assays based on the ATP-bioluminescence methodology. This is the first report demonstrating improved resistance to BAC of the firefly luciferase enzyme.

  15. Cycloheximide- and puromycin-induced heat resistance: different effects on cytoplasmic and nuclear luciferases.

    PubMed

    Michels, A A; Kanon, B; Konings, A W; Bensaude, O; Kampinga, H H

    2000-07-01

    Inhibition of translation can result in cytoprotection against heat shock. The mechanism of this protection has remained elusive so far. Here, the thermoprotective effects of the translation inhibitor cycloheximide (CHX) and puromycin were investigated, using as reporter firefly luciferase localized either in the nucleus or in the cytoplasm. A short preincubation of O23 cells with either translation inhibitor was found to attenuate the heat inactivation of a luciferase directed into the cytoplasm, whereas the heat sensitivity of a nuclear-targeted luciferase remained unaffected. After a long-term CHX pretreatment, both luciferases were more heat resistant. Both the cytoplasmic and the nuclear luciferase are protected against heat-induced inactivation in thermotolerant cells and in cells overexpressing heat shock protein (Hsp)70. CHX incubations further attenuated cytoplasmic luciferase inactivation in thermotolerant and in Hsp70 overexpressing cells, even when Hsp70-mediated protection was saturated. It is concluded that protection by translation inhibition is unlikely due to an increase in the pool of free Hsps normally engaged in translation and released from the nascent polypeptide chains on the ribosomes. Rather, a decrease in nascent chains and thermolabile polypeptides may account for the heat resistance promoted by inhibitors of translation.

  16. Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System.

    PubMed

    Hsu, Hsiao-Tieh; Trantow, Brian M; Waymouth, Robert M; Wender, Paul A

    2016-02-17

    The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification

  17. Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System

    PubMed Central

    2015-01-01

    The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)]+PF6–2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and

  18. Identifying a kinase network regulating FGF14:Nav1.6 complex assembly using split-luciferase complementation.

    PubMed

    Hsu, Wei-Chun; Nenov, Miroslav N; Shavkunov, Alexander; Panova, Neli; Zhan, Ming; Laezza, Fernanda

    2015-01-01

    Kinases play fundamental roles in the brain. Through complex signaling pathways, kinases regulate the strength of protein:protein interactions (PPI) influencing cell cycle, signal transduction, and electrical activity of neurons. Changes induced by kinases on neuronal excitability, synaptic plasticity and brain connectivity are linked to complex brain disorders, but the molecular mechanisms underlying these cellular events remain for the most part elusive. To further our understanding of brain disease, new methods for rapidly surveying kinase pathways in the cellular context are needed. The bioluminescence-based luciferase complementation assay (LCA) is a powerful, versatile toolkit for the exploration of PPI. LCA relies on the complementation of two firefly luciferase protein fragments that are functionally reconstituted into the full luciferase enzyme by two interacting binding partners. Here, we applied LCA in live cells to assay 12 kinase pathways as regulators of the PPI complex formed by the voltage-gated sodium channel, Nav1.6, a transmembrane ion channel that elicits the action potential in neurons and mediates synaptic transmission, and its multivalent accessory protein, the fibroblast growth factor 14 (FGF14). Through extensive dose-dependent validations of structurally-diverse kinase inhibitors and hierarchical clustering, we identified the PI3K/Akt pathway, the cell-cycle regulator Wee1 kinase, and protein kinase C (PKC) as prospective regulatory nodes of neuronal excitability through modulation of the FGF14:Nav1.6 complex. Ingenuity Pathway Analysis shows convergence of these pathways on glycogen synthase kinase 3 (GSK3) and functional assays demonstrate that inhibition of GSK3 impairs excitability of hippocampal neurons. This combined approach provides a versatile toolkit for rapidly surveying PPI signaling, allowing the discovery of new modular pathways centered on GSK3 that might be the basis for functional alterations between the normal and

  19. Evaluation of an Hprt-Luciferase Reporter Gene on a Mammalian Artificial Chromosome in Response to Cytotoxicity

    PubMed Central

    Endo, Takeshi; Noda, Natsumi; Kuromi, Yasushi; Kokura, Kenji; Kazuki, Yasuhiro; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2016-01-01

    Background Hypoxanthine guanine phosphoribosyltransferase (Hprt) is known as a house-keeping gene, and has been used as an internal control for real-time quantitative RT-PCR and various other methods of gene expression analysis. To evaluate the Hprt mRNA levels as a reference standard, we engineered a luciferase reporter driven by a long Hprt promoter and measured its response to cytotoxicity. Methods We constructed a reporter vector that harbored a phiC31 integrase recognition site and a mouse Hprt promoter fused with green-emitting luciferase (SLG) coding sequence. The Hprt-SLG vector was loaded onto a mouse artificial chromosome containing a multi-integrase platform using phiC31 integrase in mouse A9 cells. We established three independent clones. Results The established cell lines had similar levels of expression of the Hprt-SLG reporter gene. Hprt-SLG activity increased proportionately under growth conditions and decreased under cytotoxic conditions after blasticidin or cisplatin administration. Similar increases and decreases in the SLG luminescent were observed under growth and cytotoxic conditions, respectively, to those in the fluorescent obtained using the commercially available reagent, alamarBlue. Conclusion By employing a reliable and stable expression system in a mammalian artificial chromosome, the activity of an Hprt-SLG reporter can reflect cell numbers under cell growth condition and cell viability in the evaluation of cytotoxic conditions. PMID:27493490

  20. Recombinant Pseudorabies Virus (PRV) Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds.

    PubMed

    Tang, Yan-Dong; Liu, Ji-Ting; Fang, Qiong-Qiong; Wang, Tong-Yun; Sun, Ming-Xia; An, Tong-Qing; Tian, Zhi-Jun; Cai, Xue-Hui

    2016-04-01

    A Pseudorabies virus (PRV) variant has emerged in China since 2011 that is not protected by commercial vaccines, and has not been well studied. The PRV genome is large and difficult to manipulate, but it is feasible to use clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. However, identification of single guide RNA (sgRNA) through screening is critical to the CRISPR/Cas9 system, and is traditionally time and labor intensive, and not suitable for rapid and high throughput screening of effective PRV sgRNAs. In this study, we developed a recombinant PRV strain expressing firefly luciferase and enhanced green fluorescent protein (EGFP) as a reporter virus for PRV-specific sgRNA screens and rapid evaluation of antiviral compounds. Luciferase activity was apparent as soon as 4 h after infection and was stably expressed through 10 passages. In a proof of the principle screen, we were able to identify several PRV specific sgRNAs and confirmed that they inhibited PRV replication using traditional methods. Using the reporter virus, we also identified PRV variants lacking US3, US2, and US9 gene function, and showed anti-PRV activity for chloroquine. Our results suggest that the reporter PRV strain will be a useful tool for basic virology studies, and for developing PRV control and prevention measures. PMID:27043610

  1. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters.

    PubMed

    Ramanathan, Chidambaram; Khan, Sanjoy K; Kathale, Nimish D; Xu, Haiyan; Liu, Andrew C

    2012-09-27

    In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host

  2. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    PubMed

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift. PMID:26760436

  3. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence.

    PubMed

    England, Christopher G; Ehlerding, Emily B; Cai, Weibo

    2016-05-18

    The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a nonideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a nonbiased manner, allowing the audience to adopt their own views of this novel system. PMID:27045664

  4. Identification of agents that promote endoplasmic reticulum stress using an assay that monitors luciferase secretion

    PubMed Central

    Doudican, Nicole A.; Wen, Shih Ya; Mazumder, Amitabha; Orlow, Seth J.

    2015-01-01

    Disruption of protein processing in the secretory pathway is a measurable hallmark of endoplasmic reticulum (ER) stress. Activation of ER stress-mediated pathways has been implicated in numerous diseases including cancer. To identify agents that induce ER stress, we established a screen for compounds that reduce secretion of the reporter protein Gaussia luciferase (GLUC). Given the clinically validated importance of targeting ER stress-mediated pathways in the treatment of multiple myeloma (MM), we used this hematological malignancy as a model for validating our screening system. From a screen of 2000 marketed drugs and natural compounds in KMS11 and ARP1 MM cells, we identified 97 agents that reduced GLUC secretion in both cell lines by at least 30%. In order to confirm inducers of ER stress, we applied a secondary screen that assessed splicing of the unfolded protein response (UPR) transcription factor XBP1. One agent, theaflavin-3,3′–digallate (TF-3), was chosen based on its history of safe human consumption and further validated through studies of ER stress-related pathways including the UPR and apoptosis. Given these promising results, this screen could be a useful tool to identify agents targeting ER stress-related mechanisms in other cellular systems wherein ER stress plays a role in disease etiology. PMID:24371212

  5. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence.

    PubMed

    England, Christopher G; Ehlerding, Emily B; Cai, Weibo

    2016-05-18

    The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a nonideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a nonbiased manner, allowing the audience to adopt their own views of this novel system.

  6. [Photoreactivation of UV-irradiated Escherichia coli K12 AB1886 uvrA6 with assistance of luminescence of Photobacterium leiognathi Luciferase].

    PubMed

    Melkina, O E; Kotova, V Yu; Konopleva, M N; Manukhov, I V; Pustovoit, K S; Zavilgelsky, G B

    2015-01-01

    The bioluminescence induced by luciferases of marine bacteria promotes repair of UV damaged DNA of Escherichia coli AB1886 uvrA6. It is shown that bacterial photolyase that implements photoreactivation activity is the major contributor to DNA repair. However, the intensity of bioluminescence increasing induced by UV-irradiation (SOS-induction) in bacterial cells is not enough for efficient photoreactivation. PMID:26710787

  7. Induction of human UGT1A1 by bilirubin through AhR dependent pathway.

    PubMed

    Togawa, Hiroshi; Shinkai, Shigeko; Mizutani, Takaharu

    2008-12-01

    UDP-glucuronosyltransferase1A1 (UGT1A1) plays a key role to conjugate bilirubin and preventing jaundice, but there is no report showing the induction of human UGT1A1 (UGT1A1) by bilirubin. In this report, we show findings of the induction of the reporter gene (-3475/+14) of UGT1A1 in HepG2 cells by bilirubin at 50 microM, 100 microM, with human aryl hydrocarbon receptor (hAhR). We confirmed that induction of the reporter gene by bilirubin is dependent on the position of the xenobiotic responsive element (XRE) (-3328/-3319) of UGT1A1, because the XRE deletion UGT1A1 gene did not respond to stimulation by a complex of bilirubin and hAhR. alpha-Naphthoflavone (alpha-NF) of a typical AhR antagonist at 50 microM inhibited induction by bilirubin, suggesting that bilirubin stimulates through binding with hAhR. Meanwhile, bilirubin itself did not stimulate the induction of AhR, because we detected no-elevation of the mRNA level of AhR by RT-PCR. These results indicate that the induction of UGT1A1 by bilirubin-AhR did not depend on the elevation of AhR but on ligand binding. From this result, we considered that high bilirubin in neonates must induce the elevation of UGT1A1 after birth to prevent jaundice, and bilirubin in adults also regulates the level of UGT1A1. This is the first report showing direct induction of UGT1A1 by a bilirubin through AhR pathway. PMID:19356098

  8. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    PubMed

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues. PMID:27424898

  9. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    PubMed

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues.

  10. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC.

    PubMed

    Edmonds, Tara G; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S; Conway, Joan A; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T; Montefiori, David C; Kappes, John C; Ochsenbauer, Christina

    2010-12-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy.

  11. Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

    PubMed Central

    Edmonds, Tara G.; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S.; Conway, Joan A.; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T.; Montefiori, David C.; Kappes, John C.; Ochsenbauer, Christina

    2010-01-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. PMID:20863545

  12. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors

    SciTech Connect

    Cruz, P.G.; Auld, D.S.; Schultz, P.J.; Lovell, S.; Battaile, K.P.; MacArthur, R.; Shen, M.; Tamayo-Castillo, G.; Inglese, J.; Sherman, D.H.

    2011-11-28

    The chemical diversity of nature has tremendous potential for the discovery of molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, and macro- and microorganisms has curtailed their use in lead discovery. Here, we describe a process for leveraging the concentration-response curves obtained from quantitative HTS to improve the initial selection of actives from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm improves the probability that labor-intensive subsequent steps of reculturing, extraction, and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by X-ray crystallography.

  13. The Effect of Surface Charge Saturation on Heat-induced Aggregation of Firefly Luciferase.

    PubMed

    Gharanlar, Jamileh; Hosseinkhani, Saman; Sajedi, Reza H; Yaghmaei, Parichehr

    2015-01-01

    We present here the effect of firefly luciferase surface charge saturation and the presence of some additives on its thermal-induced aggregation. Three mutants of firefly luciferase prepared by introduction of surface Arg residues named as 2R, 3R and 5R have two, three and five additional arginine residues substituted at their surface compared to native luciferase; respectively. Turbidimetric study of heat-induced aggregation indicates that all three mutants were reproducibly aggregated at higher rates relative to wild type in spite of their higher thermostability. Among them, 2R had most evaluated propensity to heat-induced aggregation. Therefore, the hydrophilization followed by appearing of more substituted arginine residues with positive charge on the firefly luciferase surface was not reduced its thermal aggregation. Nevertheless, at the same condition in the presence of charged amino acids, e.g. Arg, Lys and Glu, as well as a hydrophobic amino acid, e.g. Val, the heat-induced aggregation of wild type and mutants of firefly luciferases was markedly decelerated than those in the absence of additives. On the basis of obtained results it seems, relinquishment of variety in charge of amino acid side chains, they via local interactions with proteins cause to decrease rate and extent of their thermal aggregation.

  14. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    PubMed

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar

  15. Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Hahn, Ruth E.; Patterson, Stacey S.; Baek, Seung J.; Ripp, Steven A.; Sayler, Gary S.

    2011-04-01

    Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 104 cells but at the cost of increasing overall image integration time.

  16. Establishment of a novel method to evaluate peritoneal microdissemination and therapeutic effect using luciferase assay.

    PubMed

    Takahashi, Ryo; Yokobori, Takehiko; Osone, Katsuya; Tatsuki, Hironori; Takada, Takahiro; Suto, Toshinaga; Yajima, Reina; Kato, Toshihide; Fujii, Takaaki; Tsutsumi, Souichi; Kuwano, Hiroyuki; Asao, Takayuki

    2016-03-01

    Peritoneal dissemination is a major cause of recurrence in patients with malignant tumors in the peritoneal cavity. Effective anticancer agents and treatment protocols are necessary to improve outcomes in these patients. However, previous studies using mouse models of peritoneal dissemination have not detected any drug effect against peritoneal micrometastasis. Here we used the luciferase assay to evaluate peritoneal micrometastasis in living animals and established an accurate mouse model of early peritoneal microdissemination to evaluate tumorigenesis and drug efficacy. There was a positive correlation between luminescence intensity in in vivo luciferase assay and the extent of tumor dissemination evaluated by ex vivo luciferase assay and mesenteric weight. This model has advantages over previous models because optimal luciferin concentration without cell damage was validated and peritoneal microdissemination could be quantitatively evaluated. Therefore, it is a useful model to validate peritoneal micrometastasis formation and to evaluate drug efficacy without killing mice. PMID:26716425

  17. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  18. Problem areas in the use of the firefly luciferase assay for bacterial detection

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Knust, E. A.; Tuttle, S. A.; Curtis, C. A.

    1975-01-01

    By purifying the firefly luciferase extract and adding all necessary chemicals but ATP in excess, an assay for ATP was performed by measuring the amount of light produced when a sample containing soluble ATP is added to the luciferase reaction mixture. Instrumentation, applications, and basic characteristics of the luciferase assay are presented. Effect of the growth medium and length of time grown in this medium on ATP per viable E. coli values is shown in graphic form, along with an ATP concentration curve showing relative light units versus ATP injected. Reagent functions and concentration methods are explored. Efforts to develop a fast automatable system to detect the presence of bacteria in biological fluids, especially urine, resulted in the optimization of procedures for use with different types of samples.

  19. Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Xu, Tingting; Smartt, Abby E.; Jegier, Pat; Ripp, Steven A.; Sayler, Gary S.

    2011-06-01

    Bioluminescent production represents a facile method for bioreporter detection in mammalian tissues. The lack of endogenous bioluminescent reactions in these tissues allows for high signal to noise ratios even at low signal strength compared to fluorescent signal detection. While the luciferase enzymes commonly employed for bioluminescent detection are those from class Insecta (firefly and click beetle luciferases), these are handicapped in that they require concurrent administration of a luciferin compound to elicit a bioluminescent signal. The bacterial luciferase (lux) gene cassette offers the advantages common to other bioluminescent proteins, but is simultaneously capable of synthesizing its own luciferin substrates using endogenously available cellular compounds. The longstanding shortcoming of the lux cassette has been its recalcitrance to function in the mammalian cellular environment. This paper will present an overview of the work completed to date to overcome this limitation and provide examples of mammalian lux-based bioreporter technologies that could provide the framework for advanced, biomedically relevant real-time sensor development.

  20. Quantitative analysis of protein-protein interactions by split firefly luciferase complementation in plant protoplasts.

    PubMed

    Li, Jian-Feng; Zhang, Dandan

    2014-07-01

    This unit describes the split firefly luciferase complementation (SFLC) assay, a high-throughput quantitative method that can be used to investigate protein-protein interactions (PPIs) in plant mesophyll protoplasts. In SFLC, the two proteins to be tested for interaction are expressed as chimeric proteins, each fused to a different half of firefly luciferase. If the proteins interact, a functional luciferase can be transitorily reconstituted, and is detected using the cell-permeable substrate D-luciferin. An advantage of the SFLC assay is that dynamic changes in PPIs in a cell can be detected in a near real-time manner. Another advantage is the unusually high DNA co-transfection and protein expression efficiencies that can be achieved in plant protoplasts, thereby enhancing the throughput of the method.

  1. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase.

    PubMed

    Gould, S G; Keller, G A; Subramani, S

    1987-12-01

    Translocation of proteins across membranes of the endoplasmic reticulum, mitochondrion, and chloroplast has been shown to be mediated by targeting signals present in the transported proteins. To test whether the transport of proteins into peroxisomes is also mediated by a peptide targeting signal, we have studied the firefly luciferase gene that encodes a protein transported to peroxisomes in both insect and mammalian cells. We have identified two regions of luciferase which are necessary for transport of this protein into peroxisomes. We demonstrate that one of these, region II, represents a peroxisomal targeting signal because it is both necessary and sufficient for directing cytosolic proteins to peroxisomes. The signal is no more than twelve amino acids long and is located at the extreme carboxy-terminus of luciferase. The location of the targeting signal for translocation across the peroxisomal membrane therefore differs from the predominantly amino-terminal location of signals responsible for transport across the membranes of the endoplasmic reticulum, chloroplast, or mitochondrion.

  2. Structural basis for the inhibition of firefly luciferase by a general anesthetic.

    PubMed

    Franks, N P; Jenkins, A; Conti, E; Lieb, W R; Brick, P

    1998-11-01

    The firefly luciferase enzyme from Photinus pyralis is probably the best-characterized model system for studying anesthetic-protein interactions. It binds a diverse range of general anesthetics over a large potency range, displays a sensitivity to anesthetics that is very similar to that found in animals, and has an anesthetic sensitivity that can be modulated by one of its substrates (ATP). In this paper we describe the properties of bromoform acting as a general anesthetic (in Rana temporaria tadpoles) and as an inhibitor of the firefly luciferase enzyme at high and low ATP concentrations. In addition, we describe the crystal structure of the low-ATP form of the luciferase enzyme in the presence of bromoform at 2.2-A resolution. These results provide a structural basis for understanding the anesthetic inhibition of the enzyme, as well as an explanation for the ATP modulation of its anesthetic sensitivity.

  3. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors

    PubMed Central

    Cruz, Patricia G.; Auld, Douglas S.; Schultz, Pamela J.; Lovell, Scott; Battaile, Kevin P.; MacArthur, Ryan; Shen, Min; Tamayo-Castillo, Giselle; Inglese, James; Sherman, David H.

    2011-01-01

    The chemical diversity of nature has tremendous potential for discovery of new molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, macro- and microorganisms has curtailed their use in lead discovery efforts. Here we describe a process for leveraging the concentration-response curves (CRCs) obtained from quantitative HTS to improve the initial selection of “actives” from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm aims to improve the probability that labor-intensive subsequent steps of re-culturing, extraction and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by x-ray crystallography. PMID:22118678

  4. Superinduction of estrogen receptor mediated gene expression in luciferase based reporter gene assays is mediated by a post-transcriptional mechanism.

    PubMed

    Sotoca, A M; Bovee, T F H; Brand, W; Velikova, N; Boeren, S; Murk, A J; Vervoort, J; Rietjens, I M C M

    2010-10-01

    Several estrogenic compounds including the isoflavonoid genistein have been reported to induce a higher maximal response than the natural estrogen 17β-estradiol in in vitro luciferase based reporter gene bioassays for testing estrogenicity. The phenomenon has been referred to as superinduction. The mechanism underlying this effect and thus also its biological relevance remain to be elucidated. In the present study several hypotheses for the possible mechanisms underlying this superinduction were investigated using genistein as the model compound. These hypotheses included (i) a non-estrogen receptor (ER)-mediated mechanism, (ii) a role for an ER activating genistein metabolite with higher ER inducing activity than genistein itself, and (iii) a post-transcriptional mechanism that is not biologically relevant but specific for the luciferase based reporter gene assays. The data presented in this study indicate that induction and also superinduction of the reporter gene is ER-mediated, and that superinduction by genistein could be ascribed to stabilization of the firefly luciferase reporter enzyme increasing the bioluminescent signal during the cell-based assay. This indicates that the phenomenon of superinduction may not be biologically relevant but may rather represent a post-transcriptional effect on enzyme stability.

  5. Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2014-07-01

    This is the first report of a computational study of the color tuning mechanism of firefly bioluminescence, using the oxidative conformation of luciferase. The results of these calculations demonstrated that the electrostatic field generated by luciferase is fundamental both for the emission shift and efficiency. Further calculations indicated that a shift in emission is achieved by modulating the energy, at different degrees, of the emissive and ground states. These differences in energy modulation will then lead to changes in the energy gap between the states.

  6. Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators.

    PubMed

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2016-01-01

    The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR. PMID:27518621

  7. The Bioluminescence Resonance Energy Transfer from Firefly Luciferase to a Synthetic Dye and its Application for the Rapid Homogeneous Immunoassay of Progesterone.

    PubMed

    Smirnova, Daria V; Samsonova, Jeanne V; Ugarova, Natalia N

    2016-01-01

    The sensitive BRET system for the homogeneous immunoassay of a low-molecular weight antigen was developed using progesterone as an example. Two thermostable mutants of the Luciola mingrelica firefly luciferase (Luc)-the "red" mutant with λmax.em = 590 nm (RedLuc) and the "green" mutant with λmax.em = 550 nm (GreenLuc)-were tested as the donors. The water-soluble Alexa Fluor 610× (AF) dye was selected as the acceptor because its two absorption maxima, located at 550 and 610 nm, are close to the bioluminescence maxima of the GreenLuc and RedLuc, respectively. The methods for the synthesis of the luciferase-progesterone (Luc-Pg) conjugate and the conjugate of the dye and the polyclonal antiprogesterone antibody (AF-Ab) were developed. Both conjugates retained their functional properties, had high antigen-antibody binding activity, and demonstrated a high BRET signal. The homogeneous immunoassay system based on the BRET from the firefly luciferase to the synthetic dye was established to assay progesterone as a model antigen. Optimization of the assay conditions, the composition of the reaction mixture, and the concentrations of the donor and the acceptor made it possible to reach the minimum detectable progesterone concentration of 0.5 ng mL(-1) . PMID:26650341

  8. Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W. M.

    2012-01-01

    One critical issue for noninvasive imaging of transplanted bioluminescent cells is the large amount of light absorption in tissue when emission wavelengths below 600 nm are used. Luciferase with a red-shifted spectrum can potentially bypass this limitation. We assessed and compared a mutant of firefly luciferase (Ppy RE9, PRE9) against the yellow luciferase luc2 gene for use in cell transplantation studies. C17.2 neural stem cells expressing PRE9-Venus and luc2-Venus were sorted by flow cytometry and assessed for bioluminescence in vitro in culture and in vivo after transplantation into the brain of immunodeficient Rag2-/- mice. We found that the luminescence from PRE9 was stable, with a peak emission at 620 nm, shifted to the red compared to that of luc2. The emission peak for PRE9 was pH-independent, in contrast to luc2, and much less affected by tissue absorbance compared to that of luc2. However, the total emitted light radiance from PRE9 was substantially lower than that of luc2, both in vitro and in vivo. We conclude that PRE9 has favorable properties as compared to luc2 in terms of pH independence, red-shifted spectrum, tissue light penetration, and signal quantification, justifying further optimization of protein expression and enzymatic activity.

  9. Discovery of 5-benzyl-3-phenyl-4,5-dihydroisoxazoles and 5-benzyl-3-phenyl-1,4,2-dioxazoles as potent firefly luciferase inhibitors.

    PubMed

    Poutiainen, Pekka K; Palvimo, Jorma J; Hinkkanen, Ari E; Valkonen, Arto; Väisänen, Topi K; Laatikainen, Reino; Pulkkinen, Juha T

    2013-02-14

    Luciferase reporter assays are commonly used in high-throughput screening methods. Here, we report new firefly luciferase (FLuc) inhibitors based on 5-benzyl-3-phenyl-4,5-dihydroisoxazoles and 5-benzyl-3-phenyl-1,4,2-dioxazoles, which showed up as "false positives" in a luciferase reporter gene-based assay for nuclear receptor antagonists. The inhibition was shown to be noncompetitive for both natural enzyme substrates (d-luciferin and ATP) and selective to FLuc and proven to arise from a direct interaction between the enzyme and the inhibitor. Of the 63 evaluated compounds, 28 showed significantly better inhibition potency than the well-known inhibitor resveratrol (IC(50) = 59 nM), with five compounds having distinctly subnanomolar IC(50) values. The most efficient compounds inhibited the luminescence at concentrations lower than (1)/(100) in comparison to resveratrol (lowest IC(50) = 0.26 nM) and can thus be considered to belong to the most potent FLuc inhibitors reported thus far. Overall, the novel inhibitors form a unique molecular library for structure-activity relationship (SAR) analyses.

  10. Protein sterilization method of firefly luciferase using reduced pressure and molecular sieves

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Rich, E., Jr. (Inventor)

    1973-01-01

    The sterilization of the protein fruitfly luciferase under conditions that prevent denaturation is examined. Denaturation is prevented by heating the protein in contact with molecular seives and under a reduced pressure of the order of 0.00005 millimeters of mercury.

  11. Generation of a Gaussia luciferase-expressing endotheliotropic cytomegalovirus for screening approaches and mutant analyses.

    PubMed

    Falk, Jessica J; Laib Sampaio, Kerstin; Stegmann, Cora; Lieber, Diana; Kropff, Barbara; Mach, Michael; Sinzger, Christian

    2016-09-01

    For many questions in human cytomegalovirus (HCMV) research, assays are desired that allow robust and fast quantification of infection efficiencies under high-throughput conditions. The secreted Gaussia luciferase has been demonstrated as a suitable reporter in the context of a fibroblast-adapted HCMV strain, which however is greatly restricted in the number of cell types to which it can be applied. We inserted the Gaussia luciferase expression cassette into the BAC-cloned virus strain TB40-BAC4, which displays the natural broad cell tropism of HCMV and hence allows application to screening approaches in a variety of cell types including fibroblasts, epithelial, and endothelial cells. Here, we applied the reporter virus TB40-BAC4-IE-GLuc to identify mouse hybridoma clones that preferentially neutralize infection of endothelial cells. In addition, as the Gaussia luciferase is secreted into culture supernatants from infected cells it allows kinetic analyses in living cultures. This can speed up and facilitate phenotypic characterization of BAC-cloned mutants. For example, we analyzed a UL74 stop-mutant of TB40-BAC4-IE-GLuc immediately after reconstitution in transfected cultures and found the increase of luciferase delayed and reduced as compared to wild type. Phenotypic monitoring directly in transfected cultures can minimize the risk of compensating mutations that might occur with extended passaging. PMID:27326666

  12. Firefly luciferase in chemical biology: A compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter

    PubMed Central

    Thorne, Natasha; Shen, Min; Lea, Wendy A.; Simeonov, Anton; Lovell, Scott; Auld, Douglas S.; Inglese, James

    2012-01-01

    SUMMARY Firefly luciferase (FLuc) is frequently used as a reporter in high-throughput screening assays owing to the exceptional sensitivity, dynamic range, and rapid measurement that bioluminescence affords. However, interaction of small molecules with FLuc has, to some extent, confounded its use in chemical biology and drug discovery. To identify and characterize chemotypes interacting with FLuc, we determined potency values for 360,864 compounds, found in the NIH Molecular Libraries Small Molecule Repository, available in PubChem. FLuc inhibitory activity was observed for 12% of this library with discernible SAR. Characterization of 151 inhibitors demonstrated a variety of inhibition modes including FLuc-catalyzed formation of multisubstrate-adduct enzyme inhibitor complexes. As in some cell-based FLuc reporter assays compounds acting as FLuc inhibitors yield paradoxical luminescence increases, data on compounds acquired from FLuc-dependent assays requires careful analysis as described in this report. PMID:22921073

  13. Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter.

    PubMed

    Thorne, Natasha; Shen, Min; Lea, Wendy A; Simeonov, Anton; Lovell, Scott; Auld, Douglas S; Inglese, James

    2012-08-24

    Firefly luciferase (FLuc) is frequently used as a reporter in high-throughput screening assays, owing to the exceptional sensitivity, dynamic range, and rapid measurement that bioluminescence affords. However, interaction of small molecules with FLuc has, to some extent, confounded its use in chemical biology and drug discovery. To identify and characterize chemotypes interacting with FLuc, we determined potency values for 360,864 compounds found in the NIH Molecular Libraries Small Molecule Repository, available in PubChem. FLuc inhibitory activity was observed for 12% of this library with discernible SAR. Characterization of 151 inhibitors demonstrated a variety of inhibition modes, including FLuc-catalyzed formation of multisubstrate adduct enzyme inhibitor complexes. As in some cell-based FLuc reporter assays, compounds acting as FLuc inhibitors yield paradoxical luminescence increases, thus data on compounds acquired from FLuc-dependent assays require careful analysis as described here.

  14. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    SciTech Connect

    Wu, Anna M

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2. Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.

  15. Photodynamic therapy using luciferase nanoconjugate as a treatment for colon cancer

    NASA Astrophysics Data System (ADS)

    Koritarov, Tamara

    Photodynamic Therapy (PDT) has proven itself in previous studies to be a successful therapeutic treatment for surface tumors, but its effectiveness is limited to only shallow depths that allow for the penetration of light. This study demonstrates that we have improved upon the conventional method of PDT and have overcome the previous depth limitation by creating the light at the location of the tumor in situ. We conjugated a bioluminescent protein, Luciferase, to a semiconductor nanoparticle, TiO2, and with a cell specific antibody, anti-EGFR monoclonal antibody C225. The nanoconjugate, TiDoL-C225, was then activated by ATP and Luciferin in a reaction that creates reactive oxygen species (ROS) and induces apoptosis in the tumor cells. We created the optimal nanoconjugate synthesis protocol to make TiDoL and TiDoL-C225 for use in the PDT treatment. The TiDoL-C225 nanoconjugate is able to bind specifically to colon caner cells as the C225 antibody recognizes EGFR expressed at the surface of the cells, and further, when activated it will react only with the tumor cells. The optimal cell staining protocols were developed to visualize the treatment process and later analyze with the laser confocal microscope. The TiDoL nanoconjugate was found to only be operational and effective at killing tumor cells after being activated by Luciferin and ATP, which then enhances the control we have over the therapy. The TiDoL-C225 nanoconjugate increases the efficacy of binding to tumor cells and the speed of the reaction in the cells to begin apoptosis, even in lower concentrations when compared to the free TiDoL nanoconjugate. Finally, our PDT technique allowed us to monitor the tumor cells as they begin to undergo apoptosis in less than five minutes after the Luciferin was added to activate the reaction. The advantage of our method of PDT with the TiDoL-C225 nanoconjugate is that it can be used for early detection as well as developed into an effective treatment for cancers in all

  16. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate.

    PubMed

    Thulasiraman, V; Matts, R L

    1996-10-15

    Renaturation of thermally denatured firefly luciferase in rabbit reticulocyte lysate (RRL) requires hsp90, hsc70, and other as yet unidentified RRL components [Schumacher, R.J., et al. (1994) J. Biol. Chem. 269, 9493-9499]. Benzoquinonoid ansamycins (BAs) have recently been shown to specifically bind hsp90 and inhibit its function. In this report, we present data that indicate BAs are specific inhibitors of hsp90 function. The effects of the BA geldanamycin (GA) on the kinetics of the luciferase renaturation in RRL were examined to gain insight into the mechanism by which GA inhibits the function of the hsp90 chaperone machinery. Chaperone-mediated renaturation of luciferase obeyed Michaelis-Menten kinetics. The GA inhibited luciferase renaturation uncompetitively with respect to ATP concentration and noncompetitively with respect to luciferase concentration, indicating that GA binds after the binding of ATP and that it binds to both the hsp90 chaperone machine/ATP complex and the hsp90 chaperone machine/ATP/luciferase complex. GA markedly decreased the Kapp of the hsp90 chaperone machine for ATP, suggesting that GA increases the binding affinity of the hsp90 chaperone machinery for ATP or it slows the rate of ATP hydrolysis. Consistent with the notion that GA specifically binds hsp90 and inhibits its function, addition of hsp90, but not hsc70, p60, or p23, reversed GA-induced inhibition of luciferase renaturation in RRL. Hsp90, hsc70, and the hsp cohorts p60, p48, and p23 were coimmunoprecipitated with luciferase from RRL. GA increased the steady-state levels of luciferase associated with hsp90/hsp70 chaperone machine complexes that contain p60 and blocked the association of the hsp90 cohort p23 with chaperone-bound luciferase. The data suggest that the function of the hsp90 chaperone machinery is not specific to its previously described interaction with steroid hormone receptors, and that it carries out some more generalized function in vivo.

  17. Xeno-sensing activity of the aryl hydrocarbon receptor in human pluripotent stem cell-derived hepatocyte-like cells

    PubMed Central

    Kim, Hye-Min; Kim, Ji-Woo; Choi, Youngjun; Chun, Hang-Suk; Im, Ilkyun; Han, Yong-Mahn; Song, Chang-Woo; Yoon, Seokjoo; Park, Han-Jin

    2016-01-01

    Although hepatocyte-like cells derived from human pluripotent stem cells (hPSC-HLCs) are considered a promising model for predicting hepatotoxicity, their application has been restricted because of the low activity of drug metabolizing enzymes (DMEs). Here we found that the low expression of xenobiotic receptors (constitutive androstane receptor, CAR; and pregnane X receptor, PXR) contributes to the low activity of DMEs in hPSC-HLCs. Most CAR- and PXR-regulated DMEs and transporters were transcriptionally down-regulated in hPSC-HLC. Transcriptional expression of CAR and PXR was highly repressed in hPSC-HLCs, whereas mRNA levels of aryl hydrocarbon receptor (AHR) were comparable to those of adult liver. Furthermore, ligand-induced transcriptional activation was observed only at AHR in hPSC-HLCs. Bisulfite sequencing analysis demonstrated that promoter hypermethylation of CAR and PXR was associated with diminished transcriptional activity in hPSC-HLCs. Treatment with AHR-selective ligands increased the transcription of AHR-dependent target genes by direct AHR-DNA binding at the xenobiotic response element. In addition, an antagonist of AHR significantly inhibited AHR-dependent target gene expression. Thus, AHR may function intrinsically as a xenosensor as well as a ligand-dependent transcription factor in hPSC-HLCs. Our results indicate that hPSC-HLCs can be used to screen toxic substances related to AHR signaling and to identify potential AHR-targeted therapeutics. PMID:26899675

  18. Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds.

    PubMed

    Vilalta, Marta; Jorgensen, Christian; Dégano, Irene R; Chernajovsky, Yuti; Gould, David; Noël, Danièle; Andrades, José A; Becerra, José; Rubio, Nuria; Blanco, Jerónimo

    2009-10-01

    Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p.PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p.PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.

  19. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective.

    PubMed

    Nazari, Mahboobeh; Hosseinkhani, Saman; Hassani, Leila

    2013-02-01

    Multi-color bioluminescence is developed using the introduction of single/double disulfide bridges in firefly luciferase. The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by the luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase sequence and assay conditions. It has been proposed that the stability of a protein may increase through the introduction of a disulfide bridge that decreases the configurational entropy of unfolding. Single and double disulfide bridges are introduced into Photinus pyralis firefly luciferase to make separate mutant enzymes with a single/double bridge (C(81)-A(105)C, L(306)C-L(309)C, P(451)C-V(469)C; C(81)-A(105)C/P(451)C-V(469)C, and A(296)C-A(326)C/P(451)C-V(469)C). By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red or kept in different extents. The bioluminescence color shift occurred with displacement of a critical loop in the luciferase structure without any change in green emitter mutants. Thermodynamic analysis revealed that among mutants, L(306)C-L(309)C shows a remarkable stability against urea denaturation and also a considerable increase in kinetic stability and a clear shift in bioluminescence spectra towards red.

  20. Cytoplasmic factors that affect the intensity and stability of bioluminescence from firefly luciferase in living mammalian cells.

    PubMed

    Gandelman, O; Allue, I; Bowers, K; Cobbold, P

    1994-01-01

    In order to improve calibration of firefly luciferase signals obtained by injecting the enzyme into single, isolated heart and liver cells we have investigated why the luminescence from cells is greatly depressed compared with in vitro (in mammalian ionic milieu) and why the decay of the intracellular signal is remarkably slow. We have shown that inorganic pyrophosphatase greatly depresses the signal in vitro and that micromolar concentrations of inorganic pyrophosphate, comparable with that in cytoplasm, reverse this inhibition and stabilize the signal, eliminating its decay. Higher concentrations of pyrophosphate depress the signal by inhibiting ATP-binding to luciferase. Luciferase-injected cells exposed to extracellular luciferin concentrations above about 100 mumol/l (corresponding to a cytoplasmic level of c. 5-10 mumol/l because of a transplasmalemmal gradient) show a gradual, irreversible loss of signal. We attribute this phenomenon (which is not seen in vitro) to the gradual accumulation of a luminescently inactive, irreversible, luciferase-oxyluciferin complex. At low luciferin levels this complex is prevented from forming by cytoplasmic pyrophosphate. Above c. 100 mumol/l extracellular luciferin, the pyrophosphate level in the cytoplasm fails to fully prevent the complex forming. In vitro this phenomenon does not occur because the luciferase concentrations and hence oxyluciferin levels are orders of magnitude lower than in cells injected with concentrated luciferase solutions, which have a cytoplasmic luciferase concentration of approximately 2-4 mumol/l.

  1. Establishment of a transient transfection system and expression of firefly luciferase in Entamoeba invadens.

    PubMed

    Singh, Nishant; Ojha, Sandeep; Bhattacharya, Alok; Bhattacharya, Sudha

    2012-05-01

    Entamoeba invadens is used as a model system to study trophozoite to cyst differentiation since Entamoeba histolytica, the causative agent of amoebiasis cannot encyst in culture. However, a system for introduction of cloned genes in E. invadens is not available. Here we report an electroporation-based method for transfection of E. invadens tophozoites and demonstrate the expression of firefly luciferase reporter gene driven from the E. invadens ribosomal protein L3 promoter. The efficiency of luciferase expression driven from the promoters of three different E. invadens genes (rpl3, rps10 and h2b) was tested and found to correlate with the in vivo expression levels of the respective gene. This system will permit the analysis of regulatory elements required for gene expression in E. invadens.

  2. Searching for Extant Life on Mars - The ATP-Firefly LuciferinLuciferase Technique

    NASA Astrophysics Data System (ADS)

    Obousy, R. K.; Tziolas, A. C.; Kaltsas, K.; Sims, M. R.; Grant, W. D.

    We have investigated the use of the ATP-Firefly Luciferin/Luciferase (FFL) enzymic photoluminescent reaction as a possible means of detecting extant life in the Martian environment. Experiments carried out by the authors illustrate the capacity of the method to successfully detect extant forms of life on Mars assuming ATP is an intrinsic part of the biochemistry of such life-forms. A photodiode based apparatus, built to test the assumptions and applicability of the ATP-Firefly Luciferase/Luciferin technique to an exobiologically inclined mission to Mars, revealed the adequate resolution and reproducibility of the methodology plus areas of improvement. Also detailed are extraction, delivery and analysis system concepts, proposed for future Mars missions.

  3. Near infrared bioluminescence resonance energy transfer from firefly luciferase--quantum dot bionanoconjugates.

    PubMed

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Zylstra, Joshua; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2014-12-12

    The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (∼5.5 nm). Due to this, high BRET efficiency ratios of ∼5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications.

  4. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

    PubMed Central

    Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G.; Hao, Ruixin; Correll, Jared; Smith, Philip B.; Chiaro, Christopher R.; Perdew, Gary H.; Patterson, Andrew D.

    2016-01-01

    Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) were assessed using global 1H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolic profiling of extracts obtained from serum and liver. 1H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was also observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure. PMID:26023891

  5. Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes.

    PubMed

    Lucantoni, Leonardo; Fidock, David A; Avery, Vicky M

    2016-04-01

    The discovery of new antimalarial drugs able to target both the asexual and gametocyte stages ofPlasmodium falciparumis critical to the success of the malaria eradication campaign. We have developed and validated a robust, rapid, and cost-effective high-throughput reporter gene assay to identify compounds active against late-stage (stage IV and V) gametocytes. The assay, which is suitable for testing compound activity at incubation times up to 72 h, demonstrates excellent quality and reproducibility, with averageZ' values of 0.85 ± 0.01. We used the assay to screen more than 10,000 compounds from three chemically diverse libraries. The screening outcomes highlighted the opportunity to use collections of compounds with known activity against the asexual stages of the parasites as a starting point for gametocytocidal activity detection in order to maximize the chances of identifying gametocytocidal compounds. This assay extends the capabilities of our previously reported luciferase assay, which tested compounds against early-stage gametocytes, and opens possibilities to profile the activities of gametocytocidal compounds over the entire course of gametocytogenesis. PMID:26787698

  6. Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes

    PubMed Central

    Lucantoni, Leonardo; Fidock, David A.

    2016-01-01

    The discovery of new antimalarial drugs able to target both the asexual and gametocyte stages of Plasmodium falciparum is critical to the success of the malaria eradication campaign. We have developed and validated a robust, rapid, and cost-effective high-throughput reporter gene assay to identify compounds active against late-stage (stage IV and V) gametocytes. The assay, which is suitable for testing compound activity at incubation times up to 72 h, demonstrates excellent quality and reproducibility, with average Z′ values of 0.85 ± 0.01. We used the assay to screen more than 10,000 compounds from three chemically diverse libraries. The screening outcomes highlighted the opportunity to use collections of compounds with known activity against the asexual stages of the parasites as a starting point for gametocytocidal activity detection in order to maximize the chances of identifying gametocytocidal compounds. This assay extends the capabilities of our previously reported luciferase assay, which tested compounds against early-stage gametocytes, and opens possibilities to profile the activities of gametocytocidal compounds over the entire course of gametocytogenesis. PMID:26787698

  7. Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems.

    PubMed

    Ugarova, N N; Lebedeva, O V; Frumkina, I G

    1988-09-01

    Co-immobilization methods have been developed for a bienzymatic system of luminescent Beneckea harveyi bacteria with formate dehydrogenase, glucose-6-phosphate dehydrogenase, and phosphoglucomutase. Bioluminescent assays have been devised for NADH, NAD, FMN, glucose 6-phosphate, and glucose 1-phosphate using the co-immobilized enzyme preparation. The lowest detection limits were in the picomole range with the bacterial extract and in the femtomole range with the partially purified enzymes, bacterial luciferase, and NADH:FMN oxidoreductase. PMID:3263818

  8. Detection of luciferase gene sequence in nonluminescent Vibrio cholerae by colony hygridization and polymerase chain reaction

    SciTech Connect

    Palmer, L.M.; Colwell, R.R. )

    1991-05-01

    Bioluminescence is a trait observed among approximately 10% of Vibrio cholerae isolates. We have demonstrated that not only do some strains of V. cholerae produce low levels of light, undetectable by the human eye, but the luciferase gene sequence is present in strains of V. cholerae which emit no detectable light, evidenced by hybridization with a luciferase DNA probe. Comparisons of the amino acid sequences of luciferase regions of amino acid identity. The polymerase chain reaction method of DNA amplification with oligonucleotide primers based on these regions was used to isolate a region of the luxA gene from both luminescent and nonluminescent V. cholerae strains. The nucleotide sequence of this region was determined and reveals that nonluminescent V. cholerae have 99.7% nucleotide sequence similarity in this region with the luminescent biovar V. cholerae by albensis as well as significant similarity to other species of bioluminescent bacteria, a finding that is in accord with the hypothesis that these species have a common luminescent ancestor, most probably from the marine environment.

  9. AAV-mediated in vivo knockdown of luciferase using combinatorial RNAi and U1i.

    PubMed

    Koornneef, A; van Logtenstein, R; Timmermans, E; Pisas, L; Blits, B; Abad, X; Fortes, P; Petry, H; Konstantinova, P; Ritsema, T

    2011-09-01

    RNA interference (RNAi) has been successfully employed for specific inhibition of gene expression; however, safety and delivery of RNAi remain critical issues. We investigated the combinatorial use of RNAi and U1 interference (U1i). U1i is a gene-silencing technique that acts on the pre-mRNA by preventing polyadenylation. RNAi and U1i have distinct mechanisms of action in different cellular compartments and their combined effect allows usage of minimal doses, thereby avoiding toxicity while retaining high target inhibition. As a proof of concept, we investigated knockdown of the firefly luciferase reporter gene by combinatorial use of RNAi and U1i, and evaluated their inhibitory potential both in vitro and in vivo. Co-transfection of RNAi and U1i constructs showed additive reduction of luciferase expression up to 95% in vitro. We attained similar knockdown when RNAi and U1i constructs were hydrodynamically transfected into murine liver, demonstrating for the first time successful in vivo application of U1i. Moreover, we demonstrated long-term gene silencing by AAV-mediated transduction of murine muscle with RNAi/U1i constructs targeting firefly luciferase. In conclusion, these results provide a proof of principle for the combinatorial use of RNAi and U1i to enhance target gene knockdown in vivo.

  10. Intracellular ATP measured with luciferin/luciferase in isolated single mouse skeletal muscle fibres.

    PubMed

    Allen, David G; Lännergren, Jan; Westerblad, Håkan

    2002-03-01

    The firefly luciferin/luciferase reaction was utilized to monitor intracellular ATP concentration ([ATP](i)). Single fibres of mouse skeletal muscle were dissected and injected with luciferase. Luciferin was added to the perfusate and light emission from the fibres was monitored as an indication of [ATP](i). Inhibition of oxidative phosphorylation with cyanide and anaerobic glycolysis with iodoacetate caused light emission to fall to zero within 10 min and the fibres developed a rigor contraction. Inhibition of creatine kinase with 2,4-dinitro-1-fluorobenzene produced a small transient fall in light emission in association with each tetanus. Muscle fibres were fatigued by repeated tetani and 5/12 fibres showed a fall in light emission in the late phase of fatigue. If fibres were allowed to recover from fatigue in the absence of glucose and then restimulated in the absence of glucose they fatigued much more rapidly. However, such fibres showed no obvious change in light emission. We conclude that the luciferin/luciferase system can be used to monitor [ATP](i) in functioning single skeletal muscle cells. A depletion of global [ATP](i) is not observed in all fatiguing fibres and cannot be the sole cause of the final phase of fatigue.

  11. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange/Red Emission Intensities in Firefly Bioluminescence

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Akiyama, Hidefumi; Terakado, Kanako; Nakatsu, Toru

    2013-08-01

    Firefly bioluminescence has attracted great interest because of its high quantum yield and intriguing modifiable colours. Modifications to the structure of the enzyme luciferase can change the emission colour of firefly bioluminescence, and the mechanism of the colour change has been intensively studied by biochemists, structural biologists, optical physicists, and quantum-chemistry theorists. Here, we report on the quantitative spectra of firefly bioluminescence catalysed by wild-type and four site-directed mutant luciferases. While the mutation caused different emission spectra, the spectra differed only in the intensity of the green component (λmax ~ 560 nm). In contrast, the orange (λmax ~ 610 nm) and red (λmax ~ 650 nm) components present in all the spectra were almost unaffected by the modifications to the luciferases and changes in pH. Our results reveal that the intensity of the green component is the unique factor that is influenced by the luciferase structure and other reaction conditions.

  12. Impact of site-directed mutant luciferase on quantitative green and orange/red emission intensities in firefly bioluminescence.

    PubMed

    Wang, Yu; Akiyama, Hidefumi; Terakado, Kanako; Nakatsu, Toru

    2013-01-01

    Firefly bioluminescence has attracted great interest because of its high quantum yield and intriguing modifiable colours. Modifications to the structure of the enzyme luciferase can change the emission colour of firefly bioluminescence, and the mechanism of the colour change has been intensively studied by biochemists, structural biologists, optical physicists, and quantum-chemistry theorists. Here, we report on the quantitative spectra of firefly bioluminescence catalysed by wild-type and four site-directed mutant luciferases. While the mutation caused different emission spectra, the spectra differed only in the intensity of the green component (λmax ~ 560 nm). In contrast, the orange (λmax ~ 610 nm) and red (λmax ~ 650 nm) components present in all the spectra were almost unaffected by the modifications to the luciferases and changes in pH. Our results reveal that the intensity of the green component is the unique factor that is influenced by the luciferase structure and other reaction conditions.

  13. A plant 35S CaMV promoter induces long-term expression of luciferase in Atlantic salmon.

    PubMed

    Seternes, Tore; Tonheim, Tom C; Myhr, Anne I; Dalmo, Roy A

    2016-01-01

    The long-term persistence and activity of a naked plasmid DNA (pGL3-35S) containing a luc gene (reporter gene) controlled by a plant 35S CaMV promoter was studied in Atlantic salmon (Salmo salar L.) after injection. Atlantic salmon (mean weight 70 grams) were injected intramuscularly with 100 μg of plasmid DNA. Blood, different tissues and organs were sampled at different time points up to day 535 after injection. Southern blot analysis suggested the presence of extra-chromosomally open circular, linear and supercoiled topoforms of pGL3-35S at day 150 after injection. At day 536 open circular and supercoiled topoforms were detected. Luciferase activity was detected at the injection site up to 536 days post-injection of pGL3-35S, where it peaked at day 150 and decreased to approximately 17% of its maximum activity by day 536. Our study demonstrated that a plasmid containing the 35S promoter was able to induce expression of a reporter gene/protein in fish in vivo and that the plasmid DNA persisted for a prolonged time after intramuscular injection. PMID:27114167

  14. A plant 35S CaMV promoter induces long-term expression of luciferase in Atlantic salmon

    PubMed Central

    Seternes, Tore; Tonheim, Tom C.; Myhr, Anne I.; Dalmo, Roy A.

    2016-01-01

    The long-term persistence and activity of a naked plasmid DNA (pGL3-35S) containing a luc gene (reporter gene) controlled by a plant 35S CaMV promoter was studied in Atlantic salmon (Salmo salar L.) after injection. Atlantic salmon (mean weight 70 grams) were injected intramuscularly with 100 μg of plasmid DNA. Blood, different tissues and organs were sampled at different time points up to day 535 after injection. Southern blot analysis suggested the presence of extra-chromosomally open circular, linear and supercoiled topoforms of pGL3-35S at day 150 after injection. At day 536 open circular and supercoiled topoforms were detected. Luciferase activity was detected at the injection site up to 536 days post-injection of pGL3-35S, where it peaked at day 150 and decreased to approximately 17% of its maximum activity by day 536. Our study demonstrated that a plasmid containing the 35S promoter was able to induce expression of a reporter gene/protein in fish in vivo and that the plasmid DNA persisted for a prolonged time after intramuscular injection. PMID:27114167

  15. Seminal vesicles and urinary bladder as sites of aromatization of androgens in men, evidenced by a CYP19A1-driven luciferase reporter mouse and human tissue specimens.

    PubMed

    Strauss, Leena; Rantakari, Pia; Sjögren, Klara; Salminen, Anu; Lauren, Eve; Kallio, Jenny; Damdimopoulou, Pauliina; Boström, Minna; Boström, Peter J; Pakarinen, Pirjo; Zhang, FuPing; Kujala, Paula; Ohlsson, Claes; Mäkelä, Sari; Poutanen, Matti

    2013-04-01

    The human CYP19A1 gene is expressed in various tissues by the use of tissue-specific promoters, whereas the rodent cyp19a1 gene is expressed mainly in the gonads and brain. We generated a transgenic mouse model containing a >100-kb 5' region of human CYP19A1 gene connected to a luciferase reporter gene. The luciferase activity in mouse tissues mimicked the CYP19A1 gene expression pattern in humans. Interestingly, the reporter gene activity was 16 and 160 times higher in the urinary bladder and seminal vesicles, respectively, as compared with the activity in the testis. Accordingly, CYP19A1 gene and P450arom protein expression was detected in those human tissues. Moreover, the data revealed that the expression of CYP19A1 gene is driven by promoters PII, I.4, and I.3 in the seminal vesicles, and by promoters PII and I.4 in the urinary bladder. Furthermore, the reporter gene expression in the seminal vesicles was androgen dependent: Castration decreased the expression ∼20 times, and testosterone treatment restored it to the level of an intact mouse. This reporter mouse model facilitates studies of tissue-specific regulation of the human CYP19A1 gene, and our data provide evidence for seminal vesicles as important sites for estrogen production in males.

  16. Measurements of serum glucose using the luciferin/Luciferase system and a liquid scintillation spectrometer

    SciTech Connect

    Idahl, L.A.; Sandstroem, P.E.; Sehlin, J.

    1986-05-15

    A single-step assay for serum glucose measurements is described. The assay is based on the phosphorylation of D-glucose by glucokinase and the measurement of ATP consumption by firefly luciferase. The luminescence is recorded in an ordinary liquid scintillation spectrometer. The use of stable reagents and a stable final signal (light emission) makes it possible to analyze a large number of samples in each assay run. The assay is of particular value when repeated serum glucose determinations are performed on samples from small laboratory animals.

  17. NanoLuc Luciferase – A Multifunctional Tool for High Throughput Antibody Screening

    PubMed Central

    Boute, Nicolas; Lowe, Peter; Berger, Sven; Malissard, Martine; Robert, Alain; Tesar, Michael

    2016-01-01

    Based on the recent development of NanoLuc luciferase (Nluc), a small (19 kDa), highly stable, ATP independent, bioluminescent protein, an extremely robust and ultra high sensitivity screening system has been developed whereby primary hits of therapeutic antibodies and antibody fragments could be characterized and quantified without purification. This system is very versatile allowing cellular and solid phase ELISA but also homogeneous BRET based screening assays, relative affinity determinations with competition ELISA and direct Western blotting. The new Nluc protein fusion represents a “swiss army knife solution” for today and future high throughput antibody drug screenings. PMID:26924984

  18. Improved luciferase gene expression using ultrasound targeted microbubble destruction therapy in swine

    NASA Astrophysics Data System (ADS)

    Noble, Misty L.; Song, Shuxian; Sun, Ryan R.; Fan, Luping; DiBlasi, Robert M.; O'Kelly-Priddy, Colleen; Loeb, Keith R.; Miao, Carol H.

    2012-11-01

    Ultrasound (US) targeted microbubble (MB) destruction (UTMD) has been shown to be an effective method in delivering drugs and plasmid DNA (pDNA) into cells. We previously reported successful gene transfection of a reporter luciferase gene, pGL4, into livers of mice and rats using UTMD. The challenge is to translate and achieve similar gene expression in large animals, like swine, where the treated tissue volume is substantially larger. The scale-up study requires proportionally increased amount of pDNA/MBs delivered to tissues and an equivalent increase in US energy. We use different MBs and surgical strategies to retain most of pDNA/MB locally during US application in order to maximize the effect of UTMD in gene transfection. Our results show significant increase in luciferase expression in swine injected with MBs and exposed to 2.7 MPa US. We obtained up to 1800-fold enhancement in the pig experiment using Definity® MBs, and 2000-fold and 6300-fold enhancement in two pig studies using RN18 MBs compared to sham. These results represent an important developmental step towards US mediated gene delivery in large animals and clinical trials.

  19. Surface Arginine Saturation Effect on Unfolding Reaction of Firefly Luciferase: A Thermodynamic and Kinetic Perspective.

    PubMed

    Solgi, Zahra; Khalifeh, Khosrow; Hosseinkhani, Saman; Ranjbar, Bijan

    2016-09-01

    Replacement of some hydrophobic solvent-exposed residues in Lampyris turkestanicus luciferase with arginine increases thermostability of this enzyme. Herein, thermodynamic and kinetic of unfolding reactions of wild type (WT), E354R/356R, E354R/356R-I232R and E354R/356R-Q35R/L182R/I232R variants, has been investigated. Fluorescence and Far-UV circular dichroism measurements using urea as a chemical denaturant indicated that the value of ΔG(H2O) for all variants is greater than that of WT enzyme. Analysis of m-values, as a measure of difference in the solvent accessible surface area between the native and denatured states of protein, revealed that higher stability of mutants is related to their higher degree of compactness in the folded state. Results of unfolding kinetic experiments showed that all variants have three-exponential behavior in which they unfolded with three rate constants and corresponding amplitudes. Increasing the rate constants of fast unfolding phase in mutants relative to WT protein may be attributed to more compactness and more kinetic sensitivity of their folded state to urea. However, more population of WT protein was unfolded from fast unfolding phase. Results of this investigation highlight kinetic stability of luciferase via a slow rate of unfolding.

  20. Stable Tagging of Rhizobium meliloti with the Firefly Luciferase Gene for Environmental Monitoring

    PubMed Central

    Cebolla, Angel; Ruiz-Berraquero, Francisco; Palomares, Antonio Jose

    1993-01-01

    A system for stable tagging of gram-negative bacteria with the firefly luciferase gene, luc, is described. A previously constructed fusion constitutively expressing luc from the λpR promoter was used. Stable integration into the bacterial genome was achieved by use of mini-Tn5 delivery vectors. The procedure developed was applied for tagging of representative gram-negative bacteria, such as Escherichia coli, Rhizobium meliloti, Pseudomonas putida, and Agrobacterium tumefaciens. The system permitted the detection of tagged R. meliloti in the presence of more than 105 CFU per plate without the use of any selective markers (such as antibiotic resistance genes). No significant differences in growth rates or soil survival were found between the marked strain and the wild-type strain. Studies of bioluminescent R. meliloti also revealed a good correlation between cell biomass and bioluminescence. The firefly luciferase tagging system is an easy, safe, and sensitive method for the detection and enumeration of bacteria in the environment. Images PMID:16349015

  1. Surface Arginine Saturation Effect on Unfolding Reaction of Firefly Luciferase: A Thermodynamic and Kinetic Perspective.

    PubMed

    Solgi, Zahra; Khalifeh, Khosrow; Hosseinkhani, Saman; Ranjbar, Bijan

    2016-09-01

    Replacement of some hydrophobic solvent-exposed residues in Lampyris turkestanicus luciferase with arginine increases thermostability of this enzyme. Herein, thermodynamic and kinetic of unfolding reactions of wild type (WT), E354R/356R, E354R/356R-I232R and E354R/356R-Q35R/L182R/I232R variants, has been investigated. Fluorescence and Far-UV circular dichroism measurements using urea as a chemical denaturant indicated that the value of ΔG(H2O) for all variants is greater than that of WT enzyme. Analysis of m-values, as a measure of difference in the solvent accessible surface area between the native and denatured states of protein, revealed that higher stability of mutants is related to their higher degree of compactness in the folded state. Results of unfolding kinetic experiments showed that all variants have three-exponential behavior in which they unfolded with three rate constants and corresponding amplitudes. Increasing the rate constants of fast unfolding phase in mutants relative to WT protein may be attributed to more compactness and more kinetic sensitivity of their folded state to urea. However, more population of WT protein was unfolded from fast unfolding phase. Results of this investigation highlight kinetic stability of luciferase via a slow rate of unfolding. PMID:27343841

  2. Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies.

    PubMed

    Kemper, E M; Leenders, W; Küsters, B; Lyons, S; Buckle, T; Heerschap, A; Boogerd, W; Beijnen, J H; van Tellingen, O

    2006-12-01

    The blood-brain barrier (BBB) is considered one of the major causes for the low efficacy of cytotoxic compounds against primary brain tumours. The aim of this study was to develop intracranial tumour models in mice featuring intact or locally disrupted BBB properties, which can be used in testing chemotherapy against brain tumours. These tumours were established by intracranial injection of suspensions of different tumour cell lines. All cell lines had been transfected with luciferase to allow non-invasive imaging of tumour development using a super-cooled CCD-camera. Following their implantation, tumours developed which displayed the infiltrative, invasive or expansive growth patterns that are also found in primary brain cancer or brain metastases. Contrast-enhanced magnetic resonance imaging showed that the Mel57, K1735Br2 and RG-2 lesions grow without disruption of the BBB, whereas the BBB was leaky in the U87MG and VEGF-A-transfected Mel57 lesions. This was confirmed by immunohistochemistry. Bioluminescence measurements allowed the visualisation of tumour burden already within 4 days after injection of the tumour cells. The applicability of our models for performing efficacy studies was demonstrated in an experiment using temozolomide as study drug. In conclusion, we have developed experimental brain tumour models with partly disrupted, or completely intact BBB properties. In vivo imaging by luciferase allows convenient follow-up of tumour growth and these models will be useful for chemotherapeutic intervention studies.

  3. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization.

    PubMed

    Verhaegent, Monique; Christopoulos, Theodore K

    2002-09-01

    The cDNA for Gaussia luciferase (GLuc), the enzyme responsible for the bioluminescent reaction of the marine copepod Gaussia princeps, has been cloned recently. GLuc (MW = 19 900) catalyzes the oxidative decarboxylation of coelenterazine to produce coelenteramide and light. We report the first quantitative anaytical study of GLuc and examine its potential as a new reporter for DNA hybridization. A plasmid encoding both a biotin acceptor peptide-GLuc fusion protein as well as the enzyme biotin protein ligase (BPL) is engineered by using GLuc cDNA as a starting template. BPL catalyzes the covalent attachment of a single biotin to the fusion protein in vivo. Purification of GLuc is then accomplished by affinity chromatography using immobilized monomeric avidin. Moreover, the in vivo biotinylation enables subsequent complexation of GLuc with streptavidin (SA), thereby avoiding chemical conjugation reactions that are known to inactivate luciferases. Purified GLuc can be detected down to 1 amol with a signal-to-background ratio of 2 and a linear range extending over 5 orders of magnitude. The background luminescence of coelenterazine is the main limiting factor for even higher detectability of GLuc. Furthermore, the GLuc-SA complex is used as a detection reagent in a microtiter well-based DNA hybridization assay. The analytical range extends from 1.6 to 800 pmol/L of target DNA. Biotinylated GLuc produced from 1 L of bacterial culture is sufficient for 150,000 hybridization assays.

  4. Inhibition of electrochemically controlled bioluminescence of bacterial luciferase by n-alkyl alcohols.

    PubMed

    Yamasaki, Shinya; Yamada, Shuto; Takehara, Kô

    2011-01-01

    An electrochemical system has been developed in order to assay the effect of hydrophobic molecules on the bioluminescence of bacterial luciferase (BL). The inhibition of BL luminescence by the long-chain n-alkyl alcohol has been examined using this system. The 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol and 1-dodecanol inhibited the BL reaction in a dose-dependent manner. The IC(50) value, that is, the inhibitor concentration required to decrease the luminescence intensity by half, of these alcohols decreased with increasing the alkyl chain-length of the alcohols. In contrast, the shorter chain 1-hexanol did not inhibit the BL luminescence at all in the examined concentration range. These results indicate that the molecular size and hydrophobicity of the n-alkyl alcohol are the key factors to the inhibitory potency of the BL reaction. The IC(50) values are in agreement with values obtained for the bioluminescence of the firefly luciferase system. The proposed electrochemical BL luminescence system will be used for an inhibitory assay of hydrophobic drugs, such as general anesthetics on protein functions.

  5. Kinetics of inhibition of firefly luciferase by oxyluciferin and dehydroluciferyl-adenylate.

    PubMed

    Ribeiro, César; Esteves da Silva, Joaquim C G

    2008-09-01

    The inhibition mechanisms of the firefly luciferase (Luc) by the two major products of the reactions catalysed by Luc, oxyluciferin and dehydroluciferyl-adenylate (L-AMP), were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 microM oxyluciferin; 0.0025 to 1.25 microM L-AMP) has been measured in 50 mM Hepes buffer (pH=7.5), 10 nM Luc, 250 microM ATP and D-Luciferin (from 3.75 up to 120 microM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that oxyluciferin is a competitive inhibitor of luciferase (Ki=0.50+/-0.03 microM) while L-AMP act as a tight-binding competitive inhibitor (Ki=3.8+/-0.7 nM). The Km values obtained both for oxyluciferin and L-AMP were 14.7+/-0.7 and 14.9+/-0.2 microM, respectively. L-AMP is a stronger inhibitor of Luc than oxyluciferin and the major responsible for the characteristic flash profile of in vitro Luc bioluminescence.

  6. Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes

    PubMed Central

    Lee, Ho Won; Yoon, Seung Yun; Singh, Thoudam Debraj; Choi, Yoon Ju; Lee, Hong Je; Park, Ji Young; Jeong, Shin Young; Lee, Sang-Woo; Ha, Jeoung-Hee; Ahn, Byeong-Cheol; Jeon, Yong Hyun; Lee, Jaetae

    2015-01-01

    We sought to evaluate the feasibility of molecular imaging using the human sodium iodide symporter (hNIS) gene as a reporter, in addition to the enhanced firefly luciferase (effluc) gene, for tracking dendritic cell (DCs) migration in living mice. A murine dendritic cell line (DC2.4) co-expressing hNIS and effluc genes (DC/NF) was established. For the DC-tracking study, mice received either parental DCs or DC/NF cells in the left or right footpad, respectively, and combined I-124 PET/CT and bioluminescence imaging (BLI) were performed. In vivo PET/CT imaging with I-124 revealed higher activity of the radiotracer in the draining popliteal lymph nodes (DPLN) of the DC/NF injection site at day 1 than DC injection site (p < 0.05). The uptake value further increased at day 4 (p < 0.005). BLI also demonstrated migration of DC/NF cells to the DPLNs at day 1 post-injection, and signals at the DPLNs were much higher at day 4. These data support the feasibility of hNIS reporter gene imaging in the tracking of DC migration to lymphoid organs in living mice. DCs expressing the NIS reporter gene could be a useful tool to optimize various strategies of cell-based immunotherapy. PMID:25974752

  7. High-Throughput Screening of Effective siRNAs Using Luciferase-Linked Chimeric mRNA

    PubMed Central

    Pang, Shen; Pokomo, Lauren; Chen, Kevin; Kamata, Masakazu; Mao, Si-Hua; Zhang, Hong; Razi, Elliot; An, Dong Sung; Chen, Irvin S. Y.

    2014-01-01

    The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences) of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression. PMID:24831610

  8. Development of a high-throughput screening method for LIM kinase 1 using a luciferase-based assay of ATP consumption

    PubMed Central

    Mezna, Mokdad; Wong, Ai Ching; Ainger, Margaret; Scott, Rebecca W; Hammonds, Tim; Olson, Michael F

    2014-01-01

    Kinases are attractive drug targets because of the central roles they play in signal transduction pathways and human diseases. Their well-formed ATP-binding pockets make ideal targets for small molecule inhibitors. For drug discovery purposes, many peptide-based kinase assays have been developed that measure substrate phosphorylation using fluorescence-based readouts. However, for some kinases these assays may not be appropriate. In the case of the LIM kinases (LIMK), an inability to phosphorylate peptide substrates resulted in previous high-throughput screens (HTS) using radioactive labeling of recombinant cofilin protein as the readout. We describe the development of a HTS-compatible assay that measures relative ATP levels using luciferase-generated luminescence as a function of LIMK activity. The assay was inexpensive to perform and proof-of-principle screening of kinase inhibitors demonstrated that compound potency against LIMK could be determined; ultimately the assay was used for successful prosecution of automated HTS. Following HTS, the secondary assay format was changed to obtain more accurate measures of potency and mechanism of action using more complex (and expensive) assays. The luciferase assay nonetheless provides an inexpensive and reliable primary assay for HTS that allowed for the identification of LIMK inhibitors to initiate discovery programs for the eventual treatment of human diseases. PMID:22156225

  9. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    SciTech Connect

    Li Hongwei; Li Jinzhong; Helm, Gregory A.; Pan Dongfeng . E-mail: Dongfeng_pan@yahoo.com

    2005-09-09

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.

  10. Ab initio quantum-chemical study on emission spectra of bioluminescent luciferases by fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Tagami, Ayumu; Ishibashi, Nobuhiro; Kato, Dai-ichiro; Taguchi, Naoki; Mochizuki, Yuji; Watanabe, Hirofumi; Ito, Mika; Tanaka, Shigenori

    2009-04-01

    Bioluminescence spectra of firefly Luciola cruciata were theoretically analyzed on the basis of the fragment molecular orbital (FMO) method. The CIS(D) and PR-CIS(Ds) methods were employed for the calculations of emission energies of wild-type and mutant luciferase-oxyluciferin systems, and various multi-layer FMO calculations were performed changing the sizes of the luciferase protein and of the chromophore to which the excited-state calculations were applied. We have thus reproduced the experimental emission energies of wild-type and mutant luciferase systems with good accuracy, which provides useful information concerning the roles of protein environment for the color tuning of the bioluminescence spectra of firefly.

  11. Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines.

    PubMed

    Inouye, Satoshi; Sahara-Miura, Yuiko; Sato, Jun-ichi; Iimori, Rie; Yoshida, Suguru; Hosoya, Takamitsu

    2013-03-01

    The cold-induced expression system in Escherichia coli is useful and we have applied this system to prepare the coelenterazine-utilizing luciferases including Renilla luciferase (RLase), a red-shifted variant of Renilla luciferase (RLase-547), the catalytic domain of Oplophorus luciferase (19kOLase) and Gaussia luciferase (GLase). The luminescence properties of the purified luciferases were characterized by using 10 kinds of C2-modified coelenterazine analogues as a substrate. The order of the maximal luminescence intensity for native coelenterazine was GLase (100%)>RLase (8.0%)>RLase-547 (0.73%)>19kOLase (0.09%) under our assay conditions. The substrate specificities of coelenterazine-utilizing luciferases for the C2-modified analogues showed significant differences, but the emission peaks catalyzed by coelenterazine-utilizing luciferases were not affected by the C2-substituted coelenterazine. These results suggest that the catalytic environment for the oxygenation process of coelenterazine and the excited species of coelenteramide might be different among coelenterazine-utilizing luciferases. PMID:23274053

  12. A novel HAC1-based dual-luciferase reporter vector for detecting endoplasmic reticulum stress and unfolded protein response in yeast Saccharomyces cerevisiae.

    PubMed

    Fang, Zhijia; Kuang, Xin; Zhang, Youshang; Shi, Ping; Huang, Zhiwei

    2015-05-01

    Unfolded protein response (UPR) is an important cellular phenomenon induced by over-accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen. ER stress and UPR are implicated in human diseases such as diabetes, atherosclerosis and neurodegenerative diseases. Current methods for measuring ER stress levels and UPR activation usually include cells lysis and other complicated procedures such as reverse transcription-PCR (RT-PCR). These methods typically have low sensitivity and are not suitable for live detection. In this study, we developed a dual-luciferase gene reporter system to monitor UPR activation in live cells of the yeast Saccharomyces cerevisiae by taking advantage of the HAC1 intron and its unconventional splicing-regulation mechanism. We showed that this reporter can be used to monitor UPR in live cells with high sensitivity.

  13. Random mutagenesis of Luciola mingrelica firefly luciferase. Mutant enzymes with bioluminescence spectra showing low pH sensitivity.

    PubMed

    Koksharov, M I; Ugarova, N N

    2008-08-01

    Most firefly luciferases demonstrate a strong pH-dependence of bioluminescence spectra. Gene region encoding first 225 residues of Luciola mingrelica luciferase was subjected to random mutagenesis, and four mutants with altered pH-sensitivity of bioluminescence spectra were isolated. F16L substitution showed distinctly lower pH-dependence of bioluminescence spectra, and Y35N,H and F16L/A40S substitutions resulted in the enzymes with bioluminescence spectra virtually independent from pH in the range of 6.0-7.8. The structural explanation is proposed for the effect of mutations on pH-sensitivity of bioluminescence spectra.

  14. Individual subunits of bacterial luciferase are molten globules and interact with molecular chaperones.

    PubMed Central

    Flynn, G C; Beckers, C J; Baase, W A; Dahlquist, F W

    1993-01-01

    We have studied the assembly of a large heterodimeric protein, bacterial luciferase, by mixing purified subunits expressed separately in bacteria. The individual subunits alpha and beta contain much (66% and 50%, respectively) of the alpha-helix content of the native heterodimer as measured by circular dichroism, yet the alpha subunit lacks observable tertiary structure as measured by NMR. These results are consistent with the alpha subunit existing in a molten globule or collapsed form prior to assembly. The molecular chaperone GroEL binds reversibly to both subunits prior to assembly. Since these observations were obtained under physiological conditions, we propose that the molten globule exists as a stable form during folding or assembly in the cell. Either the molten globule form of the subunits is an authentic folding intermediate or it is in rapid equilibrium with one. GroEL may function by facilitating assembly through stabilization of these incompletely folded subunits. Images Fig. 4 PMID:7902573

  15. Effect of cadmium on lake water bacteria as determined by the luciferase assay of adenosine triphosphate

    SciTech Connect

    Seyfried, P.L.; Horgan, C.B.L.

    1981-10-01

    A firefly luciferase assay of bacterial adenosine triphosphate (ATP) was developed to measure the toxic effects of cadmium ions on aquatic organisms. Toxicity was monitored using intracellular (I/C) ATP (in micrograms per litre) as well as plate counts (colony-forming units per millilitre). The bacteria, which belonged mainly to the families Enterobacteriaceae and Pseudomonadaceae, exhibited varying degrees of resistance to up to 100 ppm cadmium when grown in a glucose-salts medium at pH 6.8. Among the organisms tested, cadmium resistance decreased in the following order: Pseudomonas vesicularis > P. aeruginosa > Enterobacter sp. > P. fluorescens > Chromobacter sp. > Serratia sp. A rise in the pH of the growth medium from 5 to 7 resulted in increased toxicity of cadmium.

  16. A real-time kinetic study of luciferase inactivation by pulsed ionizing radiation

    SciTech Connect

    Bell, D.H.; Gould, J.M.; Patterson, L.K.

    1982-06-01

    The real-time kinetics of radiation-induced inactivation of the luminescent firefly luciferase-luciferin system were investigated. A single, microsecond pulse from a Van de Graaff accelerator delivered to the system is sufficient to decrease the luminescence by over 60%. This decrease exhibits exponential behavior and has a half-time of 46 +/- 6 msec. In both steady-state and pulsed studies, the dose dependence of the inactivation is independent of the dose rate. Likewise, the decay kinetics are independent of the dose per pulse. These studies suggest that the enzyme is altered in a way that inteferes with the initial steps of catalysis without affecting the subsequent steps which lead to light emission.

  17. Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firefly luciferase.

    PubMed

    Maechler, P; Wang, H; Wollheim, C B

    1998-02-01

    The second messenger role of ATP in insulin secretion was investigated in living INS-1 insulinoma cells. ATP-dependent luminescence was monitored in cells expressing high levels of firefly luciferase under the control of the tetracycline-dependent transactivator. The calibration of luminescence in permeabilized cells yielded similar ATP levels as those obtained in cell extracts with a conventional ATP assay. Stimulation of insulin secretion by glucose or methyl-succinate was correlated with rises of cellular ATP in simultaneous measurements. ATP generation was decreased by inhibition of the ADP-ATP translocase. This approach demonstrates the feasibility of defining the dynamic relationship between ATP and other parameters involved in metabolism-secretion coupling.

  18. Luciferase Genes as Reporter Reactions: How to Use Them in Molecular Biology?

    PubMed

    Cevenini, L; Calabretta, M M; Calabria, D; Roda, A; Michelini, E

    2016-01-01

    : The latest advances in molecular biology have made available several biotechnological tools that take advantage of the high detectability and quantum efficiency of bioluminescence (BL), with an ever-increasing number of novel applications in environmental, pharmaceutical, food, and forensic fields. Indeed, BL proteins are being used to develop ultrasensitive binding assays and cell-based assays, thanks to their high detectability and to the availability of highly sensitive BL instruments. The appealing aspect of molecular biology tools relying on BL reactions is their general applicability in both in vitro assays, such as cell cultures or purified proteins, and in vivo settings, such as in whole-animal BL imaging. The aim of this chapter is to provide the reader with an overview of state-of-the-art bioluminescent tools based on luciferase genes, highlighting molecular biology strategies that have been applied so far, together with some selected examples.

  19. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae

    PubMed Central

    Masser, Anna E.; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan

    2016-01-01

    Abstract Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon‐optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half‐lives of 40 and 5 min, respectively. The commercial substrate Nano‐Glo® is compatible with detection of yNluc bioluminescence in < 50 cells. Using the unstable yNlucPEST to report on the rapid and transient expression of a heat‐shock promoter (PCYC1–HSE), we found a close match between the intensity of the bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C‐terminus of a temperature‐sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. PMID:26860732

  20. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    PubMed

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. PMID:26022509

  1. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    PubMed

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion.

  2. Evaluation of a bioluminescent mouse model expressing aromatase PII-promoter-controlled luciferase as a tool for the study of endocrine disrupting chemicals

    SciTech Connect

    Rivest, Patricia Devine, Patrick J. Sanderson, J. Thomas

    2010-11-15

    Dysfunction of the enzyme aromatase (CYP19) is associated with endocrine pathologies such as osteoporosis, impaired fertility and development of hormone-dependent cancers. Certain endocrine disrupting chemicals affect aromatase expression and activity in vitro, but little is known about their ability to do so in vivo. We evaluated a bioluminescent mouse model (LPTA (registered)) CD-1-Tg(Cyp19-luc)-Xen) expressing luciferase under control of the gonadal aromatase pII promoter as an in vivo screening tool for chemicals that may affect aromatase expression. We studied the effects of forskolin, pregnant mare serum gonadotropin and atrazine in this model (atrazine was previously shown to induced pII-promoter-driven aromatase expression in H295R human adrenocortical carcinoma cells). About 2-4 out of every group of 10 male or female Cyp19-luc mice injected i.p. with 10 mg/kg forskolin had increased gonadal bioluminescence after 3-5 days compared to controls; the others appeared non-responsive. Similarly, about 4 per group of 9 individual females injected with pregnant mare serum gonadotropin had increased ovarian bioluminescence after 24 h. There was a statistically significant correlation between ovarian bioluminescence and plasma estradiol concentrations (n = 14; p = 0.022). Males exposed to a single dose of 100 mg/kg or males and females exposed to 5 daily injections of 30 mg/kg atrazine showed no change in gonadal bioluminescence over a 7 day period, but a significant interaction was found between atrazine (100 mg/kg) and time in female mice (p < 0.05; two-way ANOVA). Ex vivo luciferase activity in dissected organs was increased by forskolin in testis, epididymis and ovaries. Atrazine (30 mg/kg/day) increased (30%) luciferase activity significantly in epididymis only. In conclusion, certain individual Cyp19-luc mice are highly responsive to aromatase inducers, suggesting this model, with further optimization, may have potential as an in vivo screening tool for

  3. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD{sub 50} of polychlorinated biphenyls in avian species

    SciTech Connect

    Manning, Gillian E.; Farmahin, Reza; Crump, Doug; Jones, Stephanie P.; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2012-09-15

    Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R{sup 2} ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect their

  4. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  5. GENERATION OF TWO NOVEL CELL LINES THAT STABLY EXPRESS HAR AND FIREFLY LUCIFERASE GENES FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Generation of Two Novel Cell Lines that Stably Express hAR and Firefly Luciferase Genes for Endocrine Screening
    K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1
    1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reproductive Toxicology Divi...

  6. Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats.

    PubMed

    Geuze, Ruth E; Prins, Henk-Jan; Öner, F Cumhur; van der Helm, Yvonne J M; Schuijff, Leontine S; Martens, Anton C; Kruyt, Moyo C; Alblas, Jacqueline; Dhert, Wouter J A

    2010-11-01

    Tissue engineering of bone, by combining multipotent stromal cells (MSCs) with osteoconductive scaffolds, has not yet yielded any clinically useful applications so far. The fate and contribution of the seeded cells are not sufficiently clarified, especially at clinically relevant locations. Therefore, we investigated cell proliferation around the spine and at ectopic sites using noninvasive in vivo bioluminescence imaging (BLI) in relation to new bone formation. Goat MSCs were lentivirally transduced to express luciferase. After showing both correlation between MSC viability and BLI signal as well as survival and osteogenic capacity of these cells ectopically in mice, they were seeded on ceramic scaffolds and implanted in immunodeficient rats at two levels in the spine for spinal fusion as well as subcutaneously. Nontransduced MSCs were used as a control group. All rats were monitored at day 1 and after that weekly until termination at week 7. In mice a BLI signal was observed during the whole observation period, indicating survival of the seeded MSCs, which was accompanied by osteogenic differentiation in vivo. However, these same MSCs showed a different response in the rat model, where the BLI signal was present until day 14, both in the spine and ectopically, indicating that MSCs were able to survive at least 2 weeks of implantation. Only when the signal was still present after the total implantation period ectopically, which only occurred in one rat, new bone was formed extensively and the implanted MSCs were responsible for this bone formation. Ectopically, neither a reduced proliferative group (irradiated) nor a group in which the cells were devitalized by liquid nitrogen and the produced extracellular matrix remained (matrix group) resulted in bone formation. This suggests that the release of soluble factors or the presence of an extracellular matrix is not enough to induce bone formation. For the spinal location, the question remains whether the implanted

  7. A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties.

    PubMed

    Viviani, Vadim R; Amaral, Danilo; Prado, Rogilene; Arnoldi, Frederico G C

    2011-12-01

    Firefly luciferases usually produce bioluminescence in the yellow-green region, with colors in the green and yellow-orange extremes of the spectrum being less common. Several firefly luciferases have already been cloned and sequenced, and site-directed mutagenesis studies have already identified important regions and residues for bioluminescence colors. However the structural determinants and mechanisms of bioluminescence colors turned out to be elusive, mainly when comparing luciferases with a high degree of divergence. Thus comparison of more similar luciferases producing colors in the two extremes of the spectrum could be revealing. The South-American fauna of fireflies remains largely unstudied, with some unique taxa that are not found anywhere else in the world and that produce a wide range of bioluminescence colors. Among them, fireflies of the genus Amydetes are especially interesting because its taxonomical status as an independent subfamily or as a tribe is not yet solved, and because they usually produce a continuous bright blue-shifted bioluminescence. In this work we cloned the cDNA for the luciferase of the Atlantic rain forest Amydetes fanestratus firefly, which is found near Sorocaba municipality (São Paulo, Brazil). Despite showing a higher degree of identity with the South-American Cratomorphus, the European Lampyris and the Asiatic Pyrocoelia, phylogenetical analysis of the luciferase sequence support the inclusion of Amydetes as an independent subfamily. Amydetes luciferase displays one of the most blue-shifted emission spectra (λ(max) = 538 nm) among beetle luciferases, with lower pH-sensitivity and higher affinity for ATP when compared to other luciferases, making this luciferase attractive for sensitive ATP and reporter assays.

  8. Self-Assembling NanoLuc Luciferase Fragments as Probes for Protein Aggregation in Living Cells.

    PubMed

    Zhao, Jia; Nelson, Travis J; Vu, Quyen; Truong, Tiffany; Stains, Cliff I

    2016-01-15

    Given the clear role of protein aggregation in human disease, there is a critical need for assays capable of quantifying protein aggregation in living systems. We hypothesized that the inherently low background and biocompatibility of luminescence signal readouts could provide a potential solution to this problem. Herein, we describe a set of self-assembling NanoLuc luciferase (Nluc) fragments that produce a tunable luminescence readout that is dependent upon the solubility of a target protein fused to the N-terminal Nluc fragment. To demonstrate this approach, we employed this assay in bacteria to assess mutations known to disrupt amyloid-beta (Aβ) aggregation as well as disease-relevant mutations associated with familial Alzheimer's diseases. The luminescence signal from these experiments correlates with the reported aggregation potential of these Aβ mutants and reinforces the increased aggregation potential of disease-relevant mutations in Aβ1-42. To further demonstrate the utility of this approach, we show that the effect of small molecule inhibitors on Aβ aggregation can be monitored using this system. In addition, we demonstrate that aggregation assays can be ported into mammalian cells. Taken together, these results indicate that this platform could be used to rapidly screen for mutations that influence protein aggregation as well as inhibitors of protein aggregation. This method offers a novel, genetically encodable luminescence readout of protein aggregation in living cells. PMID:26492083

  9. A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals.

    PubMed

    Hoenen, Thomas; Groseth, Allison; Callison, Julie; Takada, Ayato; Feldmann, Heinz

    2013-09-01

    Ebola virus (EBOV) causes a severe hemorrhagic fever with case fatality rates of up to 90%, for which no antiviral therapies are available. Antiviral screening is hampered by the fact that development of cytopathic effect, the easiest means to detect infection with wild-type EBOV, is relatively slow. To overcome this problem we generated a recombinant EBOV carrying a luciferase reporter. Using this virus we show that EBOV entry is rapid, with viral protein expression detectable within 2 h after infection. Further, luminescence-based assays were developed to allow highly sensitive titer determination within 48 h. As a proof-of-concept for its utility in antiviral screening we used this virus to assess neutralizing antibodies and siRNAs, with significantly faster screening times than currently available wild-type or recombinant viruses. The availability of this recombinant virus will allow for more rapid and quantitative evaluation of antivirals against EBOV, as well as the study of details of the EBOV life cycle.

  10. Application of firefly luciferase assay for adenosine triphosphate (ATP) to antimicrobial drug sensitivity testing

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Tuttle, S. A.; Schrock, C. G.; Deming, J. W.; Barza, M. J.; Wienstein, L.; Chappelle, E. W.

    1977-01-01

    The development of a rapid method for determining microbial susceptibilities to antibiotics using the firefly luciferase assay for adenosine triphosphate (ATP) is documented. The reduction of bacterial ATP by an antimicrobial agent was determined to be a valid measure of drug effect in most cases. The effect of 12 antibiotics on 8 different bacterial species gave a 94 percent correlation with the standard Kirby-Buer-Agar disc diffusion method. A 93 percent correlation was obtained when the ATP assay method was applied directly to 50 urine specimens from patients with urinary tract infections. Urine samples were centrifuged first to that bacterial pellets could be suspended in broth. No primary isolation or subculturing was required. Mixed cultures in which one species was predominant gave accurate results for the most abundant organism. Since the method is based on an increase in bacterial ATP with time, the presence of leukocytes did not interfere with the interpretation of results. Both the incubation procedure and the ATP assays are compatible with automation.

  11. DISTRIBUTION AND GENETIC DIVERSITY OF THE LUCIFERASE GENE WITHIN MARINE DINOFLAGELLATES(1).

    PubMed

    Valiadi, Martha; Debora Iglesias-Rodriguez, M; Amorim, Ana

    2012-06-01

    Dinoflagellates are the most abundant protists that produce bioluminescence. Currently, there is an incomplete knowledge of the identity of bioluminescent species arising from inter- and intraspecific variability in bioluminescence properties. In this study, PCR primers were designed to amplify the dinoflagellate luciferase gene (lcf) from genetically distant bioluminescent species. One of the primer pairs was "universal," whereas others amplified longer gene sequences from subsets of taxa. The primers were used to study the distribution of lcf and assess bioluminescence potential in dinoflagellate strains representing a wide variety of taxa as well as multiple strains of selected species. Strains of normally bioluminescent species always contained lcf even when they were found not to produce light, thus demonstrating the utility of this methodology as a powerful tool for identifying bioluminescent species. Bioluminescence and lcf were confined to the Gonyaulacales, Noctilucales, and Peridiniales. Considerable variation was observed among genera, or even species within some genera, that contained this gene. Partial sequences of lcf were obtained for the genera Ceratocorys, Ceratium, Fragilidium, and Protoperidinium as well as from previously untested species or gene regions of Alexandrium and Gonyaulax. The sequences revealed high variation among gene copies that obscured the boundaries between species or even genera, some of which could be explained by the presence of two genetic variants within the same species of Alexandrium. Highly divergent sequences within Alexandrium and Ceratium show a more diverse composition of lcf than previously known.

  12. Metastasizing, Luciferase Transduced MAT-Lu Rat Prostate Cancer Models: Follow up of Bolus and Metronomic Therapy with Doxorubicin as Model Drug

    PubMed Central

    Jantscheff, Peter; Esser, Norbert; Geipel, Andreas; Woias, Peter; Ziroli, Vittorio; Goldschmidtboing, Frank; Massing, Ulrich

    2011-01-01

    The most fatal outcomes of prostate carcinoma (PCa) result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting. An intravenous bolus treatment with doxorubicin was used to demonstrate the basic applicability of in vivo imaging to follow up therapeutic intervention in these models. In vitro analysis of tissue homogenates confirmed major metastatic spread of subcutaneous tumors into the lung. Our sensitive method, however, for the first time detects metastasis also in lymph node (11/24), spleen (3/24), kidney (4/24), liver (5/24), and bone tissue (femur or spinal cord - 5/20 and 12/20, respectively). Preliminary data of orthotopic implantation (three animals) showed metastatic invasion to investigated organs in all animals but with varying preference (e.g., to lymph nodes). Intravenous bolus treatment of MAT-Lu PCa with doxorubicin reduced subcutaneous tumor growth by about 50% and the number of animals affected by metastatic lesions in lymph nodes (0/4), lung (3/6) or lumbar spine (0/2), as determined by in vivo imaging and in vitro analysis. Additionally, the possible applicability of the luciferase transduced MAT-Lu model(s) to study basic principles of metronomic therapies via jugular vein catheter, using newly established active microport pumping systems, is presented. PMID:24212827

  13. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice

    PubMed Central

    Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat

    2015-01-01

    Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970

  14. A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging.

    PubMed

    Mezzanotte, Laura; Blankevoort, Vicky; Löwik, Clemens W G M; Kaijzel, Eric L

    2014-09-01

    Fluorescence and bioluminescence imaging have different advantages and disadvantages depending on the application. Bioluminescence imaging is now the most sensitive optical technique for tracking cells, promoter activity studies, or for longitudinal in vivo preclinical studies. Far-red and near-infrared fluorescence imaging have the advantage of being suitable for both ex vivo and in vivo analysis and have translational potential, thanks to the availability of very sensitive imaging instrumentation. Here, we report the development and validation of a new luciferase fusion reporter generated by the fusion of the firefly luciferase Luc2 to the far-red fluorescent protein TurboFP635 by a 14-amino acid linker peptide. Expression of the fusion protein, named TurboLuc, was analyzed in human embryonic kidney cells, (HEK)-293 cells, via Western blot analysis, fluorescence microscopy, and in vivo optical imaging. The created fusion protein maintained the characteristics of the original bioluminescent and fluorescent protein and showed no toxicity when expressed in living cells. To assess the sensitivity of the reporter for in vivo imaging, transfected cells were subcutaneously injected in animals. Detection limits of cells were 5 × 10(3) and 5 × 10(4) cells for bioluminescent and fluorescent imaging, respectively. In addition, hydrodynamics-based in vivo gene delivery using a minicircle vector expressing TurboLuc allowed for the analysis of luminescent signals over time in deep tissue. Bioluminescence could be monitored for over 30 days in the liver of animals. In conclusion, TurboLuc combines the advantages of both bioluminescence and fluorescence and allows for highly sensitive optical imaging ranging from single-cell analysis to in vivo whole-body bioluminescence imaging.

  15. Molecular insights on the evolution of the lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad-worms (Coleoptera: Phengodidae).

    PubMed

    Arnoldi, Frederico G C; da Silva Neto, Antonio Joaquim; Viviani, Vadim R

    2010-01-01

    Among bioluminescent beetles of Elateroidea superfamily, railroad-worms (Phengodidae) produce the widest range of colors, from green to red, using the same luciferin-luciferase system. Members of the Mastinocerini tribe display additional unique cephalic organs that emit red-shifted light, with Phrixothrix railroad-worms being the most dramatic cases with head lanterns emitting red light. Although the luciferases from the head lanterns of Phrixothrix hirtus and from the lateral lanterns of P. vivianii were previously cloned, the luciferases from both lanterns of the same species were not cloned yet. Therefore the origin and evolution of head and lateral lanterns luciferases in Phengodidae remains unknown. In the present work, we cloned by PCR the cDNA for lateral lantern luciferases of three Mastinocerini species: Phrixothrix hirtus, Brasilocerus sp(3). and Taximastioncerus sp. The results suggest that the head and lateral lanterns luciferases in Mastinocerini are coded by paralogous genes, and that the ancestral luciferase in the Phengodinae subfamily produced green bioluminescence. The evolutionary history of bioluminescence colors within Phengodinae is discussed.

  16. Two techniques for eliminating luminol interference material and flow system configurations for luminol and firefly luciferase systems

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1976-01-01

    Two methods for eliminating luminol interference materials are described. One method eliminates interference from organic material by pre-reacting a sample with dilute hydrogen peroxide. The reaction rate resolution method for eliminating inorganic forms of interference is also described. The combination of the two methods makes the luminol system more specific for bacteria. Flow system designs for both the firefly luciferase and luminol bacteria detection systems are described. The firefly luciferase flow system incorporating nitric acid extraction and optimal dilutions has a functional sensitivity of 3 x 100,000 E. coli/ml. The luminol flow system incorporates the hydrogen peroxide pretreatment and the reaction rate resolution techniques for eliminating interference. The functional sensitivity of the luminol flow system is 1 x 10,000 E. coli/ml.

  17. Luciferase Reporter Mycobacteriophages for Detection, Identification, and Antibiotic Susceptibility Testing of Mycobacterium tuberculosis in Mexico

    PubMed Central

    Banaiee, N.; Bobadilla-del-Valle, M.; Bardarov, S.; Riska, P. F.; Small, P. M.; Ponce-de-Leon, A.; Jacobs, W. R.; Hatfull, G. F.; Sifuentes-Osornio, J.

    2001-01-01

    The utility of luciferase reporter mycobacteriophages (LRPs) for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis was prospectively evaluated in a clinical microbiology laboratory in Mexico City, Mexico. Five hundred twenty-three consecutive sputum samples submitted to the laboratory during a 5-month period were included in this study. These specimens were cultivated in Middlebrook 7H9 (MADC), MGIT, and Löwenstein-Jensen (LJ) media. Of the 71 mycobacterial isolates recovered with any of the three media, 76% were detected with the LRPs, 97% were detected with the MGIT 960 method, and 90% were detected with LJ medium. When contaminated specimens were excluded from the analysis, the LRPs detected 92% (54 of 59) of the cultures. The median time to detection of bacteria was 7 days with both the LRPs and the MGIT 960 method. LRP detection of growth in the presence of p-nitro-α-acetylamino-β-hydroxypropiophenone (NAP) was used for selective identification of M. tuberculosis complex (MTC) and compared to identification with BACTEC 460. Using the LRP NAP test, 47 (94%) out of 50 isolates were correctly identified as tuberculosis complex. The accuracy and speed of LRP antibiotic susceptibility testing with rifampin, streptomycin, isoniazid, and ethambutol were compared to those of the BACTEC 460 method, and discrepant results were checked by the conventional proportion method. In total, 50 MTC isolates were tested. The overall agreement between the LRP and BACTEC 460 results was 98.5%. The median LRP-based susceptibility turnaround time was 2 days (range, 2 to 4 days) compared to 10.5 days (range, 7 to 16 days) by the BACTEC 460 method. Phage resistance was not detected in any of the 243 MTC isolates tested. Mycobacteriophage-based approaches to tuberculosis diagnostics can be implemented in clinical laboratories with sensitivity, specificity, and rapidity that compare favorably with those of the MGIT 960 and BACTEC 460

  18. Virus replicon particle based Chikungunya virus neutralization assay using Gaussia luciferase as readout

    PubMed Central

    2013-01-01

    Background Chikungunya virus (CHIKV) has been responsible for large epidemic outbreaks causing fever, headache, rash and severe arthralgia. So far, no specific treatment or vaccine is available. As nucleic acid amplification can only be used during the viremic phase of the disease, serological tests like neutralization assays are necessary for CHIKV diagnosis and for determination of the immune status of a patient. Furthermore, neutralization assays represent a useful tool to validate the efficacy of potential vaccines. As CHIKV is a BSL3 agent, neutralization assays with infectious virus need to be performed under BSL3 conditions. Our aim was to develop a neutralization assay based on non-infectious virus replicon particles (VRPs). Methods VRPs were produced by cotransfecting baby hamster kidney-21 cells with a CHIKV replicon expressing Gaussia luciferase (Gluc) and two helper RNAs expressing the CHIKV capsid protein or the remaining structural proteins, respectively. The resulting single round infectious particles were used in CHIKV neutralization assays using secreted Gluc as readout. Results Upon cotransfection of a CHIKV replicon expressing Gluc and the helper RNAs VRPs could be produced efficiently under optimized conditions at 32°C. Infection with VRPs could be measured via Gluc secreted into the supernatant. The successful use of VRPs in CHIKV neutralization assays was demonstrated using a CHIKV neutralizing monoclonal antibody or sera from CHIKV infected patients. Comparison of VRP based neutralization assays in 24- versus 96-well format using different amounts of VRPs revealed that in the 96-well format a high multiplicity of infection is favored, while in the 24-well format reliable results are also obtained using lower infection rates. Comparison of different readout times revealed that evaluation of the neutralization assay is already possible at the same day of infection. Conclusions A VRP based CHIKV neutralization assay using Gluc as readout

  19. A mouse model of luciferase-transfected stromal cells of giant cell tumor of bone.

    PubMed

    Lau, Carol P Y; Wong, Kwok Chuen; Huang, Lin; Li, Gang; Tsui, Stephen K W; Kumta, Shekhar Madhukar

    2015-11-01

    A major barrier towards the study of the effects of drugs on Giant Cell Tumor of Bone (GCT) has been the lack of an animal model. In this study, we created an animal model in which GCT stromal cells survived and functioned as proliferating neoplastic cells. A proliferative cell line of GCT stromal cells was used to create a stable and luciferase-transduced cell line, Luc-G33. The cell line was characterized and was found that there were no significant differences on cell proliferation rate and recruitment of monocytes when compared with the wild type GCT stromal cells. We delivered the Luc-G33 cells either subcutaneously on the back or to the tibiae of the nude mice. The presence of viable Luc-G33 cells was assessed using real-time live imaging by the IVIS 200 bioluminescent imaging (BLI) system. The tumor cells initially propagated and remained viable on site for 7 weeks in the subcutaneous tumor model. We also tested in vivo antitumor effects of Zoledronate (ZOL) and Geranylgeranyl transferase-I inhibitor (GGTI-298) alone or their combinations in Luc-G33-transplanted nude mice. ZOL alone at 400 µg/kg and the co-treatment of ZOL at 400 µg/kg and GGTI-298 at 1.16 mg/kg reduced tumor cell viability in the model. Furthermore, the anti-tumor effects by ZOL, GGTI-298 and the co-treatment in subcutaneous tumor model were also confirmed by immunohistochemical (IHC) staining. In conclusion, we established a nude mice model of GCT stromal cells which allows non-invasive, real-time assessments of tumor development and testing the in vivo effects of different adjuvants for treating GCT.

  20. Kinetics of inhibition of firefly luciferase by dehydroluciferyl-coenzyme A, dehydroluciferin and L-luciferin.

    PubMed

    da Silva, Luís Pinto; da Silva, Joaquim C G Esteves

    2011-06-01

    The inhibition mechanisms of the firefly luciferase (Luc) by three of the most important inhibitors of the reactions catalysed by Luc, dehydroluciferyl-coenzyme A (L-CoA), dehydroluciferin (L) and L-luciferin (L-LH(2)) were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 μM) has been measured in 50 mM Hepes buffer (pH = 7.5), 10 nM Luc, 250 μM ATP and D-luciferin (D-LH(2), from 3.75 up to 120 μM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that L-CoA is a non-competitive inhibitor of Luc (K(i) = 0.88 ± 0.03 μM), L is a tight-binding uncompetitive inhibitor (K(i) = 0.00490 ± 0.00009 μM) and L-LH(2) acts as a mixed-type non-competitive-uncompetitive inhibitor (K(i) = 0.68 ± 0.14 μM and αK(i) = 0.34 ± 0.16 μM). The K(m) values obtained for L-CoA, L and L-LH(2) were 16.1 ± 1.0, 16.6 ± 2.3 and 14.4 ± 0.96 μM, respectively. L and L-LH(2) are strong inhibitors of Luc, which may indicate an important role for these compounds in Luc characteristic flash profile. L-CoA K(i) supports the conclusion that CoA can stimulate the light emission reaction by provoking the formation of a weaker inhibitor.

  1. Global DNA Methylation Detection System Using MBD-Fused Luciferase Based on Bioluminescence Resonance Energy Transfer Assay.

    PubMed

    Yoshida, Wataru; Baba, Yuji; Karube, Isao

    2016-09-20

    DNA methylation plays an important role in the regulation of gene expression. In normal cells, transposable elements that constitute approximately 45% of the human genome are highly methylated to silence their expression. In cancer cells, transposable elements are hypomethylated; therefore, global DNA methylation level is considered as a biomarker for cancer diagnostics. In this study, a homogeneous assay for measuring global DNA methylation level based on bioluminescence resonance energy transfer (BRET) was developed using methyl-CpG binding domain (MBD)-fused luciferase. In this assay, the MBD-luciferase recognizes methylated CpG, thus, BRET between the luciferase and fluorescent DNA intercalating dye is detected. We demonstrated that the BRET signal depended on the DNA methylation level of the target DNA. Moreover, the BRET signal was correlated with the LINE1 DNA methylation level on human genomic DNA, as determined by the bisulfite method. These results indicate that the global DNA methylation level of human genomic DNA could be detected simply by measuring the BRET signal. PMID:27541340

  2. A New Screen for Tuberculosis Drug Candidates Utilizing a Luciferase-Expressing Recombinant Mycobacterium bovis Bacillus Calmette-Guéren

    PubMed Central

    Igarashi, Masayuki; Doe, Matsumi; Tamaru, Aki; Kinoshita, Naoko; Ogura, Yoshitoshi; Iwamoto, Tomotada; Sawa, Ryuichi; Umekita, Maya; Enany, Shymaa; Nishiuchi, Yukiko; Osada-Oka, Mayuko; Hayashi, Tetsuya; Niki, Mamiko; Tateishi, Yoshitaka; Hatano, Masaki

    2015-01-01

    Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904–1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 μg/ml, 0.5 μg/ml, and 2.0–7.5 μg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904–1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904–1. Our method provides a

  3. Interconversion of ketoprofen recognition in firefly luciferase-catalyzed enantioselective thioesterification reaction using from Pylocoeria miyako (PmL) and Hotaria parvura (HpL) just by mutating two amino acid residues.

    PubMed

    Kato, Dai-ichiro; Hiraishi, Yoshihiro; Maenaka, Mika; Yokoyama, Keisuke; Niwa, Kazuki; Ohmiya, Yoshihiro; Takeo, Masahiro; Negoro, Seiji

    2013-11-01

    We identified the critical amino acid residues for substrate recognition using two firefly luciferases from Pylocoeria miyako (PmL) and Hotaria parvura (HpL), as these two luciferase enzymes exhibit different activities toward ketoprofen. Specifically, PmL can catalyze the apparent enantioselective thioesterification reaction, while HpL cannot. By comparing the amino acid sequences around the active site, we identified two residues (I350 and M397 in PmL and F351 and S398 in HpL) that were different between the two enzymes, and the replacement of these amino acids resulted in changing the ketoprofen recognition pattern. The inactive HpL was converted to the active enzyme toward ketoprofen and vice versa for PmL. These residues also affected the enantioselectivity toward ketoprofen; however, the bioluminescent color was not affected. In addition, using molecular dynamics calculations, the replacement of these two amino acids induced changes in the state of hydrogen bonding between ketoprofen and the S349 side chain through the active site water. As S349 is not considered to influence color tuning, these changes specifically caused the differences in ketoprofen recognition in the enzyme.

  4. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion

  5. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione

  6. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion

  7. Folding, stability, and physical properties of the alpha subunit of bacterial luciferase.

    PubMed

    Noland, B W; Dangott, L J; Baldwin, T O

    1999-12-01

    Bacterial luciferase is a heterodimeric (alphabeta) enzyme composed of homologous subunits. When the Vibrio harveyi luxA gene is expressed in Escherichia coli, the alpha subunit accumulates to high levels. The alpha subunit has a well-defined near-UV circular dichroism spectrum and a higher intrinsic fluorescence than the heterodimer, demonstrating fluorescence quenching in the enzyme which is reduced in the free subunit [Sinclair, J. F., Waddle, J. J., Waddill, W. F., and Baldwin, T. O. (1993) Biochemistry 32, 5036-5044]. Analytical ultracentrifugation of the alpha subunit has revealed a reversible monomer to dimer equilibrium with a dissociation constant of 14.9 +/- 4.0 microM at 18 degrees C in 50 mM phosphate and 100 mM NaCl, pH 7.0. The alpha subunit unfolded and refolded reversibly in urea-containing buffers by a three-state mechanism. The first transition occurred over the range of 0-2 M urea with an associated free-energy change of 2.24 +/- 0.25 kcal/mol at 18 degrees C in 50 mM phosphate buffer, pH 7.0. The second, occurring between 2.5 and 3.5 M urea, comprised a cooperative transition with a free-energy change of 6.50 +/- 0.75 kcal/mol. The intermediate species, populated maximally at ca. 2 M urea, has defined near-UV circular dichroism spectral properties distinct from either the native or the denatured states. The intrinsic fluorescence of the intermediate suggested that, although the quantum yield had decreased, the tryptophanyl residues remained largely buried. The far-UV circular dichroism spectrum of the intermediate indicated that it had lost ca. 40% of its native secondary structure. N-Terminal sequencing of the products of limited proteolysis of the intermediate showed that the C-terminal region of the alpha subunit became protease labile over the urea concentration range at which the intermediate was maximally populated. These observations have led us to propose an unfolding model in which the first transition is the unfolding of a C

  8. Mathematical Model of the Firefly Luciferase Complementation Assay Reveals a Non-Linear Relationship between the Detected Luminescence and the Affinity of the Protein Pair Being Analyzed.

    PubMed

    Dale, Renee; Ohmuro-Matsuyama, Yuki; Ueda, Hiroshi; Kato, Naohiro

    2016-01-01

    The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively. PMID:26886551

  9. Mathematical Model of the Firefly Luciferase Complementation Assay Reveals a Non-Linear Relationship between the Detected Luminescence and the Affinity of the Protein Pair Being Analyzed.

    PubMed

    Dale, Renee; Ohmuro-Matsuyama, Yuki; Ueda, Hiroshi; Kato, Naohiro

    2016-01-01

    The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.

  10. Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location.

    PubMed

    Gabriel, Gabriele V M; Viviani, Vadim R

    2014-12-01

    Firefly luciferases are widely used as bioluminescent reporter genes for bioimaging and biosensors. Aiming at simultaneous analyses of different gene expression and cellular events, luciferases and GFPs that exhibit distinct bioluminescence and fluorescence colors have been coupled with each promoter, making dual and multicolor reporter systems. Despite their wide use, firefly luciferase bioluminescence spectra are pH-sensitive, resulting in a typical large red shift at acidic pH, a side-effect that may affect some bioanalytical purposes. Although some intracellular pH-indicators employ dual color and fluorescent dyes, none has been considered to benefit from the characteristic spectral pH-sensitivity of firefly luciferases to monitor intracellular pH-associated stress, an important indicator of cell homeostasis. Here we demonstrate a linear relationship between the ratio of intensities in the green and red regions of the bioluminescence spectra and pH using firefly luciferases cloned in our laboratory (Macrolampis sp2 and Cratomorphus distinctus), allowing estimation of E. coli intracellular pH, thus providing a new analytical method for ratiometric intracellular pH-sensing. This is the first dual reporter system that employs a single luciferase gene to simultaneously monitor intracellular pH using spectral changes, and gene expression and/or ATP concentration using the bioluminescence intensity, showing great potential for real time bioanalysis of intracellular processes associated with metabolic changes such as apoptosis, cell death, inflammation and tissue acidification, among the other physiological changes.

  11. Analysis of LPS-induced, NFκB-dependent interleukin-8 transcription in kidney embryonic cell line expressing TLR4 using luciferase assay.

    PubMed

    Yunusova, Tamara; Akhtar, Mumtaz; Poltoratsky, Vladimir

    2014-01-01

    Gene expression is orchestrated by a complex network of signal transduction pathways that typically originate on cell surface receptors and culminate in DNA-binding transcription factors, which translocate to the nucleus and bind cis-regulatory elements in promoter regions of genes, thereby inducing de novo synthesis of the nascent RNA transcripts and their splicing. Gene expression arrays monitor abundance of the matured, spliced cDNA, which undergoes additional posttranscriptional modifications that greatly affect the half-life of the cDNA. Thus, the relative abundance of cDNA is not necessarily commensurable with the activity of promoters of the corresponding genes. In contrast, reporter gene assays provide valuable insight into the regulation of gene expression at the level of transcription and allow for discerning the contribution of individual transcription factors into changes in gene expression. Here, we describe a robust reporter gene assay method that is useful for exploration of transcription regulatory network, which regulates gene expression in response to inflammation. The method is exemplified by using the promoter region of the prototypic pro-inflammatory chemokine interleukin-8 (IL-8, CXCL8), which plays an important role in immune response as well as carcinogenesis. Using the luciferase reporter gene assay, we analyze the activation status of the IL-8 promoter in lipopolysaccharide (LPS)-stimulated human embryonic kidney cells. PMID:24908317

  12. Using β-Lactamase and NanoLuc Luciferase Reporter Gene Assays to Identify Inhibitors of the HIF-1 Signaling Pathway.

    PubMed

    Khuc, Thai; Hsu, Chia-Wen Amy; Sakamuru, Srilatha; Xia, Menghang

    2016-01-01

    The hypoxia-inducible factor 1 (HIF-1) is a transcriptional factor involved in the regulation of oxygen within cellular environments. In hypoxic tissues or those with inadequate oxygen concentrations, activation of the HIF-1 transcription factor allows for subsequent activation of target gene expression implicated in cell survival. As a result, cells proliferate through formation of new blood vessels and expansion of vascular systems, providing necessary nourishment needed of cells. HIF-1 is also involved in the complex pathophysiology associated with cancer cells. Solid tumors are able to thrive in hypoxic environments by overactivating these target genes in order to grow and metastasize. Therefore, it is of high importance to identify modulators of the HIF-1 signaling pathway for possible development of anticancer drugs and to better understand how environmental chemicals cause cancer. Using a quantitative high-throughput screening (qHTS) approach, we are able to screen large chemical libraries to profile potential small molecule modulators of the HIF-1 signaling pathway in a 1536-well format. This chapter describes two orthogonal cell based assays; one utilizing a β-lactamase reporter gene incorporated into human ME-180 cervical cancer cells, and the other using a NanoLuc luciferase reporter system in human HCT116 colon cancer cells. Cell viability assays for each cell line are also conducted respectively. The data from this screening platform can be used as a gateway to study mode of action (MOA) of selected compounds and drug classes. PMID:27518620

  13. Using β-Lactamase and NanoLuc Luciferase Reporter Gene Assays to Identify Inhibitors of the HIF-1 Signaling Pathway.

    PubMed

    Khuc, Thai; Hsu, Chia-Wen Amy; Sakamuru, Srilatha; Xia, Menghang

    2016-01-01

    The hypoxia-inducible factor 1 (HIF-1) is a transcriptional factor involved in the regulation of oxygen within cellular environments. In hypoxic tissues or those with inadequate oxygen concentrations, activation of the HIF-1 transcription factor allows for subsequent activation of target gene expression implicated in cell survival. As a result, cells proliferate through formation of new blood vessels and expansion of vascular systems, providing necessary nourishment needed of cells. HIF-1 is also involved in the complex pathophysiology associated with cancer cells. Solid tumors are able to thrive in hypoxic environments by overactivating these target genes in order to grow and metastasize. Therefore, it is of high importance to identify modulators of the HIF-1 signaling pathway for possible development of anticancer drugs and to better understand how environmental chemicals cause cancer. Using a quantitative high-throughput screening (qHTS) approach, we are able to screen large chemical libraries to profile potential small molecule modulators of the HIF-1 signaling pathway in a 1536-well format. This chapter describes two orthogonal cell based assays; one utilizing a β-lactamase reporter gene incorporated into human ME-180 cervical cancer cells, and the other using a NanoLuc luciferase reporter system in human HCT116 colon cancer cells. Cell viability assays for each cell line are also conducted respectively. The data from this screening platform can be used as a gateway to study mode of action (MOA) of selected compounds and drug classes.

  14. Ultra sensitive firefly luciferase-based protein-protein interaction assay (FlimPIA) attained by hinge region engineering and optimized reaction conditions.

    PubMed

    Kurihara, Makoto; Ohmuro-Matsuyama, Yuki; Ayabe, Keiichi; Yamashita, Takahiro; Yamaji, Hideki; Ueda, Hiroshi

    2016-01-01

    Detecting and assaying protein-protein interactions are significant research procedures in biology and biotechnology. We recently reported a novel assay to detect protein-protein interaction, i.e. firefly luminescent intermediate-based protein-protein interaction assay (FlimPIA) using two mutant firefly luciferases (Flucs), which complement each other's deficient half reaction. This assay detects neighboring of two mutant Flucs, namely, a "Donor" that catalyzes the adenylation of firefly luciferin to produce a luciferyl-adenylate intermediate, and an "Acceptor" that catalyzes the subsequent light emitting reaction. However, its rather high background signal, derived from the remaining adenylation activity of the Acceptor, has limited its usefulness. To reduce this background signal, we introduced a mutation (R437K) into the hinge region of the Acceptor, while maintaining the oxidative activity. Interestingly, the signal/background (S/B) ratio of the assay was markedly improved by the addition of coenzyme A and reduction of the ATP concentration, probably due to reduced inhibition by dehydroluciferyl-adenylate formed during the catalysis and an increased ATP-based Km value of the Acceptor, respectively. As a result, a significantly improved maximal S/B ratio from 2.5 to ∼40 was attained, which promises wider use of the assay in in vitro diagnostics, drug discovery, and expanding our knowledge of various biological phenomena.

  15. Analysis of LPS-induced, NFκB-dependent interleukin-8 transcription in kidney embryonic cell line expressing TLR4 using luciferase assay.

    PubMed

    Yunusova, Tamara; Akhtar, Mumtaz; Poltoratsky, Vladimir

    2014-01-01

    Gene expression is orchestrated by a complex network of signal transduction pathways that typically originate on cell surface receptors and culminate in DNA-binding transcription factors, which translocate to the nucleus and bind cis-regulatory elements in promoter regions of genes, thereby inducing de novo synthesis of the nascent RNA transcripts and their splicing. Gene expression arrays monitor abundance of the matured, spliced cDNA, which undergoes additional posttranscriptional modifications that greatly affect the half-life of the cDNA. Thus, the relative abundance of cDNA is not necessarily commensurable with the activity of promoters of the corresponding genes. In contrast, reporter gene assays provide valuable insight into the regulation of gene expression at the level of transcription and allow for discerning the contribution of individual transcription factors into changes in gene expression. Here, we describe a robust reporter gene assay method that is useful for exploration of transcription regulatory network, which regulates gene expression in response to inflammation. The method is exemplified by using the promoter region of the prototypic pro-inflammatory chemokine interleukin-8 (IL-8, CXCL8), which plays an important role in immune response as well as carcinogenesis. Using the luciferase reporter gene assay, we analyze the activation status of the IL-8 promoter in lipopolysaccharide (LPS)-stimulated human embryonic kidney cells.

  16. A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands.

    PubMed

    Noguchi, Takako; Ikeda, Masaaki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2012-01-01

    In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc) and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR), respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR) antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that this co

  17. Determination of sterilization effectiveness by measuring bacterial growth in a biological indicator through firefly luciferase determination of ATP.

    PubMed

    Webster, J J; Walker, B G; Ford, S R; Leach, F R

    1988-01-01

    A bioluminescence procedure for measurement of microbial ATP allows a rapid determination of the effectiveness of autoclave sterilization. This determination is achieved faster than detection of acid production in a biological indicator via a pH indicator. Bacterial outgrowth from spores on test strips of the biological indicator was detected by measurement of ATP using the firefly luciferase reaction. A measureable increase in ATP was found after 5 hours of incubation of a biological indicator that had been treated under sterilizing conditions that produced 75% sterility of the biological indicator as measured by acid production. This is a marked improvement over the 24-48 hours of incubation currently required. PMID:3213598

  18. A Protein-Protein Interaction Assay FlimPIA Based on the Functional Complementation of Mutant Firefly Luciferases.

    PubMed

    Ohmuro-Matsuyama, Yuki; Ueda, Hiroshi

    2016-01-01

    There is a significant focus on detecting and assaying protein-protein interactions (PPIs) in biology and biotechnology. Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI by splitting the enzyme-coding or fluorescent protein-coding polypeptide, as well as Förster resonance energy transfer (FRET). Here, we describe a novel PPI assay FlimPIA (firefly luminescent intermediate-based protein-protein interaction assay) by a unique approach of splitting the two major catalytic steps (half reactions) of firefly luciferase (FLuc). PMID:27424900

  19. In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue.

    PubMed

    Houten, Sander M; Volle, David H; Cummins, Carolyn L; Mangelsdorf, David J; Auwerx, Johan

    2007-06-01

    We generated and characterized a firefly luciferase reporter mouse for the nuclear receptor farnesoid X receptor (FXR). This FXR reporter mouse has basal luciferase expression in the terminal ileum, an organ with well-characterized FXRalpha signaling. In vivo luciferase activity reflected the diurnal activity pattern of the mouse, and is regulated by both natural (bile acids, chenodeoxycholic acid) and synthetic (GW4064) FXRalpha ligands. Moreover, in vivo and in vitro analysis showed luciferase activity after GW4064 administration in the liver, kidney, and adrenal gland, indicating that FXRalpha signaling is functional in these tissues. Hepatic luciferase activity was robustly induced in cholestatic mice, showing that FXRalpha signaling pathways are activated in this disease. In conclusion, we have developed an FXR reporter mouse that is useful to monitor FXRalpha signaling in vivo in health and disease. The use of this animal could facilitate the development of new therapeutic compounds that target FXRalpha in a tissue-specific manner.

  20. Identification of cellular genes critical to recombinant protein production using a Gaussia luciferase-based siRNA screening system.

    PubMed

    Lwa, Teng Rhui; Tan, Chuan Hao; Lew, Qiao Jing; Chu, Kai Ling; Tan, Janice; Lee, Yih Yean; Chao, Sheng-Hao

    2010-04-15

    Development of high-throughput functional genomic screening, including siRNA screening, provides a novel approach for quick identification of critical factors involved in biological processes. Here, we apply this strategy to search for cellular genes involved in recombinant protein production. Since most of biopharmaceutical proteins are secreted proteins, we develop a cell-based reporter assay using a secreted luciferase, Gaussia luciferase (Gluc), as the reporter. Human embryonic kidney 293 (HEK293) cells transiently transfected with the Gluc reporter plasmid are used to screen our siRNA panel. Three cellular genes, CCAAT/enhancer binding protein gamma (CEBPG), potassium channel tetramerisation domain containing 2 (KCTD2), transmembrane protein 183A (TMEM183A), were isolated from the screening. Production of erythropoietin (EPO) was significantly inhibited when CEBPG, KCTD2, and TMEM183A were knocked down. Furthermore, overexpression of CEBPG is shown to significantly improve production of recombinant EPO, interferon gamma, and monoclonal antibody in HEK293 and Chinese hamster ovary cells. Collectively, this novel Gluc-based siRNA screening system is proven to be a useful tool for investigation of secreted protein production in mammalian cells. PMID:20188772

  1. Generation of a recombinant classical swine fever virus stably expressing the firefly luciferase gene for quantitative antiviral assay.

    PubMed

    Shen, Liang; Li, Yongfeng; Chen, Jianing; Li, Chao; Huang, Junhua; Luo, Yuzi; Sun, Yuan; Li, Su; Qiu, Hua-Ji

    2014-09-01

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious swine disease leading to significant economic losses worldwide. Vaccines are widely used to control the disease, and no CSFV-specific antivirals are currently available. To facilitate anti-CSFV molecule discovery, we developed a reporter virus CSFV-N(pro)Fluc stably expressing the firefly luciferase (Fluc) gene in the N(pro) gene. The reporter virus enabled more sensitive and convenient detection of the N(pro) protein expression and the viral replication by luciferase reporter assay than by traditional methods. The CSFV N(pro) protein was detectable as early as 4.5h post-infection. As a proof-of-concept for its utility in rapid antiviral screening, this reporter virus was used to quantify anti-CSFV neutralizing antibodies of 50 swine sera and to assess 12 small interfering RNAs targeting different regions of the CSFV genome. The results were comparable to those obtained by traditional methods. Taken together, the reporter virus CSFV-N(pro)Fluc represents a useful tool for rapid and quantitative screening and evaluation of antivirals against CSFV.

  2. Blocking the entrance of AMP pocket results in hormetic stimulation of imidazolium-based ionic liquids to firefly luciferase.

    PubMed

    Chen, Fu; Liu, Shu-Shen; Yu, Mo; Qu, Rui; Wang, Meng-Chao

    2015-08-01

    The hormesis characterized by low-concentration stimulation and high-concentration inhibition has gained significant interest over the past decades. Some organic solvents and ionic liquids (ILs) have hormetic concentration responses (HCR) to bioluminescence such as firefly luciferase and Vibrio qinghaiensis sp.-Q67. In this study, we determine the effects of 1-alkyl-3-methylimidazolium chlorine ILs ([Cnmim]Cl, n=2, 4, 6, 8, 10 and 12) to firefly luciferase in order to verify the mechanism of hormesis. The luminescence inhibition toxicity tests show that the stimulation effects of [C8mim]Cl and [C10mim]Cl are obvious, [C6mim]Cl and [C12mim]Cl are minor, and [C2mim]Cl and [C4mim]Cl are rare. The enzyme kinetics show that [C8mim]Cl and [C10mim]Cl are the competitive inhibitors with ATP while [C2mim]Cl and [C4mim]Cl are the noncompetitive ones. Molecular dynamics simulation results reveal that imidazolium rings of [C8mim] and [C10mim] locate at the entrance of luciferin pocket which is adjacent to AMP pocket, while alkyl-chains insert into the bottom of the luciferin pocket. Combining the results from inhibition test, kinetics assay and molecular simulation, we can deduce that occupying AMP pocket by imidazolium ring is responsible for hormetic stimulation.

  3. Nucleocytoplasmic transport of luciferase gene mRNA requires CRM1/Exportin1 and RanGTPase.

    PubMed

    Kimura, Tominori; Hashimoto, Iwao; Nishikawa, Masao; Yamada, Hisao

    2009-06-01

    Human immunodeficiency virus type 1 Rev (regulator of the expression of the virion) protein was shown to reduce the expression level of the co-transfected luciferase reporter gene (luc+) introduced to monitor transfection efficiency. We studied the mechanism of the inhibitory Rev effect. The effect, caused by nuclear retention of luc+ mRNA, was reversed if rev had a point mutation that makes its nuclear export signal (NES) unable to associate with cellular transport factors. The Rev NES receptor CRM1 (chromosome region maintenance 1)-specific inhibitor, leptomycin B, blocked luc+ mRNA export. This finding was also supported by the overexpression of delta CAN, another specific CRM1 inhibitor that caused inhibition of luciferase gene expression. Experiments involving tsBN2 cells, which have a temperature-sensitive RCC1 (regulator of chromosome condensation 1) allele, demonstrated that luc+ expression required generation of the GTP-bound form of RanGTPase (RanGTP) by RCC1. The constitutive transport element (CTE)-mediated nuclear export of luc+ mRNA was found to also depend upon RanGTP. Nuclear export of luc+ mRNA is thus suggested to involve CRM1 and RanGTP, which Rev employs to transport viral mRNA. The Rev effect is therefore considered to involve competition between two molecules for common transport factors.

  4. Stabilizing effects of hydrated fullerenes C₆₀ in a wide range of concentrations on luciferase, alkaline phosphatase, and peroxidase in vitro.

    PubMed

    Voeikov, Vladimir L; Yablonskaya, Olga I

    2015-01-01

    Hydrated fullerene (HyFnC60) is a highly hydrophilic supra-molecular complex consisting of unmodified С60 fullerene molecule enclosed into a hydrated shell. It has been shown in numerous experiments that aqueous solutions of HyFnC60 manifest a wide range of biological activities both in vivo and in vitro even at very low concentrations of HyFnC60. We used a spectrophotometric method and a method of biochemoluminescence to demonstrate that HyFnC60 in concentrations below 10(-9) M down to 10(-23) M stabilizes peroxidase, alkaline phosphatase, and bacterial luciferase against inactivation due to long-term incubation of the enzymes at room temperature and also against heat inactivation. In addition, HyFnC60 was able to "revive" heat inactivated enzymes. These effects cannot be explained by the direct action of the fullerene molecules upon the enzymes. We suggest that the effects of HyFnC60 on the enzymes are related to the ability of hydrated fullerene C60 molecules to organize thick aqueous shells around them. One of the specific properties of water phase in these shells is its ability to optimize redox reactions, which can support enzyme stability against factors deteriorating their structure.

  5. Aerosol delivery of kinase-deficient Akt1 attenuates Clara cell injury induced by naphthalene in the lungs of dual luciferase mice.

    PubMed

    Minai-Tehrani, Arash; Park, Young-Chan; Hwang, Soon-Kyung; Kwon, Jung-Taek; Chang, Seung-Hee; Park, Sung-Jin; Yu, Kyeong-Nam; Kim, Ji-Eun; Shin, Ji-Young; Kim, Ji-Hye; Kang, Bitna; Hong, Seong-Ho; Cho, Myung-Haing

    2011-12-01

    Conventional lung cancer therapies are associated with poor survival rates; therefore, new approaches such as gene therapy are required for treating cancer. Gene therapies for treating lung cancer patients can involve several approaches. Among these, aerosol gene delivery is a potentially more effective approach. In this study, Akt1 kinase-deficient (KD) and wild-type (WT) Akt1 were delivered to the lungs of CMV-LucR-cMyc-IRES-LucF dual reporter mice through a nose only inhalation system using glucosylated polyethylenimine and naphthalene was administrated to the mice via intraperitoneal injection. Aerosol delivery of Akt1 WT and naphthalene treatment increased protein levels of downstream substrates of Akt signaling pathway while aerosol delivery of Akt1 KD did not. Our results showed that naphthalene affected extracellular signal-regulated kinase (ERK) protein levels, ERK-related signaling, and induced Clara cell injury. However, Clara cell injury induced by naphthalene was considerably attenuated in mice exposed to Akt1 KD. Furthermore, a dual luciferase activity assay showed that aerosol delivery of Akt1 WT and naphthalene treatment enhanced cap-dependent protein translation, while reduced cap-dependent protein translation was observed after delivering Akt1 KD. These studies demonstrated that our aerosol delivery is compatible for in vivo gene delivery. PMID:22122896

  6. Development of a Gaussia Luciferase-Based Human Norovirus Protease Reporter System: Cell Type-Specific Profile of Norwalk Virus Protease Precursors and Evaluation of Inhibitors

    PubMed Central

    Qu, Lin; Vongpunsawad, Sompong; Atmar, Robert L.; Prasad, B. V. Venkataram

    2014-01-01

    ABSTRACT Norwalk virus (NV) is the prototype strain of human noroviruses (HuNoVs), a group of positive-strand RNA viruses in the Caliciviridae family and the leading cause of epidemic gastroenteritis worldwide. Investigation of HuNoV replication and development of antiviral therapeutics in cell culture remain challenging tasks. Here, we present NoroGLuc, a HuNoV protease reporter system based on a fusion of NV p41 protein with a naturally secreted Gaussia luciferase (GLuc), linked by the p41/p22 cleavage site for NV protease (Pro). trans cleavage of NoroGLuc by NV Pro or Pro precursors results in release and secretion of an active GLuc. Using this system, we observed a cell type-specific activity profile of NV Pro and Pro precursors, suggesting that the activity of NV Pro is modulated by other viral proteins in the precursor forms and strongly influenced by cellular factors. NoroGLuc was also cleaved by Pro and Pro precursors generated from replication of NV stool RNA in transfected cells, resulting in a measurable increase of secreted GLuc. Truncation analysis revealed that the N-terminal membrane association domain of NV p41 is critical for NoroGLuc activity. Although designed for NV, a genogroup GI.1 norovirus, NoroGLuc also efficiently detects Pro activities from GII.3 and GII.4 noroviruses. At noncytotoxic concentrations, protease inhibitors ZnCl2 and Nα-p-tosyl-l-lysine chloromethyl ketone (TLCK) exhibited dose-dependent inhibitory effects on a GII.4 Pro by NoroGLuc assay. These results establish NoroGLuc as a pan-genogroup HuNoV protease reporter system that can be used for the study of HuNoV proteases and precursors, monitoring of viral RNA replication, and evaluation of antiviral agents. IMPORTANCE Human noroviruses are the leading cause of epidemic gastroenteritis worldwide. Currently, there are no vaccines or antiviral drugs available to counter these highly contagious viruses. These viruses are currently noncultivatable in cell culture. Here, we report

  7. Construction of a cytosolic firefly luciferase reporter cassette for use in PCR-mediated gene deletion and fusion in Saccharomyces cerevisiae.

    PubMed

    Ainsworth, W B; Rome, C M; Hjortsø, M A; Benton, M G

    2012-12-01

    Monitoring promoter response to environmental changes using reporter systems has provided invaluable information regarding cellular state. With the development of in vivo luciferase reporter systems, inexpensive, sensitive and accurate promoter assays have been developed without the variability reported between in vitro samplings. Current luciferase reporter systems, however, are largely inflexible to modifications to the promoter of interest. To overcome problems in flexibility and stability of these expression vectors, we report the creation of a novel vector system which introduces a cytosol-localized Photinus pyralis luciferase [LUC*(-SKL)] capable of one-step, in vivo measurements into a promoter-reporter system via PCR-based gene deletion and fusion. After introduction of the reporter under HUG1 promoter control, cytosolic localization was confirmed by fluorescence microscopy. The dose-response of this novel construct was then compared with that of a similar HUG1Δ::yEGFP1 promoter-reporter system and shown to give a similar response pattern.

  8. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery

  9. A rapid method for the determination of microbial susceptibility using the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Vellend, H.; Tuttle, S. A.; Barza, M.; Weinstein, L.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was optimized for pure bacteria in broth in order to evaluate if changes in bacterial ATP content could be used as a rapid measure of antibiotic effect on microorganisms. Broth cultures of log phase bacteria were incubated at 310 K (37 C) for 2.5 hours at antimicrobial concentrations which resulted in the best discrimination between sensitive and resistant strains. Eighty-seven strains of 11 bacterial species were studied for their susceptibility to 12 commonly used antimicrobial agents: ampicillin, Penicillin G, nafcillin, carbenicillin, cephalothin, tetracycline, erythromycin, clindamycin, gentamicin, nitrofurantoin, colistin, and chloramplenicol. The major advantage of the ATP system over existing methods of rapid microbial susceptibility testing is that the assay can be made specific for bacterial ATP.

  10. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium

    SciTech Connect

    Wolk, C.P.; Yuping Cai; Panoff, J.M. )

    1991-06-15

    Anabaena, a filamentous cyanobacterium, is of developmental interest because, when deprived of fixed nitrogen, it shows patterned differentiation of N{sub 2}-fixing cells called heterocysts. To help elucidate its early responses to a decrease in nitrogen, the authors used a derivative of transposon Tn5 to generate transcriptional fusions of promoterless bacterial luciferase genes, luxAB, to the Anabaena genome. Genes that responded to removal of fixed nitrogen or to other environmental shifts by increased or decreased transcription were identified by monitoring the luminescence of colonies from transposon-generated libraries. The Tn5 derivative transposed in Anabaena at ca. 1-4 {times} 10{sup {minus}5} per cell and permitted high-resolution mapping of its position and orientation in the genome and facile cloning of contiguous genomic DNA.

  11. Bioenergetic analysis of intact mammalian cells using the Seahorse XF24 Extracellular Flux analyzer and a luciferase ATP assay.

    PubMed

    de Moura, Michelle Barbi; Van Houten, Bennett

    2014-01-01

    Metabolic pathways and bioenergetics were described in great detail over half a century ago, and during the past decade there has been a resurgence in integrating these cellular processes with other biological properties of the cell, including growth control, protein kinase cascade signaling, cell cycle division, and autophagy. Since many disease conditions are associated with altered metabolism and production of energy, it is important to develop new approaches to measure these cellular parameters. This chapter summarizes a new and exciting approach based on the Seahorse XF24 Extracelluar Flux analyzer, which takes real time measurements of oxidative phosphorylation and glycolysis in living cells. These bioenergetic profiles are then compared with steady-state levels of cellular ATP as measured by a luciferase assay.

  12. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells.

    PubMed Central

    Loessner, M J; Rees, C E; Stewart, G S; Scherer, S

    1996-01-01

    Specific transfer and expression of bacterial luciferase genes via bacteriophages provides an efficient way to detect and assay viable host cells. Listeria bacteriophage A511 is a genus-specific, virulent myovirus which infects 95% of Listeria monocytogenes serovar 1/2 and 4 cells. We constructed recombinant derivative A511::luxAB, which carries the gene for a fused Vibrio harveyi LuxAB protein inserted immediately downstream of the major capsid protein gene (cps). Efficient transcription is initiated by the powerful cps promoter at 15 to 20 min postinfection. Site-specific introduction of the luciferase gene into the phage genome was achieved by homologous recombination in infected cells between a plasmid carrying A511 DNA flanking luxAB and phage DNA. Recombinants occurred in the lysate at a frequency of 5 x 10(-4) and were readily identified by the bioluminescent phenotype conferred on newly infected host cells. A511::luxAB can be used to directly detect Listeria cells. Following infection and a 2-h incubation period, numbers as low as 5 x 10(2) to 10(3) cells per ml were detected by using a single-tube luminometer. Extreme sensitivity was achieved by including an enrichment step prior to the lux phage assay; under these conditions less than 1 cell of L. monocytogenes Scott A per g of artificially contaminated salad was clearly identified. The assay is simple, rapid, inexpensive, and easy to perform. Our findings indicate that A511::luxAB is useful for routine screening of foods and environmental samples for Listeria cells. PMID:8919773

  13. Development of a Luciferase Immunoprecipitation System Assay To Detect IgG Antibodies against Human Respiratory Syncytial Virus Nucleoprotein

    PubMed Central

    Kumari, Sangeeta; Crim, Roberta Lynne; Kulkarni, Ashwin; Audet, Susette A.; Mdluli, Thembi; Murata, Haruhiko

    2014-01-01

    The nucleoprotein of respiratory syncytial virus (RSV-N) is immunogenic and elicits an IgG response following infection. The RSV-N gene was cloned into a mammalian expression vector, pREN2, and the expressed luciferase-tagged protein (Ruc-N) detected anti-RSV-N-specific IgG antibodies using a high-throughput immunoprecipitation method (the luciferase immunoprecipitation system [LIPS]-NRSV assay). The specificity of the assay was evaluated using monoclonal antibodies (MAbs) and monospecific pre- and postimmunization rabbit antisera. Blood serum samples from chimpanzees and humans with proven/probable RSV infection were also tested. The pre- and postimmunization serum samples from rabbits given human metapneumovirus (HMPV) or measles virus were negative when tested by the LIPS-NRSV assay, while antisera obtained after immunization with either the RSV-A or RSV-B strain gave positive signals in a dose-dependent manner. RSV-N MAb 858-3 gave a positive signal in the LIPS-NRSV assay, while MAbs against other paramyxovirus nucleoproteins or RSV-F or RSV-G did not. Serum samples from chimpanzees simultaneously immunized with vaccinia-RSV-F and vaccinia-RSV-G recombinant viruses were negative in the LIPS-NRSV assay; however, anti-RSV-N IgG responses were detected following subsequent RSV challenge. Seven of the 12 infants who were seronegative at 9 months of age had detectable anti-RSV-N antibodies when they were retested at 15 to 18 months of age. The LIPS-NRSV assay detects specific anti-RSV-N IgG responses that may be used as a biomarker of RSV infection. PMID:24403526

  14. Luciferase Reporter Gene Assay on Human, Murine and Rat Histamine H4 Receptor Orthologs: Correlations and Discrepancies between Distal and Proximal Readouts

    PubMed Central

    Nordemann, Uwe; Wifling, David; Schnell, David; Bernhardt, Günther; Stark, Holger; Seifert, Roland; Buschauer, Armin

    2013-01-01

    The investigation of the (patho)physiological role of the histamine H4 receptor (H4R) and its validation as a possible drug target in translational animal models are compromised by distinct species-dependent discrepancies regarding potencies and receptor subtype selectivities of the pharmacological tools. Such differences were extremely pronounced in case of proximal readouts, e. g. [32P]GTPase or [35S]GTPγS binding assays. To improve the predictability of in vitro investigations, the aim of this study was to establish a reporter gene assay for human, murine and rat H4Rs, using bioluminescence as a more distal readout. For this purpose a cAMP responsive element (CRE) controlled luciferase reporter gene assay was established in HEK293T cells, stably expressing the human (h), the mouse (m) or the rat (r) H4R. The potencies and efficacies of 23 selected ligands (agonists, inverse agonists and antagonists) were determined and compared with the results obtained from proximal readouts. The potencies of the examined ligands at the human H4R were consistent with reported data from [32P]GTPase or [35S]GTPγS binding assays, despite a tendency toward increased intrinsic efficacies of partial agonists. The differences in potencies of individual agonists at the three H4R orthologs were generally less pronounced compared to more proximal readouts. In conclusion, the established reporter gene assay is highly sensitive and reliable. Regarding discrepancies compared to data from functional assays such as [32P]GTPase and [35S]GTPγS binding, the readout may reflect multifactorial causes downstream from G-protein activation, e.g. activation/amplification of or cross-talk between different signaling pathways. PMID:24023919

  15. In vivo import of firefly luciferase into the glycosomes of Trypanosoma brucei and mutational analysis of the C-terminal targeting signal.

    PubMed Central

    Sommer, J M; Cheng, Q L; Keller, G A; Wang, C C

    1992-01-01

    The compartmentalization of glycolytic enzymes into specialized organelles, the glycosomes, allows the bloodstream form of Trypanosoma brucei to rely solely on glycolysis for its energy production. The biogenesis of glycosomes in these parasites has been studied intensively as a potential target for chemotherapy. We have adapted the recently developed methods for stable transformation of T. brucei to the in vivo analysis of glycosomal protein import. Firefly luciferase, a peroxisomal protein in the lantern of the insect, was expressed in stable transformants of the procyclic form of T. brucei, where it was found to accumulate inside the glycosomes. Mutational analysis of the peroxisomal targeting signal serine-lysine-leucine (SKL) located at the C-terminus of luciferase showed that replacement of the serine residue (Serine548) with a small neutral amino acid (A, C, G, H, N, P, T) still resulted in an import efficiency of 50-100% of the wild-type luciferase. Lysine549 could be substituted with an amino acid capable of hydrogen bonding (H, M, N, Q, R, S), whereas the C-terminal leucine550 could be replaced with a subset of hydrophobic amino acids (I, M, Y). Thus, a peroxisome-like C-terminal SKL-dependent targeting mechanism may function in T. brucei to import luciferase into the glycosomes. However, a few significant differences exist between the glycosomal targeting signals identified here and the tripeptide sequences that direct proteins to mammalian or yeast peroxisomes. Images PMID:1515676

  16. A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations.

    PubMed

    Amaral, Danilo T; Oliveira, Gabriela; Silva, Jaqueline R; Viviani, Vadim R

    Bioluminescent click-beetles display a wide variation of bioluminescence colors ranging from green to orange, including an unusual intra-specific color variation in the Jamaican Pyrophorus plagiophthalamus. Recently, we collected individuals of the Pyrophorus angustus species from the Southern Amazon forest, in Brazil, which displays an orange light emitting abdominal lantern. This species was also previously described from Central America, but displaying a bioluminescence spectrum from 536 nm (dorsal) to 578 nm (ventral). The biogeographic variation of the bioluminescence color in this species could be an adaptation to environmental reflectance and inter/intraspecific sexual competition. Here, we cloned, sequenced, characterized and performed site-direct mutagenesis of this new orange emitting luciferase. The in vitro luciferase spectrum displayed a peak at 594 nm, KM values for ATP and d-luciferin of 160 μM and 17 μM, respectively, and an optimum pH of approximately 8.5. Comparative multialignment and site-directed mutagenesis using different color emitting click-beetle luciferases from P. angustus, Fulgeochlizus bruchi and Pyrearinus termitilluminans luciferases cloned by our group showed an integral role of residue 247 in bioluminescence color modulation. PMID:27454752

  17. A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations.

    PubMed

    Amaral, Danilo T; Oliveira, Gabriela; Silva, Jaqueline R; Viviani, Vadim R

    Bioluminescent click-beetles display a wide variation of bioluminescence colors ranging from green to orange, including an unusual intra-specific color variation in the Jamaican Pyrophorus plagiophthalamus. Recently, we collected individuals of the Pyrophorus angustus species from the Southern Amazon forest, in Brazil, which displays an orange light emitting abdominal lantern. This species was also previously described from Central America, but displaying a bioluminescence spectrum from 536 nm (dorsal) to 578 nm (ventral). The biogeographic variation of the bioluminescence color in this species could be an adaptation to environmental reflectance and inter/intraspecific sexual competition. Here, we cloned, sequenced, characterized and performed site-direct mutagenesis of this new orange emitting luciferase. The in vitro luciferase spectrum displayed a peak at 594 nm, KM values for ATP and d-luciferin of 160 μM and 17 μM, respectively, and an optimum pH of approximately 8.5. Comparative multialignment and site-directed mutagenesis using different color emitting click-beetle luciferases from P. angustus, Fulgeochlizus bruchi and Pyrearinus termitilluminans luciferases cloned by our group showed an integral role of residue 247 in bioluminescence color modulation.

  18. Application of the luciferin-luciferase enzyme system for determination of adenosine triphosphate (ATP) to studies on the mechanisms of herbicide action

    NASA Technical Reports Server (NTRS)

    St.john, J. B.

    1975-01-01

    The luciferin-luciferase enzyme system for determination of ATP is valuable for studies on the mechanisms of herbicide action. Investigations using this system have shown that certain herbicides may act by interfering with ATP production or by blocking ATP use, or by both mechanisms.

  19. GENERATION OF TWO STABLE CELL LINES THAT EXPRESS HER-ALPHA OR HER-ALPHA AND -BETA AND FIREFLY LUCIFERASE GENES FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Generation of Two Stable Cell Lines that Express hERa or
    hERa and b and Firefly Luciferase Genes for Endocrine Screening

    K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1

    1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reprod...

  20. Development of a screening system for DNA damage and repair of potential carcinogens based on dual luciferase assay in human HepG2 cell.

    PubMed

    Fan, Longgang; Niu, Yujie; Zhang, Shaohui; Shi, Lei; Guo, Huicai; Liu, Yi; Zhang, Rong

    2013-09-01

    At present, different methods are used for the detection of early biological effects of DNA-damaging agents in environment. Some sensitive testing methods employing DNA damage-inducing genes RNR3, RAD51, RAD54 or growth-arrested and DNA damage-inducible gene 153 (Gadd 153) are used to detect the DNA damage. The host cell reactivation (HCR) assay is a functional assay that is based on the independent transfection of cells with either damaged or undamaged plasmid DNA and allows the identification of the genes responsible for DNA repair-deficient syndromes. In this study, we combined the gadd153-luc test system and HCR assay to measure the DNA damage and DNA repair by dual luciferase assay. We used 16 DNA-damaging agents all of which were detected by a positive dual luciferase reporter test system. The sensitivity of the dual luciferase assay system to detect DNA damage/repair was same as the gadd153-luc test system and/or the HCR assay. Since DNA repair is important to maintain genetic stability, DNA damage and repair have been good biomarkers of early biological effects of DNA-damaging agents. Accordingly, the measurement of DNA repair capacity should be a valued tool in molecular epidemiology studies. The dual luciferase assay described in this study is rapid, convenient, stable and standard.

  1. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ.

    PubMed

    Sonamoto, Rie; Kii, Isao; Koike, Yuka; Sumida, Yuto; Kato-Sumida, Tomoe; Okuno, Yukiko; Hosoya, Takamitsu; Hagiwara, Masatoshi

    2015-01-01

    The protein kinase family includes attractive targets for drug development. Methods for screening of kinase inhibitors remain largely limited to in vitro catalytic assays. It has been shown that ATP-competitive inhibitors antagonize interaction between the target kinase and kinase-specific co-chaperone CDC37 in living cells. Here we show a cell-based method to screen kinase inhibitors using fusion protein of CDC37 with a mutated catalytic 19-kDa component of Oplophorus luciferase, nanoKAZ (CDC37-nanoKAZ). A dual-specificity kinase DYRK1A, an importance of which has been highlighted in Alzheimer's disease, was targeted in this study. We established 293T cells stably expressing CDC37-nanoKAZ, and analyzed interaction between CDC37-nanoKAZ and DYRK1A. We revealed that DYRK1A interacted with CDC37-nanoKAZ. Importantly, point mutations that affect autophosphorylation strengthened the interaction, thus improving signal/noise ratio of the interaction relative to non-specific binding of CDC37-nanoKAZ. This high signal/noise ratio enabled screening of chemical library that resulted in identification of a potent inhibitor of DYRK1A, named CaNDY. CaNDY induced selective degradation of DYRK1A, and inhibited catalytic activity of recombinant DYRK1A with IC50 value of 7.9 nM by competing with ATP. This method based on a mutant target kinase and a bioluminescence-eliciting co-chaperone CDC37 could be applicable to evaluation and development of inhibitors targeting other kinases. PMID:26234946

  2. A specific mechanism for nonspecific activation in reporter-gene assays.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Nguyen, Dac-Trung; Inglese, James

    2008-08-15

    The importance of bioluminescence in enabling a broad range of high-throughput screening (HTS) assay formats is evidenced by widespread use in industry and academia. Therefore, understanding the mechanisms by which reporter enzyme activity can be modulated by small molecules is critical to the interpretation of HTS data. In this Perspective, we provide evidence for stabilization of luciferase by inhibitors in cell-based luciferase reporter-gene assays resulting in the counterintuitive phenomenon of signal activation. These data were derived from our analysis of luciferase inhibitor compound structures and their prevalence in the Molecular Libraries Small Molecule Repository using 100 HTS experiments available in PubChem. Accordingly, we found an enrichment of luciferase inhibitors in luciferase reporter-gene activation assays but not in assays using other reporters. In addition, for several luciferase inhibitor chemotypes, we measured reporter stabilization and signal activation in cells that paralleled the inhibition determined using purified luciferase to provide further experimental support for these contrasting effects.

  3. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux.

    PubMed

    Farkas, Thomas; Høyer-Hansen, Maria; Jäättelä, Marja

    2009-10-01

    Macroautophagy (hereafter referred to as autophagy) has recently emerged as an attractive target for the treatment of various degenerative diseases and cancer. The discovery of effective pharmaceutical regulators of autophagy has, however, been hindered by a lack of feasible assay systems for autophagic flux. Here, we present a luciferase-based reporter assay that measures autophagic flux in real time in living cells and demonstrate that this assay system is apt for the detection of dose- and stimulus-dependent differences in autophagy kinetics. Furthermore, by screening a small molecule kinase inhibitor library containing 80 compounds we identified 12 compounds as inducers of autophagic flux. Importantly, six inhibitors of the class I phosphoinositide 3-kinase -- protein kinase B -- mammalian target of rapamycin complex 1 axis, the central signaling pathway repressing autophagy, scored as autophagy inducers adequately validating the screen. We conclude that the assay system presented here allows easy and rapid monitoring of autophagy kinetics and is suitable for screening of small molecule libraries. PMID:19652534

  4. Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase.

    PubMed

    Gimenez, Gregory; Metcalf, Peter; Paterson, Neil G; Sharpe, Miriam L

    2016-01-01

    The Japanese firefly squid Hotaru-ika (Watasenia scintillans) produces intense blue light from photophores at the tips of two arms. These photophores are densely packed with protein microcrystals that catalyse the bioluminescent reaction using ATP and the substrate coelenterazine disulfate. The squid is the only organism known to produce light using protein crystals. We extracted microcrystals from arm tip photophores and identified the constituent proteins using mass spectrometry and transcriptome libraries prepared from arm tip tissue. The crystals contain three proteins, wsluc1-3, all members of the ANL superfamily of adenylating enzymes. They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and the unrelated firefly luciferin substrate. We propose that wsluc1-3 form a complex that crystallises inside the squid photophores, and that in the crystal one or more of the proteins catalyses the production of light using coelenterazine disulfate and ATP. These results suggest that ANL superfamily enzymes have independently evolved in distant species to produce light using unrelated substrates. PMID:27279452

  5. Specific detection of peste des petits ruminants virus antibodies in sheep and goat sera by the luciferase immunoprecipitation system.

    PubMed

    Berguido, Francisco J; Bodjo, Sanne Charles; Loitsch, Angelika; Diallo, Adama

    2016-01-01

    Peste des petits ruminants (PPR) is a contagious and often fatal transboundary animal disease affecting mostly sheep, goats and wild small ruminants. This disease is endemic in most of Africa, the Middle, Near East, and large parts of Asia. The causal agent is peste des petits ruminants virus (PPRV), which belongs to the genus Morbillivirus in the family Paramyxoviridae. This genus also includes measles virus (MV), canine distemper virus (CDV) and rinderpest virus (RPV). All are closely related viruses with serological cross reactivity. In this study, we have developed a Luciferase Immunoprecipitation System (LIPS) for the rapid detection of antibodies against PPRV in serum samples and for specific differentiation from antibodies against RPV. PPR and rinderpest (RP) serum samples were assayed by PPR-LIPS and two commercially available PPR cELISA tests. The PPR-LIPS showed high sensitivity and specificity for the samples tested and showed no cross reactivity with RPV unlike the commercial PPR cELISA tests which did cross react with RPV. Based on the results shown in this study, PPR-LIPS is presented as a good candidate for the specific serosurveillance of PPR.

  6. Specific detection of peste des petits ruminants virus antibodies in sheep and goat sera by the luciferase immunoprecipitation system.

    PubMed

    Berguido, Francisco J; Bodjo, Sanne Charles; Loitsch, Angelika; Diallo, Adama

    2016-01-01

    Peste des petits ruminants (PPR) is a contagious and often fatal transboundary animal disease affecting mostly sheep, goats and wild small ruminants. This disease is endemic in most of Africa, the Middle, Near East, and large parts of Asia. The causal agent is peste des petits ruminants virus (PPRV), which belongs to the genus Morbillivirus in the family Paramyxoviridae. This genus also includes measles virus (MV), canine distemper virus (CDV) and rinderpest virus (RPV). All are closely related viruses with serological cross reactivity. In this study, we have developed a Luciferase Immunoprecipitation System (LIPS) for the rapid detection of antibodies against PPRV in serum samples and for specific differentiation from antibodies against RPV. PPR and rinderpest (RP) serum samples were assayed by PPR-LIPS and two commercially available PPR cELISA tests. The PPR-LIPS showed high sensitivity and specificity for the samples tested and showed no cross reactivity with RPV unlike the commercial PPR cELISA tests which did cross react with RPV. Based on the results shown in this study, PPR-LIPS is presented as a good candidate for the specific serosurveillance of PPR. PMID:26506137

  7. Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase

    PubMed Central

    Gimenez, Gregory; Metcalf, Peter; Paterson, Neil G.; Sharpe, Miriam L.

    2016-01-01

    The Japanese firefly squid Hotaru-ika (Watasenia scintillans) produces intense blue light from photophores at the tips of two arms. These photophores are densely packed with protein microcrystals that catalyse the bioluminescent reaction using ATP and the substrate coelenterazine disulfate. The squid is the only organism known to produce light using protein crystals. We extracted microcrystals from arm tip photophores and identified the constituent proteins using mass spectrometry and transcriptome libraries prepared from arm tip tissue. The crystals contain three proteins, wsluc1–3, all members of the ANL superfamily of adenylating enzymes. They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and the unrelated firefly luciferin substrate. We propose that wsluc1–3 form a complex that crystallises inside the squid photophores, and that in the crystal one or more of the proteins catalyses the production of light using coelenterazine disulfate and ATP. These results suggest that ANL superfamily enzymes have independently evolved in distant species to produce light using unrelated substrates. PMID:27279452

  8. Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress.

    PubMed

    Szpilewska, Hanna; Czyz, Agata; Wegrzyn, Grzegorz

    2003-11-01

    The origin and function of bioluminescence was considered a problematic question of the Charles Darwin theory. Early evolution of bacterial luminescence and its current physiological importance seem to be especially mysterious. Recently, it was proposed that stimulation of DNA repair may be a physiological role for production of light by bacterial cells. On the other hand, it was also proposed that primary role of luminescent systems could be detoxification of the deleterious oxygen derivatives. Although some previous results might suggest that this hypothesis can be correct, until now experimental evidence for such a mechanism operating in bacterial cells and having physiological importance was generally lacking. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, and ferrous ions) at certain concentrations in the culture medium, growth of Vibrio harveyi mutants luxA and luxB, but not of the mutant luxD, is severely impaired relative to wild-type bacteria. This deleterious effect of oxidants on the mutants luxA and luxB could be significantly reduced by addition of the antioxidants A-TEMPO or 40H-TEMPO. We conclude that bacterial luciferase may indeed play a physiological role in the protection of cells against oxidative stress.

  9. Development and evaluation of a pseudovirus-luciferase assay for rapid and quantitative detection of neutralizing antibodies against enterovirus 71.

    PubMed

    Wu, Xing; Mao, Qunying; Yao, Xin; Chen, Pan; Chen, Xiangmei; Shao, Jie; Gao, Fan; Yu, Xiang; Zhu, Fengcai; Li, Rongcheng; Li, Wenhui; Liang, Zhenglun; Wang, Junzhi; Lu, Fengmin

    2013-01-01

    The level of neutralizing antibodies (NtAb) induced by vaccine inoculation is an important endpoint to evaluate the efficacy of EV71 vaccine. In order to evaluate the efficacy of EV71 vaccine, here, we reported the development of a novel pseudovirus system expression firefly luciferase (PVLA) for the quantitative measurement of NtAb. We first evaluated and validated the sensitivity and specificity of the PVLA method. A total of 326 serum samples from an epidemiological survey and 144 serum specimens from 3 clinical trials of EV71 vaccines were used, and the level of each specimen's neutralizing antibodies (NtAb) was measured in parallel using both the conventional CPE-based and PVLA-based assay. Against the standard neutralization assay based on the inhibition of the cytopathic effect (CPE), the sensitivity and specificity of the PVLA method are 98% and 96%, respectively. Then, we tested the potential interference of NtAb against hepatitis A virus, Polio-I, Polio-II, and Polio-III standard antisera (WHO) and goat anti-G10/CA16 serum, the PVLA based assay showed no cross-reactivity with NtAb against other specific sera. Importantly, unlike CPE based method, no live replication-competent EV71 is used during the measurement. Taken together, PVLA is a rapid and specific assay with higher sensitivity and accuracy. It could serve as a valuable tool in assessing the efficacy of EV71 vaccines in clinical trials and disease surveillance in epidemiology studies.

  10. Establishment of Green Fluorescent Protein and Firefly Luciferase Expressing Mouse Primary Macrophages for In Vivo Bioluminescence Imaging

    PubMed Central

    Pajarinen, Jukka; Lin, Tzu-hua; Sato, Taishi; Loi, Florence; Yao, Zhenyu; Konttinen, Yrjö T.; Goodman, Stuart B.

    2015-01-01

    Macrophages play a key role in tissue homeostasis as well as in a range of pathological conditions including atherosclerosis, cancer, and autoimmunity. Many aspects of their in vivo behavior are, however, poorly understood. Bioluminescence imaging (BLI) with green fluorescent protein (GFP) and firefly luciferase (FLUC) labelled autologous reporter macrophages could potentially offer a powerful tool to study macrophage biology, but this approach has been hindered by the relative difficulty of efficient gene transfer into primary macrophages. Here we describe a straightforward method for producing large numbers of GFP/FLUC expressing mouse primary macrophages utilizing lentivirus vector, cyclosporine, and a double infection strategy. Using this method we achieved up to 60% of macrophages to express GFP with correspondingly high FLUC signal. When injected into the circulation using a mouse model of local biomaterial induced inflammation and osteolysis, macrophages were initially detectable within the lungs, followed by systemic homing to the local area of chronic inflammation in the distal femur. In addition, transduced macrophages maintained their ability to assume M1 and M2 phenotypes although the GFP/FLUC expression was altered by the polarizing signals. These reporter macrophages could prove to be valuable tools to study the role of macrophages in health and disease. PMID:26555613

  11. An investigation of the reaction kinetics of luciferase and the effect of ionizing radiation on the reaction rate.

    PubMed

    Berovic, Nikolas; Parker, David J; Smith, Michael D

    2009-04-01

    The bioluminescence produced by luciferase, a firefly enzyme, requires three substrates: luciferin, ATP and oxygen. We find that ionizing radiation, in the form of a proton beam from a cyclotron, will eliminate dissolved oxygen prior to any damage to other substrates or to the protein. The dose constant for removal of oxygen is 70 +/- 20 Gy, a much smaller dose than required to cause damage to protein. Removal of oxygen, which is initially in excess, leads to a sigmoidal response of bioluminescence to radiation dose, consistent with a Michaelis-Menten relationship to substrate concentration. When excess oxygen is exhausted, the response becomes exponential. Following the irradiation, bioluminescence recovers due to a slow leak of oxygen into the solution. This may also explain previous observations on the response of bioluminescent bacteria to radiation. We have studied the dependence of the reaction rate on enzyme and substrate concentration and propose a model for the reaction pathway consistent with this data. The light output from unirradiated samples decreases significantly with time due to product inhibition. We observe that this inhibition rate changes dramatically immediately after a sample is exposed to the beam. This sudden change of the inhibition rate is unexplained but shows that enzyme regulatory function responds to ionizing radiation at a dose level less than 0.6 Gy.

  12. Activation of HSPA1A promoter by environmental pollutants: An early and rapid response to cellular damage.

    PubMed

    Xin, Lili; Wang, Jianshu; Fan, Guoqiang; Wu, Yanhu; Guo, Sifan

    2015-05-01

    We established the HepG2-luciferase cells containing a luciferase reporter gene regulated by human HSPA1A promoter. The screening of heat shock and three typical environmental toxicants revealed differences in their capacities to activate HSPA1A promoter in HepG2-luciferase cells. After heat shock, a progressive time-dependent increase in relative luciferase activity was detected peaking at 8h of recovery. Benzo[a]pyrene, formaldehyde and sodium bisulfite induced significant time-dependent elevation of relative luciferase activity, which were positively correlated with MDA concentration, Olive tail moment and micronuclei frequency. The significant increase in relative luciferase activity was already evident after 4h of benzo[a]pyrene, 1h of formaldehyde and sodium bisulfite exposure, when no increases in cellular damage were detected by other toxicity tests. Therefore, the HepG2-luciferase cells are useful model for examining the overall cellular responses to oxidative stress and genotoxic damage, and provide a reporter system for rapid and sensitive screening of environmental pollutants. PMID:25863329

  13. Non-invasive activation of optogenetic actuators

    NASA Astrophysics Data System (ADS)

    Birkner, Elisabeth; Berglund, Ken; Klein, Marguerita E.; Augustine, George J.; Hochgeschwender, Ute

    2014-03-01

    The manipulation of genetically targeted neurons with light (optogenetics) continues to provide unprecedented avenues into studying the function of the mammalian brain. However, potential translation into the clinical arena faces a number of significant hurdles, foremost among them the need for insertion of optical fibers into the brain to deliver light to opsins expressed on neuronal membranes. In order to overcome these hardware-related problems, we have developed an alternative strategy for delivering light to opsins which does not involve fiber implants. Rather, the light is produced by a protein, luciferase, which oxidizes intravenously applied substrate, thereby emitting bioluminescence. In proof-ofprinciple studies employing a fusion protein of a light-generating luciferase to a light-sensing opsin (luminopsin), we showed that light emitted by Gaussia luciferase is indeed able to activate channelrhodopsin, allowing modulation of neuronal activity when expressed in cultured neurons. Here we assessed applicability of the concept in vivo in mice expressing luminopsins from viral vectors and from genetically engineered transgenes. The experiments demonstrate that intravenously applied substrate reaches neurons in the brain, causing the luciferase to produce bioluminescence which can be imaged in vivo, and that activation of channelrhodopsin by bioluminescence is sufficient to affect behavior. Further developments of such technology based on combining optogenetics with bioluminescence - i.e. combining lightsensing molecules with biologically produced light through luciferases - should bring optogenetics closer to clinical applications.

  14. A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome

    PubMed Central

    Coelho, Adriano C.; Oliveira, Jordana C.; Espada, Caroline R.; Reimão, Juliana Q.; Trinconi, Cristiana T.; Uliana, Silvia R. B.

    2016-01-01

    Background Leishmania braziliensis is the most prevalent species isolated from patients displaying cutaneous and muco-cutaneous leishmaniasis in South America. However, there are difficulties for studying L. braziliensis pathogenesis or response to chemotherapy in vivo due to the natural resistance of most mouse strains to infection with these parasites. The aim of this work was to develop an experimental set up that could be used to assess drug efficacy against L. braziliensis. The model was tested using miltefosine. Methodology/Principal Findings A L. braziliensis line, originally isolated from a cutaneous leishmaniasis patient, was passaged repeatedly in laboratory rodents and further genetically manipulated to express luciferase. Once collected from a culture of parasites freshly transformed from amastigotes, 106 wild type or luciferase-expressing stationary phase promastigotes were inoculated subcutaneously in young BALB/c mice or golden hamsters. In both groups, sustained cutaneous lesions developed at the site of inoculation, no spontaneous self- healing being observed 4 months post-inoculation, if left untreated. Compared to the wild type line features, no difference was noted for the luciferase-transgenic line. Infected animals were treated with 5 or 15 mg/kg/day miltefosine orally for 15 days. At the end of treatment, lesions had regressed and parasites were not detected. However, relapses were observed in animals treated with both doses of miltefosine. Conclusions/Significance Here we described experimental settings for a late-healing model of cutaneous leishmaniasis upon inoculation of a luciferase-expressing L. braziliensis line that can be applied to drug development projects. These settings allowed the monitoring of the transient efficacy of a short-term miltefosine administration. PMID:27144739

  15. Remote detection of human toxicants in real time using a human-optimized, bioluminescent bacterial luciferase gene cassette bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan; Webb, James; Ripp, Steven; Patterson, Stacey; Sayler, Gary

    2012-06-01

    Traditionally, human toxicant bioavailability screening has been forced to proceed in either a high throughput fashion using prokaryotic or lower eukaryotic targets with minimal applicability to humans, or in a more expensive, lower throughput manner that uses fluorescent or bioluminescent human cells to directly provide human bioavailability data. While these efforts are often sufficient for basic scientific research, they prevent the rapid and remote identification of potentially toxic chemicals required for modern biosecurity applications. To merge the advantages of high throughput, low cost screening regimens with the direct bioavailability assessment of human cell line use, we re-engineered the bioluminescent bacterial luciferase gene cassette to function autonomously (without exogenous stimulation) within human cells. Optimized cassette expression provides for fully endogenous bioluminescent production, allowing continuous, real time monitoring of the bioavailability and toxicology of various compounds in an automated fashion. To access the functionality of this system, two sets of bioluminescent human cells were developed. The first was programed to suspend bioluminescent production upon toxicological challenge to mimic the non-specific detection of a toxicant. The second induced bioluminescence upon detection of a specific compound to demonstrate autonomous remote target identification. These cells were capable of responding to μM concentrations of the toxicant n-decanal, and allowed for continuous monitoring of cellular health throughout the treatment process. Induced bioluminescence was generated through treatment with doxycycline and was detectable upon dosage at a 100 ng/ml concentration. These results demonstrate that leveraging autonomous bioluminescence allows for low-cost, high throughput direct assessment of toxicant bioavailability.

  16. Plasmodium falciparum transfected with ultra bright NanoLuc luciferase offers high sensitivity detection for the screening of growth and cellular trafficking inhibitors.

    PubMed

    Azevedo, Mauro F; Nie, Catherine Q; Elsworth, Brendan; Charnaud, Sarah C; Sanders, Paul R; Crabb, Brendan S; Gilson, Paul R

    2014-01-01

    Drug discovery is a key part of malaria control and eradication strategies, and could benefit from sensitive and affordable assays to quantify parasite growth and to help identify the targets of potential anti-malarial compounds. Bioluminescence, achieved through expression of exogenous luciferases, is a powerful tool that has been applied in studies of several aspects of parasite biology and high throughput growth assays. We have expressed the new reporter NanoLuc (Nluc) luciferase in Plasmodium falciparum and showed it is at least 100 times brighter than the commonly used firefly luciferase. Nluc brightness was explored as a means to achieve a growth assay with higher sensitivity and lower cost. In addition we attempted to develop other screening assays that may help interrogate libraries of inhibitory compounds for their mechanism of action. To this end parasites were engineered to express Nluc in the cytoplasm, the parasitophorous vacuole that surrounds the intraerythrocytic parasite or exported to the red blood cell cytosol. As proof-of-concept, these parasites were used to develop functional screening assays for quantifying the effects of Brefeldin A, an inhibitor of protein secretion, and Furosemide, an inhibitor of new permeation pathways used by parasites to acquire plasma nutrients. PMID:25392998

  17. Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

    PubMed Central

    Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert

    2014-01-01

    The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545

  18. Generation and characterization of bioluminescent xenograft mouse models of MLL-related acute leukemias and in vivo evaluation of luciferase-targeting siRNA nanoparticles.

    PubMed

    Fazzina, Raffaella; Lombardini, Lorenza; Mezzanotte, Laura; Roda, Aldo; Hrelia, Patrizia; Pession, Andrea; Tonelli, Roberto

    2012-08-01

    Chromosomal translocations involving the MLL gene on 11q23 present frequent abnormalities in pediatric, adult and therapy-related acute leukemias, and are generally associated with aggressive disease and poor prognosis. Here, we report bioluminescent acute leukemia xenograft mouse models of the most frequent and aggressive MLL-related acute leukemias (infant and adult MLL-AF9, MLL-ENL, MLL-AF4). Four acute leukemia cell lines carrying MLL-related translocations were stably transduced with a firefly luciferase transgene and injected intravenously into NOD/SCID mice. Leukemia progression was monitored by in vivo bioluminescence imaging (BLI). All mice developed MLL-related acute leukemia. The four MLL-related acute leukemia models showed a different course of infant and adult MLL-AF9 acute myeloid leukemia, and a rapid aggressiveness of MLL-ENL acute lymphoblastic leukemia and MLL-AF4 acute biphenotypic leukemia. Tissue analysis and RT-PCR of bone marrow, spleen and liver from the mice confirmed the BL results. To validate BLI for the detection of a therapeutic response, systemic treatment with an anti-luciferase-targeting siRNA (siLuc) complexed with cationic nanoparticles was administered to mice with MLL-AF4 acute lymphoblastic leukemia. The BLI signal showed a reduction following treatment with siLuc compared to the control mice. These mouse models present MLL-related acute leukemia evolution similar to the human counterparts. Moreover, they are non-invasive, rapid and sensitive models, suitable for the in vivo study of MLL-related acute leukemias. Finally, BLI showed in vivo luminescence down modulation obtained by systemic treatment with luciferase-targeting siRNA nanoparticle complexes, confirming that these MLL-related leukemia mouse models are optimal for the evaluation and selection of delivery systems for siRNA and other new biotechnological pharmaceuticals.

  19. Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens

    PubMed Central

    Yan, Dan; Weisshaar, Marco; Lamb, Kristen; Chung, Hokyung K; Lin, Michael Z; Plemper, Richard K

    2016-01-01

    Myxoviruses such as influenza A virus (IAV) and respiratory syncytial virus (RSV) are major human pathogens, mandating the development of novel therapeutics. To establish a high-throughput screening protocol for the simultaneous identification of pathogen- and host-targeted hit candidates against either or both pathogens, we have attempted coinfection of cells with IAV and RSV. However, viral replication kinetics were incompatible, RSV signal window was low, and an IAV-driven minireplicon reporter assay used in initial screens narrowed the host cell range and restricted to single-cycle infections. To overcome these limitations, we developed an RSV strain carrying firefly luciferase fused to an innovative universal small-molecule assisted shut-off domain, which boosted assay signal window, and a hyperactive fusion protein that synchronized IAV and RSV reporter expression kinetics and suppresses the identification of RSV entry inhibitors sensitive to a recently reported RSV pan-resistance mechanism. Combined with a replication-competent recombinant IAV strain harboring nano-luciferase, the assay performed well on a human respiratory cell line and supports multi-cycle infections. Miniaturized to 384-well format, the protocol was validated through screening of a set of the NIH Clinical Collection (NCC) in quadruplicate. These test screens demonstrated favorable assay parameters and reproducibility. Application to a LOPAC library of bioactive compounds in a proof-of-concept campaign detected licensed anti-myxovirus therapeutics, ribavirin and the neuraminidase inhibitor zanamivir, and identified two unexpected RSV-specific hit candidates, Fenretinide and the opioid receptor antagonist BNTX-7. Hits were evaluated in direct and orthogonal dose-response counterscreens using a standard recRSV reporter strain expressing renilla luciferase. PMID:26307636

  20. Discovery and Biological Characterization of 1-(1H-indol-3-yl)-9H-pyrido[3,4-b]indole as an Aryl Hydrocarbon Receptor Activator Generated by Photoactivation of Tryptophan by Sunlight

    PubMed Central

    Diani-Moore, Silvia; Ma, Yuliang; Labitzke, Erin; Tao, Hui; Warren, J. David; Anderson, Jared; Chen, Qiuying; Gross, Steven S.; Rifkind, Arleen B.

    2011-01-01

    Activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is required for AHR dependent transcriptional activation and TCDD toxicity. We previously reported that aqueous tryptophan exposed to sunlight through window glass (aTRP) contains multiple photoproducts, including the well characterized 6-formylindolo[3,2-b]carbazole (FICZ), capable of activating the AHR and inducing CYP1A and CYP1A-mediated enzyme activities. We report here the isolation from aTRP and chemical characterization and synthesis of 1-(1H-indol-3-yl)-9H-pyrido[3,4-b]indole (IPI), a compound previously identified as a natural product of marine ascidia and now shown to be a TRP photoproduct with AHR-inducing properties. IPI, FICZ and TCDD produced equieffective induction of CYP1A-mediated 7-ethoxyresorufin deethylase (EROD) activity in chick embryo primary hepatocytes and mammalian Hepa1c1c7 cells. EROD induction by IPI was markedly curtailed in AHR-defective c35 cells, supporting the AHR dependence of the IPI response. Although IPI had a higher EC50 for EROD induction than FICZ, the much larger amount of IPI than FICZ in aTRP makes IPI a prominent contributor to EROD induction in aTRP. IPI was detected in TRP-containing culture medium under ambient laboratory conditions but not in TRP-free medium, consistent with its production from TRP. Cotreatment of hepatocytes with submaximal EROD-inducing doses of IPI and FICZ or TCDD produced additive increases in EROD without synergistic or inhibitory interactions. IPI and FICZ were readily metabolized by cultured hepatocytes. In addition to increasing CYP1A4 mRNA and EROD, IPI and FICZ decreased hepatocyte phosphoenolpyruvate carboxykinase mRNA expression and glucose output, biological effects associated with TCDD metabolic dysregulation. The findings underscore a role for sunlight in generating AHR-activating bioactive molecules. PMID:21722628

  1. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence.

    PubMed

    Koksharov, Mikhail I; Ugarova, Natalia N

    2013-11-01

    Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to the WT color of firefly luciferase. We further used this compensating ability of Y35N to search for strong red-shifting mutations in the C-domain of firefly luciferase by random mutagenesis. The discovered mutation E457K substantially increased the contribution of the red emitter and caused a 12 nm red shift of the green emitter as well. E457 is highly conservative not only in beetle luciferases but also in a whole ANL superfamily of adenylating enzymes and forms a conservative structural hydrogen bond with V471. Our results suggest that the removal of this hydrogen bond only mildly affects luciferase properties and that most of the effect of E457K is caused by the introduction of positive charge. E457 forms a salt bridge with R534 in most ANL enzymes including pH-insensitive luciferases which is absent in pH-sensitive firefly luciferases. The mutant A534R shows that this salt bridge is not important for pH-sensitivity but considerably improves in vivo thermostability. Although E457 is located far from the oxyluciferin-binding site, the properties of the mutant E457K suggest that it affects color by influencing the AMP binding.

  2. A comparison of certain extracting agents for extraction of adenosine triphosphate (ATP) from microorganisms for use in the firefly luciferase ATP assay

    NASA Technical Reports Server (NTRS)

    Knust, E. A.; Chappelle, E. W.; Picciolo, G. L.

    1975-01-01

    Firefly luciferase ATP assay is used in clinical and industrial applications, such as determination of urinary infection levels, microbial susceptibility testing, and monitoring of yeast levels in beverages. Three categories of extractants were investigated for their extracting efficiency. They were ionizing organic solvents, nonionizing organic solvents, and inorganic acids. Dimethylsulfoxide and formamide represented the ionizing organic solvents, while n-butanol, chloroform, ethanol, acetone, and methylene chloride were used for the nonionizing organic solvents. Nitric acid and perchloric acid were chosen for the inorganic acids category. Pathogens were tested with each solvent. They included: Saccharomyces carlsbergensis, E. coli, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter species, Proteus mirabilis, Proteus vulgaris, Staphylococcus epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. These results are shown in graphic representations.

  3. Bioluminescent Mycobacterium aurum expressing firefly luciferase for rapid and high throughput screening of antimycobacterial drugs in vitro and in infected macrophages.

    PubMed

    Deb, D K; Srivastava, K K; Srivastava, R; Srivastava, B S

    2000-12-20

    The slow growth and highly infectious nature of Mycobacterium tuberculosis is a limiting factor in its use as test organism in high throughput screening for inhibitory compounds. To overcome these problems, use of surrogate strains and reporter genes have been considered. In this study, we have investigated the application of a fast growing nonpathogenic M. aurum expressing firefly luciferase in rapid screening of antituberculosis compounds in vitro and in infected macrophages using bioluminescence assay. The assay is based on luminescence determination using luciferin as substrate. Inhibition of bioluminescence was obtained with frontline antimycobacterial drugs like streptomycin, rifampicin, isoniazid, ethambutol, ofloxacin, and sparfloxacin at their reported MICs. Inhibition could be observed as early as 2 h in vitro and within 24 h in infected macrophages. The system can reliably be used in high throughput screening.

  4. Establishment and evaluation of a new highly metastatic tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and green fluorescent protein.

    PubMed

    Sudo, Hitomi; Tsuji, Atsushi B; Sugyo, Aya; Takuwa, Hiroyuki; Masamoto, Kazuto; Tomita, Yutaka; Suzuki, Norihiro; Imamura, Takeshi; Koizumi, Mitsuru; Saga, Tsuneo

    2016-02-01

    Breast cancer is the most common cancer in women. Although advances in diagnostic imaging for early detection, surgical techniques and chemotherapy have improved overall survival, the prognosis of patients with metastatic breast cancer remains poor. Understanding cancer cell dynamics in the metastatic process is important to develop new therapeutic strategies. Experimental animal models and imaging would be powerful tools for understanding of the molecular events of multistep process of metastasis. In the present study, to develop a new cancer cell line that is applicable to bioluminescence and fluorescence imaging, we transfected the expression vector of a green fluorescent protein ZsGreen1 into a metastatic cell line 5a-D-Luc, which is a subclone of the MDA-MB-231 breast cancer cell line expressing luciferase, and established a new tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and ZsGreen1. The 5a-D-Luc-ZsGreen cells proliferate more rapidly and have a more invasive phenotype compared with 5a-D-Luc cells following intracardiac injection. Metastasis sites were easily detected in the whole body by bioluminescence imaging and in excised tissues by ex vivo fluorescence imaging. The fluorescence of 5a-D-Luc-ZsGreen cells was not lost after formalin fixation and decalcification. It enabled us to easily evaluate tumor spread and localization at the cellular level in microscopic analysis. The strong fluorescence of 5a-D-Luc-ZsGreen cells allowed for real-time imaging of circulating tumor cells in cerebral blood vessels of live animals immediately after intracardiac injection of cells using two-photon laser-scanning microscopy. These findings suggest that the 5a-D-Luc-ZsGreen cells would be a useful tool for research on mechanisms of metastatic process in animal models. PMID:26691676

  5. Establishment and evaluation of a new highly metastatic tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and green fluorescent protein.

    PubMed

    Sudo, Hitomi; Tsuji, Atsushi B; Sugyo, Aya; Takuwa, Hiroyuki; Masamoto, Kazuto; Tomita, Yutaka; Suzuki, Norihiro; Imamura, Takeshi; Koizumi, Mitsuru; Saga, Tsuneo

    2016-02-01

    Breast cancer is the most common cancer in women. Although advances in diagnostic imaging for early detection, surgical techniques and chemotherapy have improved overall survival, the prognosis of patients with metastatic breast cancer remains poor. Understanding cancer cell dynamics in the metastatic process is important to develop new therapeutic strategies. Experimental animal models and imaging would be powerful tools for understanding of the molecular events of multistep process of metastasis. In the present study, to develop a new cancer cell line that is applicable to bioluminescence and fluorescence imaging, we transfected the expression vector of a green fluorescent protein ZsGreen1 into a metastatic cell line 5a-D-Luc, which is a subclone of the MDA-MB-231 breast cancer cell line expressing luciferase, and established a new tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and ZsGreen1. The 5a-D-Luc-ZsGreen cells proliferate more rapidly and have a more invasive phenotype compared with 5a-D-Luc cells following intracardiac injection. Metastasis sites were easily detected in the whole body by bioluminescence imaging and in excised tissues by ex vivo fluorescence imaging. The fluorescence of 5a-D-Luc-ZsGreen cells was not lost after formalin fixation and decalcification. It enabled us to easily evaluate tumor spread and localization at the cellular level in microscopic analysis. The strong fluorescence of 5a-D-Luc-ZsGreen cells allowed for real-time imaging of circulating tumor cells in cerebral blood vessels of live animals immediately after intracardiac injection of cells using two-photon laser-scanning microscopy. These findings suggest that the 5a-D-Luc-ZsGreen cells would be a useful tool for research on mechanisms of metastatic process in animal models.

  6. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    SciTech Connect

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  7. Development and Characterization of a Human Reporter Cell Line for the Assessment of Thyroid Receptor Transcriptional Activity: A Case of Organotin Endocrine Disruptors.

    PubMed

    Illés, Peter; Brtko, Július; Dvořák, Zdeněk

    2015-08-12

    We developed and characterized the human luciferase reporter cell line PZ-TR for the assessment of thyroid receptor (TR) transcriptional activity. Triiodothyronine (T3) induced luciferase activity in a dose-dependent manner, and the sensitivity of assay allowed for the detection of nanomolar T3 concentrations. The luciferase activity was induced by a maximum of (2.42 ± 0.14)-(2.73 ± 0.23)-fold after 24 h of exposure to 10 nM T3. We did not observe a nonspecific induction of luciferase activity by other steroid hormones and VDR ligands, with the exception of partial activation by retinoic acids. Cryopreservation of PZ-TR cells did not influence their functionality, responsivity to T3, or cell morphology, even after long-term cultivation. PZ-TR cells were used to evaluate the effects of organic tin compounds on TR. We found that the tributyltin and triphenyltin derivatives induced luciferase activity and that application of organotins in combination with T3 enhanced the effect of T3. These findings indicate that organic tin compounds have potential to interfere with TR-mediated regulation of gene expression and influence the physiological activity of thyroid hormones. PMID:26208032

  8. Detection of antibodies to varicella-zoster virus in recipients of the varicella vaccine by using a luciferase immunoprecipitation system assay.

    PubMed

    Cohen, Jeffrey I; Ali, Mir A; Bayat, Ahmad; Steinberg, Sharon P; Park, Hosun; Gershon, Anne A; Burbelo, Peter D

    2014-09-01

    A high-throughput test to detect varicella-zoster virus (VZV) antibodies in varicella vaccine recipients is not currently available. One of the most sensitive tests for detecting VZV antibodies after vaccination is the fluorescent antibody to membrane antigen (FAMA) test. Unfortunately, this test is labor-intensive, somewhat subjective to read, and not commercially available. Therefore, we developed a highly quantitative and high-throughput luciferase immunoprecipitation system (LIPS) assay to detect antibody to VZV glycoprotein E (gE). Tests of children who received the varicella vaccine showed that the gE LIPS assay had 90% sensitivity and 70% specificity, a viral capsid antigen enzyme-linked immunosorbent assay (ELISA) had 67% and 87% specificity, and a glycoprotein ELISA (not commercially available in the United States) had 94% sensitivity and 74% specificity compared with the FAMA test. The rates of antibody detection by the gE LIPS and glycoprotein ELISA were not statistically different. Therefore, the gE LIPS assay may be useful for detecting VZV antibodies in varicella vaccine recipients. (This study has been registered at ClinicalTrials.gov under registration no. NCT00921999.).

  9. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu

    2005-07-20

    Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells. PMID:15936841

  10. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction.

    PubMed

    Luz, Anthony L; Lagido, Cristina; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Mitochondria are a target of many drugs and environmental toxicants; however, how toxicant-induced mitochondrial dysfunction contributes to the progression of human disease remains poorly understood. To address this issue, in vivo assays capable of rapidly assessing mitochondrial function need to be developed. Here, using the model organism Caenorhabditis elegans, we describe how to rapidly assess the in vivo role of the electron transport chain, glycolysis, or fatty acid oxidation in energy metabolism following toxicant exposure, using a luciferase-expressing ATP reporter strain. Alterations in mitochondrial function subsequent to toxicant exposure are detected by depleting steady-state ATP levels with inhibitors of the mitochondrial electron transport chain, glycolysis, or fatty acid oxidation. Differential changes in ATP following short-term inhibitor exposure indicate toxicant-induced alterations at the site of inhibition. Because a microplate reader is the only major piece of equipment required, this is a highly accessible method for studying toxicant-induced mitochondrial dysfunction in vivo. © 2016 by John Wiley & Sons, Inc.

  11. Bioluminescence of a firefly pupa: involvement of a luciferase isotype in the dim glow of pupae and eggs in the Japanese firefly, Luciola lateralis.

    PubMed

    Oba, Yuichi; Furuhashi, Mana; Bessho, Manabu; Sagawa, Shingo; Ikeya, Haruyoshi; Inouye, Satoshi

    2013-05-01

    We isolated cDNA for a luciferase isotype, LlLuc2, from the ovary of the Japanese firefly, Luciola lateralis. The gene product LlLuc2 showed 59% amino acid identity with LlLuc1, which had been isolated from the adult L. lateralis lantern. Molecular phylogenetic analysis indicated that LlLuc2 is an orthologue of LcLuc2 from Luciola cruciata. The spectral maxima of the luminescence by recombinant LlLuc1 and LlLuc2 were 550 and 539 nm, respectively. Quantitative PCR analysis revealed that LlLuc1 was expressed predominantly in larvae and adults, and LlLuc2 was expressed in eggs and pupae, which glow dimly, and we found that the in vivo luminescence spectra of the egg and pupa in L. lateralis were in good agreement with the in vitro luminescence spectrum by LlLuc2. These results suggest that, in L. lateralis, LlLuc1 is responsible for the yellowish luminescence of larval and adult lanterns, and LlLuc2 is responsible for the dim, greenish glow of eggs and whole pupae. Similar results were obtained in L. cruciata.

  12. Generation of a Novel Transgenic Mouse Model for Bioluminescent Monitoring of Survivin Gene Activity in Vivo at Various Pathophysiological Processes

    PubMed Central

    Li, Fengzhi; Cheng, Qiuying; Ling, Xiang; Stablewski, Aimee; Tang, Lei; Foster, Barbara A.; Johnson, Candace S.; Rustum, Youcef M.; Porter, Carl W.

    2010-01-01

    Survival has been implicated to play an important role in various pathophysiological processes. However, because of a lack of appropriate animal models, the role and dynamic expression of survivin during pathophysiology are not well defined. We generated a human survivin gene promoter-driven luciferase transgenic mouse model (SPlucTg) so that dynamic survivin gene activity can be monitored during various pathophysiological conditions using in vivo imaging. Our results show that, consistent with survivin positivity in testis, luciferase activity in normal SPlucTg mice was detected in the testis of male mice. Furthermore, similar to the known requirement of transient expression of survivin for pathophysiological responses, we observed a transient luciferase expression in castrated SPlucTg male mice after supplement of androgen. Significantly, it was reported that survivin expression turns on during mouse liver injury and regeneration; a transient and dose-dependent luciferase expression in the mouse liver was observed after administration of carbon tetrachloride into SPlucTg mice. We further demonstrated that luciferase activity closely correlates with endogenous survivin expression. We also demonstrated that only a subset of cells expresses survivin, and its expression overlaps with the expression of several stem cell markers tested. Thus, we have generated a unique animal model for analysis of diverse pathophysiological processes and possible stem cell distribution/activity in vivo. PMID:20133811

  13. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells.

    PubMed

    Yang, Jie; Zhu, Jinyong; Chan, King Ming

    2016-08-15

    Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that affect the environment and the health of humans and wildlife. In this study, the zebrafish liver (ZFL) cell line was used in vitro to investigate two major PBDE contaminants: 2, 2', 4, 4', 5-pentabromodiphenyl ether (BDE-99) and 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47). BDE-99 was found to significantly induce cytochrome P450 (CYP1A), uridine diphosphate glucuronosyl transferase 1 family a, b (ugt1ab), 7-ethoxyresorufin-O-deethylase activity and an aryl hydrocarbon receptor (Ahr) dependent xenobiotic response element luciferase reporter system, confirming the Ahr-mediated activation of CYP1A by BDE-99. The time-course effect indicated that the role of BDE-99 in Ahr-mediated signaling is likely to be transient and highly dependent on the ability of BDE-99 to induce CYP1A and ugt1ab, and presumably its metabolism. BDE-99 also exhibited a significant dose-response effect on a developed zebrafish pregnane X receptor luciferase reporter gene system. However, the other abundant contaminant under study, BDE-47, did not exhibit the above effects. Together, these results indicated that the molecular mechanism of PBDEs induced in ZFL cells is a chemically specific process that differs between members of the PBDE family. CYP1A induction derived by BDE-99 warrants further risk assessment as the humans, wildlife and environment are exposed to a complex mixture including dioxin-like compounds and carcinogenic compounds. PMID:27343407

  14. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells.

    PubMed

    Yang, Jie; Zhu, Jinyong; Chan, King Ming

    2016-08-15

    Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that affect the environment and the health of humans and wildlife. In this study, the zebrafish liver (ZFL) cell line was used in vitro to investigate two major PBDE contaminants: 2, 2', 4, 4', 5-pentabromodiphenyl ether (BDE-99) and 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47). BDE-99 was found to significantly induce cytochrome P450 (CYP1A), uridine diphosphate glucuronosyl transferase 1 family a, b (ugt1ab), 7-ethoxyresorufin-O-deethylase activity and an aryl hydrocarbon receptor (Ahr) dependent xenobiotic response element luciferase reporter system, confirming the Ahr-mediated activation of CYP1A by BDE-99. The time-course effect indicated that the role of BDE-99 in Ahr-mediated signaling is likely to be transient and highly dependent on the ability of BDE-99 to induce CYP1A and ugt1ab, and presumably its metabolism. BDE-99 also exhibited a significant dose-response effect on a developed zebrafish pregnane X receptor luciferase reporter gene system. However, the other abundant contaminant under study, BDE-47, did not exhibit the above effects. Together, these results indicated that the molecular mechanism of PBDEs induced in ZFL cells is a chemically specific process that differs between members of the PBDE family. CYP1A induction derived by BDE-99 warrants further risk assessment as the humans, wildlife and environment are exposed to a complex mixture including dioxin-like compounds and carcinogenic compounds.

  15. Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice

    PubMed Central

    Narishige, Seira; Kuwahara, Mari; Shinozaki, Ayako; Okada, Satoshi; Ikeda, Yuko; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu

    2014-01-01

    Background and Purpose Caffeine is one of the most commonly used psychoactive substances. Circadian rhythms consist of the main suprachiasmatic nucleus (SCN) clocks and peripheral clocks. Although caffeine lengthens circadian rhythms and modifies phase changes in SCN-operated rhythms, the effects on caffeine on the phase, period and amplitude of peripheral organ clocks are not known. In addition, the role of cAMP/Ca2+ signalling in effects of caffeine on rhythm has not been fully elucidated. Experimental Approach We examined whether chronic or transient application of caffeine affects circadian period/amplitude and phase by evaluating bioluminescence rhythm in PER2::LUCIFERASE knock-in mice. Circadian rhythms were monitored in vitro using fibroblasts and ex vivo and in vivo for monitoring of peripheral clocks. Key Results Chronic application of caffeine (0.1–10 mM) increased period and amplitude in vitro. Transient application of caffeine (10 mM) near the bottom of the decreasing phase of bioluminescence rhythm caused phase advance in vitro. Caffeine (0.1%) intake caused a phase delay under light–dark or constant dark conditions, suggesting a period-lengthening effect in vivo. Caffeine (20 mg·kg−1) at daytime or at late night-time caused phase advance or delay in bioluminescence rhythm in the liver and kidney respectively. The complicated roles of cAMP/Ca2+ signalling may be involved in the caffeine-induced increase of period and amplitude in vitro. Conclusions and Implications Caffeine affects circadian rhythm in mice by lengthening the period and causing a phase shift of peripheral clocks. These results suggest that caffeine intake with food/drink may help with food-induced resetting of peripheral circadian clocks. PMID:25160990

  16. Time-restricted feeding of rapidly digested starches causes stronger entrainment of the liver clock in PER2::LUCIFERASE knock-in mice.

    PubMed

    Itokawa, Misa; Hirao, Akiko; Nagahama, Hiroki; Otsuka, Makiko; Ohtsu, Teiji; Furutani, Naoki; Hirao, Kazuko; Hatta, Tamao; Shibata, Shigenobu

    2013-02-01

    Restricting feeding to daytime can entrain circadian clocks in peripheral organs of rodents, and nutrients that rapidly increase the blood glucose level are suitable for inducing entrainment. However, dietetic issues, for example, whether or not the diet comprises heated food, have not been fully explored. We therefore hypothesized that rapidly digested starch causes stronger entrainment than slowly digested starch. The entrainment ability of the liver clock in PER2::LUCIFERASE knock-in mice, blood glucose levels, insulin levels, and acute changes in liver clock gene expression were compared between a β-starch (native)-substituted AIN-93M standard diet and an α-starch (gelatinized)-substituted diet. β-Corn and β-rice starch induced larger phase delays of the liver clock, larger blood glucose increases, and higher Per2 gene expression in the liver compared with β-potato starch. Starch granule size, as examined by electron microscopy, was larger for β-potato starch than for β-corn or β-rice starch. After heating, we obtained gelatinized α-potato, α-corn, and α-rice starch, which showed destruction of the crystal structure and a high level of gelatinization. No difference in the increase of blood glucose or insulin levels was observed between β-corn and α-corn starch, or between β-rice and α-rice starch. In contrast, α-potato starch caused higher levels of glucose and insulin compared with β-potato starch. An α-potato starch-substituted diet induced larger phase delays of the liver clock than did β-potato starch. Therefore, rapidly digested starch is appropriate for peripheral clock entrainment. Dietetic issues (heated vs unheated) are important when applying basic mouse data to humans. PMID:23399661

  17. Time-restricted feeding of rapidly digested starches causes stronger entrainment of the liver clock in PER2::LUCIFERASE knock-in mice.

    PubMed

    Itokawa, Misa; Hirao, Akiko; Nagahama, Hiroki; Otsuka, Makiko; Ohtsu, Teiji; Furutani, Naoki; Hirao, Kazuko; Hatta, Tamao; Shibata, Shigenobu

    2013-02-01

    Restricting feeding to daytime can entrain circadian clocks in peripheral organs of rodents, and nutrients that rapidly increase the blood glucose level are suitable for inducing entrainment. However, dietetic issues, for example, whether or not the diet comprises heated food, have not been fully explored. We therefore hypothesized that rapidly digested starch causes stronger entrainment than slowly digested starch. The entrainment ability of the liver clock in PER2::LUCIFERASE knock-in mice, blood glucose levels, insulin levels, and acute changes in liver clock gene expression were compared between a β-starch (native)-substituted AIN-93M standard diet and an α-starch (gelatinized)-substituted diet. β-Corn and β-rice starch induced larger phase delays of the liver clock, larger blood glucose increases, and higher Per2 gene expression in the liver compared with β-potato starch. Starch granule size, as examined by electron microscopy, was larger for β-potato starch than for β-corn or β-rice starch. After heating, we obtained gelatinized α-potato, α-corn, and α-rice starch, which showed destruction of the crystal structure and a high level of gelatinization. No difference in the increase of blood glucose or insulin levels was observed between β-corn and α-corn starch, or between β-rice and α-rice starch. In contrast, α-potato starch caused higher levels of glucose and insulin compared with β-potato starch. An α-potato starch-substituted diet induced larger phase delays of the liver clock than did β-potato starch. Therefore, rapidly digested starch is appropriate for peripheral clock entrainment. Dietetic issues (heated vs unheated) are important when applying basic mouse data to humans.

  18. Enhancer/Promoter Activities of the Long/Middle Wavelength-Sensitive Opsins of Vertebrates Mediated by Thyroid Hormone Receptor β2 and COUP-TFII

    PubMed Central

    Iida, Atsumi; Itoh, Toshio; Watanabe, Sumiko

    2013-01-01

    Cone photopigments (opsins) are crucial elements of, and the first detection module in, color vision. Individual opsins have different wavelength sensitivity patterns, and the temporal and spatial expression patterns of opsins are unique and stringently regulated. Long and middle wavelength-sensitive (L/M) opsins are of the same phylogenetic type. Although the roles of thyroid hormone/TRß2 and COUP-TFs in the transcriptional regulation of L/M opsins have been explored, the detailed mechanisms, including the target sequence in the enhancer of L/M opsins, have not been revealed. We aimed to reveal molecular mechanisms of L/M opsins in vertebrates. Using several human red opsin enhancer/promoter-luciferase reporter constructs, we found that TRß2 increased luciferase activities through the 5′-UTR and intron 3–4 region, whereas the presence of T3 affected only the intron 3–4 region-dependent luciferase activity. Furthermore, COUP-TFII suppressed intron 3–4 region-dependent luciferase activities. However, luciferase expression driven by the mouse M opsin intron 3–4 region was only slightly increased by TRß2, and rather enhanced by COUP-TFII. To determine whether these differential responses reflect differences between primates and rodents, we examined the enhancer/promoter region of the red opsin of the common marmoset. Interestingly, while TRß2 increased 5′-UTR- or intron 3–4 region-driven luciferase expression, as observed for the human red opsin, expression of the latter luciferase was not suppressed by COUP-TFII. In fact, immunostaining of common marmoset retinal sections revealed expression of COUP-TFII and red opsin in the cone cells. PMID:24058409

  19. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.

    PubMed

    Berglund, Ken; Clissold, Kara; Li, Haofang E; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E; Lu, Dongye; Barter, Joseph W; Rossi, Mark A; Augustine, George J; Yin, Henry H; Hochgeschwender, Ute

    2016-01-19

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  20. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  1. The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities.

    PubMed

    Hageman, Jurre; van Waarde, Maria A W H; Zylicz, Alicja; Walerych, Dawid; Kampinga, Harm H

    2011-04-01

    Humans contain many HSP (heat-shock protein) 70/HSPA- and HSP40/DNAJ-encoding genes and most of the corresponding proteins are localized in the cytosol. To test for possible functional differences and/or substrate specificity, we assessed the effect of overexpression of each of these HSPs on refolding of heat-denatured luciferase and on the suppression of aggregation of a non-foldable polyQ (polyglutamine)-expanded Huntingtin fragment. Overexpressed chaperones that suppressed polyQ aggregation were found not to be able to stimulate luciferase refolding. Inversely, chaperones that supported luciferase refolding were poor suppressors of polyQ aggregation. This was not related to client specificity itself, as the polyQ aggregation inhibitors often also suppressed heat-induced aggregation of luciferase. Surprisingly, the exclusively heat-inducible HSPA6 lacks both luciferase refolding and polyQ aggregation-suppressing activities. Furthermore, whereas overexpression of HSPA1A protected cells from heat-induced cell death, overexpression of HSPA6 did not. Inversely, siRNA (small interfering RNA)-mediated blocking of HSPA6 did not impair the development of heat-induced thermotolerance. Yet, HSPA6 has a functional substrate-binding domain and possesses intrinsic ATPase activity that is as high as that of the canonical HSPA1A when stimulated by J-proteins. In vitro data suggest that this may be relevant to substrate specificity, as purified HSPA6 could not chaperone heat-unfolded luciferase but was able to assist in reactivation of heat-unfolded p53. So, even within the highly sequence-conserved HSPA family, functional differentiation is larger than expected, with HSPA6 being an extreme example that may have evolved to maintain specific critical functions under conditions of severe stress.

  2. A Gaussia luciferase cell-based system to assess the infection of cell culture- and serum-derived hepatitis C virus.

    PubMed

    Koutsoudakis, George; Pérez-del-Pulgar, Sofía; González, Patricia; Crespo, Gonzalo; Navasa, Miquel; Forns, Xavier

    2012-01-01

    Robust replication of hepatitis C virus (HCV) in cell culture occurs only with the JFH-1 (genotype 2a) recombinant genome. The aim of this study was to develop a system for HCV infection quantification analysis and apply it for the selection of patient sera that may contain cell culture infectious viruses, particularly of the most clinically important genotype 1. Initially, a hepatoma cell line (designated Huh-7.5/EG(4A/4B)GLuc) was generated that stably expressed the enhanced green fluorescent protein (EGFP) fused in-frame to the secreted Gaussia luciferase via a recognition sequence of the viral NS3/4A protease. Upon HCV infection, NS3/4A cleaved at its signal and the Gaussia was secreted to the culture medium, thus facilitating the infection quantification. The Huh-7.5/EG(4A/4B)GLuc cell line provided a rapid and highly sensitive quantification of HCV infection in cell culture using JFH-1-derived viruses. Furthermore, the Huh-7.5/EG(4A/4B)GLuc cells were also shown to be a suitable host for the discovery of anti-HCV inhibitors by using known compounds that target distinct stages of the HCV life cycle; the Ź-factor of this assay ranged from 0.72 to 0.75. Additionally, eighty-six sera derived from HCV genotype 1b infected liver transplant recipients were screened for their in vitro infection and replication potential. Approximately 12% of the sera contained in vitro replication-competent viruses, as deduced by the Gaussia signal, real time quantitative PCR, immunofluorescence and capsid protein secretion. We conclude that the Huh-7.5/EG(4A/4B)GLuc cell line is an excellent system not only for the screening of in vitro replication-competent serum-derived viruses, but also for the subsequent cloning of recombinant isolates. Additionally, it can be utilized for high-throughput screening of antiviral compounds. PMID:23300900

  3. A Gaussia Luciferase Cell-Based System to Assess the Infection of Cell Culture- and Serum-Derived Hepatitis C Virus

    PubMed Central

    Koutsoudakis, George; Pérez-del-Pulgar, Sofía; González, Patricia; Crespo, Gonzalo; Navasa, Miquel; Forns, Xavier

    2012-01-01

    Robust replication of hepatitis C virus (HCV) in cell culture occurs only with the JFH-1 (genotype 2a) recombinant genome. The aim of this study was to develop a system for HCV infection quantification analysis and apply it for the selection of patient sera that may contain cell culture infectious viruses, particularly of the most clinically important genotype 1. Initially, a hepatoma cell line (designated Huh-7.5/EG(4A/4B)GLuc) was generated that stably expressed the enhanced green fluorescent protein (EGFP) fused in-frame to the secreted Gaussia luciferase via a recognition sequence of the viral NS3/4A protease. Upon HCV infection, NS3/4A cleaved at its signal and the Gaussia was secreted to the culture medium, thus facilitating the infection quantification. The Huh-7.5/EG(4A/4B)GLuc cell line provided a rapid and highly sensitive quantification of HCV infection in cell culture using JFH-1-derived viruses. Furthermore, the Huh-7.5/EG(4A/4B)GLuc cells were also shown to be a suitable host for the discovery of anti-HCV inhibitors by using known compounds that target distinct stages of the HCV life cycle; the Ź-factor of this assay ranged from 0.72 to 0.75. Additionally, eighty-six sera derived from HCV genotype 1b infected liver transplant recipients were screened for their in vitro infection and replication potential. Approximately 12% of the sera contained in vitro replication-competent viruses, as deduced by the Gaussia signal, real time quantitative PCR, immunofluorescence and capsid protein secretion. We conclude that the Huh-7.5/EG(4A/4B)GLuc cell line is an excellent system not only for the screening of in vitro replication-competent serum-derived viruses, but also for the subsequent cloning of recombinant isolates. Additionally, it can be utilized for high-throughput screening of antiviral compounds. PMID:23300900

  4. Activation of interferon-stimulated response element in huh-7 cells replicating hepatitis C virus subgenomic RNA.

    PubMed

    Pai, Mirabel; Prabhu, Ramesh; Panebra, Alfredo; Nangle, Sarah; Haque, Salima; Bastian, Frank; Garry, Robert; Agrawal, Krishna; Goodbourn, Steve; Dash, Srikanta

    2005-01-01

    Interferon-alpha (IFN(alpha)) binds to receptors on the cell surface, which initiate a cascade of signal transduction pathways that leads to transcription of selected genes. This transduction pathway involves binding of transcription factors to a common cis-acting DNA sequence called IFN-stimulated response element (ISRE). To test whether these signaling pathways are functional in hepatitis C virus (HCV)-replicating cells, we studied the regulation of ISRE-mediated transcription of firefly luciferase gene in stable replicon cell lines. A plasmid construct was prepared (pISRELuc) which contains four tandem repeats of 9-27 ISRE sequences positioned directly upstream of the herpes virus 1 thymidine kinase promoter TATA box that drives the expression of firefly luciferase. Regulation of ISRE-mediated expression of firefly luciferase by IFN(alpha) was studied by transfecting this clone into Huh-7 cells replicating HCV subgenomic HCV RNA. The significance of ISRE-mediated transcriptional activation was studied in a replicon cell line by pretreatment of cells with actinomycin D, which inhibits cellular DNA-dependent RNA transcription. IFN treatment activates ISRE-mediated expression of luciferase, indicating that this pathway is functional in Huh-7 cells. Activation of ISRE-mediated transcription of luciferase is relatively high in two Huh-7 stable cell lines replicating HCV subgenomic RNA. Inhibition of ISRE-mediated transcription of luciferase by actinomycin D also makes HCV replication totally resistant to IFN(alpha). These in vitro studies suggest that activation of IFN-inducible genes is important in mounting a successful antiviral response against HCV.

  5. Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice

    PubMed Central

    Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng

    2016-01-01

    Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850

  6. Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice.

    PubMed

    Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng

    2016-01-01

    Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850

  7. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction

    PubMed Central

    Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb. PMID:27008165

  8. DETECTION OF ANDROGENIC ACTIVITY IN EMISSIONS FROM DIESEL FUEL AND BIOMASS COMBUSTION

    EPA Science Inventory

    The present study evaluated both diesel fuel exhaust and biomass (wood) burn extracts for androgen receptor¿mediated activity using MDA-kb2 cells, which contain an androgen-responsive promoter-luciferase reporter gene construct. This assay and analytical fractionization of the sa...

  9. The examination of urine samples for pathogenic microbes by the luciferase assay for ATP. 1: The effect of the presence of fungi, fungal like bacteria and kidney cells in urine samples

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1973-01-01

    A method for accurately determining urinary tract infections in man is introduced. The method is based on adenosine triphosphate (ATP) concentration in urine samples after removing nonbacterial ATP. Adenosine triphosphate concentration is measured from the bioluminescent reaction of luciferase when mixed with ATP. An examination was also made of the effectiveness of rupturing agents on monkey kidney cells Candia albicans, a Rhodotorula species, and a Streptomyces species in determining whether these cells could contribute ATP to the bacterial ATP value of a urine sample.

  10. Phytochemicals Mediate the Expression and Activity of OCTN2 as Activators of the PPARγ/RXRα Pathway

    PubMed Central

    Luo, Jian; Qu, Jian; Yang, Rui; Ge, Meng-Xue; Mei, Yin; Zhou, Bo-Ting; Qu, Qiang

    2016-01-01

    Many phytochemicals exert activities as agonists of peroxisome proliferator-activated receptor gamma (PPARγ). This study aims to investigate whether phytochemicals are agonists of the PPARγ/RXRα pathway and modulate the target gene OCTN2. In this study, a luciferase reporter gene system was used to screen novel OCTN2 activators from 39 phytochemicals. Kaempferol, curcumin, and puerarin were found to show the significant PPRE-mediated luciferase activities (>150%) at 20 μM and showed a dose-dependent manner. Phytochemicals also elevated the mRNA and protein expression of OCTN2 in a dose-dependent fashion in colorectal cancer SW480 cells. These induction effects were gradually inhibited by PPARγ antagonist GW9662 in the luciferase reporter gene system and in SW480 cells. Moreover, the results of cell viability assay imply that three phytochemicals probably induce OCTN2 expression leading to the enhanced uptake of its substrate, oxaliplatin, thereby making cells more sensitive to oxaliplatin. The molecular docking study showed the possible binding sites of phytochemicals in PPARγ protein, and all of the docked phytochemicals fitted the same active pocket in PPARγ as troglitazone. All three phytochemicals exhibited hydrogen bonds between their polar moieties and the amino acid residues. Thus, we identified three phytochemicals as PPARγ ligands, which potentiated the expression and activity of OCTN2. PMID:27445823

  11. Phytochemicals Mediate the Expression and Activity of OCTN2 as Activators of the PPARγ/RXRα Pathway.

    PubMed

    Luo, Jian; Qu, Jian; Yang, Rui; Ge, Meng-Xue; Mei, Yin; Zhou, Bo-Ting; Qu, Qiang

    2016-01-01

    Many phytochemicals exert activities as agonists of peroxisome proliferator-activated receptor gamma (PPARγ). This study aims to investigate whether phytochemicals are agonists of the PPARγ/RXRα pathway and modulate the target gene OCTN2. In this study, a luciferase reporter gene system was used to screen novel OCTN2 activators from 39 phytochemicals. Kaempferol, curcumin, and puerarin were found to show the significant PPRE-mediated luciferase activities (>150%) at 20 μM and showed a dose-dependent manner. Phytochemicals also elevated the mRNA and protein expression of OCTN2 in a dose-dependent fashion in colorectal cancer SW480 cells. These induction effects were gradually inhibited by PPARγ antagonist GW9662 in the luciferase reporter gene system and in SW480 cells. Moreover, the results of cell viability assay imply that three phytochemicals probably induce OCTN2 expression leading to the enhanced uptake of its substrate, oxaliplatin, thereby making cells more sensitive to oxaliplatin. The molecular docking study showed the possible binding sites of phytochemicals in PPARγ protein, and all of the docked phytochemicals fitted the same active pocket in PPARγ as troglitazone. All three phytochemicals exhibited hydrogen bonds between their polar moieties and the amino acid residues. Thus, we identified three phytochemicals as PPARγ ligands, which potentiated the expression and activity of OCTN2. PMID:27445823

  12. The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90.

    PubMed

    Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X

    2016-03-01

    Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction. PMID:26982469

  13. The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90.

    PubMed

    Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X

    2016-03-01

    Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction.

  14. Effect of 60 Hz magnetic fields on the activation of hsp70 promoter in cultured INER-37 and RMA E7 cells.

    PubMed

    Heredia-Rojas, J Antonio; Rodríguez de la Fuente, Abraham Octavio; Alcocer González, Juan Manuel; Rodríguez-Flores, Laura E; Rodríguez-Padilla, Cristina; Santoyo-Stephano, Martha A; Castañeda-Garza, Esperanza; Taméz-Guerra, Reyes S

    2010-10-01

    It has been reported that 50-60 Hz magnetic fields (MF) with flux densities ranging from microtesla to millitesla are able to induce heat shock factor or heat shock proteins in various cells. In this study, we investigated the effect of 60 Hz sinusoidal MF at 8 and 80 μT on the expression of the luciferase gene contained in a plasmid labeled as electromagnetic field-plasmid (pEMF). This gene construct contains the specific sequences previously described for the induction of hsp70 expression by MF, as well as the reporter for the luciferase gene. The pEMF vector was transfected into INER-37 and RMA E7 cell lines that were later exposed to either MF or thermal shock (TS). Cells that received the MF or TS treatments and their controls were processed according to the luciferase assay system for evaluate luciferase activity. An increased luciferase gene expression was observed in INER-37 cells exposed to MF and TS compared with controls (p < 0.05), but MF exposure had no effect on the RMA E7 cell line.

  15. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress

    PubMed Central

    Santos, Efrén; Remy, Serge; Thiry, Els; Windelinckx, Saskia; Swennen, Rony; Sági, László

    2009-01-01

    Background Next-generation transgenic plants will require a more precise regulation of transgene expression, preferably under the control of native promoters. A genome-wide T-DNA tagging strategy was therefore performed for the identification and characterization of novel banana promoters. Embryogenic cell suspensions of a plantain-type banana were transformed with a promoterless, codon-optimized luciferase (luc+) gene and low temperature-responsive luciferase activation was monitored in real time. Results Around 16,000 transgenic cell colonies were screened for baseline luciferase activity at room temperature 2 months after transformation. After discarding positive colonies, cultures were re-screened in real-time at 26°C followed by a gradual decrease to 8°C. The baseline activation frequency was 0.98%, while the frequency of low temperature-responsive luciferase activity was 0.61% in the same population of cell cultures. Transgenic colonies with luciferase activity responsive to low temperature were regenerated to plantlets and luciferase expression patterns monitored during different regeneration stages. Twenty four banana DNA sequences flanking the right T-DNA borders in seven independent lines were cloned via PCR walking. RT-PCR analysis in one line containing five inserts allowed the identification of the sequence that had activated luciferase expression under low temperature stress in a developmentally regulated manner. This activating sequence was fused to the uidA reporter gene and back-transformed into a commercial dessert banana cultivar, in which its original expression pattern was confirmed. Conclusion This promoter tagging and real-time screening platform proved valuable for the identification of novel promoters and genes in banana and for monitoring expression patterns throughout in vitro development and low temperature treatment. Combination of PCR walking techniques was efficient for the isolation of candidate promoters even in a multicopy T

  16. Activities.

    ERIC Educational Resources Information Center

    Kincaid, Charlene; And Others

    1993-01-01

    Presents an activity in which students collect and organize data from a real-world simulation of the scientific concept of half life. Students collect data using a marble sifter, analyze the data using a graphing calculator, and determine an appropriate mathematical model. Includes reproducible worksheets. (MDH)

  17. Activities.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1982

    1982-01-01

    The material presented is designed to help students explore geometric patterns involving Fibonnaci numbers and the golden ratio, and to aid in review of basic geometry skills. Worksheet masters intended for duplication are provided. Suggestions are made of possible classroom extensions to the initial activities. (MP)

  18. CHEMICALLY ACTIVATED LUCIFASE GENE EXPRESSION (CALUX) CELL BIOASSAY ANALYSIS FOR THE ESTIMATION OF DIOXIN-LIKE ACTIVITIY: CRITICAL PARAMETERS OF THE CALUX PROCEDURE THAT IMPACT ASSAY RESULTS

    EPA Science Inventory

    The Chemically Activated Luciferase gene expression (CALUX) in vitro cell bioassay is an emerging bioanalytical tool that is increasingly being used for the screening and relative quantification of dioxins and dioxin-like compounds. Since CALUX analyses provide a biological respo...

  19. Phytol directly activates peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) and regulates gene expression involved in lipid metabolism in PPAR{alpha}-expressing HepG2 hepatocytes

    SciTech Connect

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo . E-mail: fat@kais.kyoto-u.ac.jp

    2005-11-18

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPAR{alpha}-specific activator. Phytol induced the increase in PPAR{alpha}-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPAR{alpha}. Moreover, the addition of phytol upregulated the expression of PPAR{alpha}-target genes at both mRNA and protein levels in PPAR{alpha}-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPAR{alpha} ligand and that it stimulates the expression of PPAR{alpha}-target genes in intact cells. Because PPAR{alpha} activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism.

  20. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  1. A NOVEL CELL LINE THAT STABLY EXPRESSES AN ANDROGEN RESPONSIVE LUCIFERASE REPORTER FOR THE DETECTION OF ANDROGEN RECEPTOR (AR) AGONIST AND ANTAGONISTS

    EPA Science Inventory

    The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...

  2. Survival and Activity of lux-Marked Aeromonas salmonicida in Seawater

    PubMed Central

    Ferguson, Y.; Glover, L. A.; McGillivray, D. M.; Prosser, J. I.

    1995-01-01

    The fish pathogen Aeromonas salmonicida was chromosomally marked with genes encoding bacterial luciferase, luxAB, isolated from Vibrio fischeri, resulting in constitutive luciferase production. During exponential growth in liquid batch culture, luminescence was directly proportional to biomass concentration, and luminometry provided a lower detection limit of approximately 10(sup3) cells ml(sup-1), 1 order of magnitude more sensitive than enzyme-linked immunosorbent assay detection. In sterile seawater at 4(deg)C, lux-marked A. salmonicida entered a dormant, nonculturable state and population activity decreased rapidly. The activity per viable cell, however, increased by day 4, indicating that a proportion of the population remained active and culturable. Putative dormant cells were not resuscitated after the addition of a range of substrates. PMID:16535133

  3. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates.

    PubMed

    Dragulescu-Andrasi, Anca; Liang, Gaolin; Rao, Jianghong

    2009-08-19

    Furin, a proprotein convertases family endoprotease, processes numerous physiological substrates and is overexpressed in cancer and inflammatory conditions. Noninvasive imaging of furin activity will offer a valuable tool to probe furin function over the course of tumor growth and migration in the same animals in real time and directly assess the inhibition efficacy of drugs in vivo. Here, we report successful bioluminescence imaging of furin activity in xenografted MBA-MB-468 breast cancer tumors in mice with bioluminogenic probes. The probes are conjugates of furin substrate, a consensus amino acid motif R-X-K/R-R (X, any amino acid), with the firefly luciferase substrate D-aminoluciferin. In the presence of the luciferase reporter, the probes are unable to produce bioluminescent emission without furin activation. Blocking experiments with a furin inhibitor and control experiments with a scrambled probe showed that the bioluminescence emission in the presence of firefly luciferase is furin-dependent and specific. After furin activation, a 30-fold increase in the bioluminescent emission was observed in vitro, and on average, a 7-8-fold contrast between the probe and control was seen in the same tumor xenografts in mice. Direct imaging of furin activity may facilitate the study of furin function in tumorigenicity and the discovery of new drugs for furin-targeted cancer therapy.

  4. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  5. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  6. A combined luciferase-expressing Leishmania imaging/RT-qPCR assay provides new insights into the sequential bilateral processes deployed in the ear pinna of C57BL/6 mice.

    PubMed

    Giraud, Emilie; Lecoeur, Hervé; Rouault, Eline; Goyard, Sophie; Milon, Geneviève; Lang, Thierry

    2014-02-01

    Leishmania/L. major was identified as the etiological agent of human localized cutaneous leishmaniasis. L. major metacyclic promastigotes/MP - the infectious form transmitted by sand flies - were enriched from axenically-derived cultures and inoculated into the dermis of mice (10(3) or 10(4) luciferase-expressing L. major MP inoculated into the C57BL/6 mouse ear pinna). Quantitative readout assays were then combined with imaging of this L. major-hosting skin site and established i) that a specific period of time - depending upon the L. major load used for the inoculation - is required for the L. major-hosting ear pinna to be continuously populated by a balanced population of functional regulatory and effector T lymphocytes, and that ii) this balance coincides with persisting low numbers of amastigotes in more or less rapidly healing skin. This approach also established that, whatever the MP inoculum load delivered to the primary site, the immune processes that reduce the L. major amastigote population also account for concomitant immunity, namely remodelling of the secondary site - where 10(4) MP were delivered - as a clinically silent niche hosting a small L. major population.

  7. SUMO-specific protease 1 modulates cadmium-augmented transcriptional activity of androgen receptor (AR) by reversing AR SUMOylation.

    PubMed

    Wu, Ruiqin; Cui, Yaxiong; Yuan, Xiaoyan; Yuan, Haitao; Wang, Yimei; He, Jun; Zhao, Jun; Peng, Shuangqing

    2014-09-01

    Cadmium is a potential prostate carcinogen and can mimic the effects of androgen by a mechanism that involves the hormone-binding domain of the androgen receptor (AR), which is a key transcriptional factor in prostate carcinogenesis. We focused on transcriptional activity of AR to investigate the toxicity of cadmium exposure on human prostate cell lines. Cadmium increased the proliferative index of LNCaP and the proliferative effect was obstructed significantly by AR blocking agent. In luciferase assay, cadmium activated the transcriptional activity of AR in 293T cells co-transfected with wild-type AR and an ARE (AR response elements)-luciferase reporter gene. Cadmium also increased expression of PSA, a downstream gene of AR, whereas the metal had no significant effect on AR amount. AR is regulated by multiple posttranslational modifications including SUMOylation. SUMOylated AR shows a lower transcriptional activity. SUMO-specific protease 1 (SENP1) decreases AR SUMOylation by deconjugating AR-SUMO covalent bond. We detected that cadmium increased the amount of SENP1 in a dose and time dependent manner. Knocking down of SENP1 by RNAi led to decrease of PSA expression and transcriptional activity of AR in luciferase assay. Furthermore, co-immunoprecipitation (Co-IP) results showed that SUMOylation level of AR was decreased after cadmium treatment. In conclusion, our results indicated that cadmium-induced SENP1 enhanced AR transcriptional activity by decreasing AR SUMOylation.

  8. Persistent Organic Pollutants Modify Gut Microbiota–Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation

    PubMed Central

    Zhang, Limin; Nichols, Robert G.; Correll, Jared; Murray, Iain A.; Tanaka, Naoki; Smith, Philip B.; Hubbard, Troy D.; Sebastian, Aswathy; Albert, Istvan; Hatzakis, Emmanuel; Gonzalez, Frank J.; Perdew, Gary H.

    2015-01-01

    Background Alteration of the gut microbiota through diet and environmental contaminants may disturb physiological homeostasis, leading to various diseases including obesity and type 2 diabetes. Because most exposure to environmentally persistent organic pollutants (POPs) occurs through the diet, the host gastrointestinal tract and commensal gut microbiota are likely to be exposed to POPs. Objectives We examined the effect of 2,3,7,8-tetrachlorodibenzofuran (TCDF), a persistent environmental contaminant, on gut microbiota and host metabolism, and we examined correlations between gut microbiota composition and signaling pathways. Methods Six-week-old male wild-type and Ahr–/– mice on the C57BL/6J background were treated with 24 μg/kg TCDF in the diet for 5 days. We used 16S rRNA gene sequencing, 1H nuclear magnetic resonance (NMR) metabolomics, targeted ultra-performance liquid chromatography coupled with triplequadrupole mass spectrometry, and biochemical assays to determine the microbiota compositions and the physiological and metabolic effects of TCDF. Results Dietary TCDF altered the gut microbiota by shifting the ratio of Firmicutes to Bacteroidetes. TCDF-treated mouse cecal contents were enriched with Butyrivibrio spp. but depleted in Oscillobacter spp. compared with vehicle-treated mice. These changes in the gut microbiota were associated with altered bile acid metabolism. Further, dietary TCDF inhibited the farnesoid X receptor (FXR) signaling pathway, triggered significant inflammation and host metabolic disorders as a result of activation of bacterial fermentation, and altered hepatic lipogenesis, gluconeogenesis, and glycogenolysis in an AHR-dependent manner. Conclusion These findings provide new insights into the biochemical consequences of TCDF exposure involving the alteration of the gut microbiota, modulation of nuclear receptor signaling, and disruption of host metabolism. Citation Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N, Smith PB

  9. A reversible Renilla luciferase protein complementation assay for rapid identification of protein–protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    PubMed Central

    Lund, Christian H.; Bromley, Jennifer R.; Stenbæk, Anne; Rasmussen, Randi E.; Scheller, Henrik V.; Sakuragi, Yumiko

    2015-01-01

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta. PMID:25326916

  10. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    DOE PAGES

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; Rasmussen, R. E.; Scheller, H. V.; Sakuragi, Y.

    2014-10-18

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. Wemore » tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. In conclusion, our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.« less

  11. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    SciTech Connect

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; Rasmussen, R. E.; Scheller, H. V.; Sakuragi, Y.

    2014-10-18

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. In conclusion, our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.

  12. Angiotensin II and norepinephrine activate specific calcineurin-dependent NFAT transcription factor isoforms in cardiomyocytes.

    PubMed

    Lunde, Ida G; Kvaløy, Heidi; Austbø, Bjørg; Christensen, Geir; Carlson, Cathrine R

    2011-11-01

    Norepinephrine (NE) and angiotensin II (ANG II) are primary effectors of the sympathetic adrenergic and the renin-angiotensin-aldosterone systems, mediating hypertrophic, apoptotic, and fibrotic events in the myocardium. As NE and ANG II have been shown to affect intracellular calcium in cardiomyocytes, we hypothesized that they activate the calcium-sensitive, prohypertrophic calcineurin-nuclear factor of activated T-cell (NFATc) signaling pathway. More specifically, we have investigated isoform-specific activation of NFAT in NE- and ANG II-stimulated cardiomyocytes, as it is likely that each of the four calcineurin-dependent isoforms, c1-c4, play specific roles. We have stimulated neonatal ventriculocytes from C57/B6 and NFAT-luciferase reporter mice with ANG II or NE and quantified NFAT activity by luciferase activity and phospho-immunoblotting. ANG II and NE increased calcineurin-dependent NFAT activity 2.4- and 1.9-fold, measured as luciferase activity after 24 h of stimulation, and induced protein synthesis, measured by radioactive leucine incorporation after 24 and 72 h. To optimize measurements of NFAT isoforms, we examined the specificity of NFAT antibodies on peptide arrays and by immunoblotting with designed blocking peptides. Western analyses showed that both effectors activate NFATc1 and c4, while NFATc2 activity was regulated by NE only, as measured by phospho-NFAT levels. Neither ANG II nor NE activated NFATc3. As today's main therapies for heart failure aim at antagonizing the adrenergic and renin-angiotensin-aldosterone systems, understanding their intracellular actions is of importance, and our data, through validating a method for measuring myocardial NFATs, indicate that ANG II and NE activate specific NFATc isoforms in cardiomyocytes.

  13. Activation of BmGSTd1 promoter and regulation by transcription factor Krüppel (Kr) in silkworm, Bombyx mori.

    PubMed

    Zhao, Guodong; Wang, Binbin; Liu, Yunlei; Du, Jie; Li, Bing; Chen, Yuhua; Xu, Yaxiang; Shen, Weide; Xia, Qingyou; Wei, Zhengguo

    2014-11-10

    The Glutathione S-transferases (GSTs) are a large family of multifunctional enzymes, many of which play an important role in the detoxification of endogenous and exogenous toxic substances. In this research, firstly, we measured the rutin-induced transcriptional level of BmGSTd1 gene by using real-time quantitative RT-PCR method and dual spike-in strategy. The activities of the BmGSTd1 promoter in various tissues of silkworm were measured by firefly luciferase activity and normalized by the Renilla luciferase activity. Results showed that the activity of the BmGSTd1 promoter were highest in Malpighian tubule, followed by fat body, silk gland, hemocyte, epidermis, and midgut. The essential region for basal and rutin-induced transcriptional activity was -1573 to -931bp in Malpighian tubule and fat body of silkworm. Promoter truncation analysis using a dual-luciferase reporter assay in BmN cells showed that the region -1288 to -1202bp for BmGSTd1 gene was essential for basal and rutin-induced transcriptional activity. Sequence analysis of this region revealed several potential transcriptional regulatory elements such as Bcd and Kr. The mutation of core base of Kr site demonstrated that Kr functioned positively in rutin-mediated BmGSTd1 transcription.

  14. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling

    PubMed Central

    Guo, Jinyue; Li, Fei; Qian, Shaoju; Bi, Dingren; He, Qigai; Jin, Hui; Luo, Rui; Li, Shaowen; Meng, Xianrong; Li, Zili

    2016-01-01

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling. PMID:27555521

  15. Aryl hydrocarbon receptor-mediated activity of particulate organic matter from the Paso del Norte airshed along the U.S.-Mexico border.

    PubMed Central

    Arrieta, Daniel E; Ontiveros, Cynthia C; Li, Wen-Whai; Garcia, Jose H; Denison, Michael S; McDonald, Jacob D; Burchiel, Scott W; Washburn, Barbara Shayne

    2003-01-01

    In this study, we determined the biologic activity of dichloromethane-extracted particulate matter < 10 micro m in aerodynamic diameter (PM10) obtained from filters at three sites in the Paso del Norte airshed, which includes El Paso, Texas, USA; Juarez, Chihuahua, Mexico, and Sunland Park, New Mexico, USA. The extracts were rich in polycyclic aromatic hydrocarbons (PAHs) and had significant biologic activity, measured using two in vitro assay systems: ethoxyresorufin-(O-deethylase (EROD) induction and the aryl hydrocarbon-receptor luciferase reporter system. In most cases, both EROD (5.25 pmol/min/mg protein) and luciferase activities (994 relative light units/mg) were highest in extracts from the Advance site located in an industrial neighborhood in Juarez. These values represented 58% and 55%, respectively, of induction associated with 1 micro M ss-naphthoflavone exposures. In contrast, little activity was observed at the Northeast Clinic site in El Paso, the reference site. In most cases, luciferase and EROD activity from extracts collected from the Tillman Health Center site, situated in downtown El Paso, fell between those observed at the other two sites. Overall, a statistically significant correlation existed between PM10 and EROD and luciferase activities. Chemical analysis of extracts collected from the Advance site demonstrated that concentrations of most PAHs were higher than those reported in most other metropolitan areas in the United States. Calculations made with these data suggest a cancer risk of 5-12 cases per 100,000 people. This risk estimate, as well as comparisons with the work of other investigators, raises concern regarding the potential for adverse health effects to the residents of this airshed. Further work is needed to understand the sources, exposure, and effects of PM10 and particulate organic material in the Paso del Norte airshed. PMID:12896850

  16. Peritonitis activates transcription of the human prolactin locus in myeloid cells in a humanized transgenic rat model.

    PubMed

    Semprini, Sabrina; McNamara, Anne V; Awais, Raheela; Featherstone, Karen; Harper, Claire V; McNeilly, Judith R; Patist, Amanda; Rossi, Adriano G; Dransfield, Ian; McNeilly, Alan S; Davis, Julian R E; White, Michael R H; Mullins, John J

    2012-06-01

    Prolactin (PRL) is mainly expressed in the pituitary in rodents, whereas in humans, expression is observed in many extrapituitary sites, including lymphocytes. Due to the lack of adequate experimental models, the function of locally produced PRL in the immune system is largely unknown. Using transgenic rats that express luciferase under the control of extensive human PRL regulatory regions, we characterized immune cell responses to thioglycollate (TG)-induced peritonitis. Resident populations of myeloid cells in the peritoneal cavity of untreated rats expressed barely detectable levels of luciferase. In contrast, during TG-induced peritonitis, cell-specific expression in both neutrophils and monocytes/macrophages in peritoneal exudates increased dramatically. Elevated luciferase expression was also detectable in peripheral blood and bone marrow CD11b(+) cells. Ex vivo stimulation of primary myeloid cells showed activation of the human extrapituitary promoter by TNF-α, lipopolysaccharide, or TG. These findings were confirmed in human peripheral blood monocytes, showing that the transgenic rat provided a faithful model for the human gene. Thus, the resolution of an inflammatory response is associated with dramatic activation of the PRL gene promoter in the myeloid lineage.

  17. CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1.

    PubMed

    Yang, Pei-Ming; Lin, Pei-Jie; Chen, Ching-Chow

    2012-04-01

    CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1. PMID:22419072

  18. Cholesterol synthesis inhibitor RO 48-8071 suppresses transcriptional activity of human estrogen and androgen receptor.

    PubMed

    Mafuvadze, Benford; Liang, Yayun; Hyder, Salman M

    2014-10-01

    Breast cancer cells express enzymes that convert cholesterol, the synthetic precursor of steroid hormones, into estrogens and androgens, which then drive breast cancer cell proliferation. In the present study, we sought to determine whether oxidosqualene cyclase (OSC), an enzyme in the cholesterol biosynthetic pathway, may be targeted to suppress progression of breast cancer cells. In previous studies, we showed that the OSC inhibitor RO 48-8071 (RO) may be a ligand which could potentially be used to control the progression of estrogen receptor-α (ERα)-positive breast cancer cells. Herein, we showed, by real-time PCR analysis of mRNA from human breast cancer biopsies, no significant differences in OSC expression at various stages of disease, or between tumor and normal mammary cells. Since the growth of hormone-responsive tumors is ERα-dependent, we conducted experiments to determine whether RO affects ERα. Using mammalian cells engineered to express human ERα or ERβ protein, together with an ER-responsive luciferase promoter, we found that RO dose-dependently inhibited 17β-estradiol (E2)-induced ERα responsive luciferase activity (IC50 value, ~10 µM), under conditions that were non-toxic to the cells. RO was less effective against ERβ-induced luciferase activity. Androgen receptor (AR) mediated transcriptional activity was also reduced by RO. Notably, while ERα activity was reduced by atorvastatin, the HMG-CoA reductase inhibitor did not influence AR activity, showing that RO possesses broader antitumor properties. Treatment of human BT-474 breast cancer cells with RO reduced levels of estrogen-induced PR protein, confirming that RO blocks ERα activity in tumor cells. Our findings demonstrate that an important means by which RO suppresses hormone-dependent growth of breast cancer cells is through its ability to arrest the biological activity of ERα. This warrants further investigation of RO as a potential therapeutic agent for use against hormone

  19. Luminescence-based in vivo monitoring of NF-κB activity through a gene delivery approach

    PubMed Central

    2013-01-01

    Background Monitoring activity of specific signaling pathways in vivo is challenging and requires highly sensitive methods to detect dynamic perturbations in whole organisms. Results In vivo gene delivery of a luciferase reporter followed by bioluminiscence imaging allows measuring NF-κB activity in mice liver and lungs. Conclusions This protocol allows a direct measure of NF-κB activity through quantification of bioluminescence signal, demonstrating its accuracy and sensitivity in different animal models and experimental conditions. Variants could be also applied for the analysis of NF-κB activity in different tissues or for studying other signaling pathways in vivo. PMID:23517552

  20. Multicolor Imaging of Bifacial Activities of Estrogens.

    PubMed

    Kim, Sung-Bae; Umezawa, Yoshio

    2016-01-01

    The present protocol introduces multicolor imaging of bifacial activities of an estrogen. For the multicolor imaging, the authors fabricated two single-chain probes emitting green or red bioluminescence (named Simer-G and -R, respectively) from click beetle luciferase (CBLuc) green and red: Simer-R consists of the ligand binding domain of estrogen receptor (ER LBD) and the Src homology-2 (SH2) domain of Src, which are sandwiched between split-CBLuc red (CBLuc-R). On the other hand, Simer-G emitting red light consists of the ER LBD and a common consensus sequence of coactivators (LXXLL motif), which are inserted between split-CBLuc green (CBLuc-G). This probe set creates fingerprinting spectra from the characteristic green and red bioluminescence in response to agonistic and antagonistic activities of a ligand of interest. The present protocol further provides a unique methodology to calculate characteristic estrogenicity scores of various ligands from the spectra. PMID:27424902

  1. Active components with inhibitory activities on IFN-γ/STAT1 and IL-6/STAT3 signaling pathways from Caulis Trachelospermi.

    PubMed

    Liu, Xiao-Ting; Wang, Zhe-Xing; Yang, Yu; Wang, Lin; Sun, Ruo-Feng; Zhao, Yi-Min; Yu, Neng-Jiang

    2014-01-01

    Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1) with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3) with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1) and nortrachelogenin 4-O-β-D-glucopyranoside (2), together with six known compounds. The lignan compounds 1-4 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively. PMID:25100250

  2. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line

    SciTech Connect

    Zhang Rong; Sun Jianguo; Ma Liping; Wu Xiaolan; Pan Guoyu; Hao Haiping; Zhou Fang; Jiye, A; Liu Changhui; Ai Hua; Shang Lili; Gao Haiyan; Peng Ying; Wan Ping; Wu Hui; Wang Guangji

    2011-04-01

    Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components from Danshen. The major aim of our present study was to investigate the induction potential of these four main components of tanshinones (TIIA, CTS, TI, and DHTI) on the expression of CYP1A1 and CYP1A2 in HepG2 cells. Our results showed that all of these four tanshinones caused a significant time- and concentration-dependent increase in the amount of CYP1A1/2 expression in HepG2 cells. These induction effects were further characterized through transcriptional regulation: the induction of CYP1A1/2 mRNA level by tanshinones was completely blocked by the transcription inhibitor actinomycin D; the expression of CYP1A1/2 heterogeneous nuclear RNA was induced by tanshinone treatment; and CYP1A1 mRNA stability was not influenced by these tanshinones. Interestingly, tanshinones plus B[a]P produced additive/synergistic effect on CYP1A1/2 induction. In addition, the tanshinone-induced CYP1A1/2 expression was abolished by the aryl hydrocarbon receptor (AhR) antagonist resveratrol, suggesting an AhR dependent transcription mechanism. In the reporter gene assay, while TI and DHTI significantly induced AhR-dependent luciferase activity, TIIA and CTS failed to induce this activity. Collectively, the tanshinones could induce CYP1A1 and CYP1A2 expression through transcriptional activation mechanism and exert differential effects on activating AhR in HepG2 cells. Our findings suggest that rational administration of tanshinones should be considered with respect to their effect on AhR and CYP1A1/2 expression.

  3. In vivo chaperone activity of heat shock protein 70 and thermotolerance.

    PubMed

    Nollen, E A; Brunsting, J F; Roelofsen, H; Weber, L A; Kampinga, H H

    1999-03-01

    Heat shock protein 70 (Hsp70) is thought to play a critical role in the thermotolerance of mammalian cells, presumably due to its chaperone activity. We examined the chaperone activity and cellular heat resistance of a clonal cell line in which overexpression of Hsp70 was transiently induced by means of the tetracycline-regulated gene expression system. This single-cell-line approach circumvents problems associated with clonal variation and indirect effects resulting from constitutive overexpression of Hsp70. The in vivo chaperone function of Hsp70 was quantitatively investigated by using firefly luciferase as a reporter protein. Chaperone activity was found to strictly correlate to the level of Hsp70 expression. In addition, we observed an Hsp70 concentration dependent increase in the cellular heat resistance. In order to study the contribution of the Hsp70 chaperone activity, heat resistance of cells that expressed tetracycline-regulated Hsp70 was compared to thermotolerant cells expressing the same level of Hsp70 plus all of the other heat shock proteins. Overexpression of Hsp70 alone was sufficient to induce a similar recovery of cytoplasmic luciferase activity, as does expression of all Hsps in thermotolerant cells. However, when the luciferase reporter protein was directed to the nucleus, expression of Hsp70 alone was not sufficient to yield the level of recovery observed in thermotolerant cells. In addition, cells expressing the same level of Hsp70 found in heat-induced thermotolerant cells containing additional Hsps showed increased resistance to thermal killing but were more sensitive than thermotolerant cells. These results suggest that the inducible form of Hsp70 contributes to the stress-tolerant state by increasing the chaperone activity in the cytoplasm. However, its expression alone is apparently insufficient for protection of other subcellular compartments to yield clonal heat resistance to the level observed in thermotolerant cells.

  4. Flame Retardant BDE-47 Effectively Activates Nuclear Receptor CAR in Human Primary Hepatocytes

    PubMed Central

    Sueyoshi, Tatsuya

    2014-01-01

    Polybrominated diphenyl ether BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether) is a thyroid hormone disruptor in mice; hepatic induction of various metabolic enzymes and transporters has been suggested as the mechanism for this disruption. Utilizing Car −/− and Pxr −/− mice as well as human primary hepatocytes, here we have demonstrated that BDE-47 activated both mouse and human nuclear receptor constitutive activated/androstane receptor (CAR). In mouse livers, CAR, not PXR, was responsible for Cyp2b10 mRNA induction by BDE-47. In human primary hepatocytes, BDE-47 was able to induce translocation of YFP-tagged human CAR from the cytoplasm to the nucleus andCYP2B6 and CYP3A4 mRNAs expressions. BDE-47 activated human CAR in a manner akin to the human CAR ligand CITCO (6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) in luciferase-reporter assays using Huh-7 cells. In contrast, mouse CAR was not potently activated by BDE-47 in the same reporter assays. Furthermore, human pregnane X receptor (PXR) was effectively activated by BDE-47 while mouse PXR was weakly activated in luciferase-reporter assays. Our results indicate that BDE-47 induces CYP genes through activation of human CAR in addition to the previously identified pathway through human PXR. PMID:24218150

  5. Estrogenic and antiestrogenic activities of phytoalexins from red kidney bean (Phaseolus vulgaris L.).

    PubMed

    Boué, Stephen M; Burow, Matthew E; Wiese, Thomas E; Shih, Betty Y; Elliott, Steven; Carter-Wientjes, Carol H; McLachlan, John A; Bhatnagar, Deepak

    2011-01-12

    Legumes are the predominant source of isoflavones considered to be phytoestrogens that mimic the hormone 17β-estradiol (E2). Due to the risks associated with hormone replacement therapy, there is a growing need for alternative sources of estrogenic formulations for the treatment of menopausal symptoms. Legume phytoalexins (induced isoflavones) are produced under conditions of stress that include insect damage, wounding, or application of elicitors. The estrogenic and antiestrogenic activities of methanolic extracts obtained from red kidney bean treated with the fungus Aspergillus sojae were compared with those of untreated controls using an estrogen responsive element-based (ERE) luciferase reporter assay. A. sojae-treated red kidney bean extracts displayed both estrogenic and antiestrogenic activities. Analysis of elicitor-treated red kidney bean extracts showed that A. sojae treatments achieved maximal levels of kievitone at 1199 ± 101 μg/g and phaseollin at 227.8 ± 44 μg/g. The phytoalexins kievitone and phaseollin were isolated from A. sojae-treated red kidney bean extracts and analyzed for estrogenic activity using ERα and ERβ binding, ERE luciferase assays in MCF-7 and HEK 293 cells, and MCF-7 cell proliferation. Kievitone showed the highest relative binding affinity to ERα with kievitone (0.48%) > phaseollin (0.21%), and phaseollin showed the highest relative binding affinity to ERβ with phaseollin (0.53%) > kievitone (0.42%). In an ERE luciferase assay in MCF-7 cells, kievitone displayed high ER transactivation at 10 μM; phaseollin displayed low ER transactivation. Both kievitone and phaseollin stimulated MCF-7 cell proliferation, with kievitone displaying agonist activity between 0.1 and 10 μM. Cotransfection reporter assays performed in HEK 293 demonstrated that phaseollin selectively increased ERE transcriptional activity of ERβ and kievitone selectively increased ERE transcriptional activity of ERα. Although phaseollin displayed attenuation

  6. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    PubMed

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  7. AroER Tri-Screen Is a Biologically Relevant Assay for Endocrine Disrupting Chemicals Modulating the Activity of Aromatase and/or the Estrogen Receptor

    PubMed Central

    Chen, Shiuan; Zhou, Dujin; Hsin, Li-Yu; Kanaya, Noriko; Wong, Cynthie; Yip, Richard; Sakamuru, Srilatha; Xia, Menghang; Yuan, Yate-Ching; Witt, Kristine; Teng, Christina

    2014-01-01

    Endocrine disrupting chemicals (EDCs) interfere with the biosynthesis, metabolism, and functions of steroid hormones, including estrogens and androgens. Aromatase enzyme converts androgen to estrogen. Thus, EDCs against aromatase significantly impact estrogen- and/or androgen-dependent functions, including the development of breast cancer. The current study aimed to develop a biologically relevant cell-based high-throughput screening assay to identify EDCs that act as aromatase inhibitors (AIs), estrogen receptor (ER) agonists, and/or ER antagonists. The AroER tri-screen assay was developed by stable transfection of ER-positive, aromatase-expressing MCF-7 breast cancer cells with an estrogen responsive element (ERE) driven luciferase reporter plasmid. The AroER tri-screen can identify: estrogenic EDCs, which increase luciferase signal without 17β-estradiol (E2); anti-estrogenic EDCs, which inhibit the E2-induced luciferase signal; and AI-like EDCs, which suppress a testosterone-induced luciferase signal. The assay was first optimized in a 96-well plate format and then miniaturized into a 1536-well plate format. The AroER tri-screen was demonstrated to be suitable for high-throughput screening in the 1536-well plate format, with a 6.9-fold signal-to-background ratio, a 5.4% coefficient of variation, and a screening window coefficient (Z-factor) of 0.78. The assay suggested that bisphenol A (BPA) functions mainly as an ER agonist. Results from screening the 446 drugs in the National Institutes of Health Clinical Collection revealed 106 compounds that modulated ER and/or aromatase activities. Among these, two AIs (bifonazole and oxiconazole) and one ER agonist (paroxetine) were confirmed through alternative aromatase and ER activity assays. These findings indicate that AroER tri-screen is a useful high-throughput screening system for identifying ER ligands and aromatase-inhibiting chemicals. PMID:24496634

  8. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.

  9. Nrf2 activity as a potential biomarker for the pan-epigenetic anticancer agent, RRx-001.

    PubMed

    Ning, Shoucheng; Sekar, Thillai Veerapazham; Scicinski, Jan; Oronsky, Bryan; Peehl, Donna M; Knox, Susan J; Paulmurugan, Ramasamy

    2015-08-28

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulatory transcription factor that plays an important role in the antioxidant response pathway against anticancer drug-induced cytotoxic effects. RRx-001 is a new anticancer agent that generates reactive oxygen and nitrogen species, and leads to epigenetic alterations in cancer cells. Here we report the RRx-001 mediated nuclear translocation of Nrf2 and the activation of expression of its downstream enzymes HO-1 and NQO1 in tumor cells. Inhibition of intrinsic Nrf2 expression by Nrf2-specific siRNA increased cell sensitivity to RRx-001. Molecular imaging of tumor cells co-expressing pARE-Firefly luciferase and pCMV-Renilla luciferase-mRFP in vitro and in vivo in mice revealed that RRx-001 significantly increased ARE-FLUC signal in cells in a dose- and time-dependent manner, suggesting that RRx-001 is an effective activator of the Nrf2-ARE signaling pathway. The pre-treatment level of ARE-FLUC signal in cells, reflecting basal activity of Nrf2, negatively correlated with the tumor response to RRx-001. The results support the concept that RRx-001 activates Nrf2-ARE antioxidant signaling pathways in tumor cells. Hence measurement of Nrf2-mediated activation of downstream target genes through ARE signaling may constitute a useful molecular biomarker for the early prediction of response to RRx-001 treatment, and thereby guide therapeutic decision-making.

  10. Polyacetylenes from Notopterygium incisum–New Selective Partial Agonists of Peroxisome Proliferator-Activated Receptor-Gamma

    PubMed Central

    Liu, Xin; Noha, Stefan M.; Malainer, Clemens; Kramer, Matthias P.; Cocic, Amina; Kunert, Olaf; Schinkovitz, Andreas; Heiss, Elke H.; Schuster, Daniela

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements. PMID:23630612

  11. Bakuchiol Is a Phenolic Isoprenoid with Novel Enantiomer-selective Anti-influenza A Virus Activity Involving Nrf2 Activation*

    PubMed Central

    Shoji, Masaki; Arakaki, Yumie; Esumi, Tomoyuki; Kohnomi, Shuntaro; Yamamoto, Chihiro; Suzuki, Yutaka; Takahashi, Etsuhisa; Konishi, Shiro; Kido, Hiroshi; Kuzuhara, Takashi

    2015-01-01

    Influenza represents a substantial threat to human health and requires novel therapeutic approaches. Bakuchiol is a phenolic isoprenoid compound present in Babchi (Psoralea corylifolia L.) seeds. We examined the anti-influenza viral activity of synthetic bakuchiol using Madin-Darby canine kidney cells. We found that the naturally occurring form, (+)-(S)-bakuchiol, and its enantiomer, (−)-(R)-bakuchiol, inhibited influenza A viral infection and growth and reduced the expression of viral mRNAs and proteins in these cells. Furthermore, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-β and myxovirus-resistant protein 1. Interestingly, (+)-(S)-bakuchiol had greater efficacy than (−)-(R)-bakuchiol, indicating that chirality influenced anti-influenza virus activity. In vitro studies indicated that bakuchiol did not strongly inhibit the activities of influenza surface proteins or the M2 ion channel, expressed in Chinese hamster ovary cells. Analysis of luciferase reporter assay data unexpectedly indicated that bakuchiol may induce some host cell factor(s) that inhibited firefly and Renilla luciferases. Next generation sequencing and KeyMolnet analysis of influenza A virus-infected and non-infected cells exposed to bakuchiol revealed activation of transcriptional regulation by nuclear factor erythroid 2-related factor (Nrf), and an Nrf2 reporter assay showed that (+)-(S)-bakuchiol activated Nrf2. Additionally, (+)-(S)-bakuchiol up-regulated the mRNA levels of two Nrf2-induced genes, NAD(P)H quinone oxidoreductase 1 and glutathione S-transferase A3. These findings demonstrated that bakuchiol had enantiomer-selective anti-influenza viral activity involving a novel effect on the host cell oxidative stress response. PMID:26446794

  12. Propionate induces the bovine cytosolic phosphoenolpyruvate carboxykinase promoter activity.

    PubMed

    Zhang, Qian; Koser, Stephanie L; Donkin, Shawn S

    2016-08-01

    Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a critical enzyme within the metabolic networks for gluconeogenesis, hepatic energy metabolism, and tricarboxylic acid cycle function, and is controlled by several transcription factors including hepatic nuclear factor 4α (HNF4α). The primary objective of the present study was to determine whether propionate regulates bovine PCK1 transcription. The second objective was to determine the action of cyclic AMP (cAMP), glucocorticoids, and insulin, hormonal cues known to modulate glucose metabolism, on bovine PCK1 transcriptional activity. The proximal promoter of the bovine PCK1 gene was ligated to a Firefly luciferase reporter and transfected into H4IIE hepatoma cells. Cells were exposed to treatments for 23 h and luciferase activity was determined in cell lysates. Activity of the PCK1 promoter was linearly induced by propionate, and maximally increased 7-fold with 2.5 mM propionate, which was not muted by 100 nM insulin. Activity of the PCK1 promoter was increased 1-fold by either 1.0 mM cAMP or 5.0µM dexamethasone, and 2.2-fold by their combination. Induction by cAMP and dexamethasone was repressed 50% by 100 nM insulin. Propionate, cAMP, and dexamethasone acted synergistically to induce the PCK1 promoter activity. Propionate-responsive regions, identified by 5' deletion analysis, were located between -1,238 and -409 bp and between -85 and +221 bp. Deletions of the core sequences of the 2 putative HNF4α sites decreased the responsiveness to propionate by approximately 40%. These data indicate that propionate regulates its own metabolism through transcriptional stimulation of the bovine PCK1 gene. This induction is mediated, in part, by the 2 putative HNF4α binding sites in the bovine PCK1 promoter. PMID:27289145

  13. Retinoic acid receptors and GATA transcription factors activate the transcription of the human lecithin:retinol acyltransferase gene

    PubMed Central

    Cai, Kun; Gudas, Lorraine J.

    2008-01-01

    Lecithin retinol acyltransferase (LRAT) catalyzes the esterification of retinol (vitamin A). Retinyl esters and LRAT protein levels are reduced in many types of cancer cells. We present data that both the LRAT and retinoic acid receptor β2 (RARβ2) mRNA levels in the human prostate cancer cell line PC-3 are lower than those in cultured normal human prostate epithelial cells (PrEC). The activity of the human LRAT promoter (2.0 kb) driving a luciferase reporter gene in PC-3 cells is less than 40% of that in PrEC cells. Retinoic acid (RA) treatment increased this LRAT promoter-luciferase activity in PrEC cells, but not in PC-3 cells. Deletion of various regions of the human LRAT promoter demonstrated that a 172-bp proximal promoter region is essential for LRAT transcription and confers RA responsiveness in PrEC cells. This 172-bp region, contained within the 186 bp pLRAT/luciferase construct, has five putative GATA binding sites. Co-transfection of RARβ2 or RARγ and the transcription factor GATA-4 increased LRAT (pLRAT186) promoter activity in both PrEC and PC-3 cells. In addition, we found that both retinoic acid and retinol induced transcripts for the STRA6 gene, which encodes a membrane receptor involved in retinol (vitamin A) uptake, in PrEC cells but not in PC-3 cells. In summary, our data show that the transcriptional regulation of the human LRAT gene is aberrant in human prostate cancer cells and that GATA transcription factors are involved in the transcriptional activation of LRAT in PrEC cells. PMID:18652909

  14. Novel oxime-bearing coumarin derivatives act as potent Nrf2/ARE activators in vitro and in mouse model.

    PubMed

    Chang, Ken-Ming; Chen, Huang-Hui; Wang, Tai-Chi; Chen, I-Li; Chen, Yu-Tsen; Yang, Shyh-Chyun; Chen, Yeh-Long; Chang, Hsin-Huei; Huang, Chih-Hsiang; Chang, Jang-Yang; Shih, Chuan; Kuo, Ching-Chuan; Tzeng, Cherng-Chyi

    2015-12-01

    We have designed and synthesized certain novel oxime- and amide-bearing coumarin derivatives as nuclear factor erythroid 2 p45-related factor 2 (Nrf2) activators. The potency of these compounds was measured by antioxidant responsive element (ARE)-driven luciferase activity, level of Nrf2-related cytoprotective genes and proteins, and antioxidant activity. Among them, (Z)-3-(2-(hydroxyimino)-2-phenylethoxy)-2H-chromen-2-one (17a) was the most active, and more potent than the positive t-BHQ in the induction of ARE-driven luciferase activity. Exposure of HSC-3 cells to various concentrations of 17a strongly increased Nrf2 nuclear translocation and the expression level of Nrf2-mediated cytoprotective proteins in a concentration-dependent manner. HSC-3 cells pretreated with 17a significantly reduced t-BOOH-induced oxidative stress. In the animal experiment, Nrf2-mediated cytoprotective proteins, such as aldo-keto reductase 1 subunit C-1 (AKR1C1), glutathione reductase (GR), and heme oxygenase (HO-1), were obviously elevated in the liver of 17a-treated mice than that of control. These results suggested that novel oxime-bearing coumarin 17a is able to activate Nrf2/ARE pathway in vivo and are therefore seen as a promising candidate for further investigation.

  15. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S.

    PubMed Central

    Conti, E; Stachelhaus, T; Marahiel, M A; Brick, P

    1997-01-01

    The non-ribosomal synthesis of the cyclic peptide antibiotic gramicidin S is accomplished by two large multifunctional enzymes, the peptide synthetases 1 and 2. The enzyme complex contains five conserved subunits of approximately 60 kDa which carry out ATP-dependent activation of specific amino acids and share extensive regions of sequence similarity with adenylating enzymes such as firefly luciferases and acyl-CoA ligases. We have determined the crystal structure of the N-terminal adenylation subunit in a complex with AMP and L-phenylalanine to 1.9 A resolution. The 556 amino acid residue fragment is folded into two domains with the active site situated at their interface. Each domain of the enzyme has a similar topology to the corresponding domain of unliganded firefly luciferase, but a remarkable relative domain rotation of 94 degrees occurs. This conformation places the absolutely conserved Lys517 in a position to form electrostatic interactions with both ligands. The AMP is bound with the phosphate moiety interacting with Lys517 and the hydroxyl groups of the ribose forming hydrogen bonds with Asp413. The phenylalanine substrate binds in a hydrophobic pocket with the carboxylate group interacting with Lys517 and the alpha-amino group with Asp235. The structure reveals the role of the invariant residues within the superfamily of adenylate-forming enzymes and indicates a conserved mechanism of nucleotide binding and substrate activation. PMID:9250661

  16. Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals

    PubMed Central

    Goeman, Frauke; Manni, Isabella; Artuso, Simona; Ramachandran, Balaji; Toietta, Gabriele; Bossi, Gianluca; Rando, Gianpaolo; Cencioni, Chiara; Germoni, Sabrina; Straino, Stefania; Capogrossi, Maurizio C.; Bacchetti, Silvia; Maggi, Adriana; Sacchi, Ada; Ciana, Paolo; Piaggio, Giulia

    2012-01-01

    In vivo imaging involving the use of genetically engineered animals is an innovative powerful tool for the noninvasive assessment of the molecular and cellular events that are often targets of therapy. On the basis of the knowledge that the activity of the nuclear factor-Y (NF-Y) transcription factor is restricted in vitro to proliferating cells, we have generated a transgenic reporter mouse, called MITO-Luc (for mitosis-luciferase), in which an NF-Y–dependent promoter controls luciferase expression. In these mice, bioluminescence imaging of NF-Y activity visualizes areas of physiological cell proliferation and regeneration during response to injury. Using this tool, we highlight for the first time a role of NF-Y activity on hepatocyte proliferation during liver regeneration. MITO-Luc reporter mice should facilitate investigations into the involvement of genes in cell proliferation and provide a useful model for studying aberrant proliferation in disease pathogenesis. They should be also useful in the development of new anti/proproliferative drugs and assessment of their efficacy and side effects on nontarget tissues. PMID:22379106

  17. Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals.

    PubMed

    Goeman, Frauke; Manni, Isabella; Artuso, Simona; Ramachandran, Balaji; Toietta, Gabriele; Bossi, Gianluca; Rando, Gianpaolo; Cencioni, Chiara; Germoni, Sabrina; Straino, Stefania; Capogrossi, Maurizio C; Bacchetti, Silvia; Maggi, Adriana; Sacchi, Ada; Ciana, Paolo; Piaggio, Giulia

    2012-04-01

    In vivo imaging involving the use of genetically engineered animals is an innovative powerful tool for the noninvasive assessment of the molecular and cellular events that are often targets of therapy. On the basis of the knowledge that the activity of the nuclear factor-Y (NF-Y) transcription factor is restricted in vitro to proliferating cells, we have generated a transgenic reporter mouse, called MITO-Luc (for mitosis-luciferase), in which an NF-Y-dependent promoter controls luciferase expression. In these mice, bioluminescence imaging of NF-Y activity visualizes areas of physiological cell proliferation and regeneration during response to injury. Using this tool, we highlight for the first time a role of NF-Y activity on hepatocyte proliferation during liver regeneration. MITO-Luc reporter mice should facilitate investigations into the involvement of genes in cell proliferation and provide a useful model for studying aberrant proliferation in disease pathogenesis. They should be also useful in the development of new anti/proproliferative drugs and assessment of their efficacy and side effects on nontarget tissues. PMID:22379106

  18. CerS6 Is a Novel Transcriptional Target of p53 Protein Activated by Non-genotoxic Stress.

    PubMed

    Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin; Ogretmen, Besim; Krupenko, Sergey A; Krupenko, Natalia I

    2016-08-01

    Our previous study suggested that ceramide synthase 6 (CerS6), an enzyme in sphingolipid biosynthesis, is regulated by p53: CerS6 was elevated in several cell lines in response to transient expression of p53 or in response to folate stress, which is known to activate p53. It was not clear, however, whether CerS6 gene is a direct transcriptional target of p53 or whether this was an indirect effect through additional regulatory factors. In the present study, we have shown that the CerS6 promoter is activated by p53 in luciferase assays, whereas transcriptionally inactive R175H p53 mutant failed to induce the luciferase expression from this promoter. In vitro immunoprecipitation assays and gel shift analyses have further demonstrated that purified p53 binds within the CerS6 promoter sequence spanning 91 bp upstream and 60 bp downstream of the transcription start site. The Promo 3.0.2 online tool for the prediction of transcription factor binding sites indicated the presence of numerous putative non-canonical p53 binding motifs in the CerS6 promoter. Luciferase assays and gel shift analysis have identified a single motif upstream of the transcription start as a key p53 response element. Treatment of cells with Nutlin-3 or low concentrations of actinomycin D resulted in a strong elevation of CerS6 mRNA and protein, thus demonstrating that CerS6 is a component of the non-genotoxic p53-dependent cellular stress response. This study has shown that by direct transcriptional activation of CerS6, p53 can regulate specific ceramide biosynthesis, which contributes to the pro-apoptotic cellular response.

  19. The Synonymous Ala87 Mutation of Estrogen Receptor Alpha Modifies Transcriptional Activation Through Both ERE and AP1 Sites.

    PubMed

    Fernández-Calero, Tamara; Flouriot, Gilles; Marín, Mónica

    2016-01-01

    Estrogen receptor α (ERα) exerts regulatory actions through genomic mechanisms. In the classical pathway, ligand-activated ERα binds directly to DNA through estrogen response elements (ERE) located in the promoter of target genes. ERα can also exert indirect regulation of transcription via protein-protein interaction with other transcription factors such as AP-1.S everal ERα synonymous polymorphisms have been identified and efforts to understand their implications have been made. Nevertheless effects of synonymous polymorphisms are still neglected. This chapter focuses on the experimental procedure employed in order to characterize the transcriptional activity of a synonymous polymorphism of the ERα (rs746432) called Alanine 87 (Ala87). Activity of both WT and Ala87 ERα isoforms on transcriptional pathways can be analyzed in transiently transfected cells using different reporter constructs. ERα efficiency on the classical genomic pathway can be analyzed by determining its transactivation activity on an ERE-driven thymidine kinase (TK) promoter controlling the expression of the luciferase reporter gene. Transcriptional activity through the indirect genomic pathway can be analyzed by employing an AP-1 DNA response element-driven promoter also controlling the expression of luciferase reporter gene.

  20. The Synonymous Ala87 Mutation of Estrogen Receptor Alpha Modifies Transcriptional Activation Through Both ERE and AP1 Sites.

    PubMed

    Fernández-Calero, Tamara; Flouriot, Gilles; Marín, Mónica

    2016-01-01

    Estrogen receptor α (ERα) exerts regulatory actions through genomic mechanisms. In the classical pathway, ligand-activated ERα binds directly to DNA through estrogen response elements (ERE) located in the promoter of target genes. ERα can also exert indirect regulation of transcription via protein-protein interaction with other transcription factors such as AP-1.S everal ERα synonymous polymorphisms have been identified and efforts to understand their implications have been made. Nevertheless effects of synonymous polymorphisms are still neglected. This chapter focuses on the experimental procedure employed in order to characterize the transcriptional activity of a synonymous polymorphism of the ERα (rs746432) called Alanine 87 (Ala87). Activity of both WT and Ala87 ERα isoforms on transcriptional pathways can be analyzed in transiently transfected cells using different reporter constructs. ERα efficiency on the classical genomic pathway can be analyzed by determining its transactivation activity on an ERE-driven thymidine kinase (TK) promoter controlling the expression of the luciferase reporter gene. Transcriptional activity through the indirect genomic pathway can be analyzed by employing an AP-1 DNA response element-driven promoter also controlling the expression of luciferase reporter gene. PMID:26585143

  1. Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems.

    PubMed

    Luckert, Claudia; Hessel, Stefanie; Lampen, Alfonso; Braeuning, Albert

    2015-10-15

    Reporter gene assays are widely used for the assessment of transcription factor activation following xenobiotic exposure of cells. A critical issue with such assays is the possibility of interference of test compounds with the test system, for example, by direct inhibition of the reporter enzyme. Here we show that the pyrrolizidine alkaloid heliotrine interferes with reporter signals derived from GAL4-based nuclear receptor transactivation assays by a mechanism independent of luciferase enzyme inhibition. These data highlight the necessity to conduct proper control experiments in order to avoid perturbation of reporter assays by test chemicals.

  2. Nuclear Factor Kappa B Activation and Peroxisome Proliferator-activated Receptor Transactivational Effects of Chemical Components of the Roots of Polygonum multiflorum

    PubMed Central

    Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2016-01-01

    Background: Polygonum multiflorum is well-known as “Heshouwu” in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. Objective: To research the anti-inflammatory activities of components from P. multiflorum. Materials and Methods: The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1−15 were evaluated by luciferase reporter gene assays. Results: Fifteen compounds (1–15) were isolated from the roots of P. multiflorum. Compounds 1−5 and 14−15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1−5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26−31.45 μM. Conclusion: The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. SUMMARY This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells PMID:27019559

  3. Detection of estrogen- and dioxin-like activity in pulp and paper mill black liquor and effluent using in vitro bioassays

    SciTech Connect

    Zacharewski, T.; Berhane, K.; Gillesby, B.; Burnison, K. |

    1995-12-31

    Pulp and paper mill effluent contains a complex mixture of compounds which adversely affect fish physiologically and at the population level. These effects include compromised reproductive fitness and the induction of mixed-function oxidase activities; two classic responses mediated by the estrogen and/or Ah receptor. In vitro recombinant receptor/reporter gene assays were used to examine pulp and paper mill black liquor and effluent for estrogenic, dioxin-like and antiestrogenic activities. Using MCF7 cells transiently transfected with a Gal4-estrogen receptor chimeric construct (Gal4-HEGO) and a Gal4-regulated luciferase reporter gene (17m5-G-Luc), it was estimated that black liquor contains 4 {+-} 2 ppb ``estrogen equivalents``, while negligible estrogenic activity was observed in a methanol-extracted pulp and paper mill effluent fraction (MF). A dioxin response element (DRE)-regulated luciferase reporter gene (pGudLucl.1) transiently transfected into Hepalclc7 wild type cells exhibited a dose-dependent increase in luciferase activity following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDO), black liquor and MF. Based on the dose response curves, black liquor and MF contain 10 {+-} 4 ppb and 20 {+-} 6 ppt ``TCDD equivalents``, respectively. Moreover, MF exhibited significant AhR-mediated antiestrogenic activity. These results demonstrate the utility of these bioassays and suggest that the effects observed in fish exposed to pulp and paper mill effluent may be due to unidentified ER and AhR ligands not detected by conventional chemical analysis due to the lack of appropriate chemical standards.

  4. High Intensity Focused Ultrasound induced Gene Activation in Solid Tumors

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Kon, Takashi; Li, Chuanyuan; Zhong, Pei

    2006-05-01

    In this work, the feasibility of using high intensity focused ultrasound (HIFU) to activate trans-gene expression in a mouse tumor model was investigated. 4T1 cancer cells were implanted subcutaneously in the hind limbs of Balb/C mice and adenovirus luciferase gene vectors under the control of heat shock protein 70B promoter (Adeno-hsp70B-Luc) were injected intratumoraly for gene transfection. One day following the virus injection, the transfected tumors were heated to a peak temperature of 55, 65, 75, and 85°C, respectively, in 10s at multiple sites around the center of the tumor using a HIFU transducer operated at either 1.1-MHz (fundamental) or 3.3-MHz (3rd harmonic) frequency. Inducible luciferase gene expression was found to vary from 15-fold to 120-fold of the control group following 1.1-MHz HIFU exposure. The maximum gene activation was produced at a peak temperature of 65˜75°C one day following HIFU exposure and decayed gradually to baseline level within 7 days. The inducible gene activation produced by 3.3-MHz HIFU exposure (75°C-10s) was found to be comparable to that produced by hyperthermia (42°C-30min). Altogether, these results demonstrate the feasibility of using HIFU as a simple and versatile physical means to regulate trans-gene expression in vivo. This unique feature may be explored in the future for a synergistic combination of HIFU-induced thermal ablation with heat-induced gene therapy for improved cancer therapy.

  5. Bioluminescence imaging to track real-time armadillo promoter activity in live Drosophila embryos.

    PubMed

    Akiyoshi, Ryutaro; Kaneuch, Taro; Aigaki, Toshiro; Suzuki, Hirobumi

    2014-09-01

    We established a method for bioluminescence imaging (BLI) to track real-time gene expression in live Drosophila embryos. We constructed a transgenesis vector containing multiple cloning sites and enhanced green-emitting luciferase (ELuc; Emerald Luc), a brighter and pH-insensitive luciferase for promoter analysis. To evaluate the utility of BLI using an ELuc reporter together with an optimized microscope system, we visualized the expression pattern of armadillo (arm), a member of the Wnt pathway in Drosophila, throughout embryogenesis. We generated transgenic flies carrying the arm:: ELuc fusion gene, and successfully performed BLI continuously for 22 h in the same embryos. Our study showed, for the first time, that arm::Eluc expression was dramatically increased in the anterior midgut rudiment, myoblasts of the dorsal/lateral musculature, and the posterior spiracle after stage 13, and the cephalic region at stage 17. To further demonstrate the application of our BLI system, we revealed that arm transcriptional activity in embryos was modulated inversely by treatment with ionomycin or 6-bromoindirubin-3-oxime (BIO), an inhibitor and activator of Wnt/β-catenin signaling, respectively. Therefore, our microscopic BLI system is useful for monitoring gene expression in live Drosophila embryos, and for investigating regulatory mechanisms by using chemicals and mutations that might affect expression. PMID:25023969

  6. The HMG-CoA reductase inhibitor rosuvastatin inhibits plasminogen activator inhibitor-1 expression and secretion in human adipocytes.

    PubMed

    Laumen, Helmut; Skurk, Thomas; Hauner, Hans

    2008-02-01

    Human preadipocytes and adipocytes are known to produce the proatherogenic factor PAI-1 and proinflammatory cytokines, and obesity was found to be state of increased adipose production of these factors. In the present study, we investigated the effect of rosuvastatin on the regulation of PAI-1 gene expression in human adipocytes. Human preadipocytes, adipocytes in primary culture and the SGBS cell line were used as cell models. Cells were transfected using various constructs and promoter activity was measured as luciferase activity. PAI-1 expression was measured by quantitative RT-PCR and ELISA. Rosuvastatin inhibited PAI-1 mRNA expression and secretion of the protein in a concentration-dependent manner. This effect was reversed by isoprenoids. Addition of MEK-inhibitors and NFkappaB inhibitors also reduced PAI-1 expression and PAI-1 promoter luciferase activity. Further experiments revealed that rosuvastatin down-regulated the MEKK-1 mediated activation of the PAI-1 promoter. In conclusion our data suggest that rosuvastatin inhibits PAI-1 expression and release from human adipocytes via a MEKK-1-dependent but not a NFkappaB-dependent mechanism.

  7. Molecular mechanisms underlying the regulation of the MFG-E8 gene promoter activity in physiological and inflammatory conditions

    PubMed Central

    Wang, Xiao; Bu, Heng-Fu; Liu, Shirley XL; De Plaen, Isabelle G.; Tan, Xiao-Di

    2015-01-01

    Milk fat globule-EGF factor 8 (MFG-E8) is expressed by macrophages and plays an important role in attenuating inflammation and maintaining tissue homeostasis. Previously, we and others found that LPS inhibits MFG-E8 gene expression in macrophages. Here, we characterized the 5′-flanking region of the mouse MFG-E8 gene. To functionally analyze the upstream regulatory region of the MFG-E8 gene, a series of luciferase reporter gene constructs containing deleted or mutated regulatory elements were prepared. Using the luciferase assay, we revealed that Sp1 binding motifs within the proximal promoter region were necessary for full activity of the MFG-E8 promoter, whereas AP-1 like binding sequence at −372 played a role in governing the promoter activity at a homeostatic level. With chromatin immunoprecipitation assay, we showed that Sp1 and c-Jun physically interact with the MFG-E8 promoter region in vivo. In addition, Sp1 was found to regulate the MFG-E8 promoter activity positively and c-Jun negatively. Furthermore, we demonstrated that LPS inhibited MFG-E8 promoter activity via targeting Sp1 and AP-1-like motifs in the 5′-flanking region. Collectively, our data indicate that Sp1 and AP-1-related factors are involved in the regulation of MFG-E8 gene transcription by targeting their binding sites in the 5′-flanking region under physiological and inflammatory states. PMID:25711369

  8. Antiandrogenic activity of extracts of diesel exhaust particles emitted from diesel-engine truck under different engine loads and speeds.

    PubMed

    Okamura, Kazumasa; Kizu, Ryoichi; Toriba, Akira; Murahashi, Tsuyoshi; Mizokami, Atsushi; Burnstein, Kerry L; Klinge, Carolyn M; Hayakawa, Kazuichi

    2004-02-15

    To clarify the alteration of androgenic and antiandrogenic activities by diesel engine conditions, we collected diesel exhaust particles (DEP) samples emitted from a diesel-engine truck under different conditions of engine loads and vehicle speeds, and DEP extract (DEPE) samples were prepared from each. The androgenic and antiandrogenic activities of the DEPE samples were examined using a prostate specific antigen (PSA) promoter-luciferase reporter gene assay in PC3/AR human prostate cancer cells. While all DEPE samples did not exhibit androgenic effects, the antiandrogenic effects were enhanced by higher engine load but not by higher vehicle speed. In this study, significant correlations between antiandrogenic and aryl hydrocarbon receptor (AhR) agonistic activities were demonstrated in PC3/AR cells by 16 polycyclic aromatic compounds and beta-naphthoflavone. Yeast two-hybrid assay and cytochrome P450 (CYP) 1A1 promoter-luciferase reporter gene assay showed that the antiandrogenic constituents acting as androgen receptor (AR) antagonists and AhR agonists were increased by only the higher engine load. In conclusion, the antiandrogenic effects of DEPE samples were enhanced by a higher engine load which resulted in DEPC samples with elevated AhR agonistic and AR antagonistic activities.

  9. Disparate effects of serum on basal and evoked NFAT activity in primary astrocyte cultures.

    PubMed

    Furman, Jennifer L; Artiushin, Irina A; Norris, Christopher M

    2010-01-29

    In astrocytes, the Ca(2+)-dependent protein phosphatase calcineurin (CN) strongly regulates neuro-immune/inflammatory cascades through activation of the transcription factor, nuclear factor of activated T cells (NFAT). While primary cell cultures provide a useful model system for investigating astrocytic CN/NFAT signaling, variable results may arise both within and across labs because of differences in culture conditions. Here, we determined the extent to which serum and cell confluency affect basal and evoked astrocytic NFAT activity in primary cortical astrocyte cultures. Cells were grown to either approximately 50% or >90% confluency, pre-loaded with an NFAT-luciferase reporter construct, and maintained for 16 h in medium with or without 10% fetal bovine serum (FBS). NFAT-dependent luciferase expression was then measured 5h after treatment with vehicle alone to assess basal NFAT activity, or with Ca(2+) mobilizers and IL-1 beta to assess evoked activity. The results revealed significantly higher levels of basal NFAT activity in FBS-containing medium, regardless of cell confluency. Conversely, evoked NFAT activation was significantly lower in serum-containing medium, with an even greater inhibition observed in confluent cultures. Application of 10% FBS to serum-free astrocyte cultures quickly evoked a roughly seven-fold increase in NFAT activity that was significantly reduced by co-delivery of neutralizing agents for IL-1 beta, TNFalpha, and/or IFN gamma, suggesting that serum occludes evoked NFAT activation through a cytokine-based mechanism. Together, the results demonstrate that the presence of serum and cell confluency have a major impact on CN/NFAT signaling in primary astrocyte cultures and therefore must be taken into consideration when using this model system.

  10. MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral ribonucleoprotein activity.

    PubMed

    Hu, Yi; Jiang, Liangzhen; Lai, Wenbin; Qin, Yujie; Zhang, Tinghong; Wang, Shixiong; Ye, Xin

    2016-01-01

    In order to explore the roles of microRNA(s) [miRNA(s)] in the influenza A virus life cycle, we compared the miRNA profiles of 293T and HeLa cell lines, as influenza A virus can replicate efficiently in 293T cells but only poorly in HeLa cells. We analysed differentially expressed miRNAs and identified five, including miR-33a, that could disturb influenza A virus replication significantly. Using TargetScan analysis, we found that ARCN1 could be a potential target of miR-33a. To confirm whether miR-33a could truly target ARCN1, we generated a luciferase reporter for the ARCN1 3' untranslated region (UTR) and performed a luciferase assay. The data indicated that miR-33a could suppress the luciferase activity of the reporter for the ARCN1 3' UTR but not a reporter in which the predicted miR-33a targeting sites on ARCN1 3' UTR were mutated. We performed immunoblotting to confirm that miR-33a could downregulate the protein level of ARCN1. Consistently, the level of ARCN1 protein in HeLa cells was significantly lower than that in 293T cells. We also demonstrated that ectopic expression of ARCN1 could partially rescue the inhibitory effect of miR-33a on virus replication. Furthermore, we demonstrated that miR-33a could impede virus replication at the stage of virus internalization, which was similar to the pattern for knockdown of ARCN1, indicating that miR-33a inhibits influenza virus infection by suppressing ARCN1 expression. In addition, we found that miR-33a could also weaken the viral ribonucleoprotein activity in an ARCN1-independent manner. In conclusion, we found that miR-33a is a novel inhibitory factor for influenza A virus replication. PMID:26498766

  11. Molecular Imaging of the ATM Kinase Activity

    SciTech Connect

    Williams, Terence M.; Nyati, Shyam; Ross, Brian D.; Rehemtulla, Alnawaz

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  12. Oxygen-evoked changes in transcriptional activity of the 5'-flanking region of the human amiloride-sensitive sodium channel (alphaENaC) gene: role of nuclear factor kappaB.

    PubMed Central

    Baines, Deborah L; Janes, Mandy; Newman, David J; Best, Oliver G

    2002-01-01

    Expression of the alpha-subunit of the amiloride-sensitive sodium channel (alphaENaC) is regulated by a number of factors in the lung, including oxygen partial pressure (PO2). As transcriptional activation is a mechanism for raising cellular mRNA levels, we investigated the effect of physiological changes in PO2 on the activity of the redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) and transcriptional activity of 5'-flanking regions of the human alphaENaC gene using luciferase reporter-gene vectors transiently transfected into human adult alveolar carcinoma A549 cells. By Western blotting we confirmed the presence of NF-kappaB p65 but not p50 in these cells. Transiently increasing PO2 from 23 to 42 mmHg for 24 h evoked a significant increase in NF-kappaB DNA-binding activity and transactivation of a NF-kappaB-driven luciferase construct (pGLNF-kappaBpro), which was blocked by the NF-kappaB activation inhibitor sulphasalazine (5 mM). Transcriptional activity of alphaENaC-luciferase constructs containing 5'-flanking sequences (including the NF-kappaB consensus) were increased by raising PO2 from 23 to 142 mmHg if they contained transcriptional initiation sites (TIS) for exons 1A and 1B (pGL3E2.2) or the 3' TIS of exon 1B alone (pGL3E0.8). Sulphasalazine had no significant effect on the activity of these constructs, suggesting that the PO2-evoked rise in activity was not a direct consequence of NF-kappaB activation. Conversely, the relative luciferase activity of a construct that lacked the 3' TIS, a 3' intron and splice site but still retained the 5' TIS and NF-kappaB consensus sequence was suppressed significantly by raising PO2. This effect was reversed by sulphasalazine, suggesting that activation of NF-kappaB mediated PO2-evoked suppression of transcription from the exon 1A TIS of alphaENaC. PMID:12023897

  13. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus.

    PubMed

    Williams, K L; Nanda, I; Lyons, G E; Kuo, C T; Schmid, M; Leiden, J M; Kaplan, M H; Taparowsky, E J

    2001-05-01

    BATF belongs to the AP-1/ATF superfamily of transcription factors and forms heterodimers with Jun proteins to bind AP-1 consensus DNA. Unlike Fos/Jun heterodimers which stimulate gene transcription, BATF/Jun heterodimers are transcriptionally inert and inhibit biological processes that are associated with the overstimulation of AP-1 activity. Here, we describe the murine BATF cDNA and genomic clones and map the BATF locus to chromosome 12 D2-3. Using in situ hybridization of BATF mRNA, we show that BATF gene expression is highly restricted, with the most prominent signals detected in the thymus. BATF mRNA levels are regulated differentially during discrete stages of T cell development and are up-regulated following activation of T cells in the periphery. To demonstrate the impact of BATF on AP-1 activity in vivo, AP-1 luciferase reporter mice were crossed to transgenic mice overexpressing BATF exclusively in thymic T cells. Results show that elevated levels of BATF protein correlate with reduced transactivation by AP-1. Since the differential regulation of AP-1 activity is linked to key transitions in the developing immune system, our observations support a critical role for BATF in determining the overall level of AP-1 activity, and thus AP-1 target gene expression, in specific T cell subtypes.

  14. An Asp7Gly substitution in PPARG is associated with decreased transcriptional activation activity.

    PubMed

    Hua, Liushuai; Wang, Jing; Li, Mingxun; Sun, Xiaomei; Zhang, Liangzhi; Lei, Chuzhao; Lan, Xianyong; Fang, Xingtang; Zhao, Xin; Chen, Hong

    2014-01-01

    As the master regulator of adipogenesis, peroxisome proliferator-activated receptor gamma (PPARG) is required for the accumulation of adipose tissue and hence contributes to obesity. A previous study showed that the substitution of +20A>G in PPARG changed the 7(th) amino acid from Asp to Gly, creating a mutant referred to as PPARG Asp7Gly. In this study, association analysis indicated that PPARG Asp7Gly was associated with lower body height, body weight and heart girth in cattle (P<0.05). Overexpression of PPARG in NIH3T3-L1 cells showed that the Asp7Gly substitution may cause a decrease in its adipogenic ability and the mRNA levels of CIDEC (cell death-inducing DFFA-like effector c) and aP2, which are all transcriptionally activated by PPARG during adipocyte differentiation. A dual-luciferase reporter assay was used to analyze the promoter activity of CIDEC. The results confirmed that the mutant PPARG exhibited weaker transcriptional activation activity than the wild type (P<0.05). These findings likely explain the associations between the Asp7Gly substitution and the body measurements. Additionally, the Asp7Gly mutation may be used in molecular marker assisted selection (MAS) of cattle breeding in the future. PMID:24466299

  15. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist.

    PubMed

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  16. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome.

    PubMed

    Hwang, Hye Jin; Dornbos, Peter; Steidemann, Michelle; Dunivin, Taylor K; Rizzo, Mike; LaPres, John J

    2016-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes≥2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction. PMID:27105554

  17. Modifications to the INSM1 promoter to preserve specificity and activity for use in adenoviral gene therapy of neuroendocrine carcinomas.

    PubMed

    Akerstrom, V; Chen, C; Lan, M S; Breslin, M B

    2012-12-01

    The INSM1 gene encodes a transcriptional repressor that is exclusively expressed in neuronal and neuroendocrine tissue during embryonic development that is re-activated in neuroendocrine tumors. Using the 1.7 kbp INSM1 promoter, an adenoviral HSV thymidine kinase gene therapy was tested for the treatment of neuroendocrine tumors. An unforeseen interference on the INSM1 promoter specificity from the adenoviral genome was observed. Attempts were made to protect the INSM1 promoter from the influence of essential adenoviral sequences and to further enhance the tissue specificity of the INSM1 promoter region. Using the chicken β-globin HS4 insulator sequence, we eliminated off-target tissue expression from the Ad-INSM1 promoter-luciferase2 constructs in vivo. In addition, inclusion of two copies of the mouse nicotinic acetylcholine receptor (n(AchR)) neuronal-restrictive silencer element (NRSE) reduced nonspecific activation of the INSM1 promoter both in vitro and in vivo. Further, inclusion of both the HS4 insulator with the n(AchR) 2 × NRSE modification showed a two log increase in luciferase activity measured from the NCI-H1155 xenograft tumors compared with the original adenovirus construct. The alterations increase the therapeutic potential of adenoviral INSM1 promoter-driven suicide gene therapy for the treatment of a variety of neuroendocrine tumors. PMID:23079673

  18. Genetic Variants in the STMN1 Transcriptional Regulatory Region Affect Promoter Activity and Fear Behavior in English Springer Spaniels

    PubMed Central

    Zhang, Hanying; Xu, Yinxue

    2016-01-01

    Stathmin 1 (STMN1) is a neuronal growth-associated protein that is involved in microtubule dynamics and plays an important role in synaptic outgrowth and plasticity. Given that STMN1 affects fear behavior, we hypothesized that genetic variations in the STMN1 transcriptional regulatory region affect gene transcription activity and control fear behavior. In this study, two single nucleotide polymorphisms (SNPs), g. -327 A>G and g. -125 C>T, were identified in 317 English Springer Spaniels. A bioinformatics analysis revealed that both were loci located in the canine STMN1 putative promoter region and affected transcription factor binding. A statistical analysis revealed that the TT genotype at g.-125 C>T produced a significantly greater fear level than that of the CC genotype (P < 0.05). Furthermore, the H4H4 (GTGT) haplotype combination was significantly associated with canine fear behavior (P < 0.01). Using serially truncated constructs of the STMN1 promoters and the luciferase reporter, we found that a 395 bp (−312 nt to +83 nt) fragment constituted the core promoter region. The luciferase assay also revealed that the H4 (GT) haplotype promoter had higher activity than that of other haplotypes. Overall, our results suggest that the two SNPs in the canine STMN1 promoter region could affect canine fear behavior by altering STMN1 transcriptional activity. PMID:27390866

  19. Helicobacter pylori induces RANTES through activation of NF-kappa B.

    PubMed

    Mori, Naoki; Krensky, Alan M; Geleziunas, Romas; Wada, Akihiro; Hirayama, Toshiya; Sasakawa, Chihiro; Yamamoto, Naoki

    2003-07-01

    Helicobacter pylori-infected gastric mucosa displays a conspicuous infiltration of mononuclear cells and neutrophils. RANTES (short for "regulated upon activation, normal T cell expressed and secreted") is a chemoattractant cytokine (chemokine) important in the infiltration of T lymphocytes and monocytes. RANTES may therefore contribute to the cellular infiltrate in the H. pylori-infected gastric mucosa. The aim of this study was to analyze the molecular mechanism responsible for H. pylori-mediated RANTES expression. We observed that gastric epithelial cells produced RANTES upon coculture with H. pylori. In addition, H. pylori induced RANTES mRNA expression and an increase in luciferase activity in cells which were transfected with a luciferase reporter construct derived from the RANTES promoter, in gastric epithelial cells, indicating that the induction of RANTES production occurred at the transcriptional level. Induction of RANTES was dependent on an intact cag pathogenicity island. Activation of the RANTES promoter by H. pylori occurred through the action of NF-kappa B. Transfection of kinase-deficient mutants of I kappa B kinase (IKK) and NF-kappa B-inducing kinase (NIK) inhibited H. pylori-mediated RANTES activation. In contrast, tumor necrosis factor alpha- or interleukin-1/Toll-like receptor signaling molecules-such as mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1, MyD88, and interleukin-1 receptor-associated kinase-did not play a role in RANTES activation by H. pylori. Collectively, H. pylori induced NF-kappa B activation through an intracellular signaling pathway that involved IKK and NIK, leading to RANTES gene transcription. RANTES induction by H. pylori may play an important role in gastric inflammation.

  20. Differential effect of pure isoflavones and soymilk on estrogen receptor activity in mice

    SciTech Connect

    Rando, Gianpaolo; Ramachandran, Balaji; Rebecchi, Monica; Ciana, Paolo; Maggi, Adriana

    2009-06-15

    Background: Because of the complexity of estrogen receptor (ER) physiological activity, the interaction of pure isoflavones or soy-based diets on ER needs to be clearly demonstrated. Objectives: To investigate the effects of the administration of isoflavones as a pure compound or as a component of diet on the ER transcriptional activity in adult mice. Methods: Effects of acute (6 h) and chronic (21 days) oral administration of soy milk, pure genistein and a mix of genistein and daidzein was studied in living ERE-Luc mice. In this animal model, the synthesis of luciferase is under the state of ER transcriptional activity. Luciferase activity was measured in living mice by daily bioluminescence imaging sessions and in tissue extracts by enzymatic assay. Results: Acute, oral administration of genistein or soymilk caused a significant increase of ER activity in liver. In a 20 day long treatment, soymilk was more potent than genistein in liver and appeared to extend its influence on ER transcriptional activity in other tissues, such as the digestive tract. A mixture of pure genistein and daidzein at the same concentration as in soymilk failed to induce significant changes during acute and chronic studies suggesting an important, uncharacterized role of the soymilk matrix. Consistent with this observation, synergistic effects of the matrix plus isoflavones were observed in MCF-7 cells stably transfected with the ERE-luc construct. Conclusions: This study underlines the limitations of the analysis of single food components in the evaluation of their effects on estrogen receptor activity and advocates the necessity to use complex organisms for the full comprehension of the effects of compounds altering the endocrine balance.

  1. Complex Regulation Pattern of IRF3 Activation Revealed by a Novel Dimerization Reporter System.

    PubMed

    Wang, Zining; Ji, Jingyun; Peng, Di; Ma, Feng; Cheng, Genhong; Qin, F Xiao-Feng

    2016-05-15

    Induction of type I IFN (IFN-I) is essential for host antiviral immune responses. However, IFN-I also plays divergent roles in antibacterial immunity, persistent viral infections, autoimmune diseases, and tumorigenesis. IFN regulatory factor 3 (IRF3) is the master transcription factor that controls IFN-I production via phosphorylation-dependent dimerization in most cell types in response to viral infections and various innate stimuli by pathogen-associated molecular patterns (PAMPs). To monitor the dynamic process of IRF3 activation, we developed a novel IRF3 dimerization reporter based on bimolecular luminescence complementation (BiLC) techniques, termed the IRF3-BiLC reporter. Robust induction of luciferase activity of the IRF3-BiLC reporter was observed upon viral infection and PAMP stimulation with a broad dynamic range. Knockout of TANK-binding kinase 1, the critical upstream kinase of IRF3, as well as the mutation of serine 386, the essential phosphorylation site of IRF3, completely abolished the luciferase activity of IRF3-BiLC reporter, confirming the authenticity of IRF3 activation. Taken together, these results demonstrated that the IRF3-BiLC reporter is a highly specific, reliable, and sensitive system to measure IRF3 activity. Using this reporter system, we further observed that the temporal pattern and magnitude of IRF3 activation induced by various PAMPs are highly complex with distinct cell type-specific characteristics, and IRF3 dimerization is a direct regulatory node for IFN-α/β receptor-mediated feed-forward regulation and crosstalk with other pathways. Therefore, the IRF3-BiLC reporter has multiple potential applications, including mechanistic studies as well as the identification of novel compounds that can modulate IRF3 activation. PMID:27045107

  2. Ethanol extract of Portulaca Oleracea L. reduced the carbon tetrachloride induced liver injury in mice involving enhancement of NF-κB activity

    PubMed Central

    Shi, Hongguang; Liu, Xuefeng; Tang, Gusheng; Liu, Haiyan; Zhang, Yinghui; Zhang, Bo; Zhao, Xuezhi; Wang, Wanyin

    2014-01-01

    Acute hepatic injury causes high morbidity and mortality world-wide. Management of severe acute hepatic failure continues to be one of the most challenging problems in clinical medicine. In present study, carbon tetrachloride (CCl4) was used to induce acute liver damage in mice and the protective effects of ethanol extract of Portulaca Oleracea L. (PO) were examined. The aminotransferase activities were biochemical estimated and the liver damage was tested by morphological histological analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The role of PO on the activity of NF-κB was determined by luciferase reporter gene assay and immunohistochemistry. The level of p-p65 was tested by western blot. Our results showed that PO administration on mice would decrease the serum aminotransferase level and reduced the liver histological damage. We also found that nuclear translocation of p65 was enhanced in liver tissues of mice treated with PO compared with control animals. In addition, in cultured hepatic cells, PO increased the NF-κB luciferase reporter gene activity and upregulated the level of phosphorylation of p65, but had no effects on mice liver SOD activity and MDA level. Collectively, PO attenuated CCl4 induced mice liver damage by enhancement of NF-κB activity. PMID:25628785

  3. NF-κB but not FoxO sites in the MuRF1 promoter are required for transcriptional activation in disuse muscle atrophy

    PubMed Central

    Wu, Chia-Ling; Cornwell, Evangeline W.; Jackman, Robert W.

    2014-01-01

    The muscle-specific ring finger protein 1 (MuRF1) gene is required for most types of skeletal muscle atrophy yet we have little understanding of its transcriptional regulation. The purpose of this study is to identify whether NF-κB and/or FoxO response elements in the MuRF1 promoter are required for MuRF1 gene activation during skeletal muscle atrophy due to the removal of hindlimb weight bearing (“unloading”). Both NF-κB -dependent and FoxO-dependent luciferase reporter activities were significantly increased at 5 days of unloading. Using a 4.4-kb MuRF1 promoter reporter construct, a fourfold increase in reporter (i.e., luciferase) activity was found in rat soleus muscles after 5 days of hindlimb unloading. This activation was abolished by mutagenesis of either of the two distal putative NF-κB sites or all three putative NF-κB sites but not by mutagenesis of all four putative FoxO sites. This work provides the first direct evidence that NF-κB sites, but not FoxO sites, are required for MuRF1 promoter activation in muscle disuse atrophy in vivo. PMID:24553183

  4. Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

    PubMed Central

    Cho, Byoung Ok; Ryu, Hyung Won; So, Yangkang; Lee, Chang Wook; Jin, Chang Hyun; Yook, Hong Sun; Jeong, Yong Wook; Park, Jong Chun; Jeong, Il Yun

    2014-01-01

    Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-κB luciferase activity and NF-κB DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-κB activation by inhibiting the degradation of IκBα and nuclear translocation of p65 subunit of NF-κB. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-κB activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages. PMID:25143806

  5. Transcriptional activity of Pax3 is co-activated by TAZ

    SciTech Connect

    Murakami, Masao; Tominaga, Junji; Makita, Ryosuke; Uchijima, Yasunobu; Kurihara, Yukiko; Nakagawa, Osamu; Asano, Tomoichiro; Kurihara, Hiroki . E-mail: kuri-tky@umin.ac.jp

    2006-01-13

    Pax3 is a transcription factor which functions in embryonic development and human diseases. In a yeast two-hybrid screen with full-length Pax3 as bait, we isolated a clone encoding transcriptional co-activator with PDZ-binding motif (TAZ) from an E10.5 mouse embryo cDNA library. Co-immunoprecipitation and nuclear co-localization of TAZ with Pax3 suggest that their association is functionally relevant. In situ hybridization revealed TAZ and Pax3 expression to partially overlap in the paraxial mesoderm, limb buds, and the neural tube. In C2C12 myoblast cells and NIH3T3 cells, TAZ enhanced the transcriptional activity of Pax3 on artificial and microphthalmia-associated transcription factor promoter-luciferase constructs, suggesting that TAZ can function as a co-activator of Pax3. Functional interaction between Pax3 and TAZ may provide a clue to clarifying the mechanism by which Pax3 serves as a transcriptional activator during embryogenesis.

  6. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  7. Transcriptional Regulation of BK Virus by Nuclear Factor of Activated T Cells▿

    PubMed Central

    Jordan, Joslynn A.; Manley, Kate; Dugan, Aisling S.; O'Hara, Bethany A.; Atwood, Walter J.

    2010-01-01

    The human polyomavirus BK virus (BKV) is a common virus for which 80 to 90% of the adult population is seropositive. BKV reactivation in immunosuppressed patients or renal transplant patients is the primary cause of polyomavirus-associated nephropathy (PVN). Using the Dunlop strain of BKV, we found that nuclear factor of activated T cells (NFAT) plays an important regulatory role in BKV infection. Luciferase reporter assays and chromatin immunoprecipitation assays demonstrated that NFAT4 bound to the viral promoter and regulated viral transcription and infection. The mutational analysis of the NFAT binding sites demonstrated complex functional interactions between NFAT, c-fos, c-jun, and the p65 subunit of NF-κB that together influence promoter activity and viral growth. These data indicate that NFAT is required for BKV infection and is involved in a complex regulatory network that both positively and negatively influences promoter activity and viral infection. PMID:19955309

  8. Modulating protein activity using tethered ligands with mutually exclusive binding sites

    PubMed Central

    Schena, Alberto; Griss, Rudolf; Johnsson, Kai

    2015-01-01

    The possibility to design proteins whose activities can be switched on and off by unrelated effector molecules would enable applications in various research areas, ranging from biosensing to synthetic biology. We describe here a general method to modulate the activity of a protein in response to the concentration of a specific effector. The approach is based on synthetic ligands that possess two mutually exclusive binding sites, one for the protein of interest and one for the effector. Tethering such a ligand to the protein of interest results in an intramolecular ligand–protein interaction that can be disrupted through the presence of the effector. Specifically, we introduce a luciferase controlled by another protein, a human carbonic anhydrase whose activity can be controlled by proteins or small molecules in vitro and on living cells, and novel fluorescent and bioluminescent biosensors. PMID:26198003

  9. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy.

    PubMed

    Zhou, Baoshang; Feng, Bing; Qin, Zhexue; Zhao, Youguang; Chen, Yu; Shi, Zhengmin; Gong, Yi; Zhang, Jing; Yuan, Fahuan; Mu, Jiao

    2016-01-01

    Visfatin, a recently discovered adipocytokine, has been shown to have an important role in the pathogenesis of diabetic nephropathy (DN). The farnesoid X receptor (FXR), a ligand-activated nuclear receptor, plays a protective role in DN. The regulation between FXR and visfatin and their interaction in DN has not been well established. In this study, we reported that FXR agonist GW4064 reduced high glucose induced human mesangial cells (HMCs) inflammation, fibrosis and proliferation by downregulating visfatin expression, which can be blunted by exogenous visfatin treatment. Moreover, luciferase reporter assay showed FXR regulated visfatin transcription activity probably by binding to the -1607 bp and -1192 bp region of the visfatin promoter. In vivo study also showed that GW4064 ameliorated the progression of DN in db/db mice with a decreased visfatin expression. These findings suggest that FXR activation delayed the progression of diabetic nephropathy and this effect is through downregulating visfatin.

  10. Evaluation of potential implication of membrane estrogen binding sites on ERE-dependent transcriptional activity and intracellular estrogen receptor-alpha regulation in MCF-7 breast cancer cells.

    PubMed

    Seo, Hye Sook; Leclercq, Guy

    2002-01-01

    The potential involvement of membrane estrogen binding sites in the induction of ERE-dependent transcriptional activity as well as in the regulation of intracellular estrogen receptor alpha (ER-alpha) level under estradiol (E2) stimulation was investigated. Our approach relied upon the use of two DCC-treated E2-BSA (bovine serum albumin) solutions (E2-6-BSA and E2-17-BSA). The absence of detectable free E2 in these solutions was established. Both E2-BSA conjugates led to a transient dose-dependent stimulation of the expression of ERE-luciferase (LUC) reporter gene in MVLN cells (MCF-7 cells stably transfected with a pVit-tk-LUC reporter plasmid), a property not recorded with free E2, which maintained enhanced transcriptional activity during the whole experiment. A very low concentration of E2 (10 pM) synergistically acted with E2-BSA conjugates. Hence, ERE-dependent transcriptional activity induced by these conjugates appeared to result from their known interactions with membrane estrogen binding sites. Anti-estrogens (AEs: 4-OH-TAM and RU 58,668), which antagonize genomic ER responses, abrogated the luciferase activity induced by E2-BSA conjugates, confirming a potential relationship between membrane-related signals and intracellular ER. Moreover, induction of luciferase was recorded when the cells were exposed to IBMX (3-isobutyl-1-methylxanthine) and cyclic nucleotides (cAMP/cGMP), suggesting the implication of the latter in the signal transduction pathway leading to the expression of the reporter gene. Growth factors (IGF-I, EGF and TGF-alpha) also slightly stimulated luciferase and synergistically acted with 10 pM E2, or 1 microM E2-BSA conjugates, in agreement with the concept of a cross-talk between steroids and peptides acting on the cell membrane. Remarkably, E2-BSA conjugates, IBMX and all investigated growth factors failed to down-regulate intracellular ER in MCF-7 cells, indicating the need for a direct intracellular interaction of the ligand with the

  11. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation.

    PubMed

    Karpurapu, Manjula; Ranjan, Ravi; Deng, Jing; Chung, Sangwoon; Lee, Yong Gyu; Xiao, Lei; Nirujogi, Teja Srinivas; Jacobson, Jeffrey R; Park, Gye Young; Christman, John W

    2014-01-01

    The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation. PMID:24695324

  12. Down-regulation of PTEN by HCV core protein through activating nuclear factor-κB

    PubMed Central

    Zhang, Yong; Li, Rong-Qing; Feng, Xu-Dong; Zhang, Yan-Hua; Wang, Li

    2014-01-01

    The hepatitis C virus (HCV) core protein is an important causative agent in HCV related hepatocellular carcinoma (HCC). Tumor suppressor gene PTEN appears to act in the liver at the crossroad of processes controlling cell proliferation. In this study we investigated the effect of the HCV core protein on the PTEN pathway in hepatocarcinogenesis. The HCV core was transfected stably into HepG2 cell. The effect of HCV core on cell proliferation and viability were detected by 3-(4, 5)-dimethylthiahiazo-(-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay, clonogenic survival assay and Fluorescence Activating Cell Sorter (FACS) analysis. The expressions of PTEN were detected by real time RT-PCR and/or Western blot analysis, also the mechanism of down-regulation of PTEN was explored by western blot, luciferase assay and RNA interference. We found the HCV core promoted cell proliferation, survival and G2/M phase accumulation. It downregulated PTEN at mRNA and protein level and activated PTEN downstream gene Akt accompanied with NF-κB activation. Furthermore, the inhibition of HCV core by its specific shRNAs decreased the effect of growth promotion and G2/M phase arrest, inhibited the expression of nuclear p65 and increased PTEN expression. The activity of PTEN was restored when treated with NF-κB inhibitor PDTC. By luciferase assay we found that NF-κB inhibited PTEN promoter transcription activity directly in HCV core cells, while PDTC was contrary. Our study suggests that HCV proteins could modulate PTEN by activating NF-κB. Furthermore strategies designed to restore the expression of PTEN may be promising therapies for preventing HCV dependent hepatocarcinogenesis. PMID:25550771

  13. Krüppel Like Factor 4 Promoter Undergoes Active Demethylation during Monocyte/Macrophage Differentiation

    PubMed Central

    Karpurapu, Manjula; Ranjan, Ravi; Deng, Jing; Chung, Sangwoon; Lee, Yong Gyu; Xiao, Lei; Nirujogi, Teja Srinivas; Jacobson, Jeffrey R.; Park, Gye Young; Christman, John W

    2014-01-01

    The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediate