Science.gov

Sample records for ai logic onboard

  1. AiGERM: A logic programming front end for GERM

    NASA Technical Reports Server (NTRS)

    Hashim, Safaa H.

    1990-01-01

    AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.

  2. An On-Board Diagnosis Logic and Its Design Method

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Satoshi; Fusaoka, Akira

    In this paper, we propose a design methodology for on-board diagnosis engine of embedded systems. A boolean function for diagnosis circuit can be mechanically designed from the system dynamics given by the linear differential equation if it is observable, and also if the relation is given between the set of abnormal physical parameters and the faulty part. The size of diagnosis circuit is not so large that it can be implemented in FPGA or fabricated in a simple chip.

  3. Internet AIS

    NASA Astrophysics Data System (ADS)

    Filjar, Renato; Desic, Sasa; Pokrajac, Danijela; Cubic, Ivica

    2005-05-01

    Automatic Identification System (AIS) has recently become the leading issue in maritime navigation and traffic management worldwide. The present AIS solution, based on a VHF data communications scheme, provides AIS functionalities for SOLAS (AIS Class A) vessels only in a limited environment defined by radio propagation properties. Here we present a novel approach in AIS development based on current mobile communication technologies. It utilises existing mobile communications equipment that the majority of targetted end-users own and are familiar with. A novel AIS concept aims to offer a transition of AIS data traffic to mobile Internet. An innovative AIS architecture supports AIS data processing, storing and transferring to authorised parties. This enhances not only the operational area, but also provides the global AIS with data transfer security and an improved aids-for-navigation service, with all legally traceable vessels (both AIS Class A and AIS Class B) included in the system. In order to provide the development framework for Internet AIS, a set of essential four use-cases, a communication protocol and the first Internet AIS prototype have been recently developed and are briefly introduced in this article.

  4. Logic programming and metadata specifications

    NASA Technical Reports Server (NTRS)

    Lopez, Antonio M., Jr.; Saacks, Marguerite E.

    1992-01-01

    Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.

  5. Artificial Intelligence Study (AIS).

    DTIC Science & Technology

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...Epstein (1986) has suggested that this version of PROLOG has been used for business and industrial applications in Eastern Europe. The Japanese have...have been in building expert systems in the business analysis area. Expert systems for policy and rate selection for insurance (i.e., risk analysis) and

  6. Distributed Logics

    DTIC Science & Technology

    2014-10-03

    introduce distributed logics. Distributed logics lift the distribution structure of a distributed system directly into the logic, thereby parameterizing...the logic by the distribution structure itself. Each domain supports a “local modal logic.” The connections between domains are realized as...There are also multi- agent logic systems [12]. What distinguishes distributed logics from these are that the morphisms, i.e., the nbd maps, have

  7. T'ai Chi

    MedlinePlus

    ... you start your first t'ai chi workout, dress comfortably so you can move and stretch easily. ... health problem. Is your schedule jam-packed with school, work, and social activities? Here are a few ...

  8. T'ai Chi

    MedlinePlus

    ... chi (pronounced: TY CHEE) is great for improving flexibility and strengthening your legs, abs, and arms. What ... general, though, practicing t'ai chi improves strength, flexibility, and respiratory function (breathing). So where can you ...

  9. AI aerospace components

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Murphy, Terri B.; Rasmussen, Arthur N.; Mcfarland, Robert Z.; Montgomery, Ronnie E.; Pohle, George E.; Heard, Astrid E.; Atkinson, David J.; Wedlake, William E.; Anderson, John M.

    1991-01-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  10. Parsing with logical variables (logic-based programming systems)

    SciTech Connect

    Finin, T.W.; Stone Palmer, M.

    1983-01-01

    Logic based programming systems have enjoyed an increasing popularity in applied AI work in the last few years. One of the contributions to computational linguistics made by the logic programming paradigm has been the definite clause grammar. In comparing DCGS with previous parsing mechanisms such as ATNS, certain clear advantages are seen. The authors feel that the most important of these advantages are due to the use of logical variables with unification as the fundamental operation on them. To illustrate the power of the logical variable, they have implemented an experimental atn system which treats atn registers as logical variables and provides a unification operation over them. They aim to simultaneously encourage the use of the powerful mechanisms available in DCGS and demonstrate that some of these techniques can be captured without reference to a resolution theorem prover. 14 references.

  11. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  12. Onboard System Health Assessment

    NASA Technical Reports Server (NTRS)

    Barry, Tom; Cunningham, Harry

    1990-01-01

    Viewgraphs and discussion of onboard system health assessment are presented. Success of the space station program will be measured by how well it addresses the basic requirements for (1) maintaining the orbiting Space Station Freedom fully operational for its projected life of thirty years, and (2) the cost-effective execution of the overall space station program. Onboard system health assessment must provide complete and thorough testing capabilities along with effective associated redundancy/fault management.

  13. AI in manufacturing

    NASA Technical Reports Server (NTRS)

    Gross, John E.; Minato, Rick; Smith, David M.; Loftin, R. B.; Savely, Robert T.

    1991-01-01

    AI techniques are shown to have been useful in such aerospace industry tasks as vehicle configuration layouts, process planning, tool design, numerically-controlled programming of tools, production scheduling, and equipment testing and diagnosis. Accounts are given of illustrative experiences at the production facilities of three major aerospace defense contractors. Also discussed is NASA's autonomous Intelligent Computer-Aided Training System, for such ambitious manned programs as Space Station Freedom, which employs five different modules to constitute its job-independent training architecture.

  14. SDO Onboard Ephemeris Generation

    NASA Technical Reports Server (NTRS)

    Berry, Kevin E.; Liu, Kuo-Chia

    2008-01-01

    The Solar Dynamics Observatory (SDO) spacecraft is a sun-pointing, semi-autonomous satellite that will allow nearly continuous observations of the Sun with a continuous science data downlink. The science requirements for this mission necessitate very strict sun-pointing requirements, as well as continuous ground station connectivity through high gain antennas (HGAs). For SDO s onboard attitude control system to successfully point the satellite at the Sun and the HGAs at the ground stations with the desired accuracy, in addition to the need for accurate sensors it must have good onboard knowledge of the ephemerides of the Sun, the spacecraft, and the ground station. This paper describes the minimum force models necessary for onboard ephemeris generation in support of an attitude control system. The forces that were considered include the Sun s point mass, Moon s point mass, solar radiation pressure (SRP), and the Earth s gravity with varying degree and order of terms of the geopotential.

  15. Dispositional logic

    NASA Technical Reports Server (NTRS)

    Le Balleur, J. C.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.

  16. Spacecraft autonomy using onboard processing for a SAR constellation mission

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecruft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  17. Logic programming

    SciTech Connect

    Lusk, E.L.; Overbeek, R.A.

    1989-01-01

    This book contains the proceedings of the 1989 North American Conference on Logic Programming. Included are the following papers: Expanding query power in constrain logic programming languages, Investigating the linguistics of DNA with definite clause grammars, An intermediate language to support prolog's unification.

  18. Artificial intelligence (AI) based tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The knowledge-based systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real time in the Langley Differential Maneuvering Simulator, are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs.

  19. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    NASA Technical Reports Server (NTRS)

    Swanson, David J.

    1990-01-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  20. Standardized Spacecraft Onboard Interfaces

    NASA Technical Reports Server (NTRS)

    Smith, Joseph F.; Plummer, Chris; Plancke, Patrick

    2003-01-01

    The Consultative Committee for Space Data Systems (CCSDS), an international organization of national space agencies, is branching out to provide new standards to enhanced reuse of onboard spacecraft equipment and software. These Spacecraft Onboard Interface (SOIF) standards will be, in part, based on the well-known Internet protocols. This paper will provide a description of the SOIF work by describing three orthogonal views: the Services View that describes data communications services, the Interoperability view shows how to exchange data and messages between different spacecraft elements, and the Protocol view, that describes the SOIF protocols and services. We will also provide a description of the present state of the services that will be provided to SOIF users, and are the basis of the utility of these standards.

  1. On-Board Spaceborne Real-time Digital Signal Processing

    NASA Astrophysics Data System (ADS)

    Gao, G.; Long, F.; Liu, L.

    begin center Abstract end center This paper reports a preliminary study result of an on-board digital signal processing system It consists of the on-board processing requirement analysis functional specifications and implementation with the radiation tolerant field-programmable gate array FPGA technology The FPGA program is designed in the VHDL hardware description language and implemented onto a high density F PGA chip The design takes full advantage of the massively parallel architecture of the VirtexII FPGA logic slices to achieve real-time processing at a big data rate Further more an FFT algorithm s implementation with the system is provided as an illustration

  2. Ada in AI or AI in Ada. On developing a rationale for integration

    NASA Technical Reports Server (NTRS)

    Collard, Philippe E.; Goforth, Andre

    1988-01-01

    The use of Ada as an Artificial Intelligence (AI) language is gaining interest in the NASA Community, i.e., by parties who have a need to deploy Knowledge Based-Systems (KBS) compatible with the use of Ada as the software standard for the Space Station. A fair number of KBS and pseudo-KBS implementations in Ada exist today. Currently, no widely used guidelines exist to compare and evaluate these with one another. The lack of guidelines illustrates a fundamental problem inherent in trying to compare and evaluate implementations of any sort in languages that are procedural or imperative in style, such as Ada, with those in languages that are functional in style, such as Lisp. Discussed are the strengths and weakness of using Ada as an AI language and a preliminary analysis provided of factors needed for the development of criteria for the integration of these two families of languages and the environments in which they are implemented. The intent for developing such criteria is to have a logical rationale that may be used to guide the development of Ada tools and methodology to support KBS requirements, and to identify those AI technology components that may most readily and effectively be deployed in Ada.

  3. Black knight of AI

    SciTech Connect

    Rose, F.

    1985-03-01

    For two decades now, Hubert Dreyfus, an existentialist philosopher at the University of California at Berkeley, has been in the forefront of the controversy over artificial intelligence. He maintains that computers will never be able to think because scientists will never come up with a suitably rigorous set of rules to describe how we think. To many computer scientists, this is like saying the Earth is flat. But so far, none of them have been able to prove him wrong. Even most AI researchers now admit that before they can make computers any smarter, they'll have to come up with an explanation of how intelligence works in people. This realization has coincided with the emergence of cognitive science, a new discipline linking philosophy, psychology, anthroplogy, linguistics, neuroscience, and computer science in an attempt to develop a theory of the way humans think. The guiding principle of most cognitive science research is the notion that the mind, like the computer, is a system for manipulating symbols - for processing information. The task of cognitive science is to discover how this processing occurs.

  4. Fuzzy Versions of Epistemic and Deontic Logic

    NASA Technical Reports Server (NTRS)

    Gounder, Ramasamy S.; Esterline, Albert C.

    1998-01-01

    Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.

  5. Typical and atypical AIS. Pathogenesis.

    PubMed

    Dudin, M; Pinchuk, D

    2012-01-01

    AIS hypothesis has the right to recognition, if it explains the transition of "healthy" vertebra column into status of "scoliotic" one. AIS is the most investigated disease in the history of orthopedics, but up the present time there is no clear explanation of some its phenomena: vertebra column mono-form deformation along with its poly etiology character, interrelation of its origin and development and child's growth process etc. The key for authors' view at AIS was scoliosis with non-standard (concave side) rotation. On the bases of its' multifunctional instrumental investigation results (Rtg, EMG, EEG, optical topography, hormonal and neuropeptides trials, thermo-vision methods and other) in comparison with typical AIS was worked out the new hypothesis, part of it is suggested for discussion. In the work under observation is the sequence of appearance of typical and atypical scoliosis symptomatology beginning from the preclinical stage.

  6. Code AI Personal Web Pages

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph A.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The document consists of a publicly available web site (george.arc.nasa.gov) for Joseph A. Garcia's personal web pages in the AI division. Only general information will be posted and no technical material. All the information is unclassified.

  7. AIS ASM Operational Integration Plan

    DTIC Science & Technology

    2013-08-01

    River , WA; and the future Vessel Traffic Service systems being developed under PAWSS. Interfacing the AIS Transmit architecture with agencies that...provides accurate real-time information such as water levels, currents, and other oceanographic and meteorological data. The USACE provide river lock...information and river level and current data on the Inland Waterways. AIS ASM Operational Integration Plan viii UNCLAS//Public | CG-926 R&DC

  8. STS-80 Onboard Photograph

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This STS-80 onboard photograph shows the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II), photographed during approach by the Space Shuttle Orbiter Columbia for retrieval. Built by the German Space Agency, DARA, the ORFEUS-SPAS II, a free-flying satellite, was dedicated to astronomical observations at very short wavelengths to: investigate the nature of hot stellar atmospheres, investigate the cooling mechanisms of white dwarf stars, determine the nature of accretion disks around collapsed stars, investigate supernova remnants, and investigate the interstellar medium and potential star-forming regions. Some 422 observations of almost 150 astronomical objects were completed, including the Moon, nearby stars, distant Milky Way stars, stars in other galaxies, active galaxies, and quasar 3C273. The STS-80 mission was launched November 19, 1996.

  9. Landsat 2 on-board computer

    NASA Technical Reports Server (NTRS)

    Lesko, J. G., Jr.

    1975-01-01

    The Landsat Spacecraft Project (formerly known as ERTS) was based essentially on the use of Nimbus spacecraft hardware. It was soon recognized that the availability of only 30 stored command locations (which were sufficient for the Nimbus mission) would limit the operation of the Landsat 1 mission with much higher power sensors, recorders, and wideband communications being cycled on and off throughout the orbit. The solution described is a simple memory with hard wired logic, of a design that can interface with the existing hardware, without modifications. The design was implemented using an existing APO (Advanced Onboard Processor) and a 4096 word X 18 bit plated wire memory. (The AOP has been subsequently designated the NASA Standard Spacecraft Computer.)

  10. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  11. CASCADE: Introducing AI into CBT.

    ERIC Educational Resources Information Center

    Hendley, R. J.; Jurascheck, N.

    1992-01-01

    Discusses changes in training requirements of commerce and industry in the United Kingdom and describes a project, CASCADE, that was developed to investigate and implement the introduction of artificial intelligence (AI) techniques into computer-based training (CBT). An overview of pilot projects in higher education settings is provided. (eight…

  12. Onboard hierarchical network

    NASA Astrophysics Data System (ADS)

    Tunesi, Luca; Armbruster, Philippe

    2004-02-01

    The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one

  13. AIS Investigation of Agricultural Monocultures

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Wrigley, R. C.

    1985-01-01

    Airborne Imaging Spectrometer (AIS) data were acquired over an agricultural area in eastern San Joaquin County, California in July, 1984. Cover type information was subsequently collected for all fields along this flight line. The lack of detailed ground data on individual fields, however, limited AIS data analysis to a qualitative comparison of the spectral reflectance curves for a total of nine cover types. Based on this analysis, it appears that cover types with a positive slope in the 1550 to 1700 nm region have a higher spectral response in the 1200 to 1300 nm region compared to those cover types with a negative slope in the 1550 to 1700 nm region. Within cover type, spectral variability was also found to be greater than that between cover types. Given the lack of additional field data, the reason for these differences is a matter of speculation.

  14. Formal verification of AI software

    NASA Technical Reports Server (NTRS)

    Rushby, John; Whitehurst, R. Alan

    1989-01-01

    The application of formal verification techniques to Artificial Intelligence (AI) software, particularly expert systems, is investigated. Constraint satisfaction and model inversion are identified as two formal specification paradigms for different classes of expert systems. A formal definition of consistency is developed, and the notion of approximate semantics is introduced. Examples are given of how these ideas can be applied in both declarative and imperative forms.

  15. On-board processing concepts for future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Brandon, W. T. (Editor); White, B. E. (Editor)

    1980-01-01

    The initial definition of on-board processing for an advanced satellite communications system to service domestic markets in the 1990's is discussed. An exemplar system with both RF on-board switching and demodulation/remodulation baseband processing is used to identify important issues related to system implementation, cost, and technology development. Analyses of spectrum-efficient modulation, coding, and system control techniques are summarized. Implementations for an RF switch and baseband processor are described. Among the major conclusions listed is the need for high gain satellites capable of handling tens of simultaneous beams for the efficient reuse of the 2.5 GHz 30/20 frequency band. Several scanning beams are recommended in addition to the fixed beams. Low power solid state 20 GHz GaAs FET power amplifiers in the 5W range and a general purpose digital baseband processor with gigahertz logic speeds and megabits of memory are also recommended.

  16. Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.

  17. Onboard hydrogen generation for automobiles

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  18. Preliminary Evaluation of AIS Spectra Along a Topographic/moisture Gradient in the Nebraska Sandhills

    NASA Technical Reports Server (NTRS)

    Runquist, D. C.

    1985-01-01

    Six spectral plots, each summarizing single-pixel reflectance for 128 channels of Airborne Imaging Spectrometer (AIS) data, were examined. The six sample pixels were located along a topographic/moisture gradient from lake surface to dune top in the Nebraska Sandhills. AIS spectra for various moisture regimes/vegetative zones appear quite logical, with a general positive relationship between increasing elevation (i.e., decreasing access of plant roots to water) and increasing reflectance in the spectral regions diagnostic of leaf-water content (i.e., bands centered on 1.65 and 2.20 microns).

  19. Mapping AIS coverage for trusted surveillance

    NASA Astrophysics Data System (ADS)

    Lapinski, Anna-Liesa S.; Isenor, Anthony W.

    2010-10-01

    Automatic Identification System (AIS) is an unattended vessel reporting system developed for collision avoidance. Shipboard AIS equipment automatically broadcasts vessel positional data at regular intervals. The real-time position and identity data from a vessel is received by other vessels in the area thereby assisting with local navigation. As well, AIS broadcasts are beneficial to those concerned with coastal and harbour security. Land-based AIS receiving stations can also collect the AIS broadcasts. However, reception at the land station is dependent upon the ship's position relative to the receiving station. For AIS to be used as a trusted surveillance system, the characteristics of the AIS coverage area in the vicinity of the station (or stations) should be understood. This paper presents some results of a method being investigated at DRDC Atlantic, Canada) to map the AIS coverage characteristics of a dynamic AIS reception network. The method is shown to clearly distinguish AIS reception edges from those edges caused by vessel traffic patterns. The method can also be used to identify temporal changes in the coverage area, an important characteristic for local maritime security surveillance activities. Future research using the coverage estimate technique is also proposed to support surveillance activities.

  20. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia (STS-87) mid-deck, Leonid Kadenyuk, Ukrainian payload specialist, works with the Brassica rapa plants being grown for the Collaborative Ukrainian Experiment (CUE). Kadenyuk joined five astronauts for 16-days in Earth-orbit in support of the United States Microgravity Payload 4 (USMP-4) mission.

  1. Onboard Experiment Data Support Facility

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An onboard array structure has been devised for end to end processing of data from multiple spaceborne sensors. The array constitutes sets of programmable pipeline processors whose elements perform each assigned function in 0.25 microseconds. This space shuttle computer system can handle data rates from a few bits to over 100 megabits per second.

  2. AI techniques for a space application scheduling problem

    NASA Technical Reports Server (NTRS)

    Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.

    1991-01-01

    Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).

  3. The Design and Performance Characteristics of a Cellular Logic 3-D Image Classification Processor.

    DTIC Science & Technology

    1981-04-01

    number) Pattern Recognition Cellular Automata " Cellular Logic Target Classificatio4 1Neighborhood Transformation Image Processing Laser Radar iASSTRACT...AND PERFORMANCE CHARACTERISTICS OF A CELLULAR LOGIC 3-D IMAGE CLASSIFICATION PROCESSOR 1 &/. , DISSERTATION AFIT/DS/EE/81-1 Lawrence A. Ankeney... CELLULAR LOGIC 3-D IMAGE - -- A&I PRCSRDTIC T B CLASSIFICATION PROCESSOR Unannounced 0 Justificatio b yD t i u i n Lawrence A. Ankeney, B.S., M.S

  4. USACE AIS Transmit Technical Support Summary Report

    DTIC Science & Technology

    2014-09-01

    USACE AIS Transmit Technical Support Summary Report Distribution Statement A: Approved for public release; distribution is unlimited...September 2014 Report No. CD-D-09-15 USACE AIS Transmit Technical Support Summary Report ii UNCLAS//Public | CG-926 RDC | I. Gonin et al. Public...States Coast Guard Research & Development Center 1 Chelsea Street New London, CT 06320 USACE AIS Transmit Technical Support Summary Report

  5. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  6. STS-65 onboard: IML-2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Onboard Space Shuttle Columbia (STS-65) Mission specialist Leroy Chiao is seen in the International Microgravity Laboratory 2 (IML-2) spacelab science moduel in front of Rack 3 and above center aisle equipment. Chiao has just made an observation of the goldfish container (silver apparatus on left beween his right hand and knee) . The Rack 3 Aquatic Animal Experiment Unit (AAEU) also contains Medaka and newts. Chiao joined five other NASA astronauts and a Japanese payload specialist for two weeks of experimenting.

  7. HypsIRI On-Board Science Data Processing

    NASA Technical Reports Server (NTRS)

    Flatley, Tom

    2010-01-01

    Topics include On-board science data processing, on-board image processing, software upset mitigation, on-board data reduction, on-board 'VSWIR" products, HyspIRI demonstration testbed, and processor comparison.

  8. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  9. JGOMAS: New Approach to AI Teaching

    ERIC Educational Resources Information Center

    Barella, A.; Valero, S.; Carrascosa, C.

    2009-01-01

    This paper presents a new environment for teaching practical work in AI subjects. The main purpose of this environment is to make AI techniques more appealing to students and to facilitate the use of the toolkits which are currently widely used in research and development. This new environment has a toolkit for developing and executing agents,…

  10. The Relevance of AI Research to CAI.

    ERIC Educational Resources Information Center

    Kearsley, Greg P.

    This article provides a tutorial introduction to Artificial Intelligence (AI) research for those involved in Computer Assisted Instruction (CAI). The general theme is that much of the current work in AI, particularly in the areas of natural language understanding systems, rule induction, programming languages, and socratic systems, has important…

  11. IVIDIL experiment onboard the ISS

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina

    2010-09-01

    The experiment IVIDIL (Influence of Vibrations on Diffusion in Liquids) is scheduled to be performed in forthcoming fall 2009 onboard the ISS, inside the SODI instrument mounted in the Glovebox on the ESA Columbus module. It is planned to carry out 39 experimental runs with each of them lasting 18 h. The objective of the experiment is threefold. After each space experiment there is a discussion about the role of onboard g-jitters. One objective is to identify the limit level of vibrations below which g-jitter does not play a role for onboard experiments. This objective will be fulfilled by observing diffusive process under different imposed controlled vibrations. Second, to perform precise measurements of diffusion and thermodiffusion coefficients for two binary mixtures in the absence of buoyant convection. The measured values can be used as standards for ground experiments. Two aqueous solutions will be used as test fluids: two different concentrations of water-isopropanol (IPA) with positive and negative Soret effect. This objective also includes studying the influence of vibrations on the measured values of diffusion and thermodiffusion coefficients. Finally, to investigate vibration-induced convection and, particularly, heat and mass transfer under vibrations. Three International Teams are involved in the preparation of the experiment ( Shevtsova et al., 2007). ULB (MRC) is responsible for all aspects related to IVIDIL experimental definition, theoretical and numerical modeling and coordination of the entire project. Team from Ryerson University (led by Z. Saghir), Ontario, Canada and Russian team from Perm, ICMM UB RAS (led by T. Lyubimova) provide theoretical and numerical support. As being the coordinator, the author will present a general description of the experiment and outline some results obtained by MRC, ULB researchers only, i.e. by A. Mialdun, D. Melnikov, I. Ryzhkov, Yu. Gaponenko.

  12. Artificial intelligence. Fears of an AI pioneer.

    PubMed

    Russell, Stuart; Bohannon, John

    2015-07-17

    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.

  13. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  14. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  15. Onboard multichannel demultiplexer/demodulator

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Sayegh, Soheil

    1987-01-01

    An investigation performed for NASA LeRC by COMSAT Labs, of a digitally implemented on-board demultiplexer/demodulator able to process a mix of uplink carriers of differing bandwidths and center frequencies and programmable in orbit to accommodate variations in traffic flow is reported. The processor accepts high speed samples of the signal carried in a wideband satellite transponder channel, processes these as a composite to determine the signal spectrum, filters the result into individual channels that carry modulated carriers and demodulate these to recover their digital baseband content. The processor is implemented by using forward and inverse pipeline Fast Fourier Transformation techniques. The recovered carriers are then demodulated using a single digitally implemented demodulator that processes all of the modulated carriers. The effort has determined the feasibility of the concept with multiple TDMA carriers, identified critical path technologies, and assessed the potential of developing these technologies to a level capable of supporting a practical, cost effective on-board implementation. The result is a flexible, high speed, digitally implemented Fast Fourier Transform (FFT) bulk demultiplexer/demodulator.

  16. On-board satellite radionavigation systems

    NASA Astrophysics Data System (ADS)

    Kudriavtsev, Igor'v.; Mishchenko, Igor'n.; Volynkin, Anatolii I.; Shebshaevich, V. S.; Dubinko, Iu. S.

    Recent developments in the radionavigation equipment of ships are reviewed with particular reference to on-board satellite radionavigation systems. The Navstar navigation network is briefly characterized, and the general principles underlying the design of on-board navigation systems are reviewed. Particular attention is given to the software of on-board satellite navigation systems and their noise immunity characteristics. The accuracy of a navigation session is estimated, and some aspects of navigation equipment testing are discussed.

  17. DNA logic gates.

    PubMed

    Okamoto, Akimitsu; Tanaka, Kazuo; Saito, Isao

    2004-08-04

    A conceptually new logic gate based on DNA has been devised. Methoxybenzodeazaadenine ((MD)A), an artificial nucleobase which we recently developed for efficient hole transport through DNA, formed stable base pairs with T and C. However, a reasonable hole-transport efficiency was observed in the reaction for the duplex containing an (MD)A/T base pair, whereas the hole transport was strongly suppressed in the reaction using a duplex where the base opposite (MD)A was replaced by C. The influence of complementary pyrimidines on the efficiency of hole transport through (MD)A was quite contrary to the selectivity observed for hole transport through G. The orthogonality of the modulation of these hole-transport properties by complementary pyrimidine bases is promising for the design of a new molecular logic gate. The logic gate system was executed by hole transport through short DNA duplexes, which consisted of the "logic gate strand", containing hole-transporting nucleobases, and the "input strand", containing pyrimidines which modulate the hole-transport efficiency of logic bases. A logic gate strand containing multiple (MD)A bases in series provided the basis for a sharp AND logic action. On the other hand, for OR logic and combinational logic, conversion of Boolean expressions to standard sum-of-product (SOP) expressions was indispensable. Three logic gate strands were designed for OR logic according to each product term in the standard SOP expression of OR logic. The hole-transport efficiency observed for the mixed sample of logic gate strands exhibited an OR logic behavior. This approach is generally applicable to the design of other complicated combinational logic circuits such as the full-adder.

  18. An Intelligent System for Monitoring the Microgravity Environment Quality On-Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Lin, Paul P.; Jules, Kenol

    2002-01-01

    An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.

  19. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  20. Mapping Fishing Effort through AIS Data

    PubMed Central

    Natale, Fabrizio; Gibin, Maurizio; Alessandrini, Alfredo; Vespe, Michele; Paulrud, Anton

    2015-01-01

    Several research initiatives have been undertaken to map fishing effort at high spatial resolution using the Vessel Monitoring System (VMS). An alternative to the VMS is represented by the Automatic Identification System (AIS), which in the EU became compulsory in May 2014 for all fishing vessels of length above 15 meters. The aim of this paper is to assess the uptake of the AIS in the EU fishing fleet and the feasibility of producing a map of fishing effort with high spatial and temporal resolution at European scale. After analysing a large AIS dataset for the period January-August 2014 and covering most of the EU waters, we show that AIS was adopted by around 75% of EU fishing vessels above 15 meters of length. Using the Swedish fleet as a case study, we developed a method to identify fishing activity based on the analysis of individual vessels’ speed profiles and produce a high resolution map of fishing effort based on AIS data. The method was validated using detailed logbook data and proved to be sufficiently accurate and computationally efficient to identify fishing grounds and effort in the case of trawlers, which represent the largest portion of the EU fishing fleet above 15 meters of length. Issues still to be addressed before extending the exercise to the entire EU fleet are the assessment of coverage levels of the AIS data for all EU waters and the identification of fishing activity in the case of vessels other than trawlers. PMID:26098430

  1. Rapid Diagnostics of Onboard Sequences

    NASA Technical Reports Server (NTRS)

    Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.

    2012-01-01

    Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command

  2. Reversible logic for supercomputing.

    SciTech Connect

    DeBenedictis, Erik P.

    2005-05-01

    This paper is about making reversible logic a reality for supercomputing. Reversible logic offers a way to exceed certain basic limits on the performance of computers, yet a powerful case will have to be made to justify its substantial development expense. This paper explores the limits of current, irreversible logic for supercomputers, thus forming a threshold above which reversible logic is the only solution. Problems above this threshold are discussed, with the science and mitigation of global warming being discussed in detail. To further develop the idea of using reversible logic in supercomputing, a design for a 1 Zettaflops supercomputer as required for addressing global climate warming is presented. However, to create such a design requires deviations from the mainstream of both the software for climate simulation and research directions of reversible logic. These deviations provide direction on how to make reversible logic practical.

  3. Status of AIS Frequencies Nationally and Internationally: Improving Satellite Detection of AIS

    DTIC Science & Technology

    2008-09-04

    International Telecommunications Union? • ITU 2007 World Radio Conference – Authorized AIS 1 & AIS 2 as satellite uplink frequencies, on secondary basis...Collision Rate “AIS as is” How do results correlate with predictions? Satellite Detection Statistics with Correlation Processing – ITU -R Rep M.2084 (JSC...Status of AIS Frequencies  Nationally and  Internationally: Improving  satellite  detection of AIS CG‐622 | Joe Hersey Chief, Spectrum Mgt Div USCG

  4. On-board sample cleaver.

    PubMed

    Månsson, Martin; Claesson, Thomas; Karlsson, Ulf O; Tjernberg, Oscar; Pailhés, Stéphane; Chang, Johan; Mesot, Joël; Shi, Ming; Patthey, Luc; Momono, Naoki; Oda, Migaku; Ido, Masayuki

    2007-07-01

    An on-board sample cleaver has been developed in order to cleave small and hard-to-cleave samples. To acquire good cleaves from rigid samples the alignment of the cleaving blade with respect to the internal crystallographic planes is crucial. To have the opportunity to mount the sample and align it to the blade ex situ has many advantages. The design presented has allowed us to cleave very tiny and rigid samples, e.g., the high-temperature superconductor La((2-x))Sr(x)CuO(4). Further, in this design the sample and the cleaver will have the same temperature, allowing us to cleave and keep the sample at low temperature. This is a big advantage over prior cleaver systems. As a result, better surfaces and alignments can be realized, which considerably simplifies and improves the experiments.

  5. Enhanced AIS receiver design for satellite reception

    NASA Astrophysics Data System (ADS)

    Clazzer, Federico; Lázaro, Francisco; Plass, Simon

    2016-12-01

    The possibility to detect Automatic Identification System (AIS) messages from low earth orbit (LEO) satellites paves the road for a plurality of new and unexplored services. Besides worldwide tracking of vessels, maritime traffic monitoring, analysis of vessel routes employing big data, and oceans monitoring are just few of the fields, where satellite-aided AIS is beneficial. Designed for ship-to-ship communication and collision avoidance, AIS satellite reception performs poorly in regions with a high density of vessels. This calls for the development of advanced satellite AIS receivers able to improve the decoding capabilities. In this context, our contribution focuses on the introduction of a new enhanced AIS receiver design and its performance evaluation. The enhanced receiver makes use of a coherent receiver for the low signal-to-noise ratio (SNR) region, while for medium to high SNRs, a differential Viterbi receiver is used. Additional novelty of our work is in the exploitation of previously decoded packets from one vessel that is still under the LEO reception range, to improve the vessel detection probability. The assessment of the performance against a common receiver is done making the use of a simple and tight model of the medium access (MAC) layer and the multi-packet reception (MPR) matrix for physical layer (PHY) representation. Performance results show the benefits of such enhanced receiver, especially when it is bundled with successive interference cancellation (SIC).

  6. Optical Logic Gates

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.; Dowler, W. L.

    1985-01-01

    Logic gates for light signals constructed from combinations of prisms, polarizing plates, and quarterwave plates. Optical logic gate performs elementary logic operation on light signals received along two optical fibers. Whether gate performs OR function or exclusive-OR function depends on orientation of analyzer. Nonbinary truth tables also obtained by rotating polarizer or analyzer to other positions or inserting other quarter-wave plates.

  7. Digital Holographic Logic

    NASA Technical Reports Server (NTRS)

    Preston, K., Jr.

    1972-01-01

    The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.

  8. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  9. Ferrite logic reliability study

    NASA Technical Reports Server (NTRS)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  10. Onboard Short Term Plan Viewer

    NASA Technical Reports Server (NTRS)

    Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason

    2011-01-01

    Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.

  11. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  12. Reconfigurable modular computer networks for spacecraft on-board processing

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.

  13. Application of Artificial Intelligence (AI) programming techniques to tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) programming techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined and example rules are presented. The results of tests to evaluate the performance of the TDG against a version of AML and against human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements.

  14. Fundamentals of Digital Logic.

    ERIC Educational Resources Information Center

    Noell, Monica L.

    This course is designed to prepare electronics personnel for further training in digital techniques, presenting need to know information that is basic to any maintenance course on digital equipment. It consists of seven study units: (1) binary arithmetic; (2) boolean algebra; (3) logic gates; (4) logic flip-flops; (5) nonlogic circuits; (6)…

  15. Programmable Logic Controllers.

    ERIC Educational Resources Information Center

    Insolia, Gerard; Anderson, Kathleen

    This document contains a 40-hour course in programmable logic controllers (PLC), developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The 10 units of the course cover the following: (1) introduction to programmable logic controllers; (2) DOS primer; (3) prerequisite…

  16. Promoting Logical Ability

    ERIC Educational Resources Information Center

    Osborne, Alan R.

    1973-01-01

    This article reports one search for factors or conditions shaping the child's growth in logical ability. The search indicated the existence of a relationship between the quantity of teacher talk that contains the language of logic and the change exhibited by students. Implications for classroom practice are discussed. (JA)

  17. Logic via Computer Programming.

    ERIC Educational Resources Information Center

    Wieschenberg, Agnes A.

    This paper proposed the question "How do we teach logical thinking and sophisticated mathematics to unsophisticated college students?" One answer among many is through the writing of computer programs. The writing of computer algorithms is mathematical problem solving and logic in disguise and it may attract students who would otherwise stop…

  18. Logic Programming: PROLOG.

    ERIC Educational Resources Information Center

    Lopez, Antonio M., Jr.

    1989-01-01

    Provides background material on logic programing and presents PROLOG as a high-level artificial intelligence programing language that borrows its basic constructs from logic. Suggests the language is one which will help the educator to achieve various goals, particularly the promotion of problem solving ability. (MVL)

  19. Microelectromechanical reprogrammable logic device

    NASA Astrophysics Data System (ADS)

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-03-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  20. Microelectromechanical reprogrammable logic device

    PubMed Central

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-01-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295

  1. Regulatory Conformance Checking: Logic and Logical Form

    ERIC Educational Resources Information Center

    Dinesh, Nikhil

    2010-01-01

    We consider the problem of checking whether an organization conforms to a body of regulation. Conformance is studied in a runtime verification setting. The regulation is translated to a logic, from which we synthesize monitors. The monitors are evaluated as the state of an organization evolves over time, raising an alarm if a violation is…

  2. On-board Data Mining

    NASA Astrophysics Data System (ADS)

    Tanner, Steve; Stein, Cara; Graves, Sara J.

    Networks of remote sensors are becoming more common as technology improves and costs decline. In the past, a remote sensor was usually a device that collected data to be retrieved at a later time by some other mechanism. This collected data were usually processed well after the fact at a computer greatly removed from the in situ sensing location. This has begun to change as sensor technology, on-board processing, and network communication capabilities have increased and their prices have dropped. There has been an explosion in the number of sensors and sensing devices, not just around the world, but literally throughout the solar system. These sensors are not only becoming vastly more sophisticated, accurate, and detailed in the data they gather but they are also becoming cheaper, lighter, and smaller. At the same time, engineers have developed improved methods to embed computing systems, memory, storage, and communication capabilities into the platforms that host these sensors. Now, it is not unusual to see large networks of sensors working in cooperation with one another. Nor does it seem strange to see the autonomous operation of sensorbased systems, from space-based satellites to smart vacuum cleaners that keep our homes clean and robotic toys that help to entertain and educate our children. But access to sensor data and computing power is only part of the story. For all the power of these systems, there are still substantial limits to what they can accomplish. These include the well-known limits to current Artificial Intelligence capabilities and our limited ability to program the abstract concepts, goals, and improvisation needed for fully autonomous systems. But it also includes much more basic engineering problems such as lack of adequate power, communications bandwidth, and memory, as well as problems with the geolocation and real-time georeferencing required to integrate data from multiple sensors to be used together.

  3. The onboard control system of "Navigator" platform

    NASA Astrophysics Data System (ADS)

    Syrov, A. S.; Smirnov, V. V.; Sokolov, V. N.; Iodko, G. S.; Mischikhin, V. V.; Kosobokov, V. N.; Shatskii, M. A.; Dobrynin, D. A.

    2016-12-01

    A brief description of the design concept, structure and performance of the onboard control system (AOCS) of the "Navigator" satellite platform, on the basis of which the spacecraft "Electro-L' and "Spektr-R" are designed, is presented. The test-flight results of the AOCS attitude accuracy are given. Approaches to the further development of the onboard control equipment for advanced spacecraft are determined and presented.

  4. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  5. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    PubMed

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  6. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    PubMed Central

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  7. AI in space: Past, present, and possible futures

    NASA Technical Reports Server (NTRS)

    Rose, Donald D.; Post, Jonathan V.

    1992-01-01

    While artificial intelligence (AI) has become increasingly present in recent space applications, new missions being planned will require even more incorporation of AI techniques. In this paper, we survey some of the progress made to date in implementing such programs, some current directions and issues, and speculate about the future of AI in space scenarios. We also provide examples of how thinkers from the realm of science fiction have envisioned AI's role in various aspects of space exploration.

  8. Logic Programming in LISP.

    DTIC Science & Technology

    1981-01-01

    79/7, Imperial College, University of London. [Colmerauer 1973] Colmerauer, A., Un Systeme de Communication Homme - machine Kanoui, H., en Francais...any of the LOGIC interface functions (,-, THE, ALL, ANY, etc.) can be obtained by invoking the command (DOC fn), where "fn" is the name of the function...well as for output) illustrates one more way in which the LOGLISP programmer can fruitfully exploit the interface between LOGIC and LISP. GIVE is just a

  9. Event Logic Assistant (Elan)

    DTIC Science & Technology

    2008-07-14

    as a basis for Phase II research. 2 Background 2.1 Event logic 2.1.1 Event structures Intuitively, an event structure is an abstract algebraic ...Theoretical Computer Science, 149:257–298, 1995. [2] Uri Abraham. Models for Concurrency, volume 11 of Algebra , Logic and Applications Series. Gordon...the ordering of events in a distributed system. Comms. ACM, 21(7):558–65, 1978. [28] Leslie Lamport. Hybrid systems in TLA+. In Grossman , Nerode, Ravn

  10. Deploying Embodied AI into Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Burden, David J. H.

    The last two years have seen the start of commercial activity within virtual worlds. Unlike computer games where Non-Player-Character avatars are common, in most virtual worlds they are the exception — and until recently in Second Life they were non-existent. However there is real commercial scope for Als in these worlds — in roles from virtual sales staff and tutors to personal assistants. Deploying an embodied AI into a virtual world offers a unique opportunity to evaluate embodied Als, and to develop them within an environment where human and computer are on almost equal terms. This paper presents an architecture being used for the deployment of chatbot driven avatars within the Second Life virtual world, looks at the challenges of deploying an AI within such a virtual world, the possible implications for the Turing Test, and identifies research directions for the future.

  11. Why Don't Accounting Students like AIS?

    ERIC Educational Resources Information Center

    Vatanasakdakul, Savanid; Aoun, Chadi

    2011-01-01

    Purpose: The demand for Accounting Information Systems (AIS) knowledge has increased exponentially over the past two decades, but studying AIS has not proved easy for many accounting students. The aim of the study is to understand the challenges accounting students face in studying AIS through investigation of the factors which may be contributing…

  12. The AI Interdisciplinary Context: Single or Multiple Research Bases?

    ERIC Educational Resources Information Center

    Khawam, Yves J.

    1992-01-01

    This study used citation analysis to determine whether the disciplines contributing to the journal literature of artificial intelligence (AI)--philosophy, psychology, linguistics, computer science, and engineering--share a common AI research base. The idea that AI consists of a completely interdisciplinary endeavor was refuted. (MES)

  13. 47 CFR 80.393 - Frequencies for AIS stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequencies for AIS stations. 80.393 Section 80.393 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Ais Stations § 80.393 Frequencies for AIS stations....

  14. Tactical AI in Real Time Strategy Games

    DTIC Science & Technology

    2015-03-26

    evolutionary algorithms (MOEAs) in this tactical decision making problem allows an AI agent to make fast , effective solutions that do not require modification...ranged attacks. The terran army operates most similarly to Warcraft. The player must still balance food (supply depots), and two other resources (minerals...types of methods analyze the current status of enemy units and makes a decision based on a single metric. These techniques are very fast , but are open to

  15. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.

  16. An intelligent, onboard signal processing payload concept

    SciTech Connect

    Shriver, P. M.; Harikumar, J.; Briles, S. C.; Gokhale, M.

    2003-01-01

    Our approach to onboard processing will enable a quicker return and improved quality of processed data from small, remote-sensing satellites. We describe an intelligent payload concept which processes RF lightning signal data onboard the spacecraft in a power-aware manner. Presently, onboard processing is severely curtailed due to the conventional management of limited resources and power-unaware payload designs. Delays of days to weeks are commonly experienced before raw data is received, processed into a human-usable format, and finally transmitted to the end-user. We enable this resource-critical technology of onboard processing through the concept of Algorithm Power Modulation (APM). APM is a decision process used to execute a specific software algorithm, from a suite of possible algorithms, to make the best use of the available power. The suite of software algorithms chosen for our application is intended to reduce the probability of false alarms through postprocessing. Each algorithm however also has a cost in energy usage. A heuristic decision tree procedure is used which selects an algorithm based on the available power, time allocated, algorithm priority, and algorithm performance. We demonstrate our approach to power-aware onboard processing through a preliminary software simulation.

  17. SDI satellite autonomy using AI and Ada

    NASA Technical Reports Server (NTRS)

    Fiala, Harvey E.

    1990-01-01

    The use of Artificial Intelligence (AI) and the programming language Ada to help a satellite recover from selected failures that could lead to mission failure are described. An unmanned satellite will have a separate AI subsystem running in parallel with the normal satellite subsystems. A satellite monitoring subsystem (SMS), under the control of a blackboard system, will continuously monitor selected satellite subsystems to become alert to any actual or potential problems. In the case of loss of communications with the earth or the home base, the satellite will go into a survival mode to reestablish communications with the earth. The use of an AI subsystem in this manner would have avoided the tragic loss of the two recent Soviet probes that were sent to investigate the planet Mars and its moons. The blackboard system works in conjunction with an SMS and a reconfiguration control subsystem (RCS). It can be shown to be an effective way for one central control subsystem to monitor and coordinate the activities and loads of many interacting subsystems that may or may not contain redundant and/or fault-tolerant elements. The blackboard system will be coded in Ada using tools such as the ABLE development system and the Ada Production system.

  18. Onboard tagging for smart medical devices.

    PubMed

    Li, Kejia; Warren, Steve

    2011-01-01

    Most medical devices are 'dumb:' their role is to acquire, display, and forward data. They make few if any operational decisions based on those data. Onboard tagging is a means whereby a device can embed information about itself, its data, and the sensibility of those data into its data stream. This diagnostic add-on offers a move toward 'smart' devices that will have the ability to affect changes in operational modes based on onboard contextual decision making, such as decisions to avoid needless wireless transmission of corrupt data. This paper presents a description of three types of onboard tags that relate to device hardware (type I tag), signal statistics (type II tag), and signal viability for the intended application (type III tag). A custom wireless pulse oximeter is presented as a use case to show how type II and III tags that convey photoplethysmogram (PPG) statistics and usability specifiers can be calculated and embedded into the data stream without degrading performance.

  19. Spacecraft on-board SAR processing technology

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.; Arens, W. E.

    1987-01-01

    This paper provides an assessment of the on-board SAR processing technology for Eos-type missions. The proposed Eos SAR sensor and flight data system are introduced, and the SAR processing requirements are described. The SAR on-board SAR processor architecture selection is discussed, and a baseline processor architecture using a frequency-domain processor for range correlation and a modular fault-tolerant VLSI time-domain parallel array for azimuth correlation are described. The mass storage and VLSI technologies needed for implementing the proposed SAR processing are assessed. It is shown that acceptable processor power and mass characteristics should be feasible for Eos-type applications. A proposed development strategy for the on-board SAR processor is presented.

  20. A Modal Logic Framework for an A.I. Planning System.

    DTIC Science & Technology

    1980-07-01

    STRIPS with MACROPS attempts to cope with this lack of vision by remembering what was previously a successful path, however, there is no problem in...doing the similar thing with the GC planner and STRIPS still lacks any vision concerning the application of concatenations of MACROPS . Thus, even in a

  1. Laboratory measurements of on-board subsystems

    NASA Technical Reports Server (NTRS)

    Nuspl, P. P.; Dong, G.; Seran, H. C.

    1991-01-01

    Good progress was achieved on the test bed for on-board subsystems for future satellites. The test bed is for subsystems developed previously. Four test setups were configured in the INTELSAT technical labs: (1) TDMA on-board modem; (2) multicarrier demultiplexer demodulator; (3) IBS/IDR baseband processor; and (4) baseband switch matrix. The first three series of tests are completed and the tests on the BSM are in progress. Descriptions of test setups and major test results are included; the format of the presentation is outlined.

  2. Automation of On-Board Flightpath Management

    NASA Technical Reports Server (NTRS)

    Erzberger, H.

    1981-01-01

    The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.

  3. Using Onboard Telemetry for MAVEN Orbit Determination

    NASA Technical Reports Server (NTRS)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  4. Application of Artificial Intelligence (AI) Programming Techniques to Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.

  5. Observation sequences and onboard data processing of Planet-C

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  6. Diagnosable structured logic array

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  7. Apolipoprotein AI and Transthyretin as Components of Amyloid Fibrils in a Kindred with apoAI Leu178His Amyloidosis

    PubMed Central

    de Sousa, Mónica Mendes; Vital, Claude; Ostler, Dominique; Fernandes, Rui; Pouget-Abadie, Jean; Carles, Dominique; Saraiva, Maria João

    2000-01-01

    We found a new C-terminal amyloidogenic variant of apolipoprotein AI (apoAI), Leu178His in a French kindred, associated with cardiac and larynx amyloidosis and skin lesions with onset during the fourth decade. This single-point mutation in exon 4 of the apoAI gene was detected by DNA sequencing of polymerase chain reaction amplified material and restriction fragment length polymorphism analysis in two siblings. Blood, larynx, and skin biopsies were available from one sibling. Anti-apoAI immunoblotting of isoelectric focusing of plasma showed a +1 alteration in the charge of the protein. Extraction of fibrils from the skin biopsy revealed both full-length and N-terminal fragments of apoAI and transthyretin (TTR). ApoAI and TTR co-localized in amyloid deposits as demonstrated by immunohistochemistry. The present report, together with the first recently described C-terminal amyloidogenic variant of apoAI, Arg173Pro, shows that amyloidogenicity of apoAI is not a feature exclusive to N-terminal variants. The most striking characteristic of amyloid fibrils in Leu178His is that wild-type TTR is co-localized with apoAI in the fibrils. We have previously determined that a fraction of plasma TTR circulates in plasma bound to high-density lipoprotein and that this interaction occurs through binding to apoAI. Therefore we hypothesize that nonmutated TTR might influence deposition of apoAI as amyloid. PMID:10854214

  8. Apolipoprotein AI and transthyretin as components of amyloid fibrils in a kindred with apoAI Leu178His amyloidosis.

    PubMed

    de Sousa, M M; Vital, C; Ostler, D; Fernandes, R; Pouget-Abadie, J; Carles, D; Saraiva, M J

    2000-06-01

    We found a new C-terminal amyloidogenic variant of apolipoprotein AI (apoAI), Leu178His in a French kindred, associated with cardiac and larynx amyloidosis and skin lesions with onset during the fourth decade. This single-point mutation in exon 4 of the apoAI gene was detected by DNA sequencing of polymerase chain reaction amplified material and restriction fragment length polymorphism analysis in two siblings. Blood, larynx, and skin biopsies were available from one sibling. Anti-apoAI immunoblotting of isoelectric focusing of plasma showed a +1 alteration in the charge of the protein. Extraction of fibrils from the skin biopsy revealed both full-length and N-terminal fragments of apoAI and transthyretin (TTR). ApoAI and TTR co-localized in amyloid deposits as demonstrated by immunohistochemistry. The present report, together with the first recently described C-terminal amyloidogenic variant of apoAI, Arg173Pro, shows that amyloidogenicity of apoAI is not a feature exclusive to N-terminal variants. The most striking characteristic of amyloid fibrils in Leu178His is that wild-type TTR is co-localized with apoAI in the fibrils. We have previously determined that a fraction of plasma TTR circulates in plasma bound to high-density lipoprotein and that this interaction occurs through binding to apoAI. Therefore we hypothesize that nonmutated TTR might influence deposition of apoAI as amyloid.

  9. Fuel cells going on-board

    NASA Astrophysics Data System (ADS)

    Sattler, Gunter

    Fuel cells provide great potential for use on-board ships. Possible fields of application for fuel cells on merchant ships and naval surface ships can generally be summarised as: (1) emergency power supply; (2) electric energy generation, especially in waters and harbours prescribing particular environmental regulations; (3) small power output for propulsion at special operating modes (e.g., very quiet run); and (4) electric power generation for the ship's network and, if required, the propulsion network on vessels equipped with electric power plants (e.g., naval vessels as all-electric ships, AES). In addition, the fuel cell has special importance for realising air-independent propulsion (AIP) on submarines. In the 1970s, the PEMFC system was chosen for AIP on German Navy submarines. Subsequently, this system underwent advanced development up to series maturity including storage on-board of the energy needed. This publication illustrates worldwide activities in this field, taking the various fuel cell system requirements for operation on-board merchant ships, naval surface ships and submarines into consideration. The focus is especially on AIP systems for German submarines because these have already gone into series production. Further developments are discussed which aim to improve the efficiency of hydrogen storage or to generate hydrogen on-board.

  10. An Integrated Architecture for Onboard Spacecraft

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Stakem, Patrick H.; Flatley, Thomas P.; Hines, Tonjua M.

    1999-01-01

    As increasingly complex scientific and environmental observation spacecraft are deployed, the burden on the downlink assets, and ground-based systems complexity and cost is becoming a major problem. Already, the limitations of communications bandwidth and processing throughput limit the science data gathering, both in volume and in rate. This poses a dilemma to the scientist experimenter forcing choices between data collection and bandwidth/processing/archiving. Advances in ground based processing and space-to-Earth links have fallen behind the requirements for observation data, at increasing rates, over the last few decades. As NASA achieves its 40th anniversary, the ability to observe and capture phenomena of theoretical and practical interest to life on Earth far outstrips the ability to transfer, process, or store these data. NASA recognizes the need to invest on technological advancements that will enable both the space and ground systems to address the limitations. Spacecraft onboard computing power is a clear one. The capability of creating data products onboard the spacecraft adds a new level of flexibility to address the more demanding observation needs. Current spacecraft computing power is limited and incapable of addressing the needs of the new generation of observation satellites because extensive onboard data processing is required. Traditional spacecraft architectures only collect, package, and transmit to Earth the data acquired by multiple instruments. Conversely, the experience on developing ground data systems shows the need for high performance computing systems to process and create information from the instrumentation data. The expectation is that supercomputing technology is required to enable spacecraft to create information onboard. Moving supercomputing capability onboard spacecraft requires an approach that considers an integrated data architecture. Otherwise, it may simply convert a compute-bound problem into a communications bound

  11. AIS spectra of desert shrub canopies

    NASA Technical Reports Server (NTRS)

    Murray, R.; Isaacson, D. L.; Schrumpf, B. J.; Ripple, W. J.; Lewis, A. J.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected 30 August 1985 from a desert shrub community in central Oregon. Spectra from artificial targets placed on the test site and from bare soil, big sagebrush (Artemesia tridentata wyomingensis), silver sagebrush (Artemesia cana bolander), and exposed volcanic rocks were studied. Spectral data from grating position 3 (tree mode) were selected from 25 ground positions for analysis by Principal Factor Analysis (PFA). In this grating position, as many as six factors were identified as significant in contributing to spectral structure. Channels 74 through 84 (tree mode) best characterized between-class differences. Other channels were identified as nondiscriminating and as associated with such errors as excessive atmospheric absorption and grating positin changes. The test site was relatively simple with the two species (A. tridentata and A. cana) representing nearly 95% of biomass and with only two mineral backgrounds, a montmorillonitic soil and volcanic rocks. If, as in this study, six factors of spectral structure can be extracted from a single grating position from data acquired over a simple vegetation community, then AIS data must be considered rich in information-gathering potential.

  12. AI techniques in geomagnetic storm forecasting

    NASA Astrophysics Data System (ADS)

    Lundstedt, Henrik

    This review deals with how geomagnetic storms can be predicted with the use of Artificial Intelligence (AI) techniques. Today many different Al techniques have been developed, such as symbolic systems (expert and fuzzy systems) and connectionism systems (neural networks). Even integrations of AI techniques exist, so called Intelligent Hybrid Systems (IHS). These systems are capable of learning the mathematical functions underlying the operation of non-linear dynamic systems and also to explain the knowledge they have learned. Very few such powerful systems exist at present. Two such examples are the Magnetospheric Specification Forecast Model of Rice University and the Lund Space Weather Model of Lund University. Various attempts to predict geomagnetic storms on long to short-term are reviewed in this article. Predictions of a month to days ahead most often use solar data as input. The first SOHO data are now available. Due to the high temporal and spatial resolution new solar physics have been revealed. These SOHO data might lead to a breakthrough in these predictions. Predictions hours ahead and shorter rely on real-time solar wind data. WIND gives us real-time data for only part of the day. However, with the launch of the ACE spacecraft in 1997, real-time data during 24 hours will be available. That might lead to the second breakthrough for predictions of geomagnetic storms.

  13. Onboard autonomy on the Three Corner Sat Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Engelhardt, B.; Knight, R.; Rabideau, G.; Sherwood, R.

    2001-01-01

    Three Corner Sat (3CS) is a mission of three university nanosatellites scheduled for launch on September 2002. The 3CS misison will utilize significan onboard autonomy to perform onboard science data validation and replanning.

  14. The Logic of Evaluation.

    ERIC Educational Resources Information Center

    Welty, Gordon A.

    The logic of the evaluation of educational and other action programs is discussed from a methodological viewpoint. However, no attempt is made to develop methods of evaluating programs. In Part I, the structure of an educational program is viewed as a system with three components--inputs, transformation of inputs into outputs, and outputs. Part II…

  15. Metacomputation and logic programming

    SciTech Connect

    Abramov, S.M.

    1992-03-01

    This paper presents an approach to logic programming based on implementing reverse semantics of programming languages. The interpreter that implements reverse semantics is called a Universal Resolving Algorithm (URA). Implementation and methods for application of a URA are based on methods of metacomputation. 12 refs., 2 figs.

  16. Temporal logics meet telerobotics

    NASA Technical Reports Server (NTRS)

    Rutten, Eric; Marce, Lionel

    1989-01-01

    The specificity of telerobotics being the presence of a human operator, decision assistance tools are necessary for the operator, especially in hostile environments. In order to reduce execution hazards due to a degraded ability for quick and efficient recovery of unexpected dangerous situations, it is of importance to have the opportunity, amongst others, to simulate the possible consequences of a plan before its actual execution, in order to detect these problematic situations. Hence the idea of providing the operator with a simulator enabling him to verify the temporal and logical coherence of his plans. Therefore, the power of logical formalisms is used for representation and deduction purposes. Starting from the class of situations that are represented, a STRIPS (the STanford Research Institute Problem Solver)-like formalism and its underlying logic are adapted to the simulation of plans of actions in time. The choice of a temporal logic enables to build a world representation, on which the effects of plans, grouping actions into control structures, will be transcribed by the simulation, resulting in a verdict and information about the plan's coherence.

  17. Quantum probabilistic logic programming

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  18. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    2000-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will start a series of notes concentrating on analysis techniques with this issues section discussing worst-case analysis requirements.

  19. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Day, John H. (Technical Monitor)

    2001-01-01

    This report will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will continue a series of notes concentrating on analysis techniques with this issue's section discussing the use of Root-Sum-Square calculations for digital delays.

  20. Radiation tolerant combinational logic cell

    NASA Technical Reports Server (NTRS)

    Maki, Gary R. (Inventor); Gambles, Jody W. (Inventor); Whitaker, Sterling (Inventor)

    2009-01-01

    A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.

  1. Sandia ATM SONET Interface Logic

    SciTech Connect

    Kitta, Joseph P.

    1994-07-21

    SASIL is used to program the EPLD's (Erasable Programmable Logic Devices) and PAL's (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  2. CCSDS Time-Critical Onboard Networking Service

    NASA Technical Reports Server (NTRS)

    Parkes, Steve; Schnurr, Rick; Marquart, Jane; Menke, Greg; Ciccone, Massimiliano

    2006-01-01

    The Consultative Committee for Space Data Systems (CCSDS) is developing recommendations for communication services onboard spacecraft. Today many different communication buses are used on spacecraft requiring software with the same basic functionality to be rewritten for each type of bus. This impacts on the application software resulting in custom software for almost every new mission. The Spacecraft Onboard Interface Services (SOIS) working group aims to provide a consistent interface to various onboard buses and sub-networks, enabling a common interface to the application software. The eventual goal is reusable software that can be easily ported to new missions and run on a range of onboard buses without substantial modification. The system engineer will then be able to select a bus based on its performance, power, etc and be confident that a particular choice of bus will not place excessive demands on software development. This paper describes the SOIS Intra-Networking Service which is designed to enable data transfer and multiplexing of a variety of internetworking protocols with a range of quality of service support, over underlying heterogeneous data links. The Intra-network service interface provides users with a common Quality of Service interface when transporting data across a variety of underlying data links. Supported Quality of Service (QoS) elements include: Priority, Resource Reservation and Retry/Redundancy. These three QoS elements combine and map into four TCONS services for onboard data communications: Best Effort, Assured, Reserved, and Guaranteed. Data to be transported is passed to the Intra-network service with a requested QoS. The requested QoS includes the type of service, priority and where appropriate, a channel identifier. The data is de-multiplexed, prioritized, and the required resources for transport are allocated. The data is then passed to the appropriate data link for transfer across the bus. The SOIS supported data links may

  3. Onboard experiment data support facility, task 1 report. [space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

  4. Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice.

    PubMed Central

    Berthou, L; Duverger, N; Emmanuel, F; Langouët, S; Auwerx, J; Guillouzo, A; Fruchart, J C; Rubin, E; Denèfle, P; Staels, B; Branellec, D

    1996-01-01

    The regulation of liver apolipoprotein (apo) A-I gene expression by fibrates was studied in human apo A-I transgenic mice containing a human genomic DNA fragment driving apo A-I expression in liver. Treatment with fenofibrate (0.5% wt/wt) for 7 d increased plasma human apo A-I levels up to 750% and HDL-cholesterol levels up to 200% with a shift to larger particles. The increase in human apo A-I plasma levels was time and dose dependent and was already evident after 3 d at the highest dose (0.5% wt/wt) of fenofibrate. In contrast, plasma mouse apo A-I concentration was decreased after fenofibrate in nontransgenic mice. The increase in plasma human apo A-I levels after fenofibrate treatment was associated with a 97% increase in hepatic human apo A-I mRNA, whereas mouse apo A-I mRNA levels decreased to 51%. In nontransgenic mice, a similar down-regulation of hepatic apo A-I mRNA levels was observed. Nuclear run-on experiments demonstrated that the increase in human apo A-I and the decrease in mouse apo A-I gene expression after fenofibrate occurred at the transcriptional level. Since part of the effects of fibrates are mediated through the nuclear receptor PPAR (peroxisome proliferator-activated receptor), the expression of the acyl CoA oxidase (ACO) gene was measured as a control of PPAR activation. Both in transgenic and nontransgenic mice, fenofibrate induced ACO mRNA levels up to sixfold. When transgenic mice were treated with gemfibrozil (0.5% wt/wt) plasma human apo A-I and HDL-cholesterol levels increased 32 and 73%, respectively, above control levels. The weaker effect of this compound on human apo A-I and HDL-cholesterol levels correlated with a less pronounced impact on ACO mRNA levels (a threefold increase) suggesting that the level of induction of human apo A-I gene is related to the PPAR activating potency of the fibrate used. Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and

  5. Conceptual Modeling via Logic Programming

    DTIC Science & Technology

    1990-01-01

    31 2.7 Approaches Other Than Logic Programming ............................. 33 2.7.1 L isp...Development Environment Needs ................................ 84 5.1.4 Alternative Logic Programming Implementation Approaches ......... 85 5.1.5 User... APPROACH and logic programming techniques. Section 2 The CMLP project consisted of three describes the task outputs. interrelated investi ations: 3

  6. Conditional Logic and Primary Children.

    ERIC Educational Resources Information Center

    Ennis, Robert H.

    Conditional logic, as interpreted in this paper, means deductive logic characterized by "if-then" statements. This study sought to investigate the knowledge of conditional logic possessed by primary children and to test their readiness to learn such concepts. Ninety students were designated the experimental group and participated in a…

  7. The implementation of AI technologies in computer wargames

    NASA Astrophysics Data System (ADS)

    Tiller, John A.

    2004-08-01

    Computer wargames involve the most in-depth analysis of general game theory. The enumerated turns of a game like chess are dwarfed by the exponentially larger possibilities of even a simple computer wargame. Implementing challenging AI is computer wargames is an important goal in both the commercial and military environments. In the commercial marketplace, customers demand a challenging AI opponent when they play a computer wargame and are frustrated by a lack of competence on the part of the AI. In the military environment, challenging AI opponents are important for several reasons. A challenging AI opponent will force the military professional to avoid routine or set-piece approaches to situations and cause them to think much deeper about military situations before taking action. A good AI opponent would also include national characteristics of the opponent being simulated, thus providing the military professional with even more of a challenge in planning and approach. Implementing current AI technologies in computer wargames is a technological challenge. The goal is to join the needs of AI in computer wargames with the solutions of current AI technologies. This talk will address several of those issues, possible solutions, and currently unsolved problems.

  8. Quantifying the tracking capability of space-based AIS systems

    NASA Astrophysics Data System (ADS)

    Skauen, Andreas Nordmo

    2016-01-01

    The Norwegian Defence Research Establishment (FFI) has operated three Automatic Identification System (AIS) receivers in space. Two are on dedicated nano-satellites, AISSat-1 and AISSat-2. The third, the NORAIS Receiver, was installed on the International Space Station. A general method for calculating the upper bound on the tracking capability of a space-based AIS system has been developed and the results from the algorithm applied to AISSat-1 and the NORAIS Receiver individually. In addition, a constellation of AISSat-1 and AISSat-2 is presented. The tracking capability is defined as the probability of re-detecting ships as they move around the globe and is explained to represent and upper bound on a space-based AIS system performance. AISSat-1 and AISSat-2 operates on the nominal AIS1 and AIS2 channels, while the NORAIS Receiver data used are from operations on the dedicated space AIS channels, AIS3 and AIS4. The improved tracking capability of operations on the space AIS channels is presented.

  9. Two Years Onboard the MER Opportunity Rover

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Anderson, Robert C.; Bornstein, Benjamin; Burl, Michael; Castano, Rebecca; Gaines, Daniel; Judd, Michele; Thompson, David R.

    2012-01-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system provides automated data collection for planetary rovers. AEGIS is currently being used onboard the Mars Exploration Rover (MER) mission's Opportunity to provide autonomous targeting of the MER Panoramic camera. Prior to AEGIS, targeted data was collected in a manual fashion where targets were manually identified in images transmitted to Earth and the rover had to remain in the same location for one to several communication cycles. AEGIS enables targeted data to be rapidly acquired with no delays for ground communication. Targets are selected by AEGIS through the use of onboard data analysis techniques that are guided by scientist-specified objectives. This paper provides an overview of the how AEGIS has been used on the Opportunity rover, focusing on usage that occurred during a 21 kilometer historic trek to the Mars Endeavour crater.

  10. Skylab-4 Mission Onboard Photograph - Meal Time

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This Skylab-4 mission onboard photograph shows Astronaut Ed Gibson getting ready to prepare his meal in the crew wardroom. The tray contained heating elements for preparing the individual food packets. The food on Skylab was a great improvement over that on earlier spaceflights. It was no longer necessary to squeeze liquified food from plastic tubes. Skylab's kitchen was so equipped that each crewman could select his own menu and prepare it to his own taste.

  11. MODIS On-board Blackbody Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, N.; Wu, A.; Wenny, B.; Dodd, J.

    2008-01-01

    Currently, there are two MODIS instruments operated on-orbit: one on-board the Terra spacecraft launched in December 1999 and the other on-board the Aqua spacecraft launched in May 2002. MODIS is a scanning radiometer that has 16 thermal emissive bands (TEBs) in the MWIR and LWIR regions. The remaining spectral bands are in the VISINIR and SWIR regions. The TEBs have a total of 160 detectors (10 detectors per band), which are calibrated on-orbit using an on-board blackbody (BB). MODIS TEB calibration is performed via a quadratic algorithm with its linear calibration coefficients updated on a scan-by-scan basis using each detector's response to the BB. The offset and nonlinear terms of the quadratic calibration equation are stored in a look-up table (LUT). The LUT parameters are derived from pre-launch calibration and updated on-orbit from BB observations, as needed. Typically, the BB is set at a fixed temperature. Periodically, a warm-up and cool-down activity is performed, which enables the BB temperature to be varied from instrument ambient up to 315K. The temperature of the BB is measured each scan using 12 thermistors, which were fully characterized pre-launch with reference to the NIST temperature scale. This paper describes MODIS on-board BB operational activities and performance. The TEB detector response (short-term stability and long-term changes) and noise characterization results derived from BB observations and their impact on the TEB calibration uncertainty are also presented.

  12. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  13. On-board computers for control

    NASA Technical Reports Server (NTRS)

    Scull, J. R.

    1980-01-01

    On-board computers for control and sequencing from Apollo to Voyager are described along with future trends and recent design examples. Consideration is given to a high-order language for the Space Shuttle program. Emphasis is placed on the usage of modern LSI and new distributed architectural approaches. The distributed computer of the Galileo spacecraft and the data processing system for the Shuttle Orbiter are outlined.

  14. AI tools in computer based problem solving

    NASA Technical Reports Server (NTRS)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  15. Human Frontal Lobes and AI Planning Systems

    NASA Technical Reports Server (NTRS)

    Levinson, Richard; Lum, Henry Jr. (Technical Monitor)

    1994-01-01

    Human frontal lobes are essential for maintaining a self-regulating balance between predictive and reactive behavior. This paper describes a system that integrates prediction and reaction based on neuropsychological theories of frontal lobe function. In addition to enhancing our understanding of deliberate action in humans' the model is being used to develop and evaluate the same properties in machines. First, the paper presents some background neuropsychology in order to set a general context. The role of frontal lobes is then presented by summarizing three theories which formed the basis for this work. The components of an artificial frontal lobe are then discussed from both neuropsychological and AI perspectives. The paper concludes by discussing issues and methods for evaluating systems that integrate planning and reaction.

  16. Application of AIS Technology to Forest Mapping

    NASA Technical Reports Server (NTRS)

    Yool, S. R.; Star, J. L.

    1985-01-01

    Concerns about environmental effects of large scale deforestation have prompted efforts to map forests over large areas using various remote sensing data and image processing techniques. Basic research on the spectral characteristics of forest vegetation are required to form a basis for development of new techniques, and for image interpretation. Examination of LANDSAT data and image processing algorithms over a portion of boreal forest have demonstrated the complexity of relations between the various expressions of forest canopies, environmental variability, and the relative capacities of different image processing algorithms to achieve high classification accuracies under these conditions. Airborne Imaging Spectrometer (AIS) data may in part provide the means to interpret the responses of standard data and techniques to the vegetation based on its relatively high spectral resolution.

  17. AI And Early Vision - Part II

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1989-08-01

    A quarter of a century ago I introduced two paradigms into psychology which in the intervening years have had a direct impact on the psychobiology of early vision and an indirect one on artificial intelligence (AI or machine vision). The first, the computer-generated random-dot stereogram (RDS) paradigm (Julesz, 1960) at its very inception posed a strategic question both for AI and neurophysiology. The finding that stereoscopic depth perception (stereopsis) is possible without the many enigmatic cues of monocular form recognition - as assumed previously - demonstrated that stereopsis with its basic problem of finding matches between corresponding random aggregates of dots in the left and right visual fields became ripe for modeling. Indeed, the binocular matching problem of stereopsis opened up an entire field of study, eventually leading to the computational models of David Marr (1982) and his coworkers. The fusion of RDS had an even greater impact on neurophysiologists - including Hubel and Wiesel (1962) - who realized that stereopsis must occur at an early stage, and can be studied easier than form perception. This insight recently culminated in the studies by Gian Poggio (1984) who found binocular-disparity - tuned neurons in the input stage to the visual cortex (layer IVB in V1) in the monkey that were selectively triggered by dynamic RDS. Thus the first paradigm led to a strategic insight: that with stereoscopic vision there is no camouflage, and as such was advantageous for our primate ancestors to evolve the cortical machinery of stereoscopic vision to capture camouflaged prey (insects) at a standstill. Amazingly, although stereopsis evolved relatively late in primates, it captured the very input stages of the visual cortex. (For a detailed review, see Julesz, 1986a)

  18. The Advanced On-board Processor (AOP)

    NASA Technical Reports Server (NTRS)

    Hartenstein, R. G.; Trevathan, C. E.; Stewart, W. N.

    1971-01-01

    The goal of the Advanced On-Board Processor (AOP) development program is to design, build, and flight qualify a highly reliable, moderately priced, digital computer for application on a variety of spacecraft. Included in this development program is the preparation of a complete support software package which consists of an assembler, simulator, loader, system diagnostic, operational executive, and many useful subroutines. The AOP hardware/software system is an extension of the On-Board Processor (OBP) which was developed for general purpose use on earth orbiting spacecraft with its initial application being on-board the fourth Orbiting Astronomical Observatory (OAO-C). Although the OBP possesses the significant features that are required for space application, however, when operating at 100% duty cycle the OBP is too power-consuming for use on many smaller spacecraft. Computer volume will be minimized by implementing the processor and input/output portions of the machine with large scale integrated circuits. Power consumption will be reduced through the use of plated wire and, in some cases, semiconductor memory elements.

  19. On-Board Training for US Payloads

    NASA Technical Reports Server (NTRS)

    Murphy, Benjamin; Meacham, Steven (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) crew follows a training rotation schedule that puts them in the United States about every three months for a three-month training window. While in the US, the crew receives training on both ISS systems and payloads. Crew time is limited, and system training takes priority over payload training. For most flights, there is sufficient time to train all systems and payloads. As more payloads are flown, training time becomes a more precious resource. Less training time requires payload developers (PDs) to develop alternatives to traditional ground training. To ensure their payloads have sufficient training to achieve their scientific goals, some PDs have developed on-board trainers (OBTs). These OBTs are used to train the crew when no or limited ground time is available. These lessons are also available on-orbit to refresh the crew about their ground training, if it was available. There are many types of OBT media, such as on-board computer based training (OCBT), video/photo lessons, or hardware simulators. The On-Board Training Working Group (OBTWG) and Courseware Development Working Group (CDWG) are responsible for developing the requirements for the different types of media.

  20. Onboard Image Processing System for Hyperspectral Sensor.

    PubMed

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-09-25

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost.

  1. Onboard Image Processing System for Hyperspectral Sensor

    PubMed Central

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  2. The Logic of Life.

    PubMed

    Pascal, Robert; Pross, Addy

    2016-11-01

    In this paper we propose a logical connection between the physical and biological worlds, one resting on a broader understanding of the stability concept. We propose that stability manifests two facets - time and energy, and that stability's time facet, expressed as persistence, is more general than its energy facet. That insight leads to the logical formulation of the Persistence Principle, which describes the general direction of material change in the universe, and which can be stated most simply as: nature seeks persistent forms. Significantly, the principle is found to express itself in two mathematically distinct ways: in the replicative world through Malthusian exponential growth, and in the 'regular' physical/chemical world through Boltzmann's probabilistic considerations. By encompassing both 'regular' and replicative worlds, the principle appears to be able to help reconcile two of the major scientific theories of the 19th century - the Second Law of Thermodynamics and Darwin's theory of evolution - within a single conceptual framework.

  3. The Logic of Life

    NASA Astrophysics Data System (ADS)

    Pascal, Robert; Pross, Addy

    2016-11-01

    In this paper we propose a logical connection between the physical and biological worlds, one resting on a broader understanding of the stability concept. We propose that stability manifests two facets - time and energy, and that stability's time facet, expressed as persistence, is more general than its energy facet. That insight leads to the logical formulation of the Persistence Principle, which describes the general direction of material change in the universe, and which can be stated most simply as: nature seeks persistent forms. Significantly, the principle is found to express itself in two mathematically distinct ways: in the replicative world through Malthusian exponential growth, and in the `regular' physical/chemical world through Boltzmann's probabilistic considerations. By encompassing both `regular' and replicative worlds, the principle appears to be able to help reconcile two of the major scientific theories of the 19th century - the Second Law of Thermodynamics and Darwin's theory of evolution - within a single conceptual framework.

  4. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1998-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter's column will include some announcements and some recent radiation test results and evaluations of interest. Specifically, the following topics will be covered: the Military and Aerospace Applications of Programmable Devices and Technologies Conference to be held at GSFC in September, 1998, proton test results, and some total dose results.

  5. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1998-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter's column will include some announcements and some recent radiation test results and evaluations of interest. Specifically, the following topics will be covered: the Military and Aerospace Applications of Programmable Devices and Technologies Conference to be held at GSFC in September, 1998, proton test results, heavy ion test results, and some total dose results.

  6. Navigating a Mobile Robot Across Terrain Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Howard, Ayanna; Bon, Bruce

    2003-01-01

    A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.

  7. Pedagogy and the PC: Trends in the AIS Curriculum

    ERIC Educational Resources Information Center

    Badua, Frank

    2008-01-01

    The author investigated the array of course topics in accounting information systems (AIS), as course syllabi embody. The author (a) used exploratory data analysis to determine the topics that AIS courses most frequently offered and (b) used descriptive statistics and econometric analysis to trace the diversity of course topics through time,…

  8. Integrating the Wall Street Journal into AIS Courses

    ERIC Educational Resources Information Center

    Kohlmeyer, James M., III

    2008-01-01

    While it is important for accounting information systems (AIS) students to understand computer technology, internal controls and business processes, such knowledge is of little use without reference to appropriate contexts. Integrating Wall Street Journal (WSJ) readings and discussions into AIS classes can enrich learning by stimulating…

  9. An Immune Agent for Web-Based AI Course

    ERIC Educational Resources Information Center

    Gong, Tao; Cai, Zixing

    2006-01-01

    To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…

  10. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  11. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks

    PubMed Central

    Choi, Edward; Bahadori, Mohammad Taha; Schuetz, Andy; Stewart, Walter F.; Sun, Jimeng

    2017-01-01

    Leveraging large historical data in electronic health record (EHR), we developed Doctor AI, a generic predictive model that covers observed medical conditions and medication uses. Doctor AI is a temporal model using recurrent neural networks (RNN) and was developed and applied to longitudinal time stamped EHR data from 260K patients over 8 years. Encounter records (e.g. diagnosis codes, medication codes or procedure codes) were input to RNN to predict (all) the diagnosis and medication categories for a subsequent visit. Doctor AI assesses the history of patients to make multilabel predictions (one label for each diagnosis or medication category). Based on separate blind test set evaluation, Doctor AI can perform differential diagnosis with up to 79% recall@30, significantly higher than several baselines. Moreover, we demonstrate great generalizability of Doctor AI by adapting the resulting models from one institution to another without losing substantial accuracy. PMID:28286600

  12. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  13. Substructural Logical Specifications

    DTIC Science & Technology

    2012-11-14

    a more natural correspondence with our physical intuitions about consumable resources. Linear conjunction A ⊗ B (“A tensor B”) represents the...sketch a radically different, vaguely Feynman - diagram-inspired, way of presenting traces in Figure 4.14. Resources are the edges in the DAG and steps or...70th Birthday, volume 17 of Studies in Logic. College Publications, 2008. 3.3.3, 4.1.2, 4.7.3 [Pfe12a] Frank Pfenning. Lecture notes on backtracking

  14. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1999-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter the focus is on some experimental data on low voltage drop out regulators to support mixed 5 and 3.3 volt systems. A discussion of the Small Explorer WIRE spacecraft will also be given. Lastly, we show take a first look at robust state machines in Hardware Description Languages (VHDL) and their use in critical systems. If you have information that you would like to submit or an area you would like discussed or researched, please give me a call or e-mail.

  15. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  16. Onboard pattern recognition for autonomous UAV landing

    NASA Astrophysics Data System (ADS)

    Sung, Chen-Ko; Segor, Florian

    2012-10-01

    The civil security and supervision system AMFIS was developed at the Fraunhofer IOSB as a mobile support system using multiple UAVs for rescue forces in accidents or disasters. To gain a higher level of autonomy for these UAVs, different onboard process chains of image exploitation for tracking landmarks and of control technologies for UAV navigation were implemented and examined to achieve a redundant and reliable UAV precision landing. First experiments have allowed to validate the process chains and to develop a demonstration system for the tracking of landmarks in order to prevent and to minimize any confusion on landing.

  17. On-Board Rendezvous Targeting for Orion

    NASA Technical Reports Server (NTRS)

    Weeks, Michael W.; DSouza, Christopher N.

    2010-01-01

    The Orion On-board GNC system is among the most complex ever developed for a space mission. It is designed to operate autonomously (independent of the ground). The rendezvous system in particular was designed to operate on the far side of the moon, and in the case of loss-of-communications with the ground. The vehicle GNC system is designed to retarget the rendezvous maneuvers, given a mission plan. As such, all the maneuvers which will be performed by Orion, have been designed and are being incorporated into the flight code.

  18. On-board processing for telecommunications satellites

    NASA Technical Reports Server (NTRS)

    Nuspl, P. P.; Dong, G.

    1991-01-01

    In this decade, communications satellite systems will probably face dramatic challenges from alternative transmission means. To balance and overcome such competition, and to prepare for new requirements, INTELSAT has developed several on-board processing techniques, including Satellite-Switched TDMA (SS-TDMA), Satellite-Switched FDMA (SS-FDMA), several Modulators/Demodulators (Modem), a Multicarrier Multiplexer and Demodulator MCDD), an International Business Service (IBS)/Intermediate Data Rate (IDR) BaseBand Processor (BBP), etc. Some proof-of-concept hardware and software were developed, and tested recently in the INTELSAT Technical Laboratories. These techniques and some test results are discussed.

  19. An SEU immune logic family

    NASA Technical Reports Server (NTRS)

    Canaris, J.

    1991-01-01

    A new logic family, which is immune to single event upsets, is described. Members of the logic family are capable of recovery, regardless of the shape of the upsetting event. Glitch propagation from an upset node is also blocked. Logic diagrams for an Inverter, Nor, Nand, and Complex Gates are provided. The logic family can be implemented in a standard, commercial CMOS process with no additional masks. DC, transient, static power, upset recovery and layout characteristics of the new family, based on a commercial 1 micron CMOS N-Well process, are described.

  20. On-board demux/demod

    NASA Technical Reports Server (NTRS)

    Sayegh, S.; Kappes, M.; Thomas, J.; Snyder, J.; Eng, M.; Poklemba, John J.; Steber, M.; House, G.

    1991-01-01

    To make satellite channels cost competitive with optical cables, the use of small, inexpensive earth stations with reduced antenna size and high powered amplifier (HPA) power will be needed. This will necessitate the use of high e.i.r.p. and gain-to-noise temperature ratio (G/T) multibeam satellites. For a multibeam satellite, onboard switching is required in order to maintain the needed connectivity between beams. This switching function can be realized by either an receive frequency (RF) or a baseband unit. The baseband switching approach has the additional advantage of decoupling the up-link and down-link, thus enabling rate and format conversion as well as improving the link performance. A baseband switching satellite requires the demultiplexing and demodulation of the up-link carriers before they can be switched to their assigned down-link beams. Principles of operation, design and implementation issues of such an onboard demultiplexer/demodulator (bulk demodulator) that was recently built at COMSAT Labs. are discussed.

  1. On-Board Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    2004-01-01

    On-board propulsion functions include orbit insertion, orbit maintenance, constellation maintenance, precision positioning, in-space maneuvering, de-orbiting, vehicle reaction control, planetary retro, and planetary descent/ascent. This paper discusses on-board chemical propulsion technology, including bipropellants, monopropellants, and micropropulsion. Bipropellant propulsion has focused on maximizing the performance of Earth storable propellants by using high-temperature, oxidation-resistant chamber materials. The performance of bipropellant systems can be increased further, by operating at elevated chamber pressures and/or using higher energy oxidizers. Both options present system level difficulties for spacecraft, however. Monopropellant research has focused on mixtures composed of an aqueous solution of hydroxl ammonium nitrate (HAN) and a fuel component. HAN-based monopropellants, unlike hydrazine, do not present a vapor hazard and do not require extraordinary procedures for storage, handling, and disposal. HAN-based monopropellants generically have higher densities and lower freezing points than the state-of-art hydrazine and can higher performance, depending on the formulation. High-performance HAN-based monopropellants, however, have aggressive, high-temperature combustion environments and require advances in catalyst materials or suitable non-catalytic ignition options. The objective of the micropropulsion technology area is to develop low-cost, high-utility propulsion systems for the range of miniature spacecraft and precision propulsion applications.

  2. Standardization activity for the spacecraft onboard interfaces

    NASA Technical Reports Server (NTRS)

    Smith, J. F.; Plummer, C.; Plancke, P.

    2003-01-01

    The Consultative Committee for Space Data Systems (CCSDS) is an international organization of national space agencies that is organized to promote theinterchange of space related information. CCSDS is branching out to provide new standards to enhanced reuse of spacecraft equipment and software onboard of a spacecraft. This effort is know as Spacecraft Onboard Interface (SOIF). SOIF expects that these standards will be well used within the space community, and that they will be based on the well-known Internet protocols. This paper will provide a description of the SOIF work by reviewing this work with three orthogonal views. The Services View describes the data communications services that are provided to the users. The Interoperability view provides a description to users on how to use SOIF to interchange between different spacecraft data busses. And finally, the Protocol view, describes the protocols and services that are to be implemented in order to provide the users with the advantages of the SOIF architecture. This paper will give the reader an excellent introduction to the work of the international SOIF team.

  3. The spacecraft onboard interface standardization activity

    NASA Technical Reports Server (NTRS)

    Smith, J.; Plummer, C.; Plancke, P.

    2002-01-01

    The Consultative Committee for Space Data Systems (CCSDS) is an international organization of national space agencies (such as NASA in the United States) that is organized to promote the interchange of space related information. Now, CCSDS is branching out to provide new standards for the interchange of information, and the interconnection of subsystems and devices onboard of a spacecraft. This effort is know as Spacecraft Onboard Interface (SOIF). SOIF will publish standards that will allow for the enhanced reuse of spacecraft equipment and software. SOIF expects that these standards will be well known and used within the space community, and that they will be based on or similar to the well-known Internet protocols. This paper will provide a description of the SOIF work by reviewing this work with three orthogonal views. The first of these views is the Protocol view, which describes the protocols and services that are to be implemented in order to provide the users with the advantages of the SOIF architecture. The second of these views is the Services View, which describes the data communications services that are provided to the users. And finally, the Interoperability view provides a description to users how SOIF can be used to interchange between different spacecraft data busses. This paper will give the reader an excellent introduction to the work of the international SOIF team.

  4. Parameters influencing AIS 1 neck injury outcome in frontal impacts.

    PubMed

    Jakobsson, Lotta; Norin, Hans; Svensson, Mats Y

    2004-06-01

    In order to gain more knowledge of the neck injury scenario in frontal impacts, a statistical study of parameters influencing incidences of AIS 1 neck injuries was performed. The data set consisted of 616 occupants in Volvo cars. Information regarding the crash, the safety systems, occupant characteristics (including prior neck problems), behavior and sitting posture at the time of impact, and neck symptoms (including duration) was collected and analyzed. Occupant characteristics (mainly gender, weight, and age), kinematics (head impacts) and behavior at the time of impact were identified as the most prominent parameter areas with regard to AIS 1 neck injury outcome. Specifically, women had a significantly higher AIS 1 neck injury rate as compared to men, occupants under the age of 50 had a significantly higher AIS 1 neck injury rate as compared to those above 50 and occupants weighing less than 65 kg have a significantly higher AIS 1 neck injury rate than heavier occupants. Drivers stating that they impacted their head against a frontal interior structure had a significantly higher AIS 1 neck injury rate than those without head impact. Also, occupants who stated they had tensed their neck muscles at the time of impact, had a significantly higher AIS 1 neck injury rate as compared to occupants who did not. Occupant activities, such as tightly gripping the steering wheel or straightening their arms showed a significantly increased AIS 1 neck injury rate, indicating that occupant behavior at time of impact could be influential with respect to AIS 1 neck injury outcome. Also, occupants reporting prior neck problems had a higher rate of persistent symptoms (>1 year) but no difference with respect to passing symptoms (<3 months) as compared to those without prior neck problems. Additionally, there was no distinct pattern for the duration of neck symptoms.

  5. Science Benefits of Onboard Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill

    2012-01-01

    Primitive bodies (asteroids and comets), which have remained relatively unaltered since their formation, are important targets for scientific missions that seek to understand the evolution of the solar system. Often the first step is to fly by these bodies with robotic spacecraft. The key to maximizing data returns from these flybys is to determine the spacecraft trajectory relative to the target body-in short, navigate the spacecraft- with sufficient accuracy so that the target is guaranteed to be in the instruments' field of view. The most powerful navigation data in these scenarios are images taken by the spacecraft of the target against a known star field (onboard astrometry). Traditionally, the relative trajectory of the spacecraft must be estimated hours to days in advance using images collected by the spacecraft. This is because of (1)!the long round-trip light times between the spacecraft and the Earth and (2)!the time needed to downlink and process navigation data on the ground, make decisions based on the result, and build and uplink instrument pointing sequences from the results. The light time and processing time compromise navigation accuracy considerably, because there is not enough time to use more accurate data collected closer to the target-such data are more accurate because the angular capability of the onboard astrometry is essentially constant as the distance to the target decreases, resulting in better "plane-of- sky" knowledge of the target. Excellent examples of these timing limitations are high-speed comet encounters. Comets are difficult to observe up close; their orbits often limit scientists to brief, rapid flybys, and their coma further restricts viewers from seeing the nucleus in any detail, unless they can view the nucleus at close range. Comet nuclei details are typically discernable for much shorter durations than the roundtrip light time to Earth, so robotic spacecraft must be able to perform onboard navigation. This onboard

  6. Formal Modeling of Multi-Agent Systems using the Pi-Calculus and Epistemic Logic

    NASA Technical Reports Server (NTRS)

    Rorie, Toinette; Esterline, Albert

    1998-01-01

    Multi-agent systems have become important recently in computer science, especially in artificial intelligence (AI). We allow a broad sense of agent, but require at least that an agent has some measure of autonomy and interacts with other agents via some kind of agent communication language. We are concerned in this paper with formal modeling of multi-agent systems, with emphasis on communication. We propose for this purpose to use the pi-calculus, an extension of the process algebra CCS. Although the literature on the pi-calculus refers to agents, the term is used there in the sense of a process in general. It is our contention, however, that viewing agents in the AI sense as agents in the pi-calculus sense affords significant formal insight. One formalism that has been applied to agents in the AI sense is epistemic logic, the logic of knowledge. The success of epistemic logic in computer science in general has come in large part from its ability to handle concepts of knowledge that apply to groups. We maintain that the pi-calculus affords a natural yet rigorous means by which groups that are significant to epistemic logic may be identified, encapsulated, structured into hierarchies, and restructured in a principled way. This paper is organized as follows: Section 2 introduces the pi-calculus; Section 3 takes a scenario from the classical paper on agent-oriented programming [Sh93] and translates it into a very simple subset of the n-calculus; Section 4 then shows how more sophisticated features of the pi-calculus may bc brought into play; Section 5 discusses how the pi-calculus may be used to define groups for epistemic logic; and Section 6 is the conclusion.

  7. Fuzzy logic and coarse coding using programmable logic devices

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey

    2009-05-01

    Naturally-occurring sensory signal processing algorithms, such as those that inspired fuzzy-logic control, can be integrated into non-naturally-occurring high-performance technology, such as programmable logic devices, to realize novel bio-inspired designs. Research is underway concerning an investigation into using field programmable logic devices (FPLD's) to implement fuzzy logic sensory processing. A discussion is provided concerning the commonality between bio-inspired fuzzy logic algorithms and coarse coding that is prevalent in naturally-occurring sensory systems. Undergraduate design projects using fuzzy logic for an obstacle-avoidance robot has been accomplished at our institution and other places; numerous other successful fuzzy logic applications can be found as well. The long-term goal is to leverage such biomimetic algorithms for future applications. This paper outlines a design approach for implementing fuzzy-logic algorithms into reconfigurable computing devices. This paper is presented in an effort to connect with others who may be interested in collaboration as well as to establish a starting point for future research.

  8. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  9. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  10. A Logical Process Calculus

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.

  11. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  12. Logic, reasoning, and verbal behavior

    PubMed Central

    Terrell, Dudley J.; Johnston, J. M.

    1989-01-01

    This paper analyzes the traditional concepts of logic and reasoning from the perspective of radical behaviorism and in the terms of Skinner's treatment of verbal behavior. The topics covered in this analysis include the proposition, premises and conclusions, logicality and rules, and deductive and inductive reasoning. PMID:22478015

  13. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  14. Binary logic is rich enough

    SciTech Connect

    Zapatrin, R.R.

    1992-02-01

    Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs.

  15. Programmable Logic Controllers. Teacher Edition.

    ERIC Educational Resources Information Center

    Rauh, Bob; Kaltwasser, Stan

    These materials were developed for a seven-unit secondary or postsecondary education course on programmable logic controllers (PLCs) that treats most of the skills needed to work effectively with PLCs as programming skills. The seven units of the course cover the following topics: fundamentals of programmable logic controllers; contracts, timers,…

  16. Logic and the National Curriculum.

    ERIC Educational Resources Information Center

    Nelson, David

    2000-01-01

    Reviews the historic relationship between logic and the mathematics curriculum. Proposes a list of logical elements for modern school mathematics. Checks the current national curriculum against this list and finds it to be deficient, especially in relation to the development of ideas of proof. Presents arguments for reform. (Contains 29…

  17. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    PubMed

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  18. Quality measures and assurance for AI (Artificial Intelligence) software

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1988-01-01

    This report is concerned with the application of software quality and evaluation measures to AI software and, more broadly, with the question of quality assurance for AI software. Considered are not only the metrics that attempt to measure some aspect of software quality, but also the methodologies and techniques (such as systematic testing) that attempt to improve some dimension of quality, without necessarily quantifying the extent of the improvement. The report is divided into three parts Part 1 reviews existing software quality measures, i.e., those that have been developed for, and applied to, conventional software. Part 2 considers the characteristics of AI software, the applicability and potential utility of measures and techniques identified in the first part, and reviews those few methods developed specifically for AI software. Part 3 presents an assessment and recommendations for the further exploration of this important area.

  19. Weighted Automata and Weighted Logics

    NASA Astrophysics Data System (ADS)

    Droste, Manfred; Gastin, Paul

    In automata theory, a fundamental result of Büchi and Elgot states that the recognizable languages are precisely the ones definable by sentences of monadic second order logic. We will present a generalization of this result to the context of weighted automata. We develop syntax and semantics of a quantitative logic; like the behaviors of weighted automata, the semantics of sentences of our logic are formal power series describing ‘how often’ the sentence is true for a given word. Our main result shows that if the weights are taken in an arbitrary semiring, then the behaviors of weighted automata are precisely the series definable by sentences of our quantitative logic. We achieve a similar characterization for weighted Büchi automata acting on infinite words, if the underlying semiring satisfies suitable completeness assumptions. Moreover, if the semiring is additively locally finite or locally finite, then natural extensions of our weighted logic still have the same expressive power as weighted automata.

  20. Power optimization in logic isomers

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    Logic isomers are labeled, 2-isomorphic graphs that implement the same logic function. Logic isomers may have significantly different power requirements even though they have the same number of transistors in the implementation. The power requirements of the isomers depend on the transition activity of the input signals. The power requirements of isomorphic graph isomers of n-input NAND and NOR gates are shown. Choosing the less power-consuming isomer instead of the others can yield significant power savings. Experimental results on a ripple-carry adder are presented to show that the implementation using the least power-consuming isomers requires approximately 10 percent less power than the implementation using the most power-consuming isomers. Simulations of other random logic designs also confirm that designs using less power-consuming isomers can reduce the logic power demand by approximately 10 percent as compared to designs using more power-consuming isomers.

  1. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  2. NASA space station automation: AI-based technology review

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  3. Onboard Image Registration from Invariant Features

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  4. Worry and its correlates onboard cruise ships.

    PubMed

    Wolff, Katharina; Larsen, Svein; Marnburg, Einar; Øgaard, Torvald

    2013-01-01

    The present study examined job-specific worry, as well as possible predictors of such worry, namely job-specific self-efficacy and supervisor dispositionism. 133 non-supervising crew members at different departments onboard upmarket cruise ships filled in a questionnaire during one of their journeys. Findings show that employees report moderate amounts of job-specific worry and the galley crew reports significantly greater amounts of worry than the other departments. Results also indicate that cruise ship crews worry somewhat more than workers in the land based service sector. Furthermore it was found that supervisor dispositionism, i.e. supervisors with fixed mindsets, was related to greater amounts of worry among the crew. Surprisingly, job-specific self-efficacy was unrelated to job-specific worry.

  5. Summary of experiments onboard Soviet biosatellites

    NASA Astrophysics Data System (ADS)

    Nikolaev, S. O.; Ilyin, E. A.

    Physiological, morphological and biochemical studies of mammals flown onboard biosatellites of the series Cosmos revealed changes in their cardiovascular, musculoskeletal, endocrine and vestibular systems. Space flight resulted in moderate stress reactions, intralabyrinthine conflict information during movements and changes in fluid-electrolyte metabolism. Exposure to artificial gravity (1 g) decreased the level of myocardial, musculoskeletal and excretory changes, but disturbed the function of equilibrium. Studies with combined weightlessness and ionizing radiation demonstrated that weightlessness did not produce a significant modifying effect on radiation damage and postradiation recovery. Consistent changes in certain systems of animals and humans in weightlessness confirm the practical importance of biosatellite studies, which also contribute to the solution of general biology problems associated with gravity effects on life processes.

  6. Situation Awareness of Onboard System Autonomy

    NASA Technical Reports Server (NTRS)

    Schreckenghost, Debra; Thronesbery, Carroll; Hudson, Mary Beth

    2005-01-01

    We have developed intelligent agent software for onboard system autonomy. Our approach is to provide control agents that automate crew and vehicle systems, and operations assistants that aid humans in working with these autonomous systems. We use the 3 Tier control architecture to develop the control agent software that automates system reconfiguration and routine fault management. We use the Distributed Collaboration and Interaction (DCI) System to develop the operations assistants that provide human services, including situation summarization, event notification, activity management, and support for manual commanding of autonomous system. In this paper we describe how the operations assistants aid situation awareness of the autonomous control agents. We also describe our evaluation of the DCI System to support control engineers during a ground test at Johnson Space Center (JSC) of the Post Processing System (PPS) for regenerative water recovery.

  7. Automatic operations onboard the ISPM spacecraft

    NASA Astrophysics Data System (ADS)

    Components and operational characteristics of the International Solar Polar Mission (ISPM) spacecraft are described. Placed into earth orbit by the Shuttle, an inertial upper stage will place the ISPM satellite on a trajectory to Jupiter, which will gravitationally deflect it out of the ecliptic plane into a polar orbit of the sun. Redundant systems are being included on the ISPM in all places where failure of a component could mean loss of contact with earth control which will have a fast lock response to transmitted telemetry signals. Configuring for eight hours of ground contact/day over the 4.5 yr mission requires on-board storage of commands for execution of scientific measurements and storage of data when contact is lost. An emergency program is included which can run for 48 days while either of two primary antennas or one low gain antenna offer means for reestablishing control. Bypass of failed systems or components will occur automatically.

  8. Onboard Processor for Compressing HSI Data

    NASA Technical Reports Server (NTRS)

    Cook, Sid; Harsanyi, Joe; Day, John H. (Technical Monitor)

    2002-01-01

    With EO-1 Hyperion and MightySat in orbit NASA and the DoD are showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor greater than 100, while retaining the necessary spectral fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our initial spectral compression experiments leverage commercial-off-the-shelf (COTS) spectral exploitation algorithms for segmentation, material identification and spectral compression that ASIT has developed. ASIT will also support the modification and integration of this COTS software into the OBP. Other commercially available COTS software for spatial compression will also be employed as part of the overall compression processing sequence. Over the next year elements of a high-performance reconfigurable OBP will be developed to implement proven preprocessing steps that distill the HSI data stream in both spectral and spatial dimensions. The system will intelligently reduce the volume of data that must be stored, transmitted to the ground, and processed while minimizing the loss of information.

  9. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the station to perform these repairs. After the retirement of the shuttle, this is no longer an available option. As such, the need for the ISS crew members to review scenarios while on flight, either for tasks they already trained or for contingency operations has become a very critical subject. In many situations, the time between the last session of Neutral Buoyancy Laboratory (NBL) training and an Extravehicular Activity (EVA) task might be 6 to 8 months. In order to help with training for contingency repairs and to maintain EVA proficiency while on flight, the Johnson Space Center Virtual Reality Lab (VRLab) designed an onboard immersive ISS Virtual Reality Trainer (VRT), incorporating a unique optical system and making use of the already successful Dynamic Onboard Ubiquitous Graphical (DOUG) graphics software, to assist crew members with current procedures and contingency EVAs while on flight. The VRT provides an immersive environment similar to the one experienced at the VRLab crew training facility at NASA Johnson Space Center. EVA tasks are critical for a mission since as time passes the crew members may lose proficiency on previously trained tasks. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the ISS ages. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before.

  10. Onboard autonomous mineral detectors for Mars rovers

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  11. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation.

    PubMed

    Bachtiar, Endang W; Bachtiar, Boy M; Jarosz, Lucja M; Amir, Lisa R; Sunarto, Hari; Ganin, Hadas; Meijler, Michael M; Krom, Bastiaan P

    2014-01-01

    Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2), synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  12. Calibrating AIS images using the surface as a reference

    NASA Technical Reports Server (NTRS)

    Smith, M. O.; Roberts, D. A.; Shipman, H. M.; Adams, J. B.; Willis, S. C.; Gillespie, A. R.

    1987-01-01

    A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra.

  13. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Gussow, S.; Oglesby, R.

    1974-01-01

    Procedure performs all work required for logic design of digital counters or sequential circuits and simplification of Boolean expressions. Program provides simple, accurate, and comprehensive logic design capability to users both experienced and totally inexperienced in logic design

  14. On-board estimation technology for space station - Current status and future developments.

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Lin, Y. H.; Cameron, J. M.; Szirmay, S. Z.

    1983-01-01

    Design considerations and projected solutions to on-board automated estimation techniques for advanced technology controls on a space station are described, with emphasis on the state estimator. The space station is modelled as a collection of rigid and flexible bodies connected at a finite number of hinges. The systems dynamics are characterized by angular velocities of the base body, gimbal angles, and deflections of the flexible appendages. The state estimator evolution is projected to occur in four generations, with the first being control logic in the Viking and Voyager spacecraft, the second in the Shuttle and Galileo probe, the third being large antennas and the prototype space station, the last, around the year 2000, for the actual space station. Considerations for attitude, ephemeris, shape determination, and position estimation through each generation are discussed.

  15. Onboard Prediction of Propagation Loss in Shallow Water

    DTIC Science & Technology

    1981-09-16

    substrate roughn*p, (4) modal coupling, and (6) biologia scAtterers;,6. Grain asiz distribution Is not an adequate predctor of acoustical properties; heuce...INTRODUCTION ......................................... 1 GENERAL COMMENTS ................................... 2 SEDIMENT SOUND SPEED AND DENSITY...for an onboard perfor- mance prediction capability in shallow water. There is a general requirement for an onboard performance prediction capability

  16. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  17. SEE Sensitivity Analysis of 180 nm NAND CMOS Logic Cell for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focus on Single Event Effects caused by energetic particle strike on sensitive locations in CMOS NAND logic cell designed in 180nm technology node to be operated in space radiation environment. The generation of SE transients as well as upsets as function of LET of incident particle has been determined for logic devices onboard LEO and GEO satellites. The minimum magnitude pulse and pulse-width for threshold LET was determined to estimate the vulnerability /susceptibility of device for heavy ion strike. The impact of temperature, strike location and logic state of NAND circuit on total SEU/SET rate was estimated with physical mechanism simulations using Visual TCAD, Genius, runSEU program and Crad computer codes.

  18. Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, organized by protein 4.1B

    PubMed Central

    2011-01-01

    Background The axon initial segment (AIS) plays a crucial role: it is the site where neurons initiate their electrical outputs. Its composition in terms of voltage-gated sodium (Nav) and voltage-gated potassium (Kv) channels, as well as its length and localization determine the neuron's spiking properties. Some neurons are able to modulate their AIS length or distance from the soma in order to adapt their excitability properties to their activity level. It is therefore crucial to characterize all these parameters and determine where the myelin sheath begins in order to assess a neuron's excitability properties and ability to display such plasticity mechanisms. If the myelin sheath starts immediately after the AIS, another question then arises as to how would the axon be organized at its first myelin attachment site; since AISs are different from nodes of Ranvier, would this particular axonal region resemble a hemi-node of Ranvier? Results We have characterized the AIS of mouse somatic motor neurons. In addition to constant determinants of excitability properties, we found heterogeneities, in terms of AIS localization and Nav composition. We also identified in all α motor neurons a hemi-node-type organization, with a contactin-associated protein (Caspr)+ paranode-type, as well as a Caspr2+ and Kv1+ juxtaparanode-type compartment, referred to as a para-AIS and a juxtapara (JXP)-AIS, adjacent to the AIS, where the myelin sheath begins. We found that Kv1 channels appear in the AIS, para-AIS and JXP-AIS concomitantly with myelination and are progressively excluded from the para-AIS. Their expression in the AIS and JXP-AIS is independent from transient axonal glycoprotein-1 (TAG-1)/Caspr2, in contrast to juxtaparanodes, and independent from PSD-93. Data from mice lacking the cytoskeletal linker protein 4.1B show that this protein is necessary to form the Caspr+ para-AIS barrier, ensuring the compartmentalization of Kv1 channels and the segregation of the AIS, para-AIS

  19. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  20. Using LogicWorks to Teach Logic Design.

    ERIC Educational Resources Information Center

    Spoerri, Peter

    1988-01-01

    Discusses a computer simulation to teach logic design using a Macintosh computer which allows circuits to be built piece by piece. Describes features of the simulation and presents several schematics drawn by the software. (MVL)

  1. Suicide as social logic.

    PubMed

    Kral, M J

    1994-01-01

    Although suicide is not viewed as a mental disorder per se, it is viewed by many if not most clinicians, researchers, and lay people as a real or natural symptom of depression. It is at least most typically seen as the unfortunate, severe, yet logical end result of a chain of negative self-appraisals, negative events, and hopelessness. Extending an approach articulated by the early French sociologist Gabriel Tarde, in this paper I argue that suicide is merely an idea, albeit a very bad one, having more in common with societal beliefs and norms regarding such things as divorce, abortion, sex, politics, consumer behavior, and fashion. I make a sharp contrast between perturbation and lethality, concepts central to Edwin S. Shneidman's theory of suicide. Evidence supportive of suicide as an idea is discussed based on what we are learning from the study of history and culture, and about contagion/cluster phenomena, media/communication, and choice of method. It is suggested that certain individuals are more vulnerable to incorporate the idea and act of suicide into their concepts of self, based on the same principles by which ideas are spread throughout society. Just as suicide impacts on society, so does society impact on suicide.

  2. The Logic of Reachability

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Jonsson, Ari K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In recent years, Graphplan style reachability analysis and mutual exclusion reasoning have been used in many high performance planning systems. While numerous refinements and extensions have been developed, the basic plan graph structure and reasoning mechanisms used in these systems are tied to the very simple STRIPS model of action. In 1999, Smith and Weld generalized the Graphplan methods for reachability and mutex reasoning to allow actions to have differing durations. However, the representation of actions still has some severe limitations that prevent the use of these techniques for many real-world planning systems. In this paper, we 1) separate the logic of reachability from the particular representation and inference methods used in Graphplan, and 2) extend the notions of reachability and mutual exclusion to more general notions of time and action. As it turns out, the general rules for mutual exclusion reasoning take on a remarkably clean and simple form. However, practical instantiations of them turn out to be messy, and require that we make representation and reasoning choices.

  3. Novel processor architecture for onboard infrared sensors

    NASA Astrophysics Data System (ADS)

    Hihara, Hiroki; Iwasaki, Akira; Tamagawa, Nobuo; Kuribayashi, Mitsunobu; Hashimoto, Masanori; Mitsuyama, Yukio; Ochi, Hiroyuki; Onodera, Hidetoshi; Kanbara, Hiroyuki; Wakabayashi, Kazutoshi; Tada, Munehiro

    2016-09-01

    Infrared sensor system is a major concern for inter-planetary missions that investigate the nature and the formation processes of planets and asteroids. The infrared sensor system requires signal preprocessing functions that compensate for the intensity of infrared image sensors to get high quality data and high compression ratio through the limited capacity of transmission channels towards ground stations. For those implementations, combinations of Field Programmable Gate Arrays (FPGAs) and microprocessors are employed by AKATSUKI, the Venus Climate Orbiter, and HAYABUSA2, the asteroid probe. On the other hand, much smaller size and lower power consumption are demanded for future missions to accommodate more sensors. To fulfill this future demand, we developed a novel processor architecture which consists of reconfigurable cluster cores and programmable-logic cells with complementary atom switches. The complementary atom switches enable hardware programming without configuration memories, and thus soft-error on logic circuit connection is completely eliminated. This is a noteworthy advantage for space applications which cannot be found in conventional re-writable FPGAs. Almost one-tenth of lower power consumption is expected compared to conventional re-writable FPGAs because of the elimination of configuration memories. The proposed processor architecture can be reconfigured by behavioral synthesis with higher level language specification. Consequently, compensation functions are implemented in a single chip without accommodating program memories, which is accompanied with conventional microprocessors, while maintaining the comparable performance. This enables us to embed a processor element on each infrared signal detector output channel.

  4. Formalized Epistemology, Logic, and Grammar

    NASA Astrophysics Data System (ADS)

    Bitbol, Michel

    The task of a formal epistemology is defined. It appears that a formal epistemology must be a generalization of "logic" in the sense of Wittgenstein's Tractatus. The generalization is required because, whereas logic presupposes a strict relation between activity and language, this relation may be broken in some domains of experimental enquiry (e.g., in microscopic physics). However, a formal epistemology should also retain a major feature of Wittgenstein's "logic": It must not be a discourse about scientific knowledge, but rather a way of making manifest the structures usually implicit in knowledge-gaining activity. This strategy is applied to the formalism of quantum mechanics.

  5. Inverse modeling of biomass smoke emissions using the TOMS AI

    NASA Astrophysics Data System (ADS)

    Zhang, S. Y.; Penner, J. E.; Torres, O.

    2003-12-01

    Results of inverse modeling of biomass smoke emissions using the TOMS AI and a three-dimensional transport model are presented. The IMPACT model with DAO meteorology data in 1997 are utilized to obtain aerosol spatial and temporal distributions. Two absorbing aerosol types are considered, including biomass smoke and mineral dust. First, a radiative transfer model is applied to generate the modeled AI. Then a Bayesian inverse technique is applied to optimize the difference between the modeled AI and the EP TOMS AI in the same period by regulating monthly a priori biomass smoke emissions, while the dust emissions are fixed. The modeled AI with a posteriori emissions generally is in better agreement with the EP TOMS AI. The annual global a posteriori source increases by about 13% for the year 1997 (6.31 Tg/yr BC) in the base scenario, with a larger adjustment of monthly regional emissions. Five sensitivity scenarios are carried out, including sensitivity to the a priori uncertainties, the height of the smoke layer, the cloud screening criteria of the daily EP TOMS AI, the adjustment of emissions in a lumped region outside of the major biomass burning regions, and the covariances between observations. Results suggest that a posteriori annual global emissions in the sensitivity scenarios are within 15% of that of the base scenario. However, the difference of annual a posteriori emissions between the sensitivity scenarios and the base scenario can be as large as 50% on regional scale. We are also applying the inverse model technique to the year 2000 to compare with biomass emissions deduced from an analysis based on burned areas.

  6. AI's Philosophical Underpinnings: A Thinking Person's Walk through the Twists and Turns of Artificial Intelligence's Meandering Path

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Norvig, Peter (Technical Monitor)

    2000-01-01

    Few human endeavors can be viewed both as extremely successful and unsuccessful at the same time. This is typically the case when goals have not been well defined or have been shifting in time. This has certainly been true of Artificial Intelligence (AI). The nature of intelligence has been the object of much thought and speculation throughout the history of philosophy. It is in the nature of philosophy that real headway is sometimes made only when appropriate tools become available. Similarly the computer, coupled with the ability to program (at least in principle) any function, appeared to be the tool that could tackle the notion of intelligence. To suit the tool, the problem of the nature of intelligence was soon sidestepped in favor of this notion: If a probing conversation with a computer could not be distinguished from a conversation with a human, then AI had been achieved. This notion became known as the Turing test, after the mathematician Alan Turing who proposed it in 1950. Conceptually rich and interesting, these early efforts gave rise to a large portion of the field's framework. Key to AI, rather than the 'number crunching' typical of computers until then, was viewed as the ability to manipulate symbols and make logical inferences. To facilitate these tasks, AI languages such as LISP and Prolog were invented and used widely in the field. One idea that emerged and enabled some success with real world problems was the notion that 'most intelligence' really resided in knowledge. A phrase attributed to Feigenbaum, one of the pioneers, was 'knowledge is the power.' With this premise, the problem is shifted from 'how do we solve problems' to 'how do we represent knowledge.' A good knowledge representation scheme could allow one to draw conclusions from given premises. Such schemes took forms such as rules,frames and scripts. It allowed the building of what became known as expert systems or knowledge based systems (KBS).

  7. 76 FR 44045 - Establishment of the SANE/SART AI/AN Initiative Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... of Justice Programs Establishment of the SANE/SART AI/AN Initiative Committee AGENCY: Office for... (SART) American Indian/Alaskan Native (AI/AN) Initiative (``SANE/SART AI/AN Initiative Committee'' or... (FACA), as amended, 5 U.S.C., App. 2. The SANE/SART AI/AN Initiative Committee will provide the...

  8. Advanced Hybrid On-Board Science Data Processor - SpaceCube 2.0

    NASA Technical Reports Server (NTRS)

    Flatley, Tom

    2010-01-01

    Topics include an overview of On-board science data processing, software upset mitigation, on-board data reduction, on-board products, HyspIRI demonstration testbed, SpaceCube 2.0 block diagram, and processor comparison.

  9. Memory-Efficient Onboard Rock Segmentation

    NASA Technical Reports Server (NTRS)

    Burl, Michael C.; Thompson, David R.; Bornstein, Benjamin J.; deGranville, Charles K.

    2013-01-01

    Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering

  10. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    SciTech Connect

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  11. Digital logic testing and testability

    NASA Astrophysics Data System (ADS)

    Debany, Warren H., Jr.

    1991-02-01

    Electronic hardware is subject to defects that are introduced at the time of manufacture and failures that occur in the field. Because of the complexity of digital logic circuits, they are difficult to test. This report provides an overview of digital logic testing. It provides access to the literature and unifies terminology and concepts that have evolved in this field. It discusses the types and causes of failures in digital logic. This report presents the topics of logic and fault simulation, fault grading, test generation algorithms, and fault isolation. The discussion of testability measurement is useful for understanding testability requirements and analysis techniques. Design-for-testability and built in test techniques are presented.

  12. Knowledge representation in fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lotfi A.

    1989-01-01

    The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.

  13. Emerging Standards for Medical Logic

    PubMed Central

    Clayton, Paul D.; Hripcsak, George; Pryor, T. Allan

    1990-01-01

    Sharing medical logic has traditionally occurred in the form of lectures, conversations, books and journals. As knowledge based computer systems have demonstrated their utility in the health care arena, individuals have pondered the best way to transfer knowledge in a computer based representation (1). A simple representation which allows the knowledge to be shared can be constructed when the knowledge base is modular. Within this representation, units have been named Medical Logic Modules (MLM's) and a syntax has emerged which would allow multiple users to create, criticize, and share those types of medical logic which can be represented in this format. In this paper we talk about why standards exist and why they emerge in some areas and not in others. The appropriateness of using the proposed standards for medical logic modules is then examined against this broader context.

  14. Application of AI techniques to blast furnace operations

    SciTech Connect

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  15. Discovering Knowledge from AIS Database for Application in VTS

    NASA Astrophysics Data System (ADS)

    Tsou, Ming-Cheng

    The widespread use of the Automatic Identification System (AIS) has had a significant impact on maritime technology. AIS enables the Vessel Traffic Service (VTS) not only to offer commonly known functions such as identification, tracking and monitoring of vessels, but also to provide rich real-time information that is useful for marine traffic investigation, statistical analysis and theoretical research. However, due to the rapid accumulation of AIS observation data, the VTS platform is often unable quickly and effectively to absorb and analyze it. Traditional observation and analysis methods are becoming less suitable for the modern AIS generation of VTS. In view of this, we applied the same data mining technique used for business intelligence discovery (in Customer Relation Management (CRM) business marketing) to the analysis of AIS observation data. This recasts the marine traffic problem as a business-marketing problem and integrates technologies such as Geographic Information Systems (GIS), database management systems, data warehousing and data mining to facilitate the discovery of hidden and valuable information in a huge amount of observation data. Consequently, this provides the marine traffic managers with a useful strategic planning resource.

  16. Reference Architecture for High Dependability On-Board Computers

    NASA Astrophysics Data System (ADS)

    Silva, Nuno; Esper, Alexandre; Zandin, Johan; Barbosa, Ricardo; Monteleone, Claudio

    2014-08-01

    The industrial process in the area of on-board computers is characterized by small production series of on- board computers (hardware and software) configuration items with little recurrence at unit or set level (e.g. computer equipment unit, set of interconnected redundant units). These small production series result into a reduced amount of statistical data related to dependability, which influence on the way on-board computers are specified, designed and verified. In the context of ESA harmonization policy for the deployment of enhanced and homogeneous industrial processes in the area of avionics embedded systems and on-board computers for the space industry, this study aimed at rationalizing the initiation phase of the development or procurement of on-board computers and at improving dependability assurance. This aim was achieved by establishing generic requirements for the procurement or development of on-board computers with a focus on well-defined reliability, availability, and maintainability requirements, as well as a generic methodology for planning, predicting and assessing the dependability of on- board computers hardware and software throughout their life cycle. It also provides guidelines for producing evidence material and arguments to support dependability assurance of on-board computers hardware and software throughout the complete lifecycle, including an assessment of feasibility aspects of the dependability assurance process and how the use of computer-aided environment can contribute to the on-board computer dependability assurance.

  17. Logic, Probability, and Human Reasoning

    DTIC Science & Technology

    2015-01-01

    logics developed in artificial intelligence, which allow conclusions to be withdrawn [38–42]. Second, conditional assertions (e.g., ‘If she insulted him...N. (2014) Probabilistic single function dual process theory and logic programming as approaches to non- monotonicity in human vs artificial reasoning...How can we solve this crisis? Leibniz dreamed of a calculus that settles any argument. Can cognitive scientists devise such a system? Feature

  18. Heat exchanger expert system logic

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1988-01-01

    The reduction is described of the operation and fault diagnostics of a Deep Space Network heat exchanger to a rule base by the application of propositional calculus to a set of logic statements. The value of this approach lies in the ease of converting the logic and subsequently implementing it on a computer as an expert system. The rule base was written in Process Intelligent Control software.

  19. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  20. Cooled scientific instrument assembly onboard SPICA

    NASA Astrophysics Data System (ADS)

    Matsuhara, H.; Nakagawa, T.; Kawakatsu, Y.; Murakami, H.; Kawada, M.; Sugita, H.; Yamawaki, T.; Mitani, S.; Shinozaki, K.; Sato, Y.; Crone, G.; Isaak, K.; Heske, A.

    2012-09-01

    The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) is a 3.2m cooled (below 6K) telescope mission which covers mid- and far-IR waveband with unprecedented sensitivity. An overview of recent design updates of the Scientific Instrument Assembly (SIA), composed of the telescope assembly and the instrument optical bench equipped with Focal Plane Instruments (FPIs) are presented. The FPI international science and engineering review is on-going to determine the FPI suite onboard SPICA: at present the mandatory instruments and functions to perform the unique science objectives of the SPICA mission are now consolidated. The final decision on the composition of the FPI suite is expected in early 2013. Through the activities in the current pre-project phase, several key technical issues which impact directly on the instruments’ performances and the science requirements and the observing efficiency have been identified, and extensive works are underway both at instrument and spacecraft level to resolve these issues and to enable the confirmation of the SPICA FPI suite.

  1. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  2. A complete backbone spectral assignment of human apolipoprotein AI on a 38 kDa preβHDL (Lp1-AI) particle

    SciTech Connect

    Ren, Xuefeng; Yang, Yunhuang; Neville, T.; Hoyt, David W.; Sparks, Daniel L.; Wang, Jianjun

    2007-06-12

    Apolipoprotein A-I (apoAI, 243-residues) is the major protein component of the high-density lipoprotein (HDL) that has been a hot subject of interests because of its anti-atherogenic properties. This important property of apoAI is related to its roles in reverse cholesterol transport pathway. Upon lipid-binding, apoAI undergoes conformational changes from lipid-free to several different HDL-associated states (1). These different conformational states regulate HDL formation, maturation and transportation. Two initial conformational states of apoAI are lipid-free apoAI and apoAI/preβHDL that recruit phospholipids and cholesterol to form HDL particles. In particular, lipid-free apoAI specifically binds to phospholipids to form lipid-poor apoAI, including apoAI/preβ-HDL (~37 kDa). As a unique class of lipid poor HDL, both in vitro and in vivo evidence demonstrates that apoAI/preβ-HDLs are the most effective acceptors specifically for free cholesterol in human plasma and serves as the precursor of HDL particles (2). Here we report a complete backbone spectral assignment of human apoAI/preβHDL. Secondary structure prediction using backbone NMR parameters indicates that apoAI/preβHDL displays a two-domain structure: the N-terminal four helix-bundle domain (residues 1-186) and the C-terminal flexible domain (residues 187-243). A structure of apoAI/preβ-HDL is the first lipid-associated structure of apoAI and is critical for us to understand how apoAI recruits cholesterol to initialize HDL formation. BMRB deposit with accession number: 15093.

  3. Spacecraft autonomy using onboard processing for a SAR constellation mission

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattem recognition to radically increase science retum by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  4. Management of the Space Station Freedom onboard local area network

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.; Mitchell, Randy C.

    1991-01-01

    An operational approach is proposed to managing the Data Management System Local Area Network (LAN) on Space Station Freedom. An overview of the onboard LAN elements is presented first, followed by a proposal of the operational guidelines by which management of the onboard network may be effected. To implement the guidelines, a recommendation is then presented on a set of network management parameters which should be made available in the onboard Network Operating System Computer Software Configuration Item and Fiber Distributed Data Interface firmware. Finally, some implications for the implementation of the various network management elements are discussed.

  5. Is Logic in the Mind or in the World? Why a Philosophical Question can Affect the Understanding of Intelligence

    NASA Astrophysics Data System (ADS)

    Sommer, Hanns; Schreiber, Lothar

    2012-05-01

    Dreyfus' call ‘to make artificial intelligence (AI) more Heideggerian‘ echoes Heidegger's affirmation that pure calculations produce no ‘intelligence’ (Dreyfus, 2007). But what exactly is it that AI needs more than mathematics? The question in the title gives rise to a reexamination of the basic principles of cognition in Husserl's Phenomenology. Using Husserl's Phenomenological Method, a formalization of these principles is presented that provides the principal idea of cognition, and as a consequence, a ‘natural logic’. Only in a second step, mathematics is obtained from this natural logic by abstraction. The limitations of pure reasoning are demonstrated for fundamental considerations (Hilbert's ‘finite Einstellung’) as well as for the task of solving practical problems. Principles will be presented for the design of general intelligent systems, which make use of a natural logic.

  6. Toward detecting California shrubland canopy chemistry with AIS data

    NASA Technical Reports Server (NTRS)

    Price, Curtis V.; Westman, Walter E.

    1987-01-01

    Airborne Imaging Spectrometer (AIS)-2 data of coastal sage scrub vegetation were examined for fine spectral features that might be used to predict concentrations of certain canopy chemical constituents. A Fourier notch filter was applied to the AIS data and the TREE and ROCK mode spectra were ratioed to a flat field. Portions of the resulting spectra resemble spectra for plant cellulose and starch in that both show reduced reflectance at 2100 and 2270 nm. The latter are regions of absorption of energy by organic bonds found in starch and cellulose. Whether the relationship is sufficient to predict the concentration of these chemicals from AIS spectra will require testing of the predictive ability of these wavebands with large field sample sizes.

  7. Tribotronic Logic Circuits and Basic Operations.

    PubMed

    Zhang, Chi; Zhang, Li Min; Tang, Wei; Han, Chang Bao; Wang, Zhong Lin

    2015-06-17

    A tribotronic logic device is fabricated to convert external mechanical stimuli into logic level signals, and tribotronic logic circuits such as NOT, AND, OR, NAND, NOR, XOR, and XNOR gates are demonstrated for performing mechanical-electrical coupled tribotronic logic operations, which realize the direct interaction between the external environment and the current silicon integrated circuits.

  8. Situated, strategic, and AI-Enhanced technology introduction to healthcare.

    PubMed

    Bushko, Renata G

    2005-01-01

    We work hard on creating AI-wings for physicians to let them fly higher and faster in diagnosing patients--a task that physicians do not want to automate. What we do not work hard on is determining the ENVIRONMENT in which physicians' AI wings are supposed to function. It seems to be a job for social/business analysts that have their own separate kingdom. For the sake of all of us (potential patients!) social/business consultants and their methodologies should not be treated as a separate kingdom. The most urgent task is to achieve synergy between (1) AI/Fuzzy/Neural research, (2) Applied medical AI, (3) Social/Business research on medical institutions. We need this synergy in order to assure humanistic medical technology; technology flexible and sensitive enough to facilitate healthcare work while leaving space for human pride and creativity. In order to achieve humanistic technology, designers should consider the impact of technological breakthroughs on the organizations in which this technology will function and the nature of work of humans destined to use this technology. Situated (different for each organization), Strategic (based on an in-depth knowledge of Healthcare business), and AI-Enhanced (ended with a dynamic model) method for introducing technology to Healthcare allows identifying areas where technology can make medical work easier. Using this method before automating human work will get us closer to the ideal where there is no discontinuity between design and use of programs; where the technology matches users' needs perfectly--the world with humanistic technology and healthcare workers with AI-wings.

  9. Frame synchronization of satellite based on AIS signals

    NASA Astrophysics Data System (ADS)

    Ma, Shexiang; Zhao, Dawei

    2016-10-01

    Frame synchronization play a very important role in coding of AIS. There are much arithmetic like maximum-likelihood, correlation and so on. But most of those cannot achieve good performance with large frequency offset. As satellite-based AIS system exist larger time delay and Doppler frequency offset, this paper propose arithmetic of frame synchronization. It is based on folding auto-correlation, where the top half and second half of training sequence have largest correlation after it is modulated by GMSK. Simulation experiments indicate that this arithmetic has good anti-frequency-offset performance.

  10. Rapid prototyping and AI programming environments applied to payload modeling

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Mendler, Andrew P.

    1987-01-01

    This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required.

  11. Diverter AI based decision aid, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Sexton, George A.; Bayles, Scott J.; Patterson, Robert W.; Schulke, Duane A.; Williams, Deborah C.

    1989-01-01

    It was determined that a system to incorporate artificial intelligence (AI) into airborne flight management computers is feasible. The AI functions that would be most useful to the pilot are to perform situational assessment, evaluate outside influences on the contemplated rerouting, perform flight planning/replanning, and perform maneuver planning. A study of the software architecture and software tools capable of demonstrating Diverter was also made. A skeletal planner known as the Knowledge Acquisition Development Tool (KADET), which is a combination script-based and rule-based system, was used to implement the system. A prototype system was developed which demonstrates advanced in-flight planning/replanning capabilities.

  12. Advances of Flash LIDAR Development Onboard Uav

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Yang, J.; Li, X.; Yang, X.

    2012-07-01

    A small cost-low civilian UAV (Unmanned Aerial Vehicle - UAV) platform usually requests that all carried components should be light in weight, small in volume, and efficient in energy. This paper presents the advance of a pre-mature of flash LiDAR system including laser emitting system, associate with the pulsed voltage technology. A complete laser emitting system, including laser diode, conic lens, alignment, divergence angle, etc., has been designed and implemented. The laser emitting system is first simulated and tested using 3D-Tool software, and then manufactured by an industrial company. In addition, a novel power supply topology based on two coupled coils, pulse generator circuit, and a fast switch, is proposed since several 100 V in voltage, 10-100 A in current, several hundred millisecond in pulse width is needed for flash LiDAR system onboard a small low-cost civilian UAV platform, and the traditional power supply had problems in efficiency and bulk. Finally, laser emitting and the power supply are assembled and tested. The size of laser footprint is 4398.031 mm x 4398.031 mm in x and y axes, respectively, when shitting from a flight height of 300 m, which is close to the theoretic size of 4.5 m x 4.5 m. The difference of 102 mm can meet the requirement of flash LiDAR data collection at a flight height of 300 m. Future work on extensive and on-going investigation and investments for a prototype of flash LiDAR system is drawn up as well.

  13. XMM instrument on-board software maintenance concept

    NASA Technical Reports Server (NTRS)

    Peccia, N.; Giannini, F.

    1994-01-01

    While the pre-launch responsibility for the production, validation and maintenance of instrument on-board software traditionally lies with the experimenter, the post-launch maintenance has been the subject of ad hoc arrangements with the responsibility shared to different extent between the experimenter, ESTEC and ESOC. This paper summarizes the overall design and development of the instruments on-board software for the XMM satellite, and describes the concept adopted for the maintenance of such software post-launch. The paper will also outline the on-board software maintenance and validation facilities and the expected advantages to be gained by the proposed strategy. Conclusions with respect to adequacy of this approach will be presented as well as recommendations for future instrument on-board software developments.

  14. A guide to onboard checkout. Volume 3: Electrical power

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The baseline electrical power subsystem for a space station is considered. The subsystem was anlayzed in order to define onboard checkout requirements. Reliability, failure effects, and maintenance are discussed.

  15. NASA/GSFC Onboard Autonomy For The Swift Mission

    NASA Technical Reports Server (NTRS)

    Ong, John

    2005-01-01

    This viewgraph presentation reviews the work that NASA Goddard Space Flight Center is currently doing and has been involved in in developing onboard autonomy and automation. Emphasis is given to the work being done for the Swift observatory

  16. On-board congestion control for satellite packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  17. Onboard autonomy on the Three Corner Sat mission

    NASA Technical Reports Server (NTRS)

    Chien, S. A.; Sherwood, R.

    2002-01-01

    In 2003, the student-built three satellite constellation Three Corner Sat (3CS) Mission will demonstrate onboard autonomy including: science data validation and prioritization, mission re-planning, and robust execution. Future observations will be planned onboard based on the quality of aquired science, available memory and power, and anticipated downlinks. These capabilities will allow 3CS to aquire additional science data if resources are available and to return only the highest quality science data.

  18. Realtime Decision Making on EO-1 Using Onboard Science Analysis

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu

    2004-01-01

    Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.

  19. Satellite on-board processing for earth resources data

    NASA Technical Reports Server (NTRS)

    Bodenheimer, R. E.; Gonzalez, R. C.; Gupta, J. N.; Hwang, K.; Rochelle, R. W.; Wilson, J. B.; Wintz, P. A.

    1975-01-01

    The feasibility was investigated of an on-board earth resources data processor launched during the 1980-1990 time frame. Projected user applications were studied to define the data formats and the information extraction algorithms that the processor must execute. Based on these constraints, and the constraints imposed by the available technology, on-board processor systems were designed and their feasibility evaluated. Conclusions and recommendations are given.

  20. AI in the Elementary, Middle, and Secondary Classroom.

    ERIC Educational Resources Information Center

    Kirkpatrick, Susan N.; Biglan, Barbara

    1990-01-01

    Describes activities that present concepts and applications of artificial intelligence (AI) for elementary and secondary school students. The use of Logo with elementary students is discussed; appropriate software is described; programing activities using Logo, BASIC, and Prolog are examined; and the field of robotics is discussed. (four…

  1. AI in CALL--Artificially Inflated or Almost Imminent?

    ERIC Educational Resources Information Center

    Schulze, Mathias

    2008-01-01

    The application of techniques from artificial intelligence (AI) to CALL has commonly been referred to as intelligent CALL (ICALL). ICALL is only slightly older than the "CALICO Journal", and this paper looks back at a quarter century of published research mainly in North America and by North American scholars. This "inventory…

  2. New directions for Artificial Intelligence (AI) methods in optimum design

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1989-01-01

    Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.

  3. Artificial Intelligence: Is the Future Now for A.I.?

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2009-01-01

    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  4. State Revolving Fund American Iron and Steel (AIS) Requirement

    EPA Pesticide Factsheets

    The AIS provision requires CWSRF and DWSRF assistance recipients to use iron and steel products that are produced in the U.S. It applies to projects for the construction, alteration, maintenance, or repair of a public water system or treatment work.

  5. Automatic Identification System (AIS) Transmit Testing in Louisville Phase 2

    DTIC Science & Technology

    2014-08-01

    project. Two of the captains were Capt. David Williams and Capt. Spencer Kennedy. After leaving SCI, the team members went to Crounse Inc. and met...team members had a phone conference with Herbert Taylor (VP Operations, Kongsberg Maritime Simulation Inc.) to discuss the integration of AIS data in

  6. 33 CFR 164.46 - Automatic Identification System (AIS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... forth in IMO SN/Circ.227 (incorporated by reference, see § 164.03). Not all AIS units are able to broadcast position, course, and speed without the input of an external positioning device (e.g. dGPS); the use of other external devices (e.g. transmitting heading device, gyro, rate of turn indicator)...

  7. AI in Reverse: Computer Tools That Become Cognitive.

    ERIC Educational Resources Information Center

    Salomon, Gavriel

    The question of whether human thinking can come to simulate computer intelligence--i.e., AI in reverse--is addressed in this paper. Examples are given of three computer tools which perform several functions that constitute an intellectual partnership between student and tool. Such functions include: (1) assuming part of the intellectual burden in…

  8. AI/Simulation Fusion Project at Lawrence Livermore National Laboratory

    SciTech Connect

    Erickson, S.A.

    1984-04-25

    This presentation first discusses the motivation for the AI Simulation Fusion project. After discussing very briefly what expert systems are in general, what object oriented languages are in general, and some observed features of typical combat simulations, it discusses why putting together artificial intelligence and combat simulation makes sense. We then talk about the first demonstration goal for this fusion project.

  9. Logic, probability, and human reasoning.

    PubMed

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction.

  10. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  11. Arctic summer school onboard an icebreaker

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  12. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  13. Intelligent, onboard signal processing payload concept, addendum :

    SciTech Connect

    Shriver, P. M.; Harikumar, J.; Briles, S. C.; Gokhale, M.

    2003-01-01

    This document addresses two issues in the original paper entitled 'An Intelligent, Onboard Signal Processing Payload Concept' submitted to the SPIE AeroSense 2003 C0nference.l Since the original paper submission, and prior to the scheduled presentation, a correction has been made to one of the figures in the original paper and an update has been performed to the software simulation of the payload concept. The figure, referred to as Figure 8. Simulation Results in the original paper, contains an error in the voltage versus the capacity drained chart. This chart does not correctly display the voltage changes experienced by the battery module due to the varying discharge rates. This error is an artifact of the procedure used to graph the data. Additionally, the original version of the Simulation related the algorithm execution rate to the lightning event rate regardless of the number of events in the ring buffer. This feature was mentioned in section 5. Simulation Results of the original paper. A correction was also made to the size of the ring buffer. Incorrect information was provided to the authors that placed the number of possible events at 18,310. Corrected information has since been obtained that specifies the ring buffer can typically hold only 1,000 events. This has a significant impact on the APM process and the number of events lost when the size of the ring buffer is exceeded. Also, upon further analysis, it was realized that the simulation contained an error in the recording of the number of events in the ring buffer. The faster algorithms, LMS and ML, should have been able to process all events during the simulation time interval, but the initial results did not reflect this characteristic. The updated version of the simulation appropriately handles the number of algorithm executions and recording of events in the ring buffer as well as uses the correct size for the ring buffer. These improvements to the simulation and subsequent results are discussed in

  14. Detection of autoinducer (AI-2)-like activity in food samples.

    PubMed

    Sivakumar, Kirthiram K; Jesudhasan, Palmy R; Pillai, Suresh D

    2011-01-01

    The contamination, survival, and possible foodborne disease outbreaks are major issues confronting the food industry. However, from a microbial perspective, any food whether natural or processed is just another environmental niche that is available for colonization. Quorum sensing or cell-cell communication is a process by which microorganisms are thought to communicate with each other using a variety of small molecules termed autoinducers. The autoinducer AI-2 is thought to be a universal signaling molecule due to its ability to modulate the gene expression of a number of different bacterial species and genera. Pathogens such as Pseudomonas aeruginosa, Aeromonas hydrophila, Vibrio anguillarum, Streptococcus sp., and Burkholderia cepacia form biofilms on a variety of man-made and natural surfaces using cell-cell mechanisms. It is important to detect and study autoinducers and their activities in foods, since a better understanding of these molecules in food and food ingredients may help in designing new approaches to thwart microbial persistence and biofilm formation. The autoinducer AI-2 is thought to be involved in microbial attachment and biofilm formation leading to food spoilage. To better understand microbial cell-cell signaling in foods especially as it relates to pathogen persistence, biofilm formation, and food spoilage, methods to process, extract, and purify autoinducer molecules need to be developed. This chapter details methods to process food samples to obtain cell-free supernatants (CFS), which could subsequently be tested for the presence of AI-2 or "AI-2-like activity" in the extracted CFS using autoinducer bioassays. Additionally, the method of synthesizing AI-2 in the laboratory is also provided. The methods that are presented in this chapter are based on previously published research articles from the authors' laboratory.

  15. The semantics of fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1991-01-01

    Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.

  16. Superconducting gates with fluxon logics

    NASA Astrophysics Data System (ADS)

    Nacak, H.; Kusmartsev, F. V.

    2010-10-01

    We have developed several logic gates (OR, XOR, AND and NAND) made of superconducting Josephson junctions. The gates based of the flux cloning phenomenon and high speed of fluxons moving in Josephson junctions of different shapes. In a contrast with previous design the gates operates extremely fast since fluxons are moving with the speed close to the speed of light. We have demonstrated their operations and indicated several ways to made a more complicated logic elements which have at the same time a compact form.

  17. Dynamic Logic Assigned to Automata

    NASA Astrophysics Data System (ADS)

    Chajda, Ivan; Paseka, Jan

    2017-02-01

    A dynamic logic B can be assigned to every automaton [InlineMediaObject not available: see fulltext.] without regard if [InlineMediaObject not available: see fulltext.] is deterministic or nondeterministic. This logic enables us to formulate observations on [InlineMediaObject not available: see fulltext.] in the form of composed propositions and, due to a transition functor T, it captures the dynamic behaviour of [InlineMediaObject not available: see fulltext.]. There are formulated conditions under which the automaton [InlineMediaObject not available: see fulltext.] can be recovered by means of B and T.

  18. A Logical Approach to Entanglement

    NASA Astrophysics Data System (ADS)

    Das, Abhishek

    2016-10-01

    In this paper we innovate a logical approach to develop an intuition regarding the phenomenon of quantum entanglement. In the vein of the logic introduced we substantiate that particles that were entangled in the past will be entangled in perpetuity and thereby abide a rule that restricts them to act otherwise. We also introduce a game and by virtue of the concept of Nash equilibrium we have been able to show that entangled particles will mutually correspond to an experiment that is performed on any one of the particle.

  19. Combining FDI and AI approaches within causal-model-based diagnosis.

    PubMed

    Gentil, Sylviane; Montmain, Jacky; Combastel, Christophe

    2004-10-01

    This paper presents a model-based diagnostic method designed in the context of process supervision. It has been inspired by both artificial intelligence and control theory. AI contributes tools for qualitative modeling, including causal modeling, whose aim is to split a complex process into elementary submodels. Control theory, within the framework of fault detection and isolation (FDI), provides numerical models for generating and testing residuals, and for taking into account inaccuracies in the model, unknown disturbances and noise. Consistency-based reasoning provides a logical foundation for diagnostic reasoning and clarifies fundamental assumptions, such as single fault and exoneration. The diagnostic method presented in the paper benefits from the advantages of all these approaches. Causal modeling enables the method to focus on sufficient relations for fault isolation, which avoids combinatorial explosion. Moreover, it allows the model to be modified easily without changing any aspect of the diagnostic algorithm. The numerical submodels that are used to detect inconsistency benefit from the precise quantitative analysis of the FDI approach. The FDI models are studied in order to link this method with DX component-oriented reasoning. The recursive on-line use of this algorithm is explained and the concept of local exoneration is introduced.

  20. Intelligent behavior generator for autonomous mobile robots using planning-based AI decision making and supervisory control logic

    NASA Astrophysics Data System (ADS)

    Shah, Hitesh K.; Bahl, Vikas; Martin, Jason; Flann, Nicholas S.; Moore, Kevin L.

    2002-07-01

    In earlier research the Center for Self-Organizing and Intelligent Systems (CSOIS) at Utah State University (USU) have been funded by the US Army Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program to develop and demonstrate enhanced mobility concepts for unmanned ground vehicles (UGVs). One among the several out growths of this work has been the development of a grammar-based approach to intelligent behavior generation for commanding autonomous robotic vehicles. In this paper we describe the use of this grammar for enabling autonomous behaviors. A supervisory task controller (STC) sequences high-level action commands (taken from the grammar) to be executed by the robot. It takes as input a set of goals and a partial (static) map of the environment and produces, from the grammar, a flexible script (or sequence) of the high-level commands that are to be executed by the robot. The sequence is derived by a planning function that uses a graph-based heuristic search (A* -algorithm). Each action command has specific exit conditions that are evaluated by the STC following each task completion or interruption (in the case of disturbances or new operator requests). Depending on the system's state at task completion or interruption (including updated environmental and robot sensor information), the STC invokes a reactive response. This can include sequencing the pending tasks or initiating a re-planning event, if necessary. Though applicable to a wide variety of autonomous robots, an application of this approach is demonstrated via simulations of ODIS, an omni-directional inspection system developed for security applications.

  1. Guide on Logical Database Design.

    ERIC Educational Resources Information Center

    Fong, Elizabeth N.; And Others

    This report discusses an iterative methodology for logical database design (LDD). The methodology includes four phases: local information-flow modeling, global information-flow modeling, conceptual schema design, and external schema modeling. These phases are intended to make maximum use of available information and user expertise, including the…

  2. Mathematical Induction: Deductive Logic Perspective

    ERIC Educational Resources Information Center

    Dogan, Hamide

    2016-01-01

    Many studies mentioned the deductive nature of Mathematical Induction (MI) proofs but almost all fell short in explaining its potential role in the formation of the misconceptions reported in the literature. This paper is the first of its kind looking at the misconceptions from the perspective of the abstract of the deductive logic from one's…

  3. Gateways to Writing Logical Arguments

    ERIC Educational Resources Information Center

    McCann, Thomas M.

    2010-01-01

    Middle school and high school students have a conception of what the basic demands of logic are, and they draw on this understanding in anticipating certain demands of parents and teachers when the adolescents have to defend positions. At the same time, many adolescents struggle to "write" highly elaborated arguments. Teaching students lessons in…

  4. Logical Empiricism, Politics, and Professionalism

    ERIC Educational Resources Information Center

    Edgar, Scott

    2009-01-01

    This paper considers George A. Reisch's account of the role of Cold War political forces in shaping the apolitical stance that came to dominate philosophy of science in the late 1940s and 1950s. It argues that at least as early as the 1930s, Logical Empiricists such as Rudolf Carnap already held that philosophy of science could not properly have…

  5. Program Theory Evaluation: Logic Analysis

    ERIC Educational Resources Information Center

    Brousselle, Astrid; Champagne, Francois

    2011-01-01

    Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…

  6. Generic physical protection logic trees

    SciTech Connect

    Paulus, W.K.

    1981-10-01

    Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle.

  7. Logic synthesis from DDL description

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1980-01-01

    The implementation of DDLTRN and DDLSIM programs on SEL-2 computer system is reported. These programs were tested with DDL descriptions of various complexity. An algorithm to synthesize the combinational logic using the cells available in the standard IC cell library was formulated. The algorithm is implemented as a FORTRAN program and a description of the program is given.

  8. Logic Programming and Knowledge Maintenance.

    DTIC Science & Technology

    1987-08-13

    the literature , and became convinced that many of the advantages of frames and semantic nets can be captured in logic programming systems by a...consists of: needs(john,money). married_to(john,mary). loves(john,mary). (mary is the dead victim in this thriller .) The victim’s sister sara consists of

  9. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  10. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  11. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  12. 78 FR 17232 - Meeting of the SANE/SART AI/AN Initiative Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Indian/ Alaska Native (AI/AN) Sexual Assault Nurse Examiner (SANE)--Sexual Assault Response Team (SART.../Alaskan Native (AI/AN) Sexual Assault Nurse Examiner (SANE)--Sexual Assault Response Team...

  13. Onboard Detection of Active Canadian Sulfur Springs: A Europa Analogue

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Wagstaff, Kiri; Gleeson, Damhnait; Pappalardo, Robert; Chien, Steve; Tran, Daniel; Scharenbroich, Lucas; Moghaddam, Baback; Tang, Benyang; Bue, Brian; Doggett, Thomas; Mandl, Dan; Frye, Stuart

    2008-01-01

    We discuss a current, ongoing demonstration of insitu onboard detection in which the Earth Observing-1 spacecraft detects surface sulfur deposits that originate from underlying springs by distinguishing the sulfur from the ice-rich glacial background, a good analogue for the Europan surface. In this paper, we describe the process of developing the onboard classifier for detecting the presence of sulfur in a hyperspectral scene, including the use of a training/testing set that is not exhaustively labeled, i.e.not all true positives are marked, and the selection of 12, out of 242, Hyperion instrument wavelength bands to use in the onboard detector. This study aims to demonstrate the potential for future missions to capture short-lived science events, make decisions onboard, identify high priority data for downlink and perform onboard change detection. In the future, such capability could help maximize the science return of downlink bandwidth-limited missions, addressing a significant constraint in all deep-space missions.

  14. SASIL. Sandia ATM SONET Interface Logic

    SciTech Connect

    Kitta, J P

    1994-07-01

    SASIL is used to program the EPLD`s (Erasable Programmable Logic Devices) and PAL`s (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  15. Quantum Logics of Idempotents of Unital Rings

    NASA Astrophysics Data System (ADS)

    Bikchentaev, Airat; Navara, Mirko; Yakushev, Rinat

    2015-06-01

    We introduce some new examples of quantum logics of idempotents in a ring. We continue the study of symmetric logics, i.e., collections of subsets generalizing Boolean algebras and closed under the symmetric difference.

  16. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Sussow, S.; Oglesby, R.

    1973-01-01

    This manual presents a computer program that performs all the work required for the logic design of digital counters or sequential circuits and the simplification of Boolean logic expressions. The program provides both the experienced and inexperienced logic designer with a comprehensive logic design capability. The manual contains Boolean simplification and sequential design theory, detailed instructions for use of the program, a large number of illustrative design examples, and complete program documentation.

  17. A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires.

    PubMed

    Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente

    2017-02-10

    The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic.

  18. Fuzzy-logic-based hybrid locomotion mode classification for an active pelvis orthosis: Preliminary results.

    PubMed

    Yuan, Kebin; Parri, Andrea; Yan, Tingfang; Wang, Long; Munih, Marko; Vitiello, Nicola; Wang, Qining

    2015-01-01

    In this paper, we present a fuzzy-logic-based hybrid locomotion mode classification method for an active pelvis orthosis. Locomotion information measured by the onboard hip joint angle sensors and the pressure insoles is used to classify five locomotion modes, including two static modes (sitting, standing still), and three dynamic modes (level-ground walking, ascending stairs, and descending stairs). The proposed method classifies these two kinds of modes first by monitoring the variation of the relative hip joint angle between the two legs within a specific period. Static states are then classified by the time-based absolute hip joint angle. As for dynamic modes, a fuzzy-logic based method is proposed for the classification. Preliminary experimental results with three able-bodied subjects achieve an off-line classification accuracy higher than 99.49%.

  19. 10 CFR 1017.28 - Processing on Automated Information Systems (AIS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing on Automated Information Systems (AIS). 1017.28... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.28 Processing on Automated Information Systems (AIS). UCNI may be processed or produced on any AIS that complies with the guidance in...

  20. 10 CFR 1017.28 - Processing on Automated Information Systems (AIS).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Processing on Automated Information Systems (AIS). 1017.28... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.28 Processing on Automated Information Systems (AIS). UCNI may be processed or produced on any AIS that complies with the guidance in...

  1. 10 CFR 1017.28 - Processing on Automated Information Systems (AIS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Processing on Automated Information Systems (AIS). 1017.28... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.28 Processing on Automated Information Systems (AIS). UCNI may be processed or produced on any AIS that complies with the guidance in...

  2. 10 CFR 1017.28 - Processing on Automated Information Systems (AIS).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Processing on Automated Information Systems (AIS). 1017.28... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.28 Processing on Automated Information Systems (AIS). UCNI may be processed or produced on any AIS that complies with the guidance in...

  3. 10 CFR 1017.28 - Processing on Automated Information Systems (AIS).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Processing on Automated Information Systems (AIS). 1017.28... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.28 Processing on Automated Information Systems (AIS). UCNI may be processed or produced on any AIS that complies with the guidance in...

  4. Enhancing Science and Automating Operations using Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Chien, Steve; Tran, Daniel; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Mandl, Dan; Szwaczkowski, Joseph; Frye, Stuart; Shulman, Seth

    2006-01-01

    In this paper, we will describe the evolution of the software from prototype to full time operation onboard Earth Observing One (EO-1). We will quantify the increase in science, decrease in operations cost, and streamlining of operations procedures. Included will be a description of how this software was adapted post-launch to the EO-1 mission, which had very limited computing resources which constrained the autonomy flight software. We will discuss ongoing deployments of this software to the Mars Exploration Rovers and Mars Odyssey Missions as well as a discussion of lessons learned during this project. Finally, we will discuss how the onboard autonomy has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web to study volcanoes, floods, sea-ice topography, and wild fires. As demonstrated on EO-1, onboard autonomy is a revolutionary advance that will change the operations approach on future NASA missions...

  5. Oil spills and AI: How to manage resources through simulation

    SciTech Connect

    Giribone, P.; Bruzzone, A.G.; Caddeo, S.

    1995-12-31

    Today, in the Mediterranean theater of the Upper Tyrrhenian, the ecological risk involving oil installations is still quite high. This is due to the fact that valuable environmental and tourist areas exist together with large industrial and port structures; in particular, recent events have demonstrated the danger involving oil spills along the Ligurian coastline. This study proposes an approach to plan the operations that should be performed when accidents occur, based on the use of AI techniques.

  6. AiResearch QCGAT engine performance and emissions tests

    NASA Technical Reports Server (NTRS)

    Norgren, W. M.

    1980-01-01

    Results of aerodynamic performance and emission tests, conducted on a specially designed QCGAT engine in the 17,793-N (4,000 lb) thrust class, are presented. Performance of the AiResearch QCGAT engine was excellent throughout all testing. No serious mechanical malfunctions were encountered, and no significant test time was lost due to engine-related problems. Emissions were drastically reduced over similar engines, and the engine exhibited good smoke performance.

  7. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    PubMed

    Altman, R B

    2017-02-09

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability.

  8. The AIS: A Spectrograph/Imager Ensemble for Space Flight

    DTIC Science & Technology

    1990-05-17

    emissions in the vicinity of spacecraft. It includes nine spectrographs, which cover the spectral range from 115 to 1100 snm#.Vlithpe- tralI ...designations, wavelength ranges, and fields of view. 10 3. Spectrograph parameters and calibration results . 26 4. Imager parameters and calibration... results . 28 BI Weights and Dimensions of the boxes that comprise the AIS 42 Accession For NTIS GRA& DTIC TAB 0 Unamotced E0 Just ificat1o by Distrlbution

  9. An Introduction to Calculator Logic Systems.

    ERIC Educational Resources Information Center

    Mitchell, Charles E.; Blume, Glendon W.

    1980-01-01

    Each of the hand-held calculator logic systems found on the market today is introduced, along with some of the advantages and disadvantages of each. The systems reviewed are: arithmetic logic, algebraic logic-no hierarchy, algebraic operating system, and reverse polish notation. (MP)

  10. Logics of Business Education for Sustainability

    ERIC Educational Resources Information Center

    Andersson, Pernilla; Öhman, Johan

    2016-01-01

    This paper explores various kinds of logics of "business education for sustainability" and how these "logics" position the subject business person, based on eight teachers' reasoning of their own practices. The concept of logics developed within a discourse theoretical framework is employed to analyse the teachers' reasoning.…

  11. Piaget's Logic of Meanings: Still Relevant Today

    ERIC Educational Resources Information Center

    Wavering, Michael James

    2011-01-01

    In his last book, "Toward a Logic of Meanings" (Piaget & Garcia, 1991), Jean Piaget describes how thought can be categorized into a form of propositional logic, a logic of meanings. The intent of this article is to offer this analysis by Piaget as a means to understand the language and teaching of science. Using binary propositions, conjunctions,…

  12. Extracting uranium from seawater: Promising AI series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; ...

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less

  13. Extracting Uranium from Seawater: Promising AI Series Adsorbents

    SciTech Connect

    Das, S.; Oyola, Y.; Mayes, R. T.; Janke, C. J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new series of adsorbents (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole to mole ratios) onto high surface area polyethylene fiber, with high degrees of grafting (DOG) varying from 110 to 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 5 wt % hydroxylamine at 80 °C for 72 h. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with prescreening brine spiked with 8 ppm uranium. Uranium adsorption capacities in prescreening ranged from 171 to 187 g-U/kg-ads irrespective of percent DOG. The performance of the adsorbents with respect to uranium adsorption in natural seawater was also investigated using flow-throughcolumn testing at the Pacific Northwest National Laboratory (PNNL). Three hours of KOH conditioning led to higher uranium uptake than 1 h of conditioning. The adsorbent AI11, containing AN and VPA at the mole ratio of 3.52, emerged as the potential candidate for the highest uranium adsorption (3.35 g-U/kg-ads.) after 56 days of exposure in seawater flow-through-columns. The rate of vanadium adsorption over uranium linearly increased throughout the 56 days of exposure. The total mass of vanadium uptake was ~5 times greater than uranium after 56 days.

  14. Functional subdivisions in low-frequency primary auditory cortex (AI).

    PubMed

    Wallace, M N; Palmer, A R

    2009-04-01

    We wished to test the hypothesis that there are modules in low-frequency AI that can be identified by their responsiveness to communication calls or particular regions of space. Units were recorded in anaesthetised guinea pig AI and stimulated with conspecific vocalizations and a virtual motion stimulus (binaural beats) presented via a closed sound system. Recording tracks were mainly oriented orthogonally to the cortical surface. Some of these contained units that were all time-locked to the structure of the chutter call (14/22 tracks) and/or the purr call (12/22 tracks) and/or that had a preference for stimuli from a particular region of space (8/20 tracks with four contralateral, two ipsilateral and two midline), or where there was a strong asymmetry in the response to beats of different direction (two tracks). We conclude that about half of low-frequency AI is organized into modules that are consistent with separate "what" and "where" pathways.

  15. LUT observations of the mass-transferring binary AI Dra

    NASA Astrophysics Data System (ADS)

    Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping

    2016-06-01

    Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.

  16. Extracting uranium from seawater: Promising AI series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  17. The AI Bus architecture for distributed knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Schultz, Roger D.; Stobie, Iain

    1991-01-01

    The AI Bus architecture is layered, distributed object oriented framework developed to support the requirements of advanced technology programs for an order of magnitude improvement in software costs. The consequent need for highly autonomous computer systems, adaptable to new technology advances over a long lifespan, led to the design of an open architecture and toolbox for building large scale, robust, production quality systems. The AI Bus accommodates a mix of knowledge based and conventional components, running on heterogeneous, distributed real world and testbed environment. The concepts and design is described of the AI Bus architecture and its current implementation status as a Unix C++ library or reusable objects. Each high level semiautonomous agent process consists of a number of knowledge sources together with interagent communication mechanisms based on shared blackboards and message passing acquaintances. Standard interfaces and protocols are followed for combining and validating subsystems. Dynamic probes or demons provide an event driven means for providing active objects with shared access to resources, and each other, while not violating their security.

  18. Hereditary apolipoprotein AI-associated renal amyloidosis: A diagnostic challenge.

    PubMed

    Samillán-Sosa, Kelly Del Rocío; Sención-Martínez, Gloria; Lopes-Martín, Vanessa; Martínez-González, Miguel Angel; Solé, Manel; Arostegui, Jose Luis; Mesa, Jose; García-Díaz, Juan de Dios; Rodríguez-Puyol, Diego; Martínez-Miguel, Patricia

    2015-01-01

    Hereditary renal amyloidosis is an autosomal dominant condition with considerable overlap with other amyloidosis types. Differential diagnosis is complicated, but is relevant for prognosis and treatment. We describe a patient with nephrotic syndrome and progressive renal failure, who had a mother with renal amiloidosis. Renal biopsy revealed amyloid deposits in glomerular space, with absence of light chains and protein AA. We suspected amyloidosis with fibrinogen A alpha chain deposits, which is the most frequent cause of hereditary amyloidosis in Europe, with a glomerular preferential affectation. However, the genetic study showed a novel mutation in apolipoprotein AI. On reviewing the biopsy of the patient's mother similar glomerular deposits were found, but there were significant deposits in the renal medulla as well, which is typical in APO AI amyloidosis. The diagnosis was confirmed by immunohistochemistry. Apo AI amyloidosis is characterized by slowly progressive renal disease and end-stage renal disease occurs aproximately 3 to 15 years from initial diagnosis. Renal transplantation offers an acceptable graft survival and in these patients with hepatorenal involvement simultaneous liver and kidney transplantation could be considered.

  19. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  20. Onboard Science and Applications Algorithm for Hyperspectral Data Reduction

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Davies, Ashley G.; Silverman, Dorothy; Mandl, Daniel

    2012-01-01

    An onboard processing mission concept is under development for a possible Direct Broadcast capability for the HyspIRI mission, a Hyperspectral remote sensing mission under consideration for launch in the next decade. The concept would intelligently spectrally and spatially subsample the data as well as generate science products onboard to enable return of key rapid response science and applications information despite limited downlink bandwidth. This rapid data delivery concept focuses on wildfires and volcanoes as primary applications, but also has applications to vegetation, coastal flooding, dust, and snow/ice applications. Operationally, the HyspIRI team would define a set of spatial regions of interest where specific algorithms would be executed. For example, known coastal areas would have certain products or bands downlinked, ocean areas might have other bands downlinked, and during fire seasons other areas would be processed for active fire detections. Ground operations would automatically generate the mission plans specifying the highest priority tasks executable within onboard computation, setup, and data downlink constraints. The spectral bands of the TIR (thermal infrared) instrument can accurately detect the thermal signature of fires and send down alerts, as well as the thermal and VSWIR (visible to short-wave infrared) data corresponding to the active fires. Active volcanism also produces a distinctive thermal signature that can be detected onboard to enable spatial subsampling. Onboard algorithms and ground-based algorithms suitable for onboard deployment are mature. On HyspIRI, the algorithm would perform a table-driven temperature inversion from several spectral TIR bands, and then trigger downlink of the entire spectrum for each of the hot pixels identified. Ocean and coastal applications include sea surface temperature (using a small spectral subset of TIR data, but requiring considerable ancillary data), and ocean color applications to track

  1. Applications of Logic Coverage Criteria and Logic Mutation to Software Testing

    ERIC Educational Resources Information Center

    Kaminski, Garrett K.

    2011-01-01

    Logic is an important component of software. Thus, software logic testing has enjoyed significant research over a period of decades, with renewed interest in the last several years. One approach to detecting logic faults is to create and execute tests that satisfy logic coverage criteria. Another approach to detecting faults is to perform mutation…

  2. Feasibility of an onboard wake vortex avoidance system

    NASA Technical Reports Server (NTRS)

    Bilanin, Alan J.; Teske, Milton E.; Curtiss, Howard C., Jr.

    1987-01-01

    It was determined that an onboard vortex wake detection system using existing, proven instrumentation is technically feasible. This system might be incorporated into existing onboard systems such as a wind shear detection system, and might provide the pilot with the location of a vortex wake, as well as an evasive maneuver so that the landing separations may be reduced. It is suggested that this system might be introduced into our nation's commuter aircraft fleet and major air carrier fleet and permit a reduction of current landing separation standards, thereby reducing takeoff and departure delays.

  3. Detection of weak frequency jumps for GNSS onboard clocks.

    PubMed

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector.

  4. An innovative on-board processor for lightsats

    NASA Technical Reports Server (NTRS)

    Henshaw, R. M.; Ballard, B. W.; Hayes, J. R.; Lohr, D. A.

    1990-01-01

    The Applied Physics Laboratory (APL) has developed a flightworthy custom microprocessor that increases capability and reduces development costs of lightsat science instruments. This device, called the FRISC (FORTH Reduced Instruction Set Computer), directly executes the high-level language called FORTH, which is ideally suited to the multitasking control and data processing environment of a spaceborne instrument processor. The FRISC will be flown as the onboard processor in the Magnetic Field Experiment on the Freja satllite. APL has achieved a significant increase in onboard processing capability with no increase in cost when compared to the magnetometer instrument on Freja's predecessor, the Viking satellite.

  5. On-board data recorder for hard-target weapons

    NASA Astrophysics Data System (ADS)

    Niven, W. A.; Jaroska, M. F.

    1981-03-01

    A small, rugged, solid state onboard recorder was developed to capture dynamic data for testing hard target penetration weapons. The onboard recorder that was developed is illustrated. The transient recorder electronics is packaged so that it will fit in the fuze well of the bomb or warhead. Special techniques were used to package the recorder's electronics to allow it to survive the high shock levels associated with the impact with the hard target. Accelerometers measure the accelerations of the warhead. The warhead is recovered after the test, a memory readout system is connected to the transient recorder's memory, and the information is read out for display and analysis.

  6. Absolute parameters for AI Phoenicis using WASP photometry

    NASA Astrophysics Data System (ADS)

    Kirkby-Kent, J. A.; Maxted, P. F. L.; Serenelli, A. M.; Turner, O. D.; Evans, D. F.; Anderson, D. R.; Hellier, C.; West, R. G.

    2016-06-01

    Context. AI Phe is a double-lined, detached eclipsing binary, in which a K-type sub-giant star totally eclipses its main-sequence companion every 24.6 days. This configuration makes AI Phe ideal for testing stellar evolutionary models. Difficulties in obtaining a complete lightcurve mean the precision of existing radii measurements could be improved. Aims: Our aim is to improve the precision of the radius measurements for the stars in AI Phe using high-precision photometry from the Wide Angle Search for Planets (WASP), and use these improved radius measurements together with estimates of the masses, temperatures and composition of the stars to place constraints on the mixing length, helium abundance and age of the system. Methods: A best-fit ebop model is used to obtain lightcurve parameters, with their standard errors calculated using a prayer-bead algorithm. These were combined with previously published spectroscopic orbit results, to obtain masses and radii. A Bayesian method is used to estimate the age of the system for model grids with different mixing lengths and helium abundances. Results: The radii are found to be R1 = 1.835 ± 0.014 R⊙, R2 = 2.912 ± 0.014 R⊙ and the masses M1 = 1.1973 ± 0.0037 M⊙, M2 = 1.2473 ± 0.0039 M⊙. From the best-fit stellar models we infer a mixing length of 1.78, a helium abundance of YAI = 0.26 +0.02-0.01 and an age of 4.39 ± 0.32 Gyr. Times of primary minimum show the period of AI Phe is not constant. Currently, there are insufficient data to determine the cause of this variation. Conclusions: Improved precision in the masses and radii have improved the age estimate, and allowed the mixing length and helium abundance to be constrained. The eccentricity is now the largest source of uncertainty in calculating the masses. Further work is needed to characterise the orbit of AI Phe. Obtaining more binaries with parameters measured to a similar level of precision would allow us to test for relationships between helium

  7. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.

  8. The logic of medical diagnosis.

    PubMed

    Stanley, Donald E; Campos, Daniel G

    2013-01-01

    Establishing diagnoses is a crucial aspect of medical practice. However, this process has received comparatively little logical and pedagogical attention when compared to statistical methods for evaluating evidence. This article investigates the logic of medical diagnosis in order to fill this void. It is organized in three parts: the first attempts to explain why more attention ought to be paid to diagnosis, at least as much as to evidence; the second calls attention to the method of diagnosis by abductive reasoning developed in the 19th century by Charles Sanders Peirce (1839-1914); and the third demonstrates the use and pervasiveness of abduction by any other name in clinical diagnosis. We examine six diagnostic strategies in common use that contain most, if not all, of Peirce's structure of inquiry in science.

  9. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  10. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Humm, John R; Stadter, Gregory W; Curry, William H; Brasel, Karen J

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990-1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m(2). Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data.

  11. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Humm, John R.; Stadter, Gregory W.; Curry, William H.; Brasel, Karen J.

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990–1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m2. Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958

  12. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  13. Cosmic logic: a computational model

    SciTech Connect

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  14. QML-AiNet: An immune network approach to learning qualitative differential equation models.

    PubMed

    Pang, Wei; Coghill, George M

    2015-02-01

    In this paper, we explore the application of Opt-AiNet, an immune network approach for search and optimisation problems, to learning qualitative models in the form of qualitative differential equations. The Opt-AiNet algorithm is adapted to qualitative model learning problems, resulting in the proposed system QML-AiNet. The potential of QML-AiNet to address the scalability and multimodal search space issues of qualitative model learning has been investigated. More importantly, to further improve the efficiency of QML-AiNet, we also modify the mutation operator according to the features of discrete qualitative model space. Experimental results show that the performance of QML-AiNet is comparable to QML-CLONALG, a QML system using the clonal selection algorithm (CLONALG). More importantly, QML-AiNet with the modified mutation operator can significantly improve the scalability of QML and is much more efficient than QML-CLONALG.

  15. QML-AiNet: An immune network approach to learning qualitative differential equation models

    PubMed Central

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper, we explore the application of Opt-AiNet, an immune network approach for search and optimisation problems, to learning qualitative models in the form of qualitative differential equations. The Opt-AiNet algorithm is adapted to qualitative model learning problems, resulting in the proposed system QML-AiNet. The potential of QML-AiNet to address the scalability and multimodal search space issues of qualitative model learning has been investigated. More importantly, to further improve the efficiency of QML-AiNet, we also modify the mutation operator according to the features of discrete qualitative model space. Experimental results show that the performance of QML-AiNet is comparable to QML-CLONALG, a QML system using the clonal selection algorithm (CLONALG). More importantly, QML-AiNet with the modified mutation operator can significantly improve the scalability of QML and is much more efficient than QML-CLONALG. PMID:25648212

  16. STS-83 Onboard Photo: Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a Microgravity Science Laboratory-1 (MLS-1) onboard STS-83 photo of the most recent comet to date, Hale-Bopp, which passed by Earth during the spring and summer of 1997. In this view, the comet is visible during sunset. The streaks and distorted lights seen in the bottom of the photo are city lights and petroleum fires.

  17. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  18. Intelligent Sensors and Components for On-Board ISHM

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; Morris, Jon; Nickles, Donald; Schmalzel, Jorge; Rauth, David; Mahajan, Ajay; Utterbach, L.; Oesch, C.

    2006-01-01

    A viewgraph presentation on the development of intelligent sensors and components for on-board Integrated Systems Health Health Management (ISHM) is shown. The topics include: 1) Motivation; 2) Integrated Systems Health Management (ISHM); 3) Intelligent Components; 4) IEEE 1451; 5)Intelligent Sensors; 6) Application; and 7) Future Directions

  19. Real-time Java for on-board systems

    NASA Astrophysics Data System (ADS)

    Cechticky, V.; Pasetti, A.

    2002-07-01

    The Java language has several attractive features but cannot at present be used in on-board systems primarily because it lacks support for hard real-time operation. This shortcoming is in being addressed: some suppliers are already providing implementations of Java that are RT-compliant; Sun Microsystem has approved a formal specification for a real-time extension of the language; and an independent consortium is working on an alternative specification for real-time Java. It is therefore expected that, within a year or so, standardized commercial implementations of real-time Java will be on the market. Availability of real-time implementations now opens the way to its use on-board. Within this context, this paper has two objectives. Firstly, it discusses the suitability of Java for on-board applications. Secondly, it reports the results of an ESA study to port a software framework for on-board control systems to a commercial real-time version of Java.

  20. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, B.; Chalmers, H.

    1987-01-01

    For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model.

  1. Onboard photo: Astronaut Mae Jemison working in Spacelab-J

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Space Shuttle Endeavour (STS-47) onboard photo of Astronaut Mae Jemison working in Spacelab-J module. Spacelab-J is a combined National Space Development Agency of Japan (NASDA) and NASA mission. The objectives included life sciences, microgravity and technology research.

  2. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  3. Economic Comparison of On-Board Module Builder Harvest Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton pickers with on-board module builders (OBMB) eliminates the need for boll buggies, module builders, the tractors, and labor needed to operate this machinery. Additionally, field efficiency may be increased due to less stoppage for unloading and/or waiting to unload. This study estimates the ...

  4. Skylab-4 Mission Onboard Photograph - Astronaut Ed Gibson at Work

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This Skylab-4 mission onboard photograph shows Astronaut Ed Gibson at the complex control and display console for the Apollo Telescope Mount solar telescopes located in the Skylab Multiple Docking Adapter. Astronauts watched the Sun, and photographed and recorded the solar activities, such as the birth of a solar flare.

  5. 40 CFR 86.005-17 - On-board diagnostics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for a multiple number of driving cycles (i.e., more than one) due to the continued presence of extreme... Network Interface,” (Revised, May 2001) shall be used as the on-board to off-board communications protocol... section according to the phase-in schedule in paragraph (k) of this section. All monitored systems...

  6. 40 CFR 85.2222 - Onboard diagnostic test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Tests § 85.2222 Onboard diagnostic test procedures. The test sequence for the OBD inspection shall consist of the following steps: (a) The OBD inspection shall be conducted with the key-on/engine running... Mode $01, PID $01 request in accordance with 40 CFR 86.1806 to determine the OBD evaluation status....

  7. Effective On-Board Diagnostics for electronic engine controls

    SciTech Connect

    Florence, D.E.; Michel, M.F.

    1985-01-01

    Properly implemented, On-Board Diagnostic (OBD) Systems fill the gap in sophistication between computer based fuel injection engine controls and a carburetor oriented service industry. By emphasizing simplicity and credibility, inexpensive OBD systems make electronic engine controls a desirable feature to the service technician.

  8. 40 CFR 85.2207 - Onboard diagnostic test standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Tests § 85.2207 Onboard diagnostic test standards. (a) A vehicle shall fail the OBD test if it is a 1996... inoperable. (b) A vehicle shall fail the OBD test if the malfunction indicator light (MIL) is commanded to be... OBD test if the MIL is commanded to be illuminated for one or more diagnostic trouble codes (DTCs),...

  9. On-Board Software Reference Architecture for Payloads

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Trcka, Adam

    2015-09-01

    This abstract summarizes the On-board Reference Architecture for Payloads activity carried out by Space Systems Finland (SSF) and Evolving Systems Consulting (ESC) under ESA contract. At the time of writing, the activity is ongoing. This abstract discusses study objectives, related activities, study approach, achieved and anticipated results, and directions for future work.

  10. 40 CFR 85.2231 - Onboard diagnostic test equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short Tests § 85.2231 Onboard diagnostic test equipment requirements. (a) The test system interface to the vehicle shall include a plug that conforms to the requirements and specifications of 40...

  11. 40 CFR 86.1806-17 - Onboard diagnostics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1806-17 Onboard diagnostics. Model year 2017 and later... this paragraph (a)(8). (b) The following additional provisions apply: (1) Model year 2017 and later... paragraph (b)(1) in model year 2017 by substituting model year 2016 vehicles on an equal-percentage...

  12. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by

  13. On-Board Mining in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  14. The universal magnetic tunnel junction logic gates representing 16 binary Boolean logic operations

    NASA Astrophysics Data System (ADS)

    Lee, Junwoo; Suh, Dong Ik; Park, Wanjun

    2015-05-01

    The novel devices are expected to shift the paradigm of a logic operation by their own nature, replacing the conventional devices. In this study, the nature of our fabricated magnetic tunnel junction (MTJ) that responds to the two external inputs, magnetic field and voltage bias, demonstrated seven basic logic operations. The seven operations were obtained by the electric-field-assisted switching characteristics, where the surface magnetoelectric effect occurs due to a sufficiently thin free layer. The MTJ was transformed as a universal logic gate combined with three supplementary circuits: A multiplexer (MUX), a Wheatstone bridge, and a comparator. With these circuits, the universal logic gates demonstrated 16 binary Boolean logic operations in one logic stage. A possible further approach is parallel computations through a complimentary of MUX and comparator, capable of driving multiple logic gates. A reconfigurable property can also be realized when different logic operations are produced from different level of voltages applying to the same configuration of the logic gate.

  15. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  16. Pavlovian, Skinner, and Other Behaviourists' Contributions to AI. Chapter 9

    NASA Technical Reports Server (NTRS)

    Kosinski, Withold; Zaczek-Chrzanowska, Dominika

    2007-01-01

    A version of the definition of intelligent behaviour will be supplied in the context of real and artificial systems. Short presentation of principles of learning, starting with Pavlovian s classical conditioning through reinforced response and operant conditioning of Thorndike and Skinner and finishing with cognitive learning of Tolman and Bandura will be given. The most important figures within behaviourism, especially those with contribution to AI, will be described. Some tools of artificial intelligence that act according to those principles will be presented. An attempt will be made to show when some simple rules for behaviour modifications can lead to a complex intelligent behaviour.

  17. An AIS-Based E-mail Classification Method

    NASA Astrophysics Data System (ADS)

    Qing, Jinjian; Mao, Ruilong; Bie, Rongfang; Gao, Xiao-Zhi

    This paper proposes a new e-mail classification method based on the Artificial Immune System (AIS), which is endowed with good diversity and self-adaptive ability by using the immune learning, immune memory, and immune recognition. In our method, the features of spam and non-spam extracted from the training sets are combined together, and the number of false positives (non-spam messages that are incorrectly classified as spam) can be reduced. The experimental results demonstrate that this method is effective in reducing the false rate.

  18. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  19. Urban, Forest, and Agricultural AIS Data: Fine Spectral Structure

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    1985-01-01

    Spectra acquired by the Airborne Imaging Spectrometer (AIS) near Lafayette, IN, Ely, MN, and over the Stanford University campus, CA were analyzed for fine spectral structure using two techniques: the ratio of radiance of a ground target to the radiance of a standard and also the correlation coefficient of radiances at adjacent wavelengths. The results show ramp like features in the ratios. These features are due to the biochemical composition of the leaf and to the optical scattering properties of its cuticle. The size and shape of the ramps vary with ground cover.

  20. On-board multispectral classification study. Volume 2: Supplementary tasks. [adaptive control

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The operational tasks of the onboard multispectral classification study were defined. These tasks include: sensing characteristics for future space applications; information adaptive systems architectural approaches; data set selection criteria; and onboard functional requirements for interfacing with global positioning satellites.

  1. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations.

    PubMed

    Pan, Deng; Wei, Hong; Xu, Hongxing

    2013-04-22

    Optical interferometric logic gates in metal slot waveguide network are designed and investigated by electromagnetic simulations. The designed logic gates can realize all fundamental logic operations. A single Y-shaped junction can work as logic gate for four logic functions: AND, NOT, OR and XOR. By cascading two Y-shaped junctions, NAND, NOR and XNOR can be realized. The working principle is analyzed in detail. In the simulations, these gates show large intensity contrast for the Boolean logic states of the output. These results can be useful for future integrated optical computing.

  2. Limit, logic, and computation

    PubMed Central

    Freedman, Michael H.

    1998-01-01

    We introduce “ultrafilter limits” into the classical Turing model of computation and develop a paradigm for interpreting the problem of distinguishing the class P from NP as a logical problem of decidability. We use P(NP) to denote decision problems which can be solved on a (nondeterministic) Turing machine in polynomial time. The concept is that in an appropriate limit it may be possible to prove that problems in P are still decidable, so a problem whose limit is undecidable would be established as lying outside of P. PMID:9419334

  3. Inhibition of apolipoprotein A-I gene expression by obesity-associated endocannabinoids.

    PubMed

    Haas, Michael J; Mazza, Angela D; Wong, Norman C W; Mooradian, Arshag D

    2012-04-01

    Obesity is associated with increased serum endocannabinoid (EC) levels and decreased high-density lipoprotein cholesterol (HDLc). Apolipoprotein A-I (apo A-I), the primary protein component of HDL is expressed primarily in the liver and small intestine. To determine whether ECs regulate apo A-I gene expression directly, the effect of the obesity-associated ECs anandamide and 2-arachidonylglycerol on apo A-I gene expression was examined in the hepatocyte cell line HepG2 and the intestinal cell line Caco-2. Apo A-I protein secretion was suppressed nearly 50% by anandamide and 2-arachidonoylglycerol in a dose-dependent manner in both cell lines. Anandamide treatment suppressed both apo A-I mRNA and apo A-I gene promoter activity in both cell lines. Studies using apo A-I promoter deletion constructs indicated that repression of apo A-I promoter activity by anandamide requires a previously identified nuclear receptor binding site designated as site A. Furthermore, anandamide-treatment inhibited protein-DNA complex formation with the site A probe. Exogenous over expression of cannabinoid receptor 1 (CBR1) in HepG2 cells suppressed apo A-I promoter activity, while in Caco-2 cells, exogenous expression of both CBR1 and CBR2 could repress apo A-I promoter activity. The suppressive effect of anandamide on apo A-I promoter activity in Hep G2 cells could be inhibited by CBR1 antagonist AM251 but not by AM630, a selective and potent CBR2 inhibitor. These results indicate that ECs directly suppress apo A-I gene expression in both hepatocytes and intestinal cells, contributing to the decrease in serum HDLc in obese individuals.

  4. Minuteman Weapon System Test Set logic replacement

    NASA Astrophysics Data System (ADS)

    Royse, S. D.

    In the late 1960s, the Minuteman Weapon System Test Set was constructed as a part of the Minuteman development program. The missile Reentry Vehicle is that portion of the Minuteman missile system which reenters the atmosphere with the nuclear warhead. The test set has the objective to test the electrical/electro-mechanical systems and components of the reentry vehicle at both the repair depot and missile maintenance squadron levels. With the recent advances in semiconductor technologies, the Diode Transistor Logic (DTL) technology used to implement the test set logic became obsolete. The present paper is concerned with efforts to develop a prototype replacement for the test set logic. Attention is given to the functions of the test set, the documentation of existing logic, and the prototype design approach, which involves the subdivision of the logic into three basic functional groups. The logic replacement is based on the utilization of a multiple microprocessor system.

  5. Synthesizing Biomolecule-based Boolean Logic Gates

    PubMed Central

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  6. Electronic logic for enhanced switch reliability

    DOEpatents

    Cooper, J.A.

    1984-01-20

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and fail-safe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  7. [Continuity and transformation of body logic].

    PubMed

    Bolens, Guillemette

    2003-01-01

    This article is concerned with two distinct corporeal logics. In the first, corporeality is founded on joints, tendons, and mobility; in the second, the envelope and its apertures are considered primordial. The first logic is extant in very few works. Although these texts (e.g. The Iliad, Beowulf) clearly share the same, very specific, conception of the body, they belong to different histories. The corporeal logic of the 'jointed body' (corps articulaire) cannot, therefore, be appraised in terms of longue durée. The texts represent, instead, a moment of transition between the psychodynamics of orality and literacy. A problem correlated to this fact is that readers (ancient and modern) no longer think using the same logic as that pertaining to the jointed body. They tend to translate information regarding the logic of the jointed body into data meaningful in their own logic.

  8. People Like Logical Truth: Testing the Intuitive Detection of Logical Value in Basic Propositions

    PubMed Central

    2016-01-01

    Recent studies on logical reasoning have suggested that people are intuitively aware of the logical validity of syllogisms or that they intuitively detect conflict between heuristic responses and logical norms via slight changes in their feelings. According to logical intuition studies, logically valid or heuristic logic no-conflict reasoning is fluently processed and induces positive feelings without conscious awareness. One criticism states that such effects of logicality disappear when confounding factors such as the content of syllogisms are controlled. The present study used abstract propositions and tested whether people intuitively detect logical value. Experiment 1 presented four logical propositions (conjunctive, biconditional, conditional, and material implications) regarding a target case and asked the participants to rate the extent to which they liked the statement. Experiment 2 tested the effects of matching bias, as well as intuitive logic, on the reasoners’ feelings by manipulating whether the antecedent or consequent (or both) of the conditional was affirmed or negated. The results showed that both logicality and matching bias affected the reasoners’ feelings, and people preferred logically true targets over logically false ones for all forms of propositions. These results suggest that people intuitively detect what is true from what is false during abstract reasoning. Additionally, a Bayesian mixed model meta-analysis of conditionals indicated that people’s intuitive interpretation of the conditional “if p then q” fits better with the conditional probability, q given p. PMID:28036402

  9. Building distributed rule-based systems using the AI Bus

    NASA Technical Reports Server (NTRS)

    Schultz, Roger D.; Stobie, Iain C.

    1990-01-01

    The AI Bus software architecture was designed to support the construction of large-scale, production-quality applications in areas of high technology flux, running heterogeneous distributed environments, utilizing a mix of knowledge-based and conventional components. These goals led to its current development as a layered, object-oriented library for cooperative systems. This paper describes the concepts and design of the AI Bus and its implementation status as a library of reusable and customizable objects, structured by layers from operating system interfaces up to high-level knowledge-based agents. Each agent is a semi-autonomous process with specialized expertise, and consists of a number of knowledge sources (a knowledge base and inference engine). Inter-agent communication mechanisms are based on blackboards and Actors-style acquaintances. As a conservative first implementation, we used C++ on top of Unix, and wrapped an embedded Clips with methods for the knowledge source class. This involved designing standard protocols for communication and functions which use these protocols in rules. Embedding several CLIPS objects within a single process was an unexpected problem because of global variables, whose solution involved constructing and recompiling a C++ version of CLIPS. We are currently working on a more radical approach to incorporating CLIPS, by separating out its pattern matcher, rule and fact representations and other components as true object oriented modules.

  10. Discrimination of Coastal Vegetation and Biomass Using AIS Data

    NASA Technical Reports Server (NTRS)

    Gross, M. F.; Klemas, V.

    1985-01-01

    The Airborne Imaging Spectrometer (AIS) was flown over a coastal wetlands region near Lewes, Delaware, adjacent to the Delaware Bay on 16 August 1984. Using the AIS data, it was possible to discriminate between four different types of wetland vegetation canopies: (1) trees; (2) broadleaf herbaceous plants (e.g., Acnida cannabina, Hisbiscus moscheutos); (3) the low marsh grass Spartina alterniflora; and (4) the high marsh grasses Distichlis spicata and Spartina patens. The single most useful region of the spectrum was that between 1.40 and 1.90 microns, where slopes of portions of the radiance curve and ratios of radiance at particular wavelengths were significantly different for the four canopy types. The ratio between the highest digital number in the 1.40 to 1.90 microns and .84 to .94 microns regions and a similar ratio between the peaks in radiance in the 1.12 to 1.40 microns and .84 to .94 microns spectral regions were also very effective at discriminating between vegetation types. Differences in radiance values at various wavelengths between samples of the same vegetation type could potentially be used to estimate biomass.

  11. Sensor assignment to mission in AI-TECD

    NASA Astrophysics Data System (ADS)

    Ganger, Robert; de Mel, Geeth; Pham, Tien; Rudnicki, Ronald; Schreiber, Yonatan

    2016-05-01

    Sensor-mission assignment involves the allocation of sensors and other information-providing resources to missions in order to cover the information needs of the individual tasks within each mission. The importance of efficient and effective means to find appropriate resources for tasks is exacerbated in the coalition context where the operational environment is dynamic and a multitude of critically important tasks need to achieve their collective goals to meet the objectives of the coalition. The Sensor Assignment to Mission (SAM) framework—a research product of the International Technology Alliance in Network and Information Sciences (NIS-ITA) program—provided the first knowledge intensive resource selection approach for the sensor network domain so that contextual information could be used to effectively select resources for tasks in coalition environments. Recently, CUBRC, Inc. was tasked with operationalizing the SAM framework through the use of the I2WD Common Core Ontologies for the Communications-Electronics Research, Development and Engineering Center (CERDEC) sponsored Actionable Intelligence Technology Enabled Capabilities Demonstration (AI-TECD). The demonstration event took place at Fort Dix, New Jersey during July 2015, and this paper discusses the integration and the successful demonstration of the SAM framework within the AI-TECD, lessons learned, and its potential impact in future operations.

  12. Multimedia abstract generation of intensive care data: the automation of clinical processes through AI methodologies.

    PubMed

    Jordan, Desmond; Rose, Sydney E

    2010-04-01

    Medical errors from communication failures are enormous during the perioperative period of cardiac surgical patients. As caregivers change shifts or surgical patients change location within the hospital, key information is lost or misconstrued. After a baseline cognitive study of information need and caregiver workflow, we implemented an advanced clinical decision support tool of intelligent agents, medical logic modules, and text generators called the "Inference Engine" to summarize individual patient's raw medical data elements into procedural milestones, illness severity, and care therapies. The system generates two displays: 1) the continuum of care, multimedia abstract generation of intensive care data (MAGIC)-an expert system that would automatically generate a physician briefing of a cardiac patient's operative course in a multimodal format; and 2) the isolated point in time, "Inference Engine"-a system that provides a real-time, high-level, summarized depiction of a patient's clinical status. In our studies, system accuracy and efficacy was judged against clinician performance in the workplace. To test the automated physician briefing, "MAGIC," the patient's intraoperative course, was reviewed in the intensive care unit before patient arrival. It was then judged against the actual physician briefing and that given in a cohort of patients where the system was not used. To test the real-time representation of the patient's clinical status, system inferences were judged against clinician decisions. Changes in workflow and situational awareness were assessed by questionnaires and process evaluation. MAGIC provides 200% more information, twice the accuracy, and enhances situational awareness. This study demonstrates that the automation of clinical processes through AI methodologies yields positive results.

  13. Fuzzy Logic for Incidence Geometry.

    PubMed

    Tserkovny, Alex

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects "as if they were points." Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation "extended lines sameness" is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy "degree of indiscernibility" and "discernibility measure" of extended points.

  14. Logic circuits from zero forcing.

    PubMed

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  15. HDL to verification logic translator

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1992-01-01

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  16. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  17. Fuzzy Logic for Incidence Geometry

    PubMed Central

    2016-01-01

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133

  18. On-Board Switching and Routing Advanced Technology Study

    NASA Technical Reports Server (NTRS)

    Yegenoglu, F.; Inukai, T.; Kaplan, T.; Redman, W.; Mitchell, C.

    1998-01-01

    Future satellite communications is expected to be fully integrated into National and Global Information Infrastructures (NII/GII). These infrastructures will carry multi gigabit-per-second data rates, with integral switching and routing of constituent data elements. The satellite portion of these infrastructures must, therefore, be more than pipes through the sky. The satellite portion will also be required to perform very high speed routing and switching of these data elements to enable efficient broad area coverage to many home and corporate users. The technology to achieve the on-board switching and routing must be selected and developed specifically for satellite application within the next few years. This report presents evaluation of potential technologies for on-board switching and routing applications.

  19. Optimization of Planck-LFI on-board data handling

    NASA Astrophysics Data System (ADS)

    Maris, M.; Tomasi, M.; Galeotta, S.; Miccolis, M.; Hildebrandt, S.; Frailis, M.; Rohlfs, R.; Morisset, N.; Zacchei, A.; Bersanelli, M.; Binko, P.; Burigana, C.; Butler, R. C.; Cuttaia, F.; Chulani, H.; D'Arcangelo, O.; Fogliani, S.; Franceschi, E.; Gasparo, F.; Gomez, F.; Gregorio, A.; Herreros, J. M.; Leonardi, R.; Leutenegger, P.; Maggio, G.; Maino, D.; Malaspina, M.; Mandolesi, N.; Manzato, P.; Meharga, M.; Meinhold, P.; Mennella, A.; Pasian, F.; Perrotta, F.; Rebolo, R.; Türler, M.; Zonca, A.

    2009-12-01

    To asses stability against 1/f noise, the Low Frequency Instrument (LFI) on-board the Planck mission will acquire data at a rate much higher than the data rate allowed by the science telemetry bandwith of 35.5 Kbps. The data are processed by an on-board pipeline, followed on-ground by a decoding and reconstruction step, to reduce the volume of data to a level compatible with the bandwidth while minimizing the loss of information. This paper illustrates the on-board processing of the scientific data used by Planck/LFI to fit the allowed data-rate, an intrinsecally lossy process which distorts the signal in a manner which depends on a set of five free parameters (Naver, r1, r2, q, Script O) for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the on-board processing as a function of these parameters. It describes the method of tuning the on-board processing chain to cope with the limited bandwidth while keeping to a minimum the signal distortion. Tuning is sensitive to the statistics of the signal and has to be constantly adapted during flight. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, pre-launch tests or data taken in flight from LFI operating in a special diagnostic acquisition mode. All the needed optimization steps are performed by an automated tool, OCA2, which simulates the on-board processing, explores the space of possible combinations of parameters, and produces a set of statistical indicators, among them: the compression rate Cr and the processing noise epsilonQ. For Planck/LFI it is required that Cr = 2.4 while, as for other systematics, epsilonQ would have to be less than 10% of rms of the instrumental white noise. An analytical model is developed that is able to extract most of the relevant information on the processing errors and the compression rate as a function of the signal statistics and the processing parameters

  20. Satellite on-board processing for earth resources data

    NASA Technical Reports Server (NTRS)

    Bodenheimer, R. E.; Gonzalez, R. C.; Gupta, J. N.; Hwang, K.; Rochelle, R. W.; Wilson, J. B.; Wintz, P. A.

    1975-01-01

    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented.

  1. Onboard Systems Record Unique Videos of Space Missions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ecliptic Enterprises Corporation, headquartered in Pasadena, California, provided onboard video systems for rocket and space shuttle launches before it was tasked by Ames Research Center to craft the Data Handling Unit that would control sensor instruments onboard the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft. The technological capabilities the company acquired on this project, as well as those gained developing a high-speed video system for monitoring the parachute deployments for the Orion Pad Abort Test Program at Dryden Flight Research Center, have enabled the company to offer high-speed and high-definition video for geosynchronous satellites and commercial space missions, providing remarkable footage that both informs engineers and inspires the imagination of the general public.

  2. Development of Onboard Computer Complex for Russian Segment of ISS

    NASA Technical Reports Server (NTRS)

    Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.

    1998-01-01

    Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.

  3. On-Board Processor and Network Maturation for Ariane 6

    NASA Astrophysics Data System (ADS)

    Clavier, Rémi; Sautereau, Pierre; Sangaré, Jérémie; Disson, Benjamin

    2015-09-01

    In the past three years, innovative avionic technologies for Ariane 6 were evaluated in the tail of three main programs involving various stakeholders: FLPP (Future Launcher Preparatory Program, from ESA), AXE (Avionic-X European, formerly Avionique-X, French public R&T program) and CNES R&T program relying on industrial partnerships. In each avionics’ domain, several technologies were compared, analyzed and tested regarding space launchers system expectations and constraints. Within the frame of on-board data handling, two technologies have been identified as promising: ARM based microprocessors for the computing units and TTEthernet for the on-board network. This paper presents the main outcomes of the data handling preparatory activities performed on the AXE platform in Airbus Defence and Space - Les Mureaux.

  4. Onboard star identification without a priori attitude information

    NASA Astrophysics Data System (ADS)

    Ketchum, Eleanor A.; Tolson, Robert H.

    1995-03-01

    Many algorithms used today determine spacecraft attitude by identifying stars in the field of view of a star tracker. However, each of these methods require some a priori knowledge of the spacecraft attitude. Some algorithms have been extended to implement a computation-intense full-sky scan. Others require large data bases. Both storage and speed are concerns for autonomous onboard systems. This paper presents an algorithm that, by discretizing the sky and filtering by visual magnitude of the brightest observed star, provides a star identification process that is computationally efficient, compared to existing techniques. A savings in onboard storage of over 80% compared with a popular existing technique is documented. Results of random tests with simulated star fields are presented without false identification and with dramatic increase in speed over full-sky scan methods.

  5. Small Body Landings Using Autonomous Onboard Optical Navigation

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Shyam; Nandi, Sumita; Broschart, Stephen; Wallace, Mark; Cangahuala, L. Alberto; Olson, Corwin

    2011-07-01

    Spacecraft landings on small bodies (asteroids and comets) present special challenges from a navigation perspective as the size of the bodies is relatively small, with the resultant accuracy requirement to target landing areas fairly tight. Because the accuracies obtainable from ground-based navigation processes may not be sufficient, onboard navigation techniques are needed. Recent developments in deep space navigation capability include a self-contained autonomous navigation system (used in flight on three missions) and a landmark tracking system (used experimentally on the Japanese Hayabusa mission). The merging of these two technologies forms a methodology to perform autonomous onboard navigation around small bodies. This article presents an overview of these systems, as well as the results from Monte Carlo studies to quantify the achievable landing accuracies by using these methods. Two cases are presented, a landing on a small asteroid and on a mid-size comet.

  6. The SEVO Experiment Onboard NASA's O/OREOS Small Satellite

    NASA Astrophysics Data System (ADS)

    Cook, A.; Mattioda, A.; Bramall, N.; Bryson, K.; Chittenden, J.; Ehrenfreund, P.; Minelli, G.; Quinn, R.; Ricco, A.

    2011-05-01

    SEVO (Space Environment Viability of Organics) is one of two science experiments onboard NASA's O/OREOS (Organism/Organics Exposure to Orbital Stresses) cubesat, launched in November 2010. The experiment exposes four astrobiologically relevant molecules to solar radiation in low-earth orbit. Each type of molecule was deposited as a thin film and contained in four separate micro-environments representative of either a Mars (CO_2) atmosphere, H_2O atmosphere, interstellar space, or the lunar (mineral) surface. The degradation and/or alteration of each sample on the satellite is monitored in situ, with UV/Vis spectroscopy. To complement flight data, laboratory controls have been designed for exposure to a solar simulator at regular intervals to match the exposure experienced onboard the satellite. We will present details of the control experiment design, as well as some reports on the status of data download.

  7. Concepts for on-board satellite image registration, volume 1

    NASA Technical Reports Server (NTRS)

    Ruedger, W. H.; Daluge, D. R.; Aanstoos, J. V.

    1980-01-01

    The NASA-NEEDS program goals present a requirement for on-board signal processing to achieve user-compatible, information-adaptive data acquisition. One very specific area of interest is the preprocessing required to register imaging sensor data which have been distorted by anomalies in subsatellite-point position and/or attitude control. The concepts and considerations involved in using state-of-the-art positioning systems such as the Global Positioning System (GPS) in concert with state-of-the-art attitude stabilization and/or determination systems to provide the required registration accuracy are discussed with emphasis on assessing the accuracy to which a given image picture element can be located and identified, determining those algorithms required to augment the registration procedure and evaluating the technology impact on performing these procedures on-board the satellite.

  8. Novel therapies to increase apolipoprotein AI and HDL for the treatment of atherosclerosis.

    PubMed

    Wong, Norman Cw

    2007-09-01

    Apolipoprotein AI (apoAI) is the major protein component of HDL, and thus has an important role in the treatment of atherosclerosis. This review summarizes the various approaches being examined for raising levels of apoAI/HDL, including increasing the synthesis of apoAI and altering the metabolism of HDL. In addition, the currently available drugs used to increase apoAI/HDL are discussed, with a focus on the potential sites of action of these drugs on HDL metabolism. The outcome of further investigational studies into this field should provide effective therapies to increase apoAI/HDL levels and thus be of use in the treatment of cardiovascular disease.

  9. Onboard Autonomy on the Earth Observing One Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Robert L.; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    The Earth Observing One Spacecraft is currently flying The Autonomous Sciencecraft Experiment (ASE) - onboard autonomy software to improve science return. The ASE software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. ASE includes software systems that perform science data analysis, mission planning, and run-time robust execution. In this article we describe the autonomy flight software and how it enables a new paradigm of autonomous science and mission operations.

  10. Onboard and Parts-based Object Detection from Aerial Imagery

    DTIC Science & Technology

    2011-09-01

    reduced operator workload. Additionally, a novel parts- based detection method was developed. A whole-object detector is not well suited for deformable and...reduced operator workload. Additionally, a novel parts- based detection method was developed. A whole-object detector is not well suited for deformable and...Methodology This chapter details the challenges of transitioning from ground station processing to onboard processing, the part- based detection method

  11. Virtualizing Super-Computation On-Board Uas

    NASA Astrophysics Data System (ADS)

    Salami, E.; Soler, J. A.; Cuadrado, R.; Barrado, C.; Pastor, E.

    2015-04-01

    Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) have a great potential to support a wide variety of aerial remote sensing applications. Most UAS work by acquiring data using on-board sensors for later post-processing. Some require the data gathered to be downlinked to the ground in real-time. However, depending on the volume of data and the cost of the communications, this later option is not sustainable in the long term. This paper develops the concept of virtualizing super-computation on-board UAS, as a method to ease the operation by facilitating the downlink of high-level information products instead of raw data. Exploiting recent developments in miniaturized multi-core devices is the way to speed-up on-board computation. This hardware shall satisfy size, power and weight constraints. Several technologies are appearing with promising results for high performance computing on unmanned platforms, such as the 36 cores of the TILE-Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV by Adapteva. The strategy for virtualizing super-computation on-board includes the benchmarking for hardware selection, the software architecture and the communications aware design. A parallelization strategy is given for the 36-core TILE-Gx36 for a UAS in a fire mission or in similar target-detection applications. The results are obtained for payload image processing algorithms and determine in real-time the data snapshot to gather and transfer to ground according to the needs of the mission, the processing time, and consumed watts.

  12. MODIS On-Board Blackbody Function and Performance

    NASA Technical Reports Server (NTRS)

    Xiaoxiong, Xiong; Wenny, Brian N.; Wu, Aisheng; Barnes, William

    2009-01-01

    Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.

  13. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    NASA Astrophysics Data System (ADS)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  14. On-Board Perception System For Planetary Aerobot Balloon Navigation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

    1996-01-01

    NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

  15. Optimization of an optically implemented on-board FDMA demultiplexer

    NASA Technical Reports Server (NTRS)

    Fargnoli, J.; Riddle, L.

    1991-01-01

    Performance of a 30 GHz frequency division multiple access (FDMA) uplink to a processing satellite is modelled for the case where the onboard demultiplexer is implemented optically. Included in the performance model are the effects of adjacent channel interference, intersymbol interference, and spurious signals associated with the optical implementation. Demultiplexer parameters are optimized to provide the minimum bit error probability at a given bandwidth efficiency when filtered QPSK modulation is employed.

  16. Is traumatic axonal injury (AI) associated with an early microglial activation? Application of a double-labeling technique for simultaneous detection of microglia and AI.

    PubMed

    Oehmichen, M; Theuerkauf, I; Meissner, C

    1999-05-01

    The aim of the present study was to determine whether axonal injury (AI) induces a microglial reaction within 15 days after brain trauma. In 40 selected cases of confirmed AI, the topographical relation of AI and microglial reaction was assessed using an immunohistochemical double-labeling technique for simultaneous demonstration of AI using beta-amyloid precursor protein (beta-APP) antibody and of microglia using CD68 antibody. Although traumatic injury was usually followed by a moderate early diffuse rise in the number of CD68-reactive cells in the white matter, increases in macrophages in areas of AI accumulation were only sporadic and did not occur until after 4 days. At survival intervals of 5-15 days a moderate microglial reaction in regions of beta-APP-positive injured axons was detected, at maximum, in half of the case material. During this interval AI-associated satellitosis-like clusters or stars described by other authors after a survival time of more than 7 weeks were an isolated phenomenon. The prolonged microglial reaction as well as the reduction of beta-APP-positive AI during longer survival periods supports the hypothesis that AI is not primarily chemotactically attractive and that the damage to a portion of beta-APPstained axons may be partly reversible. Most cases clearly require a prolonged interval of more than 15 days before initiation of the final scavenger reaction. For forensic purposes the increase in the number of microglial cells within the region of AI accumulation after a survival time of more than 5 days and the multiple and distinct demonstration of star-like microglial reactions within the white matter after survival times exceeding 7 weeks may provide valuable postmortem information on the timing of a traumatic event.

  17. Technical feasibility of an ROV with on-board power

    SciTech Connect

    Sayer, P.; Bo, L.

    1994-12-31

    An ROI`s electric power, control and communication signals are supplied from a surface ship or platform through an umbilical cable. Though cable design has evolved steadily, there are still severe limitations such as heavy weight and cost. It is well known that the drag imposed by the cable limits the operational range of the ROV in deep water. On the other hand, a cable-free AUV presents problems in control, communication and transmission of data. Therefore, an ROV with on-board and small-diameter cable could offer both a large operating range (footprint) and real-time control. This paper considers the feasibility of such an ROV with on-board power, namely a Self-Powered ROV (SPROV). The selection of possible power sources is first discussed before comparing the operational performance of an SPROV against a conventional ROV. It is demonstrated how an SPROV with a 5mm diameter tether offers a promising way forward, with on-board power of up to 40 kW over 24 hours. In water depths greater than 50m the reduced drag of the SPROV tether is very advantageous.

  18. Scheduling Onboard Processing for the Proposed HyspIRI Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Rabideau, Gregg; Mandl, Daniel; Hengemihle, Jerry

    2011-01-01

    The proposed Hyspiri mission is evaluating a X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However the HyspIRI VSWIR and TIR instruments will produce 1 Gbps data while the DB capability is 15 M bps for a 60x oversubscription. In order to address this data volume mismatch a DB concept has been developed thatdetermines which data to downlink based on both: 1. The type of surface the spacecraft is overflying and 2. Onboard processing of the data to detect events. For example when the spacecraft is overflying polar regions it might downlink a snow/ice product. Additionally the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected. The process of determining which products to generate when, based on request prioritization and onboard processing and downlink constraints is inherently a prioritized scheduling problem - we describe work to develop an automated solution to this problem.

  19. An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

    NASA Technical Reports Server (NTRS)

    Scarritt, Sara K.; Marchand, Belinda G.; Weeks, Michael W.

    2009-01-01

    In earlier investigations, the adaptation and implementation of a modified two-level corrections process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new version of the modified two-level corrections process is formulated to handle the case of finite burn arcs. This paper presents the development and formulation of that finite burn modified two-level corrections process which can again be used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. Additionally, performance results and a comparison between the two methods are presented. The finite burn two-level corrector formulation presented here ensures the entry constraints at entry interface are still met without violating the available fuel budget, while still accounting for much longer burn times in its design.

  20. An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

    NASA Technical Reports Server (NTRS)

    Scarritt, Sara K.; Marchand, Belinda G.; Brown, Aaron J.; Tracy, William H.; Weeks, Michael W.

    2010-01-01

    In earlier investigations, the adaptation and implementation of a modified two-level corrections (or targeting) process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new model for the two-level corrections process is formulated here to accommodate finite burn arcs. This paper presents the development and formulation of the finite burn two-level corrector, used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. A performance comparison between the impulsive and finite burn models is also presented. The present formulation ensures all entry constraints are met, without violating the available fuel budget, while allowing for low-thrust scenarios with long burn durations.

  1. Weather-enabled future onboard surveillance and navigation systems

    NASA Astrophysics Data System (ADS)

    Mutuel, L.; Baillon, B.; Barnetche, B.; Delpy, P.

    2009-09-01

    With the increasing traffic and the development of business trajectories, there is a widespread need to anticipate any adverse weather conditions that could impact the performance of the flight or to use of atmospheric parameters to optimize trajectories. Current sensors onboard air transport are challenged to provide the required service, while new products for business jets and general aviation open the door to innovative assimilation of weather information in onboard surveillance and navigation. The paper aims at surveying current technology available to air transport aircraft and pointing out their shortcomings in view of the modernization proposed in SESAR and NextGen implementation plans. Foreseen innovations are then illustrated via results of ongoing research like FLYSAFE or standardization efforts, in particular meteorological datalink services and impact on Human-Machine Interface. The paper covers the operational need to avoid adverse weather like thunderstorm, icing, turbulence, windshear and volcanic ash, but also the requirement to control in 4D the trajectory through the integration of wind and temperature grids in the flight management. The former will lead to enhanced surveillance systems onboard the aircraft with new displays and new alerting schemes, ranging from targeted information supporting better re-planning to auto-escape strategies. The latter will be standard in next generation flight management systems. Finally both will rely on ATM products that will also assimilate weather information so that situational awareness is shared and decision is collaborative.

  2. Maximizing Rover Science Return Through Autonomous Onboard Data Analysis

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Castano, R.; Judd, M.; Estlin, T.; Gaines, D.; Mazzoni, D.; Fisher, F.; Bornstein, B.; Castano, A.; Scharenbroich, L.; Song, L.; Gilmore, M.

    2003-12-01

    There are three recognized approaches to maximizing the amount of science data in future missions: 1) return more data to Earth by increasing the capability of the Deep Space Network (DSN) to receive higher volumes of data, 2) develop data compression techniques to transmit more information per bit and, 3) increase the quality of the data returned to Earth by analyzing and prioritizing data onboard to identify key data for downlink. The goal of the Onboard Autonomous Science Investigation System (OASIS) is to increase the science return using onboard algorithms to evaluate and prioritize science information collected during a long traverse by a rover. The system has varying levels of autonomous operations. The least intrusive operational level provides two products: a prioritized list of images for downlink and a table summarizing the data collected between communication opportunities. In this scenario, the system analyzes rover data that are already collected for engineering purposes, such as navigation images, to determine what information is the most important to send back to Earth. The system's highest operational level autonomously directs the rover to select which surface targets to explore further, alter its path, and take additional measurements, which may even include contact measurements. In between these two extremes, a number of other system scenarios exist. It is not our intention to replace the scientists on robotic missions, but rather to improve the science return by making smart decisions regarding which data to collect and return.

  3. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  4. Applying AI tools to operational space environmental analysis

    NASA Technical Reports Server (NTRS)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  5. Probabilistic and fuzzy logic in clinical diagnosis.

    PubMed

    Licata, G

    2007-06-01

    In this study I have compared classic and fuzzy logic and their usefulness in clinical diagnosis. The theory of probability is often considered a device to protect the classical two-valued logic from the evidence of its inadequacy to understand and show the complexity of world [1]. This can be true, but it is not possible to discard the theory of probability. I will argue that the problems and the application fields of the theory of probability are very different from those of fuzzy logic. After the introduction on the theoretical bases of fuzzy approach to logic, I have reported some diagnostic argumentations employing fuzzy logic. The state of normality and the state of disease often fight their battle on scalar quantities of biological values and it is not hard to establish a correspondence between the biological values and the percent values of fuzzy logic. Accordingly, I have suggested some applications of fuzzy logic in clinical diagnosis and in particular I have utilised a fuzzy curve to recognise subjects with diabetes mellitus, renal failure and liver disease. The comparison between classic and fuzzy logic findings seems to indicate that fuzzy logic is more adequate to study the development of biological events. In fact, fuzzy logic is useful when we have a lot of pieces of information and when we dispose to scalar quantities. In conclusion, increasingly the development of technology offers new instruments to measure pathological parameters through scalar quantities, thus it is reasonable to think that in the future fuzzy logic will be employed more in clinical diagnosis.

  6. Analysis of AIS data of the Bonanza Creek Experimental Forest, Alaska

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Peterson, D. L.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were acquired in 1985 over the Bonanza Creek Experimental Forest, Alaska for the analysis of canopy characteristics including biochemistry. Concurrent with AIS overflights, foliage from fifteen coniferous and deciduous forest stands were analyzed for a variety of biochemical constituents including nitrogen, lignin, protein, and chlorophyll. Preliminary analysis of AIS spectra indicates that the wavelength region between 1450 to 1800 namometers (nm) displays distinct differences in spectral response for some of the forest stands. A flat field subtraction (forest stand spectra - flat field spectra) of the AIS spectra assisted in the interpretation of features of the spectra that are related to biology.

  7. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  8. Logical Empiricism, Politics, and Professionalism

    NASA Astrophysics Data System (ADS)

    Edgar, Scott

    2009-02-01

    This paper considers George A. Reisch’s account of the role of Cold War political forces in shaping the apolitical stance that came to dominate philosophy of science in the late 1940s and 1950s. It argues that at least as early as the 1930s, Logical Empiricists such as Rudolf Carnap already held that philosophy of science could not properly have political aims, and further suggests that political forces alone cannot explain this view’s rise to dominance during the Cold War, since political forces cannot explain why a philosophy of science with liberal democratic, anti-communist aims did not flourish. The paper then argues that if professionalization is understood in the right way, it might point toward an explanation of the apolitical stance of Cold War philosophy of science.

  9. A Logic for Qualified Syllogisms

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel G.

    In various works, L.A. Zadeh has introduced fuzzy quantifiers, fuzzy usuality modifiers, and fuzzy likelihood modifiers. This paper provides these notions with a unified semantics and uses this to define a formal logic capable of expressing and validating arguments such as 'Most birds can fly; Tweety is a bird; therefore, it is likely that Tweety can fly'. In effect, these are classical Aristotelean syllogisms that have been "qualified" through the use of fuzzy quantifiers. It is briefly outlined how these, together with some likelihood combination rules, can be used to address some well-known problems in the theory of nonmonotonic reasoning. The work is aimed at future applications in expert systems and robotics, including both hardware and software agents.

  10. Towards bioelectronic logic (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meredith, Paul; Mostert, Bernard; Sheliakina, Margarita; Carrad, Damon J.; Micolich, Adam P.

    2016-09-01

    One of the critical tasks in realising a bioelectronic interface is the transduction of ion and electron signals at high fidelity, and with appropriate speed, bandwidth and signal-to-noise ratio [1]. This is a challenging task considering ions and electrons (or holes) have drastically different physics. For example, even the lightest ions (protons) have mobilities much smaller than electrons in the best semiconductors, effective masses are quite different, and at the most basic level, ions are `classical' entities and electrons `quantum mechanical'. These considerations dictate materials and device strategies for bioelectronic interfaces alongside practical aspects such as integration and biocompatibility [2]. In my talk I will detail these `differences in physics' that are pertinent to the ion-electron transduction challenge. From this analysis, I will summarise the basic categories of device architecture that are possibilities for transducing elements and give recent examples of their realisation. Ultimately, transducing elements need to be combined to create `bioelectronic logic' capable of signal processing at the interface level. In this regard, I will extend the discussion past the single element concept, and discuss our recent progress in delivering all-solids-state logic circuits based upon transducing interfaces. [1] "Ion bipolar junction transistors", K. Tybrandt, K.C. Larsson, A. Richter-Dahlfors and M. Berggren, Proc. Natl Acad. Sci., 107, 9929 (2010). [2] "Electronic and optoelectronic materials and devices inspired by nature", P Meredith, C.J. Bettinger, M. Irimia-Vladu, A.B. Mostert and P.E. Schwenn, Reports on Progress in Physics, 76, 034501 (2013).

  11. Assessing an AI knowledge-base for asymptomatic liver diseases.

    PubMed

    Babic, A; Mathiesen, U; Hedin, K; Bodemar, G; Wigertz, O

    1998-01-01

    Discovering not yet seen knowledge from clinical data is of importance in the field of asymptomatic liver diseases. Avoidance of liver biopsy which is used as the ultimate confirmation of diagnosis by making the decision based on relevant laboratory findings only, would be considered an essential support. The system based on Quinlan's ID3 algorithm was simple and efficient in extracting the sought knowledge. Basic principles of applying the AI systems are therefore described and complemented with medical evaluation. Some of the diagnostic rules were found to be useful as decision algorithms i.e. they could be directly applied in clinical work and made a part of the knowledge-base of the Liver Guide, an automated decision support system.

  12. Calculator Logic Systems and Mathematical Understandings.

    ERIC Educational Resources Information Center

    Burrows, Enid R.

    This monograph is aimed at helping the reader understand the built-in logic of various calculator operating systems. It is an outgrowth of workshop contacts with in-service and pre-service teachers of mathematics and is in response to their request for a book on the subject of calculator logic systems and calculator algorithms. The mathematical…

  13. A Device for Logic Information Processing.

    ERIC Educational Resources Information Center

    Levinskiy, L. S.; Vissonova, I. A.

    Two essential components of the information-logic problem are: (1) choosing some known part of the total information block for parallel review of the entire block and (2) parallel logic processing of a sequence of codes. The described device fulfills these essential components thereby improving information processing and increasing the speed of…

  14. The Logic of Creative and Critical Thinking.

    ERIC Educational Resources Information Center

    Paul, Richard

    This paper explores the intimate connection between creative and critical thinking, by arguing that both are inseparable in everyday reasoning. The details of the relationship between creative and critical thinking are worked out in relation to the processes of: (1) thinking through the logic of things; (2) taking command of reasoning and logic;…

  15. Logic in Educational Research and Policy Making.

    ERIC Educational Resources Information Center

    Garlikov, Rick

    2000-01-01

    Analyzes S. Bauer's article on the use of achievement tests to judge school quality to demonstrate the importance of logic, philosophy (especially conceptual analysis), and insights based on anecdotal evidence for educational research and policy making. Emphasizes the place for logical reasoning and anecdotal evidence in the empirical enterprise…

  16. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Barto, Rod L.; Erickson, Ken

    1999-01-01

    This paper presents a look at logic design from early in the US Space Program and examines faults in recent logic designs. Most examples are based on flight hardware failures and analysis of new tools and techniques. The paper is presented in viewgraph form.

  17. Fuzzy Logic in Medicine and Bioinformatics

    PubMed Central

    Torres, Angela; Nieto, Juan J.

    2006-01-01

    The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of genomes). PMID:16883057

  18. The Completion of the Emergence of Modern Logic from Boole's The Mathematical Analysis of Logic to Frege's Begriffsschrift

    NASA Astrophysics Data System (ADS)

    Jetli, Priyedarshi

    Modern logic begins with Boole's The Mathematical Analysis of Logic when the algebra of logic was developed so that classical logic syllogisms were proven as algebraic equations and the turn from the logic of classes to propositional logic was suggested. The emergence was incomplete as Boole algebraised classical logic. Frege in Begriffsschrift replaced Aristotelian subject-predicate propositions by function and argument and displaced syllogisms with an axiomatic propositional calculus using conditionals, modus ponens and the law of substitution. Further Frege provided the breakthrough to lay down the groundwork for the development of quantified logic as well as the logic of relations. He achieved all of this through his innovative formal notations which have remained underrated. Frege hence completed the emergence of modern logic. Both Boole and Frege mathematised logic, but Frege's goal was to logicise mathematics. However the emergence of modern logic in Frege should be detached from his logicism.

  19. Interpreting Quantum Logic as a Pragmatic Structure

    NASA Astrophysics Data System (ADS)

    Garola, Claudio

    2017-02-01

    Many scholars maintain that the language of quantum mechanics introduces a quantum notion of truth which is formalized by (standard, sharp) quantum logic and is incompatible with the classical (Tarskian) notion of truth. We show that quantum logic can be identified (up to an equivalence relation) with a fragment of a pragmatic language LGP of assertive formulas, that are justified or unjustified rather than trueor false. Quantum logic can then be interpreted as an algebraic structure that formalizes properties of the notion of empirical justification according to quantum mechanics rather than properties of a quantum notion of truth. This conclusion agrees with a general integrationist perspective that interprets nonstandard logics as theories of metalinguistic notions different from truth, thus avoiding incompatibility with classical notions and preserving the globality of logic.

  20. Processing device with self-scrubbing logic

    SciTech Connect

    Wojahn, Christopher K.

    2016-03-01

    An apparatus includes a processing unit including a configuration memory and self-scrubber logic coupled to read the configuration memory to detect compromised data stored in the configuration memory. The apparatus also includes a watchdog unit external to the processing unit and coupled to the self-scrubber logic to detect a failure in the self-scrubber logic. The watchdog unit is coupled to the processing unit to selectively reset the processing unit in response to detecting the failure in the self-scrubber logic. The apparatus also includes an external memory external to the processing unit and coupled to send configuration data to the configuration memory in response to a data feed signal outputted by the self-scrubber logic.

  1. Using Abductive Research Logic: "The Logic of Discovery", to Construct a Rigorous Explanation of Amorphous Evaluation Findings

    ERIC Educational Resources Information Center

    Levin-Rozalis, Miri

    2010-01-01

    Background: Two kinds of research logic prevail in scientific research: deductive research logic and inductive research logic. However, both fail in the field of evaluation, especially evaluation conducted in unfamiliar environments. Purpose: In this article I wish to suggest the application of a research logic--"abduction"--"the logic of…

  2. Apolipoprotein A-I metabolism in cynomolgus monkey. Identification and characterization of beta-migrating pools

    SciTech Connect

    Melchior, G.W.; Castle, C.K.

    1989-07-01

    Fresh plasma from control (C) and hypercholesterolemic (HC) cynomolgus monkeys was analyzed by agarose electrophoresis-immunoblotting with antibody to cynomolgus monkey apolipoprotein (apo) A-I. Two bands were evident on the autoradiogram: an alpha-migrating band (high density lipoprotein) and a beta-migrating band that comigrated exactly with cynomolgus monkey low density lipoprotein (LDL). The presence of beta-migrating apo A-I in the plasma of these monkeys was confirmed by Geon-Pevikon preparative electrophoresis, crossed immunoelectrophoresis, and isotope dilution studies in which radiolabeled apo A-I was found to equilibrate also with alpha- and beta-migrating pools of apo A-I in the plasma. Subfractionation of C and HC plasma by agarose column chromatography (Bio-Gel A-0.5M and A-15M) followed by agarose electrophoresis-immunoblotting indicated that the beta-migrating apo A-I in C was relatively homogeneous and eluted with proteins of Mr approximately 50 kD (apo A-I(50 kD)), whereas two beta-migrating fractions were identified in HC, one that eluted with the 50-kD proteins, and the other that eluted in the LDL Mr range (apo A-I(LDL)). The apo A-I(LDL) was precipitated by antibody to cynomolgus monkey apo B. The apo A-I(50 kD) accounted for 5 +/- 1% (mean +/- SD) of the plasma apo A-I in C plasma, and 15 +/- 7% in HC plasma. No apo A-I(LDL) was detected in C plasma, but that fraction accounted for 9 +/- 7% of the apo A-I in HC plasma. These data establish the presence of multiple pools of apo A-I in the cynomolgus monkey, which must be taken into consideration in any comprehensive model of apo A-I metabolism in this species.

  3. Using Model Checking to Validate AI Planner Domain Models

    NASA Technical Reports Server (NTRS)

    Penix, John; Pecheur, Charles; Havelund, Klaus

    1999-01-01

    This report describes an investigation into using model checking to assist validation of domain models for the HSTS planner. The planner models are specified using a qualitative temporal interval logic with quantitative duration constraints. We conducted several experiments to translate the domain modeling language into the SMV, Spin and Murphi model checkers. This allowed a direct comparison of how the different systems would support specific types of validation tasks. The preliminary results indicate that model checking is useful for finding faults in models that may not be easily identified by generating test plans.

  4. Genome Sequence of Phytomonas françai, a Cassava (Manihot esculenta) Latex Parasite

    PubMed Central

    Butler, Claire E.; Jaskowska, Eleanor

    2017-01-01

    ABSTRACT Here, we report the genome sequence of the cassava (Manihot esculenta) latex parasite Phytomonas françai. P. françai infection is linked with the yield-loss disease “chochamento de raizes” (empty roots) in the Unha variety of cassava, a disease characterized by poor root development and chlorosis of the leaves. PMID:28082482

  5. Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding.

    PubMed

    Sun, Yingjie; Atas, Evrim; Lindqvist, Lisa M; Sonenberg, Nahum; Pelletier, Jerry; Meller, Amit

    2014-07-08

    The eukaryotic translation initiation factor 4AI (eIF4AI) is the prototypical DEAD-box RNA helicase. It has a "dumbbell" structure consisting of two domains connected by a flexible linker. Previous studies demonstrated that eIF4AI, in conjunction with eIF4H, bind to loop structures and repetitively unwind RNA hairpins. Here, we probe the conformational dynamics of eIF4AI in real time using single-molecule FRET. We demonstrate that eIF4AI/eIF4H complex can repetitively unwind RNA hairpins by transitioning between an eIF4AI "open" and a "closed" conformation using the energy derived from ATP hydrolysis. Our experiments directly track the conformational changes in the catalytic cycle of eIF4AI and eIF4H, and this correlates precisely with the kinetics of RNA unwinding. Furthermore, we show that the small-molecule eIF4A inhibitor hippuristanol locks eIF4AI in the closed conformation, thus efficiently inhibiting RNA unwinding. These results indicate that the large conformational changes undertaken by eIF4A during the helicase catalytic cycle are rate limiting.

  6. Real time magnetic resonance imaging of apo AI metabolism in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein AI (apo AI) plays a key role in maintaining cardiovascular health and constitutes the major lipoprotein component in high density lipoproteins (HDL). It metabolism, however, follows a complex pathway. Synthesized in the liver and intestines, its becomes lipidated by its interaction w...

  7. Autoinducer AI-2 is involved in regulating a variety of cellular processes in Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LuxS/AI-2 mediated cell signaling is a known strategy that modulates a variety of bacterial processes in prokaryotes. Salmonella Typhimurium is known to possess LuxS/AI-2 mediated cell signaling. Until now, the Lsr- ABC transporter system (LuxS- regulated) is the only known process controlled by t...

  8. Regulation of the promoter of rat apolipoprotein A-I gene in cultured cells

    SciTech Connect

    Chao, Y.; Pan, T.; Wu, T.; Hao, Q.; Yamin, T.; Kroon, P.A.

    1987-05-01

    In order to study the regulation of the promoter of apolipoprotein (apo) A-I gene, they joined the 5' end of rat apo A-I gene (1.9 Kb) to the coding region of bacterial chloramphenicol acetyltransferase (CAT) gene. The chimeric gene produced high levels of CAT activity in both mouse L cells and Hep G2 cells in transient expression assays. Ethanol increased the levels of rat apo A-I promoter activity in both cells. However, dexamethasone increased rat apo A-I promoter activity only in Hep G2 cells. Similar results were obtained in stable expression cell lines. Nucleotide deletion experiments showed DNA sequences between -149 and -469 base pairs upstream from the rat apo A-I transcription site are required for the high level of expression and that the regulatory sequences are located further upstream. These data demonstrated that the 5' end of rat apo A-I gene contains sequences which are responsible for the regulation of apo A-I expression by ethanol and dexamethasone and that the expression and regulation of rat apo A-I promoter are cell specific.

  9. Macrophage apoAI protects against dyslipidemia-induced dermatitis and atherosclerosis without affecting HDL.

    PubMed

    Tavori, Hagai; Su, Yan Ru; Yancey, Patricia G; Giunzioni, Ilaria; Wilhelm, Ashley J; Blakemore, John L; Zabalawi, Manal; Linton, MacRae F; Sorci-Thomas, Mary G; Fazio, Sergio

    2015-03-01

    Tissue cholesterol accumulation, macrophage infiltration, and inflammation are features of atherosclerosis and some forms of dermatitis. HDL and its main protein, apoAI, are acceptors of excess cholesterol from macrophages; this process inhibits tissue inflammation. Recent epidemiologic and clinical trial evidence questions the role of HDL and its manipulation in cardiovascular disease. We investigated the effect of ectopic macrophage apoAI expression on atherosclerosis and dermatitis induced by the combination of hypercholesterolemia and absence of HDL in mice. Hematopoietic progenitor cells were transduced to express human apoAI and transplanted into lethally irradiated LDL receptor(-/-)/apoAI(-/-) mice, which were then placed on a high-fat diet for 16 weeks. Macrophage apoAI expression reduced aortic CD4(+) T-cell levels (-39.8%), lesion size (-25%), and necrotic core area (-31.6%), without affecting serum HDL or aortic macrophage levels. Macrophage apoAI reduced skin cholesterol by 39.8%, restored skin morphology, and reduced skin CD4(+) T-cell levels. Macrophage apoAI also reduced CD4(+) T-cell levels (-32.9%) in skin-draining lymph nodes but had no effect on other T cells, B cells, dendritic cells, or macrophages compared with control transplanted mice. Thus, macrophage apoAI expression protects against atherosclerosis and dermatitis by reducing cholesterol accumulation and regulating CD4(+) T-cell levels, without affecting serum HDL or tissue macrophage levels.

  10. Reproductive performance of dairy cows resynchronized after pregnancy diagnosis at 31 (±3 days) after artificial insemination (AI) compared with resynchronization at 31 (±3 days) after AI with pregnancy diagnosis at 38 (±3 days) after AI.

    PubMed

    Pereira, R V; Caixeta, L S; Giordano, J O; Guard, C L; Bicalho, R C

    2013-01-01

    An important part of reproductive management programs on dairy farms is identification of nonpregnant cows and early re-insemination to achieve higher pregnancy rates. The objective of this study was to compare the effect on reproductive performance and pregnancy loss of 2 pregnancy diagnosis protocols: (1) pregnancy diagnosis performed 31±3 d after artificial insemination (AI) by ultrasonography (ULTRA), and (2) resynchronization started 31±3 d after AI but with pregnancy diagnosis performed 38±3 d after AI by palpation per rectum (PALP). Cows were randomly allocated into 1 of the 2 management programs. For cows enrolled in ULTRA, the initial pregnancy diagnosis (P1) was performed by transrectal ultrasonography at 31±3 d after AI, and nonpregnant cows were enrolled in the Ovsynch protocol for resynchronization of ovulation to receive timed AI (TAI). For cows enrolled in PALP, the Ovsynch protocol for resynchronization of ovulation to receive TAI was initiated at 31±3 d after AI regardless of pregnancy status, with the initial pregnancy diagnosis (P1) performed by palpation per rectum at 38±3 d after AI. For both groups, reconfirmation of pregnancy was performed by palpation per rectum at 63±3 d after AI (P2). Cows were inseminated after detection of estrus by use of activity monitors at any time during the study. Two levels of activity were used as a reference for cows AI after detection of estrus based on activity: an activity level of ≥2 when a cow was coded in DairyComp 305 (Valley Agricultural Software, Tulare, CA) as open (nonpregnant) and an activity level of ≥3 when the pregnancy status of the cow was unknown. Our findings showed that the odds of pregnancy loss cows in ULTRA was 2 times higher between P1 and P2 compared with that of cows in PALP. Furthermore, pregnancy diagnosis method (ULTRA vs. PALP) did not have a significant effect on the Cox proportional hazard of pregnancy at P2. The occurrence of assisted parturition, metritis, or retained

  11. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    NASA Technical Reports Server (NTRS)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system

  12. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  13. Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars

    NASA Astrophysics Data System (ADS)

    Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.

    2011-12-01

    Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development

  14. Biological quarantine on international waters: an initiative for onboard protocols

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Yano, Hajime; Funase, Ryu; Sekine, Yasuhito; Takai, Ken

    2012-07-01

    The research vessel Chikyu is expanding new frontiers in science, technology, and international collaboration through deep-sea expedition. The Chikyu (length: 210 m, gross tonnage: 56752 tons) has advanced and comprehensive scientific research facilities. One of the scientific purposes of the vessel is to investigate into unexplored biosphere (i.e., undescribed extremophiles) on the Earth. Therefore, "the onboard laboratory" provides us systematic microbiological protocols with a physical containment situation. In parallel, the onboard equipments provide sufficient space for fifty scientists and technical support staff. The helicopter deck also supports various logistics through transporting by a large scale helicopter (See, http://www.jamstec.go.jp/chikyu/eng/). Since the establishment of Panel on Planetary Protection (PPP) in Committee on Space Research (COSPAR), we have an international consensus about the development and promulgation of planetary protection knowledge, policy, and plans to prevent the harmful effects of biological contamination on the Earth (e.g., Rummel, 2002). However, the matter to select a candidate location of initial quarantine at BSL4 level is often problematic. To answer the key issue, we suggest that international waters can be a meaningful option with several advantages to conduct initial onboard-biological quarantine investigation. Hence, the research vessel Chikyu is promising for further PPP requirements (e.g., Enceladus sample return project: Tsou et al., 2012). Rummel, J., Seeking an international consensus in planetary protection: COSPAR's planetary protection panel. Advances in Space Research, 30, 1573-1575 (2002). Tsou, P. et al. LIFE: Life Investigation For Enceladus - A Sample Return Mission Concept in Search for Evidence of Life. Astrobiology, in press.

  15. TDRSS Onboard Navigation System (TONS) flight qualification experiment

    NASA Astrophysics Data System (ADS)

    Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.

    1994-05-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.

  16. Use of LOGIC to support lidar operations

    NASA Astrophysics Data System (ADS)

    Davis-Lunde, Kimberley; Jugan, Laurie A.; Shoemaker, J. Todd

    1999-10-01

    The Naval Oceanographic Office (NAVOCEANO) and Planning Systems INcorporated are developing the Littoral Optics Geospatial Integrated Capability (LOGIC). LOGIC supports NAVOCEANO's directive to assess the impact of the environment on Fleet systems in areas of operational interest. LOGIC is based in the Geographic Information System (GIS) ARC/INFO and offers a method to view and manipulate optics and ancillary data to support emerging Fleet lidar systems. LOGIC serves as a processing (as required) and quality-checking mechanism for data entering NAVOCEANO's Data Warehouse and handles both remotely sensed and in-water data. LOGIC provides a link between these data and the GIS-based Graphical User Interface, allowing the user to select data manipulation routines and/or system support products. The results of individual modules are displayed via the GIS to provide such products as lidar system performance, laser penetration depth, and asset vulnerability from a lidar threat. LOGIC is being developed for integration into other NAVOCEANO programs, most notably for Comprehensive Environmental Assessment System, an established tool supporting sonar-based systems. The prototype for LOGIC was developed for the Yellow Sea, focusing on a diver visibility support product.

  17. Skylab-3 Mission Onboard Photograph - Astronaut Bean on Ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.

  18. On-board image compression for the RAE lunar mission

    NASA Technical Reports Server (NTRS)

    Miller, W. H.; Lynch, T. J.

    1976-01-01

    The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cu cm and consumes 0.4 W.

  19. Onboard near-optimal climb-dash energy management

    NASA Technical Reports Server (NTRS)

    Weston, A.; Cliff, G.; Kelley, H.

    1985-01-01

    This paper studies optimal and near-optimal trajectories of high-performance aircraft in symmetric flight. Onboard, real-time, near-optimal guidance is considered for the climb-dash mission, using some of the boundary-layer structure and hierarchical ideas from singular perturbations. In the case of symmetric flight, this resembles neighborhood-optimal guidance using energy-to-go as the running variable. However, extension to three-dimensional flight is proposed, using families of nominal paths with heading-to-go as the additional running variable. Some computational results are presented for the symmetric case.

  20. Onboard Run-Time Goal Selection for Autonomous Operations

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg; Chien, Steve; McLaren, David

    2010-01-01

    We describe an efficient, online goal selection algorithm for use onboard spacecraft and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.

  1. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  2. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  3. OnBoard Parameter Identification for a Small UAV

    NASA Astrophysics Data System (ADS)

    McGrail, Amanda K.

    One of the main research focus areas of the WVU Flight Control Systems Laboratory (FCSL) is the increase of flight safety through the implementation of fault tolerant control laws. For some fault tolerant flight control approaches with adaptive control laws, the availability of accurate post failure aircraft models improves performance. While look-up tables of aircraft models can be created for failure conditions, they may fail to account for all possible failure scenarios. Thus, a real-time parameter identification program eliminates the need to have predefined models for all potential failure scenarios. The goal of this research was to identify the dimensional stability and control derivatives of the WVU Phastball UAV in flight using a frequency domain based real-time parameter identification (PID) approach. The data necessary for this project was gathered using the WVU Phastball UAV, a radio-controlled aircraft designed and built by the FCSL for fault tolerant control research. Maneuvers designed to excite the natural dynamics of the aircraft were implemented by the pilot or onboard computer during the steady state portions of flights. The data from these maneuvers was used for this project. The project was divided into three main parts: 1) off-line time domain PID, 2) off-line frequency domain PID, and 3) an onboard frequency domain PID. The off-line parameter estimation programs, in both frequency domain and time domain, utilized the well known Maximum Likelihood Estimator with Newton-Raphson minimization with starting values estimated from a Least-Squares Estimate of the non-dimensional stability and control derivatives. For the frequency domain approach, both the states and inputs were first converted to the frequency domain using a Fourier integral over the frequency range in which the rigid body aircraft dynamics are found. The final phase of the project was a real-time parameter estimation program to estimate the dimensional stability and control

  4. On-board orbit determination for applications satellites

    NASA Technical Reports Server (NTRS)

    Morduch, G. E.; Lefler, J. G.; Argentiero, P. D.; Garza-Robles, R.

    1978-01-01

    An algorithm for satellite orbit determination is described which would be suitable for use with an on-board computer with limited core storage. The proposed filter is recursive on a pass-by-pass basis and features a fading memory to account for the effect of gravity field error. Only a single pass of Doppler data needs to be stored at any time and the data may be acquired from two reference beacons located within the Continental United States. The results of both simulated data and real data reductions demonstrate that the satellite's position can be determined to within one kilometer when a 4 x 4 recovery field is used.

  5. An onboard digital demodulator for regenerative SCPC satellite communication systems

    NASA Astrophysics Data System (ADS)

    Ohtani, Koichi; Kato, Shuzo

    This paper proposes a digital demodulator with soft decision capability for on-board application. A prototype demodulator LSI, which handles a 64 kb/s SCPC channel, has been fabricated by using CMOS masterslice technology for reduction of hardware and power consumption. The proposed LSI demodulator requires a total number of 4 k gates and consumes power of 75 mW. Experimental results show that the prototype QPSK/OQPSK demodulator LSI has satisfactory bit error rate performance in conjunction with R = 1/2, k = 4 convolutional encoding and Viterbi decoding.

  6. A guide to onboard checkout. Volume 7: RF communications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The radio frequency communications subsystem for a space station is considered, with respect to onboard checkout requirements. The subsystem comprises all equipment necessary for transmitting and receiving, tracking and ranging, command, multiple voice and television information, and broadband experiment data. The communications subsystem provides a radio frequency interface between the space station and ground stations, either directly or indirectly, through a data relay satellite system, independent free-flying experiment modules, and logistics vehicles. Reliability, maintenance, and failure analyses are discussed, and computer programming techniques are presented.

  7. Recent results of the Cosmic Dust Analyzer onboard Cassini

    NASA Astrophysics Data System (ADS)

    Srama, Ralf; Gruen, Eberhard; Kempf, Sascha; Moragas-Klostermeyer, Georg; Beckmann, Uwe; Postberg, Frank; Hsu, Hsiang-Wen; Burton, Marcia; Spahn, Frank; Economou, Thanasis

    The Cosmic Dust Analyzer (CDA) onboard the Cassini mission measures the properties of micron sized dust particles in the planetary system. Since 2004 CDA performs successfully measurements in the Saturnian system and made several exciting discoveries and measurements: Dust streams from the inner and outer ring system, dust grain potentials, dust grain composition of ring particles, dust size and density distributions in the outer ring system, the G ring detection, the Enceladus dust plumes and significant dust fluxes outside the known E ring. This paper provides an overview about the recent achievement of the CDA instrument and presents the results of the dust composition measurements of the Enceladus flyby on March 12, 2008.

  8. On-board data recorder for hard-target weapons

    SciTech Connect

    Niven, W.A.; Jaroska, M.F.

    1981-03-16

    The Naval Weapons Center has several hard target penetration weapons development programs in progress. One of the critical problem areas in these programs is the extreme difficulty of measuring acceleration-time data from penetration tests due to the hostile nature of the environment. The information is of vital importance in order to produce survivability design criteria for components expected to function in such severe environments. The development of a small, rugged, solid state on-board recorder to capture dynamic data for hard target penetration weapon testing is described.

  9. On-board data recorder for hard-target weapons

    SciTech Connect

    Niven, W.A.; Jaroska, M.F.

    1981-03-16

    The Naval Weapons Center is conducting several hard target penetration weapons development programs. One of the critical problem areas in these programs is the extreme difficulty, due to the hostile nature of the environment, of measuring acceleration-time data from penetration tests. The information is of vital importance in determining design criteria for survivability of components expected to function in such severe environments. This report describes the development of a small, rugged, solid-state on-board recorder to capture dynamic data for testing hard target penetration weapons.

  10. Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS): A conceptual framework

    NASA Technical Reports Server (NTRS)

    Parnell, Gregory S.; Rowell, William F.; Valusek, John R.

    1987-01-01

    In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.

  11. Earthquake Archaeology: a logical approach?

    NASA Astrophysics Data System (ADS)

    Stewart, I. S.; Buck, V. A.

    2001-12-01

    Ancient earthquakes can leave their mark in the mythical and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. Within this broad cross-disciplinary tramping ground, earthquake geologists have tended to focus on those aspects of the cultural record that are most familiar to them; the physical effects of seismic deformation on ancient constructions. One of the core difficulties with this 'earthquake archaeology' approach is that recent attempts to isolate structural criteria that are diagnostic or strongly suggestive of a seismic origin are undermined by the recognition that signs of ancient seismicity are generally indistinguishable from non-seismic mechanisms (poor construction, adverse geotechnical conditions). We illustrate the difficulties and inconsistencies in current proposed 'earthquake diagnostic' schemes by reference to two case studies of archaeoseismic damage in central Greece. The first concerns fallen columns at various Classical temple localities in mainland Greece (Nemea, Sounio, Olympia, Bassai) which, on the basis of observed structural criteria, are earthquake-induced but which are alternatively explained by archaeologists as the action of human disturbance. The second re-examines the almost type example of the Kyparissi site in the Atalanti region as a Classical stoa offset across a seismic surface fault, arguing instead for its deformation by ground instability. Finally, in highlighting the inherent ambiguity of archaeoseismic data, we consider the value of a logic-tree approach for quantifying and quantifying our uncertainities for seismic-hazard analysis.

  12. A Very Small Logical Qubit

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven SQUID couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multi-qubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of forty or more compared to the individual qubit T1 and T2 using this technique.

  13. The Logic of Reflection: Samuel Taylor Coleridge's "treatise on Logic"

    NASA Astrophysics Data System (ADS)

    Land, Janet Sanders

    Though others discuss Coleridge's interest in science, light imagery, the phenomenon of reflection, and his references to Newton and Opticks,^1 this is the first study to examine Coleridge's art in terms of optics, its developing theories, and the nature-of-light debate. This study examines Coleridge's early predilection for visions, illusions, and the supernatural and demonstrates that he gradually shifts from the supernatural to the scientific aspects of "visions" and "illusions," concentrating on causes of illusions and the effects of their deceptive qualities rather than their mystical features. By the 1820's, his preoccupation with illusions had become an interest in optics, fueled, no doubt, by the increasing controversy of the nature-of-light debate and the number of advances in optics resulting from the efforts of its opponents to prove their theories. Tracing the development of the debate, its escalation in the early nineteenth century, and the formation of Coleridge's opinion concerning key issues of the debate, I outline the evolution of Coleridge's theory of reflection and examine the exposition of that theory in his treatise, Logic (1981). Finally, I analyze the relationship between the advances in optics and Coleridge's concepts of thought and knowledge and his notion of the mind as an instrument of knowledge. These ideas in turn, altered his opinions concerning the validity of knowledge resulting from philosophic debate, scientific experiment, and poetic exploration. ftn^1John Beer, "Coleridge and Wordsworth on Reflection," The Wordsworth Circle 20 (1989): 20-29; Coleridge the Visionary. London: Chatto and Windus, 1959; and Coleridge's Poetic Intelligence. London: Macmillan, 1977 and M. H. Abrams Natural Supernaturalism: Tradition and Revolution in Romantic Literature. New York: Norton, 1971; and "Coleridge's 'A Light in Sound': Science, Metascience, and Poetic Imagination." The Correspondent Breeze: Essays on English Romanticism. Eds. M. H. Abrams

  14. Magnetic logic using nanowires with perpendicular anisotropy.

    PubMed

    Jaworowicz, J; Vernier, N; Ferré, J; Maziewski, A; Stanescu, D; Ravelosona, D; Jacqueline, A S; Chappert, C; Rodmacq, B; Diény, B

    2009-05-27

    In addition to a storage function through the magnetization of nanowires, domain wall propagation can be used to trigger magnetic logic functions. Here, we present a new way to realize a pure magnetic logic operation by using magnetic nanowires with perpendicular anisotropy. Emphasis is given on the generation of the logic function 'NOT' that is based on the dipolar interaction between two neighbouring magnetic wires, which favours the creation of a domain wall. This concept has been validated on several prototypes and the results fit well with the expectations.

  15. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  16. Software Safety Assurance of Programmable Logic

    NASA Technical Reports Server (NTRS)

    Berens, Kalynnda

    2002-01-01

    Programmable Logic (PLC, FPGA, ASIC) devices are hybrids - hardware devices that are designed and programmed like software. As such, they fall in an assurance gray area. Programmable Logic is usually tested and verified as hardware, and the software aspects are ignored, potentially leading to safety or mission success concerns. The objective of this proposal is to first determine where and how Programmable Logic (PL) is used within NASA and document the current methods of assurance. Once that is known, raise awareness of the PL software aspects within the NASA engineering community and provide guidance for the use and assurance of PL form a software perspective.

  17. Coordination Logic for Repulsive Resolution Maneuvers

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.

    2016-01-01

    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  18. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    PubMed

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-07-17

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  19. On-Orbit Performance of MODIS On-Board Calibrators

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Che, N.; Chiang, K.; Esposito, J.; Barnes, William; Guenther, B.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The Terra MODIS (Moderate Resolution Imaging Spectroradiometer) was launched on December 18, 1999 and acquired the first scene data on February 24, 2000. It has 36 spectral bands covering spectral range from 0.41 to 14.2 microns and provides spatial resolutions of 250 (2 bands), 500 (5 bands), and 1000 m at Nadir. The instrument on-orbit calibration and characterization are determined and monitored through the use of a number of on-board calibrators (OBC). Radiometric calibration for the reflective solar bands (B1-B19, B26), from VIS (visible) to SWIR (short wavelength infrared) (0.41 to 2.1 microns), uses a Spectralon (tm) solar diffuser (SD) and a solar diffuser stability monitor (SDSM). For the thermal emissive bands (B20-B25, B27-B36), from MWIR (medium wavelength infrared) to LWIR (long wavelength infrared) (3.75 to 14.2 micron), a V-grooved flat panel blackbody is used. The instrument spectral for the VIS to SWIR bands and spatial co-registration characterizations for all bands are monitored on-orbit by the spectral radiometric calibration assembly (SRCA). In this report, we discuss the application and performance of the key MODIS on-board calibrators and their impacts on the instrument system calibration and characterization.

  20. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    PubMed Central

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-01-01

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281

  1. Power supply topology for lidar system onboard UAV platform

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Yang, Jiazhi; Yu, Xinchen; Zhu, Wei

    2011-10-01

    Laser diode adopted in LiDAR (Light Detection And Ranging) onboard a small low-cost UAV (Unmanned Aerial Vehicle - UAV) platform usually requires its carried components to be light in weight, small in volume, and specially efficient in energy supply. A DC-DC converter and a fast switch are often applied for the traditional power supply to drive the LiDAR system. This traditional method is not proper for application in a UAV platform. This paper provides a novel power supply topology, which consists of two coupled coils, pulse generator circuit, and a fast switch. The power supply topology has been designed, assembled, tested, and confirmed to generate pulse voltage of 100-300 V, up to 120 A pulse current, 50-200 μs pulse width, and 50 Hz maximum pulse frequency. The driver circuit is very simple, but could restrain current surge efficiently. This ensures that the laser diode does not be disturbed. It is demonstrated that it is sufficient to drive a laser diode used in LiDAR onboard UAV, and meets the requirement of weight and volume. Now the driver has been manufactured for application in UAV-based airborne lidar sample system.

  2. On-board data management study for EOPAP

    NASA Technical Reports Server (NTRS)

    Davisson, L. D.

    1975-01-01

    The requirements, implementation techniques, and mission analysis associated with on-board data management for EOPAP were studied. SEASAT-A was used as a baseline, and the storage requirements, data rates, and information extraction requirements were investigated for each of the following proposed SEASAT sensors: a short pulse 13.9 GHz radar, a long pulse 13.9 GHz radar, a synthetic aperture radar, a multispectral passive microwave radiometer facility, and an infrared/visible very high resolution radiometer (VHRR). Rate distortion theory was applied to determine theoretical minimum data rates and compared with the rates required by practical techniques. It was concluded that practical techniques can be used which approach the theoretically optimum based upon an empirically determined source random process model. The results of the preceding investigations were used to recommend an on-board data management system for (1) data compression through information extraction, optimal noiseless coding, source coding with distortion, data buffering, and data selection under command or as a function of data activity, (2) for command handling, (3) for spacecraft operation and control, and (4) for experiment operation and monitoring.

  3. Onboard Radar Processing Development for Rapid Response Applications

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  4. Human thermohomeostasis onboard "Mir" and in simulated microgravity studies.

    PubMed

    Polyakov, V V; Lacota, N G; Gundel, A

    2001-01-01

    Significant changes of thermogomeostatic parameters was obtained by thermotopometric method using the techniques simulate of microgravity effects: bed rest, pressurized isolation, suit immersion (SI). However, each of ground models made rectal temperature (T) trend downward. The autothermometric study (24 and 12 sessions, 2-13th and 6-174th flight days) was carried out onboard "Mir" by two flight engineers who had preliminary tested at SI (1-2 days). Studies of German investigators onboard "Mir" confirmed: rectal T must be higher in space flight as compared to the normal environment (n=4). Comparative studies suggest that microgravity is a key factor for the human body surface T raise and abolishment of the external/internal T-gradient. T-homeostasis was not really changing during missions and could be regarded as acute effect of microgravity. After delineation of changes in body surface T--by Carnot's thermodynamic law--rectal T raise should have been anticipated. Facts pointing to the excess entropy of human body must not be passed over.

  5. Expanding Remote Science Operations Capabilities Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig A.; Dyer, Steven V.; Gibbs, Richard E., III; Cech, John G.

    2004-01-01

    EXPRESS Racks have been supporting payload science operations onboard the International Space Station (ISS) since April of 2001. EXPRESS is an acronym that stands for "EXpedite the PRocessing of Experiments to Space Station." This name reflects NASA's focus to simplify the process of manifesting experiments and maximizing scientific research capabilities by providing a robust, remotely operated payload support platform. The EXPRESS Rack System was developed by NASA's Marshall Space Flight Center (MSFC) and built by The Boeing Company in Huntsville, Alabama. Eight EXPRESS racks were built and five are currently onboard the ISS supporting science operations. The design and development of the EXPRESS Rack System is a long story that has been documented in previous publications. This paper briefly describes the facilities used to develop and verify flight software, test operational capabilities. It then traces the advancements made in the operational capabilities of the EXPRESS Racks from the time they were launched on STS-100 through the present. The paper concludes with a description of potential enhancements that will make the EXPRESS racks one of the most advanced and capable remote science platforms ever developed.

  6. B-ISBN Onboard Processing Fast Packet Switch Developed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Future satellite communications applications will require a packet-switched onboard satellite processing system to route packets at very high speeds from uplink beams to different downlink beams. The rapid emergence of point-to-multipoint services, and the important role of satellites in a national and global information infrastructure, makes the multicast function essential to a fast packet switch (FPS). NASA Lewis Research Center's Digital System Technology Branch has been studying possible architectures for high-speed onboard-processing satellite systems. As part of this research, COMSAT Laboratories developed a broadband integrated services digital network (B-ISDN) fast packet switch for Lewis that was delivered on December 1994. The fast packet switch consists of eight inputs and eight outputs that can receive and transmit data, respectively, at a rate of 155 Mbps. The switch features multiple priorities (three) and multiple-size (three) satellite virtual cells that are similar to ATM cells in length (52 bytes). In addition, the fast packet switch features a congestion-control algorithm that allows users to set different thresholds for individual destination ports, thus throttling back the traffic from the transmitting port.

  7. AI and simulation: What can they learn from each other

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    1988-01-01

    Simulation and Artificial Intelligence share a fertile common ground both from a practical and from a conceptual point of view. Strengths and weaknesses of both Knowledge Based System and Modeling and Simulation are examined and three types of systems that combine the strengths of both technologies are discussed. These types of systems are a practical starting point, however, the real strengths of both technologies will be exploited only when they are combined in a common knowledge representation paradigm. From an even deeper conceptual point of view, one might even argue that the ability to reason from a set of facts (i.e., Expert System) is less representative of human reasoning than the ability to make a model of the world, change it as required, and derive conclusions about the expected behavior of world entities. This is a fundamental problem in AI, and Modeling Theory can contribute to its solution. The application of Knowledge Engineering technology to a Distributed Processing Network Simulator (DPNS) is discussed.

  8. Challenges and progress in making DNA-based AIS early ...

    EPA Pesticide Factsheets

    The ability of DNA barcoding to find additional species in hard-to-sample locations or hard-to-identify samples is well established. Nevertheless, adoption of DNA barcoding into regular monitoring programs has been slow, in part due to issues of standardization and interpretation that need resolving. In this presentation, we describe our progress towards incorporating DNA-based identification into broad-spectrum aquatic invasive species early-detection monitoring in the Laurentian Great Lakes. Our work uses community biodiversity information as the basis for evaluating survey performance for various taxonomic groups. Issues we are tackling in bringing DNA-based data to bear on AIS monitoring design include: 1) Standardizing methodology and work flow from field collection and sample handling through bioinformatics post-processing; 2) Determining detection sensitivity and accounting for inter-species differences in DNA amplification and primer affinity; 3) Differentiating sequencing and barcoding errors from legitimate new finds when range and natural history information is limited; and 4) Accounting for the different nature of morphology- vs. DNA-based biodiversity information in subsequent analysis (e.g., via species accumulation curves, multi-metric indices). not applicable

  9. Computational intelligence from AI to BI to NI

    NASA Astrophysics Data System (ADS)

    Werbos, Paul J.

    2015-05-01

    This paper gives highlights of the history of the neural network field, stressing the fundamental ideas which have been in play. Early neural network research was motivated mainly by the goals of artificial intelligence (AI) and of functional neuroscience (biological intelligence, BI), but the field almost died due to frustrations articulated in the famous book Perceptrons by Minsky and Papert. When I found a way to overcome the difficulties by 1974, the community mindset was very resistant to change; it was not until 1987/1988 that the field was reborn in a spectacular way, leading to the organized communities now in place. Even then, it took many more years to establish crossdisciplinary research in the types of mathematical neural networks needed to really understand the kind of intelligence we see in the brain, and to address the most demanding engineering applications. Only through a new (albeit short-lived) funding initiative, funding crossdisciplinary teams of systems engineers and neuroscientists, were we able to fund the critical empirical demonstrations which put our old basic principle of "deep learning" firmly on the map in computer science. Progress has rightly been inhibited at times by legitimate concerns about the "Terminator threat" and other possible abuses of technology. This year, at SPIE, in the quantum computing track, we outline the next stage ahead of us in breaking out of the box, again and again, and rising to fundamental challenges and opportunities still ahead of us.

  10. Utilizing AI in Temporal, Spatial, and Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Stottler, Richard; Kalton, Annaka; Bell, Aaron

    2006-01-01

    Aurora is a software system enabling the rapid, easy solution of complex scheduling problems involving spatial and temporal constraints among operations and scarce resources (such as equipment, workspace, and human experts). Although developed for use in the International Space Station Processing Facility, Aurora is flexible enough that it can be easily customized for application to other scheduling domains and adapted as the requirements change or become more precisely known over time. Aurora s scheduling module utilizes artificial-intelligence (AI) techniques to make scheduling decisions on the basis of domain knowledge, including knowledge of constraints and their relative importance, interdependencies among operations, and possibly frequent changes in governing schedule requirements. Unlike many other scheduling software systems, Aurora focuses on resource requirements and temporal scheduling in combination. For example, Aurora can accommodate a domain requirement to schedule two subsequent operations to locations adjacent to a shared resource. The graphical interface allows the user to quickly visualize the schedule and perform changes reflecting additional knowledge or alterations in the situation. For example, the user might drag the activity corresponding to the start of operations to reflect a late delivery.

  11. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates

    PubMed Central

    Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177

  12. Using the Mil. Std 1553B data bus in future spacecraft onboard applications

    NASA Astrophysics Data System (ADS)

    Plummer, Chris; Bordes, Yves

    2002-07-01

    This paper discusses the use of the Mil. Std 1553B data bus as the principal onboard data handling bus for future spacecraft applications. The paper takes a pragmatic approach by: Identifying the characteristics of the onboard bus traffic and its characteristics; Looking at future trends in onboard bus traffic; Describing the characteristics of the Mil. Std 1553B data bus; Proposing techniques that can be used on the Mil. Std 1553B data bus in future spacecraft application.

  13. Mathematical specifications of the Onboard Navigation Package (ONPAC) simulator (revision 1)

    NASA Technical Reports Server (NTRS)

    Dunham, J. B.; Long, A. C.; Wooden, W.

    1981-01-01

    The mathematical theory of the computational algorithms employed in the onboard navigation package system is described. This system, which simulates an onboard navigation processor, was developed to aid in the design and evaluation of onboard navigation software. The mathematical formulations presented include the factorized UDU(T) form of the extended Kalman filter, the equations of motion of the user satellite, the user clock equations, the observation equations and their partial derivatives, the coodinate transformations, and the matrix decomposition algorithms.

  14. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  15. Detection of Floating Inputs in Logic Circuits

    NASA Technical Reports Server (NTRS)

    Cash, B.; Thornton, M. G.

    1984-01-01

    Simple modification of oscilloscope probe allows easy detection of floating inputs or tristate outputs in digital-IC's. Oscilloscope probe easily modified with 1/4 W resistor and switch for detecting floating inputs in CMOS logic circuits.

  16. Using interval logic for order assembly

    SciTech Connect

    Cui, Z.

    1994-12-31

    Temporal logic, in particular, interval logic has been used to represent genome maps and to assist genome map constructions. However, interval logic itself appears to be limited in its expressive power because genome mapping requires various information such as partial order, distance and local orientation. In this paper, we first propose an integrated formalism based on a spatial-temporal logic where the concepts of metric information, local orientation and uncertainty are merged. Then, we present and discuss a deductive and object-oriented data model based on this formalism for a genetic deductive database, and the inference rules required. The formalism supports the maintenance of coarser knowledge of unordered, partially ordered and completely ordered genetic data in a relational hierarchy. We believe that this integrated formalism also provides a formal basis for designing a declarative query language.

  17. Queuing register uses fluid logic elements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Queuing register /a multistage bit-shifting device/ uses a series of pure fluid elements to perform the required logic operations. The register has several stages of three-state pure fluid elements combined with two-input NOR gates.

  18. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  19. Nursing and fuzzy logic: an integrative review.

    PubMed

    Jensen, Rodrigo; Lopes, Maria Helena Baena de Moraes

    2011-01-01

    This study conducted an integrative review investigating how fuzzy logic has been used in research with the participation of nurses. The article search was carried out in the CINAHL, EMBASE, SCOPUS, PubMed and Medline databases, with no limitation on time of publication. Articles written in Portuguese, English and Spanish with themes related to nursing and fuzzy logic with the authorship or participation of nurses were included. The final sample included 21 articles from eight countries. For the purpose of analysis, the articles were distributed into categories: theory, method and model. In nursing, fuzzy logic has significantly contributed to the understanding of subjects related to: imprecision or the need of an expert; as a research method; and in the development of models or decision support systems and hard technologies. The use of fuzzy logic in nursing has shown great potential and represents a vast field for research.

  20. Hierarchical structure of the logical Internet graph

    NASA Astrophysics Data System (ADS)

    Ge, Zihui; Figueiredo, Daniel R.; Jaiswal, Sharad; Gao, Lixin

    2001-07-01

    The study of the Internet topology has recently received much attention from the research community. In particular, the observation that the network graph has interesting properties, such as power laws, that might be explored in a myriad of ways. Most of the work in characterizing the Internet graph is based on the physical network graph, i.e., the connectivity graph. In this paper we investigate how logical relationships between nodes of the AS graph can be used to gain insight to its structure. We characterize the logical graph using various metrics and identify the presence of power laws in the number of customers that a provider has. Using these logical relationships we define a structural model of the AS graph. The model highlights the hierarchical nature of logical relationships and the preferential connection to larger providers. We also investigate the consistency of this model over time and observe interesting properties of the hierarchical structure.

  1. Procedural and Logic Programming: A Comparison.

    ERIC Educational Resources Information Center

    Watkins, Will; And Others

    1988-01-01

    Examines the similarities and fundamental differences between procedural programing and logic programing by comparing LogoWriter and PROLOG. Suggests that PROLOG may be a good first programing language for students to learn. (MVL)

  2. 78 FR 63494 - Meeting of the National Coordination Committee on the AI/AN SANE-SART Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Coordination Committee on the American Indian/ Alaska Native (AI/AN) Sexual Assault Nurse Examiner (SANE... Native (AI/AN) Sexual Assault Nurse Examiner (SANE)- Sexual Assault Response Team (SART)...

  3. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-05

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  4. Pattern recognition using linguistic fuzzy logic predictors

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim

    2016-06-01

    The problem of pattern recognition has been solved with numerous methods in the Artificial Intelligence field. We present an unconventional method based on Lingustic Fuzzy Logic Forecaster which is primarily used for the task of time series analysis and prediction through logical deduction wtih linguistic variables. This method should be used not only to the time series prediction itself, but also for recognition of patterns in a signal with seasonal component.

  5. Does logic moderate the fundamental attribution error?

    PubMed

    Stalder, D R

    2000-06-01

    The fundamental attribution error was investigated from an individual difference perspective. Mathematicians were compared with nonmathematicians (Exp. 1; n: 84), and undergraduates who scored high on a test of logical reasoning ability were compared with those who scored low (Exp. 2; n: 62). The mathematicians and those participants scoring higher on logic appeared less prone to the fundamental attribution error, primarily using a measure of confidence in attributions.

  6. Application of Fuzzy Logic to Matrix FMECA

    NASA Astrophysics Data System (ADS)

    Shankar, N. Ravi; Prabhu, B. S.

    2001-04-01

    A methodology combining the benefits of Fuzzy Logic and Matrix FMEA is presented in this paper. The presented methodology extends the risk prioritization beyond the conventional Risk Priority Number (RPN) method. Fuzzy logic is used to calculate the criticality rank. Also the matrix approach is improved further to develop a pictorial representation retaining all relevant qualitative and quantitative information of several FMEA elements relationships. The methodology presented is demonstrated by application to an illustrative example.

  7. Fault Analysis-based Logic Encryption (Preprint)

    DTIC Science & Technology

    2013-11-01

    work on logic encryption. Section 8 concludes the paper . 2. METRIC FOR LOGIC ENCRYPTION The defender (designer) has to prevent his IP from being...publication of this paper . This material is based on work fund- ed by AFRL under contract No. FA8750-11-2-0274. Received and cleared for public release by...USENIX Se- curity, pp. 291-306, 2007. [4] Defense Science Board (DSB) study on High Performance Microchip Supply. [Online]. http://www.aoq.osd.mil

  8. Firmware Modification Analysis in Programmable Logic Controllers

    DTIC Science & Technology

    2014-03-27

    MODIFICATION ANALYSIS IN PROGRAMMABLE LOGIC CONTROLLERS Arturo M. Garcia Jr., B.S.S.E.C.A. Captain, USA Approved: //signed// Robert F. Mills , PhD...Matthew 5:37 v Acknowledgments My sincere gratitude to my committee for their guidance and teamwork which made this thesis possible. Dr. Mills ...2012. 2012. [5] Bolton, William. Programmable logic controllers. Newnes, 2009. [6] Boyer, Stuart . SCADA: Supervisory Control and Data Aquisition 4th

  9. Simplified Quantum Logic with Trapped Ions

    DTIC Science & Technology

    2016-06-23

    PHYSICAL REVIEW A ATOMIC , MOLECULAR, AND OPTICAL PHYSICS THIRD SERIES, VOLUME 55, NUMBER 4 APRIL 1997Simplified quantum logic with trapped ions C...Received 17 December 1996! We describe a simplified scheme for quantum logic with a collection of laser-cooled trapped atomic ions. Building on the...in a system of laser-cooled trapped atomic ions. In the simplest form of the ion trap quantum computer, two internal electronic levels of each ion in

  10. Onboard Science Techniques to Optimize Science Data Retrieval from Small Spacecraft

    NASA Astrophysics Data System (ADS)

    Lightholder, J.; Thompson, D. R.; Huffman, W.; Boland, J.; Chien, S.; Castillo-Rogez, J.

    2016-10-01

    Software strategies for new onboard science techniques which optimize science return under the constrains of interplanetary small spacecraft. These include size, power, attitude control and communications bandwidth.

  11. On-board processing architectures for satellite B-ISDN services

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris

    1991-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  12. Semi-autonomous liquid handling via on-chip pneumatic digital logic.

    PubMed

    Nguyen, Transon V; Duncan, Philip N; Ahrar, Siavash; Hui, Elliot E

    2012-10-21

    This report presents a liquid-handling chip capable of executing metering, mixing, incubation, and wash procedures largely under the control of on-board pneumatic circuitry. The only required inputs are four static selection lines to choose between the four machine states, and one additional line for power. State selection is simple: constant application of vacuum to an input causes the device to execute one of its four liquid handling operations. Programmed control of 31 valves, including fast coordinated cycling for peristaltic pumping, is accomplished by pneumatic digital logic circuits built out of microfluidic valves and channels rather than electronics, eliminating the need for the off-chip control machinery that is typically required for integrated microfluidics.

  13. Synchronous universal droplet logic and control

    NASA Astrophysics Data System (ADS)

    Katsikis, Georgios; Cybulski, James S.; Prakash, Manu

    2015-07-01

    Droplets are versatile digital materials; they can be produced at high throughput, perform chemical reactions as miniature beakers and carry biological entities. Droplets have been manipulated with electric, optical, acoustic and magnetic forces, but all these methods use serial controls to address individual droplets. An alternative is algorithmic manipulation based on logic operations that automatically compute where droplets are stored or directed, thereby enabling parallel control. However, logic previously implemented in low-Reynolds-number droplet hydrodynamics is asynchronous and thus prone to errors that prevent scaling up the complexity of logic operations. Here we present a platform for error-free physical computation via synchronous universal logic. Our platform uses a rotating magnetic field that enables parallel manipulation of arbitrary numbers of ferrofluid droplets on permalloy tracks. Through the coupling of magnetic and hydrodynamic interaction forces between droplets, we developed AND, OR, XOR, NOT and NAND logic gates, fanouts, a full adder, a flip-flop and a finite-state machine. Our platform enables large-scale integration of droplet logic, analogous to the scaling seen in digital electronics, and opens new avenues in mesoscale material processing.

  14. Interpreting Abstract Interpretations in Membership Equational Logic

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Rosu, Grigore

    2001-01-01

    We present a logical framework in which abstract interpretations can be naturally specified and then verified. Our approach is based on membership equational logic which extends equational logics by membership axioms, asserting that a term has a certain sort. We represent an abstract interpretation as a membership equational logic specification, usually as an overloaded order-sorted signature with membership axioms. It turns out that, for any term, its least sort over this specification corresponds to its most concrete abstract value. Maude implements membership equational logic and provides mechanisms to calculate the least sort of a term efficiently. We first show how Maude can be used to get prototyping of abstract interpretations "for free." Building on the meta-logic facilities of Maude, we further develop a tool that automatically checks and abstract interpretation against a set of user-defined properties. This can be used to select an appropriate abstract interpretation, to characterize the specified loss of information during abstraction, and to compare different abstractions with each other.

  15. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.

    2009-03-01

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case ( N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.

  16. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    SciTech Connect

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  17. Validation of the Avoidance and Inflexibility Scale (AIS) among Treatment-Seeking Smoker

    PubMed Central

    Farris, Samantha G.; Zvolensky, Michael J.; DiBello, Angelo M.; Schmidt, Norman B.

    2015-01-01

    The Avoidance and Inflexibility Scale (AIS; Gifford et al., 2004) was derived as smoking-specific measure of experiential avoidance. However, there has been little investigation of the psychometric proprieties of the AIS and no published work on the topic. The current study aimed to test the reliability and validity of the AIS among a sample of adult treatment-seeking daily smokers (n = 465; 48.1% female, 17.8 [SD = 9.60] cigarettes per day). The AIS was administered at three time points (Baseline, Quit day, 1 month post-quit) as part of a larger smoking cessation trial. An exploratory factor analysis indicated a two-factor solution, described by inflexibility and avoidance due to smoking related “thoughts/feelings” (9 items) and “somatic sensations” (4 items). Results revealed that the AIS-total and factor scores demonstrated high internal consistency and test-retest reliability. The AIS total and factor scores also displayed high convergent, discriminant, and incremental predictive validity with theoretically-relevant smoking and affective variables. The present data suggest that the AIS measure appears to be a valid and reliable smoking-specific index of experiential avoidance. PMID:25642937

  18. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    DOE PAGES

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; ...

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less

  19. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease.

    PubMed Central

    Francis, G A; Knopp, R H; Oram, J F

    1995-01-01

    Tangier disease is a rare genetic disorder characterized by extremely low plasma levels of HDL and apo A-I, deposition of cholesteryl esters in tissues, and a high prevalence of cardiovascular disease. We examined the possibility that HDL apolipoprotein-mediated removal of cellular lipids may be defective in Tangier disease. With fibroblasts from normal subjects, purified apo A-I cleared cells of cholesteryl esters, depleted cellular free cholesterol pools available for esterification, and stimulated efflux of radiolabeled cholesterol, phosphatidylcholine, and sphingomyelin. With fibroblasts from two unrelated Tangier patients, however, apo A-I had little or no effect on any of these lipid transport processes. Intact HDL also was unable to clear cholesteryl esters from Tangier cells even though it promoted radiolabeled cholesterol efflux to levels 50-70% normal. Passive desorption of radiolabeled cholesterol or phospholipids into medium containing albumin or trypsinized HDL was normal for Tangier cells. Binding studies showed that the interaction of apo A-I with high-affinity binding sites on Tangier fibroblasts was abnormal. These results indicate that apo A-I has an impaired ability to remove cholesterol and phospholipid from Tangier fibroblasts, possibly because of a defective interaction of apo A-I with cell-surface binding sites. Failure of apo A-I to acquire cellular lipids may account for the rapid catabolism of nascent HDL particles and the low plasma HDL levels in Tangier disease. Images PMID:7615839

  20. Apolipoproteins A-I, A-II and E in cholestatic liver disease.

    PubMed

    Florén, C H; Gustafson, A

    1985-04-01

    Apolipoproteins A-I, A-II and E were determined in the plasma of nine patients (five females, four males) with cholestatic liver disease (eight patients with primary biliary cirrhosis and one patient with sclerosing cholangitis). Plasma concentrations were measured by electroimmunoassay in the fasting state, postprandially after ingestion of either 100 g fat as whipping cream or a light mixed meal with or without addition of wheat fibre. Concentrations of apolipoproteins A-I and A-II were low in patients with cholestatic liver disease and A-I levels correlated inversely with the severity of liver disease as measured by bilirubin levels (r = -0.66). No changes in plasma apolipoprotein A-I, A-II or E concentrations occurred postprandially. There was an inverse correlation between plasma concentrations of apolipoproteins A-I and E (p less than 0.05, r = -0.68). A close relation existed between the ratio of apolipoprotein E to apolipoprotein A-I and plasma bile salt concentration (r = 0.80, p less than 0.01) and serum bilirubin (r = 0.76, p less than 0.01). This implies that in cholestatic liver disease apolipoprotein E and A-I levels reflect the degree of cholestasis.

  1. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia.

    PubMed Central

    Ng, D S; Leiter, L A; Vezina, C; Connelly, P W; Hegele, R A

    1994-01-01

    We report a Canadian kindred with a novel mutation in the apolipoprotein (apo) A-I gene causing analphalipoproteinemia. The 34-yr-old proband, product of a consanguineous marriage, had bilateral retinopathy, bilateral cataracts, spinocerebellar ataxia, and tendon xanthomata. High density lipoprotein cholesterol (HDL-C) was < 0.1 mM and apoA-I was undetectable. Genomic DNA sequencing of the proband's apoA-I gene identified a nonsense mutation at codon [-2], which we designate as Q[-2]X. This mutation causes a loss of endonuclease digestion sites for both BbvI and Fnu4HI. Genotyping identified four additional homozygotes, four heterozygotes, and two unaffected subjects among the first-degree relatives. Q[-2]X homozygosity causes a selective failure to produce any portion of mature apoA-I, resulting in very low plasma level of HDL. Heterozygosity results in approximately half-normal apoA-I and HDL. Gradient gel electrophoresis and differential electroimmunodiffusion assay revealed that the HDL particles of the homozygotes had peak Stokes diameter of 7.9 nm and contained apoA-II without apoA-I (Lp-AII). Heterozygotes had an additional fraction of HDL3-like particles. Two of the proband's affected sisters had documented premature coronary heart disease. This kindred, the third reported apoA-I gene mutation causing isolated complete apoA-I deficiency, appears to be at significantly increased risk for atherosclerosis. Images PMID:8282791

  2. The Temporal Logic of the Tower Chief System

    NASA Technical Reports Server (NTRS)

    Hazelton, Lyman R., Jr.

    1990-01-01

    The purpose is to describe the logic used in the reasoning scheme employed in the Tower Chief system, a runway configuration management system. First, a review of classical logic is given. Defensible logics, truth maintenance, default logic, temporally dependent propositions, and resource allocation and planning are discussed.

  3. Nonmonotonic Logic for Use in Information Retrieval: An Exploratory Paper.

    ERIC Educational Resources Information Center

    Hurt, C. D.

    1998-01-01

    Monotonic logic requires reexamination of the entire logic string when there is a contradiction. Nonmonotonic logic allows the user to withdraw conclusions in the face of contradiction without harm to the logic string, which has considerable application to the field of information searching. Artificial intelligence models and neural networks based…

  4. On symbolic models for Single-Conclusion Logic of Proofs

    SciTech Connect

    Krupski, Vladimir N

    2011-05-31

    In this paper we define symbolic models for Single-Conclusion Logics of Proofs. We prove the soundness and completeness of these logics with respect to the corresponding classes of symbolic models. We apply the semantic methods developed in this paper to justify the use of terms of single-conclusion logic of proofs as notation for derivations in this logic. Bibliography: 17 titles.

  5. 75 FR 71183 - 23rd Meeting: RTCA Special Committee 206: EUROCAE WG 76 Plenary: AIS and MET Data Link Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... Services and a revised Terms of Reference (TOR) for SC-206 has been approved by the RTCA Program Management... receipt, a Concept of Use for AIS and MET Data Link Services and an AIS and MET Services Delivery Architecture Recommendations are included in the TOR deliverables. The Concept of Use for AIS and MET Data...

  6. Induction of the apolipoprotein AI gene by fasting: a relationship with ketosis but not with ketone bodies.

    PubMed

    Haas, M J; Reinacher, D; Pun, K; Wong, N C; Mooradian, A D

    2000-12-01

    Apolipoprotein AI (apoAI) expression is inversely related to the incidence of atherosclerosis. ApoAI expression is also influenced by the nutritional state and diabetes. We used both cell culture and animal models to examine the effect of fasting and ketoacidosis on apoAI gene expression. Two days of food deprivation in rats increased hepatic and intestinal apoAI mRNA by 2.6- and 2.3-fold, respectively (P < .05). The absolute concentration of plasma apoAI did not change. However, the plasma apoAI concentration relative to the plasma concentration of serum proteins was increased 23% (P < .05). In fasting rats, there was a significant positive correlation between the serum beta-hydroxybutyrate concentration and hepatic or intestinal apoAI mRNA level. Despite this correlation, changes in apoAI mRNA are probably not mediated by ketone bodies, since neither hepatic nor intestinal apoAI mRNA levels were altered in rats maintained on a ketogenic diet for 10 days or treated with isobutyramide, an orally active ketone analog. In addition, the activity of the rat apoAI promoter was not altered in Hep G2 cells treated with isobutyramide or fatty acids or exposed to hypoglycemic conditions, while dexamethasone increased promoter activity 1.9-fold (P < .05). These data indicate that metabolic changes other than ketone bodies, such as an increase in plasma glucocorticoids, may account for starvation-induced expression of apoAI.

  7. Behavior Modeling for Detection, Identification, Prediction, and Reaction (DIPR) in AI Systems Solutions

    NASA Astrophysics Data System (ADS)

    Goshorn, Rachel E.; Goshorn, Deborah E.; Goshorn, Joshua L.; Goshorn, Lawrence A.

    The application need for distributed artificial intelligence (AI) systems for behavior analysis and prediction is a requirement today versus a luxury of the past. The advent of distributed AI systems with large numbers of sensors and sensor types and unobtainable network bandwidth is also a key driving force. Additionally, the requirement to fuse a large number of sensor types and inputs is required and can now be implemented and automated in the AI hierarchy, and therefore, this will not require human power to observer, fuse, and interpret.

  8. Measuring near infrared spectral reflectance changes from water stressed conifer stands with AIS-2

    NASA Technical Reports Server (NTRS)

    Riggs, George; Running, Steven W.

    1987-01-01

    Airborne Imaging Spectrometer-2 (AIS-2) data was acquired over two paired conifer stands for the purpose of detecting differences in spectral reflectance between stressed and natural canopies. Water stress was induced in a stand of Norway spruce and white pine by severing the sapwood near the ground. Water stress during the AIS flights was evaluated through shoot water potential and relative water content measurements. Preliminary analysis with raw AIS-2 data using SPAM indicates that there were small, inconsistent differences in absolute spectral reflectance in the near infrared 0.97 to 1.3 micron between the stressed and natural canopies.

  9. AI in Space: The Era of Autonomous Space Systems

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.

    2000-01-01

    The development of autonomy capabilities is the key to three vastly important strategic technical challenges facing NASA: the reduction of mission costs, the continuing return of quality science products through limited communications bandwidth, and the launching of a new era of solar system exploration characterized by sustained presence and in-depth scientific studies, including the search for life. Autonomy will benefit future NASA missions by migrating routine, traditionally ground-based functions to the spacecraft, by directly supporting the decoupling of spacecraft from the ground through new operations concepts, by enabling direct links between scientists and the space platforms carrying their instruments of investigation, and by the closing, of planning and control loops onboard, enabling space platforms to directly address uncertainty in the real-time mission context. The talk will survey ongoing, autonomy technology development projects at NASA, many of which have been or will soon be the subject of flight technology experiments, or are already targeted for mission use. The talk will also survey the exciting suite of future NASA space exploration missions, and make the case for the central role of autonomy in achieving the goals of these bold, unprecedented missions: cooperating rovers on the surface of Mars, the search for Earth-like planets around nearby stars, asteroid and comet landers, aerobots in planetary atmospheres, and a series of missions to intriguing Europa, perhaps culminating in a submersible to investigate its putative ocean. Finally, the talk will conclude with some farther-reaching speculations on how to create properties such as long-term survivability and evolvability in future space systems, such that they will be well equipped to extend humanity exploratory presence into the interstellar realm.

  10. Topical Hazard Evaluation Program of Candidate Insect Repellents AI3-38352a, AI3-38354a, AI3-38355a, US Department of Agriculture Proprietary Chemicals, May 1982 - November 1983.

    DTIC Science & Technology

    1983-11-01

    irrita- chemical and of 10% (wv) A13-38357a, AI3-38360a, tion reaction under Oil of Bergamot (positive and Ar3-38361a did test conditions and control...caused a greater Irritant positive control (Oil of effect than In un- Bergamot ) and diluent were Irradiated skin areas. applied to additional skin

  11. Advanced logic gates for ultrafast network interchanges

    NASA Astrophysics Data System (ADS)

    Islam, Mohammed N.

    1995-08-01

    By overcoming speed bottlenecks from electronic switching as well as optical/electronic conversions, all-optical logic gates can permit further exploitation of the nearly 40 THz of bandwidth available from optical fibers. We focus on the use of optical solitons and all-optical logic gates to implement ultrafast ``interchanges'' or switching nodes on packet networks with speeds of 100 Gbit/s or greater. For example, all-optical logic gates have been demonstrated with speeds up to 200 Gbit/s, and they may be used to decide whether to add or drop a data packet. The overall goal of our effort is to demonstrate the key enabling technologies and their combination for header processing in 100 Gbit/s, time-division-multiplexed, packed switched networks. Soliton-based fiber logic gates are studied with the goal of combining attractive features of soliton-dragging logic gates, nonlinear loop mirrors, and erbium-doped fiber amplifiers to design logic gates with optimum switching energy, contrast ratio, and timing sensitivity. First, the experimental and numerical work studies low-latency soliton logic gates based on frequency shifts associated with cross-phase modulation. In preliminary experiments, switching in 15 m long low-birefringent fibers has been demonstrated with a contrast ratio of 2.73:1. Using dispersion-shifted fiber in the gate should lower the switching energy and improve the contrast ratio. Next, the low-birefringent fiber can be cross-spliced and wrapped into a nonlinear optical loop mirror to take advantage of mechanisms from both soliton dragging and loop mirrors. The resulting device can have low switching energy and a timing window that results from a combination of soliton dragging and the loop mirror mechanisms.

  12. The logical interpretation and the measurement problem

    NASA Astrophysics Data System (ADS)

    Vuletic, Mark I.

    The measurement problem is one of the two key problems in the foundations of quantum mechanics, carrying with it the seeming implication that instead of the familiar definite states of affairs we think we experience, there typically should exist only phenomenologically ill-defined "superpositions" of such states of affairs. Dissatisfaction with this implication has led to the development of many wildly different interpretations of quantum mechanics, positing everything from pilot waves to splitting universes. A recent tradition of interpretation draws heavily upon decoherence and a "consistent histories" formalism to try to resolve the standard conceptual problems of quantum mechanics. Roland Omnes, one physicist in this tradition, argues that his own "logical interpretation" resolves every paradox and conceptual difficulty raised by quantum mechanics, except for what he calls the "objectification problem." Figuring out what relation the objectification problem has to the measurement problem, and, more generally, what the logical interpretation has to say about the measurement problem, turns out to be very difficult, even with the benefit of correspondence. In my dissertation, I have tried to narrow down the possibilities for what Omnes might have in mind with respect to the measurement problem, and considered whether any of these constitutes an advance over what came before. I conclude that there are two plausible possibilities: either (i) an overly aggressive pragmatic spirit has caused Omnes to fail to even realize that a critical part of the measurement problem exists, or (ii) the logical interpretation is best understood as offering a stochastic hidden factor interpretation, with complementarity operating at the level of the hidden factors, even though Omnes himself would resist describing the logical interpretation in this way. I also conclude that the logical interpretation, far from saving classical logic, actually undermines it. While this may not

  13. Revolutionary Deep Space Science Missions Enabled by Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Debban, Theresa; Yen, Chen wan; Sherwood, Robert; Castano, Rebecca; Cichy, Benjamin; Davies, Ashley; Brul, Michael; Fukunaga, Alex; Fukunaga, Alex; Doggett, Thomas; Williams, Kevin; Dohm, James

    2003-01-01

    Breakthrough autonomy technologies enable a new range of spire missions that acquire vast amounts of data and return only the most scientifically important data to Earth. These missions would monitor science phenomena in great detail (either with frequent observations or at extremely high spatial resolution) and onboard analyze the data to detect specific science events of interest. These missions would monitor volcanic eruptions, formation and movement of aeolian features. and atmospheric phenomena. The autonomous spacecraft would respond to science events by planning its future operations to revisit or perform complementary observations. In this paradigm, the spacecraft represents the scientists agent enabling optimization of the downlink data volume resource. This paper describes preliminary efforts to define and design such missions.

  14. Advanced On-Board Processor (AOP). [for future spacecraft applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Advanced On-board Processor the (AOP) uses large scale integration throughout and is the most advanced space qualified computer of its class in existence today. It was designed to satisfy most spacecraft requirements which are anticipated over the next several years. The AOP design utilizes custom metallized multigate arrays (CMMA) which have been designed specifically for this computer. This approach provides the most efficient use of circuits, reduces volume, weight, assembly costs and provides for a significant increase in reliability by the significant reduction in conventional circuit interconnections. The required 69 CMMA packages are assembled on a single multilayer printed circuit board which together with associated connectors constitutes the complete AOP. This approach also reduces conventional interconnections thus further reducing weight, volume and assembly costs.

  15. Safe Onboard Guidance and Control Under Probabilistic Uncertainty

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars James

    2011-01-01

    An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.

  16. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  17. A new model for understanding teamwork onboard: the shipmate model.

    PubMed

    Espevik, Roar; Olsen, Olav Kjellevold

    2013-01-01

    The increasing complexity onboard a ship underline the importance of crews that are able to coordinate and cooperate with each other to facilitate task objectives through a shared understanding of resources (e.g. team members' knowledge, skills and experience), the crew's goals, and the constrains under which they work. Rotation of personnel through 24/7 shift-work schedules and replacements often put crews ina position of having little or no previous history as a team. Findings from 3 studies indicated that unfamiliar teams used less efficient coordination strategies which reduced efficiency and increased levels of stress in situations where team members where experts on task, distributed or unknown to task and environment.Implications for staffing, safety and training are discussed.

  18. Controlled impact demonstration on-board (interior) photographic system

    NASA Technical Reports Server (NTRS)

    May, C. J.

    1986-01-01

    Langley Research Center (LaRC) was responsible for the design, manufacture, and integration of all hardware required for the photographic system used to film the interior of the controlled impact demonstration (CID) B-720 aircraft during actual crash conditions. Four independent power supplies were constructed to operate the ten high-speed 16 mm cameras and twenty-four floodlights. An up-link command system, furnished by Ames Dryden Flight Research Facility (ADFRF), was necessary to activate the power supplies and start the cameras. These events were accomplished by initiation of relays located on each of the photo power pallets. The photographic system performed beyond expectations. All four power distribution pallets with their 20 year old Minuteman batteries performed flawlessly. All 24 lamps worked. All ten on-board high speed (400 fps) 16 mm cameras containing good resolution film data were recovered.

  19. Data compression for Eos on-board SAR processor

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Fang, W. C.; Curlander, J. C.

    1989-01-01

    A lightweight, low-power, real-time data compressor design for the Earth Observing System (Eos) onboard synthetic aperture radar (SAR) processor is presented. The implementation is based on VLSI design of a pipelined binary tree-searched vector quantizer (VQ), utilizing space-qualifiable 1.25-micron CMOS technology. The implementation exploits VLSI system design principles such as the modularity, regular data flow, simple interconnection, localized communication, simple global control, and parallel/pipelined processing. The overall system requires 30 chips with only one VLSI processing element design. The total weight is about 1.2 lbs, with an estimated power dissipation of approximately 4 watts operating at the maximum input data rate. The projected throughput rate exceeds 5 MHz.

  20. STS-110 and Expedition Four Crews Pose for Onboard Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Posed inside the Destiny Laboratory aboard the International Space Station (ISS) are the STS-110 and Expedition Four crews for a traditional onboard portrait From the left, bottom row, are astronauts Ellen Ochoa, STS mission specialist, Michael J. Bloomfield, STS mission commander, and Yury I Onufrienko, Expedition Four mission commander. From the left, middle row, are astronauts Daniel W. Bursch, Expedition Four flight engineer, Rex J. Walheim, STS mission specialist, and Carl E. Walz, Expedition Four flight engineer. From the left, top row, are astronauts Stephen N. Frick, STS pilot; Jerry L. Ross, Lee M.E. Morin, and Steven L. Smith, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.