Science.gov

Sample records for aiaa flow control

  1. Flow Control and Measurement in Electric Propulsion Systems: Towards an AIAA Reference Standard

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Baldwin, Jeff; Frieman, Jason D.; Walker, Mitchell L. R.; Hicks, Nathan S.; Polzin, Kurt A.; Singleton, James T.

    2013-01-01

    Accurate control and measurement of propellant flow to a thruster is one of the most basic and fundamental requirements for operation of electric propulsion systems, whether they be in the laboratory or on flight spacecraft. Hence, it is important for the electric propulsion community to have a common understanding of typical methods for flow control and measurement. This paper addresses the topic of propellant flow primarily for the gaseous propellant systems which have dominated laboratory research and flight application over the last few decades, although other types of systems are also briefly discussed. While most flight systems have employed a type of pressure-fed flow restrictor for flow control, both thermal-based and pressure-based mass flow controllers are routinely used in laboratories. Fundamentals and theory of operation of these types of controllers are presented, along with sources of uncertainty associated with their use. Methods of calibration and recommendations for calibration processes are presented. Finally, details of uncertainty calculations are presented for some common calibration methods and for the linear fits to calibration data that are commonly used.

  2. Contributions to the AIAA Guidance, Navigation and Control Conference

    NASA Technical Reports Server (NTRS)

    Campbell, S. D. (Editor)

    2002-01-01

    This report contains six papers presented by the Lincoln Laboratory Air Traffic Control Systems Group at the American Institute of Aeronautics & Astronautics (AIAA) Guidance, Navigation and Control (GNC) conference on 6-9 August 2001 in Montreal, Canada. The work reported was sponsored by the NASA Advanced Air Transportation Technologies (AATT) program and the FAA Free Flight Phase 1 (FFP1) program. The papers are based on studies completed at Lincoln Laboratory in collaboration with staff at NASA Ames Research Center. These papers were presented in the Air Traffic Automation Session of the conference and fall into three major areas: Traffic Analysis & Benefits Studies, Weather/Automation Integration and Surface Surveillance. In the first area, a paper by Andrews & Robinson presents an analysis of the efficiency of runway operations at Dallas/Ft. Worth using a tool called PARO, and a paper by Welch, Andrews & Robinson presents a delay benefit results for the Final Approach Spacing Tool (FAST). In the second area, a paper by Campbell, et al describes a new weather distribution systems for the Center/TRACON Automation System (CTAS) that allows ingestion of multiple weather sources, and a paper by Vandevenne, Lloyd & Hogaboom describes the use of the NOAA Eta model as a backup wind data source for CTAS. Also in this area, a paper by Murphy & Campbell presents initial steps towards integrating weather impacted routes into FAST. In the third area, a paper by Welch, Bussolari and Atkins presents an initial operational concept for using surface surveillance to reduce taxi delays.

  3. An aircraft model for the AIAA controls design challenge

    NASA Technical Reports Server (NTRS)

    Brumbaugh, Randal W.

    1991-01-01

    A generic, state-of-the-art, high-performance aircraft model, including detailed, full-envelope, nonlinear aerodynamics, and full-envelope thrust and first-order engine response data is described. While this model was primarily developed Controls Design Challenge, the availability of such a model provides a common focus for research in aeronautical control theory and methodology. An implementation of this model using the FORTRAN computer language, associated routines furnished with the aircraft model, and techniques for interfacing these routines to external procedures is also described. Figures showing vehicle geometry, surfaces, and sign conventions are included.

  4. SparkJet Actuators for Flow Control

    DTIC Science & Technology

    2007-03-01

    from 300 to 1000 K and velocities from -100 to 400 m/sec. The rectangular zone that represents the annular energy deposition region in 3D is visible in...and Glezer, A., "Flow Reattachment Dynamics over a Thick Airfoil Controlled by Synthetic Jet Actuators," AIAA Paper No. 99-1001, 37th AIAA Aerospace...Sciences Meeting, Reno, NV, January 1999. 3 Amitay, M., and Glezer, A., "Aerodynamic Flow Control of a Thick Airfoil using Synthetic Jet Actuators

  5. Integrated Flight Control and Flow Control Using Synthetic Jet Arrays (Postprint)

    DTIC Science & Technology

    2006-08-01

    A.E., Anders, S.G., Parekh, D.E. and Glezer, A., “Active Flow Control on the Stingray UAV: Transient Behavior,” AIAA Paper 2003-4001, 33rd AIAA Fluid...Dynamics Conference, Orlando, FL, June 2003. 13. Amitay, M., Washburn, A. E., Anders, S. G. and Parekh, D. E., “Active Flow Control on the Stingray

  6. Reactive Flow Control of Delta Wing Vortex (Postprint)

    DTIC Science & Technology

    2006-08-01

    2Amitay, M., Washburn, A.E., Anders, S.G., Parekh, D.E., and Glezer, A., “Active Flow Control on the Stingray UAV: Transient Behavior,” AIAA Paper 2003...on the Stingray Uninhabited Air Vehicle: Transient Behavior,” AIAA Journal, Vol. 42. No. 11, Nov. 2004, pp. 2205-2215. 4 Bevacqua, T., Best, E

  7. Flow Control and Measurement in Electric Propulsion Systems: Towards an AIAA Reference Standard

    DTIC Science & Technology

    2013-10-01

    Linear Induction Pump for Fission Surface Power, NASA/TP-2010-216430, NASA-MSFC, May 2010. 6. Polzin, K.A., T.E. Markusic, B.J. Stanojev, C. Dodson, and...calculations are presented for some common calibration methods and for the linear fits to calibration data that are commonly used. Nomenclature a...once a year in a procedure that defines accuracy and linearity . Instrument manufacturers generally can provide calibration servicing. Due to the

  8. Flow Control

    DTIC Science & Technology

    2013-04-08

    capable of simulating multi-input multi-output ( MIMO ) systems. They do have some downsides. Training is extremely sensitive, and tends to get stuck in...the attached bound- ary layers. Recent DES predictions of the flow around complex configurations (all using Cobalt) include the massively separated...and desired reference signal, ey = â−are f . (71) For multi input multi output ( MIMO ) systems, ey and γe are matrices of size nout ×nin. Also, the

  9. Flow Control

    DTIC Science & Technology

    2013-04-08

    system. They are not limited to single input-single output (SISO) systems but are capable of simulating multi-input multi-output ( MIMO ) systems. They do...around complex configurations (all using Cobalt) include the massively separated flow around an F-15E at 65o angle of attack reported by Forsythe et al...multi output ( MIMO ) systems, ey and γe are matrices of size nout ×nin. Also, the gain matrix is of size nin × nout . The derivative must be

  10. Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Hemsch, Michael J.

    2007-01-01

    The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.

  11. Fundamental Experimental and Numerical Investigation of Active Control of 3-D Flows

    DTIC Science & Technology

    2011-10-06

    Farnsworth, J., Gressick, W. and Amitay, M., 2009, “Active Control of Flow Separation and Structural Vibrations of Wind Turbine Blades ”, Wind Energy, DOI...Ciuryla et. al., 2007). More recently it has been used for vibration suppression in wind turbines by Maldonado et. al. (2009). Synthetic jets have...10.1002/we.336 (in print ). Mallinson, S.G., Hong, G. and Reizes, J.A., 1999, “Some Characterstics of Synthetic Jets”, AIAA Paper 99-3651. Mallinson

  12. Dynamic power flow controllers

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  13. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  14. Flow Control for Supersonic Inlet Applications

    DTIC Science & Technology

    2014-06-10

    N., Babinsky, H., “ Shock wave/boundary-layer interaction control using a combination of vortex generators and bleed”, AIAA J., Vol.51, No.5, pp...Vol.51, No.9, pp. 2208-2217, September 2013 4. Titchener, N., Babinsky, H., “ Control of a Shock -Wave/Boundary-Layer Interaction and Subsequent...Approved for public release; distribution is unlimited. 1. Ogawa, H., Babinsky, H., “Wind- Tunnel Setup for Investigations of Normal Shock Wave

  15. Dynamics and Control of Turbulent Shear Flows

    DTIC Science & Technology

    1989-05-01

    Significant Results A. Mathematical theory of channel flows. This is a joint research with Professor J. G. Heywood of the University of British Columbia. We...supported by URI contract). J. G. Heywood , Professor, University of British Columbia, consultant. I I I I I I I I I I I 37 Ii I AIAA-88-0134 l The...VISCOUS FLOW PAST PLANE DOMAINS WITH I NIONCOMPACT BOUNDARIES I gJ. G. Heywood Department of Mathematics 3 University of British Columbia I 3 S. S

  16. Microelectromechanical flow control apparatus

    DOEpatents

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  17. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  18. Duct Flow Control System.

    DTIC Science & Technology

    is ejected under pressure tangentially of local duct surfaces through Coanda affected slots at the trailing edge of the duct from which only the...channel passages in order to modify the flow stream through the duct so as to perform certain functions such as thrust control and steerage control effects enhancing vehicle maneuverability.

  19. Optimal Flow Control Design

    NASA Technical Reports Server (NTRS)

    Allan, Brian; Owens, Lewis

    2010-01-01

    In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft. An optimum vane design was found by minimizing the engine fan-face distortion, DC60, and the first five Fourier harmonic half amplitudes, while maximizing the total pressure recovery. The optimal vane design was then used in a BLI inlet wind tunnel experiment at NASA Langley's 0.3-meter transonic cryogenic tunnel. The experimental results demonstrated an 80-percent decrease in DPCPavg, the reduction in the circumferential distortion levels, at an inlet mass flow rate corresponding to the middle of the operational range at the cruise condition. Even though the vanes were designed at a single inlet mass flow rate, they performed very well over the entire inlet mass flow range tested in the wind tunnel experiment with the addition of a small amount of jet flow control. While the circumferential distortion was decreased, the radial distortion on the outer rings at the aerodynamic interface plane (AIP) increased. This was a result of the large boundary layer being distributed from the bottom of the AIP in the baseline case to the outer edges of the AIP when using the vortex generator (VG) vane flow control. Experimental results, as already mentioned, showed an 80-percent reduction of DPCPavg, the circumferential distortion level at the engine fan-face. The hybrid approach leverages strengths of vane and jet flow control devices, increasing inlet performance over a broader operational range with significant reduction in mass flow requirements. Minimal distortion level requirements

  20. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  1. Control of Junction Flow

    NASA Astrophysics Data System (ADS)

    Su, T.-C.; Bingham, C.; Kellier, L.

    2001-11-01

    Control for horseshoe vortices resulting from boundary layer separation in front of a structure has long been sought without satisfactory results. Tests were carried out in a water channel with the objective of seeking such a control. The water channel has a test section of .6m wide, .4m deep and 8m long, with an adjustable mean flow speed of up to .5m/s. Flow visualization technique was used to elucidate the flow process. To control the horseshoe vortex a long airfoil of 1cm chord was placed horizontally near the ground upstream of a 10cm thin square plate. It was found that the original horseshoe vortex moved toward and circulated around the airfoil. The junction flow immediately upstream of the obstacle was noticeably steady and free of disturbance. The process was insensitive to the streamwise location of the airfoil, horseshoe's vortical structure, stream speed and acceleration, upstream vortical influx, and magnitude/sign of airfoil's angle of attack. Experimental results with obliquely mounted square cylinder were similar, which demonstrated that controls were effective for all angles of attack.

  2. Controllability of flow turbulence.

    PubMed

    Guan, Shuguang; Wei, G W; Lai, C-H

    2004-06-01

    In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the limit of long time and strong coupling strength. It is further revealed that the controlled component of the velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.

  3. Vortex generator for flow control

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor); Marner, Wilbur J. (Inventor); Rohatgi, Naresh K. (Inventor)

    1989-01-01

    Fluidics flow control of a multiphase supply using a cylindrical chamber is achieved by introducing the supply flow radially into the chamber. The supply flow exits through a port in the center at the chamber. A control fluid is then introduced tangentially about 90.degree. upstream from the supply port. A second control fluid port may be added about 90.degree. upstream from the first control fluid port, but preferably two sets of supply and control ports are added with like ports diametrically opposite each other. The control fluid flows against the circular wall of the control chamber, which introduces a vortex in the flow of the supply flow that decays into a spiral path to the exit port in the center of the chamber. The control flow rate may thus be used to control the spiral path, and therefore the supply flow rate through the exit port.

  4. Fundamental Physics and Practical Applications of Electromagnetic Local Flow Control in High Speed Flows

    DTIC Science & Technology

    2010-04-05

    equation turbulence model of Spalart and Allmaras .21 with density corrections of Catris and Aupoix,22 is used JUS the baseline RANS model. The DES...29, No. 6, Dec. 2008. pp. 1638-1649. 21. Spalart , P. R., and Alhnaras. S.R.. "A One-Equation Turbulence Model For Aerodynamic Flows," AIAA Paper No...Figure’ 1 taken from Reference 10. However, these steady simulations are quite unable to accurately simulate unsteady turbulent mixing. A more involved

  5. Wellhead flow control devices

    SciTech Connect

    McLean, D.K.

    1981-09-15

    A wellhead flow control device includes a main flow control valve and associated packings designed for operation under extreme conditions associated with the pumping of high viscosity asphaltic crude wherein the formation includes toxic gases. The formation is produced using steam flooding techniques. The main valve seat and the associated valve closure, consisting of a reciprocating ram and packing plug, are coaxial with the pump polished rod. The valve seat icludes tapered walls defining a shoulder which partially confronts the ram plug. The ram plug is formed of a compressible material formed to the shape of the valve seat. The packing plug is retained on the end of the ram by axial tie rods and a retaining ring. The ring may engage the valve seat shoulder to effect axial compression of the packing plug between the retaining ring and ram face, with consequent radial expansion into the sealing engagement. The ram is reciprocated axially, either manually or hydraulically relative to the ram body. A packing gland, suitable to seal against toxic gases, is provided between the ram and valve body. A rod packing, at the upper end of the ram, includes a primary adjustable packing gland for sealing between the ram and the reciprocating polished rod. 41 claims.

  6. Flow Interactions and Control

    DTIC Science & Technology

    2012-03-08

    intervals of “ hibernating ” turbulence that exhibit very low skin friction, • hibernating turbulence intervals are found occasionally even without...reduce overall drag in aerodynamically important flows. Background and objective Recent results Active Hibernating vorticity velocity Laminar...flow Turbulent flow Upper branch ECS Low-drag excursions- hibernation Turbulent bursts Basin boundary: • lower-branch ECS • edge state

  7. AIAA spacecraft GN&C interface standards initiative: Overview

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian

    1995-01-01

    The American Institute of Aeronautics and Astronautics (AIAA) has undertaken an important standards initiative in the area of spacecraft guidance, navigation, and control (GN&C) subsystem interfaces. The objective of this effort is to establish standards that will promote interchangeability of major GN&C components, thus enabling substantially lower spacecraft development costs. Although initiated by developers of conventional spacecraft GN&C, it is anticipated that interface standards will also be of value in reducing the development costs of micro-engineered spacecraft. The standardization targets are specifically limited to interfaces only, including information (i.e. data and signal), power, mechanical, thermal, and environmental interfaces between various GN&C components and between GN&C subsystems and other subsystems. The current emphasis is on information interfaces between various hardware elements (e.g., between star trackers and flight computers). The poster presentation will briefly describe the program, including the mechanics and schedule, and will publicize the technical products as they exist at the time of the conference. In particular, the rationale for the adoption of the AS1773 fiber-optic serial data bus and the status of data interface standards at the application layer will be presented.

  8. Supersonic laminar flow control research

    NASA Technical Reports Server (NTRS)

    Lo, C. F.

    1994-01-01

    The objective of the research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames POC and LFSWT's nozzle design with laminar flow control are as follows: (1) supersonic laminar boundary layer stability and transition prediction; (2) effects of heating and cooling for supersonic laminar flow control; and (3) POC and LFSWT nozzle design with heating and cooling effects combining wall contour and length changes.

  9. Flow Interactions and Control

    DTIC Science & Technology

    2013-03-04

    0 0.1 0.2 0.3 F H T A T H F H average duration of active turbulence fraction of time taken by hibernation Onset of DR average duration of... hibernation Laminar flow Turbulent flow Upper branch ECS Low-drag excursions- hibernation Turbulent bursts Basin boundary: • lower-branch

  10. Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Hemsch, Michael J.

    2007-01-01

    The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.

  11. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique will be studied. The primary tasks of the research apply to the NASA/Ames PoC and LFSWT's nozzle design with laminar flow control and are listed as follows: Predictions of supersonic laminar boundary layer stability and transition; Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; Effects of a conducted-vs-pulse wall temperature distribution for the LFSWT; and Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  12. Supersonic laminar flow control research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1994-01-01

    The objective of the research is to understand supersonic laminar flow stability, transition, and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames Proof of Concept (POC) Supersonic Wind Tunnel and Laminar Flow Supersonic Wind Tunnel (LFSWT) nozzle design with laminar flow control are as follows: (1) predictions of supersonic laminar boundary layer stability and transition, (2) effects of wall heating and cooling for supersonic laminar flow control, and (3) performance evaluation of POC and LFSWT nozzles design with wall heating and cooling effects applying at different locations and various length.

  13. MHD Flow Control

    DTIC Science & Technology

    2006-09-01

    Plasmatron // The 15th International Conference on 16 N I MHD Energy Conversion and the 6th International Workshop on MagnetoPlasma Aerodynamics, IVTAN...series. 1 2. FACILITY The principal scheme of High Frequency Plasmatron is given in Fig.88, and basic specifications in the Table 1. The high-frequency...CHAMBER OF HF- PLASMATRON Statement of the problem Detailed diagnostics of plasma jet flow is required for any type of studies in HF- plasmatron . Gas flow in

  14. Supersonic laminar flow control research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Wiberg, Clark G.

    1995-01-01

    The objective is to understand supersonic laminar flow stability, transition, and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique will be studied. The primary tasks of the research apply to the NASA/Ames Proof of Concept (PoC) and Laminar Flow Supersonic Wind Tunnel's (LFSWT's) nozzle design with laminar flow control and are listed as follows: (1) predictions of supersonic laminar boundary layer stability and transition, (2) effects of wall heating and cooling on supersonic laminar flow control, (3) performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths, and (4) effects of a conducted versus pulse wall temperature distribution for the LFSWT.

  15. Transmission series power flow control

    SciTech Connect

    Nelson, R.J.; Bian, J.; Williams, S.L.

    1994-12-31

    This paper presents the characteristics of two gate turn-off (GTO) thyristor voltage-sourced inverter-based series power flow control devices, namely the Series Power Flow Controller (SPFC) and the Unified Power Flow Controller (UPFC). These devices represent series extensions of the STATCON, an inverter-based shunt device developed under a tailored collaboration by EPRI, TVA and the Westinghouse Science and Technology Center, which will soon be placed in service on the TVA 161kV transmission system for transmission voltage control. Operation of the SPFC and UPFC is illustrated through the use of easily-constructed circle diagrams on the P-Q plane. The circle diagrams provide the transmission planning engineer with a simple means to assess the performance of these devices on the transmission system. A concluding example illustrates that the UPFC provides a level of power flow control which is unattainable with more conventional devices.

  16. Supersonic laminar flow control research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Wiberg, Clark G.

    1995-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique will be studied. The primary tasks of the research apply to the NASA/Ames PoC and LFSWT's nozzle design with laminar flow control and are listed as follows: (1) predictions of supersonic laminar boundary layer stability and transition; (2) effects of wall heating and cooling on supersonic laminar flow control; (3) performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; and (4) effects of a conducted -vs- pulse wall temperature distribution for the LFSWT.

  17. One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.

    2007-01-01

    The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.

  18. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, C. F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques are developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique are studied. The primary tasks of the research apply to the NASA/Ames Proof-of-Concept (PoC) and the Laminar Flow Supersonic Wind Tunnel's (LFSWT's) nozzle design with laminar flow control and are listed as follows: (1) Predictions of supersonic laminar boundary layer stability and transition; (2) Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; (3) Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; (4) Effects of a conducted -vs- pulse wall temperature distribution for the LFSWT; and (5) Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  19. Transmission series power flow control

    SciTech Connect

    Nelson, R.J.; Bian, J.; Williams, S.L.

    1995-01-01

    This paper presents the characteristics of two gate turn-off (GTO) thyristor voltage-sourced inverter based series power flow control devices, namely the Series Power Flow Controller (SPFC) and the Unified Power Flow Controller (UPFC). These devices represent series extensions of the STATCON, an inverter-based shunt device developed under a tailored collaboration by EPRI, TVA and the Westinghouse Science and Technology Center, which will soon be placed in service on the TVA 161kV transmission system for transmission voltage control. Operation of the SPFC and UPFC is illustrated through the use of easily-constructed circle diagrams on the P-Q plane. The circle diagrams provide the transmission planning engineer with a simple means to assess the performance of these devices on the transmission system. A concluding example illustrates that the UPFC provides a level of power now control which is unattainable with more conventional devices.

  20. Biomimetic Flow Control

    NASA Technical Reports Server (NTRS)

    Anders, John B.

    2000-01-01

    Biologic flight has undoubtedly intrigued man for thousands of years, yet it has been only the last 100 years or so that any serious challenge has been mounted to the pre-eminence of birds. Although present-day large-scale aircraft are now clearly able to fly higher, faster and farther than any bird or insect, it is obvious that these biological creatures have a mastery of low Reynolds number, unsteady flows that is unrivaled by man-made systems. This paper suggests that biological flight should be examined for mechanisms that may apply to engineered flight systems, especially in the emerging field of small-scale, uninhabited aerial vehicles (UAV). This paper discusses the kinematics and aerodynamics of bird and insect flight, including some aspects of unsteady aerodynamics. The dynamics of flapping wing flight is briefly examined, including gait selection, flapping frequency and amplitude selection, as well as wing planform and angle-of-attack dynamics. Unsteady aerodynamic mechanisms as practiced by small birds and insects are reviewed. Drag reduction morphologies of birds and marine animals are discussed and fruitful areas of research are suggested.

  1. Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops

    NASA Technical Reports Server (NTRS)

    Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram

    2017-01-01

    The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.

  2. Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Morgenstern, John M.

    2014-01-01

    A summary is provided for the First AIAA Sonic Boom Workshop held 11 January 2014 in conjunction with AIAA SciTech 2014. Near-field pressure signatures extracted from computational fluid dynamics solutions are gathered from nineteen participants representing three countries for the two required cases, an axisymmetric body and simple delta wing body. Structured multiblock, unstructured mixed-element, unstructured tetrahedral, overset, and Cartesian cut-cell methods are used by the participants. Participants provided signatures computed on participant generated and solution adapted grids. Signatures are also provided for a series of uniformly refined workshop provided grids. These submissions are propagated to the ground and loudness measures are computed. This allows the grid convergence of a loudness measure and a validation metric (dfference norm between computed and wind tunnel measured near-field signatures) to be studied for the first time. Statistical analysis is also presented for these measures. An optional configuration includes fuselage, wing, tail, flow-through nacelles, and blade sting. This full configuration exhibits more variation in eleven submissions than the sixty submissions provided for each required case. Recommendations are provided for potential improvements to the analysis methods and a possible subsequent workshop.

  3. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  4. Overview of Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    The history of Laminar Flow Control (LFC) from the 1930s through the 1990s is reviewed and the current status of the technology is assessed. Early studies related to the natural laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. Although most of this publication is about slot-, porous-, and perforated-suction LFC concept studies in wind tunnel and flight experiments, some mention is made of thermal LFC. Theoretical and computational tools to describe the LFC aerodynamics are included for completeness.

  5. Supersonic laminar-flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Malik, Mujeeb R.

    1987-01-01

    Detailed, up to date systems studies of the application of laminar flow control (LFC) to various supersonic missions and/or vehicles, both civilian and military, are not yet available. However, various first order looks at the benefits are summarized. The bottom line is that laminar flow control may allow development of a viable second generation SST. This follows from a combination of reduced fuel, structure, and insulation weight permitting operation at higher altitudes, thereby lowering sonic boom along with improving performance. The long stage lengths associated with the emerging economic importance of the Pacific Basin are creating a serious and renewed requirement for such a vehicle. Supersonic LFC techniques are discussed.

  6. Hybrid laminar flow control study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Hybrid laminar flow control (HLFC) in which leading edge suction is used in conjunction with wing pressure distribution tailoring to postpone boundary layer transition and reduce friction drag was examined. Airfoil design characteristics required for laminar flow control (LFC) were determined. The aerodynamic design of the HLFC wing for a 178 passenger commercial turbofan transport was developed, and a drag was estimated. Systems changes required to install HLFC were defined, and weights and fuel economy were estimated. The potential for 9% fuel reduction for a 3926-km (2120-nmi) mission is identified.

  7. Valve for controlling solids flow

    DOEpatents

    Staiger, M. Daniel

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  8. Valve for controlling solids flow

    DOEpatents

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  9. Physics of forebody flow control

    NASA Technical Reports Server (NTRS)

    Font, Gabriel I.

    1993-01-01

    Performance in the high angle of attack regime is required by many different types of aircraft. Military aircraft, such as fighters, utilize flight in this regime to improve maneuverability. Civilian aircraft, such as supersonic or hypersonic transports, will also need to operate in this regime during take off and landing, due to their small highly swept wings. Flight at high angles of attack is problematic due to the vortices being created on the nose of the aircraft. The vortices tend to become asymmetric and produce side forces. At the same time, the rudders are less effective because they are becoming immersed in the flow separating from the wings and fuselage. Consequently, the side force produced by the vortices on the nose tend to destabilize the aircraft. This situation may be corrected through the use of a forebody flow control system such as tangential slot blowing. In this concept, a jet is blown from the nose in an effort to alter the flow field around the nose and diminish the destabilizing side force. Alternately, the jet may be used to create a side force which could be used to augment the rudders. This would allow the size of the rudders to be decreased which would, in turn, diminish the cruise drag. Therefore, the use of a tangential slot blowing system has the potential for improving both the maneuver performance and the cruise performance of an aircraft. The present study was conducted to explore the physics of forebody flow control. The study consisted of two major thrusts: (1) exploration of forebody flow control with tangential slot blowing; (2) investigation of flow and field response to a general perturbation.

  10. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  11. LAVA Simulations for the AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.

    2014-01-01

    Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.

  12. Overview and Summary of the Second AIAA High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Slotnick, Jeffrey P.

    2014-01-01

    The second AIAA CFD High-Lift Prediction Workshop was held in San Diego, California, in June 2013. The goals of the workshop continued in the tradition of the first high-lift workshop: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over the DLR-F11 model in landing configuration at two different Reynolds numbers. Twenty-six participants submitted a total of 48 data sets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to grid density and Reynolds number were analyzed, and effects of support brackets were also included. This paper analyzes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

  13. Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats

    2015-01-01

    This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.

  14. Multiverse data-flow control.

    PubMed

    Schindler, Benjamin; Waser, Jürgen; Ribičić, Hrvoje; Fuchs, Raphael; Peikert, Ronald

    2013-06-01

    In this paper, we present a data-flow system which supports comparative analysis of time-dependent data and interactive simulation steering. The system creates data on-the-fly to allow for the exploration of different parameters and the investigation of multiple scenarios. Existing data-flow architectures provide no generic approach to handle modules that perform complex temporal processing such as particle tracing or statistical analysis over time. Moreover, there is no solution to create and manage module data, which is associated with alternative scenarios. Our solution is based on generic data-flow algorithms to automate this process, enabling elaborate data-flow procedures, such as simulation, temporal integration or data aggregation over many time steps in many worlds. To hide the complexity from the user, we extend the World Lines interaction techniques to control the novel data-flow architecture. The concept of multiple, special-purpose cursors is introduced to let users intuitively navigate through time and alternative scenarios. Users specify only what they want to see, the decision which data are required is handled automatically. The concepts are explained by taking the example of the simulation and analysis of material transport in levee-breach scenarios. To strengthen the general applicability, we demonstrate the investigation of vortices in an offline-simulated dam-break data set.

  15. Control of submersible vortex flows

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Donaldson, C. D.

    1990-01-01

    Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

  16. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 2

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)

    1999-01-01

    The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.

  17. External and Turbomachinery Flow Control Working Group

    NASA Technical Reports Server (NTRS)

    Ahmadi, G.; Alstrom, B.; Colonius, T.; Dannenhoffer, J.; Glauser, M.; Helenbrook, B.; Higuchi, H.; Hodson, H.; Jha, R.; Kabiri, P.; LaGraff, J.; Low,K.; McKeon, B.; Morrison, J.; Obcid, S.; Orbaker, A.; Samimy, M.; Schmit, R.; Seifert, A.; Seume, J.; Shahabi, A.; Shea, P.; Ukeiley, L.; Wallace, R.

    2010-01-01

    Broad Flow Control Issues: a) Understanding flow physics. b) Specific control objective(s). c) Actuation. d) Sensors. e) Integrated active flow control system. f) Development of design tools (CFD, reduced order models, controller design, understanding and utilizing instabilities and other mechanisms, e.g., streamwise vorticity).

  18. Plasma Flow Control Optimized Airfoil

    NASA Astrophysics Data System (ADS)

    Voikov, Vladimir; Patel, Mehul

    2005-11-01

    Recent advances in flow control research have demonstrated that plasma actuators can be efficient in different aerodynamic applications, particularly in providing flight control without conventional moving surfaces. The concept involves the use of a laminar airfoil design that employs a separation ramp at the trailing edge that can be manipulated by a plasma actuator to control lift, similar to trailing-edge flaps. The advantages are lower drag by a combination of the laminar flow design, and elimination of parasitic drag associated with wing-flap junctions. This work involves numerical simulations and experiments on a HSNLF(1)-0213 airfoil. The numerical results are obtained using an unsteady, compressible Navier-Stokes simulation that includes a model for the plasma actuators. The experiments are performed on a 2-D airfoil section that is mounted on a lift-drag force balance. The results demonstrate lift enhancement produced by the plasma actuator that is comparable to a plane flap. They also reveal an optimum actuator unsteady frequency that scales with the length of the separated region and local velocity, and is associated with the generation of a train of spanwise vortices. Other scaling including the effect of Reynolds number is presented.

  19. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  20. Flow Control Using Neural Networks

    DTIC Science & Technology

    2007-11-02

    FEB 93 - 31 DEC 96 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS FLOW CONTROL USING NEURAL NETWORKS F49620-93-1-0135 61102F 6. AUTHOR(S) 2307/BS THORWALD...OFFICE OF SCIENTIFIC RESEARCH (AFOSRO AGENCY REPORT NUMBER 110 DUNCAN AVENUE, ROOM B115 BOLLING AFB DC 20332- 8050 11. SUPPLEMENTARY NOTES 12a...signals. Figure 5 shows a time series for an actuator that performs a ramp motion in the streamwise direction over about 1 % of the TS period and remains

  1. AIAA Educator Academy: The Space Weather Balloon Module

    NASA Astrophysics Data System (ADS)

    Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.

    2013-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each

  2. AIAA Educator Academy: Enriching STEM Education for K-12 Students

    NASA Astrophysics Data System (ADS)

    Slagle, E.; Bering, E. A.; Longmier, B. W.; Henriquez, E.; Milnes, T.; Wiedorn, P.; Bacon, L.

    2012-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based engineering challenges to improve critical thinking skills and enhance problem solving skills. The Mars Rover Celebration Curriculum Module is designed for students in grades 3-8. Throughout this module, students learn about Mars and the solar system. Working with given design criteria, students work in teams to do basic research about Mars that will determine the operational objectives and structural features of their rover. Then, students participate in the design and construction of a model of a mock-up Mars Rover to carry out a specific science mission on the surface of Mars. At the end of this project, students have the opportunity to participate in a regional capstone event where students share their rover designs and what they have learned. The Electric Cargo Plan Curriculum Module is designed for students in grades 6-12. Throughout this module, students learn about aerodynamics and the four forces of flight. Working individually or in teams, students design and construct an electrically-powered model aircraft to fly a tethered flight of at least one lap without cargo, followed by a second tethered flight of one lap carrying as much cargo as possible. At the end of this project, students have the opportunity to participate in a regional capstone event where students share what they have learned and compete with their different cargo plane designs. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude

  3. Mechanobiological oscillators control lymph flow

    PubMed Central

    Kunert, Christian; Baish, James W.; Liao, Shan; Padera, Timothy P.; Munn, Lance L.

    2015-01-01

    The ability of cells to sense and respond to physical forces has been recognized for decades, but researchers are only beginning to appreciate the fundamental importance of mechanical signals in biology. At the larger scale, there has been increased interest in the collective organization of cells and their ability to produce complex, “emergent” behaviors. Often, these complex behaviors result in tissue-level control mechanisms that manifest as biological oscillators, such as observed in fireflies, heartbeats, and circadian rhythms. In many cases, these complex, collective behaviors are controlled—at least in part—by physical forces imposed on the tissue or created by the cells. Here, we use mathematical simulations to show that two complementary mechanobiological oscillators are sufficient to control fluid transport in the lymphatic system: Ca2+-mediated contractions can be triggered by vessel stretch, whereas nitric oxide produced in response to the resulting fluid shear stress causes the lymphatic vessel to relax locally. Our model predicts that the Ca2+ and NO levels alternate spatiotemporally, establishing complementary feedback loops, and that the resulting phasic contractions drive lymph flow. We show that this mechanism is self-regulating and robust over a range of fluid pressure environments, allowing the lymphatic vessels to provide pumping when needed but remain open when flow can be driven by tissue pressure or gravity. Our simulations accurately reproduce the responses to pressure challenges and signaling pathway manipulations observed experimentally, providing an integrated conceptual framework for lymphatic function. PMID:26283382

  4. Improved Flow-Controlling Vortex Generator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Marner, Wilbur J.; Rohatgi, Naresh K.

    1989-01-01

    Symmetrical tangential streams control flow of radial primary streams. Vortex generator uses small secondary stream of fluid to control normally-larger primary stream. Improved version of vortex generator described in "Variable Control Port for Fluidic Control Device," (NPO-16603). Secondary, or control, flows entering tangentially through diametrically opposite ports set up swirling motion restraining primary flow. Pressure of secondary fluid in relation to primary fluid controlling factor. Like valve, vortex generator varies rate of flow of primary fluid from maximum value down to zero. When properly designed, requires low pressure differential between primary and secondary streams and expends relatively small amount of secondary fluid.

  5. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  6. Observations on CFD Verification and Validation from the AIAA Drag Prediction Workshops

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Kleb, Bil; Vassberg, John C.

    2014-01-01

    The authors provide observations from the AIAA Drag Prediction Workshops that have spanned over a decade and from a recent validation experiment at NASA Langley. These workshops provide an assessment of the predictive capability of forces and moments, focused on drag, for transonic transports. It is very difficult to manage the consistency of results in a workshop setting to perform verification and validation at the scientific level, but it may be sufficient to assess it at the level of practice. Observations thus far: 1) due to simplifications in the workshop test cases, wind tunnel data are not necessarily the “correct” results that CFD should match, 2) an average of core CFD data are not necessarily a better estimate of the true solution as it is merely an average of other solutions and has many coupled sources of variation, 3) outlier solutions should be investigated and understood, and 4) the DPW series does not have the systematic build up and definition on both the computational and experimental side that is required for detailed verification and validation. Several observations regarding the importance of the grid, effects of physical modeling, benefits of open forums, and guidance for validation experiments are discussed. The increased variation in results when predicting regions of flow separation and increased variation due to interaction effects, e.g., fuselage and horizontal tail, point out the need for validation data sets for these important flow phenomena. Experiences with a recent validation experiment at NASA Langley are included to provide guidance on validation experiments.

  7. Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; Murayama, Mitsuhiro

    2008-01-01

    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.

  8. Development report, mass flow controller PN 5716068

    NASA Technical Reports Server (NTRS)

    Taylor, W.

    1972-01-01

    The design, development, and manufacture of an all mechanical mass flow controller are discussed. A test program was conducted using inert gas as the test medium. The unit controlled the pressure within plus of minus one percent. An analytical method is presented for relating the control pressure error with error in mass flow.

  9. Successes and Challenges for Flow Control Simulations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2008-01-01

    A survey is made of recent computations published for synthetic jet flow control cases from a CFD workshop held in 2004. The three workshop cases were originally chosen to represent different aspects of flow control physics: nominally 2-D synthetic jet into quiescent air, 3-D circular synthetic jet into turbulent boundary-layer crossflow, and nominally 2-D flow-control (both steady suction and oscillatory zero-net-mass-flow) for separation control on a simple wall-mounted aerodynamic hump shape. The purpose of this survey is to summarize the progress as related to these workshop cases, particularly noting successes and remaining challenges for computational methods. It is hoped that this summary will also by extension serve as an overview of the state-of-the-art of CFD for these types of flow-controlled flow fields in general.

  10. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  11. Successes and Challenges for Flow Control Simulations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2008-01-01

    A survey is made of recent computations published for synthetic jet flow control cases from a CFD workshop held in 2004. The three workshop cases were originally chosen to represent different aspects of flow control physics: nominally 2-D synthetic jet into quiescent air, 3-D circular synthetic jet into turbulent boundarylayer crossflow, and nominally 2-D flow-control (both steady suction and oscillatory zero-net-mass-flow) for separation control on a simple wall-mounted aerodynamic hump shape. The purpose of this survey is to summarize the progress as related to these workshop cases, particularly noting successes and remaining challenges for computational methods. It is hoped that this summary will also by extension serve as an overview of the state-of-the-art of CFD for these types of flow-controlled flow fields in general.

  12. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  13. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; Morrison, Joseph H.; Mavriplis, Dimitri J.; Murayama, Mitcuhiro

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  14. Status of the AIAA Modeling and Simulation Format Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2008-01-01

    The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.

  15. Status and outlook of flow separation control

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, Mohamed; Bushnell, Dennis M.

    1991-01-01

    Under certain conditions, wall-bounded flows separate. To improve the performance of natural or man-made flow systems, it may be beneficial to delay or advance this detachment process. The present article reviews the status and outlook of separation control for both steady and unsteady flows. Both passive and active techniques to prevent or to provoke flow detachment are considered and suggestions are made for further research.

  16. Energy conservation with automatic flow control valves

    SciTech Connect

    Phillips, D.

    1984-12-01

    Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.

  17. Flow Control Over Sharp-Edged Wings

    DTIC Science & Technology

    2007-07-01

    each jet. A constant average mass flow of air was supplied to the jet using a closed-loop servo valve . Their data indicated that maximum lift...and screw angles of 90 and 45 degrees respectively. High-speed flow control valves were used to control the pulsed flow to each jet individually. The...leading edge contained three jet nozzles; however only two were used. The valve open-and-close cycle was manipulated using a computer function

  18. Electrokinetic Flow Control and Propulsion for MAVs

    DTIC Science & Technology

    2007-11-02

    Vehicle (pdf) Electroaerodynamic Coanda Effect – Cylinder Wake Flow Control Experiments to Active Cylinder Wake Flow Control Using Electric Field Actuators...flow separation at the leading edge - Compact geometry (low aspect-ratio below 2) gives rise to strong 3D effects Nonlinear lift characteristics and...Additional Electrode Pair at Trailing Edge has Effect of Jet Flap. - Lift Enhancement at alpha = 19° is 127% - Drag Coefficient decreases by 18% Increase of

  19. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  20. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  1. Hydrodynamic Flow Control in Marine Mammals

    DTIC Science & Technology

    2008-05-06

    Hydrodynamic flow control in marine mammals Frank E. Fish,1,* Laurens E. Howle† and Mark M. Murray§ Department of Biology, West Chester University...the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals ...and maneuverability. The morphological features of marine mammals for flow control can be utilized in the biomimetic design of engineered structures

  2. Serpentine Geometry Plasma Actuators for Flow Control

    DTIC Science & Technology

    2013-08-23

    Serpentine geometry plasma actuators for flow control Mark Riherd and Subrata Roy Citation: J. Appl. Phys. 114, 083303 (2013); doi: 10.1063...DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Serpentine geometry plasma actuators for flow control 5a. CONTRACT NUMBER 5b...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Serpentine geometry plasma actuators for flow

  3. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  4. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  5. Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2014-01-01

    Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.

  6. Cylinder Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexey; Thomas, Flint

    2007-11-01

    In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. Two optimized quartz dielectric plasma actuators mounted on the cylinder surface utilizing an improved saw-tooth waveform high-voltage generator allowed flow control at Reynolds number approaching supercritical. Using either steady or unsteady actuation, it is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. PIV based flow fields and wake velocity profiles obtained with hot-wire anemometry show large reductions in vortex shedding, wake width and turbulence intensity.

  7. Power flow control using distributed saturable reactors

    DOEpatents

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  8. Subsonic Flows through S-Ducts with Flow Control

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method

  9. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  10. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  11. Investigation of propellant flow control system

    NASA Technical Reports Server (NTRS)

    Liebman, A. A.

    1973-01-01

    Mechanical, electromechanical, and fluidic concepts were studied as propellant flow control system for oxygen/hydrogen attitude control thrusters. A mechanical flow controller was designed, fabricated, and tested with hydrogen, oxygen, and nitrogen over a range of inlet pressures and temperatures. Results of these tests are presented along with a discussion of a flight-weight design. Also presented are recommendations for further design and development. A detailed coverage of the fluidics investigation is included.

  12. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  13. Flow Control in a Transonic Diffuser

    NASA Astrophysics Data System (ADS)

    Gartner, Jeremy; Amitay, Michael

    2014-11-01

    In some airplanes such as fighter jets and UAV, short inlet ducts replace the more conventional ducts due to their shorter length. However, these ducts are associated with low length-to-diameter ratio and low aspect ratio and, thus, experience massive separation and the presence of secondary flow structures. These flow phenomena are undesirable as they lead to pressure losses and distortion at the Aerodynamic Interface Plane (AIP), where the engine face is located. It causes the engine to perform with a lower efficiency as it would with a straight duct diffuser. Different flow control techniques were studied on the short inlet duct, with the goal to reattach the flow and minimize the distortions at the AIP. Due to the complex interaction between the separation and the secondary flow structures, the necessity to understand the flow mechanisms, and how to control them at a more fundamental level, a new transonic diffuser with an upper ramp and a straight floor was designed and built. The objective of this project is to explore the effectiveness of different flow control techniques in a high subsonic (up to Mach 0.8) diffuser, so that the quasi two-dimensional separation and the formation of secondary flow structure can be isolated using a canonical flow field. Supported by Northrop Grumman.

  14. Application of Fast Optical Tomography to Flow Tubes

    DTIC Science & Technology

    2007-11-02

    electro-optics, quantum electronics, solid-state lasers , optical propagation and communications; microwave semiconductor devices, microwave /millimeter...34Application of Tomography in 3-D Transonic Flows, AIAA-87-1374, AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii...thermomechanics, gas kinetics and radiation; cw and pulsed chemical and excimer laser development including chemical kinetics, spectroscopy, optical

  15. Development of an Efficient Solution Scheme for Incompressible Steady- State Flow

    DTIC Science & Technology

    1989-04-01

    Investigation," Technical Report REMR-HY-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Bernard, R. S., and Thompson , J . F . 1984. "Mass...0208, AIAA 24th Aerospace Sciences Meeting, Reno, NV. Mastin, C. W., and Thompson , J . F . 1978. "Three-Dimensional Body-Fitted Coordinate Systems for... Thompson , J . F . 1984. "A Vectorized Solution for Incompressible Flow," AIAA Paper 84-1534, AIAA 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference

  16. High precision high flow range control valve

    DOEpatents

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  17. High precision high flow range control valve

    DOEpatents

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  18. Optimal feedback control of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz

    1993-01-01

    Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.

  19. Magnetic Amplifier for Power Flow Control

    SciTech Connect

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  20. Value for controlling flow of cryogenic fluid

    DOEpatents

    Knapp, Philip A.

    1996-01-01

    A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

  1. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  2. Control of Mixing and Reactive Flow Processes

    NASA Technical Reports Server (NTRS)

    Karagozian, A. R.

    1999-01-01

    The interdisciplinary field of reactive flow control is one that holds a great deal of promise for the optimization of complex phenomena occurring in many practical systems, ranging from automobile and gas turbine engines to environmental thermal destruction systems. The fundamental underpinnings of combustion control, however, require a detailed level of understanding of complex reactive flow phenomena, and, in the case of closed-loop active control, require the ability to sense (monitor) and actuate (manipulate) flow processes in a spatially distributed manner in "near real time". Hence the ultimate growth and success of the field of reactive flow control is intimately linked: 1) to advances in the understanding, simulation, and model reduction for complex reactive flows, 2) to the development of experimental diagnostic techniques, in particular, to the development of physically robust sensors, and 3) to the development of a framework or frameworks for generation of closed loop control algorithms suitable for unsteady, nonlinear reactive flow systems. The present paper seeks to outline the potential benefits and technical challenges that exist for mixing and combustion control in fundamental as well as practical systems and to identify promising research directions that could help meet these challenges.

  3. Monitoring And Controlling Hydroponic Flow

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  4. Method and apparatus for controlling fluid flow

    DOEpatents

    Miller, J.R.

    1980-06-27

    A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.

  5. Variable flow control for a nuclear reactor control rod

    DOEpatents

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  6. Flow around a semicircular cylinder with passive flow control mechanisms

    NASA Astrophysics Data System (ADS)

    Hamed, A. M.; Vega, J.; Liu, B.; Chamorro, L. P.

    2017-03-01

    Wind tunnel experiments were performed to study the effect of passive flow control strategies on the wake and drag of a semicircular cylinder of infinite aspect ratio. High-resolution planar particle image velocimetry was used to obtain flow statistics around the semicircular cylinder at Reynolds number Re≈ 3.2× 10^4 based on the cylinder diameter. The control mechanisms under consideration include rigid flaps of various lengths placed at the edges of the structure and a small slot along the symmetry plane of the cylinder. Mean velocity fields reveal the distinctive effects of each passive mechanism on the flow, such as velocity recovery, size of the recirculation bubble and location of the reattachment point. The distributions of turbulence kinetic energy and kinematic shear stress show the modulation of each passive control mechanism on the wake, including the onset and location of the maximum turbulence levels. Instantaneous and mean fields of swirling strength further highlight the role of the passive mechanisms in the vortex dynamics. Drag coefficient for the various cases was estimated indirectly from the flow measurements using a momentum balance. This approach shows that long flaps and slot were able to reduce drag with respect to the base case. The rigid flaps with length coincident with the diameter of the cylinder offered the best performance with drag reduction of ˜25%.

  7. Innovative Flow Control Concepts for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  8. Computational Simulations of Convergent Nozzles for the AIAA 1st Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2014-01-01

    Computational Fluid Dynamics (CFD) simulations were completed for a series of convergent nozzles in participation of the American Institute of Aeronautics and Astronautics (AIAA) 1st Propulsion Aerodynamics Workshop. The simulations were performed using the Wind-US flow solver. Discharge and thrust coefficients were computed for four axisymmetric nozzles with nozzle pressure ratios (NPR) ranging from 1.4 to 7.0. The computed discharge coefficients showed excellent agreement with available experimental data; the computed thrust coefficients captured trends observed in the experimental data, but over-predicted the thrust coefficient by 0.25 to 1.0 percent. Sonic lines were computed for cases with NPR >= 2.0 and agreed well with experimental data for NPR >= 2.5. Simulations were also performed for a 25 deg. conic nozzle bifurcated by a flat plate at NPR = 4.0. The jet plume shock structure was compared with and without the splitter plate to the experimental data. The Wind-US simulations predicted the shock structure well, though lack of grid resolution in the plume reduced the sharpness of the shock waves. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations and Detached Eddy Simulations (DES) were performed at NPR = 1.6 for the 25 deg conic nozzle with splitter plate. The simulations predicted vortex shedding from the trailing edge of the splitter plate. However, the vortices of URANS and DES solutions appeared to dissipate earlier than observed experimentally. It is believed that a lack of grid resolution in the region of the vortex shedding may have caused the vortices to break down too soon

  9. Linear control of oscillator and amplifier flows*

    NASA Astrophysics Data System (ADS)

    Schmid, Peter J.; Sipp, Denis

    2016-08-01

    Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.

  10. Bluff Body Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  11. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW CONTROL

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow (WWF). Cost/benefit relationships were compared to construction of new conventional control and treatment facilities. Desktop...

  12. Variable Frequency Diverter Actuation for Flow Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2006-01-01

    The design and development of an actively controlled fluidic actuator for flow control applications is explored. The basic device, with one input and two output channels, takes advantage of the Coanda effect to force a fluid jet to adhere to one of two axi-symmetric surfaces. The resultant flow is bi-stable, producing a constant flow from one output channel, until a disturbance force applied at the control point causes the flow to switch to the alternate output channel. By properly applying active control the output flows can be manipulated to provide a high degree of modulation over a wide and variable range of frequency and duty cycle. In this study the momentary operative force is applied by small, high speed isolation valves of which several different types are examined. The active fluidic diverter actuator is shown to work in several configurations including that in which the operator valves are referenced to atmosphere as well as to a source common with the power stream.

  13. A Content Analysis of AIAA/ITEA/ITEEA Conference Special Interest Sessions: 1978-2014

    ERIC Educational Resources Information Center

    Reed, Philip A.; LaPorte, James E.

    2015-01-01

    Associations routinely hold annual conferences to aid with professional development and actively promote the ideals of their membership and the profession they represent. The American Industrial Arts Association (AIAA) was created in 1939 and has held an annual conference the past 76 years to further these goals (Starkweather, 1995). Throughout…

  14. AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume III, Workshop Handbook.

    ERIC Educational Resources Information Center

    American Inst. of Aeronautics and Astronautics, New York, NY.

    In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…

  15. AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume 1, Final Report.

    ERIC Educational Resources Information Center

    American Inst. of Aeronautics and Astronautics, New York, NY.

    In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…

  16. Method for controlling coolant flow in airfoil, flow control structure and airfoil incorporating the same

    DOEpatents

    Itzel, Gary Michael; Devine, II, Robert Henry; Chopra, Sanjay; Toornman, Thomas Nelson

    2003-07-08

    A coolant flow control structure is provided to channel cooling media flow to the fillet region defined at the transition between the wall of a nozzle vane and a wall of a nozzle segment, for cooling the fillet region. In an exemplary embodiment, the flow control structure defines a gap with the fillet region to achieve the required heat transfer coefficients in this region to meet part life requirements.

  17. Coordinated Control of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  18. Declarative flow control for distributed instrumentation

    SciTech Connect

    Parvin, Bahram; Taylor, John; Fontenay, Gerald; Callahan, Daniel

    2001-06-01

    We have developed a 'microscopy channel' to advertise a unique set of on-line scientific instruments and to let users join a particular session, perform an experiment, collaborate with other users, and collect data for further analysis. The channel is a collaborative problem solving environment (CPSE) that allows for both synchronous and asynchronous collaboration, as well as flow control for enhanced scalability. The flow control is a declarative feature that enhances software functionality at the experimental scale. Our testbed includes several unique electron and optical microscopes with applications ranging from material science to cell biology. We have built a system that leverages current commercial CORBA services, Web Servers, and flow control specifications to meet diverse requirements for microscopy and experimental protocols. In this context, we have defined and enhanced Instrument Services (IS), Exchange Services (ES), Computational Services (CS), and Declarative Services (DS) that sit on top of CORBA and its enabling services (naming, trading, security, and notification) IS provides a layer of abstraction for controlling any type of microscope. ES provides a common set of utilities for information management and transaction. CS provides the analytical capabilities needed for online microscopy. DS provides mechanisms for flow control for improving the dynamic behavior of the system.

  19. Organization's Orderly Interest Exploration: Inception, Development and Insights of AIAA's Topics Database

    NASA Technical Reports Server (NTRS)

    Marshall, Jospeh R.; Morris, Allan T.

    2007-01-01

    Since 2003, AIAA's Computer Systems and Software Systems Technical Committees (TCs) have developed a database that aids technical committee management to map technical topics to their members. This Topics/Interest (T/I) database grew out of a collection of charts and spreadsheets maintained by the TCs. Since its inception, the tool has evolved into a multi-dimensional database whose dimensions include the importance, interest and expertise of TC members and whether or not a member and/or a TC is actively involved with the topic. In 2005, the database was expanded to include the TCs in AIAA s Information Systems Group and then expanded further to include all AIAA TCs. It was field tested at an AIAA Technical Activities Committee (TAC) Workshop in early 2006 through live access by over 80 users. Through the use of the topics database, TC and program committee (PC) members can accomplish relevant tasks such as: to identify topic experts (for Aerospace America articles or external contacts), to determine the interest of its members, to identify overlapping topics between diverse TCs and PCs, to guide new member drives and to reveal emerging topics. This paper will describe the origins, inception, initial development, field test and current version of the tool as well as elucidate the benefits and insights gained by using the database to aid the management of various TC functions. Suggestions will be provided to guide future development of the database for the purpose of providing dynamics and system level benefits to AIAA that currently do not exist in any technical organization.

  20. Model Reduction for Flow Analysis and Control

    NASA Astrophysics Data System (ADS)

    Rowley, Clarence W.; Dawson, Scott T. M.

    2017-01-01

    Advances in experimental techniques and the ever-increasing fidelity of numerical simulations have led to an abundance of data describing fluid flows. This review discusses a range of techniques for analyzing such data, with the aim of extracting simplified models that capture the essential features of these flows, in order to gain insight into the flow physics, and potentially identify mechanisms for controlling these flows. We review well-developed techniques, such as proper orthogonal decomposition and Galerkin projection, and discuss more recent techniques developed for linear systems, such as balanced truncation and dynamic mode decomposition (DMD). We then discuss some of the methods available for nonlinear systems, with particular attention to the Koopman operator, an infinite-dimensional linear operator that completely characterizes the dynamics of a nonlinear system and provides an extension of DMD to nonlinear systems.

  1. Fuel cell with internal flow control

    DOEpatents

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  2. Control of microorganisms in flowing nutrient solutions

    NASA Astrophysics Data System (ADS)

    Evans, R. D.

    1994-11-01

    Controlling microorganisms in flowing nutrient solutions involves different techniques when targeting the nutrient solution, hardware surfaces in contact with the solution, or the active root zone. This review presents basic principles and applications of a number of treatment techniques, including disinfection by chemicals, ultrafiltration, ultrasonics, and heat treatment, with emphasis on UV irradiation and ozone treatment. Procedures for control of specific pathogens by nutrient solution conditioning also are reviewed.

  3. Control of microorganisms in flowing nutrient solutions.

    PubMed

    Evans, R D

    1994-11-01

    Controlling microorganisms in flowing nutrient solutions involves different techniques when targeting the nutrient solution, hardware surfaces in contact with the solution, or the active root zone. This review presents basic principles and applications of a number of treatment techniques, including disinfection by chemicals, ultrafiltration, ultrasonics, and heat treatment, with emphasis on UV irradiation and ozone treatment. Procedures for control of specific pathogens by nutrient solution conditioning also are reviewed.

  4. Closed Loop Control and Turbulent Flows

    DTIC Science & Technology

    2005-10-01

    first described in some detail by Ingard [8], but re-discovered, developed, and applied to problems in flow control by Glezer and co-workers [19, 20... Ingard . On the theory and design of acoustic resonators. J. Acoustical Soc. of America, 25(6):1037-1060, 1953. [9] J. Kim, P. Moin, and R. Moser

  5. PRIMING THE PUMP AND CONTROLLING THE FLOW.

    ERIC Educational Resources Information Center

    BUCHAN, VIVIAN

    THE BEGINNING WRITER NEEDS BOTH ENCOURAGEMENT AND DIRECTION. ONCE A STUDENT, NONVERBAL OR FLUENT, HAS EXPRESSED AN OPINION, SIGNIFICANT OR TRIVIAL, THE PUMP CAN BE PRIMED BY ASKING HIM "WHY," AND HIS FLOW OF "BECAUSES" CAN BE CONTROLLED BY CHANNELING THEM INTO A SIMPLE PATTERN. THE NONVERBAL STUDENT IS ENCOURAGED TO WRITE WHEN HE LEARNS THAT A…

  6. Active Flow Control with Thermoacoustic Actuators

    DTIC Science & Technology

    2014-01-31

    dielectric barrier discharge ( DBD ) plasma actuators [4], or combustion powered actuators [5]. Compared to passive flow control techniques, such as vortex...space nor adding significant weight, which is similar to how DBD plasma actuators can be installed. 3 The sound generation mechanism, known as

  7. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and

  8. Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5

    NASA Technical Reports Server (NTRS)

    Tinoco, Edward N.; Brodersen, Olaf P.; Keye, Stefan; Laflin, Kelly R.; Feltrop, Edward; Vassberg, John C.; Mani, Mori; Rider, Ben; Wahls, Richard A.; Morrison, Joseph H.; Hue, David; Gariepy, Martin; Roy, Christopher J.; Mavriplis, Dimitri J.; Murayama, Mitsuhiro

    2017-01-01

    Results from the Sixth AIAA CFD Drag Prediction Workshop Common Research Model Cases 2 to 5 are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. Cases 2 to 5 focused on force/moment and pressure predictions for the NASA Common Research Model wing-body and wing-body-nacelle-pylon configurations, including Case 2 - a grid refinement study and nacelle-pylon drag increment prediction study; Case 3 - an angle-of-attack buffet study; Case 4 - an optional wing-body grid adaption study; and Case 5 - an optional wing-body coupled aero-structural simulation. The Common Research Model geometry differed from previous workshops in that it was deformed to the appropriate static aeroelastic twist and deflection at each specified angle-of-attack. The grid refinement study used a common set of overset and unstructured grids, as well as user created Multiblock structured, unstructured, and Cartesian based grids. For the supplied common grids, six levels of refinement were created resulting in grids ranging from 7x10(exp 6) to 208x10(exp 6) cells. This study (Case 2) showed further reduced scatter from previous workshops, and very good prediction of the nacelle-pylon drag increment. Case 3 studied buffet onset at M=0.85 using the Medium grid (20 to 40x10(exp 6) nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Although the use of the prescribed aeroelastic twist and deflection at each angle-of-attack greatly improved the wing pressure distribution agreement with test data, many solutions still exhibited premature flow separation. The remaining solutions exhibited a significant spread of lift and pitching moment at each angle-of-attack, much of which can be attributed to excessive aft pressure loading and shock location variation. Four Case 4 grid adaption solutions were submitted. Starting

  9. Rotatable non-circular forebody flow controller

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A. (Inventor)

    1991-01-01

    The invention is a rotatable, non-circular forebody flow controller. The apparatus comprises a small geometric device located at a nose of a forebody of an aircraft and a non-circular cross-sectional area that extends toward the apex of the aircraft. The device is symmetrical about a reference plane and preferably attaches to an axle which in turn attaches to a rotating motor. The motor rotates the device about an axis of rotation. Preferably, a control unit connected to an aircraft flight control computer signals to the rotating motor the proper rotational positioning of the geometric device.

  10. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  11. Active shear flow control for improved combustion

    NASA Astrophysics Data System (ADS)

    Gutmark, E.; Parr, T. P.; Hanson-Parr, D. M.; Schadow, K. C.

    1990-01-01

    The acoustical and fluid dynamic facets of an excited premixed flame were studied experimentally to evaluate possibilities for development of a stabilizing closed-loop control system. The flame was analyzed as a nonlinear system which includes different subcomponents: acoustics, fluid dynamics, and chemical reaction. Identification of the acoustical and fluid dynamics subsystems is done by analyzing the transfer function, which was obtained by driving the system with both white-noise and a frequency-sweeping sine-wave. The features obtained by this analysis are compared to results of flow visualization and hot-wire flow-field and spectral measurements. The acoustical subsystem is determined by the resonant acoustic modes of the settling chamber. These modes are subsequently filtered and amplified by the flow shear layer, whose instability characteristics are dominated by the preferred mode frequency.

  12. Adaptive wing and flow control technology

    NASA Astrophysics Data System (ADS)

    Stanewsky, E.

    2001-10-01

    The development of the boundary layer and the interaction of the boundary layer with the outer “inviscid” flow field, exacerbated at high speed by the occurrence of shock waves, essentially determine the performance boundaries of high-speed flight. Furthermore, flight and freestream conditions may change considerably during an aircraft mission while the aircraft itself is only designed for multiple but fixed design points thus impairing overall performance. Consequently, flow and boundary layer control and adaptive wing technology may have revolutionary new benefits for take-off, landing and cruise operating conditions for many aircraft by enabling real-time effective geometry optimization relative to the flight conditions. In this paper we will consider various conventional and novel means of boundary layer and flow control applied to moderate-to-large aspect ratio wings, delta wings and bodies with the specific objectives of drag reduction, lift enhancement, separation suppression and the improvement of air-vehicle control effectiveness. In addition, adaptive wing concepts of varying complexity and corresponding aerodynamic performance gains will be discussed, also giving some examples of possible structural realizations. Furthermore, penalties associated with the implementation of control and adaptation mechanisms into actual aircraft will be addressed. Note that the present contribution is rather application oriented.

  13. Accurate, reliable control of process gases by mass flow controllers

    SciTech Connect

    Hardy, J.; McKnight, T.

    1997-02-01

    The thermal mass flow controller, or MFC, has become an instrument of choice for the monitoring and controlling of process gas flow throughout the materials processing industry. These MFCs are used on CVD processes, etching tools, and furnaces and, within the semiconductor industry, are used on 70% of the processing tools. Reliability and accuracy are major concerns for the users of the MFCs. Calibration and characterization technologies for the development and implementation of mass flow devices are described. A test facility is available to industry and universities to test and develop gas floe sensors and controllers and evaluate their performance related to environmental effects, reliability, reproducibility, and accuracy. Additional work has been conducted in the area of accuracy. A gravimetric calibrator was invented that allows flow sensors to be calibrated in corrosive, reactive gases to an accuracy of 0.3% of reading, at least an order of magnitude better than previously possible. Although MFCs are typically specified with accuracies of 1% of full scale, MFCs may often be implemented with unwarranted confidence due to the conventional use of surrogate gas factors. Surrogate gas factors are corrections applied to process flow indications when an MFC has been calibrated on a laboratory-safe surrogate gas, but is actually used on a toxic, or corrosive process gas. Previous studies have indicated that the use of these factors may cause process flow errors of typically 10%, but possibly as great as 40% of full scale. This paper will present possible sources of error in MFC process gas flow monitoring and control, and will present an overview of corrective measures which may be implemented with MFC use to significantly reduce these sources of error.

  14. Control of jet flow mixing and stabilization

    NASA Astrophysics Data System (ADS)

    Yuan, Chih-Chung

    This dissertation examines the effect of feedback controllers on mixing and stabilization of unstable two-dimensional jet flows. The mixing enhancement control law uses a pair of actuators at the jet nozzle exit acting on the shear layers near the corners by blowing and subtracting fluid in an anti-symmetric fashion with a zero net mass flux. The sensor measures the pressure difference across the nozzle diameter and is either located at downstream or at the nozzle exit with time delay. If the length/time scale is long enough and the feedback gain is sufficiently large, this control strategy will provide a constant vortex generation pattern that successfully improves mixing. The evolution of a passive scalar and mixing of particles with mass in jet flows are visualized and quantified. Probability Density Functions based on the particle/scalar distribution are constructed as measures of mixing. The stabilization control law employs filaments with distributed sensors and actuators in the jet flow. The sensors measure the local pressure difference across nozzle diameter and the actuators act as a reaction body force in the normal direction. The instability is damped with sufficiently large feedback gain. The Reynolds numbers of jet flows studied are 100 and 150 that are in the transient range. The results are obtained by means of Direct Numerical Simulation. The Navier-Stokes equations are spatially discretized by second order finite-difference method and advanced in time using a fractional step technique with a hybrid Runge-Kutta/Crank-Nicolson time discretization. This hybrid technique is developed to gain a larger time step while numerical stability is maintained. Stretched and staggered grids are used in both stream-wise and normal directions. The simulation results are validated by comparison with previous works and through self-similar analysis.

  15. Control of Spatially Inhomogeneous Shear Flows

    DTIC Science & Technology

    2009-11-27

    control approach, that minimises an objective function which measures the perturbation energy , was formulated where the Orr- Sommerfeld and Squire...hydrodynamic stability analysis by considering a finite-time horizon over which energy amplification, driven by a specific input (disturbances/actuator) and...layers subject to free-stream turbulence. Int. J. Heat Fluid Flow, 29(3):841–855, 2008. [14] B. Moore. Principal component analysis in linear systems

  16. Shallow flow vortex formation and control

    NASA Astrophysics Data System (ADS)

    Fu, Haojun

    Vortical structures in shallow flow past a vertical cylinder are addressed in this investigation. A cinema technique of digital particle image velocimetry (DPIV) provided quantitative representations of the wholefield flow patterns in both instantaneous and averaged forms. Techniques for passive and active control of these vortices, and their influence on the loading of the bed, were explored. In a fully-developed, laminar shallow flow, the unstable structure in the near-wake of the cylinder correlates with the horseshoe (necklace) vortex system about the upstream surface of the cylinder. A coherent varicose mode of vortex formation is observed in the near-wake, even though the classical large-scale vortex shedding is suppressed due to bed friction effects. It is also demonstrated that when the near-wake is stable at a sufficiently low value of Reynolds number, applications of external perturbations lead to destabilization of the wake. Classes of small-scale three-dimensional structures arise in a fully-turbulent shallow flow past a surface-piercing cylinder. A prevalent feature is an upward moving jet-like flow from the bed surface, through the center of the developing quasi-two-dimensional primary vortex, at a location in the very near-wake of the cylinder. Passive control via base-bleed through a narrow streamwise slot leads to substantially delay/attenuation of vortex formation in the near-wake. The large-scale near-wake structure is recoverable through combined positive-active control, in the form of rotational perturbations in the presence of small magnitude base bleed. These alterations of the near-wake structure occur in conjunction with modifications of the streamline topology and Reynolds stress at the bed, as well as the shallow approach flow. Active control via rotational perturbations of the cylinder at the most unstable shear-layer frequency promotes well-defined vortical structures in the separating shearlayer, which contribute to the earlier

  17. Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Derlaga, Joseph M.; Morrison, Joseph H.

    2017-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  18. Wake flow control using a dynamically controlled wind turbine

    NASA Astrophysics Data System (ADS)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  19. Assessment of the Draft AIAA S-119 Flight Dynamic Model Exchange Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Murri, Daniel G.; Hill, Melissa A.; Jessick, Matthew V.; Penn, John M.; Hasan, David A.; Crues, Edwin Z.; Falck, Robert D.; McCarthy, Thomas G.; Vuong, Nghia; Zimmerman, Curtis

    2011-01-01

    An assessment of a draft AIAA standard for flight dynamics model exchange, ANSI/AIAA S-119-2011, was conducted on behalf of NASA by a team from the NASA Engineering and Safety Center. The assessment included adding the capability of importing standard models into real-time simulation facilities at several NASA Centers as well as into analysis simulation tools. All participants were successful at importing two example models into their respective simulation frameworks by using existing software libraries or by writing new import tools. Deficiencies in the libraries and format documentation were identified and fixed; suggestions for improvements to the standard were provided to the AIAA. An innovative tool to generate C code directly from such a model was developed. Performance of the software libraries compared favorably with compiled code. As a result of this assessment, several NASA Centers can now import standard models directly into their simulations. NASA is considering adopting the now-published S-119 standard as an internal recommended practice.

  20. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  1. Microbial electricity generation via microfluidic flow control.

    PubMed

    Li, Zhiqiang; Zhang, Ying; LeDuc, Philip R; Gregory, Kelvin B

    2011-09-01

    Next generation battery technology is rapidly evolving to meet the demand for higher power densities and smaller footprints through novel catalysts and battery architecture. We present a µ-scale, biological fuel cell which utilizes microbial electricity generation enabled by microfluidic flow control to produce power. The new fuel cell, the smallest of its kind, with a total volume of 0.3 µL, produces scalable and controllable electrical energy from organic matter which is sustained through microbial respiration and laminar flow separation of the electrolytes. Electrical currents are dependent on specific biofilm formation on the anode, the concentration of electron donor, and a diffusion-limited flow regime. A maximum current density of 18.40 ± 3.48 mA m(-2) (92 ± 17 A m(-3)) was produced by Geobacter sulfurreducens, and 25.42 mA m(-2) (127 A m(-3)) by Shewanella oneidensis. The µ-scale biological fuel cell introduces the necessary small size and fuel flexibility for applications in vivo and in situ sensors which may be remotely deployed and self-powered.

  2. Summary of the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.

    2007-01-01

    The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.

  3. Flow-controlled magnetic particle manipulation

    DOEpatents

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  4. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  5. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  6. Design Considerations for Laminar Flow Control Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.

    1976-01-01

    A study was conducted to investigate major design considerations involved in the application of laminar flow control to the wings and empennage of long range subsonic transport aircraft compatible with initial operation in 1985. For commercial transports with a design mission range of 10,186 km (5500 n mil) and a payload of 200 passengers, parametric configuration analyses were conducted to evaluate the effect of aircraft performance, operational, and geometric parameters on fuel efficiency. Study results indicate that major design goals for aircraft optimization include maximization of aspect ratio and wing loading and minimization of wing sweep consistent with wing volume and airport performance requirements.

  7. Thermoregulatory control of finger blood flow

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.

    1975-01-01

    In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.

  8. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  9. Stratigraphic control of flow and transport characteristics.

    PubMed

    Edington, Dwaine; Poeter, Eileen

    2007-01-01

    Ground water flow and travel time are dependent on stratigraphic architecture, which is governed by competing processes that control the spatial and temporal distribution of accommodation and sediment supply. Accommodation is the amount of space in which sediment may accumulate as defined by the difference between the energy gradient and the topographic surface. The temporal and spatial distribution of accommodation is affected by processes that change the distribution of energy (e.g., sea level or subsidence). Fluvial stratigraphic units, generated by FLUVSIM (a stratigraphic simulator based on accommodation and sediment supply), with varying magnitudes and causes of accommodation, were incorporated into a hydraulic regime using MODFLOW (a ground water flow simulator), and particles were tracked using MODPATH (a particle-tracking algorithm). These experiments illustrate that the dominant type of accommodation process influences the degree of continuity of stratigraphic units and thus affects ground water flow and transport. When the hydraulic gradient is parallel to the axis of the fluvial system in the depositional environment, shorter travel times occur in low-total accommodation environments and longer travel times in high-total accommodation environments. Given the same total accommodation, travel times are longer when sea-level change is the dominant process than those in systems dominated by subsidence.

  10. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  11. Contribution to "AIAA Aerospace Year in Review" article

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Downey, J. Patton

    2012-01-01

    The NASA Marshall Space Flight Center Microgravity Science Program is dedicated to promoting our understanding of materials processing by conducting relevant experiments in the microgravity environment and supporting related modeling efforts with the intent of improving ground-based practices. Currently funded investigations include research on dopant distribution and defect formation in semiconductors, microstructural development and transitions in dendritic casting alloys, coarsening phenomena, competition between thermal and kinetic phase formation, and the formation of glassy vs. crystalline material. NASA Microgravity Materials Science Principle Investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by collaborating on a team that has successfully proposed to a foreign space agency research announcement. In the latter case, a US investigator can then apply to NASA for funding through an unsolicited proposal. The International Space Station (ISS) facilities used for the experimental investigations are provided primarily by partnering with foreign agencies and often US investigators are working as a part of a larger team studying a specific area of materials science. Facilities for conducting experiments aboard the ISS include the European Space Agency (ESA) Low Gradient Facility (LGF) and the Solidification and Quench (SQF) modular inserts to the Materials Research Rack/Materials Science Laboratory and are primarily used for controlled solidification studies. The French Space Agency (CNES) provided DECLIC facility allows direct observation of morphological development in transparent materials that solidify analogously to metals. The ESA provided Electro ]Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to determine material properties, study nucleation behavior, and document phase transitions. Finally, the Microgravity Science Glovebox (MSG) serves as a onboard

  12. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  13. Laminar flow control SPF/08 feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Ecklund, R. C.; Williams, N. R.

    1981-01-01

    The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.

  14. Laminar flow control perforated wing panel development

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1986-01-01

    Many structural concepts for a wing leading edge laminar flow control hybrid panel were analytically investigated. After many small, medium, and large tests, the selected design was verified. New analytic methods were developed to combine porous titanium sheet bonded to a substructure of fiberglass and carbon/epoxy cloth. At -65 and +160 F test conditions, the critical bond of the porous titanium to the composite failed at lower than anticipated test loads. New cure cycles, design improvements, and test improvements significantly improved the strength and reduced the deflections from thermal and lateral loadings. The wave tolerance limits for turbulence were not exceeded. Consideration of the beam column midbay deflections from the combinations of the axial and lateral loadings and thermal bowing at -65 F, room temperature, and +160 F were included. Many lap shear tests were performed at several cure cycles. Results indicate that sufficient verification was obtained to fabricate a demonstration vehicle.

  15. Toward a laminar-flow-control transport

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    Analyses were conducted to define a practical design for an advanced technology laminar flow control (LRC) transport for initial passenger operation in the early 1990's. Mission requirements, appropriate design criteria, and level of technology for the study aircraft were defined. The characteristics of the selected configuration were established, aircraft and LFC subsystems compatible with the mission requirements were defined, and the aircraft was evaluated in terms of fuel efficiency. A wing design integrating the LFC ducting and metering system into advanced composite wing structure was developed, manufacturing procedures for the surface panel design were established, and environmental and structural testing of surface panel components were conducted. Test results revealed a requirement for relatively minor changes in the manufacturing procedures employed, but have shown the general compatibility of both the selected design and the use of composite materials with the requirements of LFC wing surface panels.

  16. Adjustable flow rate controller for polymer solutions

    DOEpatents

    Jackson, Kenneth M.

    1981-01-01

    An adjustable device for controlling the flow rate of polymer solutions which results in only little shearing of the polymer molecules, said device comprising an inlet manifold, an outlet manifold, a plurality of tubes capable of providing communication between said inlet and outlet manifolds, said tubes each having an internal diameter that is smaller than that of the inlet manifold and large enough to insure that viscosity of the polymer solution passing through each said tube will not be reduced more than about 25 percent, and a valve associated with each tube, said valve being capable of opening or closing communication in that tube between the inlet and outlet manifolds, each said valve when fully open having a diameter that is substantially at least as great as that of the tube with which it is associated.

  17. On the Flow Physics of Effectively Controlled Open Cavity Flows

    DTIC Science & Technology

    2013-05-01

    the creation of high levels of broadband and tonal fluctuating pressures. The ability to alter flow field characteristics for a practical advantage...detrimental to aircraft due to the creation of high levels of broadband and tonal fluctuating pressures. The ability to alter flow field...pressure fluctuations contain tonal and broad-band components, and both need to be suppressed for many practical applications. The physical

  18. Jet vortex generators for turbulent flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory; Lin, J.; Howard, F.

    1990-01-01

    A parametric study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low speed turbulent flow over a two dimensional rearward-facing ramp. Results indicate that flow separation control can be accomplished with the level of control achieved being a function of jet speed, jet orientation (with respect to the free stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  19. Jet vortex generators for turbulent flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, G.; Lin, J.; Howard, F.

    1990-01-01

    A parametric study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow separation control can be accomplished with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  20. Insect vision: controlling actions through optic flow.

    PubMed

    Collett, Thomas S

    2002-09-17

    Insects depend upon optic flow to supply much of their information about the three-dimensional structure of the world. Many insects use translational flow to measure the distance of objects from themselves. A recent study has provided new insights into the way Drosophila use optic flow to pick out a close target to approach.

  1. Self-regulating flow control device

    DOEpatents

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  2. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.

    2002-01-01

    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  3. Synthetic Capillaries to Control Microscopic Blood Flow

    NASA Astrophysics Data System (ADS)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function.

  4. Synthetic Capillaries to Control Microscopic Blood Flow

    PubMed Central

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-01-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function. PMID:26905751

  5. Unified power flow controller: Modeling, stability analysis, control strategy and control system design

    NASA Astrophysics Data System (ADS)

    Sreenivasachar, Kannan

    2001-07-01

    Unified power flow controller (UPFC) has been the most versatile Flexible AC Transmission System (FACTS) device due to its ability to control real and reactive power flow on transmission lines while controlling the voltage of the bus to which it is connected. UPFC being a multi-variable power system controller it is necessary to analyze its effect on power system operation. To study the performance of the UPFC in damping power oscillations using PSCAD-EMTDC software, a de-coupled control system has been designed for the shunt inverter to control the UPFC bus voltage and the DC link capacitor voltage. The series inverter of a UPFC controls the real power flow in the transmission line. One problem associated with using a high gain PI controller (used to achieve fast control of transmission line real power flow) for the series inverter of a UPFC to control the real power flow in a transmission line is the presence of low damping. This problem is solved in this research by using a fuzzy controller. A method to model a fuzzy controller in PSCAD-EMTDC software has also been described. Further, in order to facilitate proper operation between the series and the shunt inverter control system, a new real power coordination controller has been developed and its performance was evaluated. The other problem concerning the operation of a UPFC is with respect to transmission line reactive power flow control. Step changes to transmission line reactive power references have significant impact on the UPFC bus voltage. To reduce the adverse effect of step changes in transmission line reactive power references on the UPFC bus voltage, a new reactive power coordination controller has been designed. Transient response studies have been conducted using PSCAD-EMTDC software to show the improvement in power oscillation damping with UPFC. These simulations include the real and reactive power coordination controllers. Finally, a new control strategy has been proposed for UPFC. In this

  6. Characterization of the Time-Dependent Fluid-Structure Interaction of Passive Flow Control of Low Reynolds Number Membrane Wings

    DTIC Science & Technology

    2013-07-01

    8.9 x 4.2 cm while the wake camera FOV was 11.9 x 5.6 cm. Dantec software (Dynamic Studio v3.10) was used to compute two-component vector fields in...YJ, PG Ifju, JP Hubner and LS Ukeiley (2013) “Controlling Pre-tension of Silicone Membranes on Micro Air Vehicle Wings,” to appear Journal of Strain...AIAA Paper 2009-0880, January. Anderson, JD (2011) Fundamental of Aerodynamics, 5 th ed. McGraw-Hill, New York, 462-463. Arce, MA, A Timpe, LS

  7. Switch Box For Controlling Flows Of Four Gases

    NASA Technical Reports Server (NTRS)

    Wishard, James R.; Lamb, James L.

    1995-01-01

    Switch box designed for use in simultaneously controlling flows of as many as four out of total of six available gases into semiconductor-processing chamber. Contains switches, relays, logic circuitry, display devices, and other circuitry for connecting each of as many as four gas controllers to any one of as many as six available mass-flow controllers. Front panel of switch box apprises technician of statuses of flows of various gases.

  8. Input/Output operations for hybrid data-flow/control-flow systems

    SciTech Connect

    Evripidou, P.; Gaudiot, J.L.

    1991-12-31

    Hybrid data-flow/control-flow system combine the advantages of the data-flow model: functionality and tolerance to communication and memory latencies with the efficient instruction scheduling of the control-flow model. The absence of global state in such hybrid multiprocessors and multiprocessors in general renders the implementation of state tasks such as Input/Output operations very difficult to implement. A distributed file-pointer scheme for incorporations I/O operations onto the data-flow model has been developed. A dependency detection algorithm detects and classify cases of potential access conflicts. A conflict resolution data-flow graph is then created which at execution time safely distributes file-pointers to the I/O actors. This scheme has also been implemented on a hybrid a data-flow control-flow multiprocessor: the Decoupled Data-Driven Multiprocessor with Variable Resolution Actors.

  9. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  10. An approach to versatile highly-uniform MOVPE growth: the flow controlled stagnation point flow reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Makoto; Kuramata, Akito; Fujii, Takuya; Anayama, Chikashi; Okazaki, Jiro; Sekiguchi, Hiroshi; Tanahashi, Toshiyuki; Yamazaki, Susumu; Nakajima, Kazuo

    1992-11-01

    We present an approach to versatile highly-uniform MOVPE growth using the controlled stagnation point flow reactor. Our approach for uniform growth involves two concepts: (1) realizing the stagnation point flow condition in a vertical reactor configuration and (2) introducing a method for versatile flow-field control using the flow-controlled multiple gas-injector technique. The versatility of the flow-control technique was investigated by evaluating how radial deposition rate uniformity is affected by variation in several hydrodynamic and reactor configuration factors: the inlet flow rate, operating pressure, susceptor temperature, susceptor rotation speed, and the inlet and susceptor separation. We confirmed that a spatially uniform deposition rate can be obtained over a wide range of hydrodynamic and configuration parameters, demonstrating that the flow-control technique can provide a stable stagnation point flow field. Even when the ideal stagnation point flow-field is disturbed, for example, by high temperature susceptor heating, it could be completely compensated by adjusting the flow rate ratio for multiple injectors, showing our technique's ability to control flow-fields. By using this technique, we obtained excellent uniformities in both layer thickness and alloy composition for two important materials - GaInAsP and AlGaInP - in the same reactor.

  11. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  12. Topographic Controls on Landslide and Debris-Flow Mobility

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Pettitt, S.

    2014-12-01

    Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.

  13. Thaw flow control for liquid heat transport systems

    DOEpatents

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  14. Control of Low Reynolds Number Flows with Fluid Structure Interactions

    DTIC Science & Technology

    2014-02-02

    2010, pp. 539- 544. [55] Yilmaz, T.O., and Rockwell, D., "Flow Structure on Finite-Span Wings Due to Pitch - up Motion," Journal of Fluid...flows with large separated regions are also typical for flapping - wing MAVs. Leading-edge vortices are known to enhance lift in unsteady aerodynamics...effective for delta wings [6]; 2) instability of the separation bubble [7]; and 3) wake instability [8,9]. Flow control research on separated flows

  15. Insect behaviour: controlling flight altitude with optic flow.

    PubMed

    Webb, Barbara

    2007-02-20

    Insects can smoothly control their height while flying by adjusting lift to maintain a set-point in the ventral optic flow. The efficacy of this simple flight-control mechanism has been demonstrated using a robot helicopter.

  16. The art and science of flow control - case studies using flow visualization methods

    NASA Astrophysics Data System (ADS)

    Alvi, F. S.; Cattafesta, L. N., III

    2010-04-01

    Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.

  17. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  18. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  19. MAG-GATE System for Molten metal Flow Control

    SciTech Connect

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  20. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  1. CFL3D Contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2010-01-01

    This paper documents the CFL3D contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop, held in Orlando, Florida in January 2010. CFL3D is a Reynolds-averaged Navier-Stokes code. Four shock boundary layer interaction cases are computed using a one-equation turbulence model widely used for other aerodynamic problems of interest. Two of the cases have experimental data available at the workshop, and two of the cases do not. The effect of grid, flux scheme, and thin-layer approximation are investigated. Comparisons are made to the available experimental data. All four cases exhibit strong three-dimensional behavior in and near the interaction regions, resulting from influences of the tunnel side-walls.

  2. Summary of the First AIAA CFD High Lift Prediction Workshop (invited)

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Long, M.; Stuever, R. A.; Wayman, T. R.

    2011-01-01

    The 1st AIAA CFD High Lift Prediction Workshop was held in Chicago in June 2010. The goals of the workshop included an assessment of the numerical prediction capability of current-generation CFD technology/ codes for swept, medium/high-aspect ratio wings in landing/take-off (high lift) configurations. 21 participants from 8 countries and 18 organizations, submitted a total of 39 datasets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to flap angle were analyzed, and effects of grid family, grid density, solver, and turbulence model were addressed. Some participants also assessed the effects of support brackets used to attach the flap and slat to the main wing. This invited paper describes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

  3. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2010-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.

  4. The study of multiphase flow control during odor reproduction

    NASA Astrophysics Data System (ADS)

    Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu

    2014-04-01

    Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.

  5. Dynamic-Active Flow Control - Phase I

    DTIC Science & Technology

    2006-10-18

    Section, 4: Plenum Chamber, 5: Rear Observation Window, 6: Return Pipework , 7: Filtration Isolation Valve, 8: AC Motor and Centrifugal Pump, 10: Return... Pipework (pressure side), 11: Filtration Circuit. A large settling chamber existed upstream of the test section. The pump flow was introduced

  6. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor

    PubMed Central

    Cheri, Mohammad Sadegh; Shahraki, Hamidreza; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Latifi, Hamid

    2014-01-01

    Measurement and control of pressure-driven flow (PDF) has a great potential to enhance the performance of chemical and biological experiments in Lab on a Chip technology. In this paper, we present an optofluidic flow sensor for real-time measurement and control of PDF. The optofluidic flow sensor consists of an on-chip micro Venturi and two optical Fabry-Pérot (FP) interferometers. Flow rate was measured from the fringe shift of FP interferometers resulted from movement fluid in the on-chip micro Venturi. The experimental results show that the optofluidic flow sensor has a minimum detectable flow change of 5 nl/min that is suitable for real time monitoring and control of fluids in many chemical and biological experiments. A Finite Element Method is used to solve the three dimensional (3D) Navier–Stokes and continuity equations to validate the experimental results. PMID:25584118

  7. Numerical Simulation of Fluidic Actuators for Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab

    2012-01-01

    Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.

  8. Control of flow through a vapor generator

    DOEpatents

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  9. Active Control of Jet Engine Inlet Flows

    DTIC Science & Technology

    2007-03-31

    circumferential distortion pattern acts as an unsteady forcing function, inducing blade vibration that can result in structural fatigue and failure 3. This...after moderate vibrations of the duct model were observed under standard test conditions, a more rigid mounting system was adopted. Upstream of the...The design process started with determining the proper placement of the actuators. Using results from surface pressure tests and flow visualization

  10. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  11. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  12. Double Stage Heat Transformer Controlled by Flow Ratio

    NASA Astrophysics Data System (ADS)

    Silva-Sotelo, S.; Romero, R. J.; Rodríguez – Martínez, A.

    this paper shows the values of Flow ratio (FR) for control of an absorption double stage heat transformer. The main parameters for the heat pump system are defined as COP, FR and GTL. The control of the entire system is based in a new definition of FR. The heat balance of the Double Stage Heat Transformer (DSHT) is used for the control. The mass flow is calculated for a HPVEE program and a second program control the mass flow. The mass flow is controlled by gear pumps connected to LabView program. The results show an increment in the fraction of the recovery energy. An example of oil distillation is used for the calculation. The waste heat energy is added at the system at 70 °C. Water ™ - Carrol mixture is used in the DSHT. The recover energy is obtained in a second absorber at 128 °C with two scenarios.

  13. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  14. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller.

  15. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  16. NASA F-16XL supersonic laminar flow control program overview

    NASA Technical Reports Server (NTRS)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  17. Flow control in low pressure turbine blades using plasma actuators

    NASA Astrophysics Data System (ADS)

    Ramakumar, Karthik

    2005-11-01

    An experimental study of plasma flow control actuators for flow separation control in low pressure turbine (LPT) blades is presented. The actuator arrangement consists of two copper strips separated by a dielectric medium with an input voltage of approximately 5kV and a frequency input varying from 3-5 kHz, creating a region of plasma used for boundary layer flow control. The effect of varying waveform on control efficacy is investigated using sine, square and saw tooth waveforms. The impact of duty cycle and forcing frequency on both displacement and momentum thickness are also examined. Boundary layer measurements are carried out using PIV while measurements of the wake downstream are performed using a 7-hole probe for Reynolds number ranging from 30,000 to 50,000. Separation is fully controlled in most configurations and boundary layer parameters reveal that the actuator entrains the free-stream flow at the actuator location and creates a region of high turbulence, essentially behaving similar to an active boundary layer trip. A small region of reversed flow near the surface indicates the presence of cross-stream vortical structures. The use of plasma synthetic jet actuators flow LPT flow control is also discussed.

  18. Photothermally controlled Marangoni flow around a micro bubble

    SciTech Connect

    Namura, Kyoko Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi

    2015-01-26

    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.

  19. Coupled parametric design of flow control and duct shape

    NASA Technical Reports Server (NTRS)

    Florea, Razvan (Inventor); Bertuccioli, Luca (Inventor)

    2009-01-01

    A method for designing gas turbine engine components using a coupled parametric analysis of part geometry and flow control is disclosed. Included are the steps of parametrically defining the geometry of the duct wall shape, parametrically defining one or more flow control actuators in the duct wall, measuring a plurality of performance parameters or metrics (e.g., flow characteristics) of the duct and comparing the results of the measurement with desired or target parameters, and selecting the optimal duct geometry and flow control for at least a portion of the duct, the selection process including evaluating the plurality of performance metrics in a pareto analysis. The use of this method in the design of inter-turbine transition ducts, serpentine ducts, inlets, diffusers, and similar components provides a design which reduces pressure losses and flow profile distortions.

  20. Flow and quiet eye: the role of attentional control in flow experience.

    PubMed

    Harris, David J; Vine, Samuel J; Wilson, Mark R

    2017-02-25

    This report was designed to investigate the role of effective attention control in flow states, by developing an experimental approach to the study of flow. A challenge-skill balance manipulation was applied to self-paced netball and basketball shooting tasks, with point of gaze recorded through mobile eye tracking. Quiet eye was used to index optimal control of visual attention. While the experimental manipulation was found to have no effect, quiet eye was associated with the experience of flow. Furthermore, mediation revealed an indirect effect of quiet eye on performance through flow experience. This study provides initial evidence that flow may be preceded by changes in visual attention, suggesting that further investigation of visual attention may elucidate the cognitive mechanisms behind flow experience.

  1. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  2. A summary of laser and microwave flow control in high-speed flows

    NASA Astrophysics Data System (ADS)

    Knight, D.

    2013-06-01

    Laser and microwave discharge in air has emerged as an effective method for flow control in high-speed flows. Computational and experimental research has demonstrated its capability for significant drag reduction and mitigation of adverse interactions in high-speed flows. The paper presents a summary of key computational and experimental studies performed at Rutgers University in collaboration with the Joint Institute for High Temperatures (Moscow, Russia) and St. Petersburg State University (St. Petersburg, Russia).

  3. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    SciTech Connect

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  4. Stability of Flow around a Cylinder in Plane Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Ben, An-Qing; Fluid Mechanics Research Team

    2013-11-01

    Simulation of Navier-Stokes equations is carried out to study the stability of flow around a cylinder in plane Poiseuille flow. The energy gradient method is employed to analyze the mechanism of instability of cylinder wake. The ratio of the channel width to the cylinder diameter is 30, and the Reynolds number based on the cylinder diameter and incoming centerline velocity is 26 and 100, respectively. The incoming flow is given as being laminar. It is found that the instability of the cylinder wake, starting near the front stagnation point upstream. The recirculation zone behind the cylinder has no effect on the stability of the wake. In the wake behind the recirculation zone, the flow stability is controlled by the energy gradient in the shear layer along the two sides of the wake. At high Re, the energy gradient of averaged flow in the channel interacts with the wake vortex, strengthening the wake vortex structure. Due to the large ratio of the channel width to the cylinder diameter, the disturbance caused by the cylinder mainly occurs in the vicinity of the centerline and has little effect on the flow near the wall. The velocity profile on the two sides of the cylinder wake in the downstream channel remains laminar (parabolic profile). Professor in Fluid Mechanics; AIAA Associate Fellow.

  5. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  6. RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...

  7. Increasing Wind Turbine Power Generation Through Optimized Flow Control Design

    NASA Astrophysics Data System (ADS)

    Cooney, John; Williams, Theodore; Corke, Thomas

    2013-11-01

    A practical, validated methodology is outlined for implementing flow control systems into wind turbine designs to maximize power generation. This approach involves determining optimal flow control strategies to minimize aerodynamic losses for horizontal axis wind turbines during Region II operation. A quantitative design optimization (QDO) process is completed for the wind turbine utilized in the Notre Dame Laboratory for Enhanced Wind Energy Research. QDO utilizes CFD simulations and shape optimization tools to maximize effectiveness of flow control. Here, only flow control schemes that could be retrofitted on the existing turbine were explored. The final geometry is discussed along with accompanying validations of the predicted performance from wind tunnel experiments at full-scale conditions. Field data from the wind energy laboratory is included.

  8. Flow control in a diffusing S-Duct

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Liver, P.; Bhat, M. K.

    1985-01-01

    Accurate measurements have been made of secondary flow in a 1.51 area ratio diffusing 30 deg - 30 deg S-Duct with circulair cross section. Turbulent flow was entering the duct at Mach number of 0.6, the boundary layer thickness at the duct entrance was ten percent of the duct inlet diameter. Through measurements made, local flow velocity vector as well as static and total pressures mapping of the flow at several stations were obtained. Strong secondary flow was measured in the first bend which continued into the second bend with new vorticity produced in there in the opposite direction. Surface oil flow visualization and wall pressures indicated a region of separated flow starting at theta approximately equal to 22 deg on the inside of the first bend up to theta approximately equal to 44 deg on the outside of the second bend. The flow separated in 'cyclone' form and never reattached in the duct. As a result of the secondary flow and the flow separation, significant total pressure distortion was observed at the exit of the duct. Using flow control devices the separation was eliminated while the exit distortion was improved.

  9. Flow control mechanism of capillary driven flow in microchannel using non-mechanical forces

    NASA Astrophysics Data System (ADS)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2016-11-01

    The capillary driven flow in microchannel is a self-driven flow by the natural phenomenon called surface tension of the fluid. The gradients in surface tension force which influence the flow field in microchannel is generated by the modulation of contact angle through a defined hydrophilization of the PDMS (Polydimethylsiloxane) microchannel surface. PDMS which is hydrophobic in nature is treated with various surface treatments in order to convert it to hydrophilic. The contact angle made by the fluid with the PDMS microchannel surface is altered when the surface is converted from hydrophobic to hydrophilic. The flow rate of fluid in the microchannel is directly proportional to the hydrophilicity of that microchannel since the capillary force which is the driving force of the flow is dependent on the contact angle. Flow control mechanism of capillary driven flow in microchannel using non-mechanical forces is developed by treating the microchannel surfaces with various surface treatments. The precise control of the surface characteristics like hydrophilicity and roughness of the miocrochannel helps to control the capillary flow in microchannel. The flow rate variation with respect to the various surface treated channels are studied. Principal Investigator.

  10. Control of Spatially Inhomogeneous Shear Flows

    DTIC Science & Technology

    2011-10-01

    input B2 consists of an array of localized actuators described by an analytical Gaussian function . The temporal forcing of the system is provided by the...easily access the tools of linear control theory . For our application, a basis of approximate balanced modes (Rowley 2005) is computed using a snapshot...the red line depicts the evolution of the energy- density of a TS wavepacket , whereas the black line shows the same quantity when feedback control (case

  11. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  12. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    PubMed

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  13. A sliding mode controller for vehicular traffic flow

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Kang, Yuhao; Yang, Bin; Peeta, Srinivas; Zhang, Li; Zheng, Taixong; Li, Yinguo

    2016-11-01

    This study proposes a sliding mode controller for vehicular traffic flow based on a car-following model to enhance the smoothness and stability of traffic flow evolution. In particular, the full velocity difference (FVD) model is used to capture the characteristics of vehicular traffic flow. The proposed sliding mode controller is designed in terms of the error between the desired space headway and the actual space headway. The stability of the controller is guaranteed using the Lyapunov technique. Numerical experiments are used to compare the performance of sliding mode control (SMC) with that of feedback control. The results illustrate the effectiveness of the proposed SMC method in terms of the distribution smoothness and stability of the space headway, velocity, and acceleration profiles. They further illustrate that the SMC strategy is superior to that of the feedback control strategy, while enabling computational efficiency that can aid in practical applications.

  14. Flow-Control Unit For Nitrogen And Hydrogen Gases

    NASA Technical Reports Server (NTRS)

    Chang, B. J.; Novak, D. W.

    1990-01-01

    Gas-flow-control unit installed and removed as one piece replaces system that included nine separately serviced components. Unit controls and monitors flows of nitrogen and hydrogen gases. Designed for connection via fluid-interface manifold plate, reducing number of mechanical fluid-interface connections from 18 to 1. Unit provides increasing reliability, safety, and ease of maintenance, and for reducing weight, volume, and power consumption.

  15. Control of Population Flow in Coherently Driven Quantum Ladders

    SciTech Connect

    Garcia-Fernandez, Ruth; Bergmann, Klaas; Ekers, Aigars; Yatsenko, Leonid P.; Vitanov, Nikolay V.

    2005-07-22

    A technique for adiabatic control of the population flow through a preselected decaying excited level in a three-level quantum ladder is presented. The population flow through the intermediate or upper level is controlled efficiently and robustly by varying the pulse delay between a pair of partly overlapping coherent laser pulses. The technique is analyzed theoretically and demonstrated in an experiment with Na{sub 2} molecules.

  16. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, John P.

    1993-01-01

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  17. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, J.P.

    1993-03-30

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  18. Method, apparatus and system for controlling fluid flow

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  19. An extended signal control strategy for urban network traffic flow

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  20. Exhaust bypass flow control for exhaust heat recovery

    DOEpatents

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  1. Computer-controlled positive displacement pump for physiological flow simulation.

    PubMed

    Holdsworth, D W; Rickey, D W; Drangova, M; Miller, D J; Fenster, A

    1991-11-01

    A computer-controlled pump for use both in the study of vascular haemodynamics and in the calibration of clinical devices which measure blood flow is designed. The novel design of this pump incorporates two rack-mounted pistons, driven into opposing cylinders by a micro-stepping motor. This approach allows the production of nearly uninterrupted steady flow, as well as a variety of pulsatile waveforms, including waveforms with reverse flow. The capabilities of this pump to produce steady flow from 0.1 to 60 ml s-1, as well as sinusoidal flow and physiological flow, such as that found in the common femoral and common carotid arteries are demonstrated. Cycle-to-cycle reproducibility is very good, with an average variation of 0.1 ml s-1 over thousands of cycles.

  2. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  3. The unified power flow controller: A new approach to power transmission control

    SciTech Connect

    Gyugyi, L.; Schauder, C.D.; Williams, S.L.; Rietman, T.R.; Torgerson, D.R.; Edris, A.

    1995-04-01

    This paper shows that the Unified Power Flow Controller (UPFC) is able to control both the transmitted real power and, independently, the reactive power flows at the sending-and the receiving-end of the transmission line. The unique capabilities of the UPFC in multiple line compensation are integrated into a generalized power flow controller that is able to maintain prescribed, and independently controllable, real power and reactive power flow in the line. The paper describes the basic concepts of the proposed generalized P and Q controller and compares it to the more conventional, but related power flow controller, such as the Thyristor-Controlled Series Capacitor and Thyristor-Controlled Phase Angle Regulator. The paper also presents results of computer simulations showing the performance of the UPFC under different system conditions.

  4. Experimental Study of Plasma Control of an Unstarting Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Im, Seong-Kyun; Do, Hyungrok; Cappelli, Mark A.

    2011-11-01

    Experimental studies of the control of unstarting supersonic model inlet flows using Dielectric Barrier Discharges (DBD) is demonstrated at Mach 4.7 flow conditions and a static temperature of ~60K and static pressure of ~1kPa. Planar Laser Rayleigh Scattering (PLRS) is used to visualize important flow features, such as boundary layers and shockwaves. Supersonic flow unstart is initiated by injecting mass into model inlet flows of either laminar or tripped turbulent boundary layer flow conditions. DBD discharge actuation of the tripped turbulent flow delays the unstart process, shifting the unstart dynamics closer to what is seen for the laminar boundary layer case. In all studies, a single DBD actuator pair is used, oriented parallel to the freestream flow, generating spanwise disturbances. It is proposed that strong suction flow which brings high momentum freestream flow near exposed electrode can be a mechanism of this actuation. PLRS reveals that this actuation is spatially confined to the regions close to the actuator electrodes, greatly limiting their performance. This material is based upon work supported by the Department of Energy under Award Number(s)DE-FC52-08NA28614.

  5. Laminar flow control, 1976 - 1982: A selected annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Maddalon, D. V.

    1982-01-01

    Laminar Flow Control technology development has undergone tremendous progress in recent years as focused research efforts in materials, aerodynamics, systems, and structures have begun to pay off. A virtual explosion in the number of research papers published on this subject has occurred since interest was first stimulated by the 1976 introduction of NASA's Aircraft Energy Efficiency Laminar Flow Control Program. The purpose of this selected bibliography is to list available, unclassified laminar flow (both controlled and natural) research completed from about 1975 to mid 1982. Some earlier pertinent reports are included but listed separately in the Appendix. Reports listed herein emphasize aerodynamics and systems studies, but some structures work is also summarized. Aerodynamic work is mainly limited to the subsonic and transonic sped regimes. Because wind-tunnel flow qualities, such as free stream disturbance level, play such an important role in boundary-layer transition, much recent research has been done in this area and it is also included.

  6. Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission

    SciTech Connect

    2012-02-08

    GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

  7. Flow and Noise Control: Review and Assessment of Future Directions

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.

    2002-01-01

    Technologies for developing radically new aerovehicles that would combine quantum leaps in cost, safety, and performance benefits with environmental friendliness have appeared on the horizon. This report provides both an assessment of the current state-of-the-art in flow and noise control and a vision for the potential gains to be made, in terms of performance benefit for civil and military aircraft and a unique potential for noise reduction, via future advances in flow and noise technologies. This report outlines specific areas of research that will enable the breakthroughs necessary to bring this vision to reality. Recent developments in many topics within flow and noise control are reviewed. The flow control overview provides succinct summaries of various approaches for drag reduction and improved maneuvering. Both exterior and interior noise problems are examined, including dominant noise sources, physics of noise generation and propagation, and both established and proposed concepts for noise reduction. Synergy between flow and noise control is a focus and, more broadly, the need to pursue research in a more concurrent approach involving multiple disciplines. Also discussed are emerging technologies such as nanotechnology that may have a significant impact on the progress of flow and noise control.

  8. Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow.

    PubMed

    Zhang, Fang; Daghighi, Yasaman; Li, Dongqing

    2011-12-15

    This paper presents a numerical study of controlling the flow rate and the concentration in a microchannel network by utilizing induced-charge electrokinetic flow (ICEKF). ICEKF over an electrically conducting surface in a microchannel will generate vortices, which can be used to adjust the flow rates and the concentrations in different microchannel branches. The flow field and concentration field were studied under different applied electric fields and with different sizes of the conducting surfaces. The results show that, by using appropriate size of the conducting surfaces in appropriate locations, the microfluidic system can generate not only streams of the same flow rate or linearly decreased flow rates in different channels, but also different, uniform concentrations within a short mixing length quickly.

  9. Global nuclear material flow/control model

    SciTech Connect

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies.

  10. Control and Automation of Fluid Flow, Mass Transfer and Chemical Reactions in Microscale Segmented Flow

    NASA Astrophysics Data System (ADS)

    Abolhasani, Milad

    Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a

  11. Model-Based Predictive Control of Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Kellogg, Steven M.; Collis, S. Scott

    1999-11-01

    In recent simulations of optimal turbulence control, the time horizon over which the control is determined matches the time horizon over which the flow is advanced. A popular workhorse of the controls community, Model-Based Predictive Control (MBPC), suggests using longer predictive horizons than advancement windows. Including additional time information in the optimization may generate improved controls. When the advancement horizon is smaller than the predictive horizon, part of the optimization and resulting control are discarded. Although this inherent inefficiency may be justified by improved control predictions, it has hampered prior investigations of MBPC for turbulent flow due to the expense associated with optimal control based on Direct Numerical Simulation. The current approach overcomes this by using our optimal control formulation based on Large Eddy Simulation. This presentation summarizes the results of optimal control simulations for turbulent channel flow using various ratios of advancement and predictive horizons. These results provide clues as to the roles of foresight, control history, cost functional, and turbulence structures for optimal control of wall-bounded turbulence.

  12. Summary of Data from the First AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.

    2002-01-01

    The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.

  13. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  14. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  15. Passive flow control by membrane wings for aerodynamic benefit

    NASA Astrophysics Data System (ADS)

    Timpe, Amory; Zhang, Zheng; Hubner, James; Ukeiley, Lawrence

    2013-03-01

    The coupling of passive structural response of flexible membranes with the flow over them can significantly alter the aerodynamic characteristic of simple flat-plate wings. The use of flexible wings is common throughout biological flying systems inspiring many engineers to incorporate them into small engineering flying systems. In many of these systems, the motion of the membrane serves to passively alter the flow over the wing potentially resulting in an aerodynamic benefit. In this study, the aerodynamic loads and the flow field for a rigid flat-plate wing are compared to free trailing-edge membrane wings with two different pre-tensions at a chord-based Reynolds number of approximately 50,000. The membrane was silicon rubber with a scalloped free trailing edge. The analysis presented includes load measurements from a sting balance along with velocity fields and membrane deflections from synchronized, time-resolved particle image velocimetry and digital image correlation. The load measurements demonstrate increased aerodynamic efficiency and lift, while the synchronized flow and membrane measurements show how the membrane motion serves to force the flow. This passive flow control introduced by the membranes motion alters the flows development over the wing and into the wake region demonstrating how, at least for lower angles of attack, the membranes motion drives the flow as opposed to the flow driving the membrane motion.

  16. Superelevation and overspill control secondary flow dynamics in submarine channels

    NASA Astrophysics Data System (ADS)

    Dorrell, R. M.; Darby, S. E.; Peakall, J.; Sumner, E. J.; Parsons, D. R.; Wynn, R. B.

    2013-08-01

    In subaerial and submarine meander bends, fluid flow travels downstream in a helical spiral, the structure of which is determined by centrifugal, hydrostatic, baroclinic, and Coriolis forces that together balance frictional stresses generated by the flow. The sense of rotation of this helical flow, and in particular, whether the near bed flow is directed toward the inner bank, e.g., "river-normal," or outer bank, e.g., "river-reversed," is crucial to the morphodynamic evolution of the channel. However, in recent years, there has been a debate over the river-normal or river-reversed nature of submarine flows. Herein, we develop a novel three-dimensional closure of secondary flow dynamics, incorporating downstream convective material transport, to cast new light on this debate. Specifically, we show that the presence of net radial material transport, arising from flow superelevation and overspill, exerts a key control on the near bed orientation of secondary flow in submarine meanders. Our analysis implies that river-reversed flows are likely to be much more prevalent throughout submarine-canyon fan systems than prior studies have indicated.

  17. Semitoroidal-diaphragm cavitating valve designed for bipropellant flow control

    NASA Technical Reports Server (NTRS)

    Young, A. L.

    1969-01-01

    Valve controls the flow of bipropellant liquids in rocket engines. Throttling and cavitation of the liquids are controlled by axial deflections of a semitoroidal metal diaphram. The valve is highly resistant to corrosion and leakage, and should be useful in food processing and chemical industries.

  18. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  19. Experimental Study on the Unified Power Flow Controller

    NASA Astrophysics Data System (ADS)

    Matsuki, Junya; Hayashi, Yasuhiro; Kitajima, Shunsuke; Takahashi, Masahiro; Murata, Kenji

    This paper presents the results of experimental study on the performance of a Unified Power Flow Controller (UPFC), one of the FACTS (Flexible AC Transmission Systems) controllers. A laboratory-scale UPFC was manufactured and installed on a laboratory electric power system to investigate its multifunctional capabilities as a power flow controller. The UPFC consists of two 4.5kVA, 200V back-to-back voltage-sourced converters, labeled “Converter 1" and “Converter 2", operated from a common DC link provided by a DC storage capacitor of 380V. It can provide independent control of both the real and reactive power flow in the line. Tests were performed to examine the capabilities of UPFC, under one-machine connected to an infinite-bus system. Steady-state responses under various kinds of operating conditions were measured and analyzed.

  20. Development of a Nonlinear Simulation for the McDonnell Douglas F-15 Eagle with a Longitudinal TECS Control-Law.

    DTIC Science & Technology

    1994-09-01

    E.L., Antoniewicz, R.F., and Krambeer, K.D., Derivation and Definition of a Linear Aircraft Model, NASA RP-1207, Aug. 1988. [7] Lambregts , A.A...Integrated System Design for Flight and Propulsion Control using Total Energy Principles. Technical Report AIAA 83-2561, AIAA, October 1983. [8] Lambregts

  1. Blood flow controls bone vascular function and osteogenesis

    PubMed Central

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Schiller, Maria; Zeuschner, Dagmar; Bixel, M. Gabriele; Milia, Carlo; Gamrekelashvili, Jaba; Limbourg, Anne; Medvinsky, Alexander; Santoro, Massimo M.; Limbourg, Florian P.; Adams, Ralf H.

    2016-01-01

    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. PMID:27922003

  2. Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses.

    PubMed

    Zheng, Chunhong; Zhang, Xiannian; Li, Chunmei; Pang, Yuhong; Huang, Yanyi

    2017-03-07

    Hydrodynamic flow is an essential stimulus in many cellular functions, regulating many mechanical sensitive pathways and closely associating with human health status and diseases. The flow pattern of blood in vessels is the key factor in causing atherosclerosis. Hemodynamics has great effect on endothelial cells' gene expression and biological functions. There are various tools that can be used for studying flow-induced cellular responses but most of them are either bulky or lack precise controllability. We develop an integrated microfluidic device that can precisely generate different flow patterns to human endothelial cells cultured on-chip. We monitored cell morphology and used small-input RNA-seq technology to depict the transcriptome profiles of human umbilical vein endothelial cells under uni- or bidirectional flow. Such integrated and miniatured device has greatly facilitated our understanding of endothelial functions with shear stimulus, not only providing new data on the transcriptomic scale but also building the connection between cell phenotypic changes and expression alternations.

  3. Sap Flow Sensors: Construction, Quality Control and Comparison

    PubMed Central

    Davis, Tyler W.; Kuo, Chen-Min; Liang, Xu; Yu, Pao-Shan

    2012-01-01

    This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors. PMID:22368504

  4. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  5. Sap flow sensors: construction, quality control and comparison.

    PubMed

    Davis, Tyler W; Kuo, Chen-Min; Liang, Xu; Yu, Pao-Shan

    2012-01-01

    This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors.

  6. Lockheed laminar-flow control systems development and applications

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.

  7. Experimental Studies of Low-Pressure Turbine Flows and Flow Control

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.

  8. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  9. Dielectric Barrier Discharge control on an unstarting supersonic flow

    NASA Astrophysics Data System (ADS)

    Im, Seong-Kyun; Do, Hyungrok; Bak, Moonsoo; Cappelli, Mark

    2011-10-01

    The control of unstarting supersonic model inlet flow using Dielectric Barrier Discharge (DBD) is experimentally demonstrated at Mach 4.7 flow condition. Planar Laser Rayleigh Scattering (PLRS) technique is utilized to visualize important flow features, such as boundary layers and shockwaves, at low static temperature (~60 K) and pressure (~1 kPa) freestream condition. The unstart which is initiated by jet injection in three different model inlet flow, a laminar boundary layer, tripped boundary layer without actuation, and tripped boundary layer with actuation, is demonstrated with PLRS technique. The delay of unstart process is observed through the DBD actuation of the tripped boundary layer when a single DBD actuator pair is oriented parallel to the freestream flow, generates spanwise disturbances. However, this actuation on unstart process is limited to a region of actuation. The control of unstarting supersonic model inlet flow using Dielectric Barrier Discharge (DBD) is experimentally demonstrated at Mach 4.7 flow condition. Planar Laser Rayleigh Scattering (PLRS) technique is utilized to visualize important flow features, such as boundary layers and shockwaves, at low static temperature (~60 K) and pressure (~1 kPa) freestream condition. The unstart which is initiated by jet injection in three different model inlet flow, a laminar boundary layer, tripped boundary layer without actuation, and tripped boundary layer with actuation, is demonstrated with PLRS technique. The delay of unstart process is observed through the DBD actuation of the tripped boundary layer when a single DBD actuator pair is oriented parallel to the freestream flow, generates spanwise disturbances. However, this actuation on unstart process is limited to a region of actuation. This material is based upon work supported by the Department of Energy under Award Number(s)DE-FC52-08NA28614.

  10. Self-Contained Automated Methodology for Optimal Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Gunzburger, Max D.; Nicolaides, Roy A.; Erlebacherl, Gordon; Hussaini, M. Yousuff

    1997-01-01

    This paper describes a self-contained, automated methodology for active flow control which couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields and controls (e.g., actuators), may be determined. The problem of boundary layer instability suppression through wave cancellation is used as the initial validation case to test the methodology. Here, the objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc. The present methodology has been extended to three dimensions and may potentially be applied to separation control, re-laminarization, and turbulence control applications using one to many sensors and actuators.

  11. Neural Network Based Adaptive Flow Control for Maneuvering Vehicles

    DTIC Science & Technology

    2005-09-01

    effective nonlinear adaptive control of the aerodynamic flow about a dynamic body using a distributed array of synthetic jets for actuation. Design of a wind...possible coupling effects between actuation, the dynamics of flow field, and the rigid body dynamics of the model. The outcomes of simulation studies are...presented. The parameters were selected to have an adverse effect on the closed loop response, therefore representing a hypothetical worst-case

  12. Simulation, Control, and Applications for Flow and Scattering Problems

    DTIC Science & Technology

    2015-04-10

    and Optimization (08 2011) Kazufumi Ito, Tomoya Takeuchi. CIP immersed interface methods for hyperbolic equations withdiscontinuous coefficients ...augmented variables along the interface between the fluid flow and the porous media so that the problem can be decoupled as several Poisson equations . The...computational fluid dynamics and control of incompressible flows modeled by Navier-Stokes equations . Under the support of the current ARO grant, we

  13. Computational Methods for Feedback Controllers for Aerodynamics Flow Applications

    DTIC Science & Technology

    2007-08-15

    include the massively separated flow around an F-1i5E at 650 angle of attack reported by Forsythe et a/. (2004) (the first eddy-resolving simulation...to one step prediction, of MIMO (multi-input, multi- output) systems. A schematic representation of the feed-forward ANN-ARX network topology is...present, and can also accommodate multiple actuator interaction allowing for MIMO control. We did not intend it to be used for random turbulent flows, but

  14. Fluidic Control of Nozzle Flow: Some Performance Measurements

    NASA Technical Reports Server (NTRS)

    Federspiel, John; Bangert, Linda; Wing, David; Hawkes, Tim

    1995-01-01

    Results are presented of an experimental program that investigated the use of a secondary air stream to control the amount of flow through a convergent-divergent nozzle. These static tests utilized high pressure, ambient temperature air that was injected at the throat of the nozzle through an annular slot. Multiple injection slot sizes and injection angles were tested. The introduction of secondary flow was made in an opposing direction to the primary flow and the resulting flow field caused the primary stream to react as though the physical throat size had been reduced. The percentage reduction in primary flow rate was generally about twice the injected flow rate. The most effective throttling was achieved by injecting through the smallest slot in an orientation most nearly opposed to the approaching primary flow. Thrust edliciency, as measured by changes in nozzle thrust coefficient, was highest at high nozzle pressure ratios, NPR. The static test results agreed with predictions obtained prior from PABSD, a fully viscous computational fluid dynamics program. Since use of such an injection system on gas turbine engine exhaust nozzles would be primarily at high NPRs, it was concluded that fluidic control holds promise for reducing nozzle weight and complexity on future systems.

  15. Light Control of the Flow of Phototactic Microswimmer Suspensions

    NASA Astrophysics Data System (ADS)

    Garcia, Xabel; Rafaï, Salima; Peyla, Philippe

    2013-03-01

    Some microalgae are sensitive to light intensity gradients. This property is known as phototaxis: The algae swim toward a light source (positive phototaxis). We use this property to control the motion of microalgae within a Poiseuille flow using light. The combination of flow vorticity and phototaxis results in a concentration of algae around the center of the flow. Intermittent light exposure allows analysis of the dynamics of this phenomenon and its reversibility. With this phenomenon, we hope to pave the way toward new algae concentration techniques (a bottleneck challenge in biofuel algal production) and toward the improvement of pollutant biodetector technology.

  16. Jet flow and premixed jet flame control by plasma swirler

    NASA Astrophysics Data System (ADS)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang

    2017-04-01

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  17. Light control of the flow of phototactic microswimmer suspensions.

    PubMed

    Garcia, Xabel; Rafaï, Salima; Peyla, Philippe

    2013-03-29

    Some microalgae are sensitive to light intensity gradients. This property is known as phototaxis: The algae swim toward a light source (positive phototaxis). We use this property to control the motion of microalgae within a Poiseuille flow using light. The combination of flow vorticity and phototaxis results in a concentration of algae around the center of the flow. Intermittent light exposure allows analysis of the dynamics of this phenomenon and its reversibility. With this phenomenon, we hope to pave the way toward new algae concentration techniques (a bottleneck challenge in biofuel algal production) and toward the improvement of pollutant biodetector technology.

  18. Optical Diagnostics for Flow Control on Small Wings

    DTIC Science & Technology

    2016-07-13

    AFRL-AFOSR-VA-TR-2016-0249 Optical diagnostics for flow control on small wings GEOFF SPEDDING UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE... control on small wings 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-15-1-0255 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey R Spedding 5d. PROJECT

  19. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  20. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  1. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  2. Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion

    NASA Astrophysics Data System (ADS)

    Barclay, Paul L.; Lukes, Jennifer R.

    2016-12-01

    A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.

  3. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  4. A Separation Control CFD Validation Test Case. Part 1; Baseline and Steady Suction

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Paschal, Keith B.; Yao, Chung-Sheng; Harris, jerome; Schaeffler, Norman W.; Washburn, Anthony E.

    2004-01-01

    Low speed flow separation over a wall-mounted hump, and its control using steady suction, were studied experimentally in order to generate a data set for a workshop aimed at validating CFD turbulence models. The baseline and controlled data sets comprised static and dynamic surface pressure measurements, flow field measurements using Particle Image Velocimetry (PIV) and wall shear stress obtained via oil-film interferometry. In addition to the specific test cases studied, surface pressures for a wide variety of conditions were reported for different Reynolds numbers and suction rates. Stereoscopic PIV and oil-film flow visualization indicated that the baseline separated flow field was mainly two-dimensional. With the application of control, some three-dimensionality was evident in the spanwise variation of pressure recovery, reattachment location and spanwise pressure fluctuations. Part 2 of this paper, under preparation for the AIAA Meeting in Reno 2005, considers separation control by means of zero-efflux oscillatory blowing.

  5. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  6. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  7. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  8. Network Adaptive Deadband: NCS Data Flow Control for Shared Networks

    PubMed Central

    Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín

    2012-01-01

    This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556

  9. Flow and Noise Control: Toward a Closer Linkage

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.

    2002-01-01

    Motivated by growing demands for aircraft noise reduction and for revolutionary new aerovehicle concepts, the late twentieth century witnessed the beginning of a shift from single-discipline research, toward an increased emphasis on harnessing the potential of flow and noise control as implemented in a more fully integrated, multidisciplinary framework. At the same time, technologies for developing radically new aerovehicles, which promise quantum leap benefits in cost, safety and performance benefits with environmental friendliness, have appeared on the horizon. Transitioning new technologies to commercial applications will also require coupling further advances in traditional areas of aeronautics with intelligent exploitation of nontraditional and interdisciplinary technologies. Physics-based modeling and simulation are crucial enabling capabilities for synergistic linkage of flow and noise control. In these very fundamental ways, flow and noise control are being driven to be more closely linked during the early design phases of a vehicle concept for optimal and mutual noise and performance benefits.

  10. Research in Natural Laminar Flow and Laminar-Flow Control, part 3

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 3 of the Symposium proceedings contains papers addressing advanced airfoil development, flight research experiments, and supersonic transition/laminar flow control research. Specific topics include the design and testing of natural laminar flow (NLF) airfoils, NLF wing gloves, and NLF nacelles; laminar boundary-layer stability over fuselage forebodies; the design of low noise supersonic/hypersonic wind tunnels; and boundary layer instability mechanisms on swept leading edges at supersonic speeds.

  11. Low-Speed Active Flow Control Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.

    2005-01-01

    The future of aviation propulsion systems is increasingly focused on the application of control technologies to significantly enhance the performance of a new generation of air vehicles. Active flow control refers to a set of technologies that manipulate the flow of air and combustion gases deep within the confines of an engine to dynamically alter its performance during flight. By employing active flow control, designers can create engines that are significantly lighter, are more fuel efficient, and produce lower emissions. In addition, the operating range of an engine can be extended, yielding safer transportation systems. The realization of these future propulsion systems requires the collaborative development of many base technologies to achieve intelligent, embedded control at the engine locations where it will be most effective. NASA Glenn Research Center s Controls and Dynamics Technology Branch has developed a state-of-the-art low-speed Active Flow Control Laboratory in which emerging technologies can be integrated and explored in a flexible, low-cost environment. The facility allows the most promising developments to be prescreened and optimized before being tested on higher fidelity platforms, thereby reducing the cost of experimentation and improving research effectiveness.

  12. Aerodynamic control in compressible flow using microwave driven discharges

    NASA Astrophysics Data System (ADS)

    McAndrew, Brendan

    A new aerodynamic control scheme based on heating of the free stream flow is developed. The design, construction, and operation of a unique small scale wind tunnel to perform experiments involving this control scheme is detailed. Free stream heating is achieved by means of microwave driven discharges, and the resulting flow perturbations are used to alter the pressure distribution around a model in the flow. The experimental facility is also designed to allow the injection of an electron beam into the free stream for control of the discharge. Appropriate models for the fluid flow and discharge physics are developed, and comparisons of calculations based on those models are made with experimental results. The calculations have also been used to explore trends in parameters beyond the range possible in the experiments. The results of this work have been (1) the development of an operating facility capable of supporting free stream heat addition experiments in supersonic flow, (2) the development of a compatible instrumented model designed to make lift and drag measurements in a low pressure, high electrical noise environment, (3) a theoretical model to predict the change in breakdown threshold in the presence of an electron beam or other source of ionization, and (4) successful demonstration of aerodynamic control using free stream heat addition.

  13. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  14. Pump and flow control subassembly of thermal control subsystem for photovoltaic power module

    NASA Astrophysics Data System (ADS)

    Motil, Brian; Santen, Mark A.

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  15. Phase effect on flow control for dielectric barrier plasma actuators

    SciTech Connect

    Singh, K. P.; Roy, Subrata

    2006-07-03

    Active control of flow has a wide range of applications. Specifically, mitigation of detachment due to the weakly ionized gas flow past a flat plate at an angle of attack is studied using two asymmetric sets of electrode pairs kept at a phase lag. The equations governing the dynamics of electrons, helium ions, and neutrals are solved self-consistently with charge-Poisson equation. The electrodynamic forces produced by two actuators largely depend on the relative phase between the potentials applied to rf electrodes and distance between them. A suitable phase and an optimum distance exist between two actuators for effective separation control.

  16. Active Feedback Control of a Web Flutter Using Flow Control Devices

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Watanabe, Masahiro; Hara, Kensuke

    This paper develops a non-contact active feedback control of web flutter in a narrow passage by using movable plates set at inlet and outlet of the passage. The strategy of this active feedback control is based on the flow-control which cancels the exciting fluid force acting on the web, i.e., cancels the self-excited feedback mechanism. In this paper, suppression of the web flutter by the active feedback control is demonstrated experimentally. In the experiments, a web (film), as a controlled object, is subjected to air flow in a narrow passage. The web flutter occurs to the web in the translational motion over the critical flow velocity. And the web flutter is actively controlled and suppressed by the movable plate motion which changes the air flow in the passage. The critical flow velocity under controlled condition is examined with changing the controller gain and phase-shift between the web motion and the movable plate motion. As a result, it is indicated that the active feedback control increases the critical flow velocity, and suppress the web flutter effectively. Moreover, the control performance is examined experimentally, and stabilization mechanism by the active feedback control is discussed.

  17. Summary of Data from the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Levy, David W.; Laflin, Kelly R.; Tinoco, Edward N.; Vassberg, John C.; Mani, Mori; Rider, Ben; Rumsey, Chris; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Crippa, Simone; Mavriplis, Dimitri J.; Murayama, Mitsuhiro

    2013-01-01

    Results from the Fifth AIAA CFD Drag Prediction Workshop (DPW-V) are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. This workshop focused on force/moment predictions for the NASA Common Research Model wing-body configuration, including a grid refinement study and an optional buffet study. The grid refinement study used a common grid sequence derived from a multiblock topology structured grid. Six levels of refinement were created resulting in grids ranging from 0.64x10(exp 6) to 138x10(exp 6) hexahedra - a much larger range than is typically seen. The grids were then transformed into structured overset and hexahedral, prismatic, tetrahedral, and hybrid unstructured formats all using the same basic cloud of points. This unique collection of grids was designed to isolate the effects of grid type and solution algorithm by using identical point distributions. This study showed reduced scatter and standard deviation from previous workshops. The second test case studied buffet onset at M=0.85 using the Medium grid (5.1x106 nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Some solutions exhibited a large side of body separation bubble that was not observed in the wind tunnel results. An optional third case used three sets of geometry, grids, and conditions from the Turbulence Model Resource website prepared by the Turbulence Model Benchmarking Working Group. These simple cases were intended to help identify potential differences in turbulence model implementation. Although a few outliers and issues affecting consistency were identified, the majority of participants produced consistent results.

  18. Closed-loop control of flow-induced cavity oscillations

    NASA Astrophysics Data System (ADS)

    Song, Qi

    Flow-induced cavity oscillations are a coupled flow-acoustic problem in which the inherent closed-loop system dynamics can lead to large unsteady pressure levels in and around the cavity, resulting in both broadband noise and discrete tones. This problem exists in many practical environments, such as landing gear bays and weapon delivery systems on aircraft, and automobile sunroofs and windows. Researchers in both fluid dynamics and controls have been working on this problem for more than fifty years. This is because not only is the physical nature of this problem rich and complex, but also it has become a standard test bed for controller deign and implementation in flow control. The ultimate goal of this research is to minimize the cavity acoustic tones and the broadband noise level over a range of freestream Mach numbers. Although open-loop and closed-loop control methodologies have been explored extensively in recent years, there are still some issues that need to be studied further. For example, a low-order theoretical model suitable for controller design does not exist. Most recent flow-induced cavity models are based either on Rossiter's semi-expirical formula or a proper orthogonal decomposition (POD) based models. These models cannot be implemented in adaptive controller design directly. In addition, closed-loop control of high subsonic and supersonic flows remains an unexplored area. In order to achieve these objectives, an analytical system model is first developed in this research. This analytical model is a transfer function based model and it can be used as a potential model for controller design. Then, a MIMO system identification algorithm is derived and combined with the generalized prediction control (GPC) algorithm. The resultant integration of adaptive system ID and GPC algorithms can potentially track nonstationary cavity dynamics and reduce the flow-induced oscillations. A novel piezoelectric-driven synthetic jet actuator array is designed for

  19. Experimental study of controlled tip disturbance effect on flow asymmetry

    NASA Technical Reports Server (NTRS)

    Degani, David; Tobak, Murray

    1992-01-01

    The effect on the asymmetric mean flow observed on pointed bodies of revolution at incidence of changing the size and location of a controlled disturbance as well as changes in angle of attack and flow conditions are evaluated experimentally. Flow visualization and side-force measurements are carried out for a generic ogive-cylinder body inclined at high angle of attack in a low-speed wind tunnel. For all angles of attack tested (30-60 deg), minute changes in the size or location of the controlled disturbance result in finite changes in the asymmetric flow field, even to the extent of reversing the sign of the side force or becoming almost symmetric. The process is reversible; returning the wire to an original position likewise restores the corresponding flow field and mean side force. The variation of side force with continuous variation of a perturbation's size or location remains continuous and single valued, even in the incidence range of 50 to 60 deg, where 'bistable' behavior of the asymmetric flow field is observed.

  20. Formation of surface nanodroplets under controlled flow conditions

    PubMed Central

    Zhang, Xuehua; Lu, Ziyang; Tan, Huanshu; Bao, Lei; He, Yinghe; Sun, Chao; Lohse, Detlef

    2015-01-01

    Nanodroplets on a solid surface (i.e., surface nanodroplets) have practical implications for high-throughput chemical and biological analysis, lubrications, laboratory-on-chip devices, and near-field imaging techniques. Oil nanodroplets can be produced on a solid–liquid interface in a simple step of solvent exchange in which a good solvent of oil is displaced by a poor solvent. In this work, we experimentally and theoretically investigate the formation of nanodroplets by the solvent exchange process under well-controlled flow conditions. We find significant effects from the flow rate and the flow geometry on the droplet size. We develop a theoretical framework to account for these effects. The main idea is that the droplet nuclei are exposed to an oil oversaturation pulse during the exchange process. The analysis shows that the volume of the nanodroplets increases with the Peclet number Pe of the flow as ∝Pe3/4, which is in good agreement with our experimental results. In addition, at fixed flow rate and thus fixed Peclet number, larger and less homogeneously distributed droplets formed at less-narrow channels, due to convection effects originating from the density difference between the two solutions of the solvent exchange. The understanding from this work provides valuable guidelines for producing surface nanodroplets with desired sizes by controlling the flow conditions. PMID:26159418

  1. Advances in the Design of High-Performance Flow Control

    NASA Astrophysics Data System (ADS)

    Chen, Kevin K.

    This thesis tackles challenges in feedback control design for fluid flows, from multiple angles and approaches. It covers three major facets---stability theory, control, and reduced-order modeling---and it investigates three major challenges of these facets: nonlinearity, high dimensionality, and non-normality. The dissertation begins with a discussion of global stability via linearized Navier--Stokes eigendecompositions, including numerical algorithms for this analysis. This section then investigates the global stability of a pipe flow through a T-shaped bifurcation at mid-hundred Reynolds numbers, which exhibits vortex breakdown. The recirculation and sensitivity regions closely coincide, which we explain using an inviscid short-wavelength perturbation theory. We also discuss the stability and receptivity properties of this flow. The second part discusses feedback control design for fluid flows, including optimal actuator and sensor placement. It presents an algorithm that computes the gradient of a control measure with respect to such placements, allowing an efficient gradient-based optimization. The implementation on the linearized Ginzburg--Landau and the Orr--Sommerfeld/Squire models of fluid flow reveals that common methods for placement, such as global mode analysis, are suboptimal. We discuss heuristics, including sensitivity, that may predict optimal placements. The third part covers reduced-order flow modeling. It examines previously unknown properties of dynamic mode decomposition (DMD)---a data-based modeling technique---including the uniqueness of the numerical algorithm and the boundary conditions of DMD-based models. We also propose an "optimized" DMD that produces less spurious decompositions, and gives the user control over the number of output modes. We show examples from the two-dimensional laminar flow over a cylinder. This part also investigates the stability and performance of high dimensional (e.g., fluid) systems in closed-loop with reduced

  2. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.

    1999-03-23

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

  3. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German

    1999-01-01

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.

  4. Effect of adaptive cruise control systems on traffic flow.

    PubMed

    Davis, L C

    2004-06-01

    The flow of traffic composed of vehicles that are equipped with adaptive cruise control (ACC) is studied using simulations. The ACC vehicles are modeled by a linear dynamical equation that has string stability. In platoons of all ACC vehicles, perturbations due to changes in the lead vehicle's velocity do not cause jams. Simulations of merging flows near an onramp show that if the total incoming rate does not exceed the capacity of the single outgoing lane, free flow is maintained. With larger incoming flows, a state closely related to the synchronized flow phase found in manually driven vehicular traffic has been observed. This state, however, should not be considered congested because the flow is maximal for the density. Traffic composed of random sequences of ACC vehicles and manual vehicles has also been studied. At high speeds (approximately 30 m/s ) jamming occurs for concentrations of ACC vehicles of 10% or less. At 20% no jams are formed. The formation of jams is sensitive to the sequence of vehicles (ACC or manual). At lower speeds (approximately 15 m/s ), no critical concentration for complete jam suppression is found. Rather, the average velocity in the pseudojam region increases with increasing ACC concentration. Mixing 50% ACC vehicles randomly with manually driven vehicles on the primary lane in onramp simulations shows only modestly reduced travel times and larger flow rates.

  5. Effect of adaptive cruise control systems on traffic flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2004-06-01

    The flow of traffic composed of vehicles that are equipped with adaptive cruise control (ACC) is studied using simulations. The ACC vehicles are modeled by a linear dynamical equation that has string stability. In platoons of all ACC vehicles, perturbations due to changes in the lead vehicle’s velocity do not cause jams. Simulations of merging flows near an onramp show that if the total incoming rate does not exceed the capacity of the single outgoing lane, free flow is maintained. With larger incoming flows, a state closely related to the synchronized flow phase found in manually driven vehicular traffic has been observed. This state, however, should not be considered congested because the flow is maximal for the density. Traffic composed of random sequences of ACC vehicles and manual vehicles has also been studied. At high speeds ( ˜30 m/s ) jamming occurs for concentrations of ACC vehicles of 10% or less. At 20% no jams are formed. The formation of jams is sensitive to the sequence of vehicles (ACC or manual). At lower speeds ( ˜15 m/s ) , no critical concentration for complete jam suppression is found. Rather, the average velocity in the pseudojam region increases with increasing ACC concentration. Mixing 50% ACC vehicles randomly with manually driven vehicles on the primary lane in onramp simulations shows only modestly reduced travel times and larger flow rates.

  6. Passive Flow Separation Control Mechanism Inspired by Shark Skin

    NASA Astrophysics Data System (ADS)

    Oakley, India; Lang, Amy

    2015-11-01

    The following experimental work seeks to examine shark scales as passive flow-actuated separation control mechanisms. It is hypothesized that the actuation of these scales can in fact reduce pressure drag by inhibiting flow reversal and thereby prevent flow separation. In order to examine this mechanism at a fundamental level, three-dimensional sharkskin scales were simplified and modeled as two-dimensional flaps. To further simplify the experiment, the flaps were observed within a laminar boundary layer. The laminar boundary layer was grown over a long flat plate that was placed inside a water tunnel. A rotating cylinder was also used to induce an unsteady, increasing adverse pressure gradient, which generated a reversing flow. In order to visualize the potential actuation of the two-dimensional flaps DPIV (digital particle image velocimetry) was utilized. Three main objectives for this work included, the actuation of the two-dimensional flaps, the resistance to a reversed flow as a result of flap actuation and the prevention of flow separation. However once the experiment was conducted the flaps did not perform as previously hypothesized. The adverse pressure gradient induced by the rotating cylinder did not produce a reversing flow powerful enough to actuate the flaps. NSF REU Site Award 1358991.

  7. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  8. Wettability control on multiphase flow in patterned microfluidics

    PubMed Central

    Zhao, Benzhong; Juanes, Ruben

    2016-01-01

    Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid–fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate’s affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms—cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)—responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge—from pore filling to postbridging—are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions. PMID:27559089

  9. Wettability control on multiphase flow in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Zhao, Benzhong; MacMinn, Christopher

    2016-11-01

    Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate's affinity to the injected fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms-cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)-responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge-from pore-filling to post-bridging-are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions.

  10. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  11. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James

    2010-01-01

    Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.

  12. Verification of the karst flow model under laboratory controlled conditions

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  13. Overview of Active Flow Control at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pack, L. G.; Joslin, R. D.

    1998-01-01

    The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review

  14. ac power control in the Core Flow Test Loop

    SciTech Connect

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report.

  15. Flow characteristics of control valve for different strokes

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-03-01

    The article deals with the determination of flow characteristics and loss coefficients of control valve when the water flows in the interval of operating parameters, including the evaluation of vapour and air cavitation regime. The characteristics of the control valve are measured on the experimental equipment and subsequently loss coefficients are determined. Data from experimental measurements are used for creating of mathematical model with vapour and air cavitation and verification results. This validation will enable the application of methods of numerical modelling for valves of atypical dimensions e.g. for use in nuclear power industry. The correct knowledge of the valve characteristics and fundamental coefficients (e.g. flow coefficient, cavitation coefficient and loss coefficient) is necessarily required primarily for designers of pipe networks.

  16. Management and control of unsteady and turbulent flows

    NASA Astrophysics Data System (ADS)

    Nagib, Hassan M.; Acharya, Mukund; Corke, Thomas C.; Reisenthel, Patrick H.; Wark, Candace E.

    1988-06-01

    Progress in four areas of research has been achieved during the first year: (1) controlled transitioning boundary layers; phase coupled plane TS waves and oblique waves are used to study various types of transition including detuned modes, (2) turbulent boundary layer structure and control; the structures responsible for the turbulence production in high Reynolds number boundary layers have been documented and manipulated, (3) management of unsteady and three-dimensional flows; flows over airfoils, axisymmetric forebodies, vortex-wing interactions, and wing-body junctions, are examined with and without passive and active flow manipulators including zero-mass base bleed, (4) scanning laser anemometry; a technique capable of mapping the flowfield in a plane has been developed.

  17. Application of laminar flow control to the High Speed Civil Transport - The NASA Supersonic Laminar Flow Control Program

    NASA Technical Reports Server (NTRS)

    Fischer, Michael C.; Vemuru, Chandra S.

    1991-01-01

    The NASA Supersonic Laminar Flow Control (SLFC) program encompasses the development of refined CFD methods and boundary layer stability codes for the highly 3D supersonic flow conditions encountered by the F-16XL technology demonstration aircraft and the prospective High Speed Civil Transport (HSCT). While the F-16XL-1 aircraft continues to gather SLFC data, work is under way on the F-16XL-2 aircraft: which will furnish attach-line design criteria, code-calibration data, and an improved understanding of the flowfield over a wing that will add confidence to the design of HSCTs' boundary layer-controlling air-suction panels.

  18. Flow manipulation and control methodologies for vacuum infusion processes

    NASA Astrophysics Data System (ADS)

    Alms, Justin B.

    Vacuum Infusion Processes (VIPs) are very attractive composite manufacturing processes since large structures such as fuselages and wind blades can be fabricated in a cost effective manner. In VIPs, the fabric layers are placed on a one sided mold which is closed by enveloping the entire mold with a thin plastic film and evacuating the air out. The vacuum compresses the fabric and when a resin inlet is opened, resin flows into the mold. The resin is allowed to cure before demolding the structure. However, VIPs causes non-repeatable and problematic resin filling patterns due to the heterogeneous nature of the material, nesting between various layers, and the hand labor utilized for laying up the fabric. The design of the manufacturing process routinely involves a trial and error model which make manufacturing costs and development time difficult to estimate. The clear solution to improving the reliability and robustness of VIPs is to implement a system capable of on-line flow control. While on-line flow control has been studied and developed for other composite manufacturing processes, the VIPs have been largely ignored as there are few process parameters that lend themselves to effective flow control. In this work, two new processes were discovered with the goal of on-line control of VIPs in mind. These two processes referred to as Flow Flooding Chamber (FFC) and Vacuum Induced Preform Relaxation (VIPR) will be discussed. They both employ an external vacuum chamber to influence the permeability of the fabric temporarily which allows one to redirect the resin flow to resin starved regions of the mold. The VIPR process in addition uses a low and regulated vacuum pressure in the external chamber to increase the permeability of the fabric in a controllable manner. The objective is to understand how the VIPR process affects the resin flow in order to implement it into a complete flow control and automated environment which will reduce or eliminate the variability

  19. Pneumatic vortical flow control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo A.; Schiff, Lewis B.; Cummings, Russell M.

    1990-01-01

    The injection of thin, high-momentum jets of air into the fuselage forebody boundary layers of the F-18 aircraft is explored numerically as a means of controlling the onset of fuselage vortices and of generating yaw control forces. The study was carried out for an angle of attack of 30 deg with symmetrical and asymmetrical blowing configurations. One-sided blowing results in a strongly asymmetrical flow pattern in the fore portion of the fuselage, leading to a net lateral force.

  20. Controlling droplet incubation using close-packed plug flow

    PubMed Central

    Mary, Pascaline; Abate, Adam R.; Agresti, Jeremy J.; Weitz, David A.

    2011-01-01

    Controlling droplet incubation is critical for droplet-based microfluidic applications; however, current techniques are either of limited precision or place strict limits on the incubation times that can be achieved. Here, we present a simple technique to control incubation time by exploiting close-packed plug flow. In contrast to other techniques, this technique is applicable to very short and very long incubation times. PMID:21544238

  1. Crossflow transition control by upstream flow deformation using plasma actuators

    NASA Astrophysics Data System (ADS)

    Dörr, Philipp C.; Kloker, Markus J.

    2017-02-01

    Control of laminar-turbulent transition in a swept-wing-type boundary-layer flow, subject to primary crossflow instability, is investigated using direct numerical simulations. In our previous works, we explored a direct base-flow stabilization aimed at a spanwise homogenous flow manipulation or a direct crossflow-vortex manipulation by plasma actuators. In this paper, the technique of upstream flow deformation (UFD) is applied, needing by far the least energy input. The actuators, modeled by local volume forcing, are set to excite amplified steady crossflow vortex (CFV) control modes with a higher spanwise wavenumber than the most amplified modes. The resulting nonlinear control CFVs are spaced narrower than the naturally occurring vortices and are less unstable with respect to secondary instability. They generate a beneficial mean-flow distortion attenuating the primary crossflow instability, and thus a delay of the transition to turbulence. Unlike roughness elements for UFD, the employed dielectric barrier discharge plasma actuators allow to set the force direction: Forcing against the crossflow has a direct, fundamental stabilizing effect due to a reduction of the mean crossflow, whereas forcing in the crossflow direction locally invokes the opposite due to a local increase of the mean crossflow. The differences between these settings, also with respect to forcing in streamwise direction, are discussed in detail, and it is shown that a significant transition delay can be achieved indeed with both, however with a differing efficiency and robustness. Additionally, a comparison to a set-up with an excitation of the control modes by synthetic blowing and suction is performed to clarify the role of the direct effect on the base flow.

  2. Research in Natural Laminar Flow and Laminar-Flow Control, part 1

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  3. Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform.

    PubMed

    Cabeza, Victor Sebastian; Kuhn, Simon; Kulkarni, Amol A; Jensen, Klavs F

    2012-05-01

    Segmented flow is often used in the synthesis of nanomaterials to achieve narrow particle size distribution. The narrowness of the distribution is commonly attributed to the reduced dispersion associated with segmented flows. On the basis of the analysis of flow fields and the resulting particle size distribution, we demonstrate that it is the slip velocity between the two fluids and internal mixing in the continuous-phase slugs that govern the nature of the particle size distribution. The reduction in the axial dispersion has less impact on particle growth and hence on the particle size distribution. Synthesis of gold nanoparticles from HAuCl(4) with rapid reduction by NaBH(4) serves as a model system. Rapid reduction yields gold nuclei, which grow by agglomeration, and it is controlled by the interaction of the nuclei with local flow. Thus, the difference in the physical properties of the two phases and the inlet flow rates ultimately control the particle growth. Hence, a careful choice of continuous and dispersed phases is necessary to control the nanoparticle size and size distribution.

  4. Application of porous materials for laminar flow control

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1978-01-01

    Fairly smooth porous materials were elected for study Doweave; Fibermetal; Dynapore; and perforated titanium sheet. Factors examined include: surface smoothness; suction characteristics; porosity; surface impact resistance; and strain compatibility. A laminar flow control suction glove arrangement was identified with material combinations compatible with thermal expansion and structural strain.

  5. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research progress in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of fundamental nature concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research reported in this paper include influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications of this research include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made here that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  6. Solving fluid-flow control problems with porous plastics.

    PubMed

    Wolbrom, I M

    1993-01-01

    To tackle fluid-flow control problems, traditional porous materials, such as ceramics, glass, metal, fabric, paper, and fibres, are now being replaced by an increasing range of porous plastics. In this article, the author discusses some of those that are available, and outlines the advantages of using these materials to replace traditional ones.

  7. 93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND SYSTEM 2, FACING WEST IN MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. URBAN WET-WEATHER FLOW POLLUTION MANAGEMENT AND CONTROL

    EPA Science Inventory

    One of the challenges in protecting urban watersheds lies in effectively controlling the contaminants in both overland runoff and sewerage system overflows during wet-weather events. Abatement of wet-weather flow (WWF) pollution can be implemented at the source by land managemen...

  9. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  10. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  11. Experimental Feedback Control of Flow Induced Cavity Tones

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Kegerise, Michael A.; Cox, David E.; Gibbs, Gary P.

    2005-01-01

    Discrete-time, linear quadratic methods were used to design feedback controllers for reducing tones generated by flow over a cavity. The dynamics of a synthetic jet actuator mounted at the leading edge of the cavity as observed by two microphones in the cavity were modeled over a broad frequency range using state space models computed from experimental data. Variations in closed loop performance as a function of model order, control order, control bandwidth, and state estimator design were studied using a cavity in the Probe Calibration Tunnel at NASA Langley. The controller successfully reduced the levels of multiple cavity tones at the tested flow speeds of Mach 0.275, 0.35, and 0.45. In some cases, the closed loop results were limited by excitation of sidebands of the cavity tones, or the creation of new tones at frequencies away from the cavity tones. Nonetheless, the results validate the combination of optimal control and experimentally-generated state space models, and suggest this approach may be useful for other flow control problems. The models were not able to account for non-linear dynamics, such as interactions between tones at different frequencies.

  12. Variability of sap flow on forest hillslopes: patterns and controls

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Blume, Theresa

    2013-04-01

    Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the

  13. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  14. Model-based feedback control of subsonic cavity flows: Control design

    NASA Astrophysics Data System (ADS)

    Yuan, Xin

    In this dissertation, we present and discuss development, implementation, and experimental results of reduced-order model based feedback control of subsonic cavity flows. Model based feedback control of subsonic flows have been studied and implemented by the flow control group at the Collaborative Center of Control Science (CCCS) at the Ohio State University (OSU). The team, composed of researchers from the departments of Electrical Engineering and Mechanical Engineering at the Ohio State, the Air Force Research Laboratory, and NASA Glenn Research Center, possesses synergistic capabilities in all of the required multidisciplinary areas of experimental data acquisition, computational flow simulation, low dimensional modeling, controller design, and experimental validation. The goal of the CCCS effort is to develop tools and methodologies for the use of closed-loop aerodynamic flow control to manipulate the flow over maneuvering air vehicles. The problem chosen for the initial study by the CCCS flow team is control of the resonant noise generated by subsonic flow past an open cavity. This phenomenon is characterized by a strong coupling between the flow dynamics and the flow-induced acoustic field that can lead to self-sustained resonance. Two approaches towards model development have been studied in this dissertation. One aims at representing the physical properties of the system by dynamical models in transfer function forms, referred to as the physics-based linear model in this dissertation. The other approach we have followed is based on proper orthogonal decomposition (POD) and Galerkin projection methods involving the flow governing equations, which is referred to as the nonlinear model or Galerkin model in the dissertation. Each model mentioned above can be further divided into two types: model derived from numerical simulation data and model derived from real time experimental data. Different types of feedback controllers have been designed for corresponding

  15. What mainly controls recession flows in river basins?

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev; Nagesh Kumar, D.

    2014-03-01

    The ubiquity of the power law relationship between dQ/dt and Q for recession periods (-dQ/dt=kQα,Q being discharge at the basin outlet at time t) clearly hints at the existence of a dominant recession flow process that is common to all real basins. It is commonly assumed that a basin, during recession events, functions as a single phreatic aquifer resting on a impermeable horizontal bed or the Dupuit-Boussinesq (DB) aquifer, and with time different aquifer geometric conditions arise that give different values of α and k. The recently proposed alternative model, geomorphological recession flow model, however, suggests that recession flows are controlled primarily by the dynamics of the active drainage network (ADN). In this study we use data for several basins and compare the above two contrasting recession flow models in order to understand which of the above two factors dominates during recession periods in steep basins. Particularly, we do the comparison by selecting three key recession flow properties: (1) power law exponent α, (2) dynamic dQ/dt-Q relationship (characterized by k) and (3) recession timescale (time period for which a recession event lasts). Our observations suggest that neither drainage from phreatic aquifers nor evapotranspiration significantly controls recession flows. Results show that the value of α and recession timescale are not modeled well by DB aquifer model. However, the above mentioned three recession curve properties can be captured satisfactorily by considering the dynamics of the ADN as described by geomorphological recession flow model, possibly indicating that the ADN represents not just phreatic aquifers but the organization of various sub-surface storage systems within the basin.

  16. Stabilising falling liquid film flows using feedback control

    SciTech Connect

    Thompson, Alice B. Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T.

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  17. Does Kutta lift exist on a vortex ring in a uniform cross flow?

    NASA Astrophysics Data System (ADS)

    Lim, T. T.; Lua, K. B.; Thet, K.

    2008-05-01

    Past works [Y. K. Chang and A. D. Vakili, Phys. Fluids 7, 1583 (1995); R. Sau and K. Mahesh, AIAA Paper No. 2007-1316] show that a vortex ring ejected normal to a cross flow tilts and deforms as it propagates downstream, and they attribute this phenomenon to the Kutta lift or Magnus effect. Here, we show through a controlled experiment that there is no physical evidence of the existence of a Kutta lift when a fully developed vortex ring is exposed to a uniform cross flow. The observed phenomenon could be attributed to the modification of vorticity distribution of the vortex core due to the combined effect of the cross flow itself and the entrainment of boundary layer material during the formation of vortex ring.

  18. Application of laminar flow control to supersonic transport configurations

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Nagel, A. L.

    1990-01-01

    The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system.

  19. Fluidic actuators for active flow control on airframe

    NASA Astrophysics Data System (ADS)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  20. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  1. Quantifying, characterizing, and controlling information flow in ultracold atomic gases

    SciTech Connect

    Haikka, P.; McEndoo, S.; Maniscalco, S.; Palma, G. M.

    2011-09-15

    We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

  2. Typing Local Control and State Using Flow Analysis

    NASA Astrophysics Data System (ADS)

    Guha, Arjun; Saftoiu, Claudiu; Krishnamurthi, Shriram

    Programs written in scripting languages employ idioms that confound conventional type systems. In this paper, we highlight one important set of related idioms: the use of local control and state to reason informally about types. To address these idioms, we formalize run-time tags and their relationship to types, and use these to present a novel strategy to integrate typing with flow analysis in a modular way. We demonstrate that in our separation of typing and flow analysis, each component remains conventional, their composition is simple, but the result can handle these idioms better than either one alone.

  3. Control of flow separation in airfoil/wing design applications

    NASA Technical Reports Server (NTRS)

    Gally, Thomas A.

    1994-01-01

    Existing aerodynamic design methods have generally concentrated on the optimization of airfoil or wing shapes to produce a minimum drag while satisfying some basic constraints such as lift, pitching moment, or thickness. Since the minimization of drag almost always precludes the existence of separated flow, the evaluation and validation of these design methods for their robustness and accuracy when separated flow is present has not been aggressively pursued. However, two new applications for these design tools may be expected to include separated flow and the issues of aerodynamic design with this feature must be addressed. The first application of the aerodynamic design tools is the design of airfoils or wings to provide an optimal performance over a wide range of flight conditions (multipoint design). While the definition of 'optimal performance' in the multipoint setting is currently being hashed out, it is recognized that given a wide enough range of flight conditions, it will not be possible to ensure a minimum drag constraint at all conditions, and in fact some amount of separated flow (presumably small) may have to be allowed at the more demanding flight conditions. Thus a multipoint design method must be tolerant of the existence of separated flow and may include some controls upon its extent. The second application is in the design of wings with extended high speed buffet boundaries of their flight envelopes. Buffet occurs on a wing when regions of flow separation have grown to the extent that their time varying pressures induce possible destructive effects upon the wing structure or adversely effect either the aircraft controllability or the passenger comfort. A conservative approach to the expansion of the buffet flight boundary is to simply expand the flight envelope of nonseparated flow under the assumption that buffet will also thus be alleviated. However, having the ability to design a wing with separated flow and thus to control the location, extent

  4. Passive and Active Control of Massively Separated High-Speed Flows

    DTIC Science & Technology

    2014-01-31

    V. Kale , J. Craig Dutton, Gregory S. Elliott. Experimental Characterization of a Pulsed Plasma Jet, AIAA Journal, (06 2013): 0. doi: 10.2514/1...2012 08/16/2011 18.00 11.00 13.00 12.00 Received Paper 9.00 5.00 Bradley G. DeBlauw, Eli Lazar, Nachiket Kale , Nick Glumac, Craig Dutton, Gregory Elliott...of Arc Filament Plasma Actuators, 2012 AIAA Aerospace Sciences Meeting. 09-JAN-12, . : , Nachiket V. Kale , J. Craig Dutton, Gregory S. Elliott4

  5. Feedback control of flow vorticity at low Reynolds numbers.

    PubMed

    Zeitz, Maria; Gurevich, Pavel; Stark, Holger

    2015-03-01

    Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.

  6. Optimization of Feedback Control of Flow over a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Son, Donggun; Kim, Euiyoung; Choi, Haecheon

    2012-11-01

    We perform a feedback gain optimization of the proportional-integral-differential (PID) control for flow over a circular cylinder at Re = 60 and 100. We measure the transverse velocity at a centerline location in the wake as a sensing variable and provide blowing and suction at the upper and lower slots on the cylinder surface as an actuation. The cost function to minimize is defined as the mean square of the sensing variable, and the PID control gains are optimized by iterative feedback tuning method which is a typical model free gain optimization method. In this method, the control gains are iteratively updated by the gradient of cost function until the control system satisfies a certain stopping criteria. The PID control with optimal control gains successfully reduces the velocity fluctuations at the sensing location and attenuates (or annihilates) vortex shedding in the wake, resulting in the reduction in the mean drag and lift fluctuations. Supported by the NRF Program (2011-0028032).

  7. Operation of the unified power flow controller as harmonic isolator

    SciTech Connect

    Enslin, J.H.R.; Zhao, J.; Spee, R.

    1996-11-01

    The unified power flow controller (UPFC) is a tool in the implementation of Flexible AC Transmission Systems (FACTS). It provides for the equivalent of static VAr compensation and series injection using back-to-back force commutated converters. This paper proposes a control strategy to extend UPFC operation to allow for the isolation of harmonics due to nonlinear loads. Simulation results based on the Electromagnetic Transients Program (EMTP) are used to illustrate device performance in a power system environment. Experimental results based on a single phase laboratory implementation verify the proposed control algorithm.

  8. Apparatus for controlling fluid flow in a conduit wall

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2003-05-13

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  9. Nocturnal insects use optic flow for flight control.

    PubMed

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.

  10. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    NASA Astrophysics Data System (ADS)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  11. Vortex generator for controlling the dispersion of effluents in a flowing liquid

    NASA Technical Reports Server (NTRS)

    Costen, R. C. (Inventor)

    1977-01-01

    A method is disclosed for controlling the dispersion of effluents in a flowing liquid. A vortex generator for creating a distinct recirculating vortical flow is disposed in a flowing liquid and effluents are discharged into the vortical flow. The effluents are entrained in the vortical flow and by selectively positioning the vortex generator the dispersion of the entrained effluents can be controlled.

  12. Vacuum rated flow controllers for inert gas ion engines

    NASA Technical Reports Server (NTRS)

    Pless, L. C.

    1987-01-01

    Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.

  13. Linear stability and control of swept Hiemenz flow

    NASA Astrophysics Data System (ADS)

    Guegan, Alan; Schmid, Peter; Huerre, Patrick

    2004-11-01

    Perturbations at the leading edge of swept wings may feed the downstream flow and trigger early boundary layer transition. Control strategies focusing on the leading edge boundary layer may provide significant improvement of flow stability over the wing surface. To this end, a gradient-based optimization algorithm is implemented to find the perturbations that experience the highest energy growth in swept Hiemenz flow over a finite time interval, under the Görtler-Hämmerlin assumption. A two-dimensional mechanism resembling the Orr-mechanism in the spanwise-wall-normal plane is shown to generate energy growth of up to three orders of magnitude for a Reynolds number Re=2000 and a spanwise wavenumber k=0.1. A similar algorithm is used to compute the wall-normal blowing/sucking sequence that most efficiently damps the energy amplification. The maximum energy is then found to decrease by more than 70%.

  14. Numerical Studies of a Fluidic Diverter for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  15. Receptivity and control in non-parallel flows

    NASA Astrophysics Data System (ADS)

    Hill, D. C.

    1996-11-01

    The receptivity problem for non-parallel compressible flow over general airfoil geometries has been investigated using the adjoint parabolized stability equations (PSE). The excitation of TS waves by acoustic scattering due to localized surface suction is modeled, and compared with direct numerical simulations by Crouch & Spalart(Crouch, J.D. & Spalart, P.R., 1995. A study of non-parallel and nonlinear effects on the localized receptivity of boundary layers. J. Fluid Mech.,) Vol. 290.. The excitation of crossflow vortices on a NACA 64A010 airfoil at 53 degrees sweep in a Mach 1.5 flow is also investigated. The features of the boundary layer profile to which the vortex growth rate is most sensitive are identified. These sensitivity data can be exploited for the design of optimum laminar wings or flow-control systems.

  16. Enabling Technologies for Microfluidic Flow Control and Detection

    NASA Astrophysics Data System (ADS)

    Leslie, Daniel Christopher

    Advances in microfluidic technologies have expanded conventional chemical and biological techniques to the point where we can envision rapid, inexpensive and portable analysis. Among the numerous challenges in the development of portable, chip-based technologies are simple flow control and detection strategies, which will be essential to widespread acceptance and implementation at both the point-of-care and in locales with limited facilities/resources. The research presented in this dissertation is focused on the development of precise flow control techniques and new, simplified detection technologies aimed at addressing these challenges. An introduction to the concepts important to microfluidics and a brief history to the field are presented in Chapter 1. Chapter 2 will present the development of a technique for the precise control of small volumes of liquids, where well-studied electrical circuit concepts are employed to create frequency-dependent microfluidic circuits. In this system, elastomeric thin films act as fluidic capacitors and diodes, which, when combined with resistors (channels), make fluidic circuits that are described by analytical models. Metering of two separate chemical inputs with a single oscillatory pneumatic control line is demonstrated by combining simple fluidic circuits (i.e., band-pass filters) to significantly reduce the external hardware required for microfluidic flow control. In order to quantify multiple flow profiles in microfluidic circuits, a novel multiplexed flow measurement method using visible dyes is introduced in Chapter 3 and rapidly determines individual flow in connected channels, post-fabrication device quality and solution viscosity. Another thrust of this dissertation research has been to develop miniaturized bioanalytical systems. Chapter 4 describes the adaption of a nucleic-acid-tagged antibody protein detection reaction to a microfluidic platform for detection of down to 5 E. coli O157:H7 cells. Furthermore, a

  17. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow

    NASA Astrophysics Data System (ADS)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu

    2016-06-01

    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  18. Magnetic Amplifier-Based Power-Flow Controller

    DOE PAGES

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less

  19. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  20. Active Flow Control of a Transonic Shock over Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Gissen, Abraham N.; Vukasinovic, Bojan; Glezer, Ari; Gogineni, Sivaram P.

    2013-11-01

    The effects of fluidic actuation on the evolution and dynamics of a transonic shock over a two-dimensional convex surface by controlling the ensuing shock-induced separation are investigated in wind tunnel experiments. Actuation is effected by a spanwise array of high-frequency (nominally 10 kHz) fluidic oscillating jets. The flow field upstream and downstream of the shock is investigated using high-speed Schlieren and PIV (3,000fps), and surface pressure measurements. It is shown that control of the shock-induced separating shear layer by exploiting direct control of small-scale motion can alter the degree of flow attachment and have a profound effect on the shock dynamics. The actuation diminishes shock oscillations near the surface, and leads to streamwise shock displacement that is proportional to the actuation strength (as measured, for example, by the mass flow rate coefficient). The strong correlation between the shock displacement and surface pressure are explored for application of closed-loop control.

  1. Magnetic Amplifier-Based Power-Flow Controller

    SciTech Connect

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can be regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.

  2. Numerical simulation of flow separation control by oscillatory fluid injection

    NASA Astrophysics Data System (ADS)

    Resendiz Rosas, Celerino

    2005-07-01

    In this work, numerical simulations of flow separation control are performed. The separation control technique studied is called "synthetic jet actuation". The developed code employs a cell centered finite volume scheme which handles viscous, steady and unsteady compressible turbulent flows. The pulsating zero mass jet flow is simulated by imposing a harmonically varying transpiration boundary condition on the airfoil's surface. Turbulence is modeled with the algebraic model of Baldwin and Lomax. The application of synthetic jet actuators is based in their ability to energize the boundary layer, thereby providing significant increase in the lift coefficient. This has been corroborated experimentally and it is corroborated numerically in this research. The performed numerical simulation investigates the flow over a NACA0015 airfoil. For this flow Re = 9 x 105 and the reduced frequency and momentum coefficient are F + = 1.1 and Cmu = 0.04 respectively. The oscillatory injection takes place at 12.27% chord from the leading edge. A maximum increase in the mean lift coefficient of 93% is predicted by the code. A discrepancy of approximately 10% is observed with corresponding experimental data from the literature. The general trend is, however, well captured. The discrepancy is attributed to the modeling of the injection boundary condition and to the turbulence model. A sensitivity analysis of the lift coefficient to different values of the oscillation parameters is performed. It is concluded that tangential injection, F+ ≈ O(1) and the utilized grid resolution around the site of injection are optimal. Streamline fields obtained for different angles of injection are analyzed. Flow separation and attachment as functions of the injection angle and of the velocity of injection can be observed. It is finally concluded that a reliable numerical tool has been developed which can be utilized as a support tool in the optimization of the synthetic jet operation and in the

  3. Model reduction and feedback control of transitional channel flow

    NASA Astrophysics Data System (ADS)

    Ilak, Milos

    This dissertation examines the use of reduced-order models for design of linear feedback controllers for fluid flows. The focus is on transitional channel flow, a canonical shear flow case with a simple geometry yet complex dynamics. Reduced-order models of the linearized Navier-Stokes equations, which describe the evolution of perturbations in transitional channel flow, are computed using two methods for snapshot-based balanced truncation, Balanced Proper Orthogonal Decomposition (BPOD) and Eigensystem Realization Algorithm (ERA). The performance of these models in feedback control is evaluated in both linearized and nonlinear Direct Numerical Simulations (DNS) of channel flow. The first part of the dissertation describes the application of BPOD to very large systems, and the detailed evaluation of the resulting reduced-order models. Exact balanced truncation, a standard method from control theory, is not computationally tractable for very large systems, such as those typically encountered in fluid flow simulations. The BPOD method, introduced by Rowley (2005), provides a close approximation. We first show that the approximation is indeed close by applying the method to a 1-D linear perturbation to channel flow at a single spatial wavenumber pair, for which exact balanced truncation is tractable. Next, as the first application of BPOD to a very high-dimensional linear system, we show that reduced-order BPOD models of a localized 3-D perturbation capture the dynamics very well. Moreover, the BPOD models significantly outperform standard Proper Orthogonal Decomposition (POD) models, as illustrated by a striking example where models using the POD modes that capture most of the perturbation energy fail to capture the perturbation dynamics. Next, reduced-order models of a complete control system for linearized channel flow are obtained using ERA, a computationally efficient method that results in the same reduced-order models as BPOD. Linear Quadratic Gaussian (LQG

  4. Formation of surface nanodroplets under controlled flow conditions

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Zhang, Xuehua; Lu, Ziyang; Tan, Huanshu; Bao, Lei; He, Yinghe; Sun, Chao

    2015-11-01

    Nanodroplets on a solid surface (i.e. surface nanodroplets) have practical implications for high-throughput chemical and biological analysis, lubrications, lab-on-chip devices, and near-field imaging techniques. Oil nanodroplets can be produced on a solid-liquid interface in a simple step of solvent exchange in which a good solvent of oil is displaced by a poor solvent. In this work, we experimentally and theoretically investigate the formation of nanodroplets by the solvent exchange process under well-controlled flow conditions. We find significant effects from the flow rate and the flow geometry on the droplet size. We develop a theoretical framework to account for these effects. The main idea is that the droplet nuclei are exposed to an oil oversaturation pulse during the exchange process. The analysis gives that the volume of the nanodroplets increases with the Peclet number Pe of the flow as ~ Pe 3 / 4 , which is in good agreement with our experimental results. In addition, at fixed flow rate and thus fixed Peclet number, larger and less homogeneously distributed droplets formed at less narrow channels, due to convection effects originating from the density difference between the two solutions of the solvent exchange.

  5. Controlling Compressor Vane Flow Vectoring Angles at Transonic Speeds

    NASA Astrophysics Data System (ADS)

    Munson, Matthew; Rempfer, Dietmar; Williams, David; Acharya, Mukund

    2003-11-01

    The ability to control flow separation angles from compressor inlet guide vanes with a Coanda-type actuator is demonstrated using both wind tunnel experiments and finite element simulations. Vectoring angles up to 40 degrees from the uncontrolled baseline state were measured with helium schlieren visualization at transonic Mach numbers ranging from 0.1 to 0.6, and with airfoil chord Reynolds numbers ranging from 89,000 to 710,000. The magnitude of the vectoring angle is shown to depend upon the geometry of the trailing edge, and actuator slot size, and the momentum flux coefficient. Under certain conditions the blowing has no effect on the vectoring angle indicating that the Coanda effect is not present. DNS simulations with the finite element method investigated the effects of geometry changes and external flow. Continuous control of the vectoring angle is demonstrated, which has important implications for application to rotating machinery. The technique is shown to reduce the stall flow coefficient by 15 percent in an axial flow compressor.

  6. Development of an Actuator for Flow Control Utilizing Detonation

    NASA Technical Reports Server (NTRS)

    Lonneman, Patrick J.; Cutler, Andrew D.

    2004-01-01

    Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.

  7. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control

    PubMed Central

    Segal, Steven S.

    2015-01-01

    Vascular resistance networks control tissue blood flow in concert with regulating arterial perfusion pressure. In response to increased metabolic demand, vasodilation arising in arteriolar networks ascends to encompass proximal feed arteries. By reducing resistance upstream, ascending vasodilation (AVD) increases blood flow into the microcirculation. Once initiated [e.g., through local activation of K+ channels in endothelial cells (ECs)], hyperpolarization is conducted through gap junctions along the endothelium. Via EC projections through the internal elastic lamina, hyperpolarization spreads into the surrounding smooth muscle cells (SMCs) through myoendothelial gap junctions (MEGJs) to promote their relaxation. Intercellular signaling through electrical signal transmission (i.e., cell-to-cell conduction) can thereby coordinate vasodilation along and among the branches of microvascular resistance networks. Perivascular sympathetic nerve fibers course through the adventitia and release norepinephrine to stimulate SMCs via α-adrenoreceptors to produce contraction. In turn, SMCs can signal ECs through MEGJs to activate K+ channels and attenuate sympathetic vasoconstriction. Activation of K+ channels along the endothelium will dissipate electrical signal transmission and inhibit AVD, thereby restricting blood flow into the microcirculation while maintaining peripheral resistance and perfusion pressure. This review explores the origins and nature of intercellular signaling governing blood flow control in skeletal muscle with respect to the interplay between AVD and sympathetic innervation. Whereas these interactions are integral to physical daily activity and athletic performance, resolving the interplay between respective signaling events provides insight into how selective interventions can improve tissue perfusion and oxygen delivery during vascular disease. PMID:26368324

  8. Control of continuous polyhydroxybutyrate synthesis using calorimetry and flow cytometry.

    PubMed

    Maskow, Thomas; Müller, Susann; Lösche, Andreas; Harms, Hauke; Kemp, Richard

    2006-02-20

    The substrate-carbon flow can be controlled in continuous bioreactor cultures by the medium composition, for example, by the C/N ratio. The carbon distribution is optimal when a maximum fraction flows into the desired product and the residual is just sufficient to compensate for the dilution of the microbial catalyst. Undershooting of the latter condition is reflected immediately by changes in the Gibbs energy dissipation and cellular states. Two calorimetric measurement principles were applied to optimize the continuous synthesis of polyhydroxybutyrate (PHB) by Variovorax paradoxus DSM4065 during growth with constantly increasing supply rates of fructose or toxic phenol. Firstly, the changed slope of the heat production rate in a complete heat balanced bioreactor (CHB) indicated optimum carbon channeling into PHB. The extent of the alteration depended directly on the toxic properties of the substrate. Secondly, a flow through calorimeter was connected with the bioreactor as a "measurement loop." The optimum substrate carbon distribution was indicated by a sudden change in the heat production rate independent of substrate toxicity. The sudden change was explained mathematically and exploited for the long-term control of phenol conversion into PHB. LASER flow cytometry measurements distinguished between subpopulations with completely different PHB-content. Populations grown on fructose preserved a constant ratio of two subpopulations with double and quadruple sets of DNA. Cells grown on phenol comprised a third subpopulation with a single DNA set. Rising phenol concentrations caused this subpopulation to increase. It may thus be considered as an indicator of chemostress.

  9. Control of cutaneous blood flow by central nervous system

    PubMed Central

    Ootsuka, Youichirou; Tanaka, Mutsumi

    2015-01-01

    Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we ‘go pale with fright’. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control. PMID:27227053

  10. Development of flow/steric field-flow fractionation as a routine process control method

    SciTech Connect

    Barman, B.N.

    1988-08-30

    Researchers studied the feasibility of using the Flow/Steric Field-Flow Fractionation (Flow/StFFF) method for the characterization of particulate materials with diameters in the 1-100 micrometers range. Studies on the optimization of the method for the separation and characterization of different size particulate samples, as well as on the role of the crossflow field and channel flowrate on the separation and resolution, were performed with a number of spherical polystyrene divinylbenzene latex standards and included in the report. Applicability of the method as a fast and reliable practical tool for industrial process control, particularly for grinding operations, was examined by analyzing a number of samples obtained by grinding. Examples of materials considered include coal, limestone and glass.

  11. Modeling, simulation, and control of cavity flow oscillations

    NASA Astrophysics Data System (ADS)

    Rowley, Clarence W.

    2002-09-01

    This thesis involves the modeling of self-sustained oscillations in the flow past a rectangular cavity. The emphasis is on developing low-dimensional models that are suitable for analysis using tools from dynamical systems and control theory. Two-dimensional direct numerical simulations are performed, and indicate the presence of a "wake mode," which has been observed previously in experiments, but which is much less well understood than the "shear-layer mode" usually observed. We characterize the flow in both shear-layer mode and wake mode, and provide a criterion for predicting the onset of wake mode, as a function of the various geometrical and flow-related parameters. We focus on the modeling of shear-layer mode, and employ two distinct modeling approaches: first, we use the method of Proper Orthogonal Decomposition (POD) and Galerkin projection to reduce the Navier-Stokes equations to a low-dimensional system of ordinary differential equations (ODEs). We extend the method to compressible flows, using approximations that are valid for cold flows at moderate Mach number. In a compressible flow, both the kinematic and thermodynamic variables contribute to the total energy, and an inner product is introduced which respects this, and allows one to use vector-valued POD modes for the Galerkin projection, We obtain models in the form of ODEs with between 2 and 60 states, and compare models based on scalar-valued and vector-valued POD modes. All of the models work well for short times (a few periods of oscillation), but the models based on scalar-valued modes deviate for longer times, while in general the models based on vector-valued modes retain qualitatively correct dynamical behavior. In the second modeling approach, we model the underlying physical mechanisms separately (shear-layer amplification, acoustic scattering, acoustic propagation), and obtain linear models that are suitable for control design and analysis. We design a controller which stabilizes the

  12. Electronic flow rate controller for a portable insulin infusion pump.

    PubMed

    Ferguson, R T; Zinman, B; Marliss, E B; Albisser, A M

    1980-01-01

    An electronic controller is described that regulates the flow of infusate by controlling the fraction of time that a pump is energized. Using the integral programming capability of the device, any one of 256 possible basal rates between 0 and 49.6% of the maximum rate can be chosen. An externally triggerable single meal-associated pulse can also be configured. The rate during the meal pulse can be any one of the 255 equally spaced rates in the range of 0--99.7%. The duration of this pulse can be chosen in 3-min steps to a maximum of 12.75 h, after which the rate automatically returns to the basal value. The controller consumes a minimum amount of power and can continuously operate a dc motor-driven pump at 3.0 V for 36 h. It drives the pump in an on-off mode in order to control the average flow rate digitally. In this way a significant reduction in the power requirements is realized and the system can be run for many days using small rechargeable batteries. One year of experience with 20 of these controllers was obtained in the research laboratory and clinical investigation unit. The results of this experience indicated the reliability and precision of these controllers, gave insight into their modes of failure, and provided valuable biomedical data for their improvement.

  13. Controls on matrix flow, preferential flow and deep drainage rates in an alluvial Vertisol.

    NASA Astrophysics Data System (ADS)

    Arnold, Sven; Larsen, Joshua; Reading, Lucy; Finch, Warren; Bulovic, Nevenka; McIntyre, Neil

    2016-04-01

    Deep drainage is the process that describes water percolating from the land surface to a depth below the root zone where it may contribute to groundwater recharge. Quantitative estimation of deep drainage through Vertisols is challenging, largely due to the unknown relative contributions from: (i) flow through the soil matrix; and (ii) flow along preferential pathways in particular soil cracks, and how to model the transience of the relative contributions. The Condamine River Alluvium, a significant aquifer in semi-arid eastern Australia, is mostly covered by uniform dark cracking clays such as Black and Grey Vertisols. The aim of this study was to identify the environmental conditions (rainfall, antecedent soil moisture, etc) controlling matrix and preferential flow in selected Vertisol profiles at the time scale of individual rainfall events. Field experiments (including 16 probes recording soil moisture at one hour intervals across eight depths between 100 mm and 4000 mm) provide extensive soil moisture data, supplemented by weather station data collected at 15-minute intervals. In addition, laboratory experiments were used to infer the water retention curves. These data were used to (i) derive deep drainage rates using the zero-flux plane method, and (ii) calibrate a soil moisture balance model that represents both matrix and preferential flow. The model was used to estimate the parts of the vertical water flux attributed to soil matrix and preferential flow. High antecedent soil moisture was associated with low fluxes at shallow depths, however at deeper depths both low and high antecedent soil moisture were associated with larger fluxes. Further, both rainfall amount and intensity controlled the interplay between matrix and preferential flow. The results reveal new insights into deep drainage processes in Vertisols and provide the basis for developing a practical approach for deep drainage estimation.

  14. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  15. Electrically controlled one-way photon flow in plasmonic nanostructures.

    PubMed

    Davoyan, Artur; Engheta, Nader

    2014-11-06

    Photonics is frequently regarded as a potential pathway for substituting current solid-state electronics and as a promise for higher-speed all-optical computing. The fundamental challenges facing nanophotonics and electronics of the future are nanoscale on-chip integration of electronics and photonics with an efficient electric field tuning of light propagation, dynamic access to the light sources and material parameters of the system, as well as isolation of optical signals analogous to that in electronics. Here we suggest a paradigm for a monolithically integrated electronic control over the light propagation in nanoscale plasmonic waveguides. We theoretically demonstrate that magnetic field induced by the direct electric current flowing in metallic constituents of plasmonic nanostructures alters the material parameters and thus the optical signal flow. We use this principle for the design of an electrically controlled subwavelength optical isolator.

  16. Development of laminar flow control wing surface porous structure

    NASA Technical Reports Server (NTRS)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.

    1984-01-01

    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  17. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    SciTech Connect

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali

    2016-11-21

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.

  18. On Mechanism of Plasma-shock-based Flow Control

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Li, Y. H.; Liang, H.; Jia, M.; Song, H. M.

    2011-09-01

    The mechanism of plasma-shock-based flow control was studied. Due to the high reduced electric field strength and peak power in the nanosecond discharge, a large quantity of high-energy electrons are produced. The quenching of the electronically excited states of N2, the dissociation of O2 and N2, and the recombination of molecular ions with electrons cause fast heating of local air near the electrode edge and fast air pressure rise, thus inducing shock waves. The effectiveness of using nanosecond discharge plasma aerodynamic actuation to improve flow separation control capability was validated at the freestream velocity of 150 m/s. Critical stall angle, lift and drag of NACA 0015 airfoil were measured with and without the nanosecond discharge plasma aerodynamic actuation in the wind tunnel experiments.

  19. Reliable multicast protocol specifications flow control and NACK policy

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Montgomery, Todd L.; Whetten, Brian

    1995-01-01

    This appendix presents the flow and congestion control schemes recommended for RMP and a NACK policy based on the whiteboard tool. Because RMP uses a primarily NACK based error detection scheme, there is no direct feedback path through which receivers can signal losses through low buffer space or congestion. Reliable multicast protocols also suffer from the fact that throughput for a multicast group must be divided among the members of the group. This division is usually very dynamic in nature and therefore does not lend itself well to a priori determination. These facts have led the flow and congestion control schemes of RMP to be made completely orthogonal to the protocol specification. This allows several differing schemes to be used in different environments to produce the best results. As a default, a modified sliding window scheme based on previous algorithms are suggested and described below.

  20. Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores

    PubMed Central

    Adiga, Shashishekar P.; Brenner, Donald W.

    2012-01-01

    Responsive polymers attached to the inside of nano/micro-pores have attracted great interest owing to the prospect of designing flow-control devices and signal responsive delivery systems. An intriguing possibility involves functionalizing nanoporous materials with smart polymers to modulate biomolecular transport in response to pH, temperature, ionic concentration, light or electric field. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions. In this work, an overview of nanoporous materials functionalized with responsive polymers is given. Various examples of pH, temperature and solvent responsive polymers are discussed. A theoretical treatment that accounts for polymer conformational change in response to a stimulus and the associated flow-control effect is presented. PMID:24955529

  1. Active Flow Control on Laminar flow over a Backward facing step

    NASA Astrophysics Data System (ADS)

    Mushyam, Aditya; Bergada, Josep M.

    2015-09-01

    In the present study, two dimensional flow over a backward-facing step in laminar flow regime with application of active flow control (AFC) technique is analysed. The aim of the present work is to gauge the effectiveness of implementing AFC to reduce drag and study its effects on flow characteristics. In order to analyse the influence of AFC on the boundary layer and the downstream vortex shedding, two different kinds of AFC techniques have been used in this study namely zero net mass flow actuators and fluidic actuators. A parametric non dimensional analysis has been carried out by varying the frequency from 0.025 to 0.1 and jet amplitude from 0.05 and 1. Four different positions of the groove were simulated; groove was respectively located at 0.024a, 0.047a, 0.072a and 0.097a, measured upstream from the right side upper edge. Three different non dimensional groove widths 0.023a, 0.048a and 0.073a were also evaluated, where a is the step height. The idea behind this study was to determine an optimal configuration to reduce the drag on the step and to suppress the vortex dissipation in the wake of the step. It was observed that when using an AFC frequency ± 10% of the vortex shedding one, was causing the maximum drag reduction. When comparing the effects of zero net mass flow actuators with the fluidic actuators, it was observed that zero net mass flow actuators were more effective.

  2. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  3. Flow control of micro-ramps on supersonic forward-facing step flow

    NASA Astrophysics Data System (ADS)

    Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu

    2016-05-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).

  4. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  5. Controlling a Linear Process in Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Lim, Junwoo; Kim, John

    1999-11-01

    Recent studies have shown that controllers developed based on a linear system theory work surprisingly well in reducing the viscous drag in turbulent boundary layers, suggesting that the essential dynamics of near-wall turbulence may well be approximated by the linearized model. Of particular interest is the linear process due to the coupling term between the wall-normal velocity and wall-normal vorticity terms in the linearized Navier-Stokes (N-S) equations, which enhances non-normality of the linearized system. This linear process is investigated through numerical simulations of a turbulent channel flow. It is shown that the linear coupling term plays an important role in fully turbulent -- and hence, nonlinear -- flows. Near-wall turbulence is shown to decay in the absence of the linear coupling term. The fact that the coupling term plays an essential role in maintaining near-wall turbulence suggests that an effective control algorithm for the drag reduction in turbulent flows should be aimed at reducing the effect of the coupling term in the wall region. Designing a control algorithm that directly accounts for the coupling term in a cost to be minimized will be discussed.

  6. Dynamic control of aerodynamic forces on a moving platform using active flow control

    NASA Astrophysics Data System (ADS)

    Brzozowski, Daniel P.

    The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2--3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.

  7. Electrically heated particulate filter with zoned exhaust flow control

    SciTech Connect

    Gonze, Eugene V

    2012-06-26

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  8. Improvement of transient stability using unified power flow controller

    SciTech Connect

    Mihalic, R.; Zunko, P.; Povh, D.

    1996-01-01

    The aim of the paper is to analyze the effect of an Unified Power Flow Controller (UPFC) on transient stability margin enhancement of a longitudinal system. To utilize the UPFC possibilities fully, the three controllable UPFC parameters were determined during the digital simulation process performed by the NETOMAC simulation program. The basis for determination of the suitable damping strategy and for determination of the optimal UPFC parameters is a mathematical model, which describes the interdependence between longitudinal transmission system parameters, operating conditions and UPFC parameters in the form of analytical equations. On the basis of the mathematical model, the theoretical UPFC limits were also detected, and their appearance explained.

  9. INVITED PAPER: Control of sudden releases in channel flow

    NASA Astrophysics Data System (ADS)

    Katopodes, Nikolaos D.

    2009-12-01

    We present a method for the detection and real-time control of chemical releases in channel flow. Sensor arrays capable of detecting a broad menu of chemical agents are required at strategic locations of the channel. The sensors detect the instantaneous, spatially distributed concentration of the chemical agent and transmit the associated information to a predictive control model. The model provides optimal operation scenarios for computer controlled bleed valves mounted on the channel walls and connected to a common manifold. Control and elimination of the chemical cloud are achieved by optimal blowing and suction of ambient fluid. Gradient information is obtained by use of adjoint equations, so optimization of the control actions is achieved with the highest possible efficiency. The control is optimized over a finite prediction horizon and instructions are sent to the valve manifold. Next, the sensor arrays detect all changes effected by the control and report them to the control model, which advances the process over the next control horizon. Non-reflective boundary conditions for the adjoint equations are derived by a characteristic analysis, which minimizes spurious information in the computation of sensitivities.

  10. Algorithms for automatic feedback control of aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Palaniappan, Karthik

    This thesis focuses on deriving algorithmic frameworks for the control of Aerodynamic Phenomena. The application of one such control law to the control of Flutter is discussed in detail. Flutter is an aero-structural instability that arises due to the adverse transfer of energy between the airplane structure and the surrounding fluid. CFD is now a mature technology and can be used as a design tool in addition to being used as an analysis tool. This is the motivation for much of the research that takes place at the Aerospace Computing Lab at Stanford. Shape optimization involves finding the shape (2-d or 3-d) that optimizes a certain performance index. Clearly, any optimum shape will be optimum only at the design point. It has been found that the aerodynamic performance at neighboring operating points is a lot less optimal than the original shapes. What we need to do is to design and develop a feasible way of controlling the flow at any operating point such that the resulting performance is optimal. In designing control laws, our philosophy has been to develop an algorithmic framework that enables treating a broad class of control problems rather than design control laws for specific isolated cases. This ensures that once a framework is established, extensions to particular problems can be done with very little effort. The framework we develop is problem independent and controller independent. Moreover, it has been shown that this leads to control laws that are feedback based, hence robust.

  11. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    SciTech Connect

    Burjorjee, D. ); Gan, B. )

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops.

  12. Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

    SciTech Connect

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2016-07-01

    This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules for cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.

  13. Environmental controls on sap flow in a northern hardwood forest.

    PubMed

    Bovard, B D; Curtis, P S; Vogel, C S; Su, H-B; Schmid, H P

    2005-01-01

    Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in assessing the consequences of climate change on the terrestrial water cycle. We used continuously heated sap flow sensors to measure transpiration in mature trees of four species during two successive drought events. The measurements were scaled to the stand level for comparison with eddy covariance estimates of ecosystem water flux (Fw). Photosynthetically active radiation and D together explained 82% of the daytime hourly variation in plot-level transpiration, and low soil water content generally resulted in increased stomatal sensitivity to increasing D. There were also species-specific responses to drought. Quercus rubra L. showed low water use during both dry and wet conditions, and during periods of high D. Among the study species, Acer rubrum L. showed the greatest degree of stomatal closure in response to low soil water availability. Moderate increases in stomatal sensitivity to D during dry periods were observed in Populus grandidentata Michx. and Betula papyrifera Marsh. Sap flow scaled to the plot level and Fw demonstrated similar temporal patterns of water loss suggesting that the mechanisms controlling sap flow of an individual tree also control ecosystem evapotranspiration. However, the absolute magnitude of scaled sap flow estimates was consistently lower than Fw. We conclude that species-specific responses to PAR, D and soil water content are key elements to understanding current and future water fluxes in this ecosystem.

  14. Snapshot of Active Flow Control Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

    2002-01-01

    NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

  15. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  16. Feedback control of flow alignment in sheared liquid crystals.

    PubMed

    Strehober, David A; Schöll, Eckehard; Klapp, Sabine H L

    2013-12-01

    Based on a continuum theory, we investigate the manipulation of the nonequilibrium behavior of a sheared liquid crystal via closed-loop feedback control. Our goal is to stabilize a specific dynamical state, that is, the stationary "flow alignment," under conditions where the uncontrolled system displays oscillatory director dynamics with in-plane symmetry. To this end we employ time-delayed feedback control (TDFC), where the equation of motion for the ith component q(i)(t) of the order parameter tensor is supplemented by a control term involving the difference q(i)(t)-q(i)(t-τ). In this diagonal scheme, τ is the delay time. We demonstrate that the TDFC method successfully stabilizes flow alignment for suitable values of the control strength K and τ; these values are determined by solving an exact eigenvalue equation. Moreover, our results show that only small values of K are needed when the system is sheared from an isotropic equilibrium state, contrary to the case where the equilibrium state is nematic.

  17. Optimal Control of Mixing in Stokes Fluid Flows

    NASA Astrophysics Data System (ADS)

    Mathew, George; Mezic, Igor; Grivopoulos, Symeon; Vaidya, Umesh; Petzold, Linda

    2006-11-01

    Motivated by the problem of microfluidic mixing, the problem of optimal control of advective mixing in Stokes fluid flows is considered. The velocity field is assumed to be induced by a finite set of spatially distributed force fields that can be modulated arbitrarily with time and a passive material is advected by the flow. To quantify the degree of mixedness of a density field, we use a Sobolev space norm of negative index. We pose a finite-time optimal control problem where we aim to achieve the best mixing for a fixed value of the action (time integral of the kinetic energy of the fluid body) per unit mass. We derive the first order necessary conditions for optimality that can be expressed as a two point boundary value problem and we discuss some elementary properties that the optimal controls need to satisfy. A conjugate gradient descent method is used to solve the optimal control problem and we present numerical results for two problems involving arrays of vortices. A comparison of the mixing performance shows that optimal aperiodic inputs can do better than periodic inputs.

  18. Development Activities on an Advanced Propellant Flow Control Unit

    NASA Astrophysics Data System (ADS)

    Noci, G.; Siciliano, P.; Fallerini, L.; Kutufa, N.; Rivetti, A.; Galassi, C.; Bruschi, P.; Piotto, M.

    2004-10-01

    A new generation of propellant control equipment for electric propulsion systems is needed in order to improve performance and operating ranges, symplify h/w configuration, reduce mass and dimensions, eliminate mass flow ripple, reduce time response. In this frame, the development of key components, their assembly and experimental investigation/ validation is on-going at Alenia Spazio-Laben/Business Unit Proel Tecnologie ( Proel in the following ) in the frame of an ESA GSTP program. The new components shall support different EP technologies, future EP multi-tasking capability and wide operating ranges. This paper reports about the development effort, its achievements and perspectives. 1. ABBREVIATIONS AND ACRONYMS BOL Beginning of Life CMBR Ceramic multilayer bender ring CTA Constant Temperature Anemometry. DUT Device under test EOL End of Life EP Electric Propulsion GEO Geosyncrhonous Earth Orbit GFCU Gas Flow Control Unit GIT Gridded ion thruster HET Hall Effect Thrusters LEO Low Earth Orbit LPC Low pressure capillary MEOP Maximum Expected Operating Pressure MFS Mass Flow rate Sensor NSSK North-South Station Keeping Pred Reduced pressure Ptank Tank pressure RMT Radiofrequency Magnetic Thruster RMTA Radiofrequency Magnetic Thruster Assembly ROOV Regulation and On-Off Valve SoW Statement of Work SPT Stationary Plasma Thruster.

  19. Flow Control Analysis on the Hump Model with RANS Tools

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Vatsa, Veer N.; Rumsey, Christopher L.; Carpenter, Mark H.

    2003-01-01

    A concerted effort is underway at NASA Langley Research Center to create a benchmark for Computational Fluid Dynamic (CFD) codes. both unstructured and structured, against a data set for the hump model with actuation. The hump model was tested in the NASA Langley 0.3-m Transonic Cryogenic Tunnel. The CFD codes used for the analyses are the FUN2D (Full Unstructured Navier-Stokes 2-Dimensional) code, the structured TLNS3D (Thin-Layer Navier-Stokes 3-Dimensional) code, and the structured CFL3D code, all developed at NASA Langley. The current investigation uses the time-accurate Reynolds-Averaged Navier-Stokes (RANS) approach to predict aerodynamic performance of the active flow control experimental database for the hump model. Two-dimensional computational results verified that steady blowing and suction and oscillatory suction/blowing can be used to significantly reduce the separated flow region on the model. Discrepancies do exist between the CFD results and experimental data in the region downstream of the slot with the largest differences in the oscillatory cases. Overall, the structured CFD codes exhibited similar behavior with each other for a wide range of control conditions, with the unstructured FUN2D code showing moderately different results in the separated flow region for the suction and oscillatory cases.

  20. Optimal control of an asymptotic model of flow separation

    NASA Astrophysics Data System (ADS)

    Qadri, Ubaid; Schmid, Peter; LFC-UK Team

    2015-11-01

    In the presence of surface imperfections, the boundary layer developing over an aircraft wing can separate and reattach, leading to a small separation bubble. We are interested in developing a low-order model that can be used to control the onset of separation at high Reynolds numbers typical of aircraft flight. In contrast to previous studies, we use a high Reynolds number asymptotic description of the Navier-Stokes equations to describe the motion of motion of the fluid. We obtain a steady solution to the nonlinear triple-deck equations for the separated flow over a small bump at high Reynolds numbers. We derive for the first time the adjoint of the nonlinear triple-deck equations and use it to study optimal control of the separated flow. We calculate the sensitivity of the properties of the separation bubble to local base flow modifications and steady forcing. We assess the validity of using this simplified asymptotic model by comparing our results with those obtained using the full Navier-Stokes equations.

  1. Flow controls on lowland river macrophytes: a review.

    PubMed

    Franklin, Paul; Dunbar, Michael; Whitehead, Paul

    2008-08-01

    We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.

  2. Application of the FUN3D Unstructured-Grid Navier-Stokes Solver to the 4th AIAA Drag Prediction Workshop Cases

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Hammond, Dana P.; Nielsen, Eric J.; Pirzadeh, S. Z.; Rumsey, Christopher L.

    2010-01-01

    FUN3D Navier-Stokes solutions were computed for the 4th AIAA Drag Prediction Workshop grid convergence study, downwash study, and Reynolds number study on a set of node-based mixed-element grids. All of the baseline tetrahedral grids were generated with the VGRID (developmental) advancing-layer and advancing-front grid generation software package following the gridding guidelines developed for the workshop. With maximum grid sizes exceeding 100 million nodes, the grid convergence study was particularly challenging for the node-based unstructured grid generators and flow solvers. At the time of the workshop, the super-fine grid with 105 million nodes and 600 million elements was the largest grid known to have been generated using VGRID. FUN3D Version 11.0 has a completely new pre- and post-processing paradigm that has been incorporated directly into the solver and functions entirely in a parallel, distributed memory environment. This feature allowed for practical pre-processing and solution times on the largest unstructured-grid size requested for the workshop. For the constant-lift grid convergence case, the convergence of total drag is approximately second-order on the finest three grids. The variation in total drag between the finest two grids is only 2 counts. At the finest grid levels, only small variations in wing and tail pressure distributions are seen with grid refinement. Similarly, a small wing side-of-body separation also shows little variation at the finest grid levels. Overall, the FUN3D results compare well with the structured-grid code CFL3D. The FUN3D downwash study and Reynolds number study results compare well with the range of results shown in the workshop presentations.

  3. Control algorithm for multiscale flow simulations of water

    NASA Astrophysics Data System (ADS)

    Kotsalis, Evangelos M.; Walther, Jens H.; Kaxiras, Efthimios; Koumoutsakos, Petros

    2009-04-01

    We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions. The use of a mass conserving specular wall results in turn to spurious oscillations in the density profile of the atomistic description of water. These oscillations can be eliminated by using an external boundary force that effectively accounts for the virial component of the pressure. In this Rapid Communication, we extend a control algorithm, previously introduced for monatomic molecules, to the case of atomistic water and demonstrate the effectiveness of this approach. The proposed computational method is validated for the cases of equilibrium and Couette flow of water.

  4. Control algorithm for multiscale flow simulations of water.

    PubMed

    Kotsalis, Evangelos M; Walther, Jens H; Kaxiras, Efthimios; Koumoutsakos, Petros

    2009-04-01

    We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions. The use of a mass conserving specular wall results in turn to spurious oscillations in the density profile of the atomistic description of water. These oscillations can be eliminated by using an external boundary force that effectively accounts for the virial component of the pressure. In this Rapid Communication, we extend a control algorithm, previously introduced for monatomic molecules, to the case of atomistic water and demonstrate the effectiveness of this approach. The proposed computational method is validated for the cases of equilibrium and Couette flow of water.

  5. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  6. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  7. Unified power flow controller: modeling and dynamic characteristic

    NASA Astrophysics Data System (ADS)

    Bach, D. H.; Loc, H. D.

    2005-12-01

    Unified power flow controller (UPFC) consists two converters. There are three purposes of this paper, firstly to illustrate the UPFC device based VSC designs, then to describe a decoupling method the UPFC's controller into two separate control systems of the shunt and the series converters respectively in realizing an appropriate coordination between them. Finally, using the Matlab tool to build a discrete simulator for the UPFC with 12 pulse converters. The simulation results show that the developed UPFC model is reflected the static and dynamic characteristics of the UPFC. The harmonics of the output of the model were analyzed. Using the simple power system with UPFC as an example, the dynamics characteristics were studied. The fault status of the system with UPFC was analyzed too.

  8. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  9. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  10. Experimental validation of tonal noise control from subsonic axial fans using flow control obstructions

    NASA Astrophysics Data System (ADS)

    Gérard, Anthony; Berry, Alain; Masson, Patrice; Gervais, Yves

    2009-03-01

    This paper presents the acoustic performance of a novel approach for the passive adaptive control of tonal noise radiated from subsonic fans. Tonal noise originates from non-uniform flow that causes circumferentially varying blade forces and gives rise to a considerably larger radiated dipolar sound at the blade passage frequency (BPF) and its harmonics compared to the tonal noise generated by a uniform flow. The approach presented in this paper uses obstructions in the flow to destructively interfere with the primary tonal noise arising from various flow conditions. The acoustic radiation of the obstructions is first demonstrated experimentally. Indirect on-axis acoustic measurements are used to validate the analytical prediction of the circumferential spectrum of the blade unsteady lift and related indicators generated by the trapezoidal and sinusoidal obstructions presented in Ref. [A. Gérard, A. Berry, P. Masson, Y. Gervais, Modelling of tonal noise control from subsonic axial fans using flow control obstructions, Journal of Sound and Vibration (2008), this issue, doi: 10.1016/j.jsv.2008.09.027.] and also by cylindrical obstructions used in the literature. The directivity and sound power attenuation are then given in free field for the control of the BPF tone generated by rotor/outlet guide vane (OGV) interaction and the control of an amplified BPF tone generated by the rotor/OGV interaction with an added triangular obstruction between two outlet guide vanes to enhance the primary non-uniform flow. Global control was demonstrated in free field, attenuation up to 8.4 dB of the acoustic power at BPF has been measured. Finally, the aerodynamic performances of the automotive fan used in this study are almost not affected by the presence of the control obstruction.

  11. Orifice plate for controlling solids flow, methods of use thereof and articles comprising the same

    DOEpatents

    Jukkola, Glen D.; Teigen, Bard C.

    2017-01-31

    Disclosed herein is an orifice plate comprising one or more plates having orifices disposed therein; the orifices being operative to permit the flow of solids from a moving bed heat exchanger to a solids flow control system; where the orifice plate is downstream of a tube bundle of the moving bed heat exchanger and upstream of the solids flow control system and wherein the orifice plate is operative to evenly distribute the flow of solids in the solids flow control system.

  12. The aerodynamic performance of several flow control devices for internal flow systems

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.

    1982-01-01

    An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.

  13. Ion channel networks in the control of cerebral blood flow

    PubMed Central

    Longden, Thomas A; Hill-Eubanks, David C

    2015-01-01

    One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.1 Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit—neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes—coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics. In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood–brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field. PMID:26661232

  14. Control of High-Speed Spray Flows Using a Steady, Parallel Control Flow Under the Influence of the Coanda Effect

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton

    2007-11-01

    An experimental demonstration of a jet vectoring technique used in our novel spray device called a Coanda-assisted Spray Manipulation (CSM) nozzle is presented. The CSM makes use of a Coanda-like effect on axisymmetric geometries through the interaction of a high volume-flow primary jet flowing through the center of a collar and a secondary high-momentum jet parallel to the first and adjacent to a convex collar. The control jet attaches to the convex wall and vectors due to the Coanda effect, entraining and vectoring the primary jet, resulting in controllable r-theta directional spraying. Various annular secondary exit holes and curved wall radii were tested over a range of momentum flux ratios to study the effects of these variables on the vectored jet angle. Particle Image Velocimetry (PIV) was used to determine the vectoring angle and the profile of the primary jet in each experiment. The experiments show that the secondary exit hole size and curve wall radius, along with the momentum ratios of the two jets predominantly affect the vectoring angle of the primary jet. Also, the jet profile is largely unchanged with vectoring for high velocity flows, which is important for the thermal spray applications for which CSM will be used.

  15. Numerical Simulations of Asymmetric Mixing in Planar Shear Flows.

    DTIC Science & Technology

    2014-09-26

    unsteady shear flows with periodic boundary conditions (Riley & Metcalfe 1980), or in previous simulations of the splitter-plate geometry using either...Soloukhin, AIMA. Riley, 3.3. & Metcalfe , R.W. 1980, Direct Numerical simulation or a Perturbed, Turbulent Mixing Layer, AIAA paper 80-02741, Pasadena

  16. Validation of WIND for a Series of Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Abbott, John M.; Cavicchi, Richard H.

    2002-01-01

    Validation assessments compare WIND CFD simulations to experimental data for a series of inlet flows ranging in Mach number from low subsonic to hypersonic. The validation procedures follow the guidelines of the AIAA. The WIND code performs well in matching the available experimental data. The assessments demonstrate the use of WIND and provide confidence in its use for the analysis of aircraft inlets.

  17. An instrument to control parallel plate separation for nanoscale flow control

    NASA Astrophysics Data System (ADS)

    White, J.; Ma, H.; Lang, J.; Slocum, A.

    2003-11-01

    The handling of extremely small samples of gases and liquids has long been a subject of research among biologists, chemists, and engineers. A few scientific instruments, notably the surface force apparatus, have been used extensively to investigate very short-range molecular phenomena. This article describes the design, fabrication, and characterization of an easily manufactured, gas and liquid flow control device called the Nanogate. The Nanogate controls liquid flows under very high planar confinement, wherein the liquid film is, in one dimension, on the scale of nanometers, but is on the scale of hundreds of microns in its other dimensions. The liquid film is confined between a silica (Pyrex) surface with a typical roughness of Ra≈6 nm and a gold-covered silicon surface with a typical roughness of Ra≈2 nm. During the manufacturing process, the Pyrex flows and conforms to the gold-covered silicon surface, improving the mating properties of the two surfaces. The fluid film thickness can be controlled within 2 Å, from sub-10 nm up to 1 μm. Control of helium gas flow rates in the 10-9 atm cm3/s range, and sub-nl/s flow rates of water and methanol have been predicted and experimentally verified.

  18. Wake generator control of inlet flow to cancel flow distortion noise

    NASA Astrophysics Data System (ADS)

    Kota, V.; Wright, M. C. M.

    2006-08-01

    If the inlet flow to a fan is non-uniform, as is often the case for aircraft engines, then undesirable tonal noise can be generated. A number of authors have suggested using active cancellation to reduce the noise. The secondary field can either be generated by loudspeakers or by the fan itself if secondary non-uniformities are deliberately introduced into the flow. In the research reported here rods inserted radially into the duct were used to generate the secondary field. The distance by which each rod protrudes into the duct was adaptively adjusted in response to an array of in-duct microphones so as to minimise the radiated sound power, whereas previously only fixed rods have been considered. The ability of the steepest-descent algorithm to minimise in-duct sound power under suitable conditions, and hence reduce radiated sound power is demonstrated in both simulations and low Mach number experiments. It is shown how the ability of such a system to control noise depends on the number and position of the controller rods, and the number of acoustic duct modes to be controlled. Thus at low fan speed, when only one mode was present just two controllers achieved an in-duct noise reduction of 25 dB at the blade passing frequency, whereas at a higher fan speed with three modes present six controllers only achieved 2 dB. To implement such a scheme in practice, where large numbers of modes are typically present, it would be necessary to develop controller arrays with many actuators, but with low aerodynamic penalty. Such a system might also be useful in HVAC applications, or in wind-tunnel testing.

  19. Development of Design Tools for Flow-Control Actuators

    NASA Technical Reports Server (NTRS)

    Mathew, Jose; Gallas, Quentin; Cattafesta, Louis N., III

    2003-01-01

    This report discusses the: 1. Development coupled electro/fluid/structural lumped-element model (LEM) of a prototypical flow-control actuator. 2. Validation the coupled electro/fluid/structural dynamics lumped-element models. 3. Development simple, yet effective, design tools for actuators. 4. Development structural dynamic models that accurately characterize the dynamic response of piezoelectric flap actuators using the Finite Element Method (FEW as well as analytical methods. 5. Perform a parametric study of a piezo-composite flap actuator. 6.Develop an optimization scheme for maximizing the actuator performance.

  20. Aircraft energy efficiency laminar flow control wing design study

    NASA Technical Reports Server (NTRS)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  1. 25. Typical valves used to control flow into and out ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Typical valves used to control flow into and out of filtration bed. Left valve (painted red) drains the bed, and center valve (painted green) admits water into the bed. The right valve is a cross over valve which is used to admit water into a dry bed from the bottom. This bottom fill excludes entrapped air as the bed is filled. When the water reached to top of the bed, filling is continued from the top of the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  2. Investigation of cyanobacteria in a controlled hyperbolic straining flow

    NASA Astrophysics Data System (ADS)

    Akbaridoust, Farzan; Philip, Jimmy; Marusic, Ivan

    2016-11-01

    Here we report a systematic study on the effect of straining flow on cyanobacteria, which are a cause of significant water contamination issues worldwide. We focus on the species Anaebena Circinalis. A micro-cross channel equipped with two online computer-controlled on-chip membrane valves was designed and fabricated using standard soft-lithography. The device produces a hyperbolic straining flow on a micron-scaled region similar to G. I. Taylor's four-roll mill at larger scale. It was used to investigate the behaviour of a single filament of cynobacteria in a crowded medium under an increasing uniform strain rate flow. The velocity field and the resulting uniform strain-rate was measured in the absence of bacteria filaments using micro-PIV. A large number of single filaments of bacteria were trapped and exposed to stain-rates over 2 to 15 s-1. Previous studies have reported anecdotal evidence of suspected mechanical damage to Anaebena Circinalis for strain rates considerably lower than the maximum values studied here. In our case, no mechanical damage was observed. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

  3. Boundary condition optimal control problem in lava flow modelling

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, Alik; Korotkii, Alexander; Tsepelev, Igor; Kovtunov, Dmitry; Melnik, Oleg

    2016-04-01

    We study a problem of steady-state fluid flow with known thermal conditions (e.g., measured temperature and the heat flux at the surface of lava flow) at one segment of the model boundary and unknown conditions at its another segment. This problem belongs to a class of boundary condition optimal control problems and can be solved by data assimilation from one boundary to another using direct and adjoint models. We derive analytically the adjoint model and test the cost function and its gradient, which minimize the misfit between the known thermal condition and its model counterpart. Using optimization algorithms, we iterate between the direct and adjoint problems and determine the missing boundary condition as well as thermal and dynamic characteristics of the fluid flow. The efficiency of optimization algorithms - Polak-Ribiere conjugate gradient and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithms - have been tested with the aim to get a rapid convergence to the solution of this inverse ill-posed problem. Numerical results show that temperature and velocity can be determined with a high accuracy in the case of smooth input data. A noise imposed on the input data results in a less accurate solution, but still acceptable below some noise level.

  4. Light controls cerebral blood flow in naive animals

    PubMed Central

    Rungta, Ravi L; Osmanski, Bruno-Félix; Boido, Davide; Tanter, Mickael; Charpak, Serge

    2017-01-01

    Optogenetics is increasingly used to map brain activation using techniques that rely on functional hyperaemia, such as opto-fMRI. Here we test whether light stimulation protocols similar to those commonly used in opto-fMRI or to study neurovascular coupling modulate blood flow in mice that do not express light sensitive proteins. Combining two-photon laser scanning microscopy and ultrafast functional ultrasound imaging, we report that in the naive mouse brain, light per se causes a calcium decrease in arteriolar smooth muscle cells, leading to pronounced vasodilation, without excitation of neurons and astrocytes. This photodilation is reversible, reproducible and energy-dependent, appearing at about 0.5 mJ. These results impose careful consideration on the use of photo-activation in studies involving blood flow regulation, as well as in studies requiring prolonged and repetitive stimulations to correct cellular defects in pathological models. They also suggest that light could be used to locally increase blood flow in a controlled fashion. PMID:28139643

  5. Lipid tubules Formed by Flow-Controlled Hydration

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Hirst, Linda S.

    2007-03-01

    Self-assembled cylindrical tubules from lipid molecules have attracted considerable attention because of their interesting supramolecular structures and technological applications. Schnur et al. [1] reported the formation of tubular microstructures from a series of diacetylenic phospholipids after liposomes were cooled through their chain melting transition. After that, several methods have been developed to fabricate such unique microstructures mainly by means of deforming preformed Giant unilamellar vesicles. Here we present a simple strategy to construct lipid microtubules through a flow-controlled lipid hydration. Fluorescent microscopy and Confocal Laser Microscopy were used to visualize the formation and the structure of the lipid tubules. Tubules were found to develop following the direction of the dynamic flow with highly parallel alignment. At high flow speeds, partial cross-linking of the lipid tubules was observed. To demonstrate the generality of this method, different types of phospholipids, such as Phosphatidic Acid (PA), Phosphatidylserine (PS), Phosphatidylethanolamine (PE), and Phosphatidylglycerol (PG) were investigated. [1] J.M. Schnur et al, Science, 264, 945 (1994).

  6. Turbulent Flow and Large Surface Wave Events in the Marine Boundary Layers

    DTIC Science & Technology

    2009-01-01

    tank observations described by Veron et al. (2007). These are demanding test cases as they include regions of extensive flow separation. IMPACT...Geometric conservation law and its application to flow computations on moving grids. AIAA Journal, 17, 1030-1037. Veron , F., G. Saxena & S. K

  7. Stability analysis of traffic flow with extended CACC control models

    NASA Astrophysics Data System (ADS)

    Ya-Zhou, Zheng; Rong-Jun, Cheng; Siu-Ming, Lo; Hong-Xia, Ge

    2016-06-01

    To further investigate car-following behaviors in the cooperative adaptive cruise control (CACC) strategy, a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models. In this control system, some vital comprehensive information, such as multiple preceding cars’ speed differences and headway, variable safety distance (VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods. Local and string stability criterion for the velocity control (VC) model and gap control (GC) model are derived via linear stability theory. Numerical simulations are conducted to study the performance of the simulated traffic flow. The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion. Project supported by the National Natural Science Foundation of China (Grant Nos. 71571107 and 11302110). The Scientific Research Fund of Zhejiang Province, China (Grant Nos. LY15A020007, LY15E080013, and LY16G010003). The Natural Science Foundation of Ningbo City (Grant Nos. 2014A610030 and 2015A610299), the Fund from the Government of the Hong Kong Administrative Region, China (Grant No. CityU11209614), and the K C Wong Magna Fund in Ningbo University, China.

  8. Exploring active flow control for efficient control of separation on an Ahmed model

    NASA Astrophysics Data System (ADS)

    McNally, Jonathan; Alvi, Farrukh

    2016-11-01

    Active flow control is applied to an Ahmed model with a rear slant angle of 25°, where a typical flow field consists of a three-dimensional separation region on the rear slant of the bluff body. Linear arrays of discrete microjets, previously proven to effectively control this separation, are investigated further. A principal aim of this experimental study is to examine the sensitivity of control as the actuator location is shifted with respect to the separation location. Aerodynamic force and surface pressure measurements, combined with the velocity field obtained using particle image velocimetry, provide a measure of control efficacy and insight into the interaction of jet arrays with the local flow field, including the separating shear layer. An energy balance is conducted to characterize control efficiency for multiple positions over a range of microjet array blowing conditions. Results show that moving the actuator array further into the separation region requires higher microjet momentum to obtain a desired aerodynamic benefit. An empirical relationship is also developed for determining the required jet velocity as a function of position by relating the jet penetration distance to local flow features and length scales. Partial support by FCAAP and NSF.

  9. A Numerical Investigation of Controllably Flexible Hydrofoil in Laminar Flows

    NASA Astrophysics Data System (ADS)

    He, G. Y.; Zhang, X.; Zhang, S. G.; He, G. W.

    Aquatic animals, such as fishes, whales, seals and penguins, are naturally born to be flexible and deformable, which promise their effective locomotion through water. They are able to produce hydrodynamic thrust by active control of their body configurations. That is, the aquatic animals could wiggle their flexible bodies at an appropriate frequency and amplitude suitable to the hydrodynamics surrounding them. However, the mechanism for the active controls has not been adequately understood yet and attracts current research. One obstacle which hinders such investigation is the difficulty in experimental measurements of the flows around the wiggling bodies, and thus numerical simulation is becoming an indispensable alternative. In the paper, an immersed boundary method is developed to simulate the NACA 65-10 hydrofoil. It is observed that a wiggling hydrofoil exhibits a higher thrust while a stationary hydrofoil offers little improvement.

  10. Quality control and data flow operations of SPHERE

    NASA Astrophysics Data System (ADS)

    Hummel, Wolfgang; Girard, Julien H. V.; Milli, Julien; Wahhaj, Zahed; Lundin, Lars; Vigan, Arthur

    2016-07-01

    ESO operates since April 2015 the new planet finder instrument SPHERE1 with three arms supported by a common path coronograph with extreme AO. Observing modes include dual band imaging, long slit spectroscopy, IFS and high contrast polarimetry. We report on the implementation of the SPHERE data flow and quality control system and on operational highlights in the first year of operations: This includes some unconventional parts of the SPHERE calibration plan like special rules for the selection of filters and the measures for an optimized calibration of the two polarimetric channels of the ZIMPOL arm. Finally we report on the significance of the SPHERE quality control system, its relation to the data reduction pipeline and which previously undocumented instrumental features have been revealed so far.

  11. Melt Flow Control in the Directional Solidification of Binary Alloys

    NASA Technical Reports Server (NTRS)

    Zabaras, Nicholas

    2003-01-01

    Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.

  12. Control of pollen-mediated gene flow in transgenic trees.

    PubMed

    Zhang, Chunsheng; Norris-Caneda, Kim H; Rottmann, William H; Gulledge, Jon E; Chang, Shujun; Kwan, Brian Yow-Hui; Thomas, Anita M; Mandel, Lydia C; Kothera, Ronald T; Victor, Aditi D; Pearson, Leslie; Hinchee, Maud A W

    2012-08-01

    Pollen elimination provides an effective containment method to reduce direct gene flow from transgenic trees to their wild relatives. Until now, only limited success has been achieved in controlling pollen production in trees. A pine (Pinus radiata) male cone-specific promoter, PrMC2, was used to drive modified barnase coding sequences (barnaseH102E, barnaseK27A, and barnaseE73G) in order to determine their effectiveness in pollen ablation. The expression cassette PrMC2-barnaseH102E was found to efficiently ablate pollen in tobacco (Nicotiana tabacum), pine, and Eucalyptus (spp.). Large-scale and multiple-year field tests demonstrated that complete prevention of pollen production was achieved in greater than 95% of independently transformed lines of pine and Eucalyptus (spp.) that contained the PrMC2-barnaseH102E expression cassette. A complete pollen control phenotype was achieved in transgenic lines and expressed stably over multiple years, multiple test locations, and when the PrMC2-barnaseH102E cassette was flanked by different genes. The PrMC2-barnaseH102E transgenic pine and Eucalyptus (spp.) trees grew similarly to control trees in all observed attributes except the pollenless phenotype. The ability to achieve the complete control of pollen production in field-grown trees is likely the result of a unique combination of three factors: the male cone/anther specificity of the PrMC2 promoter, the reduced RNase activity of barnaseH102E, and unique features associated with a polyploid tapetum. The field performance of the PrMC2-barnaseH102E in representative angiosperm and gymnosperm trees indicates that this gene can be used to mitigate pollen-mediated gene flow associated with large-scale deployment of transgenic trees.

  13. Optimal energy growth and optimal control in swept Hiemenz flow

    NASA Astrophysics Data System (ADS)

    Guégan, Alan; Schmid, Peter J.; Huerre, Patrick

    2006-11-01

    The objective of the study is first to examine the optimal transient growth of Görtler Hämmerlin perturbations in swept Hiemenz flow. This configuration constitutes a model of the flow in the attachment-line boundary layer at the leading-edge of swept wings. The optimal blowing and suction at the wall which minimizes the energy of the optimal perturbations is then determined. An adjoint-based optimization procedure applicable to both problems is devised, which relies on the maximization or minimization of a suitable objective functional. The variational analysis is carried out in the framework of the set of linear partial differential equations governing the chordwise and wall-normal velocity fluctuations. Energy amplifications of up to three orders of magnitude are achieved at low spanwise wavenumbers (k {˜} 0.1) and large sweep Reynolds number (textit{Re} {˜} 2000). Optimal perturbations consist of spanwise travelling chordwise vortices, with a vorticity distribution which is inclined against the sweep. Transient growth arises from the tilting of the vorticity distribution by the spanwise shear via a two-dimensional Orr mechanism acting in the basic flow dividing plane. Two distinct regimes have been identified: for k {≤sssim} 0.25, vortex dipoles are formed which induce large spanwise perturbation velocities; for k {gtrsim} 0.25, dipoles are not observed and only the Orr mechanism remains active. The optimal wall blowing control yields for instance an 80% decrease of the maximum perturbation kinetic energy reached by optimal disturbances at textit{Re} {=} 550 and k {=} 0.25. The optimal wall blowing pattern consists of spanwise travelling waves which follow the naturally occurring vortices and qualitatively act in the same manner as a more simple constant gain feedback control strategy.

  14. Development of digital flow control system for multi-channel variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  15. Control and management of unsteady and turbulent flows

    NASA Astrophysics Data System (ADS)

    Nagib, H.; Acharya, M.; Corke, T.; Wark, C.; Williams, D.

    1993-12-01

    Active input of tuned and detuned two dimensional and oblique modes in a layer was found to lead to the growth of near-subharmonic modes as well as numerous sum and difference modes, thereby emulating 'natural' transition. Acoustic receptivity of laminar boundary layers with nonlocalized low-amplitude periodic waviness was experimentally investigated and compared favorably to theoretical predictions. Closed loop excitation of axisymmetric and azimuthal modes in a free round jet were used to reveal the character of high Reynolds number transition (i.e., supercritical Hopf bifurcation) and to study mode selection and switching. Suction and blowing were shown to be capable of controlling the asymmetric flow about the forebodies of aircraft and missiles and the experiments indicate that the suction bleed coefficient must increase like the 3.9 power of the velocity to balance the effects of geometric instability at the tip. The effects of yaw on such asymmetries were also documented. A strategy to suppress the dynamic-stall vortex over a range of operating parameters, using controlled leading-edge suction to prevent accumulation of reverse-flowing fluid, was successfully developed from a study of the mechanisms responsible for the evolution of the vortex. The National Diagnostic Facility was completed and several collaborative experiments are scheduled during 1994.

  16. Unsteady Aerodynamic Flow Control of a Suspended Axisymmetric Moving Platform

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2011-11-01

    The aerodynamic forces on an axisymmetric wind tunnel model are altered by fluidic interaction of an azimuthal array of integrated synthetic jet actuators with the cross flow. Four-quadrant actuators are integrated into a Coanda surface on the aft section of the body, and the jets emanate from narrow, azimuthally segmented slots equally distributed around the model's perimeter. The model is suspended in the tunnel using eight wires each comprising miniature in-line force sensors and shape-memory-alloy (SMA) strands that are used to control the instantaneous forces and moments on the model and its orientation. The interaction of the actuation jets with the flow over the moving model is investigated using PIV and time-resolved force measurements to assess the transitory aerodynamic loading effected by coupling between the induced motion of the aerodynamic surface and the fluid dynamics that is driven by the actuation. It is shown that these interactions can lead to effective control of the aerodynamic forces and moments, and thereby of the model's motion. Supported by ARO.

  17. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  18. Flow control at low Reynolds numbers using periodic airfoil morphing

    NASA Astrophysics Data System (ADS)

    Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration

    2014-11-01

    The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.

  19. Versatile microbridge flow control sensor structure and applications

    NASA Astrophysics Data System (ADS)

    Bonne, Ulrich; Havey, Gary

    1992-07-01

    Availability of reliable and accurate sensors is a necessary first step in the design of control systems. This paper first describes the nature of a hot-thin-film microanemometer and then reviews its applications for Environmental Control and Life Support Systems (ECLSS). This Si sensor chip measures less than 2 mm x 2 mm x 0.3 mm, consumes less than 4 mW of power, and features a 10- to 20-ms response time. For applications requiring battery operation, the average power consumption can be further reduced by more than a factor of 100 using intermittent operation. The sensor output can be expressed in STP volumetric or mass flow units; however, changes in environmental temperature or fluid composition would cause errors if left uncorrected. Such corrections have been worked out and implemented with the help of an additional sensor, so that a fully compensated flow sensor package has been achieved, with an accuracy near +1 percent over a major part of its 3000:1 dynamic range. The small mass of the 1-micron-thick sensing film makes it suitable for use in systems subject to vibration as well as for a wide range of gravitational environments, including zero-g.

  20. Vibration Control of Large Structures.

    DTIC Science & Technology

    1987-09-01

    Vibration Control of a Beam with a Proof-Mass Actuator," AIAA Guidance, Navigation and Control Conference, Monterey, CA, August, 19S7. Haviland , J. K...Conference, Monterey, CA, August, 1987. Haviland , J. K., Politansky, H., Lim, T. W., and Pilkey, W. D., "The Control of Linear Proof-Mass Dampers," Sixth

  1. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics

    NASA Technical Reports Server (NTRS)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark

    2010-01-01

    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session

  2. Model-based control of transitional and turbulent wall-bounded shear flows

    NASA Astrophysics Data System (ADS)

    Moarref, Rashad

    Turbulent flows are ubiquitous in nature and engineering. Dissipation of kinetic energy by turbulent flow around airplanes, ships, and submarines increases resistance to their motion (drag). In this dissertation, we have designed flow control strategies for enhancing performance of vehicles and other systems involving turbulent flows. While traditional flow control techniques combine physical intuition with costly numerical simulations and experiments, we have developed control-oriented models of wall-bounded shear flows that enable simulation-free and computationally-efficient design of flow controllers. Model-based approach to flow control design has been motivated by the realization that progressive loss of robustness and consequential noise amplification initiate the departure from the laminar flow. In view of this, we have used the Navier-Stokes equations with uncertainty linearized around the laminar flow as a control-oriented model for transitional flows and we have shown that reducing the sensitivity of fluctuations to external disturbances represents a powerful paradigm for preventing transition. In addition, we have established that turbulence modeling in conjunction with judiciously selected linearization of the flow with control can be used as a powerful control-oriented model for turbulent flows. We have illustrated the predictive power of our model-based control design in three concrete problems: preventing transition by (i) a sensorless strategy based on traveling waves and (ii) an optimal state-feedback controller based on local flow information; and (iii) skin-friction drag reduction in turbulent flows by transverse wall oscillations. We have developed analytical and computational tools based on perturbation analysis (in the control amplitude) for control design by means of spatially- and temporally- periodic flow manipulation in problems (i) and (iii), respectively. In problem (ii), we have utilized tools for designing structured optimal state

  3. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  4. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  5. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  6. Cellular Automaton Models of Highway Traffic Flow Considering Lane-Control and Speed-Control

    NASA Astrophysics Data System (ADS)

    Qian, Yong-Sheng; Li, Wen-Jun; Zeng, Jun-Wei; Wang, Min; Du, Jia-Wei; Guang, Xiao-Ping

    2011-10-01

    As two kinds of management modes of highway traffic control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highway system with two opposing directions under the above two modes are established considering car and truck mixed running. Through computer numerical simulating, the fundamental diagrams with different parameters are obtained, and after the analysis of density-flux diagrams, the variation discipline of flux with traffic density under different control models is gained. The results indicate that, compared with lane-control, utilization ratio of road can be further improved with speed-control when the truck number increases. The research result is of great significance for reasonable providing theoretical guidance for highway traffic control.

  7. AIAA Atmospheric Flight Mechanics Conference, Hilton Head Island, SC, Aug. 10-12, 1992, Technical Papers. Pts. 1-2

    SciTech Connect

    Not Available

    1992-01-01

    Consideration is given to aircraft dynamics and aerodynamics in atmospheric disturbances, vehicle trajectory optimization, projectile and missile flight dynamics, high alpha prediction codes for flow phenomenon, aircraft handling qualities, high alpha CFD and control, aircraft agility, unsteady flow phenomenon, parameter estimation, hypersonic technology, CFD for store separation, aeroassist technology, and unsteady and high alpha numerical studies. Particular attention is given to optimal recovery from microburst wind shear, optimal trajectories for an unmanned air-vehicle in the horizontal plane, numerical simulation of missile flow fields, pulsating spanwise blowing on a fighter aircraft, pilot control identification using minimum model error estimation, Navier-Stokes computations for oscillating control surfaces, aircraft agility maneuvers, fin motion after projectile exit from gun tube, the vortical structure in the wake during dynamic stall, nonlinear aerodynamic parameter estimation, missile and spacecraft coning instabilities, 3D Euler solutions on wing-pylon-store configuration with unstructured tetrahedral meshes, and a simulation model for tail rotor failure.

  8. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  9. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  10. Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Shan; Huang, Wei-Xi; Xu, Chun-Xiao

    2016-10-01

    The opposition control schemes first proposed by Choi et al (1994 J. Fluid Mech. 262 75) employing wall-normal (v) and spanwise (w) velocity are revisited in the present study by performing direct numerical simulation to turbulent channel flow at R{e}τ = 180. Special attention is paid to the combined control, in which the wall-normal and spanwise velocities are imposed at the wall just instantaneously opposite to those at a small distance to the wall. In comparison to the v- and w-controls, combined-control could achieve the best drag reduction rate and control efficiency, with the greatest suppression of turbulence intensities. The influence of control on the statistical properties of vortices is scrutinized. By control, the numbers of vortices with every circulation and radius apparently decrease at the same normal location near the wall, while the vortex radius scaled by the actual wall-friction velocity almost remains the same. The streamwise vortices and the induced Reynolds shear stress undergo the greatest suppression by combined control. It is shown that combined control achieves a better efficacy, attributed to the co-work of the mechanisms of the v- and w-controls. At a higher Reynolds number R{e}τ = 1000, combined control is also more effective than v- and w-controls. The better suppression effect on the outer large scales is the primary reason for the larger drag reduction rate in combined control.

  11. Computational optimization of a pneumatic forebody flow control concept

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Tavella, Domingo; Schiff, Lewis B.

    1991-01-01

    The effectiveness of a tangential slot blowing concept for generating lateral control forces on an aircraft forebody is analyzed using computational fluid dynamics. The flow about a fighter forebody is computed using a multiple-zone, thin-layer Navier-Stokes code. Tangential slot blowing is modeled by the use of an actuator plane. The effects of slot location and slot length on the efficiency of the system are analyzed. Results of the study indicate that placement of the slot near the nose of the aircraft greatly enhances the efficiency of the system, while the length and circumferential location of the slot are of secondary importance. Efficiency is defined by the amount of side force or yawing moment obtained per unit blowing coefficient. The effect of sideslip on the system is also analyzed. The system is able to generate incremental changes in forces and moments in flows with sideslip angles up to 10 deg comparable to those obtained at zero sideslip. These results are used to determine a baseline configuration for an experimental study of the tangential slot blowing concept.

  12. Active flow control for a NACA-0012 Profile: Part II

    NASA Astrophysics Data System (ADS)

    Oualli, H.; Makadem, M.; Ouchene, H.; Ferfouri, A.; Bouabdallah, A.; Gad-El-Hak, M.

    2016-11-01

    Active flow control is applied to a NACA-0012 profile. The experiments are conducted in a wind tunnel. Using a high-resolution visible-light camera and tomography, flow visualizations are carried out. LES finite-volume 3D code is used to complement the physical experiments. The symmetric wing is clipped into two parts, and those parts extend and retract along the chord according to the same sinusoidal law we optimized last year for the same profile but clipped at an angle of 60 deg, instead of the original 90 deg. The Reynolds number range is extended to 500,000, thus covering the flying regimes of micro-UAVs, UAVs, as well as small aircraft. When the nascent cavity is open and the attack angle is 30 deg, the drag coefficient is increased by 1,300%, as compared to the uncontrolled case. However, when the cavity is covered and Re <=105 , a relatively small frequency, f <= 30 Hz, is required for the drag coefficient to drop to negative values. At the maximum Reynolds number, thrust is generated but only at much higher frequencies, 12 <= f <= 16 kHz.

  13. Interface controlled plastic flow modelled by strain gradient plasticity theory

    NASA Astrophysics Data System (ADS)

    Pardoen, Thomas; Massart, Thierry J.

    The resistance to plastic flow in metals is often dominated by the presence of interfaces which interfere with dislocation nucleation and motion. Interfaces can be static such as grain and phase boundaries or dynamic such as new boundaries resulting from a phase transformation. The interface can be hard and fully impenetrable to dislocations, or soft and partly or fully transparent. The interactions between dislocations and interfaces constitute the main mechanism controlling the strength and strain hardening capacity of many metallic systems especially in very fine microstructures with a high density of interfaces. A phenomenological strain gradient plasticity theory is used to introduce, within a continuum framework, higher order boundary conditions which empirically represent the effect of interfaces on plastic flow. The strength of the interfaces can evolve during the loading in order to enrich the description of their response. The behaviour of single and dual phase steels, with possible TRIP effect, accounting for the interactions with static and dynamic boundaries, is addressed, with a specific focus on the size dependent strength and ductility balance. The size dependent response of weak precipitate free zones surrounding grain boundaries is treated as an example involving more than one microstructural length scale.

  14. Optimal Controller for Turbulent Flow Over an Airfoil

    DTIC Science & Technology

    2006-05-17

    and multiple-output ( MIMO ) setting. This is an issue since turbulent flow is a distributed system and some standard techniques developed for lumped...directions follow. 7.1 Flow Simulation An efficient computational code for the simulation of turbulent separated flow utilizing massively parallel...LES interface 84 for massively separated flows, especially those whose separation point is set by geometry, than for wall-bounded channel flows

  15. Jet flow control at the blade scale to manipulate lift

    NASA Astrophysics Data System (ADS)

    Braud, Caroline; Guilmineau, Emmanuel

    2016-09-01

    The turbulent atmospheric boundary layer in which wind turbines are implemented is strongly inhomogeneous and unsteady. This induces unsteady mechanical loads at different characteristic time scales from seconds to minutes which limits significantly their life time. Different control strategies have been proposed in the framework of the French ANR SmartEole project to alleviate the impact of these upstream fluctuations at the farm, wind turbine and blade scales (i.e. characteristic time scales from seconds to minutes). The present work, which is part of this ANR project, focuses on the flow control strategies at the blade scale, to manipulate lift and thus alleviate fatigue loads. The design of a NACA654-421 airfoil profile has been modified to be able to implement jet control. Slotted jet and discrete jet configurations were implemented numerically and experimentally respectively. Results show the ability of both configurations to increase the lift by up to 30% using a significant redistribution of the mean shear. Efficiency seems to be more important using slotted jets, which however needs to be confirmed from 3D simulations.

  16. Chaos control for the plates subjected to subsonic flow

    NASA Astrophysics Data System (ADS)

    Norouzi, Hamed; Younesian, Davood

    2016-07-01

    The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin's approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov's integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.

  17. Material development for laminar flow control wing panels

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1977-01-01

    The absence of suitable porous materials or techniques for the economic perforation of surface materials has previously restricted the design of laminar flow control (LFC) wing panels to a consideration of mechanically slotted LFC surfaces. A description is presented of a program which has been conducted to exploit recent advances in materials and manufacturing technology for the fabrication of reliable porous or perforated LFC surface panels compatible with the requirements of subsonic transport aircraft. Attention is given to LFC design criteria, surface materials, surface concepts, the use of microporous composites, perforated composites, and perforated metal. The described program was successful in that fabrication processes were developed for producing predictable perforated panels both of composite and of metal.

  18. Analysis on flow control forming of magnesium alloy wheel

    NASA Astrophysics Data System (ADS)

    Zhao, M. J.; Wu, Z. L.; Chen, Z. R.; Huang, X. B.

    2017-02-01

    Deformation force and forming quality are the important research focus in process of Magnesium (Mg) alloy wheel. In this paper, a process model of flow control forming (FCF) for the wheel was built, and its finite element model was given to simulate the FCF process at different extrusion speed (5 mm/s, 10 mm/s, 15 mm/s and 20 mm/s). The simulated results show that the FCF method for the wheel can reduce deformation force to less than 22000 kN, while there are cracks on rim of the wheel. The results are verified by the experiment and the cracks predicted by simulation are in good agreement with the experimental results.

  19. Natural laminar flow and airplane stability and control

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1986-01-01

    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  20. Bifurcation study of blood flow control in the kidney

    PubMed Central

    Ford Versypt, Ashlee N.; Makrides, Elizabeth; Arciero, Julia C.; Ellwein, Laura; Layton, Anita T.

    2016-01-01

    Renal blood flow is maintained within a narrow window by a set of intrinsic autoregulatory mechanisms. Here, a mathematical model of renal hemodynamics control in the rat kidney is used to understand the interactions between two major renal autoregulatory mechanisms: the myogenic response and tubuloglomerular feedback. A bifurcation analysis of the model equations is performed to assess the effects of the delay and sensitivity of the feedback system and the time constants governing the response of vessel diameter and smooth muscle tone. The results of the bifurcation analysis are verified using numerical simulations of the full nonlinear model. Both the analytical and numerical results predict the generation of limit cycle oscillations under certain physiologically relevant conditions, as observed in vivo. PMID:25747903

  1. Predictive onboard flow control for packet switching satellites

    NASA Technical Reports Server (NTRS)

    Bobinsky, Eric A.

    1992-01-01

    We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.

  2. Study and Control of Scour below Pipelines under unidirectional flow

    NASA Astrophysics Data System (ADS)

    Kabiri, Shima; Hoseinzadeh Dalir, Ali

    2016-04-01

    Water and other fluids pipelines laid on sandy rivers and sea bed change flow pattern around pipelines. These changes increase the bed shear stress and the degree of confusion around the pipes and cause to create scour hole below the pipes. In this situation, the occurrence of scour below the pipelines may lead to instability, fracture and bending and even breakage where cause very severe economic and environmental harms eventually. In this research as well as studying of scour under the pipelines, the bed sill had been used as a new mechanism in order to reduce and control of scour. For this purpose, 3 pipes (smooth) with different diameters (D) were modelled in flow condition of PIC U/Uc=0.8-0.9 in the channel with 11m length, 25cm width and depth of 50 cm. Experiment has been performed in below 2 modes: 1) Scour below a smooth pipe without bed sill 2) Scour below a smooth pipe with bed sill. In the 2nd modes bed sill was located at 4 different distances (L=0,D/4,D/2,D) of downstream Of the pipe central axis. In the experiments bed sill was a barrier for spreading wake vortices and it controlled erosions of downstream. Results of this research indicated that whatever the distance of bed sill from central axis of pipe is less, there is the most influence in reducing the scour depth below pipe. In the case that bed sill had been located exactly under central axis of pipe, scour depth under pipe decreased about 100% Also in this situation with passing a long time from the beginning of examination, the pipe self-burial process occurred due to vortex creation in pipe downstream and relocation of particles toward pipe.

  3. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W (Inventor)

    2015-01-01

    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  4. Analysis and control of low-speed forced unsteady flow

    NASA Technical Reports Server (NTRS)

    Ghia, U.; Ghia, K. N.

    1990-01-01

    A capability for numerically simulating 2-D flows in temporally deforming geometries is described, with emphasis on flow with forced unsteadiness, particularly on the simulation and analysis of these flows. The simulation of forced unsteady flows makes the examination of fundamental unsteady flow mechanisms, such as dynamic stall and unsteady separation, possible. A turbulence model is being incorporated into the analysis so as to obtain solutions for the higher Reynolds numbers used in the experiments. The analysis is also of utility in studying fluid-structure interactions, free surfaces, metal-forming, and bio-fluid mechanics involving flow through passages with flexible walls.

  5. Control of low-speed turbulent separated flow using jet vortex generators

    NASA Technical Reports Server (NTRS)

    Selby, G. V.; Lin, J. C.; Howard, F. G.

    1992-01-01

    A parametric study has been performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction, and jet location (distance from the separation region in the free-stream direction). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  6. Adaptive flow control of low-Reynolds number aerodynamics using dielectric barrier discharge actuator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Chang; Shyy, Wei

    2011-10-01

    Aerodynamic performance of low-Reynolds number flyers, for a chord-based Reynolds number of 10 5 or below, is sensitive to wind gusts and flow separation. Active flow control offers insight into fluid physics as well as possible improvements in vehicle performance. While facilitating flow control by introducing feedback control and fluidic devices, major challenges of achieving a target aerodynamic performance under unsteady flow conditions lie on the high-dimensional nonlinear dynamics of the flow system. Therefore, a successful flow control framework requires a viable as well as accessible control scheme and understanding of underlying flow dynamics as key information of the flow system. On the other hand, promising devices have been developed recently to facilitate flow control in this flow regime. The dielectric barrier discharge (DBD) actuator is such an example; it does not have moving parts and provides fast impact on the flow field locally. In this paper, recent feedback flow control studies, especially those focusing on unsteady low-Reynolds number aerodynamics, are reviewed. As an example of an effective flow control framework, it is demonstrated that aerodynamic lift of a high angle-of-attack wing under fluctuating free-stream conditions can be stabilized using the DBD actuator and an adaptive algorithm based on general input-output models. System nonlinearities and control challenges are discussed by assessing control performance and the variation of the system parameters under various flow and actuation conditions. Other fundamental issues from the flow dynamics view point, such as the lift stabilization mechanism and the influence on drag fluctuation are also explored. Both potentiality and limitation of the linear modeling approach are discussed. In addition, guidelines on system identification and the controller and actuator setups are suggested.

  7. Emissions Control in Swirl Stabilized Spray Combusters, an Experimental and Computational Study

    DTIC Science & Technology

    2007-02-01

    flows is important for properly modeling them. Constant temperature anemometer was used to measure the spectra of the confined turbulent swirling flow...of Gas Turbine Swirl Cup Dynamics, Part 5: Large Eddy Simulations of Cold Flow,"-AIAA-2003-6105, 2003, Reno, NV. 11. Cannon, S. M., and Smith, C. E

  8. Supersonic Inlet Flow Control Using Localized Arc Filament Plasma Actuators

    DTIC Science & Technology

    2011-05-10

    one of the diagnostics tool used to observe the flow. Olive oil particles are used to seed the flow for these measurements. The streaking of oil...eliminate image contamination due to ambient light and the arc filaments. The flow is seeded with olive oil particles by a TSI six-jet atomizer in the

  9. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  10. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  11. Englacial Structures as Indicators of the Controls on Ice Flow

    NASA Astrophysics Data System (ADS)

    Holschuh, N.; Parizek, B. R.; Alley, R. B.; Anandakrishnan, S.

    2015-12-01

    Direct sampling of the subglacial environment is costly, and will therefore never supply the spatial coverage needed to determine the basal boundary conditions required for large-scale ice-sheet modeling. Studies of the West Antarctic Ice Sheet (WAIS) show that the frictional and rheologic properties of the bed are a leading control on the evolution of the system, so developing geophysical methods to help constrain the basal characteristics of WAIS will reduce uncertainty in predictions of the timing and magnitude of future sea-level rise. Radar-imaged structures within the ice are an attractive data set for this pursuit, as they contain information about the flow dynamics that transform the horizontally deposited layers to their modern configuration; however, they can be challenging to interpret, given the number of processes acting to deform the internal layers and the difficulty in automating their analysis. In this study, we move away from the layer-tracing paradigm in favor of an automated slope extraction algorithm. This has several advantages: it does not require feature-continuity, providing a more stable result in regions of intense deformation, and it results in a data product that maps directly to model output. For steady-state features, layer slopes reflect the horizontal and vertical velocity structure, making quantitative comparison of the model and observations simple compared to the more qualitative, particle tracer comparisons done in the past. Using a higher order ice-flow model, we attempt to refine our understanding of basal properties using reflector slope fields at the grounding line of Whillans Ice Stream and the shear margin of the North East Greenland Ice Stream, with the hope of eventually using this method for basin-scale inversions.

  12. Dynamic evolution process of turbulent channel flow after opposition control

    NASA Astrophysics Data System (ADS)

    Ge, Mingwei; Tian, De; Yongqian, Liu

    2017-02-01

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of and <-u‧v‧> in the viscous sublayer. Project supported by the National Natural Science Foundation of China (Grant No. 11402088 and Grant No. 51376062) , State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS15005), and ‘the Fundamental Research Funds for the Central Universities’ (Grant No.2014MS33).

  13. Interaction Between Strategic and Local Traffic Flow Controls

    NASA Technical Reports Server (NTRS)

    Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander

    2010-01-01

    The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.

  14. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  15. Experimental Studies of Low-Pressure Turbine Flows and Flow Control. Streamwise Pressure Profiles and Velocity Profiles

    NASA Technical Reports Server (NTRS)

    Volino, Ralph

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy

  16. Bandwidth turbulence control based on flow community structure in the Internet

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Gu, Rentao; Ji, Yuefeng

    2016-10-01

    Bursty flows vary rapidly in short period of time, and cause fierce bandwidth turbulence in the Internet. In this letter, we model the flow bandwidth turbulence process by constructing a flow interaction network (FIN network), with nodes representing flows and edges denoting bandwidth interactions among them. To restrain the bandwidth turbulence in FIN networks, an immune control strategy based on flow community structure is proposed. Flows in community boundary positions are immunized to cut off the inter-community turbulence spreading. By applying this control strategy in the first- and the second-level flow communities separately, 97.2% flows can effectively avoid bandwidth variations by immunizing 21% flows, and the average bandwidth variation degree reaches near zero. To achieve a similar result, about 70%-90% immune flows are needed with targeted control strategy based on flow degrees and random control strategy. Moreover, simulation results showed that the control effect of the proposed strategy improves significantly if the immune flow number is relatively smaller in each control step.

  17. A novel technique of using a thyristor driven pump as the final control element and flow indicator of a flow control loop.

    PubMed

    Bera, S C; Mandal, N; Sarkar, R

    2011-07-01

    In the present paper, design of a flow control loop using a thyristor driven pump as final control element has been described. In this technique, the load current of a thyristor driven pump motor has been utilized as a mass flow sensing parameter of a fluid passing through a pipeline. This thyristor driven pump has been utilized as a final control element of a flow control loop and the speed of the pump has been selected as the manipulated variable. The non-linearity between the thyristor input signal and pump output has been eliminated by using a modified PID control technique with inverse derivative control action. Thus without using any conventional flow meter and control valve only the thyristor driven pump has been utilized both as the final control element and flow indicating device by using the proposed technique. The whole system has been designed, fabricated and tested by using tap water as the flowing liquid through a pipe line. The experimental results along with the theoretical analysis are compared and reported in the paper.

  18. Controls on the Erosional Efficiency of Granular Flows

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Tucker, G. E.

    2011-12-01

    In mountainous terrain, steep valleys can be a dominant component of the drainage network structure. There is mounting evidence that episodic scour by debris flows and related granular flows represent significant erosional processes in this portion of the landscape. We use discrete element modeling of granular flows to investigate interactions between the flow and the subjacent bed. A guiding aim is to quantify how changes to channel and flow properties, such as channel slope, flow depth, grain size and grain shape influence the erosive potential of a granular flow. We find that there is a large range of slopes (15°-30° for our simulated material) in which steady flow is possible. In this range of slopes, the gravitational energy is compensated by energy dissipated within the flow and into the bed. This indicates that debris-flow-channel slope should encode debris-flow erosion rates. Large changes in flow properties and distributions of particle-bed contact properties are observed as slopes increase beyond the point at which the material is stable. For all slopes, the distributions of particle contact time are dominated by binary collisions; however, there is a conspicuous increase in the probability of longer contacts for flows at inclines near the angle of repose. The shift to longer contact times indicates there is an increase in the number force chains present in more slowly moving flows. Particle-bed contact force distributions for flows on inclines just steeper than the angle of repose have the same form as static piles, in which some particle-bed contact forces are an order of magnitude greater than the mean contact force. As inclination increases, the frequency of multi-particle impacts (i.e. force chains) decreases, and as a result, the distributions become narrower and impact forces much greater than the mean impact force are not observed. Despite the narrowing of the impact force distribution with increasing inclination, we observed a nonlinear

  19. Power flow controller with a fractionally rated back-to-back converter

    DOEpatents

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  20. A fundamental study of suction for Laminar Flow Control (LFC)

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1992-01-01

    This report covers the period forming the first year of the project. The aim is to experimentally investigate the effects of suction as a technique for Laminar Flow Control. Experiments are to be performed which require substantial modifications to be made to the experimental facility. Considerable effort has been spent developing new high performance constant temperature hot-wire anemometers for general purpose use in the Fluid Mechanics Laboratory. Twenty instruments have been delivered. An important feature of the facility is that it is totally automated under computer control. Unprecedently large quantities of data can be acquired and the results examined using the visualization tools developed specifically for studying the results of numerical simulations on graphics works stations. The experiment must be run for periods of up to a month at a time since the data is collected on a point-by-point basis. Several techniques were implemented to reduce the experimental run-time by a significant factor. Extra probes have been constructed and modifications have been made to the traverse hardware and to the real-time experimental code to enable multiple probes to be used. This will reduce the experimental run-time by the appropriate factor. Hot-wire calibration drift has been a frustrating problem owing to the large range of ambient temperatures experienced in the laboratory. The solution has been to repeat the calibrations at frequent intervals. However the calibration process has consumed up to 40 percent of the run-time. A new method of correcting the drift is very nearly finalized and when implemented it will also lead to a significant reduction in the experimental run-time.

  1. Corner flow control in high through-flow axial commercial fan/booster using blade 3-D optimization

    NASA Astrophysics Data System (ADS)

    Zhu, Fang; Jin, Donghai; Gui, Xingmin

    2012-02-01

    This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.

  2. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  3. Blood plasma separation in microfluidic channels using flow rate control.

    PubMed

    Yang, Sung; Undar, Akif; Zahn, Jeffrey D

    2005-01-01

    Several studies have clearly shown that cardiac surgery induces systemic inflammatory responses, particularly when cardiopulmonary bypass (CPB) is used. CPB induces complex inflammatory responses. Considerable evidence suggests that systemic inflammation causes many postoperative complications. Currently, there is no effective method to prevent this systemic inflammatory response syndrome in patients undergoing CPB. The ability to clinically intervene in inflammation, or even study the inflammatory response to CPB, is limited by the lack of timely measurements of inflammatory responses. In this study, a microfluidic device for continuous, real-time blood plasma separation, which may be integrated with downstream plasma analysis device, is introduced. This device is designed to have a whole blood inlet, a purified plasma outlet, and a concentrated blood cell outlet. The device is designed to separate plasma with up to 45% hematocrit of the inlet blood and is analyzed using computational fluid dynamics simulation. The simulation results show that 27% and 25% of plasma can be collected from the total inlet blood volume for 45% and 39% hematocrit, respectively. The device's functionality was demonstrated using defibrinated sheep blood (hematocrit=39%). During the experiment, all the blood cells traveled through the device toward the concentrated blood outlet while only the plasma flowed towards the plasma outlet without any clogging or lysis of cells. Because of its simple structure and control mechanism, this microdevice is expected to be used for highly efficient, realtime, continuous cell-free plasma separation.

  4. Distributed acoustic receptivity in laminar flow control configurations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    A model problem related to distributed receptivity to free-stream acoustic waves in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfield framework, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized disturbances on the airfoil surface. The results, thus, complement the earlier work on the receptivity produced by local variations in the surface suction and/or surface admittance. In particular, we show that the cumulative effect of the distributed receptivity can be substantially larger than that of a single, isolated suction strip or slot. Furthermore, even if the receptivity is spread out over very large distances, the most effective contributions come from a relatively short region in vicinity of the lower branch of the neutral stability curve. The length scale of this region is intermediate to that of the mean of these two length scales. Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier components from the wall-suction and admittance distributions, roughly corresponding to a detuning of less than ten percent with respect to the neutral instability wavenumber at the frequency under consideration. The results suggest that the drop-off in receptivity magnitudes away from the resonant wavenumber is nearly independent of the frequency parameter.

  5. Development of laminar flow control wing surface composite structures

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments under NAS1-16235 LFC Laminar-Flow-Control Wing Panel Structural Design And Development (WSSD); Design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joints were demonstrated by fabricating and testing complex, concept selection specimens. Cost of the baseline LFC aircraft was estimated and compared to the turbulent aircraft. The mission fuel weight was 21.7 percent lower for the LFC aircraft. The calculation shows that the lower fuel costs for LFC offset the higher incremental costs of LFC in less than six months.

  6. Re-architecting flow-control adaptation for grid environments

    SciTech Connect

    Engelhart, A.; Gardner, M. K.; Feng, W. C.

    2004-01-01

    The performance of TCP in wide-area networks (WANs) is becoming increasingly important with the deployment of computational and data grids. At WAN speeds, TCP does not provide good performance for data-intensive applications without the tuning of flow-control buffer sizes. Manual adjustment of buffer sizes is tedious even for network experts. For scientists, tuning is often an impediment to getting work done. Thus, buffer tuning should be automated. Existing techniques for automatic buffer tuning only measure the bandwidth-delay product (BDP) during connection establishment. This ignores the (large) fluctuation of the BDP over the lifetime of the connection. In contrast, the Dynamic Right-Sizing algorithm dynamically changes buffer sizes in response to changing network conditions. In this paper, we describe a new user-space implementation of Dynamic Right-Sizing in FTP (drsFTP) that supports third-party data transfers, a mainstay of scientific computing. In addition to comparing the performance of the new implementation with the old, we give performance results over a live WAN. The new implementation gives transfer rates of up to five times higher than untuned FTP.

  7. Mechanical Control of Cell flow in Multicellular Spheroids

    NASA Astrophysics Data System (ADS)

    Delarue, Morgan; Montel, Fabien; Caen, Ouriel; Elgeti, Jens; Siaugue, Jean-Michel; Vignjevic, Danijela; Prost, Jacques; Joanny, Jean-François; Cappello, Giovanni

    2013-03-01

    Collective cell motion is observed in a wide range of biological processes. In tumors, physiological gradients of nutrients, growth factors, or even oxygen give rise to gradients of proliferation. We show using fluorescently labeled particles that these gradients drive a velocity field resulting in a cellular flow in multicellular spheroids. Under mechanical stress, the cellular flow is drastically reduced. We describe the results with a hydrodynamic model that considers only convection of the particles by the cellular flow.

  8. Microadaptive Flow Control Applied to a Spinning Projectile

    DTIC Science & Technology

    2005-09-01

    Coanda surface, producing some streamline curvature in the external flow with associated lift on the body. The effectiveness of this configuration...configuration, including Coanda radius and the effect of the step height. An important question concerns the extent to which the flow behaves more or less...the projectile through forced asymmetric flow separation (figures 9 and 10) using the Coanda effect (3, 4). Time-accurate CFD modeling capabilities

  9. Separation Control Using ZNMF Devices: Flow Physics and Scaling Laws

    DTIC Science & Technology

    2007-12-31

    the baseline uncontrolled flow is massively separated and does not reattached before the trailing edge (i.e. post stall). As mentioned earlier, this... massively leading-edge separated flow. In particular, a recursive ARMARKOV system ID algorithm is used to model the flow dynamics and provide the...3, May-June 2001. Soderstrom, T. and Stoica, P., System Identification, Prentice-Hall, New York, 1989. Song, Q., Tian, Y. and Cattafesta, L., " MIMO

  10. Active bypass flow control for a seal in a gas turbine engine

    DOEpatents

    Ebert, Todd A.; Kimmel, Keith D.

    2017-01-10

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.

  11. Data-driven approach to design of passive flow control strategies

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Blackburn, H. M.

    2017-02-01

    An approach to designing passive devices for control of unsteady flows is presented. The method requires only snapshots of the flow to be controlled as inputs. A temporal correlation based on proper orthogonal decomposition of both fluctuating velocity and nonlinear forcing serves to identify the spatial locations in which the forcing drives the different unsteady flow features. The installation of a passive device in these spatial locations inhibits the fluctuating motion. The potential of the methodology is demonstrated via the suppression of vortex shedding in flow past a square cylinder, paving the way to the control of more complex flows using passive devices. Connections in agreement with previous studies targeting the same flow using different passive flow control strategies are provided.

  12. MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs

    NASA Astrophysics Data System (ADS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2016-12-01

    Numerical and experimental investigation results on the magnetohydrodynamics (MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity (V), the chute width (W) and the inlet film thickness (d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field, especially small radial magnetic fields (Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB125003 and 2013GB114002), National Natural Science Foundation of China (No. 11105044)

  13. Nanoscale transient porosity controls large-scale metamorphic fluid flow

    NASA Astrophysics Data System (ADS)

    Plümper, Oliver; Botan, Alexandru; Los, Catharina; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2016-04-01

    The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) reveals that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural

  14. AIAA Applied Aerodynamics Conference, 7th, Seattle, WA, July 31-Aug. 2, 1989, Technical Papers

    SciTech Connect

    Not Available

    1989-01-01

    The present conference discusses the comparative aerodynamic behavior of half-span and full-span delta wings, TRANAIR applications to engine/airframe integration, a zonal approach to V/STOL vehicle aerodynamics, an aerodynamic analysis of segmented aircraft configurations in high-speed flight, unstructured grid generation and FEM flow solvers, surface grid generation for flowfields using B-spline surfaces, the use of chimera in supersonic viscous calculations for the F-15, and hypersonic vehicle forebody design studies. Also discussed are the aerothermodynamics of projectiles at hypersonic speeds, flow visualization of wing-rock motion in delta wings, vortex interaction over delta wings at high alpha, the analysis and design of dual-rotation propellers, unsteady pressure loads from plunging airfoils, the effects of riblets on the wake of an airfoil, inverse airfoil design with Navier-Stokes methods, flight testing for a 155-mm base-burn projectile, experimental results on rotor/fuselage aerodynamic interactions, the high-alpha aerodynamic characteristics of crescent and elliptic wings, and the effects of free vortices on lifting surfaces.

  15. Flow Physics and Control for Internal and External Aerodynamics

    NASA Technical Reports Server (NTRS)

    Wygnanski, I.

    2010-01-01

    Exploiting instabilities rather than forcing the flow is advantageous. Simple 2D concepts may not always work. Nonlinear effects may result in first order effect. Interaction between spanwise and streamwise vortices may have a paramount effect on the mean flow, but this interaction may not always be beneficial.

  16. Stability analysis for laminar flow control, part 1

    NASA Technical Reports Server (NTRS)

    Benney, D. J.; Orszag, S. A.

    1977-01-01

    The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.

  17. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    SciTech Connect

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  18. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 1

    NASA Technical Reports Server (NTRS)

    Woodrow Whitlow, Jr. (Editor); Todd, Emily N. (Editor)

    1999-01-01

    These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.

  19. Streamwise-varying steady transpiration control in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Blackburn, H. M.; Rudman, M.; Sharma, A. S.; McKeon, B. J.

    2016-06-01

    A study of the the main features of low- and high amplitude steady streamwise wall transpiration applied to pipe flow is presented. The effect of the two transpiration parameters, amplitude and wavenumber, on the flow have been investigated by means of direct numerical simulation at a moderate turbulent Reynolds number. The behaviour of the three identified mechanisms that act in the flow: modification of Reynolds shear stress, steady streaming and generation of non-zero mean streamwise gradients, have been linked to the transpiration parameters. The observed trends have permitted the identification of wall transpiration configurations able to reduce or increase the overall flow rate in -36.1% and 19.3% respectively. A resolvent analysis has been carried out to obtain a description of the reorganization of the flow structures induced by the transpiration.

  20. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls

    USGS Publications Warehouse

    Gleeson, T.; Manning, A.H.

    2008-01-01

    This study uses numerical simulations to define the salient controls on regional groundwater flow in 3-D mountainous terrain by systematically varying topographic and hydrogeologic variables. Topography for idealized multiple-basin mountainous terrain is derived from geomatic data and literature values. Water table elevation, controlled by the ratio of recharge to hydraulic conductivity, largely controls the distribution of recharged water into local, regional, and perpendicular flow systems, perpendicular flow being perpendicular to the regional topographic gradient. Both the relative (%) and absolute (m 3/d) values of regional flow and perpendicular flow are examined. The relationship between regional flow and water table elevation is highly nonlinear. With lower water table elevations, relative and absolute regional flow dramatically increase and decrease, respectively, as the water table is lowered further. However, for higher water table elevations above the top of the headwater stream, changes in water table elevation have little effect on regional flow. Local flow predominates in high water table configurations, with regional and perpendicular flow <15% and <10%, respectively, of total recharge in the models tested. Both the relative and the maximum absolute regional flow are directly controlled by the degree of incision of the mountain drainage network; the elevation of mountain ridges is considerably less important. The percentage of the headwater stream with perennial streamflow is a potentially powerful indicator of regional flow in all water table configurations and may be a good indicator of the susceptibility of mountain groundwater systems to increased aridity. Copyright 2008 by the American Geophysical Union.

  1. USC/AIAA student get away special project liquid droplet collector experiment

    NASA Technical Reports Server (NTRS)

    Levesque, Raymond J., II

    1987-01-01

    This experimental payload was developed in order to observe, in a micro-gravity vacuum environment, the characteristics and stability of a thin fluid film flowing across a slightly curved surface. The test apparatus was designed based upon various ground-based thin film investigations, combined with the constraints imposed by the rigors of launch and the space environment. Testing of the fluid test article at atmospheric pressure and in vacuum verified the design provisions employed concerning ultra-low inlet pressure pump construction, as well as confirming expected pressure losses in the system. During the course of hardware development and construction modifications were required; however, the overall payload configuration remained largely unchanged. This will allow for modification and reflight of the apparatus based upon the findings of the initial flight. The specific applications of this experiment include Liquid Droplet Radiator development and various forms of material transport in vacuum.

  2. Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Hirt, Stefanie M.; Anderson, Bernhard H.

    2012-01-01

    Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.

  3. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  4. Investigation of co-flow jet flow control and its applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, Alexis M.

    This thesis investigates the performance of co-flow jet (CFJ) flow control and its applications using experimental testing and computational fluid dynamics (CFD) simulations. For a stationary airfoil and wing, CFJ increases the lift coefficient (CL), reduces the drag and may produce thrust at a low angle of attack (AoA). The maximum lift coefficient is substantially increased for a 2D CFJ airfoil and reaches a value of 4.8 at Cmicro = 0.30. The power consumption of the CFJ pump, measured by the power coefficient (Pc), is influenced by a variety of parameters, including the momentum coefficient (C micro ), the AoA, the injection slot location, and the internal cavity configuration. A low Cmicro of 0.04 produces a rather small Pc in the range of 0.01--0.02 while a higher Cmicro rapidly increases the Pc. Due to the stronger leading edge suction effect, increasing the AoA decreases the Pc. That is until the flow is near separation, within about 2°--3° of the stall AoA. An injection slot location within 2%--5% chord from the leading edge very effectively reduces the power coefficient. An internal cavity design with no separation is crucial to minimize the CFJ power consumption. Overall, the CFJ effectiveness is enhanced with an increasing Mach number as long as the flow remains subsonic, typically with free stream Mach number less than 0.4. Two pitching airfoil oscillations with dynamic stall are studied in this thesis, namely the mild dynamic stall and the deep dynamic stall. At Mach 0.3, the CFJ with a relatively low Cmicro of 0.08 removes the mild dynamic stall. Thereby, the time-averaged lift is increased by 32% and the time-averaged drag is decreased by 80%. The resulting time-averaged aerodynamic (L/D)ave, which does not take the pumping power into account, reaches 118.3. When C micro is increased, the time-averaged drag becomes negative, which demonstrates the feasibility of a CFJ to propel helicopter blades using its pump as the only source of power. The deep

  5. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  6. Current Laminar Flow Control Experiments at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Bowers, Al

    2010-01-01

    An experiment to demonstrate laminar flow over the swept wing of a subsonic transport is being developed. Discrete Roughness Elements are being used to maintain laminar flow over a substantial portion of a wing glove. This passive laminar flow technology has only come to be recognized as a significant player in airliner drag reduction in the last few years. NASA is implementing this experiment and is planning to demonstrate this technology at full-scale Bight cruise conditions of a small-to-medium airliner.

  7. Control-volume based Navier-Stokes equation solver valid at all flow velocities

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1989-01-01

    A control-volume based finite difference method to solve the Reynolds averaged Navier-Stokes equations is presented. A pressure correction equation valid at all flow velocities and a pressure staggered grid layout are used in the method. Example problems presented herein include: a developing laminar channel flow, developing laminar pipe flow, a lid-driven square cavity flow, a laminar flow through a 90-degree bent channel, a laminar polar cavity flow, and a turbulent supersonic flow over a compression ramp. A k-epsilon turbulence model supplemented with a near-wall turbulence model was used to solve the turbulent flow. It is shown that the method yields accurate computational results even when highly skewed, unequally spaced, curved grids are used. It is also shown that the method is strongly convergent for high Reynolds number flows.

  8. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  9. AIAA 94-1214: Using generic tool kits to build intelligent systems

    SciTech Connect

    Miller, D.J.

    1993-12-31

    The Intelligent Systems and Robotics Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effective prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.

  10. A low-order model for flow control studies in cylinder wakes

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ganapathi; Olinger, David J.; Demetriou, Michael

    1998-11-01

    Control of three-dimensional wake structures behind circular cylinders is investigated using a previously developed coupled map lattice. The map consists of circle map oscillators along the cylinder span coupled by a diffusion model. Our goal is to develop an efficient model for flow control studies in cylinder wakes. Complex vortex shedding patterns, such as vortex dislocations and frequency cells, are observed behind vibrating cables in uniform freestream flows and stationary cylinders in sheared flows. These structures are controlled by the addition of periodic control signals to the forcing term in the map. Discontinuous nonlinear control theory is used to derive the control laws. Parallel shedding is realized for the case of uniform flow and oblique shedding is achieved for sheared inflows. The effectiveness of the discontinuous nonlinear control theory is compared with the previous application of chaos control theory to the coupled map lattice.

  11. Flow Control Research at NASA Langley in Support of High-Lift Augmentation

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

    2002-01-01

    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  12. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  13. Active bypass flow control for a seal in a gas turbine engine

    DOEpatents

    Ebert, Todd A.; Kimmel, Keith D.

    2017-03-14

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.

  14. Sensing and Active Flow Control for Advanced BWB Propulsion-Airframe Integration Concepts

    NASA Technical Reports Server (NTRS)

    Fleming, John; Anderson, Jason; Ng, Wing; Harrison, Neal

    2005-01-01

    In order to realize the substantial performance benefits of serpentine boundary layer ingesting diffusers, this study investigated the use of enabling flow control methods to reduce engine-face flow distortion. Computational methods and novel flow control modeling techniques were utilized that allowed for rapid, accurate analysis of flow control geometries. Results were validated experimentally using the Techsburg Ejector-based wind tunnel facility; this facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions.

  15. Method for selectively controlling flow across slotted liners

    SciTech Connect

    Peavy, M.A.; Dees, J.M.

    1993-08-31

    A process is described for decreasing flow rate across the radial boundary of a selected interval in a well bore containing a slotted liner comprising: placing an explosive and an internally catalyzed resin solution inside an elongated container; locating the elongated container opposite the selected interval in the well bore where flow rate through the slotted liner is to be decreased; firing the explosive; and allowing the resin to cure on the slotted liner before initiating flow through the well. A method is described for decreasing production of unwanted fluids from a horizontal well containing a slotted liner comprising: placing an explosive and an internally catalyzed resin inside an elongated container; placing the elongated container opposite an interval in the horizontal well where unwanted fluid is entering the well bore through the slotted liner; firing the explosive; and permitting the resin to cure on the slotted liner before initiating flow in the well.

  16. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  17. Flow modulation based control of granular stratification in heaps

    NASA Astrophysics Data System (ADS)

    Umbanhowar, Paul B.; Fan, Yi; McDonald, David; Ottino, Julio M.; Lueptow, Richard M.

    2013-11-01

    Gravity driven flows of initially mixed granular media composed of non-monodisperse particles spontaneously segregate for a wide range of particle and flow parameters. For heaps of size-bidisperse particles formed in the quasi-two-dimensional geometry of a vertical Hele-Shaw cell, segregation is in the form of stratified layers of large and small particle-rich bands that are nominally parallel to the free surface of the heap. Stratification occurs at low fill rates where flow down the heap manifests as a series of intermittent and irregularly sized avalanches. This non-steady flow causes variation in stratum thickness and streamwise extent. In this talk we describe how temporal modulation of the fill rate can generate ordered strata at high fill rates. In particular, we show how, for a duty cycle variation of the flow rate, the modulation parameters determine the wavelength and streamwise extent of the layers. We explain our results in terms of the dependence of the dynamic repose angle on flow rate. Finally we describe how the upstream extent of the strata increases with decreasing gap width and is related to the jamming probability of the large particles. Y.F. was funded by The Dow Chemical Company.

  18. Continuous flow in open microfluidics using controlled evaporation.

    PubMed

    Zimmermann, Martin; Bentley, Steven; Schmid, Heinz; Hunziker, Patrick; Delamarche, Emmanuel

    2005-12-01

    This paper presents a method for programming the flow rate of liquids inside open microfluidic networks (MFNs). A MFN comprises a number of independent flow paths, each of which starts with an open filling port, has a sealed microchannel in which assays can be performed, and an open capillary pump (CP). The MFN is placed over Peltier elements and its flow paths initially fill owing to capillary forces when liquids are added to the filling ports. A cooling Peltier element underneath the filling ports dynamically prevents evaporation in all filling ports using the ambient temperature and relative humidity as inputs. Another Peltier element underneath the CPs heats the pumps thereby inducing evaporation in the CPs and setting the flow rate in the microchannels. This method achieves flow rates in the microchannels ranging from approximately 1.2 nL s(-1) to approximately 30 pL s(-1), and is able to keep 90% of a 0.6 microL solution placed in an open filling port for 60 min. This simple and efficient method should be applicable to numerous assays or chemical reactions that require small and precise flow of liquids and reagents inside microfluidics.

  19. Review Of Existing Facilities: Shock Tunnels, Part of AIAA Short Course On Aerothermodynamic Facilities and Applications

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This review is divided into two main sections. The first section described the various types of shock tunnel facilities - reflected shock tunnels, non-reflected shock tunnels and expansion tubes/tunnels. Driver technology is then described, followed by a discussion of the performance obtainable from various driver-driven combinations. A survey of a number of facilities is then presented. The second part of the review deals with details of the operation of the facilities. Operation of combustion drivers, electrically heated drivers and piston compression drivers is discussed in some detail. Main diaphragm break techniques are discussed, with particular attention being paid to maintaining the integrity of the diaphragm petals. Secondary diaphragm techniques are discussed. Phenomena which limit test time are discussed and a number of techniques to increase test time are presented. Contamination of the flow with material ablated from the wall is discussed along with the relative suitability of various materials for lining the tubes and nozzle. Finally, boundary layer effects in shock tunnels and expansion tubes are discussed.

  20. An electronic flow control system for a variable-rate tree sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...