A fast algorithm for computer aided collimation gamma camera (CACAO)
NASA Astrophysics Data System (ADS)
Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.
2000-08-01
The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.
SU-E-T-453: Optimization of Dose Gradient for Gamma Knife Radiosurgery.
Sheth, N; Chen, Y; Yang, J
2012-06-01
The goals of stereotactic radiosurgery (SRS) are the ablation of target tissue and sparing of critical normal tissue. We develop tools to aid in the selection of collimation and prescription (Rx) isodose line to optimize the dose gradient for single isocenter intracranial stereotactic radiosurgery (SRS) with GammaKnife 4C utilizing the updated physics data in GammaPlan v10.1. Single isocenter intracranial SRS plans were created to treat the center of a solid water anthropomorphism head phantom for each GammaKnife collimator (4 mm, 8 mm, 14 mm, and 18 mm). The dose gradient, defined as the difference of effective radii of spheres equal to half and full Rx volumes, and Rx treatment volume was analyzed for isodoses from 99% to 20% of Rx. The dosimetric data on Rx volume and dose gradient vs. Rx isodose for each collimator was compiled into an easy to read nomogram as well as plotted graphically. The 4, 8, 14, and 18 mm collimators have the sharpest dose gradient at the 64%, 70%, 76%, and 77% Rx isodose lines, respectively. This corresponds to treating 4.77 mm, 8.86 mm, 14.78 mm, and 18.77 mm diameter targets with dose gradients radii of 1.06 mm, 1.63 mm, 2.54 mm, and 3.17 mm, respectively. We analyzed the dosimetric data for the most recent version of GammaPlan treatment planning software to develop tools that when applied clinically will aid in the selection of a collimator and Rx isodose line for optimal dose gradient and target coverage for single isocenter intracranial SRS with GammaKnife 4C. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Aleksandrov, A. P.; Berezovoy, A. N.; Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseyev, A. A.; Ulin, S. Y.
1985-09-01
Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimation material can lead to the appearance of a gamma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.
3D-printed focused collimator for intra-operative gamma-ray detection
NASA Astrophysics Data System (ADS)
Holdsworth, David W.; Nikolov, Hristo N.; Pollmann, Steven I.
2017-03-01
Recent developments in targeted radiopharmaceutical labels have increased the need for sensitive, real-time gamma detection during cancer surgery and biopsy. Additive manufacturing (3D printing) in metal has now made it possible to design and fabricate complex metal collimators for compact gamma probes. We describe the design and implementation of a 3D-printed focused collimator that allows for real-time detection of gamma radiation from within a small volume of interest, using a single-crystal large-area detector. The collimator was fabricated using laser melting of powdered stainless steel (316L), using a commercial 3D metal printer (AM125, Renishaw plc). The prototype collimator is 20 mm thick, with hexagonal close-packed holes designed to focus to a point 35 mm below the surface of the collimator face. Tests were carried out with a low-activity (<1 μCi) 241 Am source, using a conventional gamma-ray detector probe, incorporating a 2.5 cm diameter, 2.5 cm thick NaI crystal coupled to a photomultiplier. The measured full-width half maximum (FWHM) was less than 5.6 mm, and collimator detection efficiency was 44%. The ability to fabricate fine features in solid metal makes it possible to develop optimized designs for high-efficiency, focused gamma collimators for real-time intraoperative imaging applications.
Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging
NASA Astrophysics Data System (ADS)
Cao, Liji; Peter, Jörg
2012-06-01
A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.
NASA Astrophysics Data System (ADS)
Aleksandrov, A. P.; Berezovoj, A. N.; Gal'Per, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseev, A. A.; Ulin, S. E.; Shchvets, N. I.
1984-11-01
Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimator material can lead to the appearance of a gramma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.
Optimal Shape of a Gamma-ray Collimator: single vs double knife edge
NASA Astrophysics Data System (ADS)
Metz, Albert; Hogenbirk, Alfred
2017-09-01
Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato
2016-12-27
A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the secondmore » photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.« less
Slant-hole collimator, dual mode sterotactic localization method
Weisenberger, Andrew G.
2002-01-01
The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.
Proof of Principle for Electronic Collimation of a Gamma Ray Detector
2016-01-01
complete the Environmental Baseline Survey mission for soldiers. The monitoring of radioactive waste handling, as well as other sources of radioactive ...electronic collimation of a gamma ray spectroscopic detector will include identifying and characterizing environmentally hazardous radioactivity to
Design of optimal collimation for dedicated molecular breast imaging systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinmann, Amanda L.; Hruska, Carrie B.; O'Connor, Michael K.
2009-03-15
Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7-10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimatorsmore » with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5-3.2, while maintaining a collimator resolution of either {<=}5 or {<=}7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI.« less
Applications of Elpasolites as a Multimode Radiation Sensor
NASA Astrophysics Data System (ADS)
Guckes, Amber
This study consists of both computational and experimental investigations. The computational results enabled detector design selections and confirmed experimental results. The experimental results determined that the CLYC scintillation detector can be applied as a functional and field-deployable multimode radiation sensor. The computational study utilized MCNP6 code to investigate the response of CLYC to various incident radiations and to determine the feasibility of its application as a handheld multimode sensor and as a single-scintillator collimated directional detection system. These simulations include: • Characterization of the response of the CLYC scintillator to gamma-rays and neutrons; • Study of the isotopic enrichment of 7Li versus 6Li in the CLYC for optimal detection of both thermal neutrons and fast neutrons; • Analysis of collimator designs to determine the optimal collimator for the single CLYC sensor directional detection system to assay gamma rays and neutrons; Simulations of a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system with the optimized collimator to determine the feasibility of detecting nuclear materials that could be encountered during field operations. These nuclear materials include depleted uranium, natural uranium, low-enriched uranium, highly-enriched uranium, reactor-grade plutonium, and weapons-grade plutonium. The experimental study includes the design, construction, and testing of both a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system. Both were designed in the Inventor CAD software and based on results of the computational study to optimize its performance. The handheld CLYC multimode sensor is modular, scalable, low?power, and optimized for high count rates. Commercial?off?the?shelf components were used where possible in order to optimize size, increase robustness, and minimize cost. The handheld CLYC multimode sensor was successfully tested to confirm its ability for gamma-ray and neutron detection, and gamma?ray and neutron spectroscopy. The sensor utilizes wireless data transfer for possible radiation mapping and network?centric deployment. The handheld multimode sensor was tested by performing laboratory measurements with various gamma-ray sources and neutron sources. The single CLYC scintillator collimated directional detection system is portable, robust, and capable of source localization and identification. The collimator was designed based on the results of the computational study and is constructed with high density polyethylene (HDPE) and lead (Pb). The collimator design and construction allows for the directional detection of gamma rays and fast neutrons utilizing only one scintillator which is interchangeable. For this study, a CLYC-7 scintillator was used. The collimated directional detection system was tested by performing laboratory directional measurements with various gamma-ray sources, 252Cf and a 239PuBe source.
NASA Astrophysics Data System (ADS)
Jeon, Hosang; Kim, Hyunduk; Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Chung, Yong Hyun; Yun, Jong-Il
2009-06-01
Presently, the gamma camera system is widely used in various medical diagnostic, industrial and environmental fields. Hence, the quantitative and effective evaluation of its imaging performance is essential for design and quality assurance. The National Electrical Manufacturers Association (NEMA) standards for gamma camera evaluation are insufficient to perform sensitive evaluation. In this study, modulation transfer function (MTF) and normalized noise power spectrum (NNPS) will be suggested to evaluate the performance of small gamma camera with changeable pinhole collimators using Monte Carlo simulation. We simulated the system with a cylinder and a disk source, and seven different pinhole collimators from 1- to 4-mm-diameter pinhole with lead. The MTF and NNPS data were obtained from output images and were compared with full-width at half-maximum (FWHM), sensitivity and differential uniformity. In the result, we found that MTF and NNPS are effective and novel standards to evaluate imaging performance of gamma cameras instead of conventional NEMA standards.
High Sensitivity SPECT for Small Animals and Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Gregory S.
Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.
Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko
2014-12-01
Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
High spatial resolution X-ray and gamma ray imaging system using diffraction crystals
Smither, Robert K [Hinsdale, IL
2011-05-17
A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.
Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5
NASA Astrophysics Data System (ADS)
Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.
2018-04-01
Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.
Wright, James W; Lovell, Lesley A; Gemmell, Howard G; McKiddie, Fergus; Staff, Roger T
2013-07-01
TauroH-23-(Se) selena-25-homocholic acid retention values are used in the diagnosis of bile acid malabsorption. The standard method for measuring values is with an uncollimated gamma camera, which can create some logistic difficulties, with other background sources of activity, which are irrelevant when a collimator is used, becoming significant. In this study we compare the retention values obtained with a collimated and an uncollimated gamma camera in phantoms and in 23 patients. Bland-Altman plots were created using the data, which showed a mean bias in retention of 0.10% in the phantom study and 0.55% in the patient study between methods. A Wilcoxon signed-rank test with the null hypothesis of zero median difference between uncollimated and collimated methods was not statistically significant to P values less than 0.05 in the patient and phantom studies. In the patient study, on using a fixed boundary of retention (10%) between positive and negative status, the status of one patient was changed from negative (12%) to positive (9%). We conclude that measurement of retention with a collimated gamma camera is similar but not identical to that of uncollimated values. The clinical significance of this shift is unclear, as the threshold of significance and the method of integrating this measure with other clinical factors into management remain unclear.
Characterization of the Shielded Neutron Source at Triangle Universities Nuclear Laboratory
NASA Astrophysics Data System (ADS)
Hobson, Chad; Finch, Sean; Howell, Calvin; Malone, Ron; Tornow, Wernew
2016-09-01
In 2015, Triangle Universities Nuclear Laboratory rebuilt its shielded neutron source (SNS) with the goal of improving neutron beam collimation and reducing neutron and gamma-ray backgrounds. Neutrons are produced via the 2H(d,n)3He reaction and then collimated by heavy shielding to form a beam. The SNS has the ability to produce both a rectangular and circular neutron beam through use of two collimators with different beam apertures. Our work characterized both the neutron beam profiles as well as the neutron and gamma-ray backgrounds at various locations around the SNS. This characterization was performed to provide researchers who use the SNS with beam parameters necessary to plan and conduct an experiment. Vertical and horizontal beam profiles were measured at two different distances from the neutron production cell by scanning a small plastic scintillator across the face of the beam at various energies for each collimator. Background neutron and gamma-ray intensities were measured using time-of-flight techniques at 10 MeV and 16 MeV with the rectangular collimator. We present results on the position and size of neutron beam as well as on the structure and magnitude of the backgrounds.
Hydrodynamic collimation of gamma-ray-burst fireballs
Levinson; Eichler
2000-07-10
Analytic solutions are presented for the hydrodynamic collimation of a relativistic fireball by a surrounding baryonic wind emanating from a torus. The opening angle is shown to be the ratio of the power output of the inner fireball to that of the exterior baryonic wind. The gamma ray burst 990123 might thus be interpreted as a baryon-poor jet (BPJ) with an energy output of order 10(50) erg or less, collimated by a baryonic wind from a torus with an energy output of order 10(52.5) erg, roughly the geometric mean of the BPJ and its isotropic equivalent.
NASA Astrophysics Data System (ADS)
Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang
2015-07-01
We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.
Giant collimated gamma-ray flashes
NASA Astrophysics Data System (ADS)
Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.
2018-06-01
Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.
Prompt gamma-ray imaging for small animals
NASA Astrophysics Data System (ADS)
Xu, Libai
Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.
Fabricating High-Resolution X-Ray Collimators
NASA Technical Reports Server (NTRS)
Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill
2008-01-01
A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.
Apparatus and method for detecting gamma radiation
Sigg, Raymond A.
1994-01-01
A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.
NASA Astrophysics Data System (ADS)
Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.
2010-09-01
The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.
Acceleration and collimation of relativistic plasmas ejected by fast rotators
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.
2001-06-01
A stationary self-consistent outflow of a magnetised relativistic plasma from a rotating object with an initially monopole-like magnetic field is investigated in the ideal MHD approximation under the condition sigma U02 > 1, where sigma is the ratio of the Poynting flux over the mass energy flux at the equator and the surface of the star, with U0=gamma 0v0/c and gamma0 the initial four-velocity and Lorentz factor of the plasma. The mechanism of the magnetocentrifugal acceleration and self-collimation of the relativistic plasma is investigated. A jet-like relativistic flow along the axis of rotation is found in the steady-state solution under the condition sigma U02 > 1 with properties predicted analytically. The amount of the collimated matter in the jet is rather small in comparison to the total mass flux in the wind. An explanation for the weak self-collimation of relativistic winds is given.
Apparatus and method for variable angle slant hole collimator
Lee, Seung Joon; Kross, Brian J.; McKisson, John E.
2017-07-18
A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.
Apparatus and method for detecting gamma radiation
Sigg, R.A.
1994-12-13
A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.
Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.; Steinbach, Daniela
1999-01-01
A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.
Simulation of gamma-ray spectra for a variety of user-specified detector designs
NASA Technical Reports Server (NTRS)
Rester, A. C., Jr.
1994-01-01
The gamma-ray spectrum simulation program BSIMUL was designed to allow the operator to follow the path of a gamma-ray through a detector, shield and collimator whose dimensions are entered by the operator. It can also be used to simulate spectra that would be generated by a detector. Several improvements have been made to the program within the last few months. The detector, shield and collimator dimensions can now be entered through an interactive menu whose options are discussed below. In addition, spectra containing more than one gamma-ray energy can now be generated with the menu - for isotopes listed in the program. Adding isotopes to the main routine is also quite easy. Subroutines have been added to enable the operator to specify the material and dimensions of a collimator. This report details the progress made in simulating gamma-ray spectra for a variety of user-specified detector designs. In addition, a short discussion of work done in the related areas of pulse shape analysis and the spectral analysis is included. The pulse shape analysis and spectral analysis work is being performed pursuant to the requirements of contract F-94-C-0006, for the Advanced Research Projects Agency and the U.S. Air Force.
A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras
NASA Astrophysics Data System (ADS)
Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.
2010-10-01
We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.
Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.
van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M
2017-01-01
X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel hole geometries. This results in higher contrast-to-noise ratios for parallel hole geometries. Smaller spheres can thus be detected with parallel hole collimators than with pinhole collimators (17 mm vs 28 mm). Pinhole geometries show larger image deformations than parallel hole geometries. Spatial resolution varied between 1.25 cm for the 3 mm pinhole and 4 cm for the LEAP collimator. The simulation method was successfully validated by the experiments with the physical prototype. A real-time hybrid fluoroscopic and nuclear imaging device is currently being developed. Image quality of nuclear images obtained with different collimators was compared in terms of contrast, noise, and detectability. Parallel hole collimators showed lower noise and better detectability than pinhole collimators. © 2016 American Association of Physicists in Medicine.
Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun
2018-03-01
The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihailescu, Lucian
This disclosure provides systems, methods, and apparatus related to ion beam therapy. In one aspect, a system includes a position sensitive detector and a collimator. The position sensitive detector configured to detect gamma rays generated by an ion beam interacting with a target. The collimator is positioned between the target and the position sensitive detector. The collimator includes a plurality of knife-edge slits, with a first knife-edge slit intersecting with a second knife-edge slit.
Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging
NASA Technical Reports Server (NTRS)
Appleby, Michael; Fraser, Iain; Klinger, Jill
2011-01-01
A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching
Annihilation radiation in cosmic gamma-ray bursts
NASA Technical Reports Server (NTRS)
Aptekar, R. L.; Golenetskii, S. V.; Guryan, Y. A.; Ilyinskii, V. N.; Mazets, E. P.
1985-01-01
The pair annihilation radiation in gamma-ray bursts is seen as broad lines with extended hard wings. This radiation is suggested to escape in a collimated beam from magnetic polar regions of neutron stars.
Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations
NASA Astrophysics Data System (ADS)
Krimmer, J.; Chevallier, M.; Constanzo, J.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Freud, N.; Henriquet, P.; La Tessa, C.; Létang, J. M.; Pleskač, R.; Pinto, M.; Ray, C.; Reithinger, V.; Richard, M. H.; Rinaldi, I.; Roellinghoff, F.; Schuy, C.; Testa, E.; Testa, M.
2015-01-01
Longitudinal prompt-gamma ray profiles have been measured with a multi-slit multi-detector configuration at a 75 MeV/u 13C beam and with a PMMA target. Selections in time-of-flight and energy have been applied in order to discriminate prompt-gamma rays produced in the target from background events. The ion ranges which have been extracted from each individual detector module agree amongst each other and are consistent with theoretical expectations. In a separate dedicated experiment with 200 MeV/u 12C ions the fraction of inter-detector scattering has been determined to be on the 10%-level via a combination of experimental results and simulations. At the same experiment different collimator configurations have been tested and the shielding properties of tungsten and lead for prompt-gamma rays have been measured.
NASA Astrophysics Data System (ADS)
Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih
2017-08-01
In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.
Improvement of the prompt-gamma neutron activation facility at Brookhaven National Laboratory.
Dilmanian, F A; Lidofsky, L J; Stamatelatos, I; Kamen, Y; Yasumura, S; Vartsky, D; Pierson, R N; Weber, D A; Moore, R I; Ma, R
1998-02-01
The prompt-gamma neutron activation facility at Brookhaven National Laboratory was upgraded to improve both the precision and accuracy of its in vivo determinations of total body nitrogen. The upgrade, guided by Monte Carlo simulations, involved elongating and modifying the source collimator and its shielding, repositioning the system's two NaI(Tl) detectors, and improving the neutron and gamma shielding of these detectors. The new source collimator has a graphite reflector around the 238PuBe neutron source to enhance the low-energy region of the neutron spectrum incident on the patient. The gamma detectors have been relocated from positions close to the upward-emerging collimated neutron beam to positions close to and at the sides of the patient. These modifications substantially reduced spurious counts resulting from the capture of small-angle scattered neutrons in the NaI detectors. The pile-up background under the 10.8 MeV 14N(n, gamma)15N spectral peak has been reduced so that the nitrogen peak-to-background ratio has been increased by a factor of 2.8. The resulting reduction in the coefficient of variation of the total body nitrogen measurements from 3% to 2.2% has improved the statistical significance of the results possible for any given number of patient measurements. The new system also has a more uniform composite sensitivity.
Investigation of attenuation coefficients of some stainless steel and aluminum alloys
NASA Astrophysics Data System (ADS)
Caner, Zafer; Tufan, Mustafa ćaǧatay
2018-02-01
In this study, attenuation coefficients of two different stainless steel alloys (AISI 304 and AISI 310), which have a wide range of applications from home appliances to the automotive sector, and two different aluminum alloys (6013 and 5083), which have a high mechanical strength and a light weight structure and are used in many fields from aviation to military vehicles, has been determined. For this purpose, we used gamma spectrometer system with NaI(Tl) detector. In our measurements, we used Eu-152, Ra-226 and Co-60 as gamma ray sources. To narrow the beam of gamma rays, we designed the new steel based collimator. We also investigated the effect of using collimator. Obtained results were compared with the NIST XCOM values.
Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali
2018-07-01
The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun
2016-09-01
Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two modalities.
Focus collimator press for a collimator for gamma ray cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, R.N.; York, D.L.
A focus collimator press for collimators for gamma ray cameras is described comprising a pivot arm of fixed length mounted on a travelling pivot which is movable in the plane of a spaced apart work table surface in a direction toward and away from the work table. A press plate is carried at the opposite end of the fixed length pivot arm, and is maintained in registration with the same portion of the work table for pressing engagement with each undulating radiation opaque strip as it is added to the top of a collimator stack in process by movement ofmore » the travelling pivot inward toward the work table. This enables the press plate to maintain its relative position above the collimator stack and at the same time the angle of the press plate changes, becoming less acute in relation to the work table as the travelling pivot motes inwardly toward the work table. The fixed length of the pivot arm is substantially equal to the focal point of the converging apertures formed by each pair of undulating strips stacked together. Thus, the focal point of each aperture row falls substantially on the axis of the travelling pivot, and since it moves in the plane of the work table surface the focal point of each aperture row is directed to lie in the same common plane. When one of two collimator stacks made in this way is rotated 180 degrees and the two bonded together along their respective first strips, all focal points of every aperture row lie on the central axis of the completed collimator.« less
Prompt gamma imaging of proton pencil beams at clinical dose rate
NASA Astrophysics Data System (ADS)
Perali, I.; Celani, A.; Bombelli, L.; Fiorini, C.; Camera, F.; Clementel, E.; Henrotin, S.; Janssens, G.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Vander Stappen, F.
2014-10-01
In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.
NASA Astrophysics Data System (ADS)
Ishikawa, M.; Itoga, T.; Okuji, T.; Nakhostin, M.; Shinohara, K.; Hayashi, T.; Sukegawa, A.; Baba, M.; Nishitani, T.
2006-10-01
A line-integrated neutron emission profile is routinely measured using the radial neutron collimator system in JT-60U tokamak. Stilbene neuron detectors (SNDs), which combine a stilbene organic crystal scintillation detector (SD) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure collimated neutron flux. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to ˜1×105counts/s due to the analog PSD circuit. To overcome this issue, a digital signal processing system (DSPS) using a flash analog-to-digital converter (Acqiris DC252, 8GHz, 10bits) has been developed at Cyclotron and Radioisotope Center in Tohoku University. In this system anode signals from photomultiplier of the SD are directory stored and digitized. Then, the PSD between neutrons and gamma rays is performed using software. The DSPS has been installed in the vertical neutron collimator system in JT-60U and applied to deuterium experiments. It is confirmed that the PSD is sufficiently performed and collimated neutron flux is successfully measured with count rate up to ˜5×105counts/s without the effect of pileup of detected pulses. The performance of the DSPS as a neutron detector, which supersedes the SND, is demonstrated.
MO-D-213-05: Sensitivity of Routine IMRT QA Metrics to Couch and Collimator Rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaei, P
Purpose: To assess the sensitivity of gamma index and other IMRT QA metrics to couch and collimator rotations. Methods: Two brain IMRT plans with couch and/or collimator rotations in one or more of the fields were evaluated using the IBA MatriXX ion chamber array and its associated software (OmniPro-I’mRT). The plans were subjected to routine QA by 1) Creating a composite planar dose in the treatment planning system (TPS) with the couch/collimator rotations and 2) Creating the planar dose after “zeroing” the rotations. Plan deliveries to MatriXX were performed with all rotations set to zero on a Varian 21ex linearmore » accelerator. This in effect created TPS-created planar doses with an induced rotation error. Point dose measurements for the delivered plans were also performed in a solid water phantom. Results: The IMRT QA of the plans with couch and collimator rotations showed clear discrepancies in the planar dose and 2D dose profile overlays. The gamma analysis, however, did pass with the criteria of 3%/3mm (for 95% of the points), albeit with a lower percentage pass rate, when one or two of the fields had a rotation. Similar results were obtained with tighter criteria of 2%/2mm. Other QA metrics such as percentage difference or distance-to-agreement (DTA) histograms produced similar results. The point dose measurements did not obviously indicate the error due to location of dose measurement (on the central axis) and the size of the ion chamber used (0.6 cc). Conclusion: Relying on Gamma analysis, percentage difference, or DTA to determine the passing of an IMRT QA may miss critical errors in the plan delivery due to couch/collimator rotations. A combination of analyses for composite QA plans, or per-beam analysis, would detect these errors.« less
SU-G-BRC-04: Collimator Angle Optimization in Volumetric Modulated Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, A; Johnson, C; Bartlett, G
2016-06-15
Purpose: Volumetric modulated arc therapy (VMAT) has revolutionized radiation treatment by decreasing treatment time and monitor units, thus reducing scattered and whole body radiation dose. As the collimator angle changes the apparent leaf gap becomes larger which can impact plan quality, organ at risk (OAR) sparing as well as IMRT QA passing rate which is investigated. Methods: Two sites (prostate and head and neck) that have maximum utilization of VMAT were investigated. Two previously treated VMAT patients were chosen. For each patient 10 plans were created by maintaining constant optimization constraints while varying collimator angles from 0-90 deg at anmore » interval of 10 degrees for the first arc and the appropriate complimentary angle for the second arc. Plans were created with AAA algorithm using 6 MV beam on a Varian IX machine with Millennium 120 MLC. The dose-volume histogram (DVH) for each plan was exported and dosimetric parameters (D98, D95, D50, D2) as well homogeneity index (HI) and conformity index (CI) were computed. Each plan was validated for QA using ArcCheck with gamma index passing criteria of 2%/2 mm and 3%/3 mm. Additionally, normal tissue complication probability (NTCP) for each OAR was computed using Uzan-Nahum software. Results: The CI values for both sites had no impact as target volume coverage in every collimator angle were the same since it was optimized for adequate coverage. The HI which is representative of DVH gradient or dose uniformity in PTV showed a clear trend in both sites. The NTCP for OAR (brain and cochlea) in H&N plan and (bladder and rectum) in prostate plan showed a distinct superiority for collimator angles between 15-30 deg. The gamma passing rates were not correlated with angle. Conclusion: Based on CI, HI, NTCP and gamma passing index, it can be concluded that collimator angles should be maintained within 15–30 deg.« less
Radiation Templates of Spent Fuel in Casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanier, Peter
BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, butmore » baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.« less
High-entropy fireballs and jets in gamma-ray burst sources
NASA Technical Reports Server (NTRS)
Meszaros, P.; Rees, M. J.
1992-01-01
Two mechanisms whereby compact coalescing binaries can produce relatively 'clean' fireballs via neutrino-antineutrino annihilation are proposed. Preejected mass due to tidal heating will collimate the fireball into jets. The resulting anisotropic gamma-ray emission can be efficient and intense enough to provide an acceptable model for gamma-ray bursts, if these originate at cosmological distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, G; Kapadia, A
Purpose: To optimize collimation and shielding for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact clinical neutron imaging system. The envisioned application is cancer diagnosis through Neutron Stimulated Emission Computed Tomography (NSECT). Methods: Collimator designs were tested with an isotropic 2.5 MeV neutron source through GEANT4 simulations. The collimator is a 52×52×52 cm{sup 3} polyethylene block coupled with a 1 cm lead sheet in sequence. Composite opening was modeled into the collimator to permit passage of neutrons. The opening varied in shape (cylindrical vs. tapered), size (1–5 cm source-side and target-side openings) and aperture placements (13–39 cm frommore » source-side). Spatial and energy distribution of neutrons and gammas were tracked from each collimator design. Parameters analyzed were primary beam width (FWHM), divergence, and efficiency (percent transmission) for different configurations of the collimator. Select resultant outputs were then used for simulated NSECT imaging of a virtual breast phantom containing a 2.5 cm diameter tumor to assess the effect of the collimator on spatial resolution, noise, and scan time. Finally, composite shielding enclosure made of polyethylene and lead was designed and evaluated to block 99.99% of neutron and gamma radiation generated in the system. Results: Analysis of primary beam indicated the beam-width is linear to the aperture size. Increasing source-side opening allowed at least 20% more neutron throughput for all designs relative to the cylindrical openings. Maximum throughput for all designs was 364% relative to cylindrical openings. Conclusion: The work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-defined collimated neutron beam that can be used to image samples of interest with millimeter resolution. Balance in output efficiency, noise reduction, and scan time should be considered to determine the optimal design for specific NSECT applications.« less
Perez-Garcia, H; Barquero, R
The correct determination and delineation of tumor/organ size is crucial in 2-D imaging in 131 I therapy. These images are usually obtained using a system composed of a Gamma camera and high-energy collimator, although the system can produce artifacts in the image. This article analyses these artifacts and describes a correction filter that can eliminate those collimator artifacts. Using free software, ImageJ, a central profile in the image is obtained and analyzed. Two components can be seen in the fluctuation of the profile: one associated with the stochastic nature of the radiation, plus electronic noise and the other periodically across the position in space due to the collimator. These frequencies are analytically obtained and compared with the frequencies in the Fourier transform of the profile. A specially developed filter removes the artifacts in the 2D Fourier transform of the DICOM image. This filter is tested using a 15-cm-diameter Petri dish with 131 I radioactive water (big object size) image, a 131 I clinical pill (small object size) image, and an image of the remainder of the lesion of two patients treated with 3.7GBq (100mCi), and 4.44GBq (120mCi) of 131 I, respectively, after thyroidectomy. The artifact is due to the hexagonal periodic structure of the collimator. The use of the filter on large-sized images reduces the fluctuation by 5.8-3.5%. In small-sized images, the FWHM can be determined in the filtered image, while this is impossible in the unfiltered image. The definition of tumor boundary and the visualization of the activity distribution inside patient lesions improve drastically when the filter is applied to the corresponding images obtained with HE gamma camera. The HURRA filter removes the artifact of high-energy collimator artifacts in planar images obtained with a Gamma camera without reducing the image resolution. It can be applied in any study of patient quantification because the number of counts remains invariant. The filter makes possible the definition and delimitation of small uptakes, such as those presented in treatments with 131 I. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Smeets, Julien; Roellinghoff, Frauke; Janssens, Guillaume; Perali, Irene; Celani, Andrea; Fiorini, Carlo; Freud, Nicolas; Testa, Etienne; Prieels, Damien
2016-01-01
More and more camera concepts are being investigated to try and seize the opportunity of instantaneous range verification of proton therapy treatments offered by prompt gammas emitted along the proton tracks. Focusing on one-dimensional imaging with a passive collimator, the present study experimentally compared in combination with the first, clinically compatible, dedicated camera device the performances of instances of the two main options: a knife-edge slit (KES) and a multi-parallel slit (MPS) design. These two options were experimentally assessed in this specific context as they were previously demonstrated through analytical and numerical studies to allow similar performances in terms of Bragg peak retrieval precision and spatial resolution in a general context. Both collimators were prototyped according to the conclusions of Monte Carlo optimization studies under constraints of equal weight (40 mm tungsten alloy equivalent thickness) and of the specificities of the camera device under consideration (in particular 4 mm segmentation along beam axis and no time-of-flight discrimination, both of which less favorable to the MPS performance than to the KES one). Acquisitions of proton pencil beams of 100, 160, and 230 MeV in a PMMA target revealed that, in order to reach a given level of statistical precision on Bragg peak depth retrieval, the KES collimator requires only half the dose the present MPS collimator needs, making the KES collimator a preferred option for a compact camera device aimed at imaging only the Bragg peak position. On the other hand, the present MPS collimator proves more effective at retrieving the entrance of the beam in the target in the context of an extended camera device aimed at imaging the whole proton track within the patient.
High energy collimating fine grids for HESP program
NASA Technical Reports Server (NTRS)
Eberhard, Carol D.; Frazier, Edward
1993-01-01
There is a need to develop fine pitch x-ray collimator grids as an enabling technology for planned future missions. The grids consist of an array of thin parallel strips of x-ray absorbing material, such as tungsten, with pitches ranging from 34 microns to 2.036 millimeters. The grids are the key components of a new class of spaceborne instruments known as 'x-ray modulation collimators.' These instruments are the first to produce images of celestial sources in the hard x-ray and gamma-ray spectral regions.
Prompt-gamma monitoring in hadrontherapy: A review
NASA Astrophysics Data System (ADS)
Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.
2018-01-01
Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.
Real-time proton beam range monitoring by means of prompt-gamma detection with a collimated camera
NASA Astrophysics Data System (ADS)
Roellinghoff, F.; Benilov, A.; Dauvergne, D.; Dedes, G.; Freud, N.; Janssens, G.; Krimmer, J.; Létang, J. M.; Pinto, M.; Prieels, D.; Ray, C.; Smeets, J.; Stichelbaut, F.; Testa, E.
2014-03-01
Prompt-gamma profile was measured at WPE-Essen using 160 MeV protons impinging a movable PMMA target. A single collimated detector was used with time-of-flight (TOF) to reduce the background due to neutrons. The target entrance rise and the Bragg peak falloff retrieval precision was determined as a function of incident proton number by a fitting procedure using independent data sets. Assuming improved sensitivity of this camera design by using a greater number of detectors, retrieval precisions of 1 to 2 mm (rms) are expected for a clinical pencil beam. TOF improves the contrast-to-noise ratio and the performance of the method significantly.
Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.
2015-01-01
During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069
Estimation of bone mineral content using gamma camera: A real possibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, L.M.; Hoory, S.; Bandyopadhyay, D.
1985-05-01
Osteopenia and Osteoporosis are the diseases related to loss of bone minerals. At present, dual photon absorptiometry using a dedicated specially built scanner along with a very high source of Gd-153 is being used as a diagnostic tool for the early detection of bone loss. The present study was undertaken to explore the possibility that gamma cameras which are widely available in all Nuclear Medicine departments could be used successfully to evaluate bone mineral content. A Siemens LFOV gamma camera equipped with a converging collimator was used for this purpose. A fixed source (100 mCi) of Gd-153 was placed atmore » the focal point of the collimator. A series of calcium chloride solutions of varying concentrations in plastic vials were placed near the center of the collimator and imaged both in air and water. Both 44 Kev and 100 Kev images were digitized in 128 x 128 matrices and processed in a CD and A Delta system attached to a VAX 11-750 computer. Uniformity corrections for each field of view were applied and the attenuation coefficients of calcium chloride for both peaks of Gd-153 were evaluated. In addition, due to the high count rate, corrections for the dead time losses were also found to be essential. An excellent concordance between the estimated Calcium contents and that actually present were obtained by this technic. In conclusion, use of gamma camera for the routine evaluation of Osteoporosis appears to be highly promising and worth pursuing.« less
Monte Carlo design of optimal wire mesh collimator for breast tumor imaging process
NASA Astrophysics Data System (ADS)
Saad, W. H. M.; Roslan, R. E.; Mahdi, M. A.; Choong, W.-S.; Saion, E.; Saripan, M. I.
2011-08-01
This paper presents the modeling of breast tumor imaging process using wire mesh collimator gamma camera. Previous studies showed that the wire mesh collimator has a potential to improve the sensitivity of the tumor detection. In this paper, we extend our research significantly, to find an optimal configuration of the wire mesh collimator specifically for semi-compressed breast tumor detection, by looking into four major factors: weight, sensitivity, spatial resolution and tumor contrast. The numbers of layers in the wire mesh collimator is varied to optimize the collimator design. The statistical variations of the results are studied by simulating multiple realizations for each experiment using different starting random numbers. All the simulation environments are modeled using Monte Carlo N-Particle Code (MCNP). The quality of the detection is measured directly by comparing the sensitivity, spatial resolution and tumor contrast of the images produced by the wire mesh collimator and benchmarked that with a standard multihole collimator. The proposed optimal configuration of the wire mesh collimator is optimized by selecting the number of layers in wire mesh collimator, where the tumor contrast shows a relatively comparable value to the multihole collimator, when it is tested with uniformly semi-compressed breast phantom. The wire mesh collimator showed higher number of sensitivity because of its loose arrangement while the spatial resolution of wire mesh collimator does not shows much different compared to the multihole collimator. With a relatively good tumor contrast and spatial resolution, and increased in sensitivity, a new proposed wire mesh collimator gives a significant improvement in the wire mesh collimator design for breast cancer imaging process. The proposed collimator configuration is reduced to 44.09% from the total multihole collimator weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.
Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-holemore » collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images acquired with the current parallel-hole collimator. Sensitivity was increased via more vertical cone slant angles, larger annular areas, thinner cone walls, shorter cone heights, and thinner radiating septa. Full width at half maximum trended in the opposite direction as sensitivity for all parameters. There was less error in the depth estimates for less vertical slant angles, smaller annular areas, thinner cone walls, cone heights near 1 cm, and generally thinner radiating septa. Conclusions: A Monte Carlo model was used to demonstrate the feasibility of a CSH collimator design for rapid biopsy application in molecular breast imaging. Specifically, lesion depth of a 1-cm diameter lesion positioned in the center of a typical breast can be estimated with error of less than 2 mm using circumferential count profiles of images acquired in 1 min.« less
Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.
2003-03-04
A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John
We study models that produce a Higgs boson plus photon (more » $$h^0 \\gamma$$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $$h^0 \\gamma$$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $$h^0 \\gamma$$ branching fraction is typically of order $$10^{-5}$$ or smaller. Nevertheless, there are models that would allow the observation of $$Z' \\to h^0 \\gamma$$ at $$\\sqrt{s} = 13$$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $$h^0 \\gamma$$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $$h^0 \\gamma$$ resonance. In this model, the $$h^0 \\gamma$$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $$h^0 \\gamma$$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. Here, we comment on prospects of observing an $$h^0 \\gamma$$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.« less
Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John
2017-10-24
We study models that produce a Higgs boson plus photon (more » $$h^0 \\gamma$$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $$h^0 \\gamma$$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $$h^0 \\gamma$$ branching fraction is typically of order $$10^{-5}$$ or smaller. Nevertheless, there are models that would allow the observation of $$Z' \\to h^0 \\gamma$$ at $$\\sqrt{s} = 13$$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $$h^0 \\gamma$$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $$h^0 \\gamma$$ resonance. In this model, the $$h^0 \\gamma$$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $$h^0 \\gamma$$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. Here, we comment on prospects of observing an $$h^0 \\gamma$$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.« less
An apparently normal gamma-ray burst with an unusually low luminosity.
Sazonov, S Yu; Lutovinov, A A; Sunyaev, R A
2004-08-05
Much of the progress in understanding gamma-ray bursts (GRBs) has come from studies of distant events (redshift z approximately 1). In the brightest GRBs, the gamma-rays are so highly collimated that the events can be seen across the Universe. It has long been suspected that the nearest and most common events have been missed because they are not as collimated or they are under-energetic (or both). Here we report soft gamma-ray observations of GRB 031203, the nearest event to date (z = 0.106; ref. 2). It had a duration of 40 s and peak energy of >190 keV, and therefore appears to be a typical long-duration GRB. The isotropic gamma-ray energy of < or =10(50) erg, however, is about three orders of magnitude smaller than that of the cosmological population. This event--as well as the other nearby but somewhat controversial GRB 980425--is a clear outlier from the isotropic-energy/peak-energy relation and luminosity/spectral-lag relations that describe the majority of GRBs. Radio calorimetry shows that both of these events are under-energetic explosions. We conclude that there does indeed exist a large population of under-energetic events.
A unit for inspection of materials using differential gamma-ray scattering technique
NASA Astrophysics Data System (ADS)
Chankow, Nares; Pojchanachai, Saraparn
2004-01-01
The main objectives of this research were to develop a prototype unit using the differential gamma-ray scattering technique (DGST) and to demonstrate its possible use in nondestructive inspection of materials. The unit consisted of a 5 mCi (185 MBq) 137Cs gamma-ray source positioned perpendicularly to a 5 cm × 5 cm BGO detector. The gamma-ray beam was collimated by a 5 cm thick lead collimator with 1 cm ∅ opening while the detector was only side shielded allowing scattered gamma-rays to reach the detector from different angles. The unit was then tested with 20 cm × 20 cm × 20 cm concrete mortar containing four rebars at its corners. It was found that the integral of the differential spectrum changed corresponding to the size and position of the rebar which was in front of the source and the detector. It was also found that the integral of the differential spectrum increased with increasing degree of corrosion of the rebar. The results indicated that a portable DGST unit could be designed to be used as a tool in nondestructive inspection but the interpretation of the differential spectrum still needs further investigation.
Ideal engine durations for gamma-ray-burst-jet launch
NASA Astrophysics Data System (ADS)
Hamidani, Hamid; Takahashi, Koh; Umeda, Hideyuki; Okita, Shinpei
2017-08-01
Aiming to study gamma-ray-burst (GRB) engine duration, we present numerical simulations to investigate collapsar jets. We consider typical explosion energy (1052 erg) but different engine durations, in the widest domain to date from 0.1 to 100 s. We employ an adaptive mesh refinement 2D hydrodynamical code. Our results show that engine duration strongly influences jet nature. We show that the efficiency of launching and collimating relativistic outflow increases with engine duration, until the intermediate engine range where it is the highest, past this point to long engine range, the trend is slightly reversed; we call this point where acceleration and collimation are the highest 'sweet spot' (˜10-30 s). Moreover, jet energy flux shows that variability is also high in this duration domain. We argue that not all engine durations can produce the collimated, relativistic and variable long GRB jets. Considering a typical progenitor and engine energy, we conclude that the ideal engine duration to reproduce a long GRB is ˜10-30 s, where the launch of relativistic, collimated and variable jets is favoured. We note that this duration domain makes a good link with a previous study suggesting that the bulk of Burst and Transient Source Experiment's long GRBs is powered by ˜10-20 s collapsar engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, S; Indiana University School of Medicine, Indianapolis, IN, University Hospitals Case Medical Center, Cleaveland, OH; Andersen, A
2015-06-15
Purpose: The Leksell Gamma Knife (GK) B & C series contains 201 Cobalt-60 sources with a helmet. The new model, Perfexion uses 192 Cobalt-60 sources without a helmet; using IRIS system for collimation and stereotactic guidance to deliver SRS to brain tumors. Relative dose to extracranial organs at risk (OARs) is measured in phantom in this study for Perfexion and C-series GK. Materials & Methods: Measurements were performed in a Rando anthropomorphic phantom on both systems using a large ion chamber (Keithley-175) for each collimator. The Keithley-175 cc ion chamber was sandwiched between phantom slices at various locations in themore » phantom to correspond to different extracranial OARs (thyroid, heart, kidney, ovary and testis, etc.) The dose measurement was repeated with OSL detectors for each position and collimator. Results: A large variation is observed in the normalized dose between these two systems. The dose beyond the housing falls off exponentially for Perfexion. Dose beyond the C-series GK housing falls off exponentially from 0–20cm then remains relatively constant from 20–40cm and again falls off with distance but less rapidly. The variation of extracranial dose with distance for each collimator is found to be parallel to each other for both systems. Conclusion: Whole body dose is found to vary significantly between these systems. It is important to measure the extracranial dose, especially for young patients. It is estimated that dose falls off exponentially from the GK housing and is about 1% for large collimators at 75 cm. The dose is two-orders of magnitude smaller for the 4mm collimator. However, this small dose for patient may be significant radiologically.« less
TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars.
Murase, Kohta; Ioka, Kunihito
2013-09-20
We study high-energy neutrino production in collimated jets inside progenitors of gamma-ray bursts (GRBs) and supernovae, considering both collimation and internal shocks. We obtain simple, useful constraints, using the often overlooked point that shock acceleration of particles is ineffective at radiation-mediated shocks. Classical GRBs may be too powerful to produce high-energy neutrinos inside stars, which is consistent with IceCube nondetections. We find that ultralong GRBs avoid such constraints and detecting the TeV signal will support giant progenitors. Predictions for low-power GRB classes including low-luminosity GRBs can be consistent with the astrophysical neutrino background IceCube may detect, with a spectral steepening around PeV. The models can be tested with future GRB monitors.
Energy- and time-resolved detection of prompt gamma-rays for proton range verification.
Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao
2013-10-21
In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.
Bahk, Yong-Whee; Jeon, Ho-Seung; Kim, Jang Min; Park, Jung Mee; Chung, Yong-An; Kim, E Edmund; Kim, Sung-Hoon; Chung, Soo-Kyo
2010-08-01
The aim of this study was to introduce gamma correction pinhole bone scan (GCPBS) to depict specific signs of knee occult fractures (OF) on (99m)Tc-hydroxydiphosphonate (HDP) scan. Thirty-six cases of six different types of knee OF in 27 consecutive patients (male = 20, female = 7, and age = 18-86 years) were enrolled. The diagnosis was made on the basis of a history of acute or subacute knee trauma, local pain, tenderness, cutaneous injury, negative conventional radiography, and positive magnetic resonance imaging (MRI). Because of the impracticability of histological verification of individual OF, MRI was utilized as a gold standard of diagnosis and classification. All patients had (99m)Tc-HDP bone scanning and supplementary GCPBS. GCPBS signs were correlated and compared with those of MRI. The efficacy of gamma correction of ordinary parallel collimator and pinhole collimator scans were collated. Gamma correction pinhole bone scan depicted the signs characteristic of six different types of OF. They were well defined stuffed globular tracer uptake in geographic I fractures (n = 9), block-like uptake in geographic II fractures (n = 7), simple or branching linear uptake in linear cancellous fractures (n = 4), compression in impacted fractures (n = 2), stippled-serpentine uptake in reticular fractures (n = 11), and irregular subcortical uptake in osteochondral fractures (n = 3). All fractures were equally well or more distinctly depicted on GCPBS than on MRI except geographic II fracture, the details of which were not appreciated on GCPBS. Parallel collimator scan also yielded to gamma correction, but the results were inferior to those of the pinhole scan. Gamma correction pinhole bone scan can depict the specific diagnostic signs in six different types of knee occult fractures. The specific diagnostic capability along with the lower cost and wider global availability of bone scanning would make GCPBS an effective alternative.
NASA Astrophysics Data System (ADS)
Gregory, Rebecca A.; Murray, Iain; Gear, Jonathan; Aldridge, Matthew D.; Levine, Daniel; Fowkes, Lucy; Waddington, Wendy A.; Chua, Sue; Flux, Glenn
2017-01-01
Iodine-123 mIBG imaging is widely regarded as a gold standard for diagnostic studies of neuroblastoma and adult neuroendocrine cancer although the optimal collimator for tumour imaging remains undetermined. Low-energy (LE) high-resolution (HR) collimators provide superior spatial resolution. However due to septal penetration of high-energy photons these provide poorer contrast than medium-energy (ME) general-purpose (GP) collimators. LEGP collimators improve count sensitivity. The aim of this study was to objectively compare the lesion detection efficiency of each collimator to determine the optimal collimator for diagnostic imaging. The septal penetration and sensitivity of each collimator was assessed. Planar images of the patient abdomen were simulated with static scans of a Liqui-Phil™ anthropomorphic phantom with lesion-shaped inserts, acquired with LE and ME collimators on 3 different manufacturers’ gamma camera systems (Skylight (Philips), Intevo (Siemens) and Discovery (GE)). Two-hundred normal and 200 single-lesion abnormal images were created for each collimator. A channelized Hotelling observer (CHO) was developed and validated to score the images for the likelihood of an abnormality. The areas under receiver-operator characteristic (ROC) curves, Az, created from the scores were used to quantify lesion detectability. The CHO ROC curves for the LEHR collimators were inferior to the GP curves for all cameras. The LEHR collimators resulted in statistically significantly smaller Azs (p < 0.05), of on average 0.891 ± 0.004, than for the MEGP collimators, 0.933 ± 0.004. In conclusion, the reduced background provided by MEGP collimators improved 123I mIBG image lesion detectability over LEHR collimators that provided better spatial resolution.
Bergmann, Helmar; Minear, Gregory; Raith, Maria; Schaffarich, Peter M
2008-12-09
The accuracy of multiple window spatial resolution characterises the performance of a gamma camera for dual isotope imaging. In the present study we investigate an alternative method to the standard NEMA procedure for measuring this performance parameter. A long-lived 133Ba point source with gamma energies close to 67Ga and a single bore lead collimator were used to measure the multiple window spatial registration error. Calculation of the positions of the point source in the images used the NEMA algorithm. The results were validated against the values obtained by the standard NEMA procedure which uses a liquid 67Ga source with collimation. Of the source-collimator configurations under investigation an optimum collimator geometry, consisting of a 5 mm thick lead disk with a diameter of 46 mm and a 5 mm central bore, was selected. The multiple window spatial registration errors obtained by the 133Ba method showed excellent reproducibility (standard deviation < 0.07 mm). The values were compared with the results from the NEMA procedure obtained at the same locations and showed small differences with a correlation coefficient of 0.51 (p < 0.05). In addition, the 133Ba point source method proved to be much easier to use. A Bland-Altman analysis showed that the 133Ba and the 67Ga Method can be used interchangeably. The 133Ba point source method measures the multiple window spatial registration error with essentially the same accuracy as the NEMA-recommended procedure, but is easier and safer to use and has the potential to replace the current standard procedure.
Hybrid Parallel-Slant Hole Collimators for SPECT Imaging
NASA Astrophysics Data System (ADS)
Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.; Petrillo, M.
2004-06-01
We propose a new collimator geometry, the hybrid parallel-slant (HPS) hole geometry, to improve sensitivity for SPECT imaging with large field of view (LFOV) gamma cameras. A HPS collimator has one segment with parallel holes and one or more segments with slant holes. The collimator can be mounted on a conventional SPECT LFOV system that uses parallel-beam collimators, and no additional detector or collimator motion is required for data acquisition. The parallel segment of the collimator allows for the acquisition of a complete data set of the organs-of-interest and the slant segments provide additional data. In this work, simulation studies of an MCAT phantom were performed with a HPS collimator with one slant segment. The slant direction points from patient head to patient feet with a slant angle of 30/spl deg/. We simulated 64 projection views over 180/spl deg/ with the modeling of nonuniform attenuation effect, and then reconstructed images using an MLEM algorithm that incorporated the hybrid geometry. It was shown that sensitivity to the cardiac region of the phantom was increased by approximately 50% when using the HPS collimator compared with a parallel-hole collimator. No visible artifacts were observed in the myocardium and the signal-to-noise ratio (SNR) of the myocardium walls was improved. Compared with collimators with other geometries, using a HPS collimator has the following advantages: (a) significant sensitivity increase; (b) a complete data set obtained from the parallel segment that allows for artifact-free image reconstruction; and (c) no additional collimator or detector motion. This work demonstrates the potential value of hybrid geometry in collimator design for LFOV SPECT imaging.
Penetrative nature of high energy showers observed in Chacaltaya emulsion chamber
NASA Technical Reports Server (NTRS)
Funayama, Y.; Tamada, M.
1985-01-01
About 30% of single core showers with E (sup gamma) 10 TeV have stronger penetrating power than that expected from electromagnetic showers (e,gamma). On the other hand, their starting points of cascades in the chamber are found to be as shallow as those of (e,gamma) components. It is suggested that those showers are very collimated bundles of hadron and (e,gamma) component. Otherwise, it is assumed that the collision mean free path of those showers in the chamber is shorter than that of hadron with geometrical value.
Gamma-Ray Attenuation to Evaluate Soil Porosity: An Analysis of Methods
Pires, Luiz F.; Pereira, André B.
2014-01-01
Soil porosity (ϕ) is of a great deal for environmental studies due to the fact that water infiltrates and suffers redistribution in the soil pore space. Many physical and biochemical processes related to environmental quality occur in the soil porous system. Representative determinations of ϕ are necessary due to the importance of this physical property in several fields of natural sciences. In the current work, two methods to evaluate ϕ were analyzed by means of gamma-ray attenuation technique. The first method uses the soil attenuation approach through dry soil and saturated samples, whereas the second one utilizes the same approach but taking into account dry soil samples to assess soil bulk density and soil particle density to determine ϕ. The results obtained point out a good correlation between both methods. However, when ϕ is obtained through soil water content at saturation and a 4 mm collimator is used to collimate the gamma-ray beam the first method also shows good correlations with the traditional one. PMID:24616640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, S; Mossahebi, S; Yi, B
Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breastmore » cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient treatments. An absolute dosimetry and dosimetric verification protocols were successfully created.« less
A relativistic type Ibc supernova without a detected gamma-ray burst.
Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P
2010-01-28
Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl
Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Signmore » intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0%{+-} 0.7%). Conclusions: Dosimetric evaluation of the first GammaPod Trade-Mark-Sign stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.« less
Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho
2013-10-01
Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.
Benchmark gamma-ray skyshine experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nason, R.R.; Shultis, J.K.; Faw, R.E.
1982-01-01
A benchmark gamma-ray skyshine experiment is descibed in which /sup 60/Co sources were either collimated into an upward 150-deg conical beam or shielded vertically by two different thicknesses of concrete. A NaI(Tl) spectrometer and a high pressure ion chamber were used to measure, respectively, the energy spectrum and the 4..pi..-exposure rate of the air-reflected gamma photons up to 700 m from the source. Analyses of the data and comparison to DOT discrete ordinates calculations are presented.
MCNP-based computational model for the Leksell gamma knife.
Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav
2007-01-01
We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large volumes such as for the total skull volume. The differences observed in treatment of scattered radiation between the MC method and the LGP may be important in this case. We have also studied the influence of differential direction sampling of primary photons and have found that, due to the anisotropic sampling, doses around the isocenter deviate from each other by up to 6%. With caution about the details of the calculation settings, it is possible to employ the MCNP Monte Carlo code for independent verification of the Leksell Gamma Knife radiation field properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pino, R; Therriault-Proulx, F; Yang, J
Purpose: To perform dose profile and output factor measurements for the Exradin W1 plastic scintillation detector (PSD) for the Gamma Knife Perfexion (GKP) collimators in a Lucy phantom and to compare these values to an Exradin A16 ion chamber, EBT3 radiochromic film and treatment planning system (TPS) data. Methods: We used the Exradin W1 PSD which has a small volume, near-water equivalent sensitive element. It has also been shown to be energy independent. This new detector is manufactured and distributed by Standard Imaging, Inc. Measurements were performed for all three collimators (4 mm, 8 mm and 16 mm) for themore » GKP. The Lucy phantom with the PSD inserted was moved in small steps to acquire profiles in all three directions. EBT3 film was inserted in the Lucy phantom and exposed to a single shot for each collimator. Relative output factors were measured using the three detectors while profiles acquired with the PSD were compared to the ones measured with EBT3 radiochromic film. Results: Measured output factors relative to the largest collimator are as followsCollimator PS EBT3 A1616mm 1.000 1.000 1.0008mm 0.892 0.881 0.8834mm 0.795 0.793 0.727 The nominal (vendor) OFs for GKP are 1.000, 0.900, and 0.814, for collimators 16 mm, 8 mm and 4 mm, respectively. There is excellent agreement between all profiles measured with the PSD and EBT3 as well as with the TPS data provided by the vendor. Conclusion: Output factors measured with the W1 were consistent with the ones measured with EBT3 and A16 ion chamber. Measured profiles are in excellent agreement. The W1 detector seems well suited for beam QA for Gamma Knife due to its dosimetric characteristics. Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: “Water-Equivalent Plastic Scintillation Detectors for Small Field Radiotherapy”.« less
An empirical model for calculation of the collimator contamination dose in therapeutic proton beams
NASA Astrophysics Data System (ADS)
Vidal, M.; De Marzi, L.; Szymanowski, H.; Guinement, L.; Nauraye, C.; Hierso, E.; Freud, N.; Ferrand, R.; François, P.; Sarrut, D.
2016-02-01
Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.
Shielding Design for the South Pole nToF Diagnostic at the NIF
NASA Astrophysics Data System (ADS)
Khater, Hesham; Sitaraman, Shiva; Hall, James; Hatarik, Robert; Caggiano, Joseph; Waltz, Cory
2017-09-01
Neutron time of flight (nToF) detectors are fielded at the National Ignition Facility (NIF) to measure neutron yield, ion temperature, and downscattering in the cold fuel for D-T implosions. Anisotropically assembled cold fuel may generate different nToF data when measured by detectors located at the Target Chamber equator and poles. A collimated nToF line of sight has been fielded near the Target Chamber South Pole (SP) to examine any possible anisotropy in the cold fuel. The SP nToF detector is located in the lowest floor level of the NIF's Target Bay and at a distance of 18 m from the Target Chamber Center. The detector utilizes a solid bibenzyl scintillator and four photomultiplier tubes. The line of sight includes a port collimator that is attached to the Target Chamber and a bore hole collimator in the concrete floor above the detector. In addition, a beam line get lost hole is constructed in the Target Bay floor to minimize the backscattered radiation at the detector location. Initial measurements indicated the need for installation of additional shielding to eliminate gamma background during the period before arrival of the 14.1 MeV neutrons to the detector. A set of MCNP Monte Carlo simulations with the full Target Bay model were conducted to provide an estimate of the expected neutron and gamma backgrounds during D-T shots. A new shielding scheme is designed to reduce the gamma background by an order of magnitude.
Waker, A J; Maughan, R L
1986-11-01
For fast neutron therapy and radiobiology beams, knowledge of the primary neutron spectrum is the most fundamental requirement for the definition of radiation quality. However, microdosimetric measurements in the form of single-event spectra not only complement the primary neutron spectrum as a statement of radiation quality but also provide a sensitive method of detecting changes in the radiation field in situations where it is no longer possible to have precise knowledge of the primary neutron spectrum, for example after collimator changes and in positions where the radiation field consists of a large scattered component. For the various collimator arrangements employed at the Gray Laboratory facility small perturbations of the radiation field are observed which can be related to a softening of the primary neutron spectrum with increasing field size of the collimator. Gamma fraction determinations are in very good agreement with measurements employing the dual chamber technique and also show small changes with collimator field size giving rise to gamma components ranging from 0.09 to 0.12, the higher values being measured for the larger field sizes. Quality changes represented by the shape of the measured event-size spectra and the derived microdosimetric parameters were greatest for off axis and phantom measurements. With increasing depth in water, yD was found to decrease from 47.3 keV micron-1 at 5 cm to 35.6 keV micron-1 at 15 cm depth, and the gamma fraction was found to increase from 0.23 to 0.40. Although there is no generally accepted and agreed method of relating microdosimetric information to biological effectiveness, the dual radiation theory in its original form (Kellerer and Rossi 1972) has been shown to be a very useful model for the assessment of the biological effectiveness of fast neutrons (Kellerer et al 1976). The microdosimetric parameter which is used in the dual radiation model is the dose mean specific energy corrected for saturation zeta* which, for a 2 micron simulated diameter, is related to the dose mean lineal energy corrected for saturation y* by zeta* = y* keV micron-1 X 0.51 X 10(-2) Gy. Values of y* determined for each of the collimator arrangements used at the Gray Laboratory show a spread of some 6% (table 1) and, as the dose fraction between lineal energies 5 and 150 keV micron-1 (the recoil proton component) do not alter by more than 3%, radiobiological experiments performed with different collimator arrangements would show no observable differences.(ABSTRACT TRUNCATED AT 400 WORDS)
Non-destructive method for determining neutron exposure
Gold, R.; McElroy, W.N.
1983-11-01
A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.
Gamma ray spectroscopy monitoring method and apparatus
Stagg, William R; Policke, Timothy A
2017-05-16
The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.
Gamma-ray bursts from cusps on superconducting cosmic strings at large redshifts
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan
1988-01-01
Babul et al. (1987) proposed that some gamma-ray bursts may be caused by energy released at the cusps of oscillating loops made of superconducting cosmic strings. It is claimed that there were some errors and omissions in that work, which are claimed to be corrected in the present paper. Arguments are presented, that given certain assumptions, the cusps on oscillating superconducting cosmic strings produce highly collimated and energetic electromagnetic bursts and that a fair fraction of electromagnetic energy is likely to come out as gamma rays.
The journey from proton to gamma knife.
Ganz, Jeremy C
2014-01-01
It was generally accepted by the early 1960s that proton beam radiosurgery was too complex and impractical. The need was seen for a new machine. The beam design had to be as good as a proton beam. It was also decided that a static design was preferable even if the evolution of that notion is no longer clear. Complex collimators were designed that using sources of cobalt-60 could produce beams with characteristics adequately close to those of proton beams. The geometry of the machine was determined including the distance of the sources from the patient the optimal distance between the sources. The first gamma unit was built with private money with no contribution from the Swedish state, which nonetheless required detailed design information in order to ensure radiation safety. This original machine was built with rectangular collimators to produce lesions for thalamotomy for functional work. However, with the introduction of dopamine analogs, this indication virtually disappeared overnight.
Development and deployment of the Collimated Directional Radiation Detection System
NASA Astrophysics Data System (ADS)
Guckes, Amber L.; Barzilov, Alexander
2017-09-01
The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.
Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions
NASA Astrophysics Data System (ADS)
Kirby, John A.; Lindquist, Roy P.
1994-10-01
Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.
High-resolution radiography by means of a hodoscope
De Volpi, Alexander
1978-01-01
The fast neutron hodoscope, a device that produces neutron radiographs with coarse space resolution in a short time, is modified to produce neutron or gamma radiographs of relatively thick samples and with high space resolution. The modification comprises motorizing a neutron and gamma collimator to permit a controlled scanning pattern, simultaneous collection of data in a number of hodoscope channels over a period of time, and computerized image reconstruction of the data thus gathered.
Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR)
NASA Astrophysics Data System (ADS)
Chento, Yelko; Hueso, César; Zamora, Imanol; Fabbri, Marco; Fuente, Cristina De La; Larringan, Asier
2017-09-01
Jules Horowitz Reactor (JHR), a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h) and in Maintenance scenario (TEDE < 2mSv/h) among others, detailing the methodology, hypotheses and assumptions employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, S; Meredith, R; Azure, M
Purpose: To support the phase I trial for toxicity, biodistribution and pharmacokinetics of intra-peritoneal (IP) 212Pb-TCMC-trastuzumab in patients with HER-2 expressing malignancy. A whole body gamma camera imaging method was developed for estimating amount of 212Pb-TCMC-trastuzumab left in the peritoneal cavity. Methods: {sup 212}Pb decays to {sup 212}Bi via beta emission. {sup 212}Bi emits an alpha particle at an average of 6.1 MeV. The 238.6 keV gamma ray with a 43.6% yield can be exploited for imaging. Initial phantom was made of saline bags with 212Pb. Images were collected for 238.6 keV with a medium energy general purpose collimator. Theremore » are other high energy gamma emissions (e.g. 511keV, 8%; 583 keV, 31%) that penetrate the septae of the collimator and contribute scatter into 238.6 keV. An upper scatter window was used for scatter correction for these high energy gammas. Results: A small source containing 212Pb can be easily visualized. Scatter correction on images of a small 212Pb source resulted in a ∼50% reduction in the full width at tenth maximum (FWTM), while change in full width at half maximum (FWHM) was <10%. For photopeak images, substantial scatter around phantom source extended to > 5 cm outside; scatter correction improved image contrast by removing this scatter around the sources. Patient imaging, in the 1st cohort (n=3) showed little redistribution of 212Pb-TCMC-trastuzumab out of the peritoneal cavity. Compared to the early post-treatment images, the 18-hour post-injection images illustrated the shift to more uniform anterior/posterior abdominal distribution and the loss of intensity due to radioactive decay. Conclusion: Use of medium energy collimator, 15% width of 238.6 keV photopeak, and a 7.5% upper scatter window is adequate for quantification of 212Pb radioactivity inside peritoneal cavity for alpha radioimmunotherapy of ovarian cancer. Research Support: AREVA Med, NIH 1UL1RR025777-01.« less
The radiated electromagnetic field from collimated gamma rays and electron beams in air
NASA Astrophysics Data System (ADS)
Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.
1980-12-01
Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.
A simplified model of the source channel of the Leksell GammaKnife tested with PENELOPE.
Al-Dweri, Feras M O; Lallena, Antonio M; Vilches, Manuel
2004-06-21
Monte Carlo simulations using the code PENELOPE have been performed to test a simplified model of the source channel geometry of the Leksell GammaKnife. The characteristics of the radiation passing through the treatment helmets are analysed in detail. We have found that only primary particles emitted from the source with polar angles smaller than 3 degrees with respect to the beam axis are relevant for the dosimetry of the Gamma Knife. The photon trajectories reaching the output helmet collimators at (x, v, z = 236 mm) show strong correlations between rho = (x2 + y2)(1/2) and their polar angle theta, on one side, and between tan(-1)(y/x) and their azimuthal angle phi, on the other. This enables us to propose a simplified model which treats the full source channel as a mathematical collimator. This simplified model produces doses in good agreement with those found for the full geometry. In the region of maximal dose, the relative differences between both calculations are within 3%, for the 18 and 14 mm helmets, and 10%, for the 8 and 4 mm ones. Besides, the simplified model permits a strong reduction (larger than a factor 15) in the computational time.
NASA Astrophysics Data System (ADS)
DiFilippo, Frank P.; Patel, Sagar
2009-06-01
A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.
Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine
NASA Astrophysics Data System (ADS)
Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.
2017-01-01
Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.
Optimizing modelling in iterative image reconstruction for preclinical pinhole PET
NASA Astrophysics Data System (ADS)
Goorden, Marlies C.; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J.
2016-05-01
The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning 99mTc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes (‘multiple-pinhole paths’ (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging 18F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport.
Development of marijuana and tobacco detectors using potassium-40 gamma ray emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, J.; Lindquist, R.P.
Measurements were made at the Otay Mesa, Ca. border crossing between November 30 and December 4, 1992 to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory (LLNL) personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlledmore » geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.« less
Design of a setup for 252Cf neutron source for storage and analysis purpose
NASA Astrophysics Data System (ADS)
Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da
2016-11-01
252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.
NASA Astrophysics Data System (ADS)
Kaviani, S.; Zeraatkar, N.; Sajedi, S.; Gorjizadeh, N.; Farahani, M. H.; Ghafarian, P.; El Fakhri, G.; Sabet, H.; Ay, M. R.
2016-12-01
Using an intra-operative gamma probe after periareolar or peritumoral injection of a radiotracer during surgery helps the surgeon to identify the sentinel, or first, nodal site of regional metastasis in clinically node-negative patients. The pathological analysis of this node can have an important influence on the treatment staging in various cancers. This paper reports the design and performance evaluation of a gamma probe recently developed in our department. The detector unit of this system consists of an 8 mm diameter and 10 mm thickness monolithic CsI(Tl) scintillator optically, coupled to a Silicon Photomultiplier (SiPM) with an active area of 6×6 mm2, and a single-hole collimator. The unit is shielded using tungsten. The system can operate in three different modes for Tc-99m, I-131, or F-18 isotopes. The following measurements were carried out to evaluate the performance of the probe: sensitivity in air and scatter medium, spatial resolution in scatter medium, angular resolution in scatter medium, and side and back shielding effectiveness. All experiments have been performed based on the NEMA NU3-2004 standard set up. The measured system sensitivities in air and scatter medium (water) are 1700 cps/MBq and 1770 cps/MBq, respectively, both measured at 3 cm from the collimator. The spatial resolution in the scatter medium is about 45 mm at 3 cm distance from the collimator. Also, the angular resolution of the probe is 74o FWHM. Finally, a shielding effectiveness of 99.5% is measured. The results show that the probe can potentially be used for sentinel lymph node localization during the surgery.
Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging
Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.
2010-01-01
Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341
Non-destructive method for determining neutron exposure and constituent concentrations of a body
Gold, Raymond; McElroy, William N.
1986-01-01
A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.
Non-destructive method for determining neutron exposure and constituent concentrations of a body
Gold, R.; McElroy, W.N.
1984-02-22
A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentrations at regions of interest within the object.
Rapid fading of optical afterglows as evidence for beaming in gamma-ray bursts
NASA Astrophysics Data System (ADS)
Huang, Y. F.; Dai, Z. G.; Lu, T.
2000-03-01
Based on the refined dynamical model proposed by us earlier for beamed gamma -ray burst ejecta, we carry out detailed numerical procedure to study those gamma -ray bursts with rapidly fading afterglows (i.e., ~ t-2). It is found that optical afterglows from GRB 970228, 980326, 980519, 990123, 990510 and 991208 can be satisfactorily fitted if the gamma -ray burst ejecta are highly collimated, with a universal initial half opening angle theta_0 ~ 0.1. The obvious light curve break observed in GRB 990123 is due to the relativistic-Newtonian transition of the beamed ejecta, and the rapidly fading optical afterglows come from synchrotron emissions during the mildly relativistic and non-relativistic phases. We strongly suggest that the rapid fading of afterglows currently observed in some gamma -ray bursts is evidence for beaming in these cases.
A simplified model of the source channel of the Leksell GammaKnife® tested with PENELOPE
NASA Astrophysics Data System (ADS)
Al-Dweri, Feras M. O.; Lallena, Antonio M.; Vilches, Manuel
2004-06-01
Monte Carlo simulations using the code PENELOPE have been performed to test a simplified model of the source channel geometry of the Leksell GammaKnife®. The characteristics of the radiation passing through the treatment helmets are analysed in detail. We have found that only primary particles emitted from the source with polar angles smaller than 3° with respect to the beam axis are relevant for the dosimetry of the Gamma Knife. The photon trajectories reaching the output helmet collimators at (x, y, z = 236 mm) show strong correlations between rgr = (x2 + y2)1/2 and their polar angle thgr, on one side, and between tan-1(y/x) and their azimuthal angle phgr, on the other. This enables us to propose a simplified model which treats the full source channel as a mathematical collimator. This simplified model produces doses in good agreement with those found for the full geometry. In the region of maximal dose, the relative differences between both calculations are within 3%, for the 18 and 14 mm helmets, and 10%, for the 8 and 4 mm ones. Besides, the simplified model permits a strong reduction (larger than a factor 15) in the computational time.
Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.
2017-01-01
This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345
Rostron, Peter D; Heathcote, John A; Ramsey, Michael H
2014-12-01
High-coverage in situ surveys with gamma detectors are the best means of identifying small hotspots of activity, such as radioactive particles, in land areas. Scanning surveys can produce rapid results, but the probabilities of obtaining false positive or false negative errors are often unknown, and they may not satisfy other criteria such as estimation of mass activity concentrations. An alternative is to use portable gamma-detectors that are set up at a series of locations in a systematic sampling pattern, where any positive measurements are subsequently followed up in order to determine the exact location, extent and nature of the target source. The preliminary survey is typically designed using settings of detector height, measurement spacing and counting time that are based on convenience, rather than using settings that have been calculated to meet requirements. This paper introduces the basis of a repeatable method of setting these parameters at the outset of a survey, for pre-defined probabilities of false positive and false negative errors in locating spatially small radioactive particles in land areas. It is shown that an un-collimated detector is more effective than a collimated detector that might typically be used in the field. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Erdmann, Bryan J; Powell, Brian A; Kaplan, Daniel I; DeVol, Timothy A
2018-05-01
One-dimensional scans of gamma-ray emitting contaminants were conducted on lysimeters from the RadFLEX facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters each contained a contamination source that was buried in SRNL soil. A source consisted of Cs, Co, Ba, and Eu incorporated either into a solid waste form (Portland cement and reducing grout) or applied to a filter paper for direct soil exposure. The lysimeters were exposed to natural environmental conditions for 3 to 4 y. The initial contaminant activities range from 4.0 to 9.0 MBq for the solid wasteforms and 0.25 to 0.47 MBq for the soil-incorporated source. The measurements were performed using a collimated high-purity germanium gamma-ray spectrometer with a spatial resolution of 2.5 mm. These scans showed downward mobility of Co and Ba when the radionuclides were incorporated directly into the SRNL soil. When radionuclides were incorporated into the solid waste forms positioned in the SRNL soil, Cs exhibited both upward and downward dispersion while the other radionuclides showed no movement. This dispersion was more significant for the Portland cement than the reducing grout wasteform. Europium-152 was the only radionuclide of those studied that showed no movement within the spatial resolution of the scanner from the original placement within the lysimeter. Understanding radionuclide movement in the environment is important for developing strategies for waste management and disposal.
Constraining the location of gamma-ray flares in luminous blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek, E-mail: knalew@jila.colorado.edu
2014-07-10
Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor Γ of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Γθ ≲ 1, from an upper limit on the synchrotron self-Compton (SSC)more » luminosity L{sub SSC} ≲ L{sub X}, and from an upper limit on the efficient cooling photon energy E{sub cool,obs} ≲ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L{sub d}. The commonly used intrinsic pair-production opacity constraint on Γ is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Γθ ≳ 0.1-0.7. Typical values of r corresponding to moderate values of Γ ∼ 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t{sub var,obs}. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t{sub var,obs} ∼ a few days are located at r ∼ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint could be provided by determination of the synchrotron self-absorption frequency for correlated synchrotron and gamma-ray flares.« less
Gamma ray imager on the DIII-D tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.
2016-04-15
A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less
Gamma ray imager on the DIII-D tokamak
Pace, D. C.; Cooper, C. M.; Taussig, D.; ...
2016-04-13
A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less
Mini gamma camera, camera system and method of use
Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.
2001-01-01
A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.
Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.
2011-01-01
Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Yoon, D; Suh, T
2014-06-01
Purpose: The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the BNCT. Methods: Data from the PET module, neutron source, and collimator was entered in the Monte Carlo n-particle extended (MCNPX) source code. The coincidence events were first compiled on the PET detector, and then, the events of the prompt gamma ray were collected after neutron emission by using a single photon emission computed tomography (SPECT) collimator on the PET. The obtaining of full widthmore » at half maximum (FWHM) values from the energy spectrum was performed to collect effective events for reconstructed image. In order to evaluate the images easily, five boron regions in a brain phantom were used. The image profiles were extracted from the region of interest (ROI) of a phantom. The image was reconstructed using the ordered subsets expectation maximization (OSEM) reconstruction algorithm. The image profiles and the receiver operating characteristic (ROC) curve were compiled for quantitative analysis from the two kinds of reconstructed image. Results: The prompt gamma ray energy peak of 478 keV appeared in the energy spectrum with a FWHM of 41 keV (6.4%). On the basis of the ROC curve in Region A to Region E, the differences in the area under the curve (AUC) of the PET and SPECT images were found to be 10.2%, 11.7%, 8.2% (center, Region C), 12.6%, and 10.5%, respectively. Conclusion: We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No.2009 00420) and the Radiation Technology R and D program (Grant No.2013M2A2A7043498), Republic of Korea.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kon, D; Kameda Medical Centre, Chiba, JP; Nakano, M
2015-06-15
Purpose The purpose of this study is to investigate dominant factors for doses to extracranial sites in treatment with Leksell Gamma Knife (LGK). Methods Monte Carlo simulation was implemented using EGS5 version 1.4.401. The simulation was divided into two major steps for the purpose of efficiency. As the first step, phase-space files were obtained at a scoring plane located just below patient-side surface of the collimator helmet of LGK. Scored particles were classified into three groups, primary, leakage and scatter, using their history information until their arrival to the scoring plane. Then classification was used at the following second stepmore » simulation to investigate which type of particle is dominant in the deposited energy at extra-cranial sites. In the second stage, a cylindrical phantom with a semisphere shaped head was modeled such that the geometrical center of the phantom’s head corresponds to the unit center point (UCP) of LGK. Scoring regions were arranged at 10 cm intervals from the UCP to 70 cm away on the central axis of the phantom. Energy deposition from each type of particles and location of interaction were recorded. Results The dominant factor of deposited energy depended on the collimator size. In the case of smaller collimator size, leakage was dominant. However, contribution of leakage was relatively small in the case of larger collimator size. The contribution of internal scatter varied with the distance from the UCP. In the proximal areas, internal scatter was dominant, whereas in the distal areas, particles interacting with machine components became dominant factor. Conclusion The Result of this study indicates that the dominant factor to dose to an extracranial site can vary with the distance from UCP and with collimator size. This means that the variation of this contribution must be considered for modeling of the extracranial dose especially in the distal area. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less
A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; Quataert, Eliot; MacFadyen, Andrew I., E-mail: duffell@berkeley.edu
2015-11-01
We use two-dimensional relativistic hydrodynamic numerical calculations to show that highly collimated relativistic jets can be produced in neutron star merger models of short-duration gamma-ray bursts (GRBs) without the need for a highly directed engine or a large net magnetic flux. Even a hydrodynamic engine generating a very wide sustained outflow on small scales can, in principle, produce a highly collimated relativistic jet, facilitated by a dense surrounding medium that provides a cocoon surrounding the jet core. An oblate geometry to the surrounding gas significantly enhances the collimation process. Previous numerical simulations have shown that the merger of two neutronmore » stars produces an oblate, expanding cloud of dynamical ejecta. We show that this gas can efficiently collimate the central engine power much like the surrounding star does in long-duration GRB models. For typical short-duration GRB central engine parameters, we find jets with opening angles of an order of 10° in which a large fraction of the total outflow power of the central engine resides in highly relativistic material. These results predict large differences in the opening angles of outflows from binary neutron star mergers versus neutron star–black hole mergers.« less
Low Cost Balloon programme of Indian Centre for Space Physics
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip Kumar
2016-07-01
Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.
Neutronics Studies for the Nab Experiment
NASA Astrophysics Data System (ADS)
Scott, Elizabeth; Nab Collaboration
2017-09-01
The Nab experiment at the Spallation Neutron Source at ORNL aims to measure the neutron beta decay electron-neutrino correlation coefficient ``a'' and the Fierz interference term ``b'' with competitive precision. In Nab, the parameter ``a'' is extracted from the proton momentum and electron energy using an asymmetric magnetic spectrometer and two large-area highly pixelated Si detectors . To achieve 10-3 accuracy, there must be low background rates compared to our 1 kHz signal rates. The background is primarily reduced by using coincidence detection of the electron and photon from the decay. However, further reduction is still necessary. Neutron and gamma rates in the Si detectors can lead to false coincidences. The majority of this background radiation can be reduced by well designed collimation and shielding. The collimation design was done with McStas and the background shielding with MCNP6 (Monte Carlo N-Particle 6). Neutrons are absorbed by 6Li -loaded materials or borated polyethylene and gammas close to spectrometer with non magnetic materials such as lead and stainless steel. I will present the shielding design and MCNP6 results.
Monte Carlo study of a 60Co calibration field of the Dosimetry Laboratory Seibersdorf.
Hranitzky, C; Stadtmann, H
2007-01-01
The gamma radiation fields of the reference irradiation facility of the Dosimetry Laboratory Seibersdorf with collimated beam geometry are used for calibrating radiation protection dosemeters. A close-to-reality simulation model of the facility including the complex geometry of a 60Co source was set up using the Monte Carlo code MCNP. The goal of this study is to characterise the radionuclide gamma calibration field and resulting air-kerma distributions inside the measurement hall with a total of 20 m in length. For the whole range of source-detector-distances (SDD) along the central beam axis, simulated and measured relative air-kerma values are within +/-0.6%. Influences on the accuracy of the simulation results are investigated, including e.g., source mass density effects or detector volume dependencies. A constant scatter contribution from the lead ring-collimator of approximately 1% and an increasing scatter contribution from the concrete floor for distances above 7 m are identified, resulting in a total air-kerma scatter contribution below 5%, which is in accordance to the ISO 4037-1 recommendations.
MO-F-CAMPUS-T-03: Continuous Dose Delivery with Gamma Knife Perfexion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghobadi,; Li, W; Chung, C
2015-06-15
Purpose: We propose continuous dose delivery techniques for stereotactic treatments delivered by Gamma Knife Perfexion using inverse treatment planning system that can be applied to various tumour sites in the brain. We test the accuracy of the plans on Perfexion’s planning system (GammaPlan) to ensure the obtained plans are viable. This approach introduces continuous dose delivery for Perefxion, as opposed to the currently employed step-and-shoot approaches, for different tumour sites. Additionally, this is the first realization of automated inverse planning on GammaPlan. Methods: The inverse planning approach is divided into two steps of identifying a quality path inside the target,more » and finding the best collimator composition for the path. To find a path, we select strategic regions inside the target volume and find a path that visits each region exactly once. This path is then passed to a mathematical model which finds the best combination of collimators and their durations. The mathematical model minimizes the dose spillage to the surrounding tissues while ensuring the prescribed dose is delivered to the target(s). Organs-at-risk and their corresponding allowable doses can also be added to the model to protect adjacent organs. Results: We test this approach on various tumour sizes and sites. The quality of the obtained treatment plans are comparable or better than forward plans and inverse plans that use step- and-shoot technique. The conformity indices in the obtained continuous dose delivery plans are similar to those of forward plans while the beam-on time is improved on average (see Table 1 in supporting document). Conclusion: We employ inverse planning for continuous dose delivery in Perfexion for brain tumours. The quality of the obtained plans is similar to forward and inverse plans that use conventional step-and-shoot technique. We tested the inverse plans on GammaPlan to verify clinical relevance. This research was partially supported by Elekta, Sweden (vendor of Gamma Knife Perfexion)« less
One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co
Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation ofmore » the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.« less
Multi-isotope SPECT imaging of the 225Ac decay chain: feasibility studies
NASA Astrophysics Data System (ADS)
Robertson, A. K. H.; Ramogida, C. F.; Rodríguez-Rodríguez, C.; Blinder, Stephan; Kunz, Peter; Sossi, Vesna; Schaffer, Paul
2017-06-01
Effective use of the {}225Ac decay chain in targeted internal radioimmunotherapy requires the retention of both {}225Ac and progeny isotopes at the target site. Imaging-based pharmacokinetic tests of these pharmaceuticals must therefore separately yet simultaneously image multiple isotopes that may not be colocalized despite being part of the same decay chain. This work presents feasibility studies demonstrating the ability of a microSPECT/CT scanner equipped with a high energy collimator to simultaneously image two components of the {}225Ac decay chain: {}221Fr (218 keV) and {}213Bi (440 keV). Image quality phantoms were used to assess the performance of two collimators for simultaneous {}221Fr and {}213Bi imaging in terms of contrast and noise. A hotrod resolution phantom containing clusters of thin rods with diameters ranging between 0.85 and 1.70 mm was used to assess resolution. To demonstrate ability to simultaneously image dynamic {}221Fr and {}213Bi activity distributions, a phantom containing a {}213Bi generator from {}225Ac was imaged. These tests were performed with two collimators, a high-energy ultra-high resolution (HEUHR) collimator and an ultra-high sensitivity (UHS) collimator. Values consistent with activity concentrations determined independently via gamma spectroscopy were observed in high activity regions of the images. In hotrod phantom images, the HEUHR collimator resolved all rods for both {}221Fr and {}213Bi images. With the UHS collimator, no rods were resolvable in {}213Bi images and only rods ⩾1.3 mm were resolved in {}221Fr images. After eluting the {}213Bi generator, images accurately visualized the reestablishment of transient equilibrium of the {}225Ac decay chain. The feasibility of evaluating the pharmacokinetics of the {}225Ac decay chain in vivo has been demonstrated. This presented method requires the use of a high-performance high-energy collimator.
Pulsar-driven Jets in Supernovae, Gamma-ray Bursts, and SS 433
NASA Astrophysics Data System (ADS)
Middleditch, John
2010-05-01
The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced at many light cylinder radii by a rotating, magnetized body, as would be the case for a neutron star born within any star of more than 1.4 solar masses, will drive pulsations close to the axis of rotation. In SN 1987A, such highly collimated (less than 1 in 10,000) 2.14 ms pulsations, and the similarly collimated jets of particles which they drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light (days 3 - 20), its "Mystery Spot," observed slightly later (days 30 - 50 and after), and still later, in less collimated form, its bipolarity. SLIP also explains why the 2.14 ms pulsations were more or less consistently observed between years 5.0 and 6.5, and why they eventually disappeared after year 9.0. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars, and possibly SS 433. The axially driven pulsations enforce a toroidal geometry onto all early SNRs, rendering even Ia's unsuitable as standard candles. SLIP predicts that almost all pulsars with very sharp single pulses have been detected because the Earth is in a favored direction where their fluxes diminish only as 1/distance, and this has been verified in the laboratory as well as for the Parkes Multibeam Survey. SLIP also specifically predicts that gamma-ray-burst afterglows will be essentially 100% pulsed at 500 Hz in their proper frame. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.
Intensity modulated operating mode of the rotating gamma system.
Sengupta, Bishwambhar; Gulyas, Laszlo; Medlin, Donald; Koroknai, Tibor; Takacs, David; Filep, Gyorgy; Panko, Peter; Godo, Bence; Hollo, Tamas; Zheng, Xiao Ran; Fedorcsak, Imre; Dobai, Jozsef; Bognar, Laszlo; Takacs, Endre
2018-05-01
The purpose of this work was to explore two novel operation modalities of the rotating gamma systems (RGS) that could expand its clinical application to lesions in close proximity to critical organs at risk (OAR). The approach taken in this study consists of two components. First, a Geant4-based Monte Carlo (MC) simulation toolkit is used to model the dosimetric properties of the RGS Vertex 360™ for the normal, intensity modulated radiosurgery (IMRS), and speed modulated radiosurgery (SMRS) operation modalities. Second, the RGS Vertex 360™ at the Rotating Gamma Institute in Debrecen, Hungary is used to collect experimental data for the normal and IMRS operation modes. An ion chamber is used to record measurements of the absolute dose. The dose profiles are measured using Gafchromic EBT3 films positioned within a spherical water equivalent phantom. A strong dosimetric agreement between the measured and simulated dose profiles and penumbra was found for both the normal and IMRS operation modes for all collimator sizes (4, 8, 14, and 18 mm diameter). The simulated falloff and maximum dose regions agree better with the experimental results for the 4 and 8 mm diameter collimators. Although the falloff regions align well in the 14 and 18 mm collimators, the maximum dose regions have a larger difference. For the IMRS operation mode, the simulated and experimental dose distributions are ellipsoidal, where the short axis aligns with the blocked angles. Similarly, the simulated dose distributions for the SMRS operation mode also adopt an ellipsoidal shape, where the short axis aligns with the angles where the orbital speed is highest. For both modalities, the dose distribution is highly constrained with a sharper penumbra along the short axes. Dose modulation of the RGS can be achieved with the IMRS and SMRS modes. By providing a highly constrained dose distribution with a sharp penumbra, both modes could be clinically applicable for the treatment of lesions in close proximity to critical OARs. © 2018 American Association of Physicists in Medicine.
SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, L; Yang, F
2014-06-01
Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber andmore » EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.« less
Resolution Enhancement in PET Reconstruction Using Collimation
NASA Astrophysics Data System (ADS)
Metzler, Scott D.; Matej, Samuel; Karp, Joel S.
2013-02-01
Collimation can improve both the spatial resolution and sampling properties compared to the same scanner without collimation. Spatial resolution improves because each original crystal can be conceptually split into two (i.e., doubling the number of in-plane crystals) by masking half the crystal with a high-density attenuator (e.g., tungsten); this reduces coincidence efficiency by 4× since both crystals comprising the line of response (LOR) are masked, but yields 4× as many resolution-enhanced (RE) LORs. All the new RE LORs can be measured by scanning with the collimator in different configurations.In this simulation study, the collimator was assumed to be ideal, neither allowing gamma penetration nor truncating the field of view. Comparisons were made in 2D between an uncollimated small-animal system with 2-mm crystals that were assumed to be perfectly absorbing and the same system with collimation that narrowed the effective crystal size to 1 mm. Digital phantoms included a hot-rod and a single-hot-spot, both in a uniform background with activity ratio of 4:1. In addition to the collimated and uncollimated configurations, angular and spatial wobbling acquisitions of the 2-mm case were also simulated. Similarly, configurations with different combinations of the RE LORs were considered including (i) all LORs, (ii) only those parallel to the 2-mm LORs; and (iii) only cross pairs that are not parallel to the 2-mm LORs. Lastly, quantitative studies were conducted for collimated and uncollimated data using contrast recovery coefficient and mean-squared error (MSE) as metrics. The reconstructions show that for most noise levels there is a substantial improvement in image quality (i.e., visual quality, resolution, and a reduction in artifacts) by using collimation even when there are 4 fewer counts or-in some cases-comparing with the noiseless uncollimated reconstruction. By comparing various configurations of sampling, the results show that it is the matched combination of both improved spatial resolution of each LOR and the increase in the number of LORs that yields improved reconstructions. Further, the quantitative studies show that for low-count scans, the collimated data give better MSE for small lesions and the uncollimated data give better MSE for larger lesions; for highcount studies, the collimated data yield better quantitative values for the entire range of lesion sizes that were evaluated.
Gamma-ray bursts at high and very high energies
NASA Astrophysics Data System (ADS)
Piron, Frédéric
2016-06-01
Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence of a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future.
TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, D; Yoon, S; Adamovics, J
Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, withmore » comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.« less
Point kernel calculations of skyshine exposure rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roseberry, M.L.; Shultis, J.K.
1982-02-01
A simple point kernel model is presented for the calculation of skyshine exposure rates arising from the atmospheric reflection of gamma radiation produced by a vertically collimated or a shielded point source. This model is shown to be in good agreement with benchmark experimental data from a /sup 60/Co source for distances out to 700 m.
A new method of determining moisture gradient in wood
Zhiyong Cai
2008-01-01
Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...
NASA Astrophysics Data System (ADS)
Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.
2013-07-01
The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally located targets with an acceptable dose fall-off and lower relative skin dose than the brachytherapy techniques considered in this study.
Gamma-ray detector guidance of breast cancer therapy
NASA Astrophysics Data System (ADS)
Ravi, Ananth
2009-12-01
Breast cancer is the most common form of cancer in women. Over 75% of breast cancer patients are eligible for breast conserving therapy. Breast conserving therapy involves a lumpectomy to excise the gross tumour, followed by adjuvant radiation therapy to eradicate residual microscopic disease. Recent advances in the understanding of breast cancer biology and recurrence have presented the opportunity to improve breast conserving therapy techniques. This thesis has explored the potential of gamma-ray detecting technology to improve guidance of both surgical and adjuvant radiation therapy aspects of breast conserving therapy. The task of accurately excising the gross tumour during breast conserving surgery (BCS) is challenging, due to the limited guidance currently available to surgeons. Radioimmuno guided surgery (RIGS) has been investigated to determine its potential to delineate the gross tumour intraoperatively. The effects of varying a set of user controllable parameters on the ability of RIGS to detect and delineate model breast tumours was determined. The parameters studied were: Radioisotope, blood activity concentration, collimator height and energy threshold. The most sensitive combination of parameters was determined to be an 111Indium labelled radiopharmaceutical with a gamma-ray detecting probe collimated to a height of 5 mm and an energy threshold at the Compton backscatter peak. Using these parameters it was found that, for the breast tumour model used, the minimum tumour-to-background ratio required to delineate the tumour edge accurately was 5.2+/-0.4 at a blood activity concentration of 5 kBq/ml. Permanent breast seed implantation (PBSI) is a form of accelerated partial breast irradiation that dramatically reduces the treatment burden of adjuvant radiation therapy on patients. Unfortunately, it is currently difficult to localize the implanted brachytherapy seeds, making it difficult to perform a correction in the event that seeds have been misplaced. One method to provide intraoperative seed localization is through the use of a gamma-camera system. Monte Carlo simulations were conducted of a Cadmium Zinc Telluride (CZT) gamma-camera system and a realistic model of a breast with 3 layers of seeds distributed according to the pre-implant treatment plan of a typical patient. The simulations showed that a gamma-camera was able to localize the seeds with a maximum error of 2.0 mm within 20 seconds. An experimental prototype was designed and constructed to validate these promising Monte Carlo results. Using a 64 pixel linear array CZT detector fitted with a custom built brass collimator, images were acquired of a physical phantom similar to the model used in the Monte Carlo simulations. The experimental prototype was able to reliably detect the seeds within 30 seconds with a median error in localization of 1 mm. The results from this thesis suggest that gamma-ray detecting technology may be able to provide significant improvements in guidance of breast cancer therapies and, thus, potentially improved therapeutic outcomes.
DiFilippo, Frank P.
2008-01-01
A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners. PMID:18635899
NASA Astrophysics Data System (ADS)
Di Filippo, Frank P.
2008-08-01
A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.
Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni
2011-03-15
Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.« less
Dual-head gamma camera system for intraoperative localization of radioactive seeds
NASA Astrophysics Data System (ADS)
Arsenali, B.; de Jong, H. W. A. M.; Viergever, M. A.; Dickerscheid, D. B. M.; Beijst, C.; Gilhuijs, K. G. A.
2015-10-01
Breast-conserving surgery is a standard option for the treatment of patients with early-stage breast cancer. This form of surgery may result in incomplete excision of the tumor. Iodine-125 labeled titanium seeds are currently used in clinical practice to reduce the number of incomplete excisions. It seems likely that the number of incomplete excisions can be reduced even further if intraoperative information about the location of the radioactive seed is combined with preoperative information about the extent of the tumor. This can be combined if the location of the radioactive seed is established in a world coordinate system that can be linked to the (preoperative) image coordinate system. With this in mind, we propose a radioactive seed localization system which is composed of two static ceiling-suspended gamma camera heads and two parallel-hole collimators. Physical experiments and computer simulations which mimic realistic clinical situations were performed to estimate the localization accuracy (defined as trueness and precision) of the proposed system with respect to collimator-source distance (ranging between 50 cm and 100 cm) and imaging time (ranging between 1 s and 10 s). The goal of the study was to determine whether or not a trueness of 5 mm can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (these specifications were defined by a group of dedicated breast cancer surgeons). The results from the experiments indicate that the location of the radioactive seed can be established with an accuracy of 1.6 mm ± 0.6 mm if a collimator-source distance of 50 cm and imaging time of 5 s are used (these experiments were performed with a 4.5 cm thick block phantom). Furthermore, the results from the simulations indicate that a trueness of 3.2 mm or less can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (this trueness was achieved for all 14 breast phantoms which were used in this study). Based on these results we conclude that the proposed system can be a valuable tool for (real-time) intraoperative breast cancer localization.
NASA Astrophysics Data System (ADS)
Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo
2018-06-01
We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.
Development of a mercuric iodide detector array for in-vivo x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.
A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalkmore » between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.« less
Looking inside jets: optical polarimetry as a probe of Gamma-Ray Bursts physics
NASA Astrophysics Data System (ADS)
Kopac, D.; Mundell, C.
2015-07-01
It is broadly accepted that gamma-ray bursts (GRBs) are powered by accretion of matter by black holes, formed during massive stellar collapse, which launch ultra-relativistic, collimated outflows or jets. The nature of the progenitor star, the structure of the jet, and thus the underlying mechanisms that drive the explosion and provide collimation, remain some of the key unanswered questions. To approach these problems, and in particular the role of magnetic fields in GRBs, early time-resolved polarimetry is the key, because it is the only direct probe of the magnetic fields structure. Using novel fast RINGO polarimeter developed for use on the 2-m robotic optical Liverpool Telescope, we have made the first measurements of optical linear polarization of the early optical afterglows of GRBs, finding linear percentage polarization as high as 30% and, for the first time, making time-resolved polarization measurements. I will present the past 8 years of RINGO observations, discuss how the results fit into the GRB theoretical picture, and highlight recent data, in particular high-time resolution multi-colour optical photometry performed during the prompt GRB phase, which also provides some limits on polarization.
Development of neutron imaging beamline for NDT applications at Dhruva reactor, India
NASA Astrophysics Data System (ADS)
Shukla, Mayank; Roy, Tushar; Kashyap, Yogesh; Shukla, Shefali; Singh, Prashant; Ravi, Baribaddala; Patel, Tarun; Gadkari, S. C.
2018-05-01
Thermal neutron imaging techniques such as radiography or tomography are very useful tool for various scientific investigations and industrial applications. Neutron radiography is complementary to X-ray radiography, as neutrons interact with nucleus as compared to X-ray interaction with orbital electrons. We present here design and development of a neutron imaging beamline at 100 MW Dhruva research reactor for neutron imaging applications such as radiography, tomography and phase contrast imaging. Combinations of sapphire and bismuth single crystals have been used as thermal neutron filter/gamma absorber at the input of a specially designed collimator to maximize thermal neutron to gamma ratio. The maximum beam size of neutrons has been restricted to ∼120 mm diameter at the sample position. A cadmium ratio of ∼250 with L / D ratio of 160 and thermal neutron flux of ∼ 4 × 107 n/cm2 s at the sample position has been measured. In this paper, different aspects of the beamline design such as collimator, shielding, sample manipulator, digital imaging system are described. Nondestructive radiography/tomography experiments on hydrogen concentration in Zr-alloy, aluminium foam, ceramic metal seals etc. are also presented.
Agosti, J M; Coombs, R W; Collier, A C; Paradise, M A; Benedetti, J K; Jaffe, H S; Corey, L
1992-05-01
To determine safety and efficacy of tumor necrosis factor (TNF) and interferon-gamma (IFN gamma) in the treatment of patients with acquired immunodeficiency syndrome (AIDS)-related complex, a randomized, double-blind study was conducted. Twenty-five patients with AIDS-related complex and CD4 lymphocytes less than or equal to 500 x 10(6)/L attended an AIDS Clinical Trials Unit of a tertiary referral center. Patients were administered tumor necrosis factor (TNF) (10 micrograms/m2) or IFN gamma (10 micrograms/m2), or both intramuscularly three times weekly for 16 weeks. Side effects from all three preparations included fever, constitutional symptoms, and local reactions. No significant hematologic, hepatic, renal, or coagulation abnormalities were observed. CD4 lymphocyte counts, beta 2-microglobulin, p24 antigen levels, and anti-p24 antibody did not change significantly during therapy. Similarly, no significant change was noted in rates of HIV isolation from peripheral blood mononuclear cells or plasma. TNF and IFN gamma were tolerable after premedication with acetaminophen; however, no significant change in markers of human immunodeficiency virus infection was demonstrated. These cytokines alone do not appear to be of benefit, nor do they appear to hasten the progression of HIV infection.
Collimator-free photon tomography
Dilmanian, F. Avraham; Barbour, Randall L.
1998-10-06
A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.
Gamma Imaging using Rotational Modulation Collimation
2014-01-01
c © Commonwealth of...in Table A1. 4 UNCLASSIFIED UNCLASSIFIED DSTO–TR–2946 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 160 C O U N T S...P E R S E C O N D MASK ROTATION ANGLE (DEGREES) Co-60 shielded by lead 44 mm Cs-137 in storage container (lead 59 mm) Figure 3.2: RMC
Evaluation of a CdTe semiconductor based compact γ camera for sentinel lymph node imaging.
Russo, Paolo; Curion, Assunta S; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caracò, Corradina; Aloj, Luigi; Lastoria, Secondo
2011-03-01
The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. The room-temperature CdTe pixel detector (1 mm thick) has 256 x 256 square pixels arranged with a 55 microm pitch (sensitive area 14.08 x 14.08 mm2), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. For 99 mTc, at 50 mm distance, a background-subtracted sensitivity of 6.5 x 10(-3) cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3 x 10(-2) cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq 99 mTc and prior localization with standard gamma camera lymphoscintigraphy. The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.
Johnson, Perry B; Monterroso, Maria I; Yang, Fei; Mellon, Eric
2017-11-25
This work explores how the choice of prescription isodose line (IDL) affects the dose gradient, target coverage, and treatment time for Gamma Knife radiosurgery when a smaller shot is encompassed within a larger shot at the same stereotactic coordinates (shot within shot technique). Beam profiles for the 4, 8, and 16 mm collimator settings were extracted from the treatment planning system and characterized using Gaussian fits. The characterized data were used to create over 10,000 shot within shot configurations by systematically changing collimator weighting and choice of prescription IDL. Each configuration was quantified in terms of the dose gradient, target coverage, and beam-on time. By analyzing these configurations, it was found that there are regions of overlap in target size where a higher prescription IDL provides equivalent dose fall-off to a plan prescribed at the 50% IDL. Furthermore, the data indicate that treatment times within these regions can be reduced by up to 40%. An optimization strategy was devised to realize these gains. The strategy was tested for seven patients treated for 1-4 brain metastases (20 lesions total). For a single collimator setting, the gradient in the axial plane was steepest when prescribed to the 56-63% (4 mm), 62-70% (8 mm), and 77-84% (16 mm) IDL, respectively. Through utilization of the optimization technique, beam-on time was reduced by more than 15% in 16/20 lesions. The volume of normal brain receiving 12 Gy or above also decreased in many cases, and in only one instance increased by more than 0.5 cm 3 . This work demonstrates that IDL optimization using the shot within shot technique can reduce treatment times without degrading treatment plan quality.
Jang, Si Young; Lalonde, Ron; Ozhasoglu, Cihat; Burton, Steven; Heron, Dwight; Huq, M Saiful
2016-09-08
We performed an evaluation of the CyberKnife InCise MLC by comparing plan qualities for single and multiple brain lesions generated using the first version of InCise MLC, fixed cone, and Iris collimators. We also investigated differences in delivery efficiency among the three collimators. Twenty-four patients with single or multiple brain mets treated previously in our clinic on a CyberKnife M6 using cone/Iris collimators were selected for this study. Treatment plans were generated for all lesions using the InCise MLC. Number of monitor units, delivery time, target coverage, conformity index, and dose falloff were compared between MLC- and clinical cone/Iris-based plans. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney signed-rank test. The planning accuracy of the MLC-based plans was validated using chamber and film measurements. The InCise MLC-based plans achieved mean dose and target coverage comparable to the cone/Iris-based plans. Although the conformity indices of the MLC-based plans were slightly higher than those of the cone/Iris-based plans, beam delivery time for the MLC-based plans was shorter by 30% ~ 40%. For smaller targets or cases with OARs located close to or abutting target volumes, MLC-based plans provided inferior dose conformity compared to cone/Iris-based plans. The QA results of MLC-based plans were within 5% absolute dose difference with over 90% gamma passing rate using 2%/2 mm gamma criteria. The first version of InCise MLC could be a useful delivery modality, especially for clinical situations for which delivery time is a limiting factor or for multitarget cases. © 2016 The Authors.
Onishi, Hideo; Motomura, Nobutoku; Takahashi, Masaaki; Yanagisawa, Masamichi; Ogawa, Koichi
2010-03-01
Degradation of SPECT images results from various physical factors. The primary aim of this study was the development of a digital phantom for use in the characterization of factors that contribute to image degradation in clinical SPECT studies. A 3-dimensional mathematic cylinder (3D-MAC) phantom was devised and developed. The phantom (200 mm in diameter and 200 mm long) comprised 3 imbedded stacks of five 30-mm-long cylinders (diameters, 4, 10, 20, 40, and 60 mm). In simulations, the 3 stacks and the background were assigned radioisotope concentrations and attenuation coefficients. SPECT projection datasets that included Compton scattering effects, photoelectric effects, and gamma-camera models were generated using the electron gamma-shower Monte Carlo simulation program. Collimator parameters, detector resolution, total photons acquired, number of projections acquired, and radius of rotation were varied in simulations. The projection data were formatted in Digital Imaging and Communications in Medicine (DICOM) and imported to and reconstructed using commercial reconstruction software on clinical SPECT workstations. Using the 3D-MAC phantom, we validated that contrast depended on size of region of interest (ROI) and was overestimated when the ROI was small. The low-energy general-purpose collimator caused a greater partial-volume effect than did the low-energy high-resolution collimator, and contrast in the cold region was higher using the filtered backprojection algorithm than using the ordered-subset expectation maximization algorithm in the SPECT images. We used imported DICOM projection data and reconstructed these data using vendor software; in addition, we validated reconstructed images. The devised and developed 3D-MAC SPECT phantom is useful for the characterization of various physical factors, contrasts, partial-volume effects, reconstruction algorithms, and such, that contribute to image degradation in clinical SPECT studies.
Gamma-Ray Bursts from Neutron Star Kicks
NASA Astrophysics Data System (ADS)
Huang, Y. F.; Dai, Z. G.; Lu, T.; Cheng, K. S.; Wu, X. F.
2003-09-01
The idea that gamma-ray bursts might be a phenomenon associated with neutron star kicks was first proposed by Dar & Plaga. Here we study this mechanism in more detail and point out that the neutron star should be a high-speed one (with proper motion larger than ~1000 km s-1). It is shown that the model agrees well with observations in many aspects, such as the energetics, the event rate, the collimation, the bimodal distribution of durations, the narrowly clustered intrinsic energy, and the association of gamma-ray bursts with supernovae and star-forming regions. We also discuss the implications of this model on the neutron star kick mechanism and suggest that the high kick speed was probably acquired as the result of the electromagnetic rocket effect of a millisecond magnetar with an off-centered magnetic dipole.
The MCNP Simulation of a PGNAA System at TRR-1/M1
NASA Astrophysics Data System (ADS)
Sangaroon, S.; Ratanatongchai, W.; Picha, R.; Khaweerat, S.; Channuie, J.
2017-06-01
The prompt-gamma neutron activation analysis system (PGNAA) has been installed at Thai Research Reactor-1/Modified 1 (TRR-1/M1) since 1999. The purpose of the system is for elemental and isotopic analyses. The system mainly consists of a series of the moderator and collimator, neutron and gamma-ray shielding and the HPGe detector. In this work, the condition of the system is carried out based on the Monte Carlo method using Monte Carlo N-Particle transport code and the experiment. The flux ratios (Φthermal/Φepithermal and Φthermal/Φfast) and thermal neutron flux have been obtained. The simulated prompt gamma rays of the Portland cement sample have been carried out. The simulation provides significant contribution in upgrading the PGNAA station to be available in various applications.
Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production
NASA Astrophysics Data System (ADS)
D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko
2017-10-01
Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.
Vehicle and cargo inspection system
NASA Astrophysics Data System (ADS)
Verbinski, Victor V.; Orphan, Victor J.
1997-02-01
Vehicle and Cargo Inspection System (VACIS) is comprised of a 1 Curie 137Cs gamma-ray source in a shield and collimator which produces a fan-shaped beam designed to intercept a vertical array of gama-ray detectors contained in a tower structure. The source and detector modules straddle the vehicle or container being inspected and are mounted on self-propelled trolleys which travel in synchronization along two parallel tracks covering the length of the scanned object. The signals from the gamma-ray detector array are processed and displayed so as to produce a 2D gamma-radiographic image of the object. Testing of the system on a variety of empty and lightly-loaded vehicles and containers has demonstrated the effectiveness of VACIS in detecting hidden contraband. For example, a small sample of cocaine only 1.5 inches thick was readily detected in a container.
A search for low energy gamma rays from CG 195+4
NASA Technical Reports Server (NTRS)
Haymes, R. C.; Meegan, C. A.; Fishman, G. J.
1979-01-01
A 13-deg-wide region of sky containing the high-energy gamma-ray source CG 195+4 was searched for X-ray and gamma-ray emission in the energy interval from 0.035 to 8.737 MeV. The balloon-altitude measurements were undertaken on October 4, 1977, at Palestine, Texas, and used an actively collimated scintillation counter. As a result of the measurements, low upper limits have been found for the spectrum from the source. Combined with the positive detections made with satellites at high energies, the measurements show that the photon number spectrum must have a spectral index harder than 2.0. The data appear inconsistent with models of the source in which the presumed neutron star is surrounded by a cloud thick to X-rays. Negative results of the search for periodicity are discussed.
NASA Astrophysics Data System (ADS)
Dahing, Lahasen@Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie
2014-09-01
In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.
The analysis of complex mixed-radiation fields using near real-time imaging.
Beaumont, Jonathan; Mellor, Matthew P; Joyce, Malcolm J
2014-10-01
A new mixed-field imaging system has been constructed at Lancaster University using the principles of collimation and back projection to passively locate and assess sources of neutron and gamma-ray radiation. The system was set up at the University of Manchester where three radiation sources: (252)Cf, a lead-shielded (241)Am/Be and a (22)Na source were imaged. Real-time discrimination was used to find the respective components of the neutron and gamma-ray fields detected by a single EJ-301 liquid scintillator, allowing separate images of neutron and gamma-ray emitters to be formed. (252)Cf and (22)Na were successfully observed and located in the gamma-ray image; however, the (241)Am/Be was not seen owing to surrounding lead shielding. The (252)Cf and (241)Am/Be neutron sources were seen clearly in the neutron image, demonstrating the advantage of this mixed-field technique over a gamma-ray-only image where the (241)Am/Be source would have gone undetected. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Method and an apparatus for non-invasively determining the quantity of an element in a body organ
Vartsky, D.; Ellis, K.J.; Cohn, S.H.
1980-06-27
An apparatus and a method for determining in a body organ the amount of an element with the aid of a gaseous gamma ray source, where the element and the source are paired in predetermined pairs, and with the aid of at least one detector selected from the group consisting of Ge(Li) and NaI(Tl). Gamma rays are directed towards the organ, thereby resonantly scattering the gamma rays from nuclei of the element in the organ; the intensity of the gamma rays is detected by the detector; and the amount of the element in the organ is then substantially proportional to the detected intensity of the gamma rays.
The sub-energetic gamma-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425.
Soderberg, A M; Kulkarni, S R; Berger, E; Fox, D W; Sako, M; Frail, D A; Gal-Yam, A; Moon, D S; Cenko, S B; Yost, S A; Phillips, M M; Persson, S E; Freedman, W L; Wyatt, P; Jayawardhana, R; Paulson, D
2004-08-05
Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.
Perez-Mendez, V.
1997-01-21
A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.
Perez-Mendez, Victor
1997-01-01
A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.
Development of an all-in-one gamma camera/CCD system for safeguard verification
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo
2014-12-01
For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.
Affordable CZT SPECT with dose-time minimization (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hugg, James W.; Harris, Brian W.; Radley, Ian
2017-03-01
PURPOSE Pixelated CdZnTe (CZT) detector arrays are used in molecular imaging applications that can enable precision medicine, including small-animal SPECT, cardiac SPECT, molecular breast imaging (MBI), and general purpose SPECT. The interplay of gamma camera, collimator, gantry motion, and image reconstruction determines image quality and dose-time-FOV tradeoffs. Both dose and exam time can be minimized without compromising diagnostic content. METHODS Integration of pixelated CZT detectors with advanced ASICs and readout electronics improves system performance. Because historically CZT was expensive, the first clinical applications were limited to small FOV. Radiation doses were initially high and exam times long. Advances have significantly improved efficiency of CZT-based molecular imaging systems and the cost has steadily declined. We have built a general purpose SPECT system using our 40 cm x 53 cm CZT gamma camera with 2 mm pixel pitch and characterized system performance. RESULTS Compared to NaI scintillator gamma cameras: intrinsic spatial resolution improved from 3.8 mm to 2.0 mm; energy resolution improved from 9.8% to <4 % at 140 keV; maximum count rate is <1.5 times higher; non-detection camera edges are reduced 3-fold. Scattered photons are greatly reduced in the photopeak energy window; image contrast is improved; and the optimal FOV is increased to the entire camera area. CONCLUSION Continual improvements in CZT detector arrays for molecular imaging, coupled with optimal collimator and image reconstruction, result in minimized dose and exam time. With CZT cost improving, affordable whole-body CZT general purpose SPECT is expected to enable precision medicine applications.
Collimator-free photon tomography
Dilmanian, F.A.; Barbour, R.L.
1998-10-06
A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.
The inner jet of an active galactic nucleus as revealed by a radio-to-gamma-ray outburst.
Marscher, Alan P; Jorstad, Svetlana G; D'Arcangelo, Francesca D; Smith, Paul S; Williams, G Grant; Larionov, Valeri M; Oh, Haruki; Olmstead, Alice R; Aller, Margo F; Aller, Hugh D; McHardy, Ian M; Lähteenmäki, Anne; Tornikoski, Merja; Valtaoja, Esko; Hagen-Thorn, Vladimir A; Kopatskaya, Eugenia N; Gear, Walter K; Tosti, Gino; Kurtanidze, Omar; Nikolashvili, Maria; Sigua, Lorand; Miller, H Richard; Ryle, Wesley T
2008-04-24
Blazars are the most extreme active galactic nuclei. They possess oppositely directed plasma jets emanating at near light speeds from accreting supermassive black holes. According to theoretical models, such jets are propelled by magnetic fields twisted by differential rotation of the black hole's accretion disk or inertial-frame-dragging ergosphere. The flow velocity increases outward along the jet in an acceleration and collimation zone containing a coiled magnetic field. Detailed observations of outbursts of electromagnetic radiation, for which blazars are famous, can potentially probe the zone. It has hitherto not been possible to either specify the location of the outbursts or verify the general picture of jet formation. Here we report sequences of high-resolution radio images and optical polarization measurements of the blazar BL Lacertae. The data reveal a bright feature in the jet that causes a double flare of radiation from optical frequencies to TeV gamma-ray energies, as well as a delayed outburst at radio wavelengths. We conclude that the event starts in a region with a helical magnetic field that we identify with the acceleration and collimation zone predicted by the theories. The feature brightens again when it crosses a standing shock wave corresponding to the bright 'core' seen on the images.
SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows
NASA Technical Reports Server (NTRS)
Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.;
2007-01-01
We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volotskova, O; Xu, A; Jozsef, G
Purpose: To investigate the response and dose rate dependence of a scintillation detector over a wide energy range. Methods: The energy dependence of W1 scintillation detector was tested with: 1) 50–225 keV beams generated by an animal irradiator, 2) a Leksell Gamma Knife Perfexion Co-60 source, 3) 6MV, 6FFF, 10FFF and 15MV photon beams, and 4) 6–20MeV electron beams from a linac. Calibrated linac beams were used to deliver 100 cGy to the detector at dmax in water under reference conditions. The gamma-knife measurement was performed in solid water (100 cGy with 16mm collimator). The low energy beams were calibratedmore » with an ion chamber in air (TG-61), and the scintillation detector was placed at the same location as the ionization chamber during calibration. For the linac photon and electron beams, dose rate dependence was tested for 100–2400 and 100–800 MU/min. Results: The scintillation detector demonstrated strong energy dependence in the range of 50–225keV. The measured values were lower than the delivered dose and increased as the energy increased. Therapeutic photon beams showed energy independence with variations less than 1%. Therapeutic electron beams displayed the same sensitivity of ∼2–3% at their corresponding dmax depths. The change in dose-rate of photon and electron beams within the therapeutic energy range did not affect detector output (<0.5%). Measurements acquired with the gamma knife showed that the output data agreed with the delivered dose up to 3%. Conclusion: W1 scintillation detector output has a strong energy dependence in the diagnostic and orthovoltage energy range. Therapeutic photon beams exhibited energy independence with no observable dose-rate dependence. This study may aid in the implementation of a scintillation detector in QA programs by providing energy calibration factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhyadhom, A; McGuinness, C; Descovich, M
Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert.more » Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm{sup 2} area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.« less
Long-term stability of the Leksell Gamma Knife{sup ®} Perfexion™ patient positioning system (PPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novotny, J., E-mail: josef.novotnyml@homolka.cz; Department of Medical Physics, Na Homolce Hospital, Prague 150 30; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Prague 120 00
2014-03-15
Purpose: To assess the long-term mechanical stability and accuracy of the patient positioning system (PPS) of the Leksell Gamma Knife{sup ®} Perfexion™ (LGK PFX). Methods: The mechanical stability of the PPS of the LGK PFX was evaluated using measurements obtained between September 2007 and June 2011. Three methods were employed to measure the deviation of the coincidence of the radiological focus point (RFP) and the PPS calibration center point (CCP). In the first method, the onsite diode test tool with single diode detector was used together with the 4 mm collimator on a daily basis. In the second method, amore » service diode test tool with three diode detectors was used biannually at the time of the routine preventive maintenance. The test performed with the service diode test tool measured the deviations for all three collimators 4, 8, and 16 mm and also for three different positions of the PPS. The third method employed the conventional film pin-prick method. This test was performed annually for the 4 mm collimator at the time of the routine annual QA. To estimate the effect of the patient weight on the performance of the PPS, the focus precision tests were also conducted with varying weights on the PPS using a set of lead bricks. Results: The average deviations measured from the 641 daily focus precision tests were 0.1 ± 0.1, 0.0 ± 0.0, and 0.0 ± 0.0 mm, respectively, for the 4 mm collimator in the X (left/right of the patient), Y (anterior/posterior of the patient), and Z (superior/inferior of the patient) directions. The average of the total radial deviations as measured during ten semiannual measurements with the service diode test tool were 0.070 ± 0.029, 0.060 ± 0.022, and 0.103 ± 0.028 mm, respectively for the central, long, and short diodes for the 4 mm collimator. Similarly, the average total radial deviations measured during the semiannual measurements for the 4, 8, and 16 mm collimators and using the central diode were 0.070 ± 0.029, 0.097 ± 0.025, 0.159 ± 0.028 mm, respectively. The average values of the deviations as obtained from the five annual film pin-prick tests for the 4 mm collimator were 0.10 ± 0.06, 0.06 ± 0.09, and 0.03 ± 0.03 mm for the X, Y, Z stereotactic directions, respectively. Only a minor change was observed in the total radial deviations of the PPS as a function of the simulated patient weight up to 202 kg on the PPS. Conclusions: Excellent long-term mechanical stability and high accuracy was observed for the PPS of the LGK PFX. No PPS recalibration or any adjustment in the PPS was needed during the monitored period of time. Similarly, the weight on the PPS did not cause any significant disturbance in the performance of the PPS for up to 202 kg simulated patient weight.« less
Hoffmans-Holtzer, Nienke A; Hoffmans, Daan; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R
2015-03-01
The purpose of this work was to investigate whether adapting gantry and collimator angles can compensate for roll and pitch setup errors during volumetric modulated arc therapy (VMAT) delivery. Previously delivered clinical plans for locally advanced head-and-neck (H&N) cancer (n = 5), localized prostate cancer (n = 2), and whole brain with simultaneous integrated boost to 5 metastases (WB + 5M, n = 1) were used for this study. Known rigid rotations were introduced in the planning CT scans. To compensate for these, in-house software was used to adapt gantry and collimator angles in the plan. Doses to planning target volumes (PTV) and critical organs at risk (OAR) were calculated with and without compensation and compared with the original clinical plan. Measurements in the sagittal plane in a polystyrene phantom using radiochromic film were compared by gamma (γ) evaluation for 2 H&N cancer patients. For H&N plans, the introduction of 2°-roll and 3°-pitch rotations reduced mean PTV coverage from 98.7 to 96.3%. This improved to 98.1% with gantry and collimator compensation. For prostate plans respective figures were 98.4, 97.5, and 98.4%. For WB + 5M, compensation worked less well, especially for smaller volumes and volumes farther from the isocenter. Mean comparative γ evaluation (3%, 1 mm) between original and pitched plans resulted in 86% γ < 1. The corrected plan restored the mean comparison to 96% γ < 1. Preliminary data suggest that adapting gantry and collimator angles is a promising way to correct roll and pitch set-up errors of < 3° during VMAT for H&N and prostate cancer.
A method for modeling laterally asymmetric proton beamlets resulting from collimation
Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.
2015-01-01
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287
NASA Astrophysics Data System (ADS)
Hada, Kazuhiro; Doi, Akihiro; Wajima, Kiyoaki; D’Ammando, Filippo; Orienti, Monica; Giroletti, Marcello; Giovannini, Gabriele; Nakamura, Masanori; Asada, Keiichi
2018-06-01
We investigated the detailed radio structure of the jet of 1H 0323+342 using high-resolution multifrequency Very Long Baseline Array observations. This source is known as the nearest γ-ray emitting radio-loud narrow-line Seyfert 1 (NLS1) galaxy. We discovered that the morphology of the inner jet is well characterized by a parabolic shape, indicating that the jet is continuously collimated near the jet base. On the other hand, we found that the jet expands more rapidly at larger scales, resulting in a conical shape. The location of the “collimation break” is coincident with a bright quasi-stationary feature at 7 mas from core (corresponding to a deprojected distance on the order of ∼100 pc), where the jet width locally contracts together with highly polarized signals, suggesting a recollimation shock. We found that the collimation region is coincident with the region where the jet speed gradually accelerates, suggesting a coexistence of the jet acceleration and collimation zone, ending up with the recollimation shock, which could be a potential site of high-energy γ-ray flares detected by the Fermi-LAT. Remarkably, these observational features of the 1H 0323+342 jet are overall very similar to those of the nearby radio galaxy M87 and HST-1 as well as some blazars, suggesting that a common jet formation mechanism might be at work. Based on the similarity of the jet profile of the two sources, we also briefly discuss the mass of the central black hole of 1H 0323+342, which is also still highly controversial in this source and NLS1s in general.
Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging
NASA Astrophysics Data System (ADS)
Barty, C. P. J.
2015-10-01
Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.
Ultra-wide Range Gamma Detector System for Search and Locate Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.
2005-10-26
Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theodorakis, M.C.; Simpson, D.R.; Leung, D.M.
1983-02-01
A new method for monitoring tablet disintegration in vivo was developed. In this method, the tablets were labeled with a short-lived radionuclide, technetium 99m, and monitored by a gamma camera. Several innovations were introduced with this method. First, computer reconstruction algorithms were used to enhance the scintigraphic images of the disintegrating tablet in vivo. Second, the use of a four-pinhole collimator to acquire multiple views of the tablet resulted in high count rates and reduced acquisition times of the scintigraphic images. Third, the magnification of the scintigraphic images achieved by pinhole collimation led to significant improvement in resolution. Fourth, themore » radioinuclide was incorporated into the granulation so that the whole mass of the tablet was uniformly labeled with high levels of activity. This technique allowed the continuous monitoring of the disintegration process of tablets in vivo in experimental animals. Multiple pinhole collimation and the labeling process permitted the acquisition of quality scintigraphic images of the labeled tablet every 30 sec. The resolution of the method was tested in vitro and in vivo.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, R; Kale, S; Gopishankar, N
2015-06-15
Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum headmore » cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned with EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic radiosurgery using ES of Gamma knife. The study is a part of intramural research project of Research Section, All India Institute of Medical Sciences New Delhi India (A 247)« less
Adams, Elizabeth J.; Jordan, Thomas J.; Clark, Catharine H.; Nisbet, Andrew
2013-01-01
Quality assurance (QA) for intensity‐ and volumetric‐modulated radiotherapy (IMRT and VMAT) has evolved substantially. In recent years, various commercial 2D and 3D ionization chamber or diode detector arrays have become available, allowing for absolute verification with near real time results, allowing for streamlined QA. However, detector arrays are limited by their resolution, giving rise to concerns about their sensitivity to errors. Understanding the limitations of these devices is therefore critical. In this study, the sensitivity and resolution of the PTW 2D‐ARRAY seven29 and OCTAVIUS II phantom combination was comprehensively characterized for use in dynamic sliding window IMRT and RapidArc verification. Measurement comparisons were made between single acquisition and a multiple merged acquisition techniques to improve the effective resolution of the 2D‐ARRAY, as well as comparisons against GAFCHROMIC EBT2 film and electronic portal imaging dosimetry (EPID). The sensitivity and resolution of the 2D‐ARRAY was tested using two gantry angle 0° modulated test fields. Deliberate multileaf collimator (MLC) errors of 1, 2, and 5 mm and collimator rotation errors were inserted into IMRT and RapidArc plans for pelvis and head & neck sites, to test sensitivity to errors. The radiobiological impact of these errors was assessed to determine the gamma index passing criteria to be used with the 2D‐ARRAY to detect clinically relevant errors. For gamma index distributions, it was found that the 2D‐ARRAY in single acquisition mode was comparable to multiple acquisition modes, as well as film and EPID. It was found that the commonly used gamma index criteria of 3% dose difference or 3 mm distance to agreement may potentially mask clinically relevant errors. Gamma index criteria of 3%/2 mm with a passing threshold of 98%, or 2%/2 mm with a passing threshold of 95%, were found to be more sensitive. We suggest that the gamma index passing thresholds may be used for guidance, but also should be combined with a visual inspection of the gamma index distribution and calculation of the dose difference to assess whether there may be a clinical impact in failed regions. PACS numbers: 87.55.Qr, 87.56.Fc PMID:24257288
The integral line-beam method for gamma skyshine analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Bassett, M.S.
1991-03-01
This paper presents a refinement of a simplified method, based on line-beam response functions, for performing skyshine calculations for shielded and collimated gamma-ray sources. New coefficients for an empirical fit to the line-beam response function are provided and a prescription for making the response function continuous in energy and emission direction is introduced. For a shielded source, exponential attenuation and a buildup factor correction for scattered photons in the shield are used. Results of the new integral line-beam method of calculation are compared to a variety of benchmark experimental data and calculations and are found to give generally excellent agreementmore » at a small fraction of the computational expense required by other skyshine methods.« less
Effect of an overhead shield on gamma-ray skyshine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stedry, M.H.; Shultis, J.K.; Faw, R.E.
1996-06-01
A hybrid Monte Carlo and integral line-beam method is used to determine the effect of a horizontal slab shield above a gamma-ray source on the resulting skyshine doses. A simplified Monte Carlo procedure is used to determine the energy and angular distribution of photons escaping the source shield into the atmosphere. The escaping photons are then treated as a bare, point, skyshine source, and the integral line-beam method is used to estimate the skyshine dose at various distances from the source. From results for arbitrarily collimated and shielded sources, the skyshine dose is found to depend primarily on the mean-free-pathmore » thickness of the shield and only very weakly on the shield material.« less
Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility
NASA Astrophysics Data System (ADS)
Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan
2014-05-01
The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.
Waste inspection tomography (WIT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardi, R.T.
1996-12-31
WIT is a self-sufficient mobile semitrailer for nondestructive evaluation and nondestructive assay of nuclear waste drums using x-ray and gamma-ray tomography. The recently completed Phase I included the design, fabrication, and initial testing of all WIT subsystems installed on-board the trailer. Initial test results include 2 MeV digital radiography, computed tomography, Anger camera imaging, single photon emission computed tomography, gamma-ray spectroscopy, collimated gamma scanning, and active and passive computed tomography using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with 3 simulated waste matrices of combustibles, heterogeneous metals, and cement usingmore » check sources of gamma active isotopes such as {sup 137}Cs and {sup 133}Ba with 9-250 {mu}Ci activities. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were demonstrated nondestructively and noninvasively in Phase I. Currently ongoing Phase II involves DOE site field test demonstrations at LLNL, RFETS, and INEL with real nuclear waste drums. Current WIT experience includes 55 gallon drums of cement, graphite, sludge, glass, metals, and combustibles. Thus far WIT has inspected drums with 0-20 gms of {sup 239}Pu.« less
Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation
NASA Astrophysics Data System (ADS)
Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe
2007-09-01
Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.
MCNP6 model of the University of Washington clinical neutron therapy system (CNTS).
Moffitt, Gregory B; Stewart, Robert D; Sandison, George A; Goorley, John T; Argento, David C; Jevremovic, Tatjana
2016-01-21
A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm × 40 cm × 40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10 × 10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm × 2.8 cm, 10.4 cm × 10.3 cm, and 28.8 cm × 28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾ 10% of central axis dose) pass rates of 89.7% (2.8 cm × 2.8 cm), 89.6% (10.4 cm × 10.3 cm), and 100.0% (28.8 cm × 28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.
Measurement of 0.511-MeV gamma rays with a balloon-borne Ge/Li/ spectrometer
NASA Technical Reports Server (NTRS)
Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.
1977-01-01
A collimated high-resolution gamma ray spectrometer was flown on a balloon over Palestine, Texas, on June 10, 1974, to obtain measurements of the terrestrial and extraterrestrial 0.511-MeV gamma rays. The spectrometer consists of four 40-cu-cm Ge(Li) crystals operating in the energy range 0.06-10 MeV; this cluster of detectors is surrounded by a CsI(Na) anticoincidence shield. This system is used primarily to allow measurements of the two escape peaks associated with high-energy gamma ray lines. It also allows a measurement of the background component of the 0.511-MeV flux produced by beta(+) decays in materials inside the CsI(Na) shield. It is shown that the measurements of the atmospheric fluxes are consistent with earlier results after allowance is made for an additional component of the background due to beta(+) decays produced by neutron- and proton-initiated interactions with materials in and near the detector. Results of the extraterrestrial flux require an extensive detailed analysis of the time-varying background because of activation buildup and balloon spatial drifts.
Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources
NASA Astrophysics Data System (ADS)
Komissarov, Serguei S.; Vlahakis, Nektarios; Königl, Arieh
2010-09-01
When a magnetically dominated superfast-magnetosonic long/soft gamma-ray burst (GRB) jet leaves the progenitor star, the external pressure support will drop and the jet may enter the regime of ballistic expansion, during which additional magnetic acceleration becomes ineffective. However, recent numerical simulations by Tchekhovskoy et al. have suggested that the transition to this regime is accompanied by a spurt of acceleration. We confirm this finding numerically and attribute the acceleration to a sideways expansion of the jet, associated with a strong magnetosonic rarefaction wave that is driven into the jet when it loses pressure support, which induces a conversion of magnetic energy into kinetic energy of bulk motion. This mechanism, which we dub rarefaction acceleration, can only operate in a relativistic outflow because in this case the total energy can still be dominated by the magnetic component even in the superfast-magnetosonic regime. We analyse this process using the equations of relativistic magnetohydrodynamics and demonstrate that it is more efficient at converting internal energy into kinetic energy when the flow is magnetized than in a purely hydrodynamic outflow, as was found numerically by Mizuno et al. We show that, just as in the case of the magnetic acceleration of a collimating jet that is confined by an external pressure distribution - the collimation-acceleration mechanism - the rarefaction-acceleration process in a magnetized jet is a consequence of the fact that the separation between neighbouring magnetic flux surfaces increases faster than their cylindrical radius. However, whereas in the case of effective collimation-acceleration the product of the jet opening angle and its Lorentz factor does not exceed ~1, the addition of the rarefaction-acceleration mechanism makes it possible for this product to become >>1, in agreement with the inference from late-time panchromatic breaks in the afterglow light curves of long/soft GRBs.
Compton camera study for high efficiency SPECT and benchmark with Anger system
NASA Astrophysics Data System (ADS)
Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.
2017-12-01
Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application for SPECT if compared to present commercial Anger systems, with particular focus on dose delivered to the patient, examination time, and spatial uncertainties.
Real-time inverse planning for Gamma Knife radiosurgery.
Wu, Q Jackie; Chankong, Vira; Jitprapaikulsarn, Suradet; Wessels, Barry W; Einstein, Douglas B; Mathayomchan, Boonyanit; Kinsella, Timothy J
2003-11-01
The challenges of real-time Gamma Knife inverse planning are the large number of variables involved and the unknown search space a priori. With limited collimator sizes, shots have to be heavily overlapped to form a smooth prescription isodose line that conforms to the irregular target shape. Such overlaps greatly influence the total number of shots per plan, making pre-determination of the total number of shots impractical. However, this total number of shots usually defines the search space, a pre-requisite for most of the optimization methods. Since each shot only covers part of the target, a collection of shots in different locations and various collimator sizes selected makes up the global dose distribution that conforms to the target. Hence, planning or placing these shots is a combinatorial optimization process that is computationally expensive by nature. We have previously developed a theory of shot placement and optimization based on skeletonization. The real-time inverse planning process, reported in this paper, is an expansion and the clinical implementation of this theory. The complete planning process consists of two steps. The first step is to determine an optimal number of shots including locations and sizes and to assign initial collimator size to each of the shots. The second step is to fine-tune the weights using a linear-programming technique. The objective function is to minimize the total dose to the target boundary (i.e., maximize the dose conformity). Results of an ellipsoid test target and ten clinical cases are presented. The clinical cases are also compared with physician's manual plans. The target coverage is more than 99% for manual plans and 97% for all the inverse plans. The RTOG PITV conformity indices for the manual plans are between 1.16 and 3.46, compared to 1.36 to 2.4 for the inverse plans. All the inverse plans are generated in less than 2 min, making real-time inverse planning a reality.
NASA Astrophysics Data System (ADS)
Cambraia Lopes, Patricia; Clementel, Enrico; Crespo, Paulo; Henrotin, Sebastien; Huizenga, Jan; Janssens, Guillaume; Parodi, Katia; Prieels, Damien; Roellinghoff, Frauke; Smeets, Julien; Stichelbaut, Frederic; Schaart, Dennis R.
2015-08-01
Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digital photon counters (DPCs). PG profiles emitted from a PMMA target upon irradiation with a 160 MeV proton pencil beams (about 6.5 × 109 protons delivered in total) were measured using detector modules equipped with four DPC arrays coupled to BGO or LYSO : Ce crystal matrices. The knife-edge slit collimator and detector module were placed at 15 cm and 30 cm from the beam axis, respectively, in all cases. The use of LYSO : Ce enabled time-of-flight (TOF) rejection of background events, by synchronizing the DPC readout electronics with the 106 MHz radiofrequency signal of the cyclotron. The signal-to-background (S/B) ratio of 1.6 obtained with a 1.5 ns TOF window and a 3 MeV-7 MeV energy window was about 3 times higher than that obtained with the same detector module without TOF discrimination and 2 times higher than the S/B ratio obtained with the BGO module. Even 1 mm shifts of the Bragg peak position translated into clear and consistent shifts of the PG profile if TOF discrimination was applied, for a total number of protons as low as about 6.5 × 108 and a detector surface of 6.6 cm × 6.6 cm.
Effect of image uncertainty on the dosimetry of trigeminal neuralgia irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jursinic, Paul A.; Rickert, Kim; Gennarelli, Thomas A.
2005-08-01
Objective: Our objective was to quantify the uncertainty in localization of the trigeminal nerve (TGN) with magnetic resonance imaging (MRI) and computed tomography (CT) and to determine the effect of this uncertainty on gamma-knife dose delivery. Methods: An MR/CT test phantom with 9, 0.6-mm diameter, copper rings was devised. The absolute ring positions in stereotactic space were determined by the angiographic module of the LGP software. The standard deviation, {sigma}, in the difference between the absolute and MR-measured or CT-measured coordinates of the rings was determined. The trigeminal nerve in 52 previously treated patients was contoured and expanded by 1{sigma}more » and 2{sigma} margins to model the uncertainty in the location of the nerve. For gamma-knife treatment, a single isocenter was used and was located at the distal cisternal portion of the trigeminal nerve root. Irradiation methods included a 4-mm collimator, 90 Gy to isocenter and a 4 and 8-mm collimator, 70 Gy to isocenter. A patient outcome survey that sampled pain relief and morbidity was done. Results: The MR coordinate {sigma} was 0.7 mm left-right, 0.8 mm anterior-posterior, and 0.6 mm superior-inferior, and the CT coordinate {sigma} was 0.4 mm left-right, 0.2 mm anterior-posterior, and 0.2 mm superior-inferior. A 45% higher dose line covered the TGN with the 4 and 8-mm method. No significant increase in pain reduction or morbidity occurred. Conclusions: The uncertainty of target location by MRI is more than twice that found in CT imaging. The 4 and 8-mm collimator method covers the trigeminal root cross section with a higher isodose line than does the 4-mm method. This higher dose did not significantly reduce pain or increase morbidity.« less
SU-F-T-540: Comprehensive Fluence Delivery Optimization with Multileaf Collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weppler, S; Villarreal-Barajas, J; Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta
2016-06-15
Purpose: Multileaf collimator (MLC) leaf sequencing is performed via commercial black-box implementations, on which a user has limited to no access. We have developed an explicit, generic MLC sequencing model to serve as a tool for future investigations of fluence map optimization, fluence delivery optimization, and rotational collimator delivery methods. Methods: We have developed a novel, comprehensive model to effectively account for a variety of transmission and penumbra effects previously treated on an ad hoc basis in the literature. As the model is capable of quantifying a variety of effects, we utilize the asymmetric leakage intensity across each leaf tomore » deliver fluence maps with pixel size smaller than the narrowest leaf width. Developed using linear programming and mixed integer programming formulations, the model is implemented using state of the art open-source solvers. To demonstrate the versatility of the algorithm, a graphical user interface (GUI) was developed in MATLAB capable of accepting custom leaf specifications and transmission parameters. As a preliminary proof-ofconcept, we have sequenced the leaves of a Varian 120 Leaf Millennium MLC for five prostate cancer patient fields and one head and neck field. Predetermined fluence maps have been processed by data smoothing methods to obtain pixel sizes of 2.5 cm{sup 2}. The quality of output was analyzed using computer simulations. Results: For the prostate fields, an average root mean squared error (RMSE) of 0.82 and gamma (0.5mm/0.5%) of 91.4% were observed compared to RMSE and gamma (0.5mm/0.5%) values of 7.04 and 34.0% when the leakage considerations were omitted. Similar results were observed for the head and neck case. Conclusion: A model to sequence MLC leaves to optimality has been proposed. Future work will involve extensive testing and evaluation of the method on clinical MLCs and comparison with black-box leaf sequencing algorithms currently used by commercial treatment planning systems.« less
Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)
NASA Astrophysics Data System (ADS)
Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.
2014-07-01
The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.
Performance of a multi leaf collimator system for MR-guided radiation therapy.
Cai, Bin; Li, Harold; Yang, Deshan; Rodriguez, Vivian; Curcuru, Austen; Wang, Yuhe; Wen, Jie; Kashani, Rojano; Mutic, Sasa; Green, Olga
2017-12-01
The purpose of this study was to investigate and characterize the performance of a Multi Leaf Collimator (MLC) designed for Cobalt-60 based MR-guided radiation therapy system in a 0.35 T magnetic field. The MLC design and unique assembly features in the ViewRay MRIdian system were first reviewed. The RF cage shielding of MLC motor and cables were evaluated using ACR phantoms with real-time imaging and quantified by signal-to-noise ratio. The dosimetric characterizations, including the leaf transmission, leaf penumbra, tongue-and-groove effect, were investigated using radiosensitive films. The output factor of MLC-defined fields was measured with ionization chambers for both symmetric fields from 2.1 × 2.1 cm 2 to 27.3 × 27.3 cm 2 and asymmetric fields from 10.5 × 10.5 cm 2 to 10.5 × 2.0 cm 2 . Multi leaf collimator (MLC) positional accuracy was assessed by delivering either a picket fence (PF) style pattern on radiochromic films with wire-jig phantom or double and triple-rectangular patterns on ArcCheck-MR (Sun Nuclear, Melbourne, FL, USA) with gamma analysis as the pass/fail indicator. Leaf speed tests were performed to assess the capability of full range leaf travel within manufacture's specifications. Multi leaf collimator plan delivery reproducibility was tested by repeatedly delivering both open fields and fields with irregular shaped segments over 1-month period. Comparable SNRs within 4% were observed for MLC moving and stationary plans on vendor-reconstructed images, and the direct k-space reconstructed images showed that the three SNRs are within 1%. The maximum leaf transmission for all three MLCs was less than 0.35% and the average leakage was 0.153 ± 0.006%, 0.151 ± 0.008%, and 0.159 ± 0.015% for head 1, 2, and 3, respectively. Both the leaf edge and leaf end penumbra showed comparable values within 0.05 cm, and the measured values are within 0.1 cm with TPS values. The leaf edge TG effect indicated 10% underdose and the leaf end TG showed a shifted dose distribution with 0.3 cm offset. The leaf positioning test showed a 0.2 cm accuracy in the PF style test, and a gamma passing rate above 96% was observed with a 3%/2 mm criteria when comparing the measured double/triple-rectangular pattern fluence with TPS calculated fluence. The average leaf speed when executing the test plan fell in a range from 1.86 to 1.95 cm/s. The measured and TPS calculated output factors were within 2% for squared fields and within 3% for rectangular fields. The reproducibility test showed the deviation of output factors were well within 2% for square fields and the gamma passing rate within 1.5% for fields with irregular segments. The Monte Carlo predicted output factors were within 2% compared to TPS values. 15 out of the 16 IMRT plans have gamma passing rate more than 98% compared to the TPS fluence with an average passing rate of 99.1 ± 0.6%. The MRIdian MLC has a good RF noise shielding design, low radiation leakage, good positioning accuracy, comparable TG effect, and can be modeled by an independent Monte Carlo calculation platform. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Bridge, B.
2000-05-01
When X Gamma or other kinds of subatomic particle radiation are being used for NDE, measurements are almost always made on the primary beam after transmission through the object under test. Cases are described where better results, i.e., image quality or cost effectiveness can be obtained from measurements on scattered radiation rather than the primary beam. Compton imaging of high volume resolution in thick structures has previously been achieved only by fixed laboratory installations involving massive primary beam shields (collimators) between source and detectors. Here the design of a relatively portable collimator (98 kg mass) for a cobalt 60 source is given. It permits three dimensional material density imaging, with voxel (3-dimensional pixel) volumes small enough to permit the detection of voids down to 10 cubic mm in up to 30 mm thickness of steel or 250 mm of wood (for example, a 500 mm diameter tree trunk). Using a 370 GBq source, typical results of thickness measurements to a precision of 1 mm over cross sections down to 10 square mm are presented. The collimator mass is reducible to about 68 kg with the use of depleted uranium instead of lead. The means of deploying such a collimator in a mobile way are discussed. A typical in-situ application is the detection of inner wall corrosion and flooding of tubular members of underwater offshore oil platforms and ship hulls without the need to remove hard marine growth. Another case is the detection of telegraph pole and tree rot below ground level.
Jabbari, Keyvan; Pashaei, Fakhereh; Ay, Mohammad R.; Amouheidari, Alireza; Tavakoli, Mohammad B.
2018-01-01
Background: MapCHECK2 is a two-dimensional diode arrays planar dosimetry verification system. Dosimetric results are evaluated with gamma index. This study aims to provide comprehensive information on the impact of various factors on the gamma index values of MapCHECK2, which is mostly used for IMRT dose verification. Methods: Seven fields were planned for 6 and 18 MV photons. The azimuthal angle is defined as any rotation of collimators or the MapCHECK2 around the central axis, which was varied from 5 to −5°. The gantry angle was changed from −8 to 8°. Isodose sampling resolution was studied in the range of 0.5 to 4 mm. The effects of additional buildup on gamma index in three cases were also assessed. Gamma test acceptance criteria were 3%/3 mm. Results: The change of azimuthal angle in 5° interval reduced gamma index value by about 9%. The results of putting buildups of various thicknesses on the MapCHECK2 surface showed that gamma index was generally improved in thicker buildup, especially for 18 MV. Changing the sampling resolution from 4 to 2 mm resulted in an increase in gamma index by about 3.7%. The deviation of the gantry in 8° intervals in either directions changed the gamma index only by about 1.6% for 6 MV and 2.1% for 18 MV. Conclusion: Among the studied parameters, the azimuthal angle is one of the most effective factors on gamma index value. The gantry angle deviation and sampling resolution are less effective on gamma index value reduction. PMID:29535922
The limitations of associated alpha particle technique for contraband container inspections
NASA Astrophysics Data System (ADS)
Sudac, Davorin; Blagus, Sasa; Valkovic, Vladivoj
2007-10-01
Inspection of a shipping container for the presence of the threat materials has been investigated in the laboratory by using a 14 MeV neutron beam, a BaF2 gamma detector and the associated alpha particle technique. The associated alpha particle technique is proposed as a part of a two sensor system for contraband container inspections. This method is effective in the reduction of background radiation with the possibility of collimating electronically the neutron beam. The intrinsic time resolution has been experimentally estimated to be 1.3 ns (FWHM), which allows inspection of a minimum voxel having 7 cm depth along the neutron flight path. The neutron beam intensity plays a crucial role as a limiting factor for the acquisition time reduction. Single counting rates of the gamma and alpha detector were investigated as a function of the neutron intensity, distance between the gamma detector and the neutron source and the type of shielding. The time and the energy spectra for different neutron intensities were evaluated.
Upgrades at the Duke Free Electron Laser Laboratory
NASA Astrophysics Data System (ADS)
Howell, Calvin R.
2004-11-01
Major upgrades to the storage-ring based photon sources at the Duke Free Electron Laser Laboratory (DFELL) are underway. The photon sources at the DFELL are well suited for research in the areas of medicine, biophysics, accelerator physics, nuclear physics and material science. These upgrades, which will be completed by the summer 2006, will significantly enhance the capabilities of the ultraviolet (UV) free-electron laser (FEL) and the high intensity gamma-ray source (HIGS). The HIGS is a relatively new research facility at the DFELL that is operated jointly by the DFELL and the Triangle Universities Nuclear Laboratory. The gamma-ray beam is produced by Compton back scattering of the UV photons inside the FEL optical cavity off the circulating electrons in the storage ring. The gamma-ray beam is 100% polarized and its energy resolution is selected by collimation. The capabilities of the upgraded facility will be described, the status of the upgrades will be summarized, and the proposed first-generation research program at HIGS will be presented.
High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors
NASA Technical Reports Server (NTRS)
Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.
1993-01-01
Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.
NASA Astrophysics Data System (ADS)
Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.
2016-10-01
This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.
Orthogonal strip HPGe planar SmartPET detectors in Compton configuration
NASA Astrophysics Data System (ADS)
Boston, H. C.; Gillam, J.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.
2007-10-01
The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.
Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production
NASA Astrophysics Data System (ADS)
Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.
2018-05-01
The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.
A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems
NASA Technical Reports Server (NTRS)
Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.
2013-01-01
Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.
A universal scaling for the energetics of relativistic jets from black hole systems.
Nemmen, R S; Georganopoulos, M; Guiriec, S; Meyer, E T; Gehrels, N; Sambruna, R M
2012-12-14
Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.
Tsukamoto, Yumiko; Uehara, Shoji; Mizoguchi, Chieko; Sato, Atsushi; Horikawa, Keisuke; Takatsu, Kiyoshi
2005-10-21
Mature B-2 cells expressing surface IgM and IgD proliferate upon stimulation by CD38, CD40 or lipopolysaccharide (LPS) and differentiate into IgG1-producing plasma cells in the presence of cytokines. The process of class switch recombination (CSR) from IgM to other isotypes is highly regulated by cytokines and activation-induced cytidine deaminase (AID). Blimp-1 and XBP-1 play an essential role in the terminal differentiation of switched B-2 cells to Ig-producing plasma cells. IL-5 induces AID and Blimp-1 expression in CD38- and CD40-activated B-2 cells, leading to mu to gamma1 CSR at DNA level and IgG1 production. IL-4, a well-known IgG1-inducing factor, does not induce mu to gamma1 CSR in CD38-activated B-2 cells or Blimp-1, while IL-4 induces mu to gamma1 CSR, XBP-1 expression, and IgG1 production expression in CD40-activated B-2 cells. Interestingly, the addition of 8-mercaptoguanosine (8-SGuo) with IL-4 to the culture of CD38-activated B cells can induce mu to gamma1 CSR, Blimp-1 expression, and IgG1 production. Intriguingly, 8-SGuo by itself induces AID expression in CD38-activated B cells. However, it does not induce mu to gamma1 CSR. These results imply that the mode of B-cell activation for extracellular stimulation affects the outcome of cytokine stimulation with respect to the efficiency and direction of CSR, and the requirements of the transcriptional regulator and the generation of antibody-secreting cells. Furthermore, our data suggest the requirement of additional molecules in addition to AID for CSR.
A method for monitoring nuclear absorption coefficients of aviation fuels
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Shen, Chih-Ping
1989-01-01
A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.
Moslemi, Vahid; Ashoor, Mansour
2017-05-01
In addition to the trade-off between resolution and sensitivity which is a common problem among all types of parallel hole collimators (PCs), obtained images by high energy PCs (HEPCs) suffer from hole-pattern artifact (HPA) due to further septa thickness. In this study, a new design on the collimator has been proposed to improve the trade-off between resolution and sensitivity and to eliminate the HPA. A novel PC, namely high energy extended PC (HEEPC), is proposed and is compared to HEPCs. In the new PC, trapezoidal denticles were added upon the septa in the detector side. The performance of the HEEPCs were evaluated and compared to that of HEPCs using a Monte Carlo-N-particle version5 (MCNP5) simulation. The point spread functions (PSF) of HEPCs and HEEPCs were obtained as well as the various parameters such as resolution, sensitivity, scattering, and penetration ratios, and the HPA of the collimators was assessed. Furthermore, a Picker phantom study was performed to examine the effects of the collimators on the quality of planar images. It was found that the HEEPC D with an identical resolution to that of HEPC C increased sensitivity by 34.7%, and it improved the trade-off between resolution and sensitivity as well as to eliminate the HPA. In the picker phantom study, the HEEPC D indicated the hot and cold lesions with the higher contrast, lower noise, and higher contrast to noise ratio (CNR). Since the HEEPCs modify the shaping of PSFs, they are able to improve the trade-off between the resolution and sensitivity; consequently, planar images can be achieved with higher contrast resolutions. Furthermore, because the HEEPC S reduce the HPA and produce images with a higher CNR, compared to HEPCs, the obtained images by HEEPCs have a higher quality, which can help physicians to provide better diagnosis.
SU-E-T-392: Evaluation of Ion Chamber/film and Log File Based QA to Detect Delivery Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, C; Mason, B; Kirsner, S
2015-06-15
Purpose: Ion chamber and film (ICAF) is a method used to verify patient dose prior to treatment. More recently, log file based QA has been shown as an alternative for measurement based QA. In this study, we delivered VMAT plans with and without errors to determine if ICAF and/or log file based QA was able to detect the errors. Methods: Using two VMAT patients, the original treatment plan plus 7 additional plans with delivery errors introduced were generated and delivered. The erroneous plans had gantry, collimator, MLC, gantry and collimator, collimator and MLC, MLC and gantry, and gantry, collimator, andmore » MLC errors. The gantry and collimator errors were off by 4{sup 0} for one of the two arcs. The MLC error introduced was one in which the opening aperture didn’t move throughout the delivery of the field. For each delivery, an ICAF measurement was made as well as a dose comparison based upon log files. Passing criteria to evaluate the plans were ion chamber less and 5% and film 90% of pixels pass the 3mm/3% gamma analysis(GA). For log file analysis 90% of voxels pass the 3mm/3% 3D GA and beam parameters match what was in the plan. Results: Two original plans were delivered and passed both ICAF and log file base QA. Both ICAF and log file QA met the dosimetry criteria on 4 of the 12 erroneous cases analyzed (2 cases were not analyzed). For the log file analysis, all 12 erroneous plans alerted a mismatch in delivery versus what was planned. The 8 plans that didn’t meet criteria all had MLC errors. Conclusion: Our study demonstrates that log file based pre-treatment QA was able to detect small errors that may not be detected using an ICAF and both methods of were able to detect larger delivery errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, Johan de; Wolf, Anne Lisa; Szeto, Yenny Z.
2015-04-01
Purpose: Rotations of the prostate gland induce considerable geometric uncertainties in prostate cancer radiation therapy. Collimator and gantry angle adjustments can correct these rotations in intensity modulated radiation therapy. Modern volumetric modulated arc therapy (VMAT) treatments, however, include a wide range of beam orientations that differ in modulation, and corrections require dynamic collimator rotations. The aim of this study was to implement a rotation correction strategy for VMAT dose delivery and validate it for left-right prostate rotations. Methods and Materials: Clinical VMAT treatment plans of 5 prostate cancer patients were used. Simulated left-right prostate rotations between +15° and −15° weremore » corrected by collimator rotations. We compared corrected and uncorrected plans by dose volume histograms, minimum dose (D{sub min}) to the prostate, bladder surface receiving ≥78 Gy (S78) and rectum equivalent uniform dose (EUD; n=0.13). Each corrected plan was delivered to a phantom, and its deliverability was evaluated by γ-evaluation between planned and delivered dose, which was reconstructed from portal images acquired during delivery. Results: On average, clinical target volume minimum dose (D{sub min}) decreased up to 10% without corrections. Negative left-right rotations were corrected almost perfectly, whereas D{sub min} remained within 4% for positive rotations. Bladder S78 and rectum EUD of the corrected plans matched those of the original plans. The average pass rate for the corrected plans delivered to the phantom was 98.9% at 3% per 3 mm gamma criteria. The measured dose in the planning target volume approximated the original dose, rotated around the simulated left-right angle, well. Conclusions: It is feasible to dynamically adjust the collimator angle during VMAT treatment delivery to correct for prostate rotations. This technique can safely correct for left-right prostate rotations up to 15°.« less
A method for modeling laterally asymmetric proton beamlets resulting from collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.
2015-03-15
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEVmore » parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.« less
Septal penetration correction in I-131 imaging following thyroid cancer treatment
NASA Astrophysics Data System (ADS)
Barrack, Fiona; Scuffham, James; McQuaid, Sarah
2018-04-01
Whole body gamma camera images acquired after I-131 treatment for thyroid cancer can suffer from collimator septal penetration artefacts because of the high energy of the gamma photons. This results in the appearance of ‘spoke’ artefacts, emanating from regions of high activity concentration, caused by the non-isotropic attenuation of the collimator. Deconvolution has the potential to reduce such artefacts, by taking into account the non-Gaussian point-spread-function (PSF) of the system. A Richardson–Lucy deconvolution algorithm, with and without prior scatter-correction was tested as a method of reducing septal penetration in planar gamma camera images. Phantom images (hot spheres within a warm background) were acquired and deconvolution using a measured PSF was applied. The results were evaluated through region-of-interest and line profile analysis to determine the success of artefact reduction and the optimal number of deconvolution iterations and damping parameter (λ). Without scatter-correction, the optimal results were obtained with 15 iterations and λ = 0.01, with the counts in the spokes reduced to 20% of the original value, indicating a substantial decrease in their prominence. When a triple-energy-window scatter-correction was applied prior to deconvolution, the optimal results were obtained with six iterations and λ = 0.02, which reduced the spoke counts to 3% of the original value. The prior application of scatter-correction therefore produced the best results, with a marked change in the appearance of the images. The optimal settings were then applied to six patient datasets, to demonstrate its utility in the clinical setting. In all datasets, spoke artefacts were substantially reduced after the application of scatter-correction and deconvolution, with the mean spoke count being reduced to 10% of the original value. This indicates that deconvolution is a promising technique for septal penetration artefact reduction that could potentially improve the diagnostic accuracy of I-131 imaging. Novelty and significance This work has demonstrated that scatter correction combined with deconvolution can be used to substantially reduce the appearance of septal penetration artefacts in I-131 phantom and patient gamma camera planar images, enable improved visualisation of the I-131 distribution. Deconvolution with symmetric PSF has previously been used to reduce artefacts in gamma camera images however this work details the novel use of an asymmetric PSF to remove the angularly dependent septal penetration artefacts.
Detection of nuclear gamma rays from Centaurus A
NASA Technical Reports Server (NTRS)
Hall, R. D.; Walraven, G. D.; Djuth, F. T.; Haymes, R. C.; Meegan, C. A.
1976-01-01
Results are reported for an observation of nuclear gamma rays in the energy range between 0.033 and 12.25 MeV from Centaurus A using a balloon-borne actively collimated NaI(Tl) crystal scintillation counter. The observing procedure is outlined, no systematic errors are found in the data, and power-law fits to the source's energy spectrum are attempted. A power law of approximately 0.86E to the -1.9 power photon/sq cm/sec per keV is shown to give an acceptable fit to the continuum, and the detection of two gamma-ray lines at 1.6 and 4.5 MeV, respectively, is discussed. It is found that the low-energy gamma-ray luminosity of Cen A is 9.4 by 10 to the 43rd power erg/sec for a distance of 5 Mpc and that Cen A is apparently variable in low-energy gamma radiation. It is suggested that the broad feature detected at 1.6 MeV may be due to three blended lines (possibly excited Ne-20, Mg-24, and Si-28), the 4.5-MeV line is most likely due to deexcitation of excited C-12, and the nuclear excitation results from either cosmic-ray bombardment of Cen A's interstellar medium or nucleosynthesis within the source.
Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae
NASA Astrophysics Data System (ADS)
Pratim Basumallick, Partha; Gupta, Nayantara
2017-07-01
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.
Poster - 11: Radiation barrier thickness calculations for the GammaPod
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Russa, Daniel; Vandervoort, Eric; Wilkins, Davi
A consortium of radiotherapy centers in North America is in the process of evaluating a novel new {sup 60}Co teletherapy device, called the GammaPod™ (Xcision Medical Systems, Columbia Maryland), designed specifically for breast SBRT. The GammaPod consists of 36 collimated {sup 60}Co sources with a total activity of 4320 Ci. The sources are housed in a hemispherical source carrier that rotates during treatment to produce a cylindrically symmetric cone of primary beam spanning 16° – 54° degrees from the horizontal. This unique beam geometry presents challenges when designing or evaluating room shielding for the purposes of meeting regulatory requirements, andmore » for ensuring the safety of staff and the public in surrounding areas. Conventional methods for calculating radiation barrier thicknesses have been adapted so that barrier transmission factors for the GammaPod can be determined from a few relevant distances and characteristics of the primary beam. Simple formalisms have been determined for estimating shielding requirements for primary radiation (with a rotating and non-rotating source carrier), patient-scattered radiation, and leakage radiation. When making worst case assumptions, it was found that conventional barrier thicknesses associated with linac treatment suites are sufficient for shielding all sources of radiation from the GammaPod.« less
Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy
NASA Astrophysics Data System (ADS)
Roemer, K.; Pausch, G.; Bemmerer, D.; Berthel, M.; Dreyer, A.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Rohling, H.; Thirolf, P.; Wagner, A.; Wagner, L.; Weinberger, D.; Fiedler, F.
2015-10-01
Particle therapy in oncology is advantageous compared to classical radiotherapy due to its well-defined penetration depth. In the so-called Bragg peak, the highest dose is deposited; the tissue behind the cancerous area is not exposed. Different factors influence the range of the particle and thus the target area, e.g. organ motion, mispositioning of the patient or anatomical changes. In order to avoid over-exposure of healthy tissue and under-dosage of cancerous regions, the penetration depth of the particle has to be monitored, preferably already during the ongoing therapy session. The verification of the ion range can be performed using prompt gamma emissions, which are produced by interactions between projectile and tissue, and originate from the same location and time of the nuclear reaction. The prompt gamma emission profile and the clinically relevant penetration depth are correlated. Various imaging concepts based on the detection of prompt gamma rays are currently discussed: collimated systems with counting detectors, Compton cameras with (at least) two detector planes, or the prompt gamma timing method, utilizing the particle time-of-flight within the body. For each concept, the detection system must meet special requirements regarding energy, time, and spatial resolution. Nonetheless, the prerequisites remain the same: the gamma energy region (2 to 10 MeV), high counting rates and the stability in strong background radiation fields. The aim of this work is the comparison of different scintillation crystals regarding energy and time resolution for optimized prompt gamma detection.
High resolution X- and gamma-ray spectroscopy of solar flares
NASA Technical Reports Server (NTRS)
Lin, R. P.
1984-01-01
A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.
Kittaka, Daisuke; Takase, Tadashi; Akiyama, Masayuki; Nakazawa, Yasuo; Shinozuka, Akira; Shirai, Muneaki
2011-01-01
(123)I-MIBG Heart-to-Mediastinum activity ratio (H/M) is commonly used as an indicator of relative myocardial (123)I-MIBG uptake. H/M ratios reflect myocardial sympathetic nerve function, therefore it is a useful parameter to assess regional myocardial sympathetic denervation in various cardiac diseases. However, H/M ratio values differ by site, gamma camera system, position and size of region of interest (ROI), and collimator. In addition to these factors, 529 keV scatter component may also affect (123)I-MIBG H/M ratio. In this study, we examined whether the H/M ratio shows correlation between two different gamma camera systems and that sought for H/M ratio calculation formula. Moreover, we assessed the feasibility of (123)I Dual Window (IDW) method, which is a scatter correction method, and compared H/M ratios with and without IDW method. H/M ratio displayed a good correlation between two gamma camera systems. Additionally, we were able to create a new H/M calculation formula. These results indicated that the IDW method is a useful scatter correction method for calculating (123)I-MIBG H/M ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less
Development and calibration of a new gamma camera detector using large square Photomultiplier Tubes
NASA Astrophysics Data System (ADS)
Zeraatkar, N.; Sajedi, S.; Teimourian Fard, B.; Kaviani, S.; Akbarzadeh, A.; Farahani, M. H.; Sarkar, S.; Ay, M. R.
2017-09-01
Large area scintillation detectors applied in gamma cameras as well as Single Photon Computed Tomography (SPECT) systems, have a major role in in-vivo functional imaging. Most of the gamma detectors utilize hexagonal arrangement of Photomultiplier Tubes (PMTs). In this work we applied large square-shaped PMTs with row/column arrangement and positioning. The Use of large square PMTs reduces dead zones in the detector surface. However, the conventional center of gravity method for positioning may not introduce an acceptable result. Hence, the digital correlated signal enhancement (CSE) algorithm was optimized to obtain better linearity and spatial resolution in the developed detector. The performance of the developed detector was evaluated based on NEMA-NU1-2007 standard. The acquired images using this method showed acceptable uniformity and linearity comparing to three commercial gamma cameras. Also the intrinsic and extrinsic spatial resolutions with low-energy high-resolution (LEHR) collimator at 10 cm from surface of the detector were 3.7 mm and 7.5 mm, respectively. The energy resolution of the camera was measured 9.5%. The performance evaluation demonstrated that the developed detector maintains image quality with a reduced number of used PMTs relative to the detection area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynoso, F; Cho, S
Purpose: To develop an external beam surrogate of the Yb-169 brachytherapy source applying a filter-based spectrum modulation technique to 250 kVp x-rays. In-vitro/vivo studies performed with the modulated 250 kVp beam will help gauge the benefits of implementing gold nanoparticle-aided radiotherapy with the Yb-169 source. Methods: A previously validated MCNP5 model of the Phillips RT-250 orthovoltage unit was used to obtain the percentage depth dose (PDD) and filtered photon spectra for a variety of filtration and irradiation conditions. Photon spectra were obtained using the average flux F4 tally in air right after all collimation. A 30 x 30 x 30more » cm{sup 3} water phantom was used to compute the PDD along the central axis (CAX) under the standards conditions of a 10 x 10 cm{sup 2} field size at 50 cm SSD. Cylindrical cells of 4 cm in diameter and the energy deposition F6 tally were used along the CAX to score the doses down to 20 cm depth. The number of particle history was set to 2 x 10{sup 8} in order to keep the relative uncertainty within each cell < 0.3%. The secondary electron spectrum within a gold-loaded tissue due to each photon spectrum was also calculated using EGSnrc and compared with that due to Yb-169 gamma rays. Results: Under the practical constraints for the spectrum modulation task, 250 kVp x-rays filtered by a 0.25 mm Erbium (Er) foil produced the best match with Yb-169 gamma rays, in terms of PDD and, more importantly, secondary electron spectrum. Conclusion: Modulation of 250kVp x-ray spectrum by an Er-filter was found effective in emulating the gamma ray spectrum of Yb-169. Possible benefits as predicted from the current MC model such as enhanced radiosensitization with the Er-filtered beam (as a surrogate of Yb-169) was confirmed with a separate in-vitro study. Supported by DOD/PCRP grant W81XWH-12-1-0198.« less
Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows
NASA Astrophysics Data System (ADS)
Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.
2011-10-01
Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, T; Papaconstadopoulos, P; Alexander, A
2014-08-15
Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification,more » using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.« less
Tsukamoto, Yumiko; Nagai, Yoshinori; Kariyone, Ai; Shibata, Takuma; Kaisho, Tsuneyasu; Akira, Shizuo; Miyake, Kensuke; Takatsu, Kiyoshi
2009-04-01
IL-4 and 8-mercaptoguanosine (8-SGuo) stimulation of CD38-activated B cells induces mu to gamma1 class switch recombination (CSR) at the DNA level leading to a high level of IgG1 production. Although some of signaling events initiated by IL-4 in activated B cells have been characterized, the involvement of TLR/MyD88 and Btk pathway in IL-4-dependent mu to gamma1 CSR has not been thoroughly evaluated. In this study, we characterized receptors for 8-SGuo and differential roles of 8-SGuo and IL-4 in the induction and mu to gamma1 CSR and IgG1 production. The role of TLR7 and MyD88 in 8-SGuo-induced AID expression and mu to gamma1 CSR was documented, as 8-SGuo did not act on CD38-stimulated splenic B cells from Tlr7(-/-) and Myd88(-/-) mice. CD38-activated B cells from Btk-deficient mice failed to respond to TLR7 ligands for the AID expression and CSR, indicating that Btk is also indispensable for the system. Stimulation of CD38-activated B cells with 8-SGuo induced significant AID expression and DNA double strand breaks, but IL-4 stimulation by itself did not trigger mu to gamma1 CSR. Intriguingly, the mu to gamma1 CSR in the B cells stimulated with CD38 and 8-SGuo totally depends on IL-4 stimulation. Similar results were obtained in the activated B cells through BCR and loxoribine, a well-known TLR7 ligand, in place of 8-SGuo. In vivo administration of TLR7 ligand and anti-CD38 antibody induced the generation of CD138(+) IgG1(+) cells. These results indicate that TLR7 is a receptor for 8-SGuo and plays an essential role in the AID and Blimp-1 expression; however it is not enough to complete mu to gamma1 CSR in CD38-activated B cells. IL-4 may be required for the induction of DNA repair system together with AID for the completion of CSR.
NASA Astrophysics Data System (ADS)
Lichti, Derek D.; Chow, Jacky; Lahamy, Hervé
One of the important systematic error parameters identified in terrestrial laser scanners is the collimation axis error, which models the non-orthogonality between two instrumental axes. The quality of this parameter determined by self-calibration, as measured by its estimated precision and its correlation with the tertiary rotation angle κ of the scanner exterior orientation, is strongly dependent on instrument architecture. While the quality is generally very high for panoramic-type scanners, it is comparably poor for hybrid-style instruments. Two methods for improving the quality of the collimation axis error in hybrid instrument self-calibration are proposed herein: (1) the inclusion of independent observations of the tertiary rotation angle κ; and (2) the use of a new collimation axis error model. Five real datasets were captured with two different hybrid-style scanners to test each method's efficacy. While the first method achieves the desired outcome of complete decoupling of the collimation axis error from κ, it is shown that the high correlation is simply transferred to other model variables. The second method achieves partial parameter de-correlation to acceptable levels. Importantly, it does so without any adverse, secondary correlations and is therefore the method recommended for future use. Finally, systematic error model identification has been greatly aided in previous studies by graphical analyses of self-calibration residuals. This paper presents results showing the architecture dependence of this technique, revealing its limitations for hybrid scanners.
A Compton scattering technique to determine wood density and locating defects in it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tondon, Akash, E-mail: akashtondonnsl@gmail.com; Sandhu, B. S.; Singh, Bhajan
A Compton scattering technique is presented to determine density and void location in the given wooden samples. The technique uses a well collimated gamma ray beam from {sup 137}Cs along with the NaI(Tl) scintillation detector. First, a linear relationship is established between Compton scattered intensity and known density of chemical compounds, and then density of the wood is determined from this linear relation. In another experiment, the ability of penetration of gamma rays is explored to detect voids in wooden (low Z) sample. The sudden reduction in the Compton scattered intensities agrees well with the position and size of voidsmore » in the wooden sample. It is concluded that wood density and the voids of size ∼ 4 mm and more can be detected easily by this method.« less
Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum
NASA Technical Reports Server (NTRS)
Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.
1990-01-01
The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.
3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications.
Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan
2013-02-01
We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μ m resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μ m pitch pixels (250 μ m anode pixels with 100 μ m gap) and coplanar cathode. Charge sharing among the pixels of a 350 μ m pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μ m pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μ m pitch detector biased at -1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications.
3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications
Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan
2016-01-01
We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476
NASA Astrophysics Data System (ADS)
Genocchi, B.; Pickford Scienti, O.; Darambara, DG
2017-05-01
Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.
NASA Astrophysics Data System (ADS)
Ready, John Francis, III
Proton beam usage to treat cancer has recently experienced rapid growth, as it offers the ability to target dose delivery in a patient more precisely than traditional x-ray treatment methods. Protons stop within the patient, delivering the maximum dose at the end of their track--a phenomenon described as the Bragg peak. However, because a large dose is delivered to a small volume, proton therapy is very sensitive to errors in patient setup and treatment planning calculations. Additionally, because all primary beam particles stop in the patient, there is no direct information available to verify dose delivery. These factors contribute to the range uncertainty in proton therapy, which ultimately hinders its clinical usefulness. A reliable method of proton range verification would allow the clinician to fully utilize the precise dose delivery of the Bragg peak. Several methods to verify proton range detect secondary emissions, especially prompt gamma ray (PG) emissions. However, detection of PGs is challenging due to their high energy (2-10 MeV) and low attenuation coefficients, which limit PG interactions in materials. Therefore, detection and collimation methods must be specifically designed for prompt gamma ray imaging (PGI) applications. In addition, production of PGs relies on delivering a dose of radiation to the patient. Ideally, verification of the Bragg peak location exposes patients to a minimal dose, thus limiting the PG counts available to the imaging system. An additional challenge for PGI is the lack of accurate simulation models, which limit the study of PG production characteristics and the relationship between PG distribution and dose delivery. Specific limitations include incorrect modeling of the reaction cross sections, gamma emission yields, and angular distribution of emission for specific photon energies. While simulations can still be valuable assets in designing a system to detect and image PGs, until new models are developed and incorporated into Monte Carlo simulation packages, simulations cannot be used to study the production and location of PG emissions during proton therapy. This work presents a novel system to image PGs emitted during proton therapy to verify proton beam range. The imaging system consists of a multi-slit collimator paired with a position-sensitive LSO scintillation detector. This innovative design is the first collimated imaging system to implement two-dimensional (2-D) imaging for PG proton beam range verification, while also providing a larger field of view than compared to single-slit collimator systems. Other, uncollimated imaging systems have been explored for PGI applications, such as Compton cameras. However, Compton camera designs are severely limited by counting rate capabilities. A recent Compton camera study reported count rate capability of about 5 kHz. However, at a typical clinical beam current of 1.0 nA, the estimated PG emission rate would be 6 x 108 per second. After accounting for distance to the detector and interaction efficiencies, the detection system will still be overwhelmed with counts in the MHz range, causing false coincidences and hindering the operation of the imaging system. Initial measurements using 50 MeV protons demonstrated the ability of our system to reconstruct 2-D PG distributions at clinical beam currents. A Bragg peak localization precision of 1 mm (2sigma) was achieved with delivery of (1.7 +/- 0.8) x 108 protons into a PMMA target, suggesting the ability of the system to detect relative shifts in proton range while delivering fewer protons than used in a typical treatment fraction. This is key, as the ideal system allows the clinician to verify proton range when delivering only a small portion of the prescribed dose, preventing the mistreatment of the patient. Additionally, the absolute position of the Bragg peak was identified to within 1.6 mm (2sigma) with 5.6 x 1010 protons delivered. These promising results warrant further investigation and system optimization for clinical implementation. While further measurements at clinical beam energy levels will be required to verify system performance, these preliminary results provide evidence that 2-D image reconstruction, with 1-2 mm accuracy, is possible with this design. Implementing such a system in the clinical setting would greatly improve proton therapy cancer treatment outcomes.
A method for monitoring the variability in nuclear absorption characteristics of aviation fuels
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Shen, Chih-Ping
1988-01-01
A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.
Gamma-Ray Burst Afterglows with ALMA
NASA Astrophysics Data System (ADS)
Urata, Y.; Huang, K.; Takahashi, S.
2015-12-01
We present multi-wavelength observations including sub-millimeter follow-ups for two GRB afterglows. The rapid SMA and multi-wavelength observations for GRB120326A revealed their complex emissions as the synchrotron self-inverse Compton radiation from reverse shock. The observations including ALMA for GRB131030A also showed the significant X-ray excess from the standard forward shock synchrotron model. Based on these results, we also discuss further observations for (A) constraining of the mass of progenitor with polarization, (B) the first confirmation of GRB jet collimation, and (C) revealing the origin of optically dark GRBs.
NASA Technical Reports Server (NTRS)
Becker, Peter A.; Kafatos, Menas
1995-01-01
We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically in gamma - ray blazars, then these objects should appear as bright MeV sources when viewed along off-axis lines of sight.
QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerny, Bozena; Sikora, Marek; Janiuk, Agnieszka
2012-08-10
Gamma-ray catalogs contain a considerable amount of unidentified sources. Many of these are located out of the Galactic plane and therefore may have extragalactic origin. Here we assume that the formation of massive black holes in galactic nuclei proceeds through a quasi-star stage and consider the possibility of jet production by such objects. Those jets would be the sources of collimated synchrotron and Compton emission, extending from radio to gamma rays. The expected lifetimes of quasi-stars are of the order of million of years while the jet luminosities, somewhat smaller than that of quasar jets, are sufficient to account formore » the unidentified gamma-ray sources. The jet emission dominates over the thermal emission of a quasi-star in all energy bands, except when the jet is not directed toward an observer. The predicted synchrotron emission peaks in the IR band, with the flux close to the limits of the available IR all sky surveys. The ratio of the gamma-ray flux to the IR flux is found to be very large ({approx}60), much larger than in BL Lac objects but reached by some radio-loud quasars. On the other hand, radio-loud quasars show broad emission lines while no such lines are expected from quasi-stars. Therefore, the differentiation between various scenarios accounting for the unidentified gamma-ray sources will be possible at the basis of the photometry and spectroscopy of the IR/optical counterparts.« less
Prompt Gamma Imaging for In Vivo Range Verification of Pencil Beam Scanning Proton Therapy.
Xie, Yunhe; Bentefour, El Hassane; Janssens, Guillaume; Smeets, Julien; Vander Stappen, François; Hotoiu, Lucian; Yin, Lingshu; Dolney, Derek; Avery, Stephen; O'Grady, Fionnbarr; Prieels, Damien; McDonough, James; Solberg, Timothy D; Lustig, Robert A; Lin, Alexander; Teo, Boon-Keng K
2017-09-01
To report the first clinical results and value assessment of prompt gamma imaging for in vivo proton range verification in pencil beam scanning mode. A stand-alone, trolley-mounted, prototype prompt gamma camera utilizing a knife-edge slit collimator design was used to record the prompt gamma signal emitted along the proton tracks during delivery of proton therapy for a brain cancer patient. The recorded prompt gamma depth detection profiles of individual pencil beam spots were compared with the expected profiles simulated from the treatment plan. In 6 treatment fractions recorded over 3 weeks, the mean (± standard deviation) range shifts aggregated over all spots in 9 energy layers were -0.8 ± 1.3 mm for the lateral field, 1.7 ± 0.7 mm for the right-superior-oblique field, and -0.4 ± 0.9 mm for the vertex field. This study demonstrates the feasibility and illustrates the distinctive benefits of prompt gamma imaging in pencil beam scanning treatment mode. Accuracy in range verification was found in this first clinical case to be better than the range uncertainty margin applied in the treatment plan. These first results lay the foundation for additional work toward tighter integration of the system for in vivo proton range verification and quantification of range uncertainties. Copyright © 2017 Elsevier Inc. All rights reserved.
Design and performance tests of the calorimetric tract of a Compton Camera for small-animals imaging
NASA Astrophysics Data System (ADS)
Rossi, P.; Baldazzi, G.; Battistella, A.; Bello, M.; Bollini, D.; Bonvicini, V.; Fontana, C. L.; Gennaro, G.; Moschini, G.; Navarria, F.; Rashevsky, A.; Uzunov, N.; Zampa, G.; Zampa, N.; Vacchi, A.
2011-02-01
The bio-distribution and targeting capability of pharmaceuticals may be assessed in small animals by imaging gamma-rays emitted from radio-isotope markers. Detectors that exploit the Compton concept allow higher gamma-ray efficiency compared to conventional Anger cameras employing collimators, and feature sub-millimeter spatial resolution and compact geometry. We are developing a Compton Camera that has to address several requirements: the high rates typical of the Compton concept; detection of gamma-rays of different energies that may range from 140 keV ( 99 mTc) to 511 keV ( β+ emitters); presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Tracker that scatters the gamma ray, and a second position-sensitive detection system to totally absorb the energy of the scattered photons (Calorimeter). In this paper we present the design and discuss the realization of the calorimetric tract, including the choice of scintillator crystal, pixel size, and detector geometry. Simulations of the gamma-ray trajectories from source to detectors have helped to assess the accuracy of the system and decide on camera design. Crystals of different materials, such as LaBr 3 GSO and YAP, and of different size, in continuous or segmented geometry, have been optically coupled to a multi-anode Hamamatsu H8500 detector, allowing measurements of spatial resolution and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Adam; Connaughton, Valerie; Briggs, Michael S.
We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate themore » probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.« less
Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji
2016-02-01
Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.
NASA Astrophysics Data System (ADS)
Pappas, E. P.; Moutsatsos, A.; Pantelis, E.; Zoros, E.; Georgiou, E.; Torrens, M.; Karaiskos, P.
2016-02-01
This work presents a comprehensive Monte Carlo (MC) simulation model for the Gamma Knife Perfexion (PFX) radiosurgery unit. Model-based dosimetry calculations were benchmarked in terms of relative dose profiles (RDPs) and output factors (OFs), against corresponding EBT2 measurements. To reduce the rather prolonged computational time associated with the comprehensive PFX model MC simulations, two approximations were explored and evaluated on the grounds of dosimetric accuracy. The first consists in directional biasing of the 60Co photon emission while the second refers to the implementation of simplified source geometric models. The effect of the dose scoring volume dimensions in OF calculations accuracy was also explored. RDP calculations for the comprehensive PFX model were found to be in agreement with corresponding EBT2 measurements. Output factors of 0.819 ± 0.004 and 0.8941 ± 0.0013 were calculated for the 4 mm and 8 mm collimator, respectively, which agree, within uncertainties, with corresponding EBT2 measurements and published experimental data. Volume averaging was found to affect OF results by more than 0.3% for scoring volume radii greater than 0.5 mm and 1.4 mm for the 4 mm and 8 mm collimators, respectively. Directional biasing of photon emission resulted in a time efficiency gain factor of up to 210 with respect to the isotropic photon emission. Although no considerable effect on relative dose profiles was detected, directional biasing led to OF overestimations which were more pronounced for the 4 mm collimator and increased with decreasing emission cone half-angle, reaching up to 6% for a 5° angle. Implementation of simplified source models revealed that omitting the sources’ stainless steel capsule significantly affects both OF results and relative dose profiles, while the aluminum-based bushing did not exhibit considerable dosimetric effect. In conclusion, the results of this work suggest that any PFX simulation model should be benchmarked in terms of both RDP and OF results.
Investigation of runaway electron dissipation in DIII-D using a gamma ray imager
NASA Astrophysics Data System (ADS)
Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N.; Pace, D.; Taussig, D.
2017-10-01
We report the findings of a novel gamma ray imager (GRI) to study runaway electron (RE) dissipation in the quiescent regime on the DIII-D tokamak. The GRI measures the bremsstrahlung emission by RE providing information on RE energy spectrum and distribution across a poloidal cross-section. It consists of a lead pinhole camera illuminating a matrix of BGO detectors placed in the DIII-D mid-plane. The number of detectors was recently doubled to provide better spatial resolution and additional detector shielding was implemented to reduce un-collimated gamma flux and increase single-to-noise ratio. Under varying loop voltage, toroidal magnetic field and plasma density, a non-monotonic RE distribution function has been revealed as a result of the interplay between electric field, synchrotron radiation and collisional damping. A fraction of the high-energy RE population grows forming a bump at the RE distribution function while synchrotron radiation decreases. A possible destabilizing effect of Parail-Pogutse instability on the RE population will be also discussed. Work supported by the US DOE under DE-FC02-04ER54698.
A method for screening of plant species for space use
NASA Technical Reports Server (NTRS)
Goeschl, J. D.; Sauer, R. L.; Scheld, H. W.
1986-01-01
A cost-effective methodology which monitors numerous dynamic aspects of carbon assimilation and allocation kinetics in live, intact plants is discussed. Analogous methods can apply to nitrogen uptake and allocation. This methodology capitalizes on the special properties of the short-lived, positron-gamma emitting isotope C-11 especially when applied as CO2-11 in a special extended square wave (ESW) pattern. The 20.4 minute half-life allows for repeated or continuous experiments on the same plant over periods of minutes, hours, days, or weeks. The steady-state isotope equilibrium approached during the ESW experiments, and the parameters which can be analyzed by this technique are also direct results of that short half-life. Additionally, the paired .511 MeV gamma rays penetrate any amount of tissue and their 180 deg opposite orientation provides good collimation and allows coincidence counting which nearly eliminates background.
Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.
Shibata, Masaru; Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Stephens, Branson C
2006-01-27
A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outcome is a BH surrounded by a massive, hot torus with a collimated magnetic field. The torus accretes onto the BH at a quasisteady accretion rate [FORMULA: SEE TEXT]; the lifetime of the torus is approximately 10 ms. The torus has a temperature [FORMULA: SEE TEXT], leading to copious ([FORMULA: SEE TEXT]) thermal radiation that could trigger a fireball. Therefore, the collapse of a HMNS is a promising scenario for generating short-duration gamma-ray bursts and an accompanying burst of gravitational waves and neutrinos.
A hard X-ray and gamma ray observation of the 22 November 1977 solar flare. [experimental design
NASA Technical Reports Server (NTRS)
Chambon, G.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.; Likine, O. B.; Kouznetsov, A. V.; Estouline, I. V.
1978-01-01
The Franco-Soviet experiment package Signe 2 MP for solar and cosmic X and gamma ray observations, launched aboard a Soviet Prognoz satellite into a highly eccentric earth orbit is described. An uncollimated NaI detector 37 mm thick by 90 mm diameter, placed on the upper surface of the satellite faced the sun. A collimated lateral NaI detector 14 mm thick by 38 mm diameter also faced the sun, and a similar lateral detector faced the anti-solar direction. Data tapes reveal an intense solar flare up to energies of up to 5 MeV, with evidence for line emission at 2.23 MeV and possibly 4.4 MeV. The event observed was associated with the Mc Math Plage Region 15031, and an H-alpha flare of importance 2B. It is not yet clear what radio emission is associated with the X-ray observation.
Ten per cent polarized optical emission from GRB 090102.
Steele, I A; Mundell, C G; Smith, R J; Kobayashi, S; Guidorzi, C
2009-12-10
The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material. To distinguish between the models the degree of polarization in early-time emission must be measured; however, previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at 10 +/- 1 per cent, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-second exposure, then the peak polarization may have been larger than ten per cent.
Intraoperative Radiation Therapy: Characterization and Application
1989-03-01
difficult to obtain. Notably, carcinomas of the pancreas, stomach, colon, and rectum, and sarcomas of soft tissue are prime candidates for IORT (2:131...Their pioneering efforts served as the basis for all my work. Mr. John Brohas of the AFIT Model Fabrication Shop aided my efforts considerably by... fabricated to set the collimator jaws to the required 10 cm x 10 cm aperture. The necessary parts are available from Varian. This will help eliminate errors
Spatially-resolved HPGe Gamma-ray Spectroscopy of Swipe Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Benjamin S.; VanDevender, Brent A.; Wood, Lynn S.
Measurement of swipe samples is a critical element of the National Technical Nuclear Forensics (NTNF) mission. A unique, portable, germanium gamma imager (GeGI-s) from PHDS Co may provide complementary information to current techniques for swipe sample screening. The GeGI-s is a modified version of the commercial GeGI-4, a planar HPGe detector, capable of several million counts per second across the whole detector. The GeGI-s detector is a prototype of a commercial off-the-shelf high rate GeGI. The high rate capability allows high-activity samples be placed directly on the face of the detector. Utilizing the high energy resolution and pixelization of themore » detector, the GeGI-s can generate isotope specific spatial maps of the materials on the swipe sample. To prove this technology is viable for such mapping, the GeGI-s detector response to spatially distributed events must be well characterized. The detection efficiency as a function of location has been characterized to understand the non-uniformities presented as a collimated photon beam was rastered vertically and horizontally across the face of the detector. The detection efficiency as a function of location has been characterized to understand the non-uniformities presented as a collimated photon beam was rastered vertically and horizontally across the face of the detector. The response was found to be primarily uniform and symmetric, however two causes of non-uniformity were found. Both of these causes can ultimately be corrected for in off-line data analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, J. N.; Chin, M. R.; Sjoden, G. E.
2013-07-01
A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less
High resolution CsI(Tl)/Si-PIN detector development for breast imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Iwanczyk, J.S.; Tull, C.R.
High resolution multi-element (8x8) imaging arrays with collimators, size matched to discrete CsI(Tl) scintillator arrays and Si-PIN photodetector arrays (PDA`s) were developed as prototypes for larger arrays for breast imaging. Photodetector pixels were each 1.5 {times} 1.5 mm{sup 2} with 0.25 mm gaps. A 16-element quadrant of the detector was evaluated with a segmented CsI(Tl) scintillator array coupled to the silicon array. The scintillator thickness of 6 mm corresponds to >85% total gamma efficiency at 140 keV. Pixel energy resolution of <8% FWHM was obtained for Tc-99m. Electronic noise was 41 e{sup {minus}} RMS corresponding to a 3% FWHM contributionmore » to the 140 keV photopeak. Detection efficiency uniformity measured with a Tc-99m flood source was 4.3% for an {approximately}10% energy photopeak window. Spatial resolution was 1.53 mm FWHM and pitch was 1.75 mm as measured from the Co-57 (122 keV) line spread function. Signal to background was 34 and contrast was 0.94. The energy resolution and spatial characteristics of the new imaging detector exceed those of other scintillator based imaging detectors. A camera based on this technology will allow: (1) Improved Compton scatter rejection; (2) Detector positioning in close proximity to the breast to increase signal to noise; (3) Improved spatial resolution; and (4) Improved efficiency compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries.« less
The uniformity and imaging properties of some new ceramic scintillators
NASA Astrophysics Data System (ADS)
Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford
2012-10-01
Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.
Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.
Kozlovska, Michaela; Cerny, Radek; Otahal, Petr
2015-11-01
A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.
Breathing synchronized assessment of the chest hemodynamics: application to gamma and MR angiography
NASA Astrophysics Data System (ADS)
Eclancher, Bernard; Demangeat, Jean-Louis; Germain, Philippe; Baruthio, Joseph
2003-05-01
The project was to assess by gamma and MR angiography the bulk variations of chest blood volume related to deep and slow breathing movements. The acquisitions were performed at constant intervals on the widely moving system, without cardiac gating. Two fast enough modalities were used: a gamma-stethoscope working at 30 msec intervals for bulk volumic detection (of 99Tc labelled red cells), and MR imaging at 0.5 sec intervals well depicting displacements but not yet performing true angiography. The third modality yielding quantitative imaging was the scintillation gamma camera, but which required 30 sec signal acquisitions for each image. Frames were acquired at 1 sec intervals for up to 30 breathing cycles, and later sorted with double (inspiration and expiration) synchronization for the reconstruction of an average breathing cycle. Convergent results were obtained from the three angiographic modalities, confirming that the deep breathing movements produced inspiratory increases in bulk blood volume and caudal-median displacement of heart and great vessels, and expiratory decreases in blood volume and cranial-left displacement of heart and great vessels. Deep and slow breathing contributed effectively to thoracic blood pumping. The design of a 64x64 channels collimator has been undertaken to speed up the scintillation camera imaging acquisitions.
Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets
NASA Astrophysics Data System (ADS)
Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan
2018-05-01
Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.
Essential role of Stat5 for IL-5-dependent IgH switch recombination in mouse B cells.
Horikawa, K; Kaku, H; Nakajima, H; Davey, H W; Hennighausen, L; Iwamoto, I; Yasue, T; Kariyone, A; Takatsu, K
2001-11-01
IL-5 stimulation of CD38-activated murine splenic B cells induces mu-gamma1 CSR at the DNA level leading to a high level of IgG1 production. Further addition of IL-4 in the system enhances IL-5-dependent mu-gamma1 CSR. Although some of the postreceptor signaling events initiated by IL-5 in activated B cells have been characterized, the involvement of Stat in IL-5 signaling has not been thoroughly evaluated. In this study, we examined the activation of Stat5 and activation-induced cytidine deaminase (AID) in CD38-activated murine splenic B cells by IL-5. The role of Stat5a and Stat5b in IL-5-induced mu-gamma1 CSR and also IgG1 and IgM production was documented, as IL-5 does not act on CD38-stimulated splenic B cells from Stat5a(-/-) and Stat5b(-/-) mice. Expression levels of CD38-induced germline gamma1 transcripts and AID in Stat5a(-/-) and Stat5b(-/-) B cells upon IL-5 stimulation were comparable to those of wild-type B cells. The impaired mu-gamma1 CSR by Stat5b(-/-) B cells, but not by Stat5a(-/-) B cells, was rescued in part by IL-4, as the addition of IL-4 to the culture of CD38- and IL-5-stimulated B cells induced mu-gamma1 CSR leading to IgG1 production. Analysis of cell division cycle number of wild-type B cells revealed that mu-gamma1 CSR was observed after five or six cell divisions. Stat5a(-/-) and Stat5b(-/-) B cells showed similar cell division cycles, but they did not undergo mu-gamma1 CSR. Our data support the notion that both Stat5a and Stat5b are essential for IL-5-dependent mu;-gamma1 CSR and Ig secretion; however, their major target may not be AID. Stat5a and Stat5b are not redundant, but rather are at least partially distinctive in their function.
SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahlka, R; Kappadath, S; Mawlawi, O
2016-06-15
Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less
Geometric Characterization of Multi-Axis Multi-Pinhole SPECT
DiFilippo, Frank P.
2008-01-01
A geometric model and calibration process are developed for SPECT imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360° rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180° rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging. PMID:18293574
Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring
NASA Astrophysics Data System (ADS)
Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Letang, J. M.; Ray, C.; Roellinghoff, F.; Testa, E.
2014-12-01
Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.
Facility optimization to improve activation rate distributions during IVNAA.
Ebrahimi Khankook, Atiyeh; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem
2013-05-01
Currently, determination of body composition is the most useful method for distinguishing between certain diseases. The prompt-gamma in vivo neutron activation analysis (IVNAA) facility for non-destructive elemental analysis of the human body is the gold standard method for this type of analysis. In order to obtain accurate measurements using the IVNAA system, the activation probability in the body must be uniform. This can be difficult to achieve, as body shape and body composition affect the rate of activation. The aim of this study was to determine the optimum pre-moderator, in terms of material for attaining uniform activation probability with a CV value of about 10% and changing the collimator role to increase activation rate within the body. Such uniformity was obtained with a high thickness of paraffin pre-moderator, however, because of increasing secondary photon flux received by the detectors it was not an appropriate choice. Our final calculations indicated that using two paraffin slabs with a thickness of 3 cm as a pre-moderator, in the presence of 2 cm Bi on the collimator, achieves a satisfactory distribution of activation rate in the body.
SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, M; Spiro, A; Vogel, R
Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an arraymore » of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.« less
Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constanzo, Julie; Paquette, Benoit; Charest, Gabriel
2015-05-15
Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less
Papagiannis, P; Karaiskos, P; Kozicki, M; Rosiak, J M; Sakelliou, L; Sandilos, P; Seimenis, I; Torrens, M
2005-05-07
This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.
A search for mini-clusters in Japan-USSR Joint Experiment at Pamir
NASA Technical Reports Server (NTRS)
1985-01-01
A search for mini-clusters, very collimated shower clusters of hadrons and electromagnetic particles, is made for the hadron and gamma families observed by Japan-USSR joint carbon chamber at Pamir. The existence of anomalous correlation between hadrons and electromagnetic particles is found. The decascading method is applied to the families and it is found that 11 clusters which include hadrons as members have smaller spread, Er 3.5 GeV.m and larger lateral spread, E'R' 100 GeV.m, from the family center. In the simulated events, such clusters were found to be very rare.
Fabrication of the pinhole aperture for AdaptiSPECT
Kovalsky, Stephen; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.
2015-01-01
AdaptiSPECT is a pre-clinical pinhole SPECT imaging system under final construction at the Center for Gamma-Ray Imaging. The system is designed to be able to autonomously change its imaging configuration. The system comprises 16 detectors mounted on translational stages to move radially away and towards the center of the field-of-view. The system also possesses an adaptive pinhole aperture with multiple collimator diameters and pinhole sizes, as well as the possibility to switch between multiplexed and non-multiplexed imaging configurations. In this paper, we describe the fabrication of the AdaptiSPECT pinhole aperture and its controllers. PMID:26146443
Grozdov, D S; Kolotov, V P; Lavrukhin, Yu E
2016-04-01
A method of full energy peak efficiency estimation in the space around scintillation detector, including the presence of a collimator, has been developed. It is based on a mathematical convolution of the experimental results with the following data extrapolation. The efficiency data showed the average uncertainty less than 10%. Software to calculate integral efficiency for nuclear power plant plume was elaborated. The paper also provides results of nuclear power plant plume height estimation by analysis of the spectral data. Copyright © 2016 Elsevier Ltd. All rights reserved.
SKYDOSE: A code for gamma skyshine calculations using the integral line-beam method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Brockhoff, R.C.
1994-07-01
SKYDOS evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated by three simple geometries: (1) a source in a silo; (2) a source behind an infinitely long, vertical, black wall; and (3) a source in a rectangular building. In all three geometries, an optical overhead shield may be specified. The source energy must be between 0.02 and 100 MeV (10 MeV for sources with an overhead shield). This is a user`s manual. Other references give more detail on the integral line-beam method used by SKYDOSE.
A didactic experiment showing the Compton scattering by means of a clinical gamma camera.
Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio
2017-06-01
We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Monitoring system for a liquid-cooled nuclear fission reactor
DeVolpi, Alexander
1987-01-01
A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.
Characterization of a small CsI(Na)-WSF-SiPM gamma camera prototype using 99mTc
NASA Astrophysics Data System (ADS)
Castro, I. F.; Soares, A. J.; Moutinho, L. M.; Ferreira, M. A.; Ferreira, R.; Combo, A.; Muchacho, F.; Veloso, J. F. C. A.
2013-03-01
A small field of view gamma camera is being developed, aiming for applications in scintimammography, sentinel lymph node detection or small animal imaging and research. The proposed wavelength-shifting fibre (WSF) gamma camera consists of two perpendicular sets of WSFs covering both sides of a CsI(Na) crystal, such that the fibres positioned at the bottom of the crystal provide the x coordinate and the ones on top the y coordinate of the gamma photon interaction point. The 2D position is given by highly sensitive photodetectors reading out each WSF and the energy information is provided by PMTs that cover the full detector area. This concept has the advantage of using N+N instead of N × N photodetectors to cover an identical imaging area, and is being applied using for the first time SiPMs. Previous studies carried out with 57Co have proved the feasibility of this concept using SiPM readout. In this work, we present experimental results from true 2D image acquisitions with a 10+10 SiPMs prototype, i.e. 10 × 10 mm2, using a parallel-hole collimator and different samples filled with 99mTc solution. The performance of the small prototype in these conditions is evaluated through the characterization of different gamma camera parameters, such as energy and spatial resolution. Ongoing advances towards a larger prototype of 100+100 SiPMs (10 × 10 cm2) are also presented.
Purification of sulfide-alkali effluent with the aid of ionizing radiation. [Gamma radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petryaev, E.P.; Gerasimovich, O.A.; Kovalevskaya, A.M.
1984-03-01
The treatment of sulfide-alkali effluent under the effect of ionizing radiation was investigated. The source was an LMB-..gamma..-1M ..gamma..-apparatus with /sup 137/Cs source. The dose rate was 52 rad/s. Irradiation was done in glass ampules and in vessels allowing bubbling with air and irradiation to be carried out at the same time. 7 references, 1 figure, 1 table.
Precision determination of absolute neutron flux
Yue, A. T.; Anderson, E. S.; Dewey, M. S.; ...
2018-06-08
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
A revision of the gamma-evaluation concept for the comparison of dose distributions.
Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof
2003-11-07
A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.
NASA Astrophysics Data System (ADS)
Daskalakis, Adam; Blain, Ezekiel; Leinweber, Gregory; Rapp, Michael; Barry, Devin; Block, Robert; Danon, Yaron
2017-09-01
A series of neutron scattering benchmark measurements were performed on beryllium and molybdenum with the Rensselaer Polytechnic Institute's Neutron Scattering System. The pulsed neutron source was produced by the Rensselaer Polytechnic Institute's Linear Accelerator and a well collimated neutron beam was incident onto the samples located at a distance of 30.07 m. Neutrons that scattered from the sample were measured using the time-of-flight by eight EJ-301 liquid scintillator detectors positioned 0.5 m from the sample of interest. A total of eight experiments were performed with two sample thicknesses each, measured by detectors placed at two sets of angles. All data were processed using pulse shape analysis that separated the neutron and gamma ray events and included a gamma misclassification correction to account for erroneously identified gamma rays. A detailed model of the neutron scattering system simulated each experiment with several current evaluated nuclear data libraries and their predecessors. Results for each evaluation were compared to the experimental data using a figure-of-merit. The neutron scattering system has been used as a means to quantify a library's performance.
Precision determination of absolute neutron flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, A. T.; Anderson, E. S.; Dewey, M. S.
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
Performance of NDA techniques on a vitrified waste form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.R.; Veazey, G.W.; Prettyman, T.H.
1997-11-01
Rocky Flats Environmental Technology Site (RFETS) is currently considering the use of vitrified transuranic (TRU)-waste forms for the final disposition of several waste materials. To date, however, little nondestructive assay (NDA) data have been acquired in the general NDA community to assist in this endeavor. This paper describes the efforts to determine constraints and operating parameters for using NDA instrumentation on vitrified waste. The present study was conducted on a sample composed of a plutonium-contaminated ash, similar to that found in the RFETS inventory, and a borosilicate-based glass. The vitrified waste item was fabricated at Los Alamos National Laboratory (LANL)more » using methods and equipment similar to those being proposed by RFETS to treat their ash material. The focus of this study centered on the segmented gamma scanner (SGS) with 1/2-inch collimation, a technique that is presently available at RFETS. The accuracy and precision of SGS technology was evaluated, with particular attention to bias issues involving matrix geometry, homogeneity, and attenuation. Tomographic gamma scanning was utilized in the determination of the waste form homogeneity. A thermal neutron technique was also investigated and comparisons made with the gamma results.« less
NASA Astrophysics Data System (ADS)
Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal'shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; Aptekar, R.
2017-12-01
In this catalog, we present the results of a systematic study of gamma-ray bursts (GRBs) with reliable redshift estimates detected in the triggered mode of the Konus-Wind (KW) experiment during the period from 1997 February to 2016 June. The sample consists of 150 GRBs (including 12 short/hard bursts) and represents the largest set of cosmological GRBs studied to date over a broad energy band. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with two model functions, the total energy fluences, and the peak energy fluxes. Based on the GRB redshifts, which span the range 0.1≤slant z≤slant 5, we estimate the rest-frame, isotropic-equivalent energy, and peak luminosity. For 32 GRBs with reasonably constrained jet breaks, we provide the collimation-corrected values of the energetics. We consider the behavior of the rest-frame GRB parameters in the hardness-duration and hardness-intensity planes, and confirm the “Amati” and “Yonetoku” relations for Type II GRBs. The correction for the jet collimation does not improve these correlations for the KW sample. We discuss the influence of instrumental selection effects on the GRB parameter distributions and estimate the KW GRB detection horizon, which extends to z˜ 16.6, stressing the importance of GRBs as probes of the early universe. Accounting for the instrumental bias, we estimate the KW GRB luminosity evolution, luminosity and isotropic-energy functions, and the evolution of the GRB formation rate, which are in general agreement with those obtained in previous studies.
GRB 060605: multi-wavelength analysis of the first GRB observed using integral field spectroscopy
NASA Astrophysics Data System (ADS)
Ferrero, P.; Klose, S.; Kann, D. A.; Savaglio, S.; Schulze, S.; Palazzi, E.; Maiorano, E.; Böhm, P.; Grupe, D.; Oates, S. R.; Sánchez, S. F.; Amati, L.; Greiner, J.; Hjorth, J.; Malesani, D.; Barthelmy, S. D.; Gorosabel, J.; Masetti, N.; Roth, M. M.
2009-04-01
The long and relatively faint gamma-ray burst GRB 060605 detected by Swift/BAT lasted about 20 s. Its afterglow could be observed with Swift/XRT for nearly 1 day, while Swift/UVOT could detect the afterglow during the first 6 h after the event. Here, we report on integral field spectroscopy of its afterglow performed with PMAS/PPak mounted at the Calar Alto 3.5 m telescope. In addition, we report on a detailed analysis of XRT and UVOT data and on the results of deep late-time VLT observations that reveal the GRB host galaxy. We find that the burst occurred at a redshift of z = 3.773, possibly associated with a faint, RC = 26.4 ± 0.3 host. Based on the optical and X-ray data, we deduce information on the SED of the afterglow, the position of the cooling frequency in the SED, the nature of the circumburst environment, its collimation factor, and its energetics. We find that the GRB fireball was expanding into a constant-density medium and that the explosion was collimated with a narrow half-opening angle of about 2.4 degrees. The initial Lorentz factor of the fireball was about 250; however, its beaming-corrected energy release in the gamma-ray band was comparably low. The optical, X-ray afterglow, on the other hand, was rather luminous. Finally, we find that the data are consistent within the error bars with an achromatic evolution of the afterglow during the suspected jet break time at about 0.27 days after the burst. Based on observations collected at the German-Spanish Calar Alto Observatory in Spain (Programme F06-3.5-055) and at the European Southern Observatory, La Silla and Paranal, Chile (ESO Programme 177.D-0591).
Development and calibration of fine collimators for the ASTRO-H Soft Gamma-ray Detector
NASA Astrophysics Data System (ADS)
Mizuno, T.; Kimura, D.; Fukazawa, Y.; Furui, S.; Goto, K.; Hayashi, T.; Kawabata, K. S.; Kawano, T.; Kitamura, Y.; Shirakawa, H.; Tanabe, T.; Makishima, K.; Nakajima, K.; Nakazawa, K.; Fukuyama, T.; Ichinohe, Y.; Ishimura, K.; Ohta, M.; Sato, T.; Takahashi, T.; Uchida, Y.; Watanabe, S.; Ishibashi, K.; Sakanobe, K.; Matsumoto, H.; Miyazawa, T.; Mori, H.; Sakai, M.; Tajima, H.
2014-07-01
The Soft Gamma-ray Detector (SGD) is a Si/CdTe Compton telescope surrounded by a thick BGO active shield and is scheduled to be onboard the ASTRO-H satellite when it is launched in 2015. The SGD covers the energy range from 40 to 600 keV with high sensitivity, which allows us to study nonthermal phenomena in the universe. The SGD uses a Compton camera with the narrow field-of-view (FOV) concept to reduce the non-Xray background (NXB) and improve the sensitivity. Since the SGD is essentially a nonimaging instrument, it also has to cope with the cosmic X-ray background (CXB) within the FOV. The SGD adopts passive shields called "fine collimators" (FCs) to restrict the FOV to <= 0.6° for low-energy photons (<= 100 keV), which reduces contamination from CXB to less than what is expected due to NXB. Although the FC concept was already adopted by the Hard X-ray Detector onboard Suzaku, FCs for the SGD are about four times larger in size and are technically more difficult to operate. We developed FCs for the SGD and confirmed that the prototypes function as required by subjecting them to an X-ray test and environmental tests, such as vibration tests. We also developed an autocollimator system, which uses visible light to determine the transmittance and the optical axis, and calibrated it against data from the X-ray test. The acceptance tests of flight models started in December 2013: five out of six FCs were deemed acceptable, and one more unit is currently being produced. The activation properties were studied based on a proton-beam test and the results were used to estimate the in-orbit NXB.
Blazars: The accelerating inner jet model.
NASA Astrophysics Data System (ADS)
Georganopoulos, M.; Marscher, A. P.
1996-05-01
The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.
Cheng, Hao-Wen; Lo, Wei-Lun; Kuo, Chun-Yuan; Su, Yu-Kai; Tsai, Jo-Ting; Lin, Jia-Wei; Wang, Yu-Jen; Pan, David Hung-Chi
2017-11-01
In Gamma Knife forward treatment planning, normalization effect may be observed when multiple shots are used for treating large lesions. This effect can reduce the proportion of coverage of high-value isodose lines within targets. The aim of this study was to evaluate the performance of forward treatment planning techniques using the Leksell Gamma Knife for the normalization effect reduction. We adjusted the shot positions and weightings to optimize the dose distribution and reduce the overlap of high-value isodose lines from each shot, thereby mitigating the normalization effect during treatment planning. The new collimation system, Leksell Gamma Knife Perfexion, which contains eight movable sectors, provides an additional means to reduce the normalization effect by using composite shots. We propose different techniques in forward treatment planning that can reduce the normalization effect. Reducing the normalization effect increases the coverage proportion of higher isodose lines within targets, making the high-dose region within targets more uniform and increasing the mean dose to targets. Because of the increase in the mean dose to the target after reducing the normalization effect, we can set the prescribed marginal dose at a higher isodose level and reduce the maximum dose, thereby lowering the risk of complications. © 2017 Shuang Ho Hospital-Taipei Medical University. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Beam On Target (BOT) Produces Gamma Ray Burst (GRB) Fireballs and Afterglows
NASA Astrophysics Data System (ADS)
Greyber, H. D.
1997-12-01
Unlike the myriads of ad hoc models that have been offered to explain GRB, the BOT process is simply the very common process used worldwide in accelerator laboratories to produce gamma rays. The Strong Magnetic Field (SMF) model postulates an extremely intense, highly relativistic current ring formed during the original gravitational collapse of a distant galaxy when the plasma cloud was permeated by a primordial magnetic field. GRB occur when solid matter (asteroid, white dwarf, neutron star, planet) falls rapidly through the Storage Ring beam producing a very strongly collimated electromagnetic shower, and a huge amount of matter from the target, in the form of a giant, hot, expanding plasma cloud, or ``Fireball,'' is blown off. BOT satisfies all the ``severe constraints imposed on the source of this burst --'' concluded by the CGRO team (Sommer et al, Astrophys. J. 422 L63 (1994)) for the huge intense burst GRB930131, whereas neutron star merger models are ``difficult to reconcile.'' BOT expects the lowest energy gamma photons to arrive very slightly later than higher energy photons due to the time for the shower to penetrate the target. The millisecond spikes in bursts are due to the slender filaments of current that make up the Storage Ring beam. Delayed photons can be explained by a broken target ``rock.'' See H. Greyber in the book ``Compton Gamma Ray Observatory,'' AIP Conf. Proc. 280, 569 (1993).
Dose estimation to eye lens of industrial gamma radiography workers using the Monte Carlo method.
de Lima, Alexandre Roza; Hunt, John Graham; Da Silva, Francisco Cesar Augusto
2017-12-01
The ICRP Statement on Tissue Reactions (2011), based on epidemiological evidence, recommended a reduction for the eye lens equivalent dose limit from 150 to 20 mSv per year. This paper presents mainly the dose estimations received by industrial gamma radiography workers, during planned or accidental exposure to the eye lens, Hp(10) and effective dose. A Brazilian Visual Monte Carlo Dose Calculation program was used and two relevant scenarios were considered. For the planned exposure situation, twelve radiographic exposures per day for 250 days per year, which leads to a direct exposure of 10 h per year, were considered. The simulation was carried out using a 192 Ir source with 1.0 TBq of activity; a source/operator distance between 5 and 10 m and placed at heights of 0.02 m, 1 m and 2 m, and an exposure time of 12 s. Using a standard height of 1 m, the eye lens doses were estimated as being between 16.3 and 60.3 mGy per year. For the accidental exposure situation, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m and 2.0 m; the source/operator distance was 40 cm, and the exposure time 74 s. The eye lens doses at 1.5 m were 12.3 and 0.28 mGy without and with a collimator, respectively. The conclusions were that: (1) the estimated doses show that the 20 mSv annual limit for eye lens equivalent dose can directly impact industrial gamma radiography activities, mainly in industries with high number of radiographic exposures per year; (2) the risk of lens opacity has a low probability for a single accident, but depending on the number of accidental exposures and the dose levels found in planned exposures, the threshold dose can easily be exceeded during the professional career of an industrial radiography operator, and; (3) in a first approximation, Hp(10) can be used to estimate the equivalent dose to the eye lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Chibani, O; Chen, L
Purpose: Tremendous technological developments were made for conformal therapy techniques with linear accelerators, while less attention was paid to cobalt-60 units. The aim of the current study is to explore the dosimetric benefits of a novel rotating gamma ray system enhanced with interchangeable source sizes and multi-leaf collimator (MLC). Material and Methods: CybeRT is a novel rotating gamma ray machine with a ring gantry that ensures an iso-center accuracy of less than 0.3 mm. The new machine has a 70cm source axial distance allowing for improved penumbra compared to conventional machines. MCBEAM was used to simulate Cobalt-60 beams from themore » CybeRT head, while the MCPLAN code was used for modeling the MLC and for phantom/patient dose calculation. The CybeRT collimation will incorporate a system allowing for interchanging source sizes. In this work we have created phase space files for 1cm and 2cm source sizes. Evaluation of the system was done by comparing CybeRT beams with the 6MV beams in a water phantom and in patient geometry. Treatment plans were compared based on isodose distributions and dose volume histograms. Results: Profiles for the 1cm source were comparable to that from 6MV in the order of 6mm for 10×10 cm{sup 2} field size at the depth of maximum dose. This could ascribe to Cobalt-60 beams producing lowerenergy secondary electrons. Although, the 2cm source have a larger penumbra however it could be still used for large targets with proportionally increased dose rate. For large lung targets, the difference between cobalt and 6MV plans is clinically insignificant. Our preliminary results showed that interchanging source sizes will allow cobalt beams for volumetric arc therapy of both small lesions and large tumors. Conclusion: The CybeRT system will be a cost effective machine capable of performing advanced radiation therapy treatments of both small tumors and large target volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahe, Charly; Chabal, Caroline
2013-07-01
The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, themore » radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used to quantify the activity of hot spots and can also then be entered in 3D models of nuclear plants to simulate intervention scenarios. Recent developments and results will be presented regarding this. Finally, thanks to a large amount of feedback, the interest of using complementary measurements will be discussed. In fact, the recent use of 3D simulation codes requires very accurate knowledge of nuclear plant radiological data. The use of coupled devices such as imaging devices, (gamma and alpha cameras), gamma spectrometry, dose rate mapping, collimated / un-collimated measurements and many other physical values gives an approach to the radiological knowledge of a process or plant with the lowest possible uncertainty. In line with this, the paper will conclude with the future developments and trials that could be assessed in that field of application. (authors)« less
New teaching aid “Physical Methods of Medical Introscopy”
NASA Astrophysics Data System (ADS)
Ulin, S. E.
2017-01-01
Description of a new teaching aid, in which new methods of reconstruction of hidden images by means of nuclear magnetic resonance, X-gamma-ray, and ultrasonic tomography, is presented. The diagnostics and therapy methods of various oncological diseases with the use of medicine proton and ions beams, as well as neutron capture therapy, are considered. The new teaching aid is intended for senior students and postgraduates.
Ruschin, Mark; Nordström, Håkan; Kjäll, Per; Cho, Young-Bin; Jaffray, David
2009-06-01
This investigation involves quantifying the extent of intracranial peripheral dose arising from simulated targets situated in the skull-base or upper-spine region using the Leksell GammaKnife Perfexion treatment unit. For each of three spherical target volumes--denoted as Vs (4 cm3), VM (18 cm3), and VL (60 cm3)--three treatment plans were manually generated, one for each of the three collimator sizes--4, 8, and 16 mm. Each of the plans was delivered to a spherical dosimetry phantom with an insert containing EBT Gafchromic film. The total dose at 70 mm from the targets' edges, %D(70 mm), was measured as a function of elevation angle and expressed as a percentage of the prescription dose. The film insert was placed centered in the median sagittal plane (Leksell X = 100) and %D(70 mm) was measured for the angular range from 0 degree (superior/along Z axis) to 90 degrees (anterior/along Y axis). For a given collimator i, the irradiation time ti to treat a spherical target of volume V using the 50% isodose line was observed to follow a power-law relationship of the form ti = Ai(V/ Vi)n where Ai was the maximum dose divided by collimator dose rate and Vi was the volume encompassed by the 50% isodose line for a single shot. The mean value of n was 0.61 (range: 0.61-0.62). Along the superior (Z) direction (angle=0 degree) and up to angles of around 30 degrees, the %D(70 mm) was always highest for the 4 mm plans, followed by the 8 mm, followed by the 16 mm. In this angular range, the maximum measured %D(70 mm) was 1.7% of the prescription dose. The intracranial peripheral dose along the superior direction (combined scatter and leakage dose) resulting from irradiation of upper-spine or base-of-skull lesions is measured to be less than 2% of the prescription dose, even for very large (60 cm3) targets. The results of this study indicate that, for a given target volume, treatment plans consisting of only 4 mm shots yield larger peripheral dose in the superior direction than 8 mm shot only plans, which in turn yield larger peripheral dose than 16 mm shot only plans.
SU-F-T-295: MLCs Performance and Patient-Specific IMRT QA Using Log File Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, A; American University of Biuret Medical Center, Biuret; Maalej, N
2016-06-15
Purpose: To analyze the performance of the multi-leaf collimators (MLCs) from the log files recorded during the intensity modulated radiotherapy (IMRT) treatment and to construct the relative fluence maps and do the gamma analysis to compare the planned and executed MLCs movement. Methods: We developed a program to extract and analyze the data from dynamic log files (dynalog files) generated from sliding window IMRT delivery treatments. The program extracts the planned and executed (actual or delivered) MLCs movement, calculates and compares the relative planned and executed fluences. The fluence maps were used to perform the gamma analysis (with 3% dosemore » difference and 3 mm distance to agreement) for 3 IMR patients. We compared our gamma analysis results with those obtained from portal dose image prediction (PDIP) algorithm performed using the EPID. Results: For 3 different IMRT patient treatments, the maximum difference between the planned and the executed MCLs positions was 1.2 mm. The gamma analysis results of the planned and delivered fluences were in good agreement with the gamma analysis from portal dosimetry. The maximum difference for number of pixels passing the gamma criteria (3%/3mm) was 0.19% with respect to portal dosimetry results. Conclusion: MLC log files can be used to verify the performance of the MLCs. Patientspecific IMRT QA based on MLC movement log files gives similar results to EPID dosimetry results. This promising method for patient-specific IMRT QA is fast, does not require dose measurements in a phantom, can be done before the treatment and for every fraction, and significantly reduces the IMRT workload. The author would like to thank King Fahd University of petroleum and Minerals for the support.« less
Sjölin, Maria; Edmund, Jens Morgenthaler
2016-07-01
Dynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect. 16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated. The change in PTV and organs at risk DVH parameters were 0.4-4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3mm (per beam and composite plan) and 3%G/2mm (composite plan) for the diode array phantom and 2%G/2mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6. A DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3mm per beam gamma setting. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Vyacheslav E.; Potapov, Victor N.; Smirnov, Sergey V.
Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. In the building, neighboring to the reactor, the storage of HLRW is located. The storage is made of monolithic concrete in which steel cells depth 4 m are located. In cells of storage the HLRW packed into cases are placed. These the radioactive waste are also subject to export on long storage in the specialized organization. For characterization of the radioactive waste in cases the remote-controlled collimated spectrometer system wasmore » used. The system consists of a spectrometric collimated gamma-ray detector, a color video camera and a control unit, mounted on a rotator, which are mounted on a tripod with the host computer. For determination of specific activity of radionuclides in cases, it is developed programs of calculation of coefficients of proportionality of specific activity to the corresponding speeds of the account in peaks of full absorption at single specific activity of radionuclides in cases. For determination of these coefficients the mathematical model of spectrometer system based on the Monte-Carlo method was used. Dependences of calibration coefficients for various radionuclides from distance between the detector and a case at various values of the radioactive waste density in cases are given. Measurements of specific activity in cases are taken and are discussed. By results of measurements decisions on the appeal of the radioactive waste being in cases are made. (authors)« less
Ikaros controls isotype selection during immunoglobulin class switch recombination.
Sellars, MacLean; Reina-San-Martin, Bernardo; Kastner, Philippe; Chan, Susan
2009-05-11
Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.
Gamma Knife Radiosurgery of the Superior Laryngeal Neuralgia: A report of three cases.
Fu, Peng; Xiong, Nan-Xiang; Abdelmaksoud, Ahmed; Huang, Yi-Zhi; Song, Guo-Bin; Zhao, Hong-Yang
2018-05-19
Superior laryngeal neuralgia (SLN) is a relatively rare disorder that is characterized by neck pain. There are only a few reported cases and treatment options for SLN to date. In this study, we reported 3 patients with SLN who were treated with gamma knife radiosurgery (GKRS) at the time of diagnosis. For all 3 patients, GKRS was administered using a 4-mm collimator to deliver a single shot of 80 Gy of radiation (the 100% isodose line). The target was set at the jugular foramen where the vagus and glossopharyngeal nerves emerge from the skull. Follow-up assessments were performed at 32 months,31 months, and 30 months after GKRS. The 3 patients described pain relief at 3 months, 2 days and 6 weeks. None of the patients developed neurological deficits during the follow-up period. This preliminary report provides encouraging evidence that GKRS represents an effective, safe and relatively durable noninvasive treatment option for patients with SLN. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.
1979-01-01
A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollister, R
2009-08-26
Method - CES SOP-HW-P556 'Field and Bulk Gamma Analysis'. Detector - High-purity germanium, 40% relative efficiency. Calibration - The detector was calibrated on February 8, 2006 using a NIST-traceable sealed source, and the calibration was verified using an independent sealed source. Count Time and Geometry - The sample was counted for 20 minutes at 72 inches from the detector. A lead collimator was used to limit the field-of-view to the region of the sample. The drum was rotated 180 degrees halfway through the count time. Date and Location of Scans - June 1,2006 in Building 235 Room 1136. Spectral Analysismore » Spectra were analyzed with ORTEC GammaVision software. Matrix and geometry corrections were calculated using OR TEC Isotopic software. A background spectrum was measured at the counting location. No man-made radioactivity was observed in the background. Results were determined from the sample spectra without background subtraction. Minimum detectable activities were calculated by the Nureg 4.16 method. Results - Detected Pu-238, Pu-239, Am-241 and Am-243.« less
Interleukin-5 regulates genes involved in B-cell terminal maturation.
Horikawa, Keisuke; Takatsu, Kiyoshi
2006-08-01
Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.
Monitoring system for a liquid-cooled nuclear fission reactor. [PWR
DeVolpi, A.
1984-07-20
The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.
TIGRESS highly-segmented high-purity germanium clover detector
NASA Astrophysics Data System (ADS)
Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.
2005-05-01
The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.
The GSFC Advanced Compton Telescope (ACT)
NASA Technical Reports Server (NTRS)
Hartman, R.; Fichtel, C.; Kniffen, D.; Trombka, J.; Stacy, G.
1983-01-01
A new telescope is being developed at GSFC for the study of point sources of gamma rays in the energy range 1-30 MeV. Using the detection principle of a Compton scatter in a 2.5 cm thick NaI(Tl) detector followed by absorption in a 15 cm thick NaI(Tl) detector, the telescope uses a rocking collimator for field-of-view reduction and background subtraction. Background reduction techniques include lead-plastic scintillator shielding, pulse shape discrimination and Anger camera operation to both NaI detectors, as well as a time-of-flight measurement between them. The instrument configuration and status is described.
Anti-interferon-gamma antibodies in the treatment of autoimmune diseases.
Skurkovich, Boris; Skurkovich, Simon
2003-02-01
Interferon (IFN)-gamma is an important immune regulator in normal immunity. When IFN gamma production is disturbed, various autoimmune diseases (ADs) can develop, in which we suggest that anti-IFN gamma could have a beneficial effect. Depending on the cell type in which IFN gamma synthesis is disturbed, different clinical manifestations may result. We have also proposed to remove tumor necrosis factor (TNF)-alpha, together with certain types of IFNs, to treat various ADs and AIDS, also an autoimmune condition. Anti-IFN gamma has been tested in several T-helper cell (Th1) ADs, including rheumatoid arthritis (RA), multiple sclerosis (MS), corneal transplant rejection, uveitis, Type I diabetes, schizophrenia (anti-IFN gamma and anti-TNF alpha), and various autoimmune skin diseases (alopecia areata, psoriasis vulgaris, vitiligo, pemphigus vulgaris and epidermolysis bullosa). A strong, sometimes striking, therapeutic response followed administration of anti-IFN gamma, indicating that it may be a promising therapy for Th1 ADs.
NASA Technical Reports Server (NTRS)
Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.
1983-01-01
The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).
Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.
Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V
2005-01-01
The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be < 100 microSv h(-1) after 100 d of Large Hadron Collider (LHC) operation and 10 d of cooling.
Cytokine activation is predictive of mortality in Zambian patients with AIDS-related diarrhoea.
Zulu, Isaac; Hassan, Ghaniah; Njobvu R N, Lungowe; Dhaliwal, Winnie; Sianongo, Sandie; Kelly, Paul
2008-11-13
Mortality in Zambian AIDS patients is high, especially in patients with diarrhoea, and there is still unacceptably high mortality in Zambian patients just starting anti-retroviral therapy. We set out to determine if high concentrations of serum cytokines correlate with mortality. Serum samples from 30 healthy controls (HIV seropositive and seronegative) and 50 patients with diarrhoea (20 of whom died within 6 weeks) were analysed. Concentrations of tumour necrosis factor receptor p55 (TNFR p55), macrophage migration inhibitory factor (MIF), interleukin (IL)-6, IL-12, interferon (IFN)-gamma and C-reactive protein (CRP) were measured by ELISA, and correlated with mortality after 6 weeks follow-up. Apart from IL-12, concentrations of all cytokines, TNFR p55 and CRP increased with worsening severity of disease, showing highly statistically significant trends. In a multivariable analysis high TNFR p55, IFN-gamma, CRP and low CD4 count (CD4 count <100) were predictive of mortality. Although nutritional status (assessed by body mass index, BMI) was predictive in univariate analysis, it was not an independent predictor in multivariate analysis. High serum concentrations of TNFR p55, IFN-gamma, CRP and low CD4 count correlated with disease severity and short-term mortality in HIV-infected Zambian adults with diarrhoea. These factors were better predictors of survival than BMI. Understanding the cause of TNFR p55, IFN-gamma and CRP elevation may be useful in development of interventions to reduce mortality in AIDS patients with chronic diarrhoea in Africa.
Kang, Han Gyu; Lee, Ho-Young; Kim, Kyeong Min; Song, Seong-Hyun; Hong, Gun Chul; Hong, Seong Jong
2017-01-01
The aim of this study is to integrate NIR, gamma, and visible imaging tools into a single endoscopic system to overcome the limitation of NIR using gamma imaging and to demonstrate the feasibility of endoscopic NIR/gamma/visible fusion imaging for sentinel lymph node (SLN) mapping with a small animal. The endoscopic NIR/gamma/visible imaging system consists of a tungsten pinhole collimator, a plastic focusing lens, a BGO crystal (11 × 11 × 2 mm 3 ), a fiber-optic taper (front = 11 × 11 mm 2 , end = 4 × 4 mm 2 ), a 122-cm long endoscopic fiber bundle, an NIR emission filter, a relay lens, and a CCD camera. A custom-made Derenzo-like phantom filled with a mixture of 99m Tc and indocyanine green (ICG) was used to assess the spatial resolution of the NIR and gamma images. The ICG fluorophore was excited using a light-emitting diode (LED) with an excitation filter (723-758 nm), and the emitted fluorescence photons were detected with an emission filter (780-820 nm) for a duration of 100 ms. Subsequently, the 99m Tc distribution in the phantom was imaged for 3 min. The feasibility of in vivo SLN mapping with a mouse was investigated by injecting a mixture of 99m Tc-antimony sulfur colloid (12 MBq) and ICG (0.1 mL) into the right paw of the mouse (C57/B6) subcutaneously. After one hour, NIR, gamma, and visible images were acquired sequentially. Subsequently, the dissected SLN was imaged in the same way as the in vivo SLN mapping. The NIR, gamma, and visible images of the Derenzo-like phantom can be obtained with the proposed endoscopic imaging system. The NIR/gamma/visible fusion image of the SLN showed a good correlation among the NIR, gamma, and visible images both for the in vivo and ex vivo imaging. We demonstrated the feasibility of the integrated NIR/gamma/visible imaging system using a single endoscopic fiber bundle. In future, we plan to investigate miniaturization of the endoscope head and simultaneous NIR/gamma/visible imaging with dichroic mirrors and three CCD cameras. © 2016 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.
2014-12-01
After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.
Testing Instrument for Flight-Simulator Displays
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1987-01-01
Displays for flight-training simulators rapidly aligned with aid of integrated optical instrument. Calibrations and tests such as aligning boresight of display with respect to user's eyes, checking and adjusting display horizon, checking image sharpness, measuring illuminance of displayed scenes, and measuring distance of optical focus of scene performed with single unit. New instrument combines all measurement devices in single, compact, integrated unit. Requires just one initial setup. Employs laser and produces narrow, collimated beam for greater measurement accuracy. Uses only one moving part, double right prism, to position laser beam.
Insulating epoxy/barite and polyester/barite composites for radiation attenuation.
El-Sarraf, M A; El-Sayed Abdo, A
2013-09-01
A trial has been made to create insulating Epoxy/Barite (EP/Brt) (ρ=2.85 g cm(-3)) and Crosslinked Unsaturated Polyester/Barite (CUP/Brt) (ρ=3.25 g cm(-3)) composites with radiation attenuation and shielding capabilities. Experimental work regarding mechanical and physical properties was performed to study the composites integrity for practical applications. The properties were found to be reasonable. Radiation attenuation properties have been carried out using emitted collimated beam from a fission (252)Cf (100 µg) neutron source, and the neutron-gamma spectrometer with stilbene scintillator. The pulse shape discriminating (P.S.D) technique based on the zero cross-over method was used to discriminate between neutron and gamma-ray pulses. Thermal neutron fluxes, measured using the BF3 detector and thermal neutron detection system, were used to plot the attenuation relations. The fast neutron macroscopic effective removal cross-section ΣR, gamma ray total attenuation coefficient µ and thermal neutron macroscopic cross-section Σ have been evaluated. Theoretical calculations have been achieved using MCNP-4C2 code to calculate ΣR, µ and Σ. Also, MERCSF-N program was used to calculate macroscopic effective removal cross-section ΣR. Measured and calculated results have been compared and were found to be in reasonable agreement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Influence of magnetite, ilmenite and boron carbide on radiation attenuation of polyester composites
NASA Astrophysics Data System (ADS)
El-Sarraf, M. A.; El-Sayed Abdo, A.
2013-07-01
This work is concerned with studying polyester/ magnetite CUP/Mag (ρ=2.75 g cm-3) and polyester/ ilmenite CUP/Ilm (ρ=2.7 g cm-3) composites for shielding of medical facilities, laboratory hot cells and for various purposes. Mechanical and physical properties such as compressive, flexural and impact strengths, as well as, a.c. electrical conductivity, specific heat, water absorption and porosity have been performed to evaluate the composite capabilities for radiation shielding. A collimated beam from fission 252Cf (100 µg) neutron source and neutron-gamma spectrometer with stilbene scintillator based on the zero cross over method and pulse shape discrimination (P.S.D.) technique have been used to measure neutron and gamma ray spectra. Fluxes of thermal neutrons have been measured using the BF3 detector and thermal neutron detection system. The attenuation parameters, namely macroscopic effective removal cross-section ΣR, total attenuation coefficient µ and macroscopic cross-section Σ of fast neutrons, gamma rays and thermal neutrons respectively have been evaluated. Theoretical calculations using MCNP-4C2 code was used to calculate ΣR,μ and Σ. Also, MERCSF-N program was used to calculate macroscopic effective removal cross-section ΣR. Measured and calculated results were compared and reasonable agreement was found.
Supernova 1987A Interpreted through the SLIP Pulsar Model
NASA Astrophysics Data System (ADS)
Middleditch, John
2010-01-01
The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced by a rotating, magnetized body at many light cylinder radii, as would be the case for a neutron star born within any star of >1.5 solar masses, will drive pulsations close to the axis of rotation. Such highly collimated pulsations (<= 1 in 10,000), and the similarly collimated jets of particles which it drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light curve (days 3 - 20), the "Mystery Spot," observed slightly later (days 30 - 50 and >), and later, in less collimated form, the bipolarity of SN 1987A itself. The pulsations and jet interacted with circumstellar material (CM), to produce features observed in the very early light curve which correspond to: 1) the entry of the pulsed beam into the CM; 2) the entry of the 0.95 c particles into the CM; 3) the exit of the pulsed beam from the CM (with contributions in the B and I bands -- the same as later inferred/observed for its 2.14 ms pulsations); and 4) the exit of the fastest particles from the CM. Because of the energy requirements of the jet in these early stages, the spindown required of its pulsar could exceed 1e-5 Hz/s at a rotation rate of 500 Hz. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.
High-resolution clustered pinhole (131)Iodine SPECT imaging in mice.
van der Have, Frans; Ivashchenko, Oleksandra; Goorden, Marlies C; Ramakers, Ruud M; Beekman, Freek J
2016-08-01
High-resolution pre-clinical (131)I SPECT can facilitate development of new radioiodine therapies for cancer. To this end, it is important to limit resolution-degrading effects of pinhole edge penetration by the high-energy γ-photons of iodine. Here we introduce, optimize and validate (131)I SPECT performed with a dedicated high-energy clustered multi-pinhole collimator. A SPECT-CT system (VECTor/CT) with stationary gamma-detectors was equipped with a tungsten collimator with clustered pinholes. Images were reconstructed with pixel-based OSEM, using a dedicated (131)I system matrix that models the distance- and energy-dependent resolution and sensitivity of each pinhole, as well as the intrinsic detector blurring and variable depth of interaction in the detector. The system performance was characterized with phantoms and in vivo static and dynamic (131)I-NaI scans of mice. Reconstructed image resolution reached 0.6mm, while quantitative accuracy measured with a (131)I filled syringe reaches an accuracy of +3.6±3.5% of the gold standard value. In vivo mice scans illustrated a clear shape of the thyroid and biodistribution of (131)I within the animal. Pharmacokinetics of (131)I was assessed with 15-s time frames from the sequence of dynamic images and time-activity curves of (131)I-NaI. High-resolution quantitative and fast dynamic (131)I SPECT in mice is possible by means of a high-energy collimator and optimized system modeling. This enables analysis of (131)I uptake even within small organs in mice, which can be highly valuable for development and optimization of targeted cancer therapies. Copyright © 2016 Elsevier Inc. All rights reserved.
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpenau, Evan M.
The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBRmore » Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2X2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified were investigated further with a collimated NaI detector. The uncollimated average gamma count rate was less than 15,000 counts per minute (cpm) for the SU 6, 7, and 8 composite area (BNL 2011a). Elevated count rates were observed in portions of each survey unit. The general areas of elevated counts near the Building 801 ventilation and operations and the entry to the Stack were determined to be directly related to the radioactive processes in those structures. To compensate for this radioactive shine, a collimated or shielded detector was used to lower the background count rate (BNL 2011b and c). This allowed the surveyor(s) to distinguish between background and actual radioactive contamination. Collimated gamma survey count rates in these shine affected areas were below 9,000 cpm (BNL 2011a). The average background count rate of 7,500 cpm was reported by BSA for uncollimated NaI detectors (BNL 2011d). The average collimated background ranged from 4,500-6,500 cpm in the westernmost part of SU 8 and from 2,000-3,500 cpm in all other areas (BNL 2011e). Based on these data, no further investigations were necessary for these general areas. SU 8 was the only survey unit that exhibited verified elevated radioactivity levels. The first of two isolated locations of elevated radioactivity had an uncollimated direct measurement of 50,000 cpm with an area background of 7,500 cpm (BNL 2011f). The second small area exhibiting elevated radiation levels was identified at a depth of 6 inches from the surface. The maximum reported count rate of 28,000 cpm was observed during scanning (BNL 2011g). The affected areas were remediated, and the contaminated soils were placed in an intermodal container for disposal. BSA's post-remediation walkover surveys were expanded to include a 10-foot radius around the excavated locations, and it was determined that further investigation was not required for these areas (BNL 2011 f and g). The post-remediation soil samples were collected and analyzed with onsite gamma spectroscopy equipment. These samples were also included with the FSS samples that were analyzed at an offsite facility for the primary radionuclides of concern (ROCs) (i.e., cesium-137, strontium-90, and radium-226). Analysis included full spectrum gamma spectroscopy for all samples. Sr-90 analysis was completed on all samples from SUs 6 and 7. However Sr-90 was only completed on the cores, composites, field blank and duplicate samples in SU 8. Alpha spectroscopy as well as liquid scintillation performed for tritium, carbon-14, and nickel-63 concentrations were completed on the composite samples from SUs 6 and 7. Various cores, composites, and samples from the remediated areas of SU 8 received alpha spectroscopy as well as liquid scintillation analyses for tritium, carbon-14, and nickel-63 to determine respective ROC concentrations (BNL 2011 h, i, and j). BSA submitted the FSS data and analytical results to demonstrate that remediation efforts complied with the specified cleanup goal of less than or equal to 15 millirem per year (mrem/yr) above background to a resident in 50 years (BNL 2011a through j). ORISE has reviewed the project documentation and FSS data for the HFBR Stack and Grounds: SUs 6, 7, and 8. The highest concentrations of the primary ROCs reported were 5.92 picocuries per gram (pCi/g) for Cs-137 and 2.03 pCi/g for Sr-90, with both ROCs having the qualifier for the sample result as less than the minimum detectable activity (MDA). For Ra-226, the highest detected concentration from the FSS data provided was 0.682 pCi/g. Other potential secondary contaminants were below their respective MDAs. Therefore, ORISE is of the opinion that BSA has provided sufficient evidence to demonstrate compliance with the 15 mrem/yr cleanup objectives for the final status survey data provided.« less
Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus
NASA Astrophysics Data System (ADS)
Divyashree, M. S.; Shamala, T. R.
2009-02-01
Bacillus flexus cultivated on sucrose and sucrose with plant oil such as castor oil produced polyhydroxybutyrate (PHB), a homopolymer of polyhydroxyalkanoate (PHA) and PHA copolymer (containing hydroxybutyrate and hexanoate), respectively. Gamma irradiation of these cells (5-40 kGy) resulted in cell damage and aided in the isolation of 45% and 54% PHA on biomass weight, correspondingly. Molecular weight of PHB increased from 1.5×10 5 to 1.9×10 5 after irradiation (10 kGy), with marginal increase of tensile strength from 18 to 20 MPa. At the same irradiation dosage, PHA copolymer showed higher molecular weight increase from 1.7×10 5 to 2.3×10 5 and tensile strength from 20 to 35 MPa. GC, GC-MS, FTIR and 1H NMR were used for the characterization of PHA. Gamma irradiation seems to be a novel technique, to induce cross-linking and molecular weight increase of PHA copolymer and aid in easy extractability of intracellular PHA, simultaneously.
De Salles, A A; Melega, W P; Laćan, G; Steele, L J; Solberg, T D
2001-12-01
Radiosurgery for functional neurosurgery performed using a linear accelerator (LINAC) has not been extensively characterized in preclinical studies. In the present study, the properties of a newly designed 3-mm-diameter collimator were evaluated in a dedicated LINAC, which produced lesions in the basal ganglia of vervet monkeys. Lesion formation was determined in vivo in three animals by examining magnetic resonance (MR) images to show the dose-delivery precision of targeting and the geometry and extent of the lesions. Postmortem immunohistochemical studies were conducted to determine the extent of lesion-induced radiobiological effects. In three male vervet monkeys, the subthalamic nucleus (STN; one animal) and the pars compacta of the lateral substantia nigra (SN; two animals) were targeted by a Novalis Shaped Beam Surgery System that included a 3-mm collimator and delivered a maximum dose of 150 Gy. Magnetic resonance images obtained 4, 5, and 9 months posttreatment were reviewed, and the animals were killed so that immunohistological characterizations could be made. The generation of precise radiosurgical lesions by a 3-mm collimator was validated in studies that targeted the basal ganglia of the vervet monkey. The extent of the lesions created in all animals remained restricted in diameter (< 3 mm) throughout the duration of the studies, as assessed by reviewing MR images. Histological studies showed that the lesions were contained within the STN and SN target areas and that there were persistent increases in glial fibrillary acidic protein immunoreactivity. Increases in immunoreactivity for tyrosine hydroxylase, the serotonin transporter, and the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in penumbral regions of the lesion were suggestive of compensatory neuronal adaptations. This radiosurgical approach may be of particular interest for the induction of lesions of the STN and SN in studies of experimental parkinsonism, as well as for the development of potential radiosurgical treatments for Parkinson disease.
Evaluation of dual γ-ray imager with active collimator using various types of scintillators.
Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung
2011-10-01
The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.
Localisation of gamma-ray interaction points in thick monolithic CeBr3 and LaBr3:Ce scintillators
NASA Astrophysics Data System (ADS)
Ulyanov, Alexei; Morris, Oran; Roberts, Oliver J.; Tobin, Isaac; Hanlon, Lorraine; McBreen, Sheila; Murphy, David; Nelms, Nick; Shortt, Brian
2017-02-01
Localisation of gamma-ray interaction points in monolithic scintillator crystals can simplify the design and improve the performance of a future Compton telescope for gamma-ray astronomy. In this paper we compare the position resolution of three monolithic scintillators: a 28×28×20 mm3 (length×breadth × thickness) LaBr3:Ce crystal, a 25×25×20 mm3 CeBr3 crystal and a 25×25×10 mm3 CeBr3 crystal. Each crystal was encapsulated and coupled to an array of 4×4 silicon photomultipliers through an optical window. The measurements were conducted using 81 keV and 356 keV gamma-rays from a collimated 133Ba source. The 3D position reconstruction of interaction points was performed using artificial neural networks trained with experimental data. Although the position resolution was significantly better for the thinner crystal, the 20 mm thick CeBr3 crystal showed an acceptable resolution of about 5.4 mm FWHM for the x and y coordinates, and 7.8 mm FWHM for the z-coordinate (crystal depth) at 356 keV. These values were obtained from the full position scans of the crystal sides. The position resolution of the LaBr3:Ce crystal was found to be considerably worse, presumably due to the highly diffusive optical interface between the crystal and the optical window of the enclosure. The energy resolution (FWHM) measured for 662 keV gamma-rays was 4.0% for LaBr3:Ce and 5.5% for CeBr3. The same crystals equipped with a PMT (Hamamatsu R6322-100) gave an energy resolution of 3.0% and 4.7%, respectively.
NASA Astrophysics Data System (ADS)
Saizu, Mirela Angela
2016-09-01
The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.
Quantitative evaluation of patient-specific quality assurance using online dosimetry system
NASA Astrophysics Data System (ADS)
Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk
2018-01-01
In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).
NASA Astrophysics Data System (ADS)
Vila, Gabriela S.
Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.
SU-F-T-586: Pre-Treatment QA of InCise2 MLC Plans On a Cyberknife-M6 Using the Delta4 System in SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidhalter, D; Henzen, D; Malthaner, M
Purpose: Performing pre-treatment quality assurance (QA) with the Delta4 system (ScandiDos Inc., Madison, WI) is well established for linac-based radiotherapy. This is not true when using a Cyberknife (Accuray Inc., Sunnyvale, CA) where, typically film-based QA is applied. The goal of this work was to test the feasibility to use the Delta4 system for pre-treatment QA for stereotactic body radiation therapy (SBRT) using a Cyberknife-M6 equipped with the InCise2 multileaf collimator (MLC). Methods: In order to perform measurements without accelerator pulse signal, the Tomotherapy option within the Delta4 software was used. Absolute calibration of the Delta4 phantom was performed usingmore » a 10×10 cm{sup 2} field shaped by the InCise2 MLC of the Cyberknife-M6. Five fiducials were attached to the Delta4 phantom in order to be able to track the phantom before and during measurements. For eight SBRT treatment plans (two liver, two prostate, one lung, three bone metastases) additional verification plans were recalculated on the Delta4 phantom using MultiPlan. Dicom data was exported from MultiPlan and was adapted in order to be compatible with the Delta4 software. The measured and calculated dose distributions were compared using the gamma analysis of the Delta4 system. Results: All eight SBRT plans were successfully measured with the aid of the Delta4 system. In the mean, 98.0±1.9%, 95.8±4.1% and 88.40±11.4% of measured dose points passed the gamma analysis using a global dose deviation criterion of 3% (100% corresponds to the dose maximum) and a distance-to-agreement criterion of 3 mm, 2 mm and 1 mm, respectively, and a threshold of 20%. Conclusion: Pre-treatment QA of SBRT plans using the Delta4 system on a Cyberknife-M6 is feasible. Measured dose distributions of SBRT plans showed clinically acceptable agreement with the corresponding calculated dose distributions.« less
A novel silicon array designed for intraoperative charged particle imaging.
Tornai, Martin P; Patt, Bradley E; Iwanczyk, Jan S; Tull, Carolyn R; MacDonald, Lawrence R; Hoffman, Edward J
2002-11-01
A novel Si-PIN imaging array is under investigation for a charged particle (beta, positron, or alpha) sensitive intraoperative camera to be used for (residual) tumor identification during surgery. This class of collimator-less nuclear imaging device has a higher signal response for direct interactions than its scintillator-optical detector-based counterparts. Monte Carlo simulations with 635 keV betas were performed, yielding maximum and projected ranges of 1.64 and 0.55 mm in Si. Up to 90% of these betas were completely absorbed in the first 0.30 mm. Based on these results, 300 microm thick prototype Si detector arrays were designed in a 16 x 16 crossed-grid arrangement with 0.8 mm wide orthogonal strips on 1.0 mm pitch. A NIM- and CAMAC-based high-density data acquisition and processing system was used to collect the list mode data. The system was calibrated by comparisons of measured spectra to energy deposition simulations or by direct measurement of various >100 keV conversion electron or beta emitters. Mean electronic noise per strip was <3.6 keV FWHM at room temperature. When detecting positrons, which have an accompanying 511 keV annihilation background, the flood irradiated beta/gamma ratio was approximately 40, indicating that beta images could be made without the use of background rejection techniques. The intrinsic spatial resolution corresponds to the 1 x 1 mm2 pixel size, and measurements of beta emitting point and line sources yielded FWHM resolutions of 1.5 (lateral) and 2.5 mm (diagonal), respectively, with the larger widths due to particle range blurting effects. Deconvolution of the finite source size yielded intrinsic resolutions that corresponded to the image pixel size. Transmission images of circle and line phantoms with various hole sizes and pitch were resolved with either pure beta or positron irradiation without a background correction. This novel semiconductor imaging device facilitates high charged particle and low gamma sensitivity, high signal/noise ratio, and allows for compact design to potentially aid surgical guidance by providing in situ images of clinical relevance.
The bright and choked gamma-ray burst contribution to the IceCube and ANTARES low-energy excess
NASA Astrophysics Data System (ADS)
Denton, Peter B.; Tamborra, Irene
2018-04-01
The increasing statistics of the high-energy neutrino flux observed by the IceCube Observatory points towards an excess of events above the atmospheric neutrino background in the 30–400 TeV energy range. Such an excess is compatible with the findings of the ANTARES Telescope and it would naturally imply the possibility that more than one source class contributes to the observed flux. Electromagnetically hidden sources have been invoked to interpret this excess of events at low energies. By adopting a unified model for the electromagnetically bright and choked gamma-ray bursts and taking into account particle acceleration at the internal and collimation shock radii, we discuss whether bright and choked bursts are viable candidates. Our findings suggest that, although producing a copious neutrino flux, choked and bright astrophysical jets cannot be the dominant sources of the excess of neutrino events. A fine tuning of the model parameters or distinct scenarios for choked jets should be invoked in order to explain the low-energy neutrino data of IceCube and ANTARES.
An evaluation on the design of beam shaping assembly based on the D-T reaction for BNCT
NASA Astrophysics Data System (ADS)
Asnal, M.; Liamsuwan, T.; Onjun, T.
2015-05-01
Boron Neutron Capture Therapy (BNCT) can be achieved by using a compact neutron generator such as a compact D-T neutron source, in which neutron energy must be in the epithermal energy range with sufficient flux. For these requirements, a Beam Shaping Assembly (BSA) is needed. In this paper, three BSA designs based on the D-T reaction for BNCT are discussed. It is found that the BSA configuration designed by Rasouli et al. satisfies all of the International Atomic Energy Agency (IAEA) criteria. It consists of 14 cm uranium as multiplier, 23 cm TiF3 and 36 cm Fluental as moderator, 4 cm Fe as fast neutron filter, 1 mm Li as thermal neutron filter, 2.6 cm Bi as gamma ray filter, and Pb as collimator and reflector. It is also found that use of specific filters is important for removing the fast and thermal neutrons and gamma contamination. Moreover, an appropriate neutron source plays a key role in providing a proper epithermal flux.
Development of Ni-based multilayers for future focusing soft gamma ray telescopes
NASA Astrophysics Data System (ADS)
Girou, David A.; Massahi, Sonny; Sleire, Erlend K.; Jakobsen, Anders C.; Christensen, Finn E.
2015-09-01
Ni-based multilayers are a possible solution to extend the upper energy range of hard X-ray focusing telescopes currently limited at ≈79:4 keV by the Pt-K absorption edge. In this study 10 bilayers multilayers with a constant bilayer thickness were coated with the DC magnetron sputtering facility at DTU Space, characterized at 8 keV using X-ray reectometry and fitted using the IMD software. Ni/C multilayers were found to have a mean interface roughness ≈ 1:5 times lower than Ni/B4C multilayers. Reactive sputtering with ≈ 76% of Ar and ≈ 24% of N2 reduced the mean interface roughness by a factor of ≈ 1:7. It also increased the coating rate of C by a factor of ≈ 3:1 and lead to a coating process going ≈ 1:6 times faster. Honeycomb collimation proved to limit the increase in mean interface roughness when the bilayer thickness increases at the price of a coating process going ≈ 1:9 times longer than with separator plates. Finally a Ni/C 150 bilayers depth-graded mutilayer was coated with reactive sputtering and honeycomb collimation and then characterized from 10 keV to 150 keV. It showed 10% reectance up to 85 keV.
Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.
Jensen, Michael D; Abdellatif, Ady; Chen, Jeff; Wong, Eugene
2012-04-21
Respiratory motion may lead to dose errors when treating thoracic and abdominal tumours with radiotherapy. The interplay between complex multileaf collimator patterns and patient respiratory motion could result in unintuitive dose changes. We have developed a treatment reconstruction simulation computer code that accounts for interplay effects by combining multileaf collimator controller log files, respiratory trace log files, 4DCT images and a Monte Carlo dose calculator. Two three-dimensional (3D) IMRT step-and-shoot plans, a concave target and integrated boost were delivered to a 1D rigid motion phantom. Three sets of experiments were performed with 100%, 50% and 25% duty cycle gating. The log files were collected, and five simulation types were performed on each data set: continuous isocentre shift, discrete isocentre shift, 4DCT, 4DCT delivery average and 4DCT plan average. Analysis was performed using 3D gamma analysis with passing criteria of 2%, 2 mm. The simulation framework was able to demonstrate that a single fraction of the integrated boost plan was more sensitive to interplay effects than the concave target. Gating was shown to reduce the interplay effects. We have developed a 4DCT Monte Carlo simulation method that accounts for IMRT interplay effects with respiratory motion by utilizing delivery log files.
A collimated neutron detector for RFP plasmas in MST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capecchi, W. J., E-mail: capecchi@wisc.edu; Anderson, J. K.; Bonofiglo, P. J.
The neutron emissivity profile in the Madison Symmetric Torus is being reconstructed through the use of a collimated neutron detector. A scintillator-photomultiplier tube (PMT) system is employed to detect the fusion neutrons with the plasma viewing volume defined by a 55 cm deep, 5 cm diameter aperture. Effective detection of neutrons from the viewing volume is achieved through neutron moderation using 1300 lbs of high density polyethylene shielding, which modeling predicts attenuates the penetrating flux by a factor of 10{sup 4} or more. A broad spectrum of gamma radiation is also present due to the unconfined fusion proton bombardment ofmore » the thick aluminum vacuum vessel. A 15 cm cylindrical liquid scintillator of 3.8 cm diameter is used to further increase directional sensitivity. A fast (5 ns rise time) preamplifier and digitization at 500 MHz prevent pulse pile-up even at high count rates (∼10{sup 4}/s). The entire neutron camera system is situated on an adjustable inclining base which provides the differing plasma viewing volumes necessary for reconstruction of the neutron emissivity profile. This profile, directly related to the fast-ion population, allows for an investigation of the critical fast-ion pressure gradient required to destabilize a neutral beam driven Alfvénic mode which has been shown to transport fast ions.« less
Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging
Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.
2017-01-01
Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time. PMID:29270539
Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.
Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D
2017-05-01
Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Syam; Anjana
Purpose: To evaluate the fluence for the midline and lateralized tumors for VMAT technique using 2D seven29 detector array combined with the Octavius phantom. Methods: 60 cases that are already being treated with volumetric modulated arc therapy (VMAT) have selected for this study. This includes tumors situated at the medial and lateral. Medial refers to the tumor situated at the midline of the body and lateral means toward the side or away from the midline of the body. Verification plans were created for each treatment plan in Varian Eclipse treatment planning system (version10, Varian medical systems, Palo Alto,CA) with themore » 2D Seven29 detector array and the Octavius phantom(PTW, Freiburg, Germany). Measurements were performed on a Varian Clinac 2100 iX, linear accelerator equipped with a millennium 120 leaf collimator. Analysis was done by comparing the fluence measured for the tumors situated on the midline and tumors situated laterally. Results: Fluence measured for all the delivered plans were analyzed using Verisoft software (PTW, Freiburg, Germany). The gamma pass percentage for midline tumors were found to be higher compared with the lateralized ones. The standard deviation between gamma values for midline and lateralized tumors is 2.18 and 3.5 respectively. Also the standard deviation between the point doses for midline and lateralized tumors is 0.38 and 0.29 respectively. The average gamma passing rate for midline tumors is 96.55% and for lateralized tumors are 94.94% for 3%DD and 3mm DTA criteria. From the T test, it was found that there is no significant difference between the gamma pass percentage between midline and lateralized tumors with p value of 0.28. Conclusion: There is no particular correlation found in the gamma pass criteria for midline and lateralized tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verburg, J; Bortfeld, T
Purpose: We present a new system to perform prompt gamma-ray spectroscopy during proton pencil-beam scanning treatments, which enables in vivo verification of the proton range. This system will be used for the first clinical studies of this technology. Methods: After successful pre-clinical testing of prompt gamma-ray spectroscopy, a full scale system for clinical studies is now being assembled. Prompt gamma-rays will be detected during patient treatment using an array of 8 detector modules arranged behind a tungsten collimator. Each detector module consists of a lanthanum(III) bromide scintillator, a photomultiplier tube, and custom electronics for stable high voltage supply and signalmore » amplification. A new real-time data acquisition and control system samples the signals from the detectors with analog-to-digital converters, analyses events of interest, and communicates with the beam delivery systems. The timing of the detected events was synchronized to the cyclotron radiofrequency and the pencil-beam delivery. Range verification is performed by matching measured energy- and timeresolved gamma-ray spectra to nuclear reaction models based on the clinical treatment plan. Experiments in phantoms were performed using clinical beams in order to assess the performance of the systems. Results: The experiments showed reliable real-time analysis of more than 10 million detector events per second. The individual detector modules acquired accurate energy- and time-resolved gamma-ray measurements at a rate of 1 million events per second, which is typical for beams delivered with a clinical dose rate. The data acquisition system successfully tracked the delivery of the scanned pencil-beams to determine the location of range deviations within the treatment field. Conclusion: A clinical system for proton range verification using prompt gamma-ray spectroscopy has been designed and is being prepared for use during patient treatments. We anticipate to start a first clinical study in the near future. This work was supported by the Federal Share of program income earned by Massachusetts; General Hospital on C06-CA059267, Proton Therapy Research and Treatment Center.« less
NASA Astrophysics Data System (ADS)
Kohler, Susanna
Part I: Relativistic jets emitted from the centers of some galaxies (called active galaxies) exhibit many interesting behaviors that are not yet fully understood: acceleration and collimation over vast distances, for instance, and occasional flaring activity. In the first part of my thesis, I examine the possibility of collimation and acceleration of relativistic jets by the pressure of the ambient medium surrounding the jet base. I discuss the differences in predicted jet behavior due to including the effects of a magnetic field threading the jet interior, and I describe the conditions that create some observed jet shapes, such as the "hollow cone" structure seen in M87 and similar jets. I also discuss what happens when the pressure outside of the jet drops so slowly that the jet shocks repeatedly, generating entropy at its boundary. Finally, I examine the spectra of the 40 brightest gamma-ray flares from blazars (active galaxies with jets pointed toward us) recorded by the Fermi Gamma-ray Space Telescope in its first four years of operation. I develop models to describe the observed behavior of these flares and discuss the physical implications of these models. Part II: The ability to clearly communicate scientific concepts to both peers and the lay public is an important component of being a scientist. Few training programs exist, however, for scientists to obtain these skills. In the second part of my thesis, I examine the impact of two different training efforts for very early-career scientists: first, a short science communication workshop for science, technology, engineering and math (STEM) graduate students, and second, science communication training integrated into existing astronomy classes for undergraduate STEM majors and early STEM graduate students. I evaluate whether the students' written communication skills demonstrate measurable improvement after training, and track students' attitudes toward science communication.
Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor
2013-01-01
This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polf, J; McCleskey, M; Brown, S
2014-06-01
Purpose: Recent studies have suggested that the characteristics of prompt gammas (PG) emitted during proton beam irradiation are advantageous for determining beam range during treatment delivery. The purpose of this work was to determine the feasibility of determining the proton beam range from PG data measured with a prototype Compton camera (CC) during proton beam irradiation. Methods: Using a prototype multi-stage CC the PG emission from a water phantom was measured during irradiation with clinical proton therapy beams. The measured PG emission data was used to reconstruct an image of the PG emission using a backprojection reconstruction algorithm. One dimensionalmore » (1D) profiles extracted from the PG images were compared to: 1) PG emission data measured at fixed depths using collimated high purity Germanium and Lanthanum Bromide detectors, and 2) the measured depth dose profiles of the proton beams. Results: Comparisons showed that the PG emission profiles reconstructed from CC measurements agreed very well with the measurements of PG emission as a function of depth made with the collimated detectors. The distal falloff of the measured PG profile was between 1 mm to 4 mm proximal to the distal edge of the Bragg peak for proton beam ranges from 4 cm to 16 cm in water. Doses of at least 5 Gy were needed for the CC to measure sufficient data to image the PG profile and localize the distal PG falloff. Conclusion: Initial tests of a prototype CC for imaging PG emission during proton beam irradiation indicated that measurement and reconstruction of the PG profile was possible. However, due to limitations of the operational parameters (energy range and count rate) of the current CC prototype, doses of greater than a typical treatment dose (∼2 Gy) were needed to measure adequate PG signal to reconstruct viable images. Funding support for this project provided by a grant from DoD.« less
Aids for the Study of Electromagnetic Blackout
1975-02-25
to gamma rays, 1-MT burst at 20 km 5-32 5-23B One-way absorption due to gamma rays. o-MT hurst at ’O km 5-32 5-23C One-way absorption due to ga’ma...0 2- F ( n)z I I L -I 0. 0.2L.~ INTEGRAL VALUES OF EXPONENT n Figure 6-13. Multiplying factors for refraction and range errors in a spherically
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mughabghab, S.
The s- and p-wave neutron strength functions and average radiative widths of fission product nuclides are reviewed. The direct capture mechanism of Land and Lynn is quantitatively varified for the two reactions /sup 42/Ca(n,..gamma..) /sup 43/Ca and /sup 136/Xe(n,..gamma..) /sup 137/Xe. Thermal capture cross sections of /sup 132/Te and /sup 126/Sn are estimated with the aid of the Lane-Lynn theory. 7 figures, 1 table.
Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors
Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.
2014-01-01
Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961
Associated-particle sealed-tube neutron probe for characterization of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, E.; Dickerman, C.E.; Peters, C.W.
1993-10-01
A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less
LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation
NASA Astrophysics Data System (ADS)
Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.
2015-01-01
Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which can have significant implications in preclinical and clinical ROI imaging applications.
Pradhan, A S; Bakshi, A K
2002-01-01
CaSO4:Dy and LiF TLDs do not exhibit photon energy dependence beyond +/-55% for photons in the energy range from 1 MeV to about 7 MeV. However, when sandwiched between metal filters or used in TLD badge holders having metal filters, the response changes for irradiation from high energy photons as compared to that from 60Co gamma rays (generally used for reference calibrations). This effect is about the same for both the lower atomic number TLD (LiF) and higher atomic number TLD (CaSO4:Dy). For TLDs held on the surface of the phantom and irradiated in collimated photon beams, the response of TLDs without any filter or those under the open window of the TLD badge is considerably reduced due to insufficient build-up to high energy photons, whereas for uncollimated radiation fields from power reactors, an over-response is observed. It is observed that the use of inappropriate encapsulation of dosemeters would cause a significant error not only in the estimation of doses due to penetrating radiations but also in the estimation of beta doses in the mixed fields of beta radiation, high energy gamma rays and high energy electrons often encountered in the fields of pressurised heavy water reactors.
Toward Simultaneous Real-Time Fluoroscopic and Nuclear Imaging in the Intervention Room.
Beijst, Casper; Elschot, Mattijs; Viergever, Max A; de Jong, Hugo W A M
2016-01-01
To investigate the technical feasibility of hybrid simultaneous fluoroscopic and nuclear imaging. An x-ray tube, an x-ray detector, and a gamma camera were positioned in one line, enabling imaging of the same field of view. Since a straightforward combination of these elements would block the lines of view, a gamma camera setup was developed to be able to view around the x-ray tube. A prototype was built by using a mobile C-arm and a gamma camera with a four-pinhole collimator. By using the prototype, test images were acquired and sensitivity, resolution, and coregistration error were analyzed. Nuclear images (two frames per second) were acquired simultaneously with fluoroscopic images. Depending on the distance from point source to detector, the system resolution was 1.5-1.9-cm full width at half maximum, the sensitivity was (0.6-1.5) × 10(-5) counts per decay, and the coregistration error was -0.13 to 0.15 cm. With good spatial and temporal alignment of both modalities throughout the field of view, fluoroscopic images can be shown in grayscale and corresponding nuclear images in color overlay. Measurements obtained with the hybrid imaging prototype device that combines simultaneous fluoroscopic and nuclear imaging of the same field of view have demonstrated the feasibility of real-time simultaneous hybrid imaging in the intervention room. © RSNA, 2015
X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; A.J. Caffrey
2001-08-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measuredmore » with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.« less
Vehicle and cargo container inspection system for drugs
NASA Astrophysics Data System (ADS)
Verbinski, Victor V.; Orphan, Victor J.
1999-06-01
A vehicle and cargo container inspection system has been developed which uses gamma-ray radiography to produce digital images useful for detection of drugs and other contraband. The system is comprised of a 1 Ci Cs137 gamma-ray source collimated into a fan beam which is aligned with a linear array of NaI gamma-ray detectors located on the opposite side of the container. The NaI detectors are operated in the pulse-counting mode. A digital image of the vehicle or container is obtained by moving the aligned source and detector array relative to the object. Systems have been demonstrated in which the object is stationary (source and detector array move on parallel tracks) and in which the object moves past a stationary source and detector array. Scanning speeds of ˜30 cm/s with a pixel size (at the object) of ˜1 cm have been achieved. Faster scanning speeds of ˜2 m/s have been demonstrated on railcars with more modest spatial resolution (4 cm pixels). Digital radiographic images are generated from the detector count rates. These images, recorded on a PC-based data acquisition and display system, are shown from several applications: 1) inspection of trucks and containers at a border crossing, 2) inspection of railcars at a border crossing, 3) inspection of outbound cargo containers for stolen automobiles, and 4) inspection of trucks and cars for terrorist bombs.
NASA Astrophysics Data System (ADS)
Yu, A. R.; Park, S.-J.; Choi, Y. Y.; Kim, K. M.; Kim, H.-J.
2015-09-01
Triumph X-SPECT is a newly released CZT-based preclinical small-animal SPECT system with interchangeable collimators. The purpose of this work was to evaluate and systematically compare the imaging performances of three different collimators in the CZT-based preclinical small-animal system: a single-pinhole collimator (SPH), a multi-pinhole collimator (MPH) and a parallel-hole collimator. We measured the spatial resolutions and sensitivities of the three collimators with 99mTc sources, considering three distinct energy window widths (5, 10, and 20%), and used the NEMA NU4-2008 Image Quality phantom to test the imaging performance of the three collimators in terms of uniformity and spill-over ratio (SOR) for each energy window. With a 10% energy window width at a radius of rotation (ROR) of 30 mm, the system resolution of the SPH, MPH and parallel-hole collimators was 0.715, 0.855 and 3.270 mm FWHM, respectively. For the same energy window, the sensitivity of the system with SPH, MPH and parallel-hole collimators was 32.860, 152.514 and 49.205 counts/sec/MBq at a 100 mm source-to-detector distance and 6.790, 33.376 and 49.038 counts/sec/MBq at a 130 mm source-to-detector distance, respectively. The image noise and SORair for the three collimators were 20.137, 12.278 and 11.232 (%STDunif) and 0.106, 0.140 and 0.161, respectively. Overall, the results show that the SPH had better spatial resolution than the other collimators. The MPH had the highest sensitivity at 100 mm source-to-collimator distance, and the parallel-hole collimator had the highest sensitivity at 130 mm-source-to-detector distance. Therefore, the proper collimator for Triumph X-SPECT system must be determined by the task. These results provide valuable reference data and insight into the imaging performance of various collimators in CZT-based preclinical small-animal SPECT.
Cleaning Insertions and Collimation Challenges
NASA Astrophysics Data System (ADS)
Redaelli, S.; Appleby, R. B.; Bertarelli, A.; Bruce, R.; Jowett, J. M.; Lechner, A.; Losito, R.
High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010-2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.
Radiography by selective detection of scatter field velocity components
NASA Technical Reports Server (NTRS)
Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)
2007-01-01
A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.
Collapse of magnetized hypermassive neutron stars in general relativity.
Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C
2006-01-27
Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.
McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Stedry, M.H.
1994-07-01
McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less
Norrgård, F S; Sipilä, P M; Kulmala, J A; Minn, H R
1998-06-01
Dose characteristics of a stereotactic radiotherapy unit based on a standard Varian Clinac 4/100 4 MV linear accelerator, in-house-built Lipowitz collimators and the SMART stereotactic radiotherapy treatment planning software have been determined. Beam collimation is constituted from the standard collimators of the linear accelerator and a tertiary collimation consisting of a replaceable divergent Lipowitz collimator. Four collimators with isocentre diameters of 15, 25, 35 and 45 mm, respectively, were constructed. Beam characteristics were measured in air, acrylic or water with ionization chamber, photon diode, electron diode, diamond detector and film. Monte Carlo simulation was also applied. The radiation leakage under the collimators was less than 1% at 50 mm depth in water. Specific beam characteristics for each collimator were imported to SMART and dose planning with five non-coplanar converging 140 degrees arcs separated by 36 degrees angles was performed for treatment of a RANDO phantom. Dose verification was made with TLD and radiochromic film. The in-house-built collimators were found to be suitable for stereotactic radiotherapy and patient treatments with this system are in progress.
Neutron collimator design of neutron radiography based on the BNCT facility
NASA Astrophysics Data System (ADS)
Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang
2014-02-01
For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.
SU-F-T-671: Effects of Collimator Material On Proton Minibeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Sandison, G; Cao, N
2016-06-15
Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less
Radiation beam collimation system and method
Schmidt, Oliver A.; Ramanathan, Mohan
2015-08-18
The invention provides a method for collimating a radiation beam, the method comprising subjecting the beam to a collimator that yaws and pitches, either separately or simultaneously relative to the incident angle of the beam. Also provided is a system for collimating radiation beams, the system comprising a collimator body, and a stage for pitching and yawing the body. A feature of the invention is that a single, compact mask body defines one or a plurality of collimators having no moving surfaces relative to each other, whereby the entire mask body is moved about a point in space to provide various collimator opening dimensions to oncoming radiation beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Derek; Sabondjian, Eric; Lawrence, Kailin
Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations weremore » sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.« less
Study of gamma detection capabilities of the REWARD mobile spectroscopic system
NASA Astrophysics Data System (ADS)
Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.
2017-07-01
REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.
Diamond-anvil high-pressure cell with improved X-ray collimation system
Schiferl, David; Olinger, Barton W.; Livingston, Robert W.
1986-01-01
An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.
Diamond-anvil high-pressure cell with improved x-ray collimation system
Schiferl, D.; Olinger, B.W.; Livingston, R.W.
1984-03-30
An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.
Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C
2011-03-01
A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.
Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang
2014-01-01
Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction. PMID:25370663
Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo
2015-06-01
A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR. The results indicated that the IQ-SPECT system with AC is capable of correcting inferior artifacts with high image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James
Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.« less
Beam halo collimation in heavy ion synchrotrons
NASA Astrophysics Data System (ADS)
Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.
2015-08-01
This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.
IMRT QA: Selecting gamma criteria based on error detection sensitivity.
Steers, Jennifer M; Fraass, Benedick A
2016-04-01
The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.
Moradi-Afrapoli, Fahimeh; van der Merwe, Hannes; De Mieri, Maria; Wilhelm, Anke; Stadler, Marco; Zietsman, Pieter C; Hering, Steffen; Swart, Kenneth; Hamburger, Matthias
2017-10-01
A dichloromethane extract from leaves of Searsia pyroides potentiated gamma aminobutyric acid-induced chloride currents by 171.8 ± 54% when tested at 100 µg/mL in Xenopus oocytes transiently expressing gamma aminobutyric acid type A receptors composed of α 1 β 2 γ 2 s subunits. In zebrafish larvae, the extract significantly lowered pentylenetetrazol-provoked locomotion when tested at 4 µg/mL. Active compounds of the extract were tracked with the aid of HPLC-based activity profiling utilizing a previously validated zebrafish larval locomotor activity assay. From two active HPLC fractions, compounds 1 - 3 were isolated. Structurally related compounds 4 - 6 were purified from a later eluting inactive HPLC fraction. With the aid of 1 H and 13 C NMR and high-resolution mass spectrometry, compounds 1 - 6 were identified as analogues of anacardic acid. Compounds 1 - 3 led to a concentration-dependent decrease of pentylenetetrazol-provoked locomotion in the zebrafish larvae model, while 4 - 6 were inactive. Compounds 1 - 3 enhanced gamma aminobutyric acid-induced chloride currents in Xenopus oocytes in a concentration-dependent manner, while 4 - 6 only showed marginal enhancements of gamma aminobutyric acid-induced chloride currents. Compounds 2, 3 , and 5 have not been reported previously. Georg Thieme Verlag KG Stuttgart · New York.
Comparison of fan beam, slit-slat and multi-pinhole collimators for molecular breast tomosynthesis.
van Roosmalen, Jarno; Beekman, Freek J; Goorden, Marlies C
2018-05-16
Recently, we proposed and optimized dedicated multi-pinhole molecular breast tomosynthesis (MBT) that images a lightly compressed breast. As MBT may also be performed with other types of collimators, the aim of this paper is to optimize MBT with fan beam and slit-slat collimators and to compare its performance to that of multi-pinhole MBT to arrive at a truly optimized design. Using analytical expressions, we first optimized fan beam and slit-slat collimator parameters to reach maximum sensitivity at a series of given system resolutions. Additionally, we performed full system simulations of a breast phantom containing several tumours for the optimized designs. We found that at equal system resolution the maximum achievable sensitivity increases from pinhole to slit-slat to fan beam collimation with fan beam and slit-slat MBT having on average a 48% and 20% higher sensitivity than multi-pinhole MBT. Furthermore, by inspecting simulated images and applying a tumour-to-background contrast-to-noise (TB-CNR) analysis, we found that slit-slat collimators underperform with respect to the other collimator types. The fan beam collimators obtained a similar TB-CNR as the pinhole collimators, but the optimum was reached at different system resolutions. For fan beam collimators, a 6-8 mm system resolution was optimal in terms of TB-CNR, while with pinhole collimation highest TB-CNR was reached in the 7-10 mm range.
Collimator with attachment mechanism and system
Kross, Brian J [Yorktown, VA; McKisson, John [Hampton, VA; Stolin, Aleksandr [Morgantown, WV; Weisenberger, Andrew G [Yorktown, VA; Zorn, Carl [Yorktown, VA
2012-07-10
A self-aligning collimator for a radiation imaging device that is secured and aligned through the use of a plurality of small magnets. The collimator allows for the rapid exchange, removal, or addition of collimators for the radiation imaging device without the need for tools. The accompanying method discloses the use of magnets and accompanying magnetic fields to align and secure collimators in a radiation imaging assembly.
Collimator application for microchannel plate image intensifier resolution improvement
Thomas, Stanley W.
1996-02-27
A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution.
Numerical Calculations of Short-Range Wakefields of Collimators
NASA Astrophysics Data System (ADS)
Ng, C. K.
2001-12-01
The performance of future linear colliders are limited by the effect of short-range collimator wakefields on the beam. The beam quality is sensitive to the positioning of collimators at the end of the linac. The determination of collimator wakefields has been difficult, largely because of the scarcity of measurement data, and of the limitation of applicability of analytical results to realistic structures. In this paper, numerical methods using codes such as MAFIA are used to determine a series of tapered collimators with rectangular apertures that have been built for studies at SLAC (Stanford Linear Accelerator Center). We will study the dependences of the wakefield on the collimator taper angle, the collimator gap as well as the bunch length. Calculations are also compared with measurements.
Gamma-ray imaging and holdup assays of 235-F PuFF cells 1 & 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aucott, T.
Savannah River National Laboratory (SRNL) Nuclear Measurements (L4120) was tasked with performing enhanced characterization of the holdup in the PuFF shielded cells. Assays were performed in accordance with L16.1-ADS-2460 using two high-resolution gamma-ray detectors. The first detector, an In Situ Object Counting System (ISOCS)-characterized detector, was used in conjunction with the ISOCS Geometry Composer software to quantify grams of holdup. The second detector, a Germanium Gamma-ray Imager (GeGI), was used to visualize the location and relative intensity of the holdup in the cells. Carts and collimators were specially designed to perform optimum assays of the cells. Thick, pencil-beam tungsten collimatorsmore » were fabricated to allow for extremely precise targeting of items of interest inside the cells. Carts were designed with a wide range of motion to position and align the detectors. A total of 24 measurements were made, each typically 24 hours or longer to provide sufficient statistical precision. This report presents the results of the enhanced characterization for cells 1 and 2. The measured gram values agree very well with results from the 2014 study. In addition, images were created using both the 2014 data and the new GeGI data. The GeGI images of the cells walls reveal significant Pu-238 holdup on the surface of the walls in cells 1 and 2. Additionally, holdup is visible in the two pass-throughs from cell 1 to the wing cabinets. This report documents the final element (exterior measurements coupled with gamma-ray imaging and modeling) of the enhanced characterization of cells 1-5 (East Cell Line).« less
Production of gamma ray bursts from asymmetric core combustion of magnetized young neutron stars
NASA Astrophysics Data System (ADS)
de Gouveia dal Pino, E. M.; Lugones, G.; Horvath, J. E.; Ghezzi, C. R.
2005-09-01
Many works in the past have explored the idea that the conversion of hadronic matter into strange quark matter in neutron stars may be an energy source for GRBs (see references in Lugones et al. 2002, Lugones and Horvath 2003). These models addressed essentially spherically symmetric conversions of the whole neutron star rendering isotropic gamma emission. Accumulating observational evidence suggests that at least ''long'' GRBs are strongly asymmetric, jet-like outflows. The ''short'' burst subclass is not obviously asymmetric, and they may actually be spherically symmetric if the sources are close enough. A new potentially important feature recently recognized (Lugones et al. 2002) is that if a conversion to strange quark matter actually begins near the center of a neutron star, the presence of a magnetic field with intensity B ˜ 1013 G (see also Ghezi, de Gouveia Dal Pino & Horvath 2004) will originate a prompt collimated gamma emission, which may be observed as a short, beamed GRB after the recovery of a fraction of the neutrino energy via ν {barν} → e+e- → γγ. The calculations show that the neutrino luminosity is ˜ 1053 erg/sec and that the e+e- luminosity is about two orders of magnitude smaller ( tet{Lugones2002grb}). We find that 90 % of the e+e- pairs are injected inside small cylinders located just above the polar caps (with radius δ and height 0.4 R) in a timescale of τi ≃ 0.2 s almost independently of the initial temperature. This provides an interesting suitable explanation for the inner engine of short gamma ray bursts.
VMAT optimization with dynamic collimator rotation.
Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke
2018-04-16
Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc delivery. In doing so, DC-VMAT affords more sophisticated intensity modulation, alleviating the limitation previously imposed by the square beamlet from the MLC leaf thickness and achieves higher effective modulation resolution. Consequently, DC-VMAT with a single arc manages to achieve superior dosimetry than SC-VMAT with three full arcs. © 2018 American Association of Physicists in Medicine.
Van Audenhaege, Karen; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian; Metzler, Scott D.; Moore, Stephen C.
2015-01-01
In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications. PMID:26233207
Ion source with improved primary arc collimation
Dagenhart, W.K.
1983-12-16
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Ion source with improved primary arc collimation
Dagenhart, William K.
1985-01-01
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Thermal analysis and cooling structure design of the primary collimator in CSNS/RCS
NASA Astrophysics Data System (ADS)
Zou, Yi-Qing; Wang, Na; Kang, Ling; Qu, Hua-Min; He, Zhe-Xi; Yu, Jie-Bing
2013-05-01
The rapid cycling synchrotron (RCS) of the China Spallation Neutron Source (CSNS) is a high intensity proton ring with beam power of 100 kW. In order to control the residual activation to meet the requirements of hands-on maintenance, a two-stage collimation system has been designed for the RCS. The collimation system consists of one primary collimator made of thin metal to scatter the beam and four secondary collimators as absorbers. Thermal analysis is an important aspect in evaluating the reliability of the collimation system. The calculation of the temperature distribution and thermal stress of the primary collimator with different materials is carried out by using ANSYS code. In order to control the temperature rise and thermal stress of the primary collimator to a reasonable level, an air cooling structure is intended to be used. The mechanical design of the cooling structure is presented, and the cooling efficiency with different chin numbers and wind velocity is also analyzed. Finally, the fatigue lifetime of the collimator under thermal shocks is estimated.
Pulsar-driven Jets In Supernovae, LMXBs, SS 433, And The Universe
NASA Astrophysics Data System (ADS)
Middleditch, John
2011-01-01
The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced at many light cylinder radii by a rotating, magnetized body, as would be the case for a neutron star born within any star of more than 1.4 solar masses, will drive pulsations close to the axis of rotation. In SN 1987A, such highly collimated (<1 in 10,000) 2.14 ms pulsations, and the similarly collimated jets of particles which they drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light (days 3 - 20), its "Mystery Spot," observed slightly later (0.5 to 0.3 c, at days 30 - 50 and after), and still later, in less collimated form, its bipolarity. The kinematics of the jets in Sco X-1 are nearly identical, while those for SS 433 are lower (0.26 c), because of the absence of velocity "boosting" via collisions of heavy elements with lighter ones, due to the nearly pure hydrogen content of the supercritical accretion. SLIP also predicts that almost all pulsars with very sharp single pulses have been detected because the Earth is in a favored direction where their fluxes diminish only as 1/distance, and this has been verified in the laboratory as well as for the Parkes Multibeam Survey. The axially driven pulsations enforce a toroidal geometry onto all early SNRs, rendering even SNe Ia unsuitable as standard candles. SLIP also specifically predicts that gamma-ray-burst afterglows will be essentially 100% pulsed at 500 Hz in their proper frame. Finally, SLIP jets from SNe of the first stars may allow galaxies to form without the need for dark matter. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, JS; Fan, J; Ma, C-M
Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom.more » MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.« less
NASA Astrophysics Data System (ADS)
Kore, Prashant S.; Pawar, Pravina P.
2014-05-01
The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.
Scientific Design of the New Neutron Radiography Facility (SANRAD) at SAFARI-1 for South Africa
NASA Astrophysics Data System (ADS)
de Beer, F. C.; Gruenauer, F.; Radebe, J. M.; Modise, T.; Schillinger, B.
The final scientific design for an upgraded neutron radiography/tomography facility at beam port no.2 of the SAFARI-1 nuclear research reactor has been performed through expert advice from Physics Consulting, FRMII in Germany and IPEN, Brazil. A need to upgrade the facility became apparent due to the identification of various deficiencies of the current SANRAD facility during an IAEA-sponsored expert mission of international scientists to Necsa, South Africa. A lack of adequate shielding that results in high neutron background on the beam port floor, a mismatch in the collimator aperture to the core that results in a high gradient in neutron flux on the imaging plane and due to a relative low L/D the quality of the radiographs are poor, are a number of deficiencies to name a few.The new design, based on results of Monte Carlo (MCNP-X) simulations of neutron- and gamma transport from the reactor core and through the new facility, is being outlined. The scientific design philosophy, neutron optics and imaging capabilities that include the utilization of fission neutrons, thermal neutrons, and gamma-rays emerging from the core of SAFARI-1 are discussed.
The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.
Berger, E; Price, P A; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D-S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L
2005-12-15
Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.
No Flares from Gamma-Ray Burst Afterglow Blast Waves Encountering Sudden Circumburst Density Change
NASA Astrophysics Data System (ADS)
Gat, Ilana; van Eerten, Hendrik; MacFadyen, Andrew
2013-08-01
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.
Solving the Mystery of the Short-Hard Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Fox, Derek
2004-07-01
Seven years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The forthcoming Swift satellite will report few-arcsecond localizations for short-hard bursts in minutes, however, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then the short-hard bursts are signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding their observations.
UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzati, Davide; Blackwell, Christopher H.; Morsony, Brian J.
We present a set of numerical simulations of stellar explosions induced by relativistic jets emanating from a central engine sitting at the center of compact, dying stars. We explore a wide range of durations of the central engine activity, two candidate stellar progenitors, and two possible values of the total energy release. We find that even if the jets are narrowly collimated, their interaction with the star unbinds the stellar material, producing a stellar explosion. We also find that the outcome of the explosion can be very different depending on the duration of the engine activity. Only the longest-lasting enginesmore » result in successful gamma-ray bursts. Engines that power jets only for a short time result in relativistic supernova (SN) explosions, akin to observed engine-driven SNe such as SN2009bb. Engines with intermediate durations produce weak gamma-ray bursts, with properties similar to nearby bursts such as GRB 980425. Finally, we find that the engines with the shortest durations, if they exist in nature, produce stellar explosions that lack sizable amounts of relativistic ejecta and are therefore dynamically indistinguishable from ordinary core-collapse SNe.« less
Comparison of fan beam, slit-slat and multi-pinhole collimators for molecular breast tomosynthesis
NASA Astrophysics Data System (ADS)
van Roosmalen, Jarno; Beekman, Freek J.; Goorden, Marlies C.
2018-05-01
Recently, we proposed and optimized dedicated multi-pinhole molecular breast tomosynthesis (MBT) that images a lightly compressed breast. As MBT may also be performed with other types of collimators, the aim of this paper is to optimize MBT with fan beam and slit-slat collimators and to compare its performance to that of multi-pinhole MBT to arrive at a truly optimized design. Using analytical expressions, we first optimized fan beam and slit-slat collimator parameters to reach maximum sensitivity at a series of given system resolutions. Additionally, we performed full system simulations of a breast phantom containing several tumours for the optimized designs. We found that at equal system resolution the maximum achievable sensitivity increases from pinhole to slit-slat to fan beam collimation with fan beam and slit-slat MBT having on average a 48% and 20% higher sensitivity than multi-pinhole MBT. Furthermore, by inspecting simulated images and applying a tumour-to-background contrast-to-noise (TB-CNR) analysis, we found that slit-slat collimators underperform with respect to the other collimator types. The fan beam collimators obtained a similar TB-CNR as the pinhole collimators, but the optimum was reached at different system resolutions. For fan beam collimators, a 6–8 mm system resolution was optimal in terms of TB-CNR, while with pinhole collimation highest TB-CNR was reached in the 7–10 mm range.
Collimator application for microchannel plate image intensifier resolution improvement
Thomas, S.W.
1996-02-27
A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution. 2 figs.
Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials
NASA Technical Reports Server (NTRS)
Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.
1978-01-01
Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.
NASA Astrophysics Data System (ADS)
Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho
2015-05-01
The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater than 95% on average with a 3%/3-mm gamma-index criterion. In summary, the Novalis Tx Linac head equipped with a HD-120 MLC was successfully modeled by using a Geant4 platform, and the accuracy of the Geant4 platform was successfully validated by comparisons with measurements. The MC model we have developed can be a useful tool for pretreatment quality assurance of IMRT plans and for commissioning of radiotherapy treatment planning.
Advances in associated-particle neutron probe diagnostics for substance detection
NASA Astrophysics Data System (ADS)
Rhodes, Edgar A.; Dickerman, Charles E.; Frey, Manfred
1995-09-01
The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.
NASA Astrophysics Data System (ADS)
Hueso-González, Fernando; Enghardt, Wolfgang; Fiedler, Fine; Golnik, Christian; Janssens, Guillaume; Petzoldt, Johannes; Prieels, Damien; Priegnitz, Marlen; Römer, Katja E.; Smeets, Julien; Vander Stappen, François; Wagner, Andreas; Pausch, Guntram
2015-08-01
Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry.
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum wasmore » measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.« less
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
NASA Astrophysics Data System (ADS)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.
Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, François; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagrà, Roberto; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Übleis, Christopher; Hacker, Marcus
2016-12-01
The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims 1) to identify the main acquisitions protocols; 2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally 3) to determine the impact of CZT on radiation exposure.
Zeroth-order design report for the next linear collider. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raubenheimer, T.O.
This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ``design`` presented here is not fully engineered in any sense, but to be assured that the NLCmore » can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation.« less
NASA Technical Reports Server (NTRS)
Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.
1997-01-01
The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.
Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.
Kasesaz, Y; Rahmani, F; Khalafi, H
2015-12-01
In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of a novel collimator for molecular breast tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon
Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less
Evaluation of a novel collimator for molecular breast tomosynthesis.
Gilland, David R; Welch, Benjamin L; Lee, Seungjoon; Kross, Brian; Weisenberger, Andrew G
2017-11-01
This study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelated (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (-25° to 25°) using 99m Tc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging. © 2017 American Association of Physicists in Medicine.
Evaluation of a novel collimator for molecular breast tomosynthesis
Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon; ...
2017-09-06
Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less
NASA Astrophysics Data System (ADS)
Kim, Yong Ho; Park, Dahl; Park, Ha Ryung; Kim, Won Taek; Kim, Dong Hyun; Bae, Jin Suk; Jeon, Gye Rok; Ro, Jung Hoon; Ki, Yongkan
2017-03-01
In volumetric modulated arc therapy (VMAT) planning, usually the collimator is rotated to minimize interleaf leakage and the tongue-and-groove effect. The objective of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plans for patients with a locally-advanced nasopharyngeal carcinoma (LA-NPC). VMAT treatment planning sets were generated using the same planning parameters, but with different collimator angles for 11 LA-NPC patients. Each set was composed of 10 plans with collimator angles at 0, 5, 10, 15, 20, 25, 35, 40, and 45 degrees. Dosimetric parameters, such as target coverage, organs at risk (OAR), and dose conformity, were analyzed at various collimator angles. With increasing collimator angles, the absorbed doses to the optic apparatus were increased by up to 35% comparing to that at a collimator angle of 0°. The best value of the conformity index (CI) was 0.971 ± 0.023 at collimator angles of 20° and 30°. The worst value of CI was 0.917 ± 0.051 at a collimator angle of 0°. The homogeneity index (HI)95 and HI98 had the best values of 0.106 ± 0.040 and 0.079 ± 0.031, respectively, at a collimator angle of 25°. The worst values of HI95 and HI98 were 0.136 ± 0.039 and 0.105 ± 0.032, respectively, at a collimator angle of of 0°. The maximum doses for some OARs (body, ear, parotid gland, mandible, and brainstem) and the HI did not show any statistically significant differences. However, the mean doses had positive correlations ( r = 0.449 0.773, p<0.001) with the irradiated volume. The CI had a weak positive correlation ( r = 0.316, p<0.001) with the irradiated volume. Other comparison parameters were evaluated as functions of the collimator angle. These findings will give useful information for choosing the collimator angle in VMAT plans for patients with a LA-NPC.
NASA Astrophysics Data System (ADS)
Roslan, R. E.; Saad, W. H. Mohd; Saripan, M. I.; Hashim, S.; Choong, W.-S.
2010-07-01
The multihole collimator is the most commonly used collimator in conventional SPECT cameras for general purpose imaging. However, there are some limitations with this collimator, which includes the lack of sensitivity as a trade-off for obtaining better spatial resolution. This paper looks at the performance of a wire mesh collimator that was introduced recently in order to improve the ability of SPECT cameras in mapping breast cancer cells, utilizing the Technetium-99 m 140 keV radiotracer. In this work, various volumes of breast are modelled and simulated using Monte Carlo N-Particle (MCNP5) code, derived based on the real cup sizes and volumes in prone position. The size of tumour is 1 cm in diameter with tumour to background ratios (TBRs) ranging between TBR from 1:1 to TBR 20:1, and located 2 cm inside breast skin. The results show that wire mesh collimator 1 (WM-1) has the highest sensitivity and signal to noise ratio (SNR) in comparison with wire mesh collimator 2 (WM-2) and the multihole collimator (MHC). This indicates the potential of using a wire mesh collimator for early mapping of breast cancer cells.
Carbon nanotube collimator fabrication and application
Chow, Lee; Chai, Guangyu; Schenkel, Thomas
2010-07-06
Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.
NASA Astrophysics Data System (ADS)
Henderson, Alexander Hastings
Lasers have grown more powerful in recent years, opening up new frontiers in physics. From early intensities of less than 1010 W/cm 2, lasers can now achieve intensities over 1021 W/cm 2. Ultraintense laser can become powerful new tools to produce relativistic electrons, positron-electron pairs, and gamma-rays. The pair production efficiency is equal to or greater than that of linear accelerators, the most common method of antimatter generation in the past. The gamma-rays and electrons produced can be highly collimated, making these interactions of interest for beam generation. Monte-Carlo particle transport simulation has long been used in physics for simulating various particle and radiation processes, and is well-suited to simulating both electromagnetic cascades resulting from laser-solid interactions and the response of electron/positron spectrometers and gamma-ray detectors. We have used GEANT4 Monte-Carlo particle transport simulation to design and calibrate charged-particle spectrometers using permanent magnets as well as a Forward Compton Electron Spectrometer to measure gamma-rays of higher energies than have previously been achieved. We have had some success simulating and measuring high positron and gamma-rays yields from laser-solid interactions using gold target at the Texas Petawatt Laser (TPW). While similar spectrometers have been developed in the past, we are to our knowledge the first to successfully use permanent magnet spectrometers to detect positrons originating from laser-solid interactions in this energy range. We believe we are also the first to successfully detect multi-MeV gamma rays using a permanent magnet Forward Compton Electron Spectrometer. Monte-Carlo particle transport simulation has been used by other groups to model positron production from laser-solid ineraction, but at the time that we began we were, as far as we know, the first to have a significant amount of empirical data to work with. We were thus at liberty to estimate the initial conditions, compare simulation results to data, and adjust as needed to obtain a better estimate of the actual initial conditions. We have also developed a new method for measuring the yield and angular distribution of gamma-rays using a two-dimensional dosimeter array. In this work, we examine the experimental and simulation results as well as the physical processes behind them. In addition, the gamma-rays produced by our experiments could be useful for photo-nuclear reactors and homeland security purposes. In our experiments, we measured narrow energy-band positrons and electrons which have potential medical uses.
A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.
Rong, Xing; Frey, Eric C
2013-08-01
Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more general, the authors simulated multiple tumors of various sizes in the liver. The authors realistically simulated human anatomy using a digital phantom and the image formation process using a previously validated and computationally efficient method for modeling the image-degrading effects including object scatter, attenuation, and the full collimator-detector response (CDR). The scatter kernels and CDR function tables used in the modeling method were generated using a previously validated Monte Carlo simulation code. The hole length, hole diameter, and septal thickness of the obtained optimal collimator were 84, 3.5, and 1.4 mm, respectively. Compared to a commercial high-energy general-purpose collimator, the optimal collimator improved the resolution and FOM by 27% and 18%, respectively. The proposed collimator optimization method may be useful for improving quantitative SPECT imaging for radionuclides with complex energy spectra. The obtained optimal collimator provided a substantial improvement in quantitative performance for the microsphere radioembolization task considered.
A four mirror anastigmat collimator design for optical payload calibration
NASA Astrophysics Data System (ADS)
Rolt, Stephen; Calcines, Ariadna; Lomanowski, Bart A.; Bramall, David G.
2016-07-01
We present here a four mirror anastigmatic optical collimator design intended for the calibration of an earth observation satellite instrument. Specifically, the collimator is to be applied to the ground based calibration of the Sentinel-4/UVN instrument. This imaging spectrometer instrument itself is expected to be deployed in 2019 in a geostationary orbit and will make spatially resolved spectroscopic measurements of atmospheric contaminants. The collimator is to be deployed during the ground based calibration only and does not form part of the instrument itself. The purpose of the collimator is to provide collimated light within the two instrument passbands in the UV-VIS (305 - 500 nm) and the NIR (750 - 775 nm). Moreover, that collimated light will be derived from a variety of slit like objects located at the input focal (object) plane of the collimator which is uniformly illuminated by a number of light sources. The collimator must relay these objects with exceptionally high fidelity. To this end, the wavefront error of the collimator should be less than 30 nm rms across the collimator field of view. This field is determined by the largest object which is a large rectangular slit, 4.4° x 0.25°. Other important considerations affecting the optical design are the requirements for input telecentricity and the size (85 mm) and location (2500 mm `back focal distance') of the exit pupil. The design of the instrument against these basic requirements is discussed in detail. In addition an analysis of the straylight and tolerancing is presented in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murase, Kohta; Kashiyama, Kazumi; Kiuchi, Kenta
2015-05-20
It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after themore » explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.« less
Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.
Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C
2006-09-08
The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.
Diffraction effects on angular response of X-ray collimators
NASA Technical Reports Server (NTRS)
Blake, R. L.; Barrus, D. M.; Fenimore, E.
1976-01-01
Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.
Du, Q; Mezey, P G
1998-09-01
In this research we test and compare three possible atom-based screening functions used in the heuristic molecular lipophilicity potential (HMLP). Screening function 1 is a power distance-dependent function, bi/[formula: see text] Ri-r [formula: see text] gamma, screening function 2 is an exponential distance-dependent function, bi exp(-[formula: see text] Ri-r [formula: see text]/d0), and screening function 3 is a weighted distance-dependent function, sign(bi) exp[-xi [formula: see text] Ri-r [formula: see text]/magnitude of bi)]. For every screening function, the parameters (gamma, d0, and xi) are optimized using 41 common organic molecules of 4 types of compounds: aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, and aliphatic alkanes. The results of calculations show that screening function 3 cannot give chemically reasonable results, however, both the power screening function and the exponential screening function give chemically satisfactory results. There are two notable differences between screening functions 1 and 2. First, the exponential screening function has larger values in the short distance than the power screening function, therefore more influence from the nearest neighbors is involved using screening function 2 than screening function 1. Second, the power screening function has larger values in the long distance than the exponential screening function, therefore screening function 1 is effected by atoms at long distance more than screening function 2. For screening function 1, the suitable range of parameter gamma is 1.0 < gamma < 3.0, gamma = 2.3 is recommended, and gamma = 2.0 is the nearest integral value. For screening function 2, the suitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this research provides a potential tool for computer-aided three-dimensional drug design.
NASA Astrophysics Data System (ADS)
Fiascaris, M.; Bruce, R.; Redaelli, S.
2018-06-01
We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.
IMRT QA: Selecting gamma criteria based on error detection sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steers, Jennifer M.; Fraass, Benedick A., E-mail: benedick.fraass@cshs.org
Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique,more » and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. Conclusions: We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.« less
Wang, Jingxuan; Lu, Jianren; Tian, Lan
2016-06-01
The purpose of this study was to evaluate the effects of fiberoptic collimation technique on auditory neural stimulation in the cochlea with 808 nm wavelength lasers. Recently, the pulsed near-infrared lasers in the 800-1000 nm wavelength range have been investigated as an emerging technique to trigger auditory neural response in the cochlea. A laser beam divergence in the optical stimulation pathway exists, which may affect stimulation efficiency and spatial selectivity. The fiberoptic collimation technique was proposed for cochlear neuron stimulation, and the C-lens element was designed as the collimation structure. The spiral ganglion cells in deafened guinea pigs' cochlea were irradiated with collimated and uncollimated near-infrared lasers. Optically evoked auditory brainstem response (OABR) under the two laser output modes were recorded. Laser with the collimation technique evoked an average 58% higher OABR amplitude than the uncollimated laser output. In addition, the collimated laser setup consumed on average 35.2% of laser energy compared with the uncollimated laser when evoking the same OABR amplitude. The fiberoptic collimation technique improved stimulation efficiency and reduced stimulating energy consumption in near-infrared neural stimulation in cochlea. The positive effects of laser collimation technique could benefit further research in optically based cochlear implants.
Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R
2014-01-01
Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.
Messerli, Michael; Dewes, Patricia; Scholtz, Jan-Erik; Arendt, Christophe; Wildermuth, Simon; Vogl, Thomas J; Bauer, Ralf W
2018-05-01
To investigate the impact of an adaptive detector collimation on the dose parameters and accurateness of scan length adaption at prospectively ECG-triggered sequential cardiac CT with a wide-detector third-generation dual-source CT. Ideal scan lengths for human hearts were retrospectively derived from 103 triple-rule-out examinations. These measures were entered into the new scanner operated in prospectively ECG-triggered sequential cardiac scan mode with three different detector settings: (1) adaptive collimation, (2) fixed 64 × 0.6-mm collimation, and (3) fixed 96 × 0.6-mm collimation. Differences in effective scan length and deviation from the ideal scan length and dose parameters (CTDIvol, DLP) were documented. The ideal cardiac scan length could be matched by the adaptive collimation in every case while the mean scanned length was longer by 15.4% with the 64 × 0.6 mm and by 27.2% with the fixed 96 × 0.6-mm collimation. While the DLP was almost identical between the adaptive and the 64 × 0.6-mm collimation (83 vs. 89 mGycm at 120 kV), it was 62.7% higher with the 96 × 0.6-mm collimation (135 mGycm), p < 0.001. The adaptive detector collimation for prospectively ECG-triggered sequential acquisition allows for adjusting the scan length as accurate as this can only be achieved with a spiral acquisition. This technique allows keeping patient exposure low where patient dose would significantly increase with the traditional step-and-shoot mode. • Adaptive detector collimation allows keeping patient exposure low in cardiac CT. • With novel detectors the desired scan length can be accurately matched. • Differences in detector settings may cause 62.7% of excessive dose.
Rana, Santosh; Dhanotia, Jitendra; Bhatia, Vimal; Prakash, Shashi
2018-04-01
In this paper, we propose a simple, fast, and accurate technique for detection of collimation position of an optical beam using the self-imaging phenomenon and correlation analysis. Herrera-Fernandez et al. [J. Opt.18, 075608 (2016)JOOPDB0150-536X10.1088/2040-8978/18/7/075608] proposed an experimental arrangement for collimation testing by comparing the period of two different self-images produced by a single diffraction grating. Following their approach, we propose a testing procedure based on correlation coefficient (CC) for efficient detection of variation in the size and fringe width of the Talbot self-images and thereby the collimation position. When the beam is collimated, the physical properties of the self-images of the grating, such as its size and fringe width, do not vary from one Talbot plane to the other and are identical; the CC is maximum in such a situation. For the de-collimated position, the size and fringe width of the self-images vary, and correspondingly the CC decreases. Hence, the magnitude of CC is a measure of degree of collimation. Using the method, we could set the collimation position to a resolution of 1 μm, which relates to ±0.25 μ radians in terms of collimation angle (for testing a collimating lens of diameter 46 mm and focal length 300 mm). In contrast to most collimation techniques reported to date, the proposed technique does not require a translation/rotation of the grating, use of complicated phase evaluation algorithms, or an intricate method for determination of period of the grating or its self-images. The technique is fully automated and provides high resolution and precision.
A Jet Break in the X-ray Light Curve of Short GRB 111020A: Implications for Energetics and Rates
NASA Technical Reports Server (NTRS)
Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Troja, E.; Czekala, I.; Chornock, R.; Gehrels, N.; Sakamoto, T.; Fox, D. B.;
2012-01-01
We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning approx.100 s to 10 days after the burst, reveals a significant break at (delta)t approx. = 2 days with pre- and post-break decline rates of (alpha)X,1 approx. = -0.78 and (alpha)X,2 < or approx. 1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of (theta)j approx. = 3deg - 8deg. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) x 10(exp 48) erg and (0.3-2) x 10(exp 49) erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 micro-Jy (3(sigma)) from Expanded Very Large Array observations that, along with our finding that v(sub c) < v(sub X), constrains the circumburst density to n(sub 0) approx.0.01 0.1/cu cm. Optical observations provide an afterglow limit of i > or approx.24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i approx. = 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0".80+/-0".11 (1(sigma))from this galaxy corresponding to an offset of 5.7 kpc for z = 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5+/-2.0) x 10(exp 21)/sq cm (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of > or approx.100-1000 Gpc(sup -3)/yr, in good agreement with the NS-NS merger rate of approx. = 200-3000 Gpc(sup -3)/ yr. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.
131I activity quantification of gamma camera planar images.
Barquero, Raquel; Garcia, Hugo P; Incio, Monica G; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael
2017-02-07
A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131 I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq -1 ) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0 . The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131 I in air. Values of G and S for two GC systems-Philips Skylight and Siemens e-cam-are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq -1 to 35 cps MBq -1 , and from 6 cps MBq -1 to 29 cps MBq -1 , respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.
131I activity quantification of gamma camera planar images
NASA Astrophysics Data System (ADS)
Barquero, Raquel; Garcia, Hugo P.; Incio, Monica G.; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael
2017-02-01
A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq-1) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131I in air. Values of G and S for two GC systems—Philips Skylight and Siemens e-cam—are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq-1 to 35 cps MBq-1, and from 6 cps MBq-1 to 29 cps MBq-1, respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.
Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltes, Jaroslav; Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague,; Viererbl, Ladislav
2015-07-01
In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which hasmore » a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated values. After the successful filter installing and a series of measurements, first test neutron radiography attempts with test samples could been carried out. (authors)« less
Basic performance and stability of a CdTe solid-state detector panel.
Tsuchiya, Katsutoshi; Takahashi, Isao; Kawaguchi, Tsuneaki; Yokoi, Kazuma; Morimoto, Yuuichi; Ishitsu, Takafumi; Suzuki, Atsurou; Ueno, Yuuichirou; Kobashi, Keiji
2010-05-01
We have developed a prototype gamma camera system (R1-M) using a cadmium telluride (CdTe) detector panel and evaluated the basic performance and the spectral stability. The CdTe panel consists of 5-mm-thick crystals. The field of view is 134 x 268 mm comprising 18,432 pixels with a pixel pitch of 1.4 mm. Replaceable small CdTe modules are mounted on to the circuit board by dedicated zero insertion force connectors. To make the readout circuit compact, the matrix read out is processed by dedicated ASICs. The panel is equipped with a cold-air cooling system. The temperature and humidity in the panel were kept at 20 degrees C and below 70% relative humidity. CdTe polarization was suppressed by the bias refresh technique to stabilize the detector. We also produced three dedicated square pixel-matched collimators: LEGP (20 mm-thick), LEHR (27 mm-thick), and LEUHR (35 mm-thick). We evaluated their basic performance (energy resolution, system resolution, and sensitivity) and the spectral stability in terms of short-term (several hours of continuous acquisition) and long-term (infrequent measurements over more than a year) activity. The intrinsic energy resolution (FWHM) acquired with Tc-99m (140.5 keV) was 6.6%. The spatial resolutions (FWHM at a distance of 100 mm) with LEGP, LEHR, and LEUHR collimators were 5.7, 4.9, and 4.2 mm, and the sensitivities were 71, 39, and 23 cps/MBq, respectively. The energy peak position and the intrinsic energy resolution after several hours of operation were nearly the same as the values a few minutes after the system was powered on; the variation of the peak position was <0.2%, and that of the resolution was about 0.3%. Infrequent measurements conducted over a year showed that the variations of the energy peak position and the intrinsic energy resolution of the system were at a similar level to those described above. The basic performance of the CdTe-gamma camera system was evaluated, and its stability was verified. It was shown that the camera could be operated daily for several months without calibration.
NASA Astrophysics Data System (ADS)
Tao, Ashley T.; Noseworthy, Michael D.; Farncombe, Troy H.
2016-10-01
A cadmium zinc telluride (CZT) based detector system has been developed with the goal of combining molecular breast imaging (MBI) and magnetic resonance imaging (MRI) to address shortcomings of each modality. The CZT detector system is comprised of four CZT modules tiled in a 2×2 array. Each module consists of 256 pixels (16×16, 2.4 mm pixels) and features a built-in ASIC and FPGA. A custom digital readout circuit board was designed to interface the four modules with a microcontroller to a data acquisition PC. The system was placed within the bore of a 3 T GE Discovery MR750 and imaging performance of each modality evaluated using both sequential and simultaneous imaging protocols. The mean energy resolution of the gamma camera both inside and outside the MRI is 7.3% at 140 keV. The maximum increase in the integral uniformity was 3% when using a gradient echo MRI sequence while the mean differential uniformity when inside the MRI increased by 1%. Spatial resolution varied in a predictable manner from 2.4 mm FWHM at the collimator face to 6.9 mm at 10 cm from the collimator. Performance of the 3 T GE Discovery MR750 using a 16-channel breast RF coil array was measured with and without the gamma camera present using a gradient echo and spoiled gradient echo imaging sequence. A realistic 99mTc-filled breast-like phantom containing two lesions (30:1 lesion to background ratio) was used to assess the feasibility of both serial and simultaneous hybrid imaging. Sequential imaging resulted in a reduction in MRI SNR of 70-80% and a further decrease of 93-98% was observed when performing simultaneous MR/scintigraphy imaging, likely a result of RF interference originating from the CZT detector modules and associated analog electronics. Co-registered scintigraphic and MRI images display negligible geometric distortion when imaged with both simultaneous and serial imaging modes, thus indicating the feasibility of combining MBI with breast MRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, B; Gelover, E; Wang, D
2015-06-15
Purpose: Low-energy treatments during spot scanning proton therapy (SSPT) suffer from poor conformity due to increased spot size. Collimation devices can reduce the lateral penumbra of a proton therapy dose distribution and improve the overall plan quality. The purpose of this work was to study the advantages of individual energy-layer collimation, which is unique to a recently proposed Dynamic Collimation System (DCS), in comparison to a standard, fixed aperture that allows only a single shape for all energy layers. Methods: Three brain patients previously planned and treated with SSPT were re-planned using an in-house treatment planning system capable of modelingmore » collimated and un-collimated proton beamlets. The un-collimated plans, which served as a baseline for comparison, reproduced the target coverage of the clinically delivered plans. The collimator opening for the aperture based plans included a 0.6 cm expansion of the largest cross section of the target in the Beam’s Eye View, while the DCS based plans were created by optimizing the collimator position for beam spots near the periphery of the target in each energy layer. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring, averaged 9.13% and 3.48% for the DCS and aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 16.42% and 8.16% for the DCS and aperture plans, respectively. Conclusion: Collimation reduces the dose to normal tissue adjacent to the target and increases dose conformity to the target region for low-energy SSPT. The ability of the DCS to provide collimation to each energy layer yields better conformity in comparison to fixed aperture plans. This work was partially funded by IBA (Ion Beam Applications S.A.)« less
Abbaspour, Samira; Tanha, Kaveh; Mahmoudian, Babak; Assadi, Majid; Pirayesh Islamian, Jalil
2018-04-22
Collimator geometry has an important contribution on the image quality in SPECT imaging. The purpose of this study was to investigate the effect of parallel hole collimator hole-size on the functional parameters (including the spatial resolution and sensitivity) and the image quality of a HiReSPECT imaging system using SIMIND Monte Carlo program. To find a proper trade-off between the sensitivity and spatial resolution, the collimator with hole diameter ranges of 0.3-1.5 mm (in steps of 0.3 mm) were used with a fixed septal and hole thickness values (0.2 mm and 34 mm, respectively). Lead, Gold, and Tungsten as the LEHR collimator material were also investigated. The results on a 99m Tc point source scanning with the experimental and also simulated systems were matched to validate the simulated imaging system. The results on the simulation showed that decreasing the collimator hole size, especially in the Gold collimator, improved the spatial resolution to 18% and 3.2% compared to the Lead and the Tungsten, respectively. Meanwhile, the Lead collimator provided a good sensitivity in about of 7% and 8% better than that of Tungsten and Gold, respectively. Overall, the spatial resolution and sensitivity showed small differences among the three types of collimator materials assayed within the defined energy. By increasing the hole size, the Gold collimator produced lower scatter and penetration fractions than Tungsten and Lead collimator. The minimum detectable size of hot rods in micro-Jaszczak phantom on the iterative maximum-likelihood expectation maximization (MLEM) reconstructed images, were determined in the sectors of 1.6, 1.8, 2.0, 2.4 and 2.6 mm for scanning with the collimators in hole sizes of 0.3, 0.6, 0.9, 1.2 and 1.5 mm at a 5 cm distance from the phantom. The Gold collimator with hole size of 0.3 mm provided a better image quality with the HiReSPECT imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.
Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi-Ae, E-mail: miaepark@bwh.harvard.edu; Kij
Purpose: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. Methods: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize themore » lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 μCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom compartments. Results: The sensitivity of the novel cone-beam collimator varied with distance from the detector face; it was higher than that of the fan-beam collimator by factors ranging from 2.7 to 162. Examination of the projections of the point sources revealed that only a few holes were distorted or partially blocked, indicating that the intensive manual fabrication process was very successful. Better reconstructed phantom images were obtained from the USCB+FAN collimator pair than from either LEHR or FAN collimation. For the left caudate, located near the center of the brain, the detected counts were 9.8 (8.3) times higher for UCSB compared with LEHR (FAN), averaged over 60 views. The task-specific SNR for detecting a 5% decrease in putamen uptake was 7.4 for USCB and 3.2 for LEHR. Conclusions: The authors have designed and manufactured a novel collimator for brain SPECT imaging. The sensitivity is much higher than that of a fan-beam collimator. Because of differences between the manufactured collimator and its design, reconstruction of the data requires a measured system matrix. The authors have demonstrated the potential of USCB collimation for improved precision in estimating striatal uptake. The novel collimator may be useful for early detection of Parkinson’s disease, and for monitoring therapy response and disease progression.« less
Barban, P S; Minaeva, V M; Pantiukhina, A N; Startseva, M G
1976-06-01
A comparative study was made of the serological properties and virus-neutralizing activity of antiencephalitis gamma-globulin and Fab-fragments isolated from it by gel-filtration. Horse immunoglobulins against the autumno-summer tick-borne encephalitis virus could be disintegrated with the aid of papaine to monovalent Fab-fragments which (according to the complement fixation reaction, the test of suppression of the complement fixation, and the HAIT) retained the serological activity whose level was compared with that of the serological activity of gamma-globulin. Fab-fragments possessed a marked virus-neutralizing activity. The mean value of a logarithm of the neutralization index was 2.65 +/- 0.2 for Fab-fragments and 3.74 +/- 0.38 for gamma-globulin (P less than 0.01).
Two normal incidence collimators designed for the calibration of the extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Jelinsky, Sharon R.; Welsh, Barry; Jelinsky, Patrick; Spiller, Eberhard
1988-01-01
Two Dall-Kirkham, normal incidence collimators have been designed to calibrate the imaging properties of the Extreme Ultraviolet Explorer over the wavelength region from 114 to 2000 A. The mirrors of the short-wavelength, 25-cm diameter collimator are superpolished Zerodur which have been multilayer coated for optimal reflectivity at 114 A. The mirrors of the long-wavelength, 41.25-cm diameter collimator are gold coated Zerodur for high reflectance above 300 A. The design, performance, and future use of these collimators in the extreme ultra-violet is discussed.
Ion beam collimating grid to reduce added defects
Lindquist, Walter B.; Kearney, Patrick A.
2003-01-01
A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.
Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; ...
2015-09-09
We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å -1 was significantly decreased when themore » collimators were installed.« less
Beam feasibility study of a collimator with in-jaw beam position monitors
NASA Astrophysics Data System (ADS)
Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana
2014-12-01
At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.
Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei
2015-12-28
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.
Mini-beam collimator applications at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Xu, Shenglan; Keefe, Lisa J.; Mulichak, Anne; Yan, Lifen; Alp, Ercan E.; Zhao, Jiyong; Fischetti, Robert F.
2011-09-01
In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-μm pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio [1,2]. Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside [3]. This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-μm pinhole has been added to create a "quad-collimator", resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Mössbauer Microscopic system at sector 3-ID.
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg
2017-08-01
During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers
Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...
2015-01-01
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less
NASA Astrophysics Data System (ADS)
Ihsani, Alvin; Farncombe, Troy
2016-02-01
The modelling of the projection operator in tomographic imaging is of critical importance especially when working with algebraic methods of image reconstruction. This paper proposes a distance-driven projection method which is targeted to single-pinhole single-photon emission computed tomograghy (SPECT) imaging since it accounts for the finite size of the pinhole, and the possible tilting of the detector surface in addition to other collimator-specific factors such as geometric sensitivity. The accuracy and execution time of the proposed method is evaluated by comparing to a ray-driven approach where the pinhole is sub-sampled with various sampling schemes. A point-source phantom whose projections were generated using OpenGATE was first used to compare the resolution of reconstructed images with each method using the full width at half maximum (FWHM). Furthermore, a high-activity Mini Deluxe Phantom (Data Spectrum Corp., Durham, NC, USA) SPECT resolution phantom was scanned using a Gamma Medica X-SPECT system and the signal-to-noise ratio (SNR) and structural similarity of reconstructed images was compared at various projection counts. Based on the reconstructed point-source phantom, the proposed distance-driven approach results in a lower FWHM than the ray-driven approach even when using a smaller detector resolution. Furthermore, based on the Mini Deluxe Phantom, it is shown that the distance-driven approach has consistently higher SNR and structural similarity compared to the ray-driven approach as the counts in measured projections deteriorates.
Flexible nuclear medicine camera and method of using
Dilmanian, F.A.; Packer, S.; Slatkin, D.N.
1996-12-10
A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.
Theory of Gamma-Ray Burst Sources
NASA Astrophysics Data System (ADS)
Ramirez-Ruiz, Enrico
In the sections which follow, we shall be concerned predominantly with the theory of γ-ray burst sources. If the concepts there proposed are indeed relevant to an understanding of the nature of these sources, then their existence becomes inextricably linked to the metabolic pathways through which gravity, spin, and energy can combine to form collimated, ultrarelativistic outflows. These threads are few and fragile, as we are still wrestling with trying to understand non-relativistic processes, most notably those associated with the electromagnetic field and gas dynamics. If we are to improve our picture-making we must make more and stronger ties of physical theory. But in reconstructing the creature, we must be guided by our eyes and their extensions. In this introductory section we have therefore attempted to summarise the observed properties of these ultra-energetic phenomena.
Molecular imaging with radionuclides, a powerful technique for studying biological processes in vivo
NASA Astrophysics Data System (ADS)
Cisbani, E.; Cusanno, F.; Garibaldi, F.; Magliozzi, M. L.; Majewski, S.; Torrioli, S.; Tsui, B. M. W.
2007-02-01
Our team is carrying on a systematic study devoted to the design of a SPECT detector with submillimeter resolution and adequate sensitivity (1 cps/kBq). Such system will be used for functional imaging of biological processes at molecular level in small animal. The system requirements have been defined by two relevant applications: study of atherosclerotic plaques characterization and stem cells diffusion and homing. In order to minimize costs and implementation time, the gamma detector will be based—as much as possible—on conventional components: scintillator crystal and position sensitive PhotoMultipliers read by individual channel electronics. A coded aperture collimator should be adapted to maximize the efficiency. The optimal selection of the detector components is investigated by systematic use of Monte-Carlo simulations (and laboratory validation tests); and finally preliminary results are presented and discussed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreyer, J.; Burks, M.; Ham, Y.
2015-10-20
This report summarizes results of Action Sheet 34 - for the cooperative efforts on the field testing and evaluation of a high-resolution, hand-held, gamma-ray spectrometer, known as SPG (Spectroscopic Planar Germanium), for safeguards application such as short notice inspections, UF6 analysis, enrichment determination, and other potential applications. The Spectroscopic Planar Germanium (SPG) has been demonstrated IAEA Physical Inventory Verification (PIV) in South Korea. This field test was a success and the feedback provided by KINAC, IAEA, and national laboratory staff was used to direct efforts to improve the instrument this year. Key points in this report include measurement results frommore » PIV, analysis of spectra with commercially available Ortec U235 and PC-FRAM, and completion of tripod and tungsten collimator and integration of user feedback.« less
Magnetic jets from accretion disks : field structure and X-ray emission
NASA Astrophysics Data System (ADS)
Memola, Elisabetta
2002-06-01
Jets are highly collimated flows of matter. They are present in a large variety of astrophysical sources: young stars, stellar mass black holes (microquasars), galaxies with an active nucleus (AGN) and presumably also intense flashes of gamma-rays. In particular, the jets of microquasars, powered by accretion disks, are probably small-scale versions of the outflows from AGN. Beside observations of astrophysical jet sources, also theoretical considerations have shown that magnetic fields play an important role in jet formation, acceleration and collimation. Collimated jets seem to be systematically associated with the presence of an accretion disk around a star or a collapsed object. If the central object is a black hole, the surrounding accretion disk is the only possible location for a magnetic field generation. We are interested in the formation process of highly relativistic jets as observed from microquasars and AGN. We theoretically investigate the jet collimation region, whose physical dimensions are extremely tiny even compared to radio telescopes spatial resolution. Thus, for most of the jet sources, global theoretical models are, at the moment, the only possibility to gain information about the physical processes in the innermost jet region. For the first time, we determine the global two-dimensional field structure of stationary, axisymmetric, relativistic, strongly magnetized (force-free) jets collimating into an asymptotically cylindrical jet (taken as boundary condition) and anchored into a differentially rotating accretion disk. This approach allows for a direct connection between the accretion disk and the asymptotic collimated jet. Therefore, assuming that the foot points of the field lines are rotating with Keplerian speed, we are able to achieve a direct scaling of the jet magnetosphere in terms of the size of the central object. We find a close compatibility between the results of our model and radio observations of the M87 galaxy innermost jet. We also calculate the X-ray emission in the energy range 0.2--10.1,keV from a microquasar relativistic jet close to its source of 5 solar masses. In order to do it, we apply the jet flow parameters (densities, velocities, temperatures of each volume element along the collimating jet) derived in the literature from the relativistic magnetohydrodynamic equations. We obtain theoretical thermal X-ray spectra of the innermost jet as composition of the spectral contributions of the single volume elements along the jet. Since relativistic effects as Doppler shift and Doppler boosting due to the motion of jets toward us might be important, we investigate how the spectra are affected by them considering different inclinations of the line of sight to the jet axis. Emission lines of highly ionized iron are clearly visible in our spectra, probably also observed in the Galactic microquasars GRS 1915+105 and XTE J1748-288. The Doppler shift of the emission lines is always evident. Due to the chosen geometry of the magnetohydrodynamic jet, the inner X-ray emitting part is not yet collimated. Ergo, depending on the viewing angle, the Doppler boosting does not play a major role in the total spectra. This is the first time that X-ray spectra have been calculated from the numerical solution of a magnetohydrodynamic jet. Astrophysikalische Jets sind stark kollimierte Materieströmungen hoher Geschwindigkeit. Sie stehen im Zusammenhang mit einer Fülle verschiedener astrophysikalischer Objekte wie jungen Sternen, stellaren schwarzen Löchern ('Mikro-Quasare'), Galaxien mit aktivem Kern (AGN) und wahrscheinlich auch mit dem beobachteten intensiven Aufblitzen von Gamma-Strahlung (Gamma Ray Bursts). Insbesondere hat sich gezeigt, dass die Jets der Mikro-Quasare wahrscheinlich als kleinskalige Version der Jets der AGN anzusehen sind. Neben den Beobachtungen haben vor allem auch theoretische Überlegungen gezeigt, dass Magnetfelder bei der Jetentstehung, -beschleunigung und -kollimation eine wichtige Rolle spielen. Weiterhin scheinen Jets systematisch verknüpft zu sein mit dem Vorhandensein einer Akkretionsscheibe um das zentrale Objekt. Insbesondere wenn ein schwarzes Loch den Zentralkörper darstellt, ist die umgebende Akkretionsscheibe der einzig mögliche Ort um Magnetfeld erzeugen zu können. Wir sind speziell interessiert am Entstehungsprozess hoch relativistischer Jets wie sie bei Mikro-Quasaren und AGN beobachtet werden. Insbesondere untersuchen wir die Region, in der der Jet kollimiert, eine Region, deren räumliche Ausdehnung extrem klein ist selbst im Vergleich zur Auflösung der Radioteleskope. Dies ist ein Grund, wieso zum heutigen Zeitpunkt für die meisten Quellen die theoretische Modellierung die einzige Möglichkeit darstellt, um Information über die physikalischen Prozesse in der innersten Region der Jetentstehung zu erhalten. Uns ist es zum ersten Mal gelungen, die globale zwei-dimensionale Magnetfeldstruktur stationärer, axialsymmetrischer, relativistischer und stark magnetisierter (kräfte-freier) Jets zu berechnen, die zum einen asymptotisch in einen zylindrischen Jet kollimieren, zum anderen aber in einer differential rotierenden Akkretionsscheibe verankert sind. Damit erlaubt dieser Ansatz eine physikalische Verkn¨upfung zwischen Akkretionsscheibe und dem asymptotischen Jet. Nimmt man also an, dass die Fupunkte der Magnetfeldlinien mit Keplergeschwindigkeit rotieren, so kann man eine direkte Skalierung der Jetmagnetosphere mit der Gröe des Zentralobjektes erhalten. Unsere Resultate zeigen eine gute Übereinstimmung zwischen unserem Modell und Beobachtungen des Jets von M87. Für das Beispiel eines relativistischen Mikroquasarjets haben wir die Röntgenemission im Bereich von 0.2-10.1 keV berechnet. Dafür haben wir in der Literatur aus den relativistischen magnetohydrodynamischen Gleichungen berechnete Jetgröen (Dichte-, Geschwindigkeits-, und Temperaturprofil) verwendet und das Spektrum für jeden Punkt entlang der Jetströmung abgeleitet. Das theoretische thermische Röntgenspektrum des innersten, heien Teils des Jets erhalten wir zusammengesetzt aus den spektralen Anteilen der einzelnen Volumenelemente entlang des Jets. Um relativistische Effekte wie Dopplerverschiebung und -verstärkung (boosting) aufgrund der Jetbewegung zu untersuchen, haben wir für verschiedene Inklinationswinkel des Jets zur Sichtlinie berechnet, wie die erhaltenen Spektren davon beeinflusst werden. Unsere Spektren zeigen deutlich die hochionisierten Eisen-Emissionslinien, die in den galaktischen Mikroquasaren GRS 1915+105 und XTE J1748-288 andeutungsweise beobachtet wurden. Eine Dopplerverschiebung dieser Linien ist in unseren Spektren deutlichzu sehen. Da die innerste, Röntgenstrahlung emittierende Region des magnetohydrodynamischen Jets allerdings noch unkollimiert ist, spielt Dopplerboosting in unseren Spektren, abhängig vom Sichtwinkel, keine groe Rolle. Mit unseren Resultaten konnte zum ersten Mal ein Röntgenspektrum gewonnen werden, das auf der numerischen Lösung eines magnetohydrodynamischen Jets beruht.
The value of thyroid shielding in intraoral radiography
Hazenoot, Bart; Sanderink, Gerard C H; Berkhout, W Erwin R
2016-01-01
Objectives: To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation. Methods: Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO® (The Phantom Laboratory, Salem, NY) male phantom with a dosemeter. Four protocols were tested: round collimation and rectangular collimation, both with and without thyroid shield. Five exposure positions were deployed: upper incisor (Isup), upper canine (Csup), upper premolar (Psup), upper molar (Msup) and posterior bitewing (BW). Exposures were made with 70 kV and 7 mA and were repeated 10 times. The exposure times were as recommended for the exposure positions for the respective collimator type by the manufacturer for digital imaging. The data were statistically analyzed with a three-way ANOVA test. Significance was set at p < 0.01. Results: The ANOVA test revealed that the differences between mean doses of all protocols and geometries were statistically significant, p < 0.001. For the Isup, thyroid dose levels were comparable with both collimators at a level indicating primary beam exposure. Thyroid shield reduced this dose with circa 75%. For the Csup position, round collimation also revealed primary beam exposure, and thyroid shield yield was 70%. In Csup with rectangular collimation, the thyroid dose was reduced with a factor 4 compared with round collimation and thyroid shield yielded an additional 42% dose reduction. The thyroid dose levels for the Csup, Psup, Msup and BW exposures were lower with rectangular collimation without thyroid shield than with round collimation with thyroid shield. With rectangular collimation, the thyroid shield in Psup, Msup and BW reduced the dose 10% or less, where dose levels were already low, implying no clinical significance. Conclusions: For the exposures in the upper anterior region, thyroid shield results in an important dose reduction for the thyroid. For the other exposures, thyroid shield augments little to the reduction achieved by rectangular collimation. The use of thyroid shield is to be advised, when performing upper anterior radiography. PMID:27008105
Parker, S.
1995-10-24
A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.
Parker, Sherwood
1995-01-01
A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.
Physics from Time Variability of the VHE Blazar PKS 2155-304
NASA Astrophysics Data System (ADS)
Barres de Almeida, Ulisses
2010-10-01
Blazars are the principal extragalactic sources of very high energy gamma-ray emission in the Universe. These objects constitute a sub-class of Active Galactic Nuclei whose emission is dominated by Doppler boosted non-thermal radiation from plasma outflow- ing at relativistic speeds from the central engine. This plasma outflow happens in the form of large-scale collimated structures called jets, which can extend for Mpc in length and transport energy from the central engine of the galaxy to the larger scale intergalac- tic medium. Over thirty such sources have been discovered to date by ground-based gamma-ray telescopes such as H.E.S.S., and PKS 2155-304 is the prototypical southern- hemisphere representative of this population of objects. In this thesis we have studied in detail some aspects of the temporal variability of the jet emission from PKS 2155-304, combining coordinated observations across the electro- magnetic spectrum, from optical polarimetric measurements to X-ray and ground-based gamma-ray data. The temporal properties of the dataset allowed us to derive important physical information about the structure and emission mechanisms of the source and put constraints to the location of the sites of VHE emission and particle acceleration within the jet. We have also derived a sensitive statistical measure, called Kolmogorov distance, which we applied to the large outburst observed from PKS 2155-304 in July 2006, to de- rive the most stringent constraints to date on limits for the violation of Lorentz invariance induced by quantum-gravity effects from AGN measurements.
Associated-particle sealed-tube neutron probe for nonintrusive inspection
NASA Astrophysics Data System (ADS)
Rhodes, E.; Dickerman, C. E.
1997-02-01
The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential for the associated-particle method to move out of the laboratory into field applications. This paper is a review of ANL investigations of this technology. Alpha particles associated with 14-MeV neutrons generated from the D-T reaction travel in the opposite direction and are detected inside the sealed tube. Gamma-ray spectra of resulting neutron reactions in the inspected volume encompassed by the alpha-detector solid angle identify many nuclides. Flight-times determined from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-rays and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation without collimation. A continuous ion beam allows data acquisition by relatively low-bandwidth electronics. When a compact sealed-tube neutron generator is used, a relatively small and easily maintainable inspection system can be developed, that is rugged enough to be transportable. Proof-of-concept laboratory experiments have been performed for simulated explosives, drugs, special nuclear materials, and chemical warfare agents. Efficient collection of maximum information from each detected neutron with low background rates can allow a much lower source intensity than pulsed accelerator methods and yield a preference for an APSTNG system, when it can provide adequate usable source intensity. Based on lessons learned with the present system, an advanced APSTNG system is being designed and built that will be transportable and yield substantial increases in neutron output and target lifetime.
Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy
Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro
2013-01-01
Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood 24Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood 24Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood 24Na was determined using a germanium counter. The activity of 24Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood 24Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible. PMID:23392825
Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy.
Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro
2013-07-01
Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their (24)Na and (38)Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to (24)Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive (24)Na is mainly generated from (23)Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood (24)Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood (24)Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood (24)Na was determined using a germanium counter. The activity of (24)Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood (24)Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible.
Njeh, Christopher F; Salmon, Howard W; Schiller, Claire
2017-01-01
Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.
Image Reconstruction for a Partially Collimated Whole Body PET Scanner
Alessio, Adam M.; Schmitz, Ruth E.; MacDonald, Lawrence R.; Wollenweber, Scott D.; Stearns, Charles W.; Ross, Steven G.; Ganin, Alex; Lewellen, Thomas K.; Kinahan, Paul E.
2008-01-01
Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary. PMID:19096731
Image Reconstruction for a Partially Collimated Whole Body PET Scanner.
Alessio, Adam M; Schmitz, Ruth E; Macdonald, Lawrence R; Wollenweber, Scott D; Stearns, Charles W; Ross, Steven G; Ganin, Alex; Lewellen, Thomas K; Kinahan, Paul E
2008-06-01
Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary.
[Evaluation of Dose Reduction of the Active Collimator in Multi Detector Row CT].
Ueno, Hiroyuki; Matsubara, Kosuke
The purpose of this study was to evaluate the performance of active collimator by changing acquisition parameters and obtaining dose profiles in z-axis direction. Dose profiles along z-axis were obtained using XRQA2 Gafchromic film. As a result, the active collimator reduced overranging about 55% compared to that without the active collimator. In addition, by changing the combination of X-ray beam width (32 mm, 40 mm), pitch factor (1.4, 0.6), and the X-ray tube rotation time (0.5 s/rot, 1.0 s/rot), the overranging changed from 19.4 to 34.9 mm. Although the active collimator is effective for reducing overranging, it is necessary to adjust acquisition parameters by taking the properties of the active collimator for acquisition parameters, especially setting beam width, into consideration.
Evaluation of collimation and imaging configuration in scintimammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.M.W.; Frey, E.C.; Wessell, D.E.
1996-12-31
Conventional scintimammography (SM) with {sup 99m}Tc sestamibi has been limited to taking a single lateral view of the breast using a parallel-hole high resolution (LEHR) collimator. The collimator is placed close to the breast for best possible spatial resolution. However, the collimator geometry precludes imaging the breast from other views. We evaluated using a pinhole collimator instead of a LEHR collimator in SM for improved spatial resolution and detection efficiency, and to allow additional imaging views. Results from theoretical calculations indicated that pinhole collimators could be designed with higher spatial resolution and detection efficiency than LEHR when imaging small tomore » medium size breasts. The geometrical shape of the pinhole collimator allows imaging of the breasts from both the lateral and craniocaudal views. The dual-view images allow better determination of the location of the tumors within the breast and improved detection of tumors located in the medial region of the breast. A breast model that simulates the shape and composition of the breast and breast tumors with different sizes and locations was added to an existing 3D mathematical cardiac-torso (MCAT) phantom. A cylindrically shaped phantom with 10 cm diameter and spherical inserts with different sizes and {sup 99m}Tc sestamibi uptakes with respect to the background provide physical models of breast with tumors. Simulation studies using the breast and MCAT phantoms and experimental studies using the cylindrical phantom confirmed the utility of the pinhole collimator in SM for improved breast tumor detection.« less
Crystal collimator systems for high energy frontier
NASA Astrophysics Data System (ADS)
Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.
2017-07-01
Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.
Zhang, Wenjian; Abramovitch, Kenneth; Thames, Walter; Leon, Inga-Lill K; Colosi, Dan C; Goren, Arthur D
2009-07-01
The objective of this study was to compare the operating efficiency and technical accuracy of 3 different rectangular collimators. A full-mouth intraoral radiographic series excluding central incisor views were taken on training manikins by 2 groups of undergraduate dental and dental hygiene students. Three types of rectangular collimator were used: Type I ("free-hand"), Type II (mechanical interlocking), and Type III (magnetic collimator). Eighteen students exposed one side of the manikin with a Type I collimator and the other side with a Type II. Another 15 students exposed the manikin with Type I and Type III respectively. Type I is currently used for teaching and patient care at our institution and was considered as the control to which both Types II and III were compared. The time necessary to perform the procedure, subjective user friendliness, and the number of technique errors (placement, projection, and cone cut errors) were assessed. The Student t test or signed rank test was used to determine statistical difference (P
Design of an Experiment to Measure ann Using 3H(γ, pn)n at HIγS★
NASA Astrophysics Data System (ADS)
Friesen, F. Q. L.; Ahmed, M. W.; Crowe, B. J.; Crowell, A. S.; Cumberbatch, L. C.; Fallin, B.; Han, Z.; Howell, C. R.; Malone, R. M.; Markoff, D.; Tornow, W.; Witała, H.
2016-03-01
We provide an update on the development of an experiment at TUNL for determining the 1S0 neutron-neutron (nn) scattering length (ann) from differential cross-section measurements of three-body photodisintegration of the triton. The experiment will be conducted using a linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) and tritium gas contained in thin-walled cells. The main components of the planned experiment are a 230 Ci gas target system, a set of wire chambers and silicon strip detectors on each side of the beam axis, and an array of neutron detectors on each side beyond the silicon detectors. The protons emitted in the reaction are tracked in the wire chambers and their energy and position are measured in silicon strip detectors. The first iteration of the experiment will be simplified, making use of a collimator system, and silicon detectors to interrogate the main region of interest near 90° in the polar angle. Monte-Carlo simulations based on rigorous 3N calculations have been conducted to validate the sensitivity of the experimental setup to ann. This research supported in part by the DOE Office of Nuclear Physics Grant Number DE-FG02-97ER41033
Extreme Transients in the High Energy Universe
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2013-01-01
The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.
Hueso-González, Fernando; Fiedler, Fine; Golnik, Christian; Kormoll, Thomas; Pausch, Guntram; Petzoldt, Johannes; Römer, Katja E.; Enghardt, Wolfgang
2016-01-01
Proton beams are promising means for treating tumors. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimizes the damage to normal tissue compared to photon therapy. Nevertheless, inherent range uncertainties cast doubts on the irradiation of tumors close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of protons over photons. In this context, several research groups are developing experimental tools for range verification based on the detection of prompt gammas, a nuclear by-product of the proton irradiation. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf, detector components have been characterized in realistic radiation environments as a step toward a clinical Compton camera. On the one hand, corresponding experimental methods and results obtained during the ENTERVISION training network are reviewed. On the other hand, a novel method based on timing spectroscopy has been proposed as an alternative to collimated imaging systems. The first tests of the timing method at a clinical proton accelerator are summarized, its applicability in a clinical environment for challenging the current safety margins is assessed, and the factors limiting its precision are discussed. PMID:27148473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamani, M.; End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran; Kasesaz, Y.
2015-07-01
In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials withmore » different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)« less
Evaluation of Large Volume SrI2(Eu) Scintillator Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, B W; Cherepy, N J; Drury, O B
2010-11-18
There is an ever increasing demand for gamma-ray detectors which can achieve good energy resolution, high detection efficiency, and room-temperature operation. We are working to address each of these requirements through the development of large volume SrI{sub 2}(Eu) scintillator detectors. In this work, we have evaluated a variety of SrI{sub 2} crystals with volumes >10 cm{sup 3}. The goal of this research was to examine the causes of energy resolution degradation for larger detectors and to determine what can be done to mitigate these effects. Testing both packaged and unpackaged detectors, we have consistently achieved better resolution with the packagedmore » detectors. Using a collimated gamma-ray source, it was determined that better energy resolution for the packaged detectors is correlated with better light collection uniformity. A number of packaged detectors were fabricated and tested and the best spectroscopic performance was achieved for a 3% Eu doped crystal with an energy resolution of 2.93% FWHM at 662keV. Simulations of SrI{sub 2}(Eu) crystals were also performed to better understand the light transport physics in scintillators and are reported. This study has important implications for the development of SrI{sub 2}(Eu) detectors for national security purposes.« less
NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew
2013-08-10
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change inmore » density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.« less
MOJAVE - XIV. Shapes and opening angles of AGN jets
NASA Astrophysics Data System (ADS)
Pushkarev, A. B.; Kovalev, Y. Y.; Lister, M. L.; Savolainen, T.
2017-07-01
We present 15 GHz stacked VLBA images of 373 jets associated with active galactic nuclei (AGNs) having at least five observing epochs within a 20 yr time interval 1994-2015 from the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) programme and/or its precursor, the 2-cm VLBA Survey. These data are supplemented by 1.4 GHz single-epoch VLBA observations of 135 MOJAVE AGNs to probe larger scale jet structures. The typical jet geometry is found to be close to conical on scales from hundreds to thousands of parsecs, while a number of galaxies show quasi-parabolic streamlines on smaller scales. A true jet geometry in a considerable fraction of AGNs appears only after stacking epochs over several years. The jets with significant radial accelerated motion undergo more active collimation. We have analysed total intensity jet profiles transverse to the local jet ridgeline and derived both apparent and intrinsic opening angles of the flows, with medians of 21.5° and 1.3°, respectively. The Fermi LAT-detected gamma-ray AGNs in our sample have, on average, wider apparent and narrower intrinsic opening angle, and smaller viewing angle than non-LAT-detected AGNs. We have established a highly significant correlation between the apparent opening angle and gamma-ray luminosity, driven by Doppler beaming and projection effects.
Solving the Mystery of the Short-Hard Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Fox, Derek
2005-07-01
Eight years after the afterglow detections that revolutionized studies of the long-soft gamma-ray bursts, not even one afterglow of a short-hard GRB has been seen, and the nature of these events has become one of the most important problems in GRB research. The Swift satellite, expected to be in full operation throughout Cycle 14, will report few-arcsecond localizations for short-hard bursts in minutes, enabling prompt, deep optical afterglow searches for the first time. Discovery and observation of the first short-hard optical afterglows will answer most of the critical questions about these events: What are their distances and energies? Do they occur in distant galaxies, and if so, in which regions of those galaxies? Are they the result of collimated or quasi-spherical explosions? In combination with an extensive rapid-response ground-based campaign, we propose to make the critical high-sensitivity HST TOO observations that will allow us to answer these questions. If theorists are correct in attributing the short-hard bursts to binary neutron star coalescence events, then they will serve as signposts to the primary targeted source population for ground-based gravitational-wave detectors, and short-hard burst studies will have a vital role to play in guiding those observations.
Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang
2004-05-25
A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.
Martin, Stephen B.; Schauer, Elizabeth S.; Blum, David H.; Kremer, Paul A.; Bahnfleth, William P.; Freihaut, James D.
2017-01-01
We developed, characterized, and tested a new dual-collimation aqueous UV reactor to improve the accuracy and consistency of aqueous k-value determinations. This new system is unique because it collimates UV energy from a single lamp in two opposite directions. The design provides two distinct advantages over traditional single-collimation systems: 1) real-time UV dose (fluence) determination; and 2) simple actinometric determination of a reactor factor that relates measured irradiance levels to actual irradiance levels experienced by the microbial suspension. This reactor factor replaces three of the four typical correction factors required for single-collimation reactors. Using this dual-collimation reactor, Bacillus subtilis spores demonstrated inactivation following the classic multi-hit model with k = 0.1471 cm2/mJ (with 95% confidence bounds of 0.1426 to 0.1516). PMID:27498232
NASA Technical Reports Server (NTRS)
Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.
1981-01-01
A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.
SU-F-T-558: ArcCheck for Patient Specific QA in Stereotactic Ablative Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, P; RMIT University, Bundoora; Tajaldeen, A
2016-06-15
Purpose: Stereotactic Ablative Radiotherapy (SABR) is one of the most preferred treatment techniques for early stage lung cancer. This technique has been extended to other treatment sites like Spine, Liver, Scapula, Sternum etc., This has resulted in increased physics QA time on machine. In this study, we’ve tested the feasibility of using ArcCheck as an alternative method to replace film dosimetry. Methods: Twelve patients with varied diagnosis of Lung, Liver, scapula, sternum and Spine undergoing SABR were selected for this study. Pre-treatment QA was performed for all the patients which include ionization chamber and film dosimetry. The required gamma criteriamore » for each SABR plan to pass QA and proceed to treatment is 95% (3%,1mm). In addition to this routine process, the treatment plans were exported on to an ArcCheck phantom. The planned and measured dose from the ArcCheck device were compared using four different gamma criteria: 2%,2 mm, 3%,2 mm, 3%,1 mm and 3%, 3 mm. In addition to this, we’ve also introduced errors to gantry, collimator and couch angle to assess sensitivity of the ArcCheck with potential delivery errors. Results: The ArcCheck mean passing rates for all twelve cases were 76.1%±9.7% for gamma criteria 3%,1 mm, 89.5%±5.3% for 2%,2 mm, 92.6%±4.2% for 3%,2 mm, and 97.6%±2.4% for 3%,3 mm gamma criteria. When SABR spine cases are excluded, we observe ArcCheck passing rates higher than 95% for all the studied cases with 3%, 3mm, and ArcCheck results in acceptable agreement with the film gamma results. Conclusion: Our ArcCheck results at 3%, 3 mm were found to correlate well with our non-SABR spine routine patient specific QA results (3%,1 mm). We observed significant reduction in QA time on using ArcCheck for SABR QA. This study shows that ArcCheck could replace film dosimetry for all sites except SABR spine.« less
Ding, Chuxiong; Hrycushko, Brian; Whitworth, Louis; Li, Xiang; Nedzi, Lucien; Weprin, Bradley; Abdulrahman, Ramzi; Welch, Babu; Jiang, Steve B; Wardak, Zabi; Timmerman, Robert D
2017-10-01
Radiosurgery is an established technique to treat cerebral arteriovenous malformations (AVMs). Obliteration of larger AVMs (> 10-15 cm 3 or diameter > 3 cm) in a single session is challenging with current radiosurgery platforms due to toxicity. We present a novel technique of multistage stereotactic radiosurgery (SRS) for large intracranial arteriovenous malformations (AVM) using the Gamma Knife system. Eighteen patients with large (> 10-15 cm 3 or diameter > 3 cm) AVMs, which were previously treated using a staged SRS technique on the Cyberknife platform, were retrospectively selected for this study. The AVMs were contoured and divided into 3-8 subtargets to be treated sequentially in a staged approach at half to 4 week intervals. The prescription dose ranged from 15 Gy to 20 Gy, depending on the subtarget number, volume, and location. Gamma Knife plans using multiple collimator settings were generated and optimized. The coordinates of each shot from the initial plan covering the total AVM target were extracted based on their relative positions within the frame system. The shots were regrouped based on their location with respect to the subtarget contours to generate subplans for each stage. The delivery time of each shot for a subtarget was decay corrected with 60 Co for staging the treatment course to generate the same dose distribution as that planned for the total AVM target. Conformality indices and dose-volume analysis were performed to evaluate treatment plans. With the shot redistribution technique, the composite dose for the multistaged treatment of multiple subtargets is equivalent to the initial plan for total AVM target. Gamma Knife plans resulted in an average PTV coverage of 96.3 ± 0.9% and a PITV of 1.23 ± 0.1. The resulting Conformality indices, V 12Gy and R 50 dose spillage values were 0.76 ± 0.05, 3.4 ± 1.8, and 3.1 ± 0.5 respectively. The Gamma Knife system can deliver a multistaged conformal dose to treat large AVMs when correcting for translational setup errors of each shot at each staged treatment. © 2017 American Association of Physicists in Medicine.
Imaging electron flow from collimating contacts in graphene
NASA Astrophysics Data System (ADS)
Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.
2018-04-01
The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B = 0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B = 0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ = 9° for electron flow from the collimating contact, compared with Δθ = 54° for the non-collimating case.
Khorshidi, Abdollah; Ashoor, Mansour
2014-05-01
This study investigates modulation transfer function (MTF) in parallel beam (PB) and fan beam (FB) collimators using the Monte Carlo method with full width at half maximum (FWHM), square and circular-shaped holes, and scatter and penetration (S + P) components. A regulation similar to the lead-to-air ratio was used for both collimators to estimate output data. The hole pattern was designed to compare FB by PB parameters. The radioactive source in air and in a water phantom placed in front of the collimators was simulated using MCNP5 code. The test results indicated that the square holes in PB (PBs) had better FWHM than did the cylindrical (PBc) holes. In contrast, the cylindrical holes in the FB (FBc) had better FWHM than the square holes. In general, the resolution of FBc was better than that of the PBc in air and scatter mediums. The S + P decreased for all collimators as the distance from the source to the collimator surface (z) increased. The FBc had a lower S + P than FBs, but PBc had a higher S + P than PBs. Of the FB and PB collimators with the identical hole shapes, PBs had a smaller S + P than FBs, and FBc had a smaller S + P than PBc. The MTF value for the FB was greater than for the PB and had increased spatial frequency; the FBc had higher MTF than the FBs and PB collimators. Estimating the FB using PB parameters and diverse hole shapes may be useful in collimator design to improve the resolution and efficiency of SPECT images.
Bowen, Jason D; Huang, Qiu; Ellin, Justin R; Lee, Tzu-Cheng; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho
2013-10-21
Single photon emission computed tomography (SPECT) myocardial perfusion imaging remains a critical tool in the diagnosis of coronary artery disease. However, after more than three decades of use, photon detection efficiency remains poor and unchanged. This is due to the continued reliance on parallel-hole collimators first introduced in 1964. These collimators possess poor geometric efficiency. Here we present the performance evaluation results of a newly designed multipinhole collimator with 20 pinhole apertures (PH20) for commercial SPECT systems. Computer simulations and numerical observer studies were used to assess the noise, bias and diagnostic imaging performance of a PH20 collimator in comparison with those of a low energy high resolution (LEHR) parallel-hole collimator. Ray-driven projector/backprojector pairs were used to model SPECT imaging acquisitions, including simulation of noiseless projection data and performing MLEM/OSEM image reconstructions. Poisson noise was added to noiseless projections for realistic projection data. Noise and bias performance were investigated for five mathematical cardiac and torso (MCAT) phantom anatomies imaged at two gantry orbit positions (19.5 and 25.0 cm). PH20 and LEHR images were reconstructed with 300 MLEM iterations and 30 OSEM iterations (ten subsets), respectively. Diagnostic imaging performance was assessed by a receiver operating characteristic (ROC) analysis performed on a single MCAT phantom; however, in this case PH20 images were reconstructed with 75 pixel-based OSEM iterations (four subsets). Four PH20 projection views from two positions of a dual-head camera acquisition and 60 LEHR projections were simulated for all studies. At uniformly-imposed resolution of 12.5 mm, significant improvements in SNR and diagnostic sensitivity (represented by the area under the ROC curve, or AUC) were realized when PH20 collimators are substituted for LEHR parallel-hole collimators. SNR improves by factors of 1.94-2.34 for the five patient anatomies and two orbital positions studied. For the ROC analysis the PH20 AUC is larger than the LEHR AUC with a p-value of 0.0067. Bias performance, however, decreases with the use of PH20 collimators. Systematic analyses showed PH20 collimators present improved diagnostic imaging performance over LEHR collimators, requiring only collimator exchange on existing SPECT cameras for their use.
NASA Astrophysics Data System (ADS)
Bowen, Jason D.; Huang, Qiu; Ellin, Justin R.; Lee, Tzu-Cheng; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho
2013-10-01
Single photon emission computed tomography (SPECT) myocardial perfusion imaging remains a critical tool in the diagnosis of coronary artery disease. However, after more than three decades of use, photon detection efficiency remains poor and unchanged. This is due to the continued reliance on parallel-hole collimators first introduced in 1964. These collimators possess poor geometric efficiency. Here we present the performance evaluation results of a newly designed multipinhole collimator with 20 pinhole apertures (PH20) for commercial SPECT systems. Computer simulations and numerical observer studies were used to assess the noise, bias and diagnostic imaging performance of a PH20 collimator in comparison with those of a low energy high resolution (LEHR) parallel-hole collimator. Ray-driven projector/backprojector pairs were used to model SPECT imaging acquisitions, including simulation of noiseless projection data and performing MLEM/OSEM image reconstructions. Poisson noise was added to noiseless projections for realistic projection data. Noise and bias performance were investigated for five mathematical cardiac and torso (MCAT) phantom anatomies imaged at two gantry orbit positions (19.5 and 25.0 cm). PH20 and LEHR images were reconstructed with 300 MLEM iterations and 30 OSEM iterations (ten subsets), respectively. Diagnostic imaging performance was assessed by a receiver operating characteristic (ROC) analysis performed on a single MCAT phantom; however, in this case PH20 images were reconstructed with 75 pixel-based OSEM iterations (four subsets). Four PH20 projection views from two positions of a dual-head camera acquisition and 60 LEHR projections were simulated for all studies. At uniformly-imposed resolution of 12.5 mm, significant improvements in SNR and diagnostic sensitivity (represented by the area under the ROC curve, or AUC) were realized when PH20 collimators are substituted for LEHR parallel-hole collimators. SNR improves by factors of 1.94-2.34 for the five patient anatomies and two orbital positions studied. For the ROC analysis the PH20 AUC is larger than the LEHR AUC with a p-value of 0.0067. Bias performance, however, decreases with the use of PH20 collimators. Systematic analyses showed PH20 collimators present improved diagnostic imaging performance over LEHR collimators, requiring only collimator exchange on existing SPECT cameras for their use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, A; Gelover, E; Wang, D
Purpose: A dynamic collimation system (DCS) based on two orthogonal pairs of mobile trimmer blades has recently been proposed to reduce the lateral penumbra in spot scanning proton therapy (SSPT). The purpose of this work is to quantify the therapeutic benefit of using the DCS for SSPT of brain cancer by comparing un-collimated and collimated treatment plans. Methods: Un-collimated and collimated brain treatment plans were created for five patients, previously treated with SSPT, using an in-house treatment planning system capable of modeling collimated and un-collimated beamlets. Un-collimated plans reproduced the clinically delivered plans in terms of target coverage and organ-at-riskmore » (OAR) sparing, whereas collimated plans were re-optimized to improve the organ-at-risk sparing while maintaining target coverage. Physical and biological comparison metrics such as dose distribution conformity, mean and maximum doses, normal tissue complication probability (NTCP) and risk of secondary brain cancer were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 7.1% (95% CI: 4.2%–9.9%; p<0.01) and 14.3% (95% CI: 7.8%–20.8%; p<0.01), respectively. This yielded an average reduction of 12.0% (95% CI: 8.2%–15.7%; p<0.01) for the brain necrosis NTCP using the Flickinger model, and 14.2% (95% CI: 7.7%–20.8%; p<0.01) for the risk of secondary brain cancer. The average maximum dose reductions for the brainstem, chiasm, optic nerves, cochleae and pituitary gland when comparing un-collimated and collimated plans were 14.3%, 10.4%, 11.2%, 13.0%, 12.9% and 3.4%, respectively. Evaluating individual plans using the Lyman-Kutcher-Burman NTCP model also yielded improvements. Conclusion: The lateral penumbra reduction performed by the DCS increases the normal tissue sparing capabilities of SSPT for brain tumor treatment while preserving the target coverage. This research was financially supported by Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium)« less
Chalcogenide molded freeform optics for mid-infrared lasers
NASA Astrophysics Data System (ADS)
Chenard, Francois; Alvarez, Oseas; Yi, Allen
2017-05-01
High-precision chalcogenide molded micro-lenses were produced to collimate mid-infrared Quantum Cascade Lasers (QCLs). Molded cylindrical micro-lens prototypes with aspheric contour (acylindrical), high numerical aperture (NA 0.8) and small focal length (f<2 mm) were fabricated to collimate the QCL fast-axis beam. Another innovative freeform micro-lens has an input acylindrical surface to collimate the fast axis and an orthogonal output acylindrical surface to collimate the slow axis. The thickness of the freeform lens is such that the output fast- and slow-axis beams are circular. This paper presents results on the chalcogenide molded freeform micro-lens designed to collimate and circularize QCL at 4.6 microns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pino, Francisco; Roé, Nuria; Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es
2015-02-15
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Threemore » methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery coefficients in the reconstructed images. To avoid the appearance of ring-type artifacts, the number of iterations should be limited. In low magnification systems, the intrinsic detector PSF plays a major role in improvement of the image-quality parameters.« less
Horvai, Andrew E; Schaefer, Jochen T; Nakakura, Eric K; O'Donnell, Richard J
2008-05-01
Dedifferentiated liposarcoma can be readily diagnosed by the juxtaposition of a well-differentiated liposarcoma to a nonlipogenic sarcoma. However, if the lipogenic component is not abundant due to surgical sampling or small biopsy, dedifferentiated liposarcoma can be difficult to distinguish from other poorly different sarcomas. Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a nuclear hormone receptor that plays a critical role in adipocyte differentiation. Prior studies have not only demonstrated PPAR-gamma mRNA in various subtypes of liposarcoma but have also shown that adipocyte differentiation can be induced in some liposarcomas by a PPAR-gamma agonist. In the present study, we investigated whether immunostaining for PPAR-gamma can be used to distinguish dedifferentiated liposarcoma from other retroperitoneal sarcomas. We examined a series of 40 dedifferentiated liposarcoma and compared the staining for PPAR-gamma to a series of 24 retroperitoneal sarcomas that lacked lipogenic differentiation. A monoclonal antibody against PPAR-gamma was used to stain formalin-fixed paraffin-embedded tissue. Specific nuclear immunostaining was present in 37/40 (93%) of the dedifferentiated liposarcoma and 6/24 (25%) of the other sarcomas (two leiomyosarcomas and four undifferentiated sarcomas). Interestingly, immunostaining for CDK4 and/or MDM2 was identified in three of the four PPAR-gamma-positive undifferentiated sarcomas, raising the possibility that these may represent dedifferentiated liposarcoma. This is the first study demonstrating the utility of PPAR-gamma immunohistochemistry in the diagnosis of dedifferentiated liposarcoma in tissue sections. Although not completely specific, the presence of PPAR-gamma staining, in combination with histologic findings and other markers, can aid in the diagnosis of dedifferentiated liposarcoma, particularly on small biopsies that may not sample the well-differentiated component.
Oscillatory Hierarchy Controlling Cortical Excitability and Stimulus Integration
NASA Technical Reports Server (NTRS)
Shah, A. S.; Lakatos, P.; McGinnis, T.; O'Connell, N.; Mills, A.; Knuth, K. H.; Chen, C.; Karmos, G.; Schroeder, C. E.
2004-01-01
Cortical gamma band oscillations have been recorded in sensory cortices of cats and monkeys, and are thought to aid in perceptual binding. Gamma activity has also been recorded in the rat hippocampus and entorhinal cortex, where it has been shown, that field gamma power is modulated at theta frequency. Since the power of gamma activity in the sensory cortices is not constant (gamma-bursts). we decided to examine the relationship between gamma power and the phase of low frequency oscillation in the auditory cortex of the awake macaque. Macaque monkeys were surgically prepared for chronic awake electrophysiological recording. During the time of the experiments. linear array multielectrodes were inserted in area AI to obtain laminar current source density (CSD) and multiunit activity profiles. Instantaneous theta and gamma power and phase was extracted by applying the Morlet wavelet transformation to the CSD. Gamma power was averaged for every 1 degree of low frequency oscillations to calculate power-phase relation. Both gamma and theta-delta power are largest in the supragranular layers. Power modulation of gamma activity is phase locked to spontaneous, as well as stimulus-related local theta and delta field oscillations. Our analysis also revealed that the power of theta oscillations is always largest at a certain phase of delta oscillation. Auditory stimuli produce evoked responses in the theta band (Le., there is pre- to post-stimulus addition of theta power), but there is also indication that stimuli may cause partial phase re-setting of spontaneous delta (and thus also theta and gamma) oscillations. We also show that spontaneous oscillations might play a role in the processing of incoming sensory signals by 'preparing' the cortex.
Development of a Method to Assess the Precision Of the z-axis X-ray Beam Collimation in a CT Scanner
NASA Astrophysics Data System (ADS)
Kim, Yon-Min
2018-05-01
Generally X-ray equipment specifies the beam collimator for the accuracy measurement as a quality control item, but the computed tomography (CT) scanner with high dose has no collimator accuracy measurement item. If the radiation dose is to be reduced, an important step is to check if the beam precisely collimates at the body part for CT scan. However, few ways are available to assess how precisely the X-ray beam is collimated. In this regard, this paper provides a way to assess the precision of z-axis X-ray beam collimation in a CT scanner. After the image plate cassette had been exposed to the X-ray beam, the exposed width was automatically detected by using a computer program developed by the research team to calculate the difference between the exposed width and the imaged width (at isocenter). The result for the precision of z-axis X-ray beam collimation showed that the exposed width was 3.8 mm and the overexposure was high at 304% when a narrow beam of a 1.25 mm imaged width was used. In this study, the precision of the beam collimation of the CT scanner, which is frequently used for medical services, was measured in a convenient way by using the image plate (IP) cassette.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Syam; Aswathi, C.P.
Purpose: To evaluate the directional dependency of 2D seven 29 ion chamber array clinically with different IMRT plans. Methods: 25 patients already treated with IMRT plans were selected for the study. Verification plans were created for each treatment plan in eclipse 10 treatment planning system using the AAA algorithm with the 2D array and the Octavius CT phantom. Verification plans were done 2 times for a single patient. First plan with real IMRT (plan-related approach) and second plan with zero degree gantry angle (field-related approach). Measurements were performed on a Varian Clinac-iX, linear accelerator equipped with a millennium 120 multileafmore » collimator. Fluence was measured for all the delivered plans and analyzed using the verisoft software. Comparison was done by selecting the fluence delivered in static gantry (zero degree gantry) versus IMRT with real gantry angles. Results: The gamma pass percentage is greater than 97 % for all IMRT delivered with zero gantry angle and between 95%–98% for real gantry angles. Dose difference between the TPS calculated and measured for IMRT delivered with zero gantry angle was found to be between (0.03 to 0.06Gy) and with real gantry angles between (0.02 to 0.05Gy). There is a significant difference between the gamma analysis between the zero degree and true angle with a significance of 0.002. Standard deviation of gamma pass percentage between the IMRT plans with zero gantry angle was 0.68 and for IMRT with true gantry angle was found to be 0.74. Conclusion: The gamma analysis for IMRT with zero degree gantry angles shows higher pass percentage than IMRT delivered with true gantry angles. Verification plans delivered with true gantry angles lower the verification accuracy when 2D array is used for measurement.« less
Monitoring Radionuclide Transport and Spatial Distribution with a 1D Gamma-Ray Scanner
NASA Astrophysics Data System (ADS)
Dozier, R.; Erdmann, B.; Sams, A.; Barber, K.; DeVol, T. A.; Moysey, S. M.; Powell, B. A.
2016-12-01
Understanding radionuclide movement in the environment is important for informing strategies for radioactive waste management and disposal. A 1-dimensional (1D) gamma-ray emission scanning system was developed to investigate radionuclide transport behavior within soils. Two case studies illustrate the use of the system for non-destructively monitoring transport processes within a soil column. The first case study explores the system capabilities for simultaneously detecting technetium-99m (99mTc), iodine-131 (131I), and sodium-22 (22Na) moving through a column (length = 14.1 cm, diameter = 3.8 cm) packed with soil from the Department of Energy's Savannah River Site. A sodium iodide (NaI) detector was placed at 4 cm above the influent and a Bismuth germanate (BGO) detector at about 10 cm above the influent. The NaI detector results show 99mTc, 131I, and 22Na having similar breakthrough curves with the tail of 99mTc being lower than that of 131I and 22Na. NaCl tracer results compliment the gamma-ray emission measurements. These results are promising because we are able to monitor movement of the isotopes in the column in real-time. In the second case study, the 1D gamma scanner was used to quantify radionuclide mobility within a lysimeter (length = 51 cm, diameter = 10 cm). A cementitious waste form containing cobalt-60 (60Co), barium-133 (133Ba), cesium-137 (137Cs), and europium-152 (152Eu), with the amount of each contained in the cement ranging from 3 to 8.5 MBq, was placed at the midpoint of the lysimeter. The lysimeter was then exposed to natural rainfall and environmental conditions and effluent samples were collected and quantified on a quarterly basis. Following 3.3 years of exposure, the radionuclide distribution in the lysimeter was quantified with a 0.64 cm collimated high-purity germanium gamma-ray spectrometer. Diffusion of 137Cs away from the cementitious wasteform was observed. No movement was seen for 133Ba, 60Co, or 152Eu within the detection limits of the spectrometer. An activity balance was used to quantify the detection efficiency of the spectrometer as a function of gamma-ray energy.
Determination of MLC model parameters for Monaco using commercial diode arrays.
Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian
2016-07-08
Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. © 2016 The Authors
Optical Displacement Sensor for Sub-Hertz Applications
NASA Technical Reports Server (NTRS)
Abramovici, Alexander; Chiao, Meng P.; Dekens, Frank G.
2008-01-01
A document discusses a sensor made from off-the-shelf electro-optical photodiodes and electronics that achieves 20 nm/(Hz)(exp 1/2) displacement sensitivity at 1 mHz. This innovation was created using a fiber-coupled laser diode (or Nd:YAG) through a collimator and an aperture as the illumination source. Together with a germanium quad photodiode, the above-mentioned displacement sensor sensitivities have been achieved. This system was designed to aid the Laser Interferometer Space Antenna (LISA) with microthruster tests and to be a backup sensor for monitoring the relative position between a proof mass and a spacecraft for drag-free navigation. The optical displacement sensor can be used to monitor any small displacement from a remote location with minimal invasion on the system.
Documentation of Apollo 15 samples
NASA Technical Reports Server (NTRS)
Sutton, R. L.; Hait, M. H.; Larson, K. B.; Swann, G. A.; Reed, V. S.; Schaber, G. G.
1972-01-01
A catalog is presented of the documentation of Apollo 15 samples using photographs and verbal descriptions returned from the lunar surface. Almost all of the Apollo 15 samples were correlated with lunar surface photographs, descriptions, and traverse locations. Where possible, the lunar orientations of rock samples were reconstructed in the lunar receiving laboratory, using a collimated light source to reproduce illumination and shadow characteristics of the same samples shown in lunar photographs. In several cases, samples were not recognized in lunar surface photographs, and their approximate locations are known only by association with numbered sample bags used during their collection. Tables, photographs, and maps included in this report are designed to aid in the understanding of the lunar setting of the Apollo 15 samples.
Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders
2007-03-01
Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of the collimator will minimize edge scatter from glancing incidence. The major portions of the collimator leafs can then be made of steel or even aluminum, so that the total weight of the multileaf collimator will be as low as 10 kg, which may even allow high-speed collimation in real time in synchrony with organ movements. To demonstrate the efficiency of this collimator design in combination with pencil beam scanning, optimal radiobiological treatments of an advanced cervix cancer were simulated. Different geometrical collimator designs were tested for bremsstrahlung, electron, and light ion beams. With a 10 mm half-width elementary scanned photon beam and a steel collimator with tungsten edges, it was possible to make as effective treatments as obtained with intensity modulated beams of full resolution, i.e., here 5 mm resolution in the fluence map. In combination with narrow pencil beam scanning, such a collimator may provide ideal delivery of photons, electrons, or light ions for radiation therapy synchronized to breathing and other organ motions. These high-energy photon and light ion beams may allow three-dimensional in vivo verification of delivery and thereby clinical implementation of the BioArt approach using Biologically Optimized three-dimensional in vivo predictive Assay based adaptive Radiation Therapy [Brahme, Acta Oncol. 42, 123-126 (2003)].
WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, L; Thomas, C; Syme, A
2016-06-15
Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less
NASA Astrophysics Data System (ADS)
Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.
2018-05-01
Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.
Sandrini, Emmily Santos; da Silva, Ademir Xavier; da Silva, Claudia Menezes
2018-05-25
The collimator in volumetric modulated arc therapy (VMAT) planning is rotated to minimize tongue-and-groove effect and interleaf leakage. The aim of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plan for patients with lung cancer undergoing stereotactic body radiation therapy (SBRT) treatment. In the present investigation discrepancies between the calculated dose distributions with different collimators rotations have been studied. Six different collimators rotations (0, 10, 20, 30, 45 and 90 degrees), 6 MV x-ray non-flattened from a TrueBeam accelerator equipped with High-Definition 120MLC were used, as well as two planning technique: One full arc and two half arcs. For rotation between 10 and 45 degrees there were not found a significant variation meanwhile collimator rotation of 0 and 90° may impact on dose distribution resulting in unexpected dose variation. The homogeneity, conformity and gradient indexes as well as dose in organs at risk reached their best values with the half arcs technique and collimator angle between 20° and 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bending self-collimated one-way light by using gyromagnetic photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qing-Bo; Jiangsu Key Construction Laboratory of Modern Measurement Technology and Intelligent System, Huaiyin Normal University, Huaian 223300; Li, Zhen
2015-12-14
We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.
NASA Astrophysics Data System (ADS)
Min, Byung Jun; Choi, Yong; Lee, Nam-Yong; Lee, Kisung; Ahn, Young Bok; Joung, Jinhun
2009-07-01
The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180°. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/μCi and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180° orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.
A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy
NASA Astrophysics Data System (ADS)
Winterhalter, C.; Lomax, A.; Oxley, D.; Weber, D. C.; Safai, S.
2018-01-01
The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.
Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi
2012-01-01
Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.
Verdun, F R; Noel, A; Meuli, R; Pachoud, M; Monnin, P; Valley, J-F; Schnyder, P; Denys, A
2004-10-01
The purpose of this paper is to compare the influence of detector collimation on the signal-to-noise ratio (SNR) for a 5.0 mm reconstructed slice thickness for four multi-detector row CT (MDCT) units. SNRs were measured on Catphan test phantom images from four MDCT units: a GE LightSpeed QX/I, a Marconi MX 8000, a Toshiba Aquilion and a Siemens Volume Zoom. Five-millimetre-thick reconstructed slices were obtained from acquisitions performed using detector collimations of 2.0-2.5 mm and 5.0 mm, 120 kV, a 360 degrees tube rotation time of 0.5 s, a wide range of mA and pitch values in the range of 0.75-0.85 and 1.25-1.5. For each set of acquisition parameters, a Wiener spectrum was also calculated. Statistical differences in SNR for the different acquisition parameters were evaluated using a Student's t-test (P<0.05). The influence of detector collimation on the SNR for a 5.0-mm reconstructed slice thickness is different for different MDCT scanners. At pitch values lower than unity, the use of a small detector collimation to produce 5.0-mm thick slices is beneficial for one unit and detrimental for another. At pitch values higher than unity, using a small detector collimation is beneficial for two units. One manufacturer uses different reconstruction filters when switching from a 2.5- to a 5.0-mm detector collimation. For a comparable reconstructed slice thickness, using a smaller detector collimation does not always reduce image noise. Thus, the impact of the detector collimation on image noise should be determined by standard deviation calculations, and also by assessing the power spectra of the noise. Copyright 2004 Springer-Verlag
The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery
NASA Astrophysics Data System (ADS)
Echner, G. G.; Kilby, W.; Lee, M.; Earnst, E.; Sayeh, S.; Schlaefer, A.; Rhein, B.; Dooley, J. R.; Lang, C.; Blanck, O.; Lessard, E.; Maurer, C. R., Jr.; Schlegel, W.
2009-09-01
Robotic radiosurgery using more than one circular collimator can improve treatment plan quality and reduce total monitor units (MU). The rationale for an iris collimator that allows the field size to be varied during treatment delivery is to enable the benefits of multiple-field-size treatments to be realized with no increase in treatment time due to collimator exchange or multiple traversals of the robotic manipulator by allowing each beam to be delivered with any desired field size during a single traversal. This paper describes the Iris™ variable aperture collimator (Accuray Incorporated, Sunnyvale, CA, USA), which incorporates 12 tungsten-copper alloy segments in two banks of six. The banks are rotated by 30° with respect to each other, which limits the radiation leakage between the collimator segments and produces a 12-sided polygonal treatment beam. The beam is approximately circular, with a root-mean-square (rms) deviation in the 50% dose radius of <0.8% (corresponding to <0.25 mm at the 60 mm field size) and an rms variation in the 20-80% penumbra width of about 0.1 mm at the 5 mm field size increasing to about 0.5 mm at 60 mm. The maximum measured collimator leakage dose rate was 0.07%. A commissioning method is described by which the average dose profile can be obtained from four profile measurements at each depth based on the periodicity of the isodose line variations with azimuthal angle. The penumbra of averaged profiles increased with field size and was typically 0.2-0.6 mm larger than that of an equivalent fixed circular collimator. The aperture reproducibility is <=0.1 mm at the lower bank, diverging to <=0.2 mm at a nominal treatment distance of 800 mm from the beam focus. Output factors (OFs) and tissue-phantom-ratio data are identical to those used for fixed collimators, except the OFs for the two smallest field sizes (5 and 7.5 mm) are considerably lower for the Iris Collimator. If average collimator profiles are used, the assumption of circular symmetry results in dose calculation errors that are <1 mm or <1% for single beams across the full range of field sizes; errors for multiple non-coplanar beam treatment plans are expected to be smaller. Treatment plans were generated for 19 cases using the Iris Collimator (12 field sizes) and also using one and three fixed collimators. The results of the treatment planning study demonstrate that the use of multiple field sizes achieves multiple plan quality improvements, including reduction of total MU, increase of target volume coverage and improvements in conformality and homogeneity compared with using a single field size for a large proportion of the cases studied. The Iris Collimator offers the potential to greatly increase the clinical application of multiple field sizes for robotic radiosurgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayorga, P. A.; Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada; Brualla, L.
2014-01-15
Purpose: Retinoblastoma is the most common intraocular malignancy in the early childhood. Patients treated with external beam radiotherapy respond very well to the treatment. However, owing to the genotype of children suffering hereditary retinoblastoma, the risk of secondary radio-induced malignancies is high. The University Hospital of Essen has successfully treated these patients on a daily basis during nearly 30 years using a dedicated “D”-shaped collimator. The use of this collimator that delivers a highly conformed small radiation field, gives very good results in the control of the primary tumor as well as in preserving visual function, while it avoids themore » devastating side effects of deformation of midface bones. The purpose of the present paper is to propose a modified version of the “D”-shaped collimator that reduces even further the irradiation field with the scope to reduce as well the risk of radio-induced secondary malignancies. Concurrently, the new dedicated “D”-shaped collimator must be easier to build and at the same time produces dose distributions that only differ on the field size with respect to the dose distributions obtained by the current collimator in use. The scope of the former requirement is to facilitate the employment of the authors' irradiation technique both at the authors' and at other hospitals. The fulfillment of the latter allows the authors to continue using the clinical experience gained in more than 30 years. Methods: The Monte Carlo codePENELOPE was used to study the effect that the different structural elements of the dedicated “D”-shaped collimator have on the absorbed dose distribution. To perform this study, the radiation transport through a Varian Clinac 2100 C/D operating at 6 MV was simulated in order to tally phase-space files which were then used as radiation sources to simulate the considered collimators and the subsequent dose distributions. With the knowledge gained in that study, a new, simpler, “D”-shaped collimator is proposed. Results: The proposed collimator delivers a dose distribution which is 2.4 cm wide along the inferior-superior direction of the eyeball. This width is 0.3 cm narrower than that of the dose distribution obtained with the collimator currently in clinical use. The other relevant characteristics of the dose distribution obtained with the new collimator, namely, depth doses at clinically relevant positions, penumbrae width, and shape of the lateral profiles, are statistically compatible with the results obtained for the collimator currently in use. Conclusions: The smaller field size delivered by the proposed collimator still fully covers the planning target volume with at least 95% of the maximum dose at a depth of 2 cm and provides a safety margin of 0.2 cm, so ensuring an adequate treatment while reducing the irradiated volume.« less
Brain single-photon emission CT physics principles.
Accorsi, R
2008-08-01
The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.
A cargo inspection system based on pulsed fast neutron analysis (PFNA).
Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J
2005-01-01
A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described.
NASA Astrophysics Data System (ADS)
Fraschetti, F.
2018-04-01
We propose a qualitative scenario to interpret the argued association between the direct measurement of the gravitational wave event GW150914 by Laser Interferometer Gravitational Wave Observatory (LIGO)-Virgo collaborations and the hard X-ray transient detected by Fermi-Gamma-ray Burst Monitor (GBM) 0.4 sec after. In a binary system of two gravitationally collapsing objects with a non-vanishing electric charge, the compenetration of the two magnetospheres occurring during the coalescence, through magnetic reconnection, produces a highly collimated relativistic outflow that becomes optically thin and shines in the GBM field of view. We propose that this process should be expected as a commonplace in the future joint gravitational/electromagnetic detections and, in case of neutron star-neutron star merger event, might lead to detectable X- or γ-ray precursors to, or transients associated with, the gravitational bursts.
Flexible nuclear medicine camera and method of using
Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.
1996-12-10
A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.
Analytical beam-width characteristics of distorted cat-eye reflected beam
NASA Astrophysics Data System (ADS)
Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan
2015-02-01
The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.
2015-09-01
Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 (angstrom) -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 angstrom -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 angstrom -1 was significantly decreased when the collimatorsmore » were installed.« less
Development of a 3D-Printed Collimated 90Sr Beta Source
NASA Astrophysics Data System (ADS)
Daniel, Byron; NuDot Collaboration
2017-09-01
Collimated beta particle sources based on 90Sr are common calibration sources for atomic decay detector research and development. Due to the short attenuation length of beta particles in matter, the exact geometry of a collimator can drastically change the rate and energy of beta particles exiting the source. 3D printing allows for the quick and easy prototyping of collimators with custom geometries. I will describe the development of a collimator that interfaces directly to a quartz cuvette for the characterization of liquid scintillator cocktails. Future work will include developing a source for the NuDot detector which aims to reconstruct MeV electrons using the separation of Cherenkov and scintillation light. MIT Summer Research Program.
Marin, E.; Raubenhaimer, T.; Welch, J.; ...
2017-06-13
In this study we investigate the power deposition along the undulator section of the SLAC Linac Coherent Light Source (LCLS) due to the primary e¯ -beam but also due to potential secondary particles. The expected beam distribution after the LCLS injector is deliberately broadened as an approximated representation of the beam halo. Secondary particles, as e +, e¯ and photons, are generated as a result of tracking the intercepted beam through a dense material. This process is carried out by means of GEANT-4, which has been convoluted into our main tracking engine, LUCRETIA. Simulations show no losses along the undulatormore » section when assuming the nominal primary beam and collimator gaps. However when opening the gaps of collimators located at the first collimator section, by 25%, the fattened beam is partially intercepted by the second collimator section, which is aligned to the undulators. Secondary particles, mostly photons generated at the second collimator section, deposit their energy along the undulator section, at a rate of the order of a milliwatt.« less
NASA Astrophysics Data System (ADS)
Marin, E.; Raubenhaimer, T.; Welch, J.; White, G.
2017-09-01
In this paper we investigate the power deposition along the undulator section of the SLAC Linac Coherent Light Source (LCLS) due to the primary e--beam but also due to potential secondary particles. The expected beam distribution after the LCLS injector is deliberately broadened as an approximated representation of the beam halo. Secondary particles, as e+, e- and photons, are generated as a result of tracking the intercepted beam through a dense material. This process is carried out by means of GEANT-4, which has been convoluted into our main tracking engine, LUCRETIA. Simulations show no losses along the undulator section when assuming the nominal primary beam and collimator gaps. However when opening the gaps of collimators located at the first collimator section, by 25%, the fattened beam is partially intercepted by the second collimator section, which is aligned to the undulators. Secondary particles, mostly photons generated at the second collimator section, deposit their energy along the undulator section, at a rate of the order of a milliwatt.
Optimization of planar self-collimating photonic crystals.
Rumpf, Raymond C; Pazos, Javier J
2013-07-01
Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.
Collimated autostereoscopic displays for cockpit applications
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-06-01
The use of an autostereoscopic display (a display that produces stereoscopic images that the user can see without wearing special glasses) for cockpit applications is now under investigation at Wright Patterson Air Force Base. DTI reported on this display, built for testing in a simulator, at last year's conference. It is believed, based on testing performed at NASA's Langley Research Center, that collimating this type of display will accrue benefits to the user including a grater useful imaging volume and more accurate stereo perception. DTI has therefore investigated the feasibility of collimating an autostereoscopic display, and has experimentally demonstrated a proof of concept model of such a display. As in the case of conventional displays, a collimated autostereoscopic display utilizes an optical element located one focal length from the surface of the image forming device. The presence of this element must be taken into account when designing the optics used to create the autostereoscopic images. The major design issues associated with collimated 2D displays are also associated with collimated autostereoscopic displays.
BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeffrey Claiborne; /SLAC; Keller, Lewis
2010-08-26
The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wiresmore » excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.« less
The spatial resolution of a rotating gamma camera tomographic facility.
Webb, S; Flower, M A; Ott, R J; Leach, M O; Inamdar, R
1983-12-01
An important feature determining the spatial resolution in transverse sections reconstructed by convolution and back-projection is the frequency filter corresponding to the convolution kernel. Equations have been derived giving the theoretical spatial resolution, for a perfect detector and noise-free data, using four filter functions. Experiments have shown that physical constraints will always limit the resolution that can be achieved with a given system. The experiments indicate that the region of the frequency spectrum between KN/2 and KN where KN is the Nyquist frequency does not contribute significantly to resolution. In order to investigate the physical effect of these filter functions, the spatial resolution of reconstructed images obtained with a GE 400T rotating gamma camera has been measured. The results obtained serve as an aid to choosing appropriate reconstruction filters for use with a rotating gamma camera system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, M.A.; Bowman, H.R.; Huang, L., H.
A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The /sup 222/Rn emanation data were collected. Calibrating the spectral gamma tool in thismore » low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones.« less
NASA Astrophysics Data System (ADS)
Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.
2015-02-01
The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.
NASA Astrophysics Data System (ADS)
Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.
2015-03-01
Radiolabeled tracer distribution imaging of gamma rays using pinhole collimation is considered promising for small animal imaging. The recent availability of various radiolabeled tracers has enhanced the field of diagnostic study and is simultaneously creating demand for high resolution imaging devices. This paper presents analyses to represent the optimized parameters of a high performance pinhole array detector module using two different characteristics phantoms. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were executed to assess the performance of a four head SPECT system incorporated with pinhole array collimators. The system is based on a pixelated array of NaI(Tl) crystals coupled to an array of position sensitive photomultiplier tubes (PSPMTs). The detector module was simulated to have 48 mm by 48 mm active area along with different pinhole apertures on a tungsten plate. The performance of this system has been evaluated using a uniform shape cylindrical water phantom along with NEMA NU-4 image quality (IQ) phantom filled with 99mTc labeled radiotracers. SPECT images were reconstructed where activity distribution is expected to be well visualized. This system offers the combination of an excellent intrinsic spatial resolution, good sensitivity and signal-to-noise ratio along with high detection efficiency over an energy range between 20-160 keV. Increasing number of heads in a stationary system configuration offers increased sensitivity at a spatial resolution similar to that obtained with the current SPECT system design with four heads.
The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.
2004-05-01
We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.