Sample records for aiding precision soft

  1. Precise Reproduction of Soft Tissue Structure around the Pontic Area Using Computer-Aided Design and Manufacturing.

    PubMed

    Lee, Hyeonjong; Paek, Janghyun; Noh, Kwantae; Kwon, Kung-Rock

    2017-08-21

    Reproducing soft tissue contours around a pontic area is important for the fabrication of an esthetic prosthesis, especially in the anterior area. A gingival model that precisely replicates the soft tissue structure around the pontic area can be easily obtained by taking a pick-up impression of an interim fixed dental prosthesis. After a working cast is fabricated using the customary technique, the pick-up model is superimposed onto the working model for the pontic area using computer-aided design and manufacturing (CAD/CAM). A definitive restoration using this technique would be well adapted to the pontic base, which is formed by the interim prosthesis. © 2017 by the American College of Prosthodontists.

  2. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and "classic" intermaxillary splints to surgical transfer of virtual orthognathic planning.

    PubMed

    Zinser, Max J; Sailer, Hermann F; Ritter, Lutz; Braumann, Bert; Maegele, Marc; Zöller, Joachim E

    2013-12-01

    Advances in computers and imaging have permitted the adoption of 3-dimensional (3D) virtual planning protocols in orthognathic surgery, which may allow a paradigm shift when the virtual planning can be transferred properly. The purpose of this investigation was to compare the versatility and precision of innovative computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints, intraoperative navigation, and "classic" intermaxillary occlusal splints for surgical transfer of virtual orthognathic planning. The protocols consisted of maxillofacial imaging, diagnosis, virtual orthognathic planning, and surgical planning transfer using newly designed CAD/CAM splints (approach A), navigation (approach B), and intermaxillary occlusal splints (approach C). In this prospective observational study, all patients underwent bimaxillary osteotomy. Eight patients were treated using approach A, 10 using approach B, and 12 using approach C. These techniques were evaluated by applying 13 hard and 7 soft tissue parameters to compare the virtual orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry and image fusion (ΔT1 vs T0). The highest precision (ΔT1 vs T0) for the maxillary planning transfer was observed with CAD/CAM splints (<0.23 mm; P > .05) followed by surgical "waferless" navigation (<0.61 mm, P < .05) and classic intermaxillary occlusal splints (<1.1 mm; P < .05). Only the innovative CAD/CAM splints kept the condyles in their central position in the temporomandibular joint. However, no technique enables a precise prediction of the mandible and soft tissue. CAD/CAM splints and surgical navigation provide a reliable, innovative, and precise approach for the transfer of virtual orthognathic planning. These computer-assisted techniques may offer an alternate approach to the use of classic intermaxillary occlusal splints. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light.

    PubMed

    Grindy, Scott C; Holten-Andersen, Niels

    2017-06-07

    Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising strategy for controlling viscoelasticity in hydrogels, for example leading to systems with precisely tunable mechanical energy-dissipation. We and others have shown that bio-inspired histidine:transition metal ion complexes allow highly precise and tunable control over the viscoelastic properties of transient network hydrogels. In this paper, we extend the design of these hydrogels such that their viscoelastic properties respond to longwave UV radiation. We show that careful selection of the histidine:transition metal ion crosslink mixtures allows unique control over pre- and post-UV viscoelastic properties. We anticipate that our strategy for controlling stimuli-responsive viscoelastic properties will aid biomedical materials scientists in the development of soft materials with specific stress-relaxing or energy-dissipating properties.

  4. From metallurgy to modelling of electrical steels: A multiple approach to their behaviour and use based on physics and experimental investigations

    NASA Astrophysics Data System (ADS)

    Cornut, B.; Kedous-Lebouc, A.; Waeckerlé, Th.

    1996-07-01

    Research on SiFe is a busy field which corresponds to the main soft magnetic materials interests of the Laboratoire d'Electrotechnique de Grenoble. Three mutually enriched areas are being explored: metallurgical research towards the production of cube textured sheets, instrumentation research allowing precise measurements of magnetic properties under extreme conditions, and models of magnetization vectorial laws or loss prediction to be included in computer aided design.

  5. Guided Immediate Implant Placement with Wound Closure by Computer-Aided Design/Computer-Assisted Manufacture Sealing Socket Abutment: Case Report.

    PubMed

    Finelle, Gary; Lee, Sang J

    Digital technology has been widely used in the field of implant dentistry. From a surgical standpoint, computer-guided surgery can be utilized to enhance primary implant stability and to improve the precision of implant placement. From a prosthetic standpoint, computer-aided design/computer-assisted manufacture (CAD/CAM) technology has brought about various restorative options, including the fabrication of customized abutments through a virtual design based on computer-guided surgical planning. This case report describes a novel technique combining the use of a three-dimensional (3D) printed surgical template for the immediate placement of an implant, with CAD/CAM technology to optimize hard and soft tissue healing after bone grafting with the use of a socket sealing abutment.

  6. Handheld Micromanipulation with Vision-Based Virtual Fixtures

    PubMed Central

    Becker, Brian C.; MacLachlan, Robert A.; Hager, Gregory D.; Riviere, Cameron N.

    2011-01-01

    Precise movement during micromanipulation becomes difficult in submillimeter workspaces, largely due to the destabilizing influence of tremor. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator's goals is available, virtual fixtures have been shown to greatly improve micromanipulator precision. In this paper, we derive a control law for position-based virtual fixtures within the framework of an active handheld micromanipulator, where the fixtures are generated in real-time from microscope video. Additionally, we develop motion scaling behavior centered on virtual fixtures as a simple and direct extension to our formulation. We demonstrate that hard and soft (motion-scaled) virtual fixtures outperform state-of-the-art tremor cancellation performance on a set of artificial but medically relevant tasks: holding, move-and-hold, curve tracing, and volume restriction. PMID:23275860

  7. Nonlinear phase noise tolerance for coherent optical systems using soft-decision-aided ML carrier phase estimation enhanced with constellation partitioning

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wu, Mingwei; Du, Xinwei; Xu, Zhuoran; Gurusamy, Mohan; Yu, Changyuan; Kam, Pooi-Yuen

    2018-02-01

    A novel soft-decision-aided maximum likelihood (SDA-ML) carrier phase estimation method and its simplified version, the decision-aided and soft-decision-aided maximum likelihood (DA-SDA-ML) methods are tested in a nonlinear phase noise-dominant channel. The numerical performance results show that both the SDA-ML and DA-SDA-ML methods outperform the conventional DA-ML in systems with constant-amplitude modulation formats. In addition, modified algorithms based on constellation partitioning are proposed. With partitioning, the modified SDA-ML and DA-SDA-ML are shown to be useful for compensating the nonlinear phase noise in multi-level modulation systems.

  8. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.

    PubMed

    Aboul-Hosn Centenero, Samir; Hernández-Alfaro, Federico

    2012-02-01

    The aim of this article is to determine the advantages of 3D planning in predicting postoperative results and manufacturing surgical splints using CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) technology in orthognathic surgery when the software program Simplant OMS 10.1 (Materialise(®), Leuven, Belgium) was used for the purpose of this study which was carried out on 16 patients. A conventional preoperative treatment plan was devised for each patient following our Centre's standard protocol, and surgical splints were manufactured. These splints were used as study controls. The preoperative treatment plans devised were then transferred to a 3D-virtual environment on a personal computer (PC). Surgery was simulated, the prediction of results on soft and hard tissue produced, and surgical splints manufactured using CAD/CAM technology. In the operating room, both types of surgical splints were compared and the degree of similitude in results obtained in three planes was calculated. The maxillary osteotomy line was taken as the point of reference. The level of concordance was used to compare the surgical splints. Three months after surgery a second set of 3D images were obtained and used to obtain linear and angular measurements on screen. Using the Intraclass Correlation Coefficient these postoperative measurements were compared with the measurements obtained when predicting postoperative results. Results showed that a high degree of correlation in 15 of the 16 cases. A high coefficient of correlation was obtained in the majority of predictions of results in hard tissue, although less precise results were obtained in measurements in soft tissue in the labial area. The study shows that the software program used in the study is reliable for 3D planning and for the manufacture of surgical splints using CAD/CAM technology. Nevertheless, further progress in the development of technologies for the acquisition of 3D images, new versions of software programs, and further studies of objective data are necessary to increase precision in computerised 3D planning. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Open-Loop Flight Testing of COBALT Navigation and Sensor Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Restrepo, Caroline I.; Seubert, Carl R.; Amzajerdian, Farzin; Pierrottet, Diego F.; Collins, Steven M.; O'Neal, Travis V.; Stelling, Richard

    2017-01-01

    An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) payload was conducted onboard the Masten Xodiac suborbital rocket testbed. The payload integrates two complementary sensor technologies that together provide a spacecraft with knowledge during planetary descent and landing to precisely navigate and softly touchdown in close proximity to targeted surface locations. The two technologies are the Navigation Doppler Lidar (NDL), for high-precision velocity and range measurements, and the Lander Vision System (LVS) for map-relative state esti- mates. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a very precise Terrain Relative Navigation (TRN) solution that is suitable for future, autonomous planetary landing systems that require precise and soft landing capabilities. During the open-loop flight campaign, the COBALT payload acquired measurements and generated a precise navigation solution, but the Xodiac vehicle planned and executed its maneuvers based on an independent, GPS-based navigation solution. This minimized the risk to the vehicle during the integration and testing of the new navigation sensing technologies within the COBALT payload.

  10. Combined Soft and Hard Tissue Peri-Implant Plastic Surgery Techniques to Enhance Implant Rehabilitation: A Case Report

    PubMed Central

    Baltacıoğlu, Esra; Korkmaz, Fatih Mehmet; Bağış, Nilsun; Aydın, Güven; Yuva, Pınar; Korkmaz, Yavuz Tolga; Bağış, Bora

    2014-01-01

    This case report presents an implant-aided prosthetic treatment in which peri-implant plastic surgery techniques were applied in combination to satisfactorily attain functional aesthetic expectations. Peri-implant plastic surgery enables the successful reconstruction and restoration of the balance between soft and hard tissues and allows the option of implant-aided fixed prosthetic rehabilitation. PMID:25489351

  11. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues.

    PubMed

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r = 0.485, p = 0.002 for full dentitions). It was feasible to use the intraoral scanner to obtain digital impressions for whole upper jaws. Wider dental arch contributed to lower precision of an intraoral digital impression. It should be confirmed in further studies that whether accuracy of digital impressions for whole upper jaws is clinically acceptable.

  12. SVAS3: Strain Vector Aided Sensorization of Soft Structures.

    PubMed

    Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya

    2014-07-17

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.

  13. Cochlear implant characteristics and speech perception skills of adolescents with long-term device use.

    PubMed

    Davidson, Lisa S; Geers, Ann E; Brenner, Christine

    2010-10-01

    Updated cochlear implant technology and optimized fitting can have a substantial impact on speech perception. The effects of upgrades in processor technology and aided thresholds on word recognition at soft input levels and sentence recognition in noise were examined. We hypothesized that updated speech processors and lower aided thresholds would allow improved recognition of soft speech without compromising performance in noise. 109 teenagers who had used a Nucleus 22-cochlear implant since preschool were tested with their current speech processor(s) (101 unilateral and 8 bilateral): 13 used the Spectra, 22 the ESPrit 22, 61 the ESPrit 3G, and 13 the Freedom. The Lexical Neighborhood Test (LNT) was administered at 70 and 50 dB SPL and the Bamford Kowal Bench sentences were administered in quiet and in noise. Aided thresholds were obtained for frequency-modulated tones from 250 to 4,000 Hz. Results were analyzed using repeated measures analysis of variance. Aided thresholds for the Freedom/3G group were significantly lower (better) than the Spectra/Sprint group. LNT scores at 50 dB were significantly higher for the Freedom/3G group. No significant differences between the 2 groups were found for the LNT at 70 or sentences in quiet or noise. Adolescents using updated processors that allowed for aided detection thresholds of 30 dB HL or better performed the best at soft levels. The BKB in noise results suggest that greater access to soft speech does not compromise listening in noise.

  14. The Soft Palate Friendly Speech Bulb for Velopharyngeal Insufficiency.

    PubMed

    Kahlon, Sukhdeep Singh; Kahlon, Monaliza; Gupta, Shilpa; Dhingra, Parvinder Singh

    2016-09-01

    Velopharyngeal insufficiency is an anatomic defect of the soft palate making palatopharyngeal sphincter incomplete. It is an important concern to address in patients with bilateral cleft lip and palate. Speech aid prosthesis or speech bulbs are best choice in cases where surgically repaired soft palate is too short to contact pharyngeal walls during function but these prosthesis have been associated with inadequate marginal closure, ulcerations and patient discomfort. Here is a case report of untreated bilateral cleft lip and palate associated with palatal insufficiency treated by means of palate friendly innovative speech bulb. This modified speech bulb is a combination of hard acrylic and soft lining material. The hard self-curing acrylic resin covers only the hard palate area and a permanent soft silicone lining material covering the soft palate area. A claw-shaped wire component was extended backwards from acrylic and was embedded in soft silicone to aid in retention and approximation of two materials. The advantage of adding the soft lining material in posterior area helped in covering the adequate superior extension and margins for maximal pharyngeal activity. This also improved the hypernasality, speech, comfort and overall patient acceptance.

  15. Precision Landing and Hazard Avoidance Doman

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.

  16. High resolution imaging and precision photometric measurements from a small soft-landed lunar telescope --Abstract only

    NASA Technical Reports Server (NTRS)

    Genet, R. M.; Hine, B.; Drummond, M.; Patterson-Hine, A.; Borucki, W.; Burns, J.; Genet, D.

    1994-01-01

    The ultimate imaging resolution in the UV and photometric precision achievable with a small (less than 1-meter) telescope located on the Moon is considered. The imaging resolution and photometric precision that might be practically achieved when the effects of the Lunar environment and equipment limitations are accounted for is then suggested. Finally, the practicality of soft landing such a telescope on the moon is considered, along with suggestions of how it might be directly controlled by using astronomers without any significant permanent staff.

  17. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues

    PubMed Central

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r = 0.485, p = 0.002 for full dentitions). It was feasible to use the intraoral scanner to obtain digital impressions for whole upper jaws. Wider dental arch contributed to lower precision of an intraoral digital impression. It should be confirmed in further studies that whether accuracy of digital impressions for whole upper jaws is clinically acceptable. PMID:27383409

  18. Implementing NLO DGLAP evolution in parton showers

    DOE PAGES

    Hoche, Stefan; Krauss, Frank; Prestel, Stefan

    2017-10-13

    Here, we present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.

  19. Implementing NLO DGLAP evolution in parton showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höche, Stefan; Krauss, Frank; Prestel, Stefan

    2017-10-01

    We present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.

  20. SVAS3: Strain Vector Aided Sensorization of Soft Structures

    PubMed Central

    Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya

    2014-01-01

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332

  1. Patient-specific polyetheretherketone facial implants in a computer-aided planning workflow.

    PubMed

    Guevara-Rojas, Godoberto; Figl, Michael; Schicho, Kurt; Seemann, Rudolf; Traxler, Hannes; Vacariu, Apostolos; Carbon, Claus-Christian; Ewers, Rolf; Watzinger, Franz

    2014-09-01

    In the present study, we report an innovative workflow using polyetheretherketone (PEEK) patient-specific implants for esthetic corrections in the facial region through onlay grafting. The planning includes implant design according to virtual osteotomy and generation of a subtraction volume. The implant design was refined by stepwise changing the implant geometry according to soft tissue simulations. One patient was scanned using computed tomography. PEEK implants were interactively designed and manufactured using rapid prototyping techniques. Positioning intraoperatively was assisted by computer-aided navigation. Two months after surgery, a 3-dimensional surface model of the patient's face was generated using photogrammetry. Finally, the Hausdorff distance calculation was used to quantify the overall error, encompassing the failures in soft tissue simulation and implantation. The implant positioning process during surgery was satisfactory. The simulated soft tissue surface and the photogrammetry scan of the patient showed a high correspondence, especially where the skin covered the implants. The mean total error (Hausdorff distance) was 0.81 ± 1.00 mm (median 0.48, interquartile range 1.11). The spatial deviation remained less than 0.7 mm for the vast majority of points. The proposed workflow provides a complete computer-aided design, computer-aided manufacturing, and computer-aided surgery chain for implant design, allowing for soft tissue simulation, fabrication of patient-specific implants, and image-guided surgery to position the implants. Much of the surgical complexity resulting from osteotomies of the zygoma, chin, or mandibular angle might be transferred into the planning phase of patient-specific implants. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning.

    PubMed

    Vollborn, Thorsten; Habor, Daniel; Pekam, Fabrice Chuembou; Heger, Stefan; Marotti, Juliana; Reich, Sven; Wolfart, Stefan; Tinschert, Joachim; Radermacher, Klaus

    2014-01-01

    Subgingival preparations are often affected by blood and saliva during impression taking, regardless of whether one is using compound impression techniques or intraoral digital scanning methods. The latter are currently based on optical principles and therefore also need clean and dry surfaces. In contrast, ultrasonic waves are able to non-invasively penetrate gingiva, saliva, and blood, leading to decisive advantages, as cleaning and drying of the oral cavity becomes unnecessary. In addition, the application of ultrasound may facilitate the detection of subgingival structures without invasive manipulation, thereby reducing the risk of secondary infection and treatment time, and increasing patient comfort. Ultrasound devices commonly available for medical application and for the testing of materials are only suitable to a limited extent, as their resolution, precision, and design do not fulfill the requirements for intraoral scanning. The aim of this article is to describe the development of a novel ultrasound technology that enables soft tissue-preserving digital impressions of preparations for the CAD/CAM-based production of dental prostheses. The concept and development of the high-resolution ultrasound technique and the corresponding intraoral scanning system, as well as the integration into the CAD/CAM process chain, is presented.

  3. Choking - infant under 1 year

    MedlinePlus

    ... coughing Soft or high-pitched sounds while inhaling First Aid Do NOT perform these steps if the infant ... see it. DO NOT DO NOT perform choking first aid if the infant is coughing forcefully, has a ...

  4. Melorheostosis of the axial skeleton with associated fibrolipomatous lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garver, P.; Resnick, D.; Haghighi, P.

    1982-11-01

    Two patients with melorheostotic-like lesions of the axial skeleton are described. In each case adjacent soft tissue masses containing both fatty and fibrous tissues were evident. The presence of such soft tissue tumors as well as other soft tissue abnormalities in melorheostosis emphasizes that the diesease should not be regarded as one confined to bone. The precise pathogenesis of the osseous and soft tissue abnormalities in melorheostosis remains obscure.

  5. Soft network composite materials with deterministic and bio-inspired designs

    PubMed Central

    Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices. PMID:25782446

  6. Hard Heads and Soft Hearts: Balancing Equity and Efficiency in Institutional Student Aid Policy

    ERIC Educational Resources Information Center

    Baum, Sandy

    2007-01-01

    Historically, the primary role of financial aid was to increase educational opportunities for those with inadequate resources, yet more recently institutional aid is increasingly becoming based on criteria unrelated to financial need. Various political forces have reinforced the institutional tendency to redirect dollars from the mission of…

  7. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels.

    PubMed

    Pratt, Philip; Ives, Matthew; Lawton, Graham; Simmons, Jonathan; Radev, Nasko; Spyropoulou, Liana; Amiras, Dimitri

    2018-01-01

    Precision and planning are key to reconstructive surgery. Augmented reality (AR) can bring the information within preoperative computed tomography angiography (CTA) imaging to life, allowing the surgeon to 'see through' the patient's skin and appreciate the underlying anatomy without making a single incision. This work has demonstrated that AR can assist the accurate identification, dissection and execution of vascular pedunculated flaps during reconstructive surgery. Separate volumes of osseous, vascular, skin, soft tissue structures and relevant vascular perforators were delineated from preoperative CTA scans to generate three-dimensional images using two complementary segmentation software packages. These were converted to polygonal models and rendered by means of a custom application within the HoloLens™ stereo head-mounted display. Intraoperatively, the models were registered manually to their respective subjects by the operating surgeon using a combination of tracked hand gestures and voice commands; AR was used to aid navigation and accurate dissection. Identification of the subsurface location of vascular perforators through AR overlay was compared to the positions obtained by audible Doppler ultrasound. Through a preliminary HoloLens-assisted case series, the operating surgeon was able to demonstrate precise and efficient localisation of perforating vessels.

  8. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

    PubMed Central

    Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig

    2016-01-01

    Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919

  9. Fuzzy logic, neural networks, and soft computing

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial intelligence. In the years ahead, this may well become a widely held position.

  10. Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes.

    PubMed

    Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan

    2005-08-01

    This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific finite element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the mesh-matching method, followed by a process that corrects mesh irregularities. The mesh-matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to computer-assisted maxillofacial surgery, and more precisely, to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven FE patient-specific models were successfully generated by our method. For one patient, the prediction of the FE model is qualitatively compared with the patient's post-operative appearance, measured from a computer tomography scan. Then, our methodology is applied to computer-assisted orbital surgery. It is, therefore, evaluated for the generation of 11 patient-specific FE poroelastic models of the orbital soft tissues. These models are used to predict the consequences of the surgical decompression of the orbit. More precisely, an average law is extrapolated from the simulations carried out for each patient model. This law links the size of the osteotomy (i.e. the surgical gesture) and the backward displacement of the eyeball (the consequence of the surgical gesture).

  11. Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation

    PubMed Central

    Lee, Kit-Hang; Fu, Denny K.C.; Leong, Martin C.W.; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong

    2017-01-01

    Abstract Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments. PMID:29251567

  12. Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation.

    PubMed

    Lee, Kit-Hang; Fu, Denny K C; Leong, Martin C W; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong; Kwok, Ka-Wai

    2017-12-01

    Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments.

  13. Augmenting endogenous repair of soft tissues with nanofibre scaffolds

    PubMed Central

    Snelling, Sarah; Dakin, Stephanie; Carr, Andrew

    2018-01-01

    As our ability to engineer nanoscale materials has developed we can now influence endogenous cellular processes with increasing precision. Consequently, the use of biomaterials to induce and guide the repair and regeneration of tissues is a rapidly developing area. This review focuses on soft tissue engineering, it will discuss the types of biomaterial scaffolds available before exploring physical, chemical and biological modifications to synthetic scaffolds. We will consider how these properties, in combination, can provide a precise design process, with the potential to meet the requirements of the injured and diseased soft tissue niche. Finally, we frame our discussions within clinical trial design and the regulatory framework, the consideration of which is fundamental to the successful translation of new biomaterials. PMID:29695606

  14. Categorization of psychoactive substances into "hard drugs" and "soft drugs": a critical review of terminology used in current scientific literature.

    PubMed

    Janik, Peter; Kosticova, Michaela; Pecenak, Jan; Turcek, Michal

    2017-11-01

    Precise terminology and definitions are important components of scientific language. Although the terms "hard drugs" and "soft drugs" are used widely by professionals, neither the International Classification of Diseases nor the Diagnostic and Statistical Manual classify psychoactive substances into the categories "hard" and "soft." To analyze the occurrence of the terms "hard drugs" and "soft drugs" in recent scientific literature and to establish the degree of consensus in labeling psychoactive substances as "hard" or "soft." A critical review of scientific papers listed in PubMed and Scopus between 2011 and 2015. Three hundred thirty-four articles were initially identified as potentially relevant for review, 132 of which were included in the final analysis. One hundred twenty-four articles used the term "hard drugs" and 84.7% provided examples of substances considered "hard." Forty-four articles used the term "soft drugs" and 90.9% provided examples of substances considered "soft." Citations of relevant articles supporting categorization as "hard" or "soft" were not given in 90% of the articles. The authors often provided no or only very sparse information on their reasons for considering specific drugs as "hard" or "soft." Although it initially appeared that there is substantial agreement as to which psychoactive substances should be regarded as "hard" and "soft," closer inspection shows that the dividing line is blurred without clear criteria for categorization. At this time, it remains uncertain whether these terms should persist in the scientific literature. We therefore recommend these terms should be avoided or, if used, be clearly and precisely defined.

  15. Fat-containing soft-tissue masses in children.

    PubMed

    Sheybani, Elizabeth F; Eutsler, Eric P; Navarro, Oscar M

    2016-12-01

    The diagnosis of soft-tissue masses in children can be difficult because of the frequently nonspecific clinical and imaging characteristics of these lesions. However key findings on imaging can aid in diagnosis. The identification of macroscopic fat within a soft-tissue mass narrows the differential diagnosis considerably and suggests a high likelihood of a benign etiology in children. Fat can be difficult to detect with sonography because of the variable appearance of fat using this modality. Fat is easier to recognize using MRI, particularly with the aid of fat-suppression techniques. Although a large portion of fat-containing masses in children are adipocytic tumors, a variety of other tumors and mass-like conditions that contain fat should be considered by the radiologist confronted with a fat-containing mass in a child. In this article we review the sonographic and MRI findings in the most relevant fat-containing soft-tissue masses in the pediatric age group, including adipocytic tumors (lipoma, angiolipoma, lipomatosis, lipoblastoma, lipomatosis of nerve, and liposarcoma); fibroblastic/myofibroblastic tumors (fibrous hamartoma of infancy and lipofibromatosis); vascular anomalies (involuting hemangioma, intramuscular capillary hemangioma, phosphate and tensin homologue (PTEN) hamartoma of soft tissue, fibro-adipose vascular anomaly), and other miscellaneous entities, such as fat necrosis and epigastric hernia.

  16. LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor

    NASA Astrophysics Data System (ADS)

    Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram

    2007-09-01

    Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.

  17. Soft dipole resonance and halo structure of 11Li

    NASA Astrophysics Data System (ADS)

    Kanungo, Rituparna

    2016-03-01

    The discovery of the nuclear halo in rare isotopes has ushered a new era in nuclear science breaking the boundaries of conventional concepts. The halo properties elucidate new features that till date remain a challenge to decipher from fundamental principles. Our knowledge on the halo is still gradually unfolding and reaching new levels of precision as efforts continue towards new experimental developments. In recent times, low-energy reactions in inverse kinematics have become possible providing a wealth of new structure information. In this presentation we will introduce a new reaction spectroscopy facility, IRIS, with a novel thin windowless solid H2/D2 target for studying transfer and inelastic scattering reactions of rare isotopes with very low yields. It was postulated that the loosely bound halo of two neutrons may lead to a core-halo oscillation resulting in dipole resonance(s) at very low excitation energy, called soft dipole resonance. Despite decades of search for this new phenomenon using various techniques, such as, no firm conclusion was reached. The presentation will discuss new results from IRIS that shows evidence of a soft dipole resonance state and further unveils its isoscalar character. New results of neutron transfer from 11Li will be presented showing resonance state(s) in the neutron unbound 10Li subsystem hence facilitating a description of the wavefunction of 11Li. NSERC, Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust, grant-in-aid program of the Japanese government under Contract No. 23224008, US DOE Contract No. DE-AC52-07NA27344.

  18. Three-dimensional analysis of elbow soft tissue footprints and anatomy.

    PubMed

    Capo, John T; Collins, Christopher; Beutel, Bryan G; Danna, Natalie R; Manigrasso, Michaele; Uko, Linda A; Chen, Linda Y

    2014-11-01

    Tendinous and ligamentous injuries commonly occur in the elbow. This study characterized the location, surface areas, and origin and insertional footprints of major elbow capsuloligamentous and tendinous structures in relation to bony landmarks with the use of a precision 3-dimensional modeling system. Nine unpaired cadaveric elbow specimens were dissected and mounted on a custom jig. Mapping of the medial collateral ligament (MCL), lateral ulnar collateral ligament (LUCL), triceps, biceps, brachialis, and capsular reflections was then performed with 3-dimensional digitizing technology. The location, surface areas, and footprints of the soft tissues were calculated. The MCL had a mean origin (humeral) footprint of 216 mm(2), insertional footprint of 154 mm(2), and surface area of 421 mm(2). The LUCL had a mean origin footprint of 136 mm(2), an insertional footprint of 142 mm(2), and a surface area of 532 mm(2). Of the tendons, the triceps maintained the largest insertional footprint, followed by the brachialis and the biceps (P < .001-.03). The MCL, LUCL, and biceps footprint locations were consistent, with little variability. The surface areas of the anterior (1251 mm(2)) and posterior (1147 mm(2)) capsular reflections were similar (P = .82), and the anterior capsule extended farther proximally. Restoring the normal anatomy of key elbow capsuloligamentous and tendinous structures is crucial for effective reconstruction after bony or soft tissue trauma. This study provides the upper extremity surgeon with information that may aid in restoring elbow biomechanics and preserving range of motion in these patients. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Soft-Tissue Infections and Their Imaging Mimics: From Cellulitis to Necrotizing Fasciitis.

    PubMed

    Hayeri, Mohammad Reza; Ziai, Pouya; Shehata, Monda L; Teytelboym, Oleg M; Huang, Brady K

    2016-10-01

    Infection of the musculoskeletal system can be associated with high mortality and morbidity if not promptly and accurately diagnosed. These infections are generally diagnosed and managed clinically; however, clinical and laboratory findings sometimes lack sensitivity and specificity, and a definite diagnosis may not be possible. In uncertain situations, imaging is frequently performed to confirm the diagnosis, evaluate the extent of the disease, and aid in treatment planning. In particular, cross-sectional imaging, including computed tomography and magnetic resonance imaging, provides detailed anatomic information in the evaluation of soft tissues due to their inherent high spatial and contrast resolution. Imaging findings of soft-tissue infections can be nonspecific and can have different appearances depending on the depth and anatomic extent of tissue involvement. Although many imaging features of infectious disease can overlap with noninfectious processes, imaging can help establish the diagnosis when combined with the clinical history and laboratory findings. Radiologists should be familiar with the spectrum of imaging findings of soft-tissue infections to better aid the referring physician in managing these patients. The aim of this article is to review the spectrum of soft-tissue infections using a systematic anatomic compartment approach. We discuss the clinical features of soft-tissue infections, their imaging findings with emphasis on cross-sectional imaging, their potential mimics, and clinical management. © RSNA, 2016.

  20. A soft and dexterous motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Tse, Tony Chun Hin; Inamura, Tokushu; O'Brien, Benjamin M.; McKay, Thomas; Gisby, Todd

    2011-03-01

    We present a soft, bearing-free artificial muscle motor that cannot only turn a shaft but also grip and reposition it through a flexible gear. The bearing-free operation provides a foundation for low complexity soft machines, with multiple degree-of-freedom actuation, that can act simultaneously as motors and manipulators. The mechanism also enables an artificial muscle controlled gear change. Future work will include self-sensing feedback for precision, multidegree-of-freedom operation.

  1. Optical Assessment of Soft Contact Lens Edge-Thickness.

    PubMed

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P

    2016-08-01

    To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.

  2. Optical Assessment of Soft Contact Lens Edge-Thickness

    PubMed Central

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.

    2016-01-01

    Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902

  3. Total Face, Eyelids, Ears, Scalp, and Skeletal Subunit Transplant Cadaver Simulation: The Culmination of Aesthetic, Craniofacial, and Microsurgery Principles.

    PubMed

    Sosin, Michael; Ceradini, Daniel J; Hazen, Alexes; Levine, Jamie P; Staffenberg, David A; Saadeh, Pierre B; Flores, Roberto L; Brecht, Lawrence E; Bernstein, G Leslie; Rodriguez, Eduardo D

    2016-05-01

    The application of aesthetic, craniofacial, and microsurgical principles in the execution of face transplantation may improve outcomes. Optimal soft-tissue face transplantation can be achieved by incorporating subunit facial skeletal replacement and subsequent tissue resuspension. The purpose of this study was to establish a reconstructive solution for a full face and scalp burn and to evaluate outcome precision and consistency. Seven mock face transplants (14 cadavers) were completed in the span of 1 year. Components of the vascularized composite allograft included the eyelids, nose, lips, facial muscles, oral mucosa, total scalp, and ears; and skeletal subunits of the zygoma, nasal bone, and genial segment. Virtual surgical planning was used for osteotomy selection, and to evaluate postoperative precision of hard- and soft-tissue elements. Each transplant experience decreased each subsequent transplant surgical time. Prefabricated cutting guides facilitated a faster dissection of both donor and recipient tissue, requiring minimal alteration to the allograft for proper fixation of bony segments during inset. Regardless of donor-to-recipient size discrepancy, ample soft tissue was available to achieve tension-free allograft inset. Differences between virtual transplant simulation and posttransplant measurements were minimal or insignificant, supporting replicable and precise outcomes. This facial transplant model was designed to optimize reconstruction of extensive soft-tissue defects of the craniofacial region representative of electrical, thermal, and chemical burns, by incorporating skeletal subunits within the allograft. The implementation of aesthetic, craniofacial, and microsurgical principles and computer-assisted technology improves surgical precision, decreases operative time, and may optimize function.

  4. Repeated Measurement of Absolute and Relative Judgments of Loudness: Clinical Relevance for Prescriptive Fitting of Aided Target Gains for soft, Comfortable, and Loud, But Ok Sound Levels.

    PubMed

    Formby, Craig; Payne, JoAnne; Yang, Xin; Wu, Delphanie; Parton, Jason M

    2017-02-01

    This study was undertaken with the purpose of streamlining clinical measures of loudness growth to facilitate and enhance prescriptive fitting of nonlinear hearing aids. Repeated measures of loudness at 500 and 3,000 Hz were obtained bilaterally at monthly intervals over a 6-month period from three groups of young adult listeners. All volunteers had normal audiometric hearing sensitivity and middle ear function, and all denied problems related to sound tolerance. Group 1 performed judgments of soft and loud, but OK for presentation of ascending sound levels. We defined these judgments operationally as absolute judgments of loudness. Group 2 initially performed loudness judgments across a continuum of seven loudness categories ranging from judgments of very soft to uncomfortably loud for presentation of ascending sound levels per the Contour Test of Loudness; we defined these judgments as relative judgments of loudness. In the same session, they then performed the absolute judgments for soft and loud, but OK sound levels. Group 3 performed the same set of loudness judgments as did group 2, but the task order was reversed such that they performed the absolute judgments initially within each test session followed by the relative judgments. The key findings from this study were as follows: (1) Within group, the absolute and relative tasks yielded clinically similar judgments for soft and for loud, but OK sound levels. These judgments were largely independent of task order, ear, frequency, or trial order within a given session. (2) Loudness judgments increased, on average, by ∼3 dB between the first and last test session, which is consistent with the commonly reported acclimatization effect reported for incremental changes in loudness discomfort levels as a consequence of chronic bilateral hearing aid use. (3) Measured and predicted comfortable judgments of loudness were in good agreement for the individual listener and for groups of listeners. These comfortable judgments bisect the measured levels judged for soft and for loud, but OK sounds. (4) Loudness judgments within the same loudness category varied across listeners within group by as much as 50 to 60 dB. Such large variation in judgments of loudness is problematic, especially because hearing-impaired listeners are known to exhibit similarly large ranges of intersubject response variation and, yet, poplar prescriptive fitting strategies continue to use average rather than individual loudness data to fit nonlinear hearing aids. The primary conclusions drawn from these findings are that reliable absolute judgments of soft and loud, but OK are clinically practical and economical to measure and, from these judgments, good estimates of comfortable loudness can also be predicted for individuals or for groups of listeners. Such loudness data, as measured as described in this report, offer promise for streamlining and enhancing prescriptive fitting of nonlinear hearing aids to target gain settings for soft (audible), comfortable , and loud, but OK (tolerable) sound inputs for the individual listener.

  5. Repeated Measurement of Absolute and Relative Judgments of Loudness: Clinical Relevance for Prescriptive Fitting of Aided Target Gains for soft, Comfortable, and Loud, But Ok Sound Levels

    PubMed Central

    Formby, Craig; Payne, JoAnne; Yang, Xin; Wu, Delphanie; Parton, Jason M.

    2017-01-01

    This study was undertaken with the purpose of streamlining clinical measures of loudness growth to facilitate and enhance prescriptive fitting of nonlinear hearing aids. Repeated measures of loudness at 500 and 3,000 Hz were obtained bilaterally at monthly intervals over a 6-month period from three groups of young adult listeners. All volunteers had normal audiometric hearing sensitivity and middle ear function, and all denied problems related to sound tolerance. Group 1 performed judgments of soft and loud, but OK for presentation of ascending sound levels. We defined these judgments operationally as absolute judgments of loudness. Group 2 initially performed loudness judgments across a continuum of seven loudness categories ranging from judgments of very soft to uncomfortably loud for presentation of ascending sound levels per the Contour Test of Loudness; we defined these judgments as relative judgments of loudness. In the same session, they then performed the absolute judgments for soft and loud, but OK sound levels. Group 3 performed the same set of loudness judgments as did group 2, but the task order was reversed such that they performed the absolute judgments initially within each test session followed by the relative judgments. The key findings from this study were as follows: (1) Within group, the absolute and relative tasks yielded clinically similar judgments for soft and for loud, but OK sound levels. These judgments were largely independent of task order, ear, frequency, or trial order within a given session. (2) Loudness judgments increased, on average, by ∼3 dB between the first and last test session, which is consistent with the commonly reported acclimatization effect reported for incremental changes in loudness discomfort levels as a consequence of chronic bilateral hearing aid use. (3) Measured and predicted comfortable judgments of loudness were in good agreement for the individual listener and for groups of listeners. These comfortable judgments bisect the measured levels judged for soft and for loud, but OK sounds. (4) Loudness judgments within the same loudness category varied across listeners within group by as much as 50 to 60 dB. Such large variation in judgments of loudness is problematic, especially because hearing-impaired listeners are known to exhibit similarly large ranges of intersubject response variation and, yet, poplar prescriptive fitting strategies continue to use average rather than individual loudness data to fit nonlinear hearing aids. The primary conclusions drawn from these findings are that reliable absolute judgments of soft and loud, but OK are clinically practical and economical to measure and, from these judgments, good estimates of comfortable loudness can also be predicted for individuals or for groups of listeners. Such loudness data, as measured as described in this report, offer promise for streamlining and enhancing prescriptive fitting of nonlinear hearing aids to target gain settings for soft (audible), comfortable, and loud, but OK (tolerable) sound inputs for the individual listener. PMID:28286363

  6. Human Factors in Intelligence, Surveillance, and Reconnaissance: Gaps for Soldiers and Technology Recommendations

    DTIC Science & Technology

    2014-07-01

    technology work seeks to address gaps in the management, processing, and fusion of heterogeneous (i.e., soft and hard ) information to aid human decision...and bandwidth) to exploit the vast and growing amounts of data [16], [17]. There is also a broad research program on techniques for soft and hard ...Mott, G. de Mel, and T. Pham, “Integrating hard and soft information sources for D2D using controlled natural language,” in Proc. Information Fusion

  7. Hologic QDR 2000 whole-body scans: a comparison of three combinations of scan modes and analysis software

    NASA Technical Reports Server (NTRS)

    Spector, E.; LeBlanc, A.; Shackelford, L.

    1995-01-01

    This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between PB scans and either of the EPB or EA scans. Differences were as large as 20%-25% for certain regional fat and BMD measurements. Additional work may be needed to examine the relative accuracy of the scan mode/software combinations and to identify reasons for the differences in soft tissue precision with the array whole-body scan mode.

  8. Design, fabrication and control of soft robots.

    PubMed

    Rus, Daniela; Tolley, Michael T

    2015-05-28

    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

  9. Double soft limit of the graviton amplitude from the Cachazo-He-Yuan formalism

    NASA Astrophysics Data System (ADS)

    Saha, Arnab Priya

    2017-08-01

    We present a complete analysis for double soft limit of graviton scattering amplitude using the formalism proposed by Cachazo, He, and Yuan. Our results agree with that obtained via Britto-Cachazo-Feng-Witten (BCFW) recursion relations in [T. Klose, T. McLoughlin, D. Nandan, J. Plefka, and G. Travaglini, Double-soft limits of gluons and gravitons, J. High Energy Phys. 07 (2015) 135., 10.1007/JHEP07(2015)135]. In addition we find precise relations between degenerate and nondegenerate solutions of scattering equations with local and nonlocal terms in the soft factor.

  10. Soft- and reactive landing of ions onto surfaces: Concepts and applications: CONCEPTS AND APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Gunaratne, Don; Laskin, Julia

    2015-04-16

    Soft- and reactive landing of mass-selected ions is gaining attention as a promising approach for the precisely-controlled preparation of materials on surfaces that are not amenable to deposition using conventional methods. A broad range of ionization sources and mass-filters are available that make ion soft-landing a versatile tool for surface modification using beams of hyperthermal (< 100 eV) ions. The ability to select the mass-to-charge ratio of the ion, its kinetic energy and charge state, along with precise control of the size, shape, and position of the ion beam on the deposition target distinguishes ion soft landing from other surfacemore » modification techniques. Soft- and reactive landing have been used to prepare interfaces for practical applications as well as precisely-defined model surfaces for fundamental investigations in chemistry, physics, and materials science. For instance, soft- and reactive landing have been applied to study the surface chemistry of ions isolated in the gas-phase, prepare arrays of proteins for high-throughput biological screening, produce novel carbon-based and polymer materials, enrich the secondary structure of peptides and the chirality of organic molecules, immobilize electrochemically-active proteins and organometallics on electrodes, create thin films of complex molecules, and immobilize catalytically active organometallics as well as ligated metal clusters. In addition, soft landing has enabled investigation of the size-dependent behavior of bare metal clusters in the critical subnanometer size regime where chemical and physical properties do not scale predictably with size. The morphology, aggregation, and immobilization of larger bare metal nanoparticles, which are directly relevant to the design of catalysts as well as improved memory and electronic devices, have also been studied using ion soft landing. This review article begins in section 1 with a brief introduction to the existing applications of ion soft- and reactive landing. Section 2 provides an overview of the ionization sources and mass filters that have been used to date for soft landing of mass-selected ions. A discussion of the competing processes that occur during ion deposition as well as the types of ions and surfaces that have been investigated follows in section 3. Section 4 discusses the physical phenomena that occur during and after ion soft landing including retention and reduction of ionic charge along with factors that impact the efficiency of ion deposition. The influence of soft landing on the secondary structure and biological activity of complex ions is addressed in section 5. Lastly, an overview of the structure and mobility as well as the catalytic, optical, magnetic, and redox properties of bare ionic clusters and nanoparticles deposited onto surfaces is presented in section 6.« less

  11. Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.

    PubMed

    Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando

    2016-08-01

    Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.

  12. An intelligent robotic aid system for human services

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Bagchi, S.; Iskarous, M.; Pack, R. T.; Saad, A.

    1994-01-01

    The long term goal of our research at the Intelligent Robotic Laboratory at Vanderbilt University is to develop advanced intelligent robotic aid systems for human services. As a first step toward our goal, the current thrusts of our R&D are centered on the development of an intelligent robotic aid called the ISAC (Intelligent Soft Arm Control). In this paper, we describe the overall system architecture and current activities in intelligent control, adaptive/interactive control and task learning.

  13. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    NASA Astrophysics Data System (ADS)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y aimed to provide recent advances in polymer synthesis, self-assembling processes and morphologies, and functionalization of nano-soft-materials in order to initiate mutual and collaborative research interest that is essential to develop revolutionarily new nano-soft-materials in the decades ahead. Four Keynote lectures, 15 invited talks and 30 posters presented important new discoveries in polymeric nano-soft-materials, precision polymer synthesis, self-assembling and their functionalization. As for the precision polymer synthesis, the latest results were provided for studies on synthesis of polyrotaxane with movable graft chains, organic-inorganic hybridization of polymers, supra-molecular coordination assembly of conjugated polymers, precision polymerization of adamantane-containing monomers, production of high density polymer brush and synthesis of rod coil type polymer. The state-of-the-art results were introduced for the formation of nano-helical-structure of block copolymer containing asymmetric carbon atoms, self-assembling of block copolymers under the electric field, self-assembling of liquid crystalline elastomers, preparation of nano cylinder template films and mesoscopic simulation of phase transition of polymers and so forth. Moreover, recent advantages of three-dimensional electron microtomography and scanning force microscopy were proposed for analyses of nano-structures and properties of polymeric multi-component systems. Syntheses, properties and functions of slide-ring-gel, organic-inorganic hybrid hydrogels, hydrogel nano-particles, liquid-crystalline gels, the self-oscillating gels, and double network gels attracted participants' attention. Modifications of naturally occurring polymeric materials with supercritical carbon dioxide were introduced as a novel technology. Some of the attractive topics are presented in this issue. We are grateful to all the speakers and participants for valuable contributions and active discussions. Organizing committee of Symposium Y (IUMRS-ICA 2008) Chair Seiichi Kawahara (Nagaoka University of Technology, Japan) Vice Chairs Rong-Ming Ho (National Tsing Hua University, Taiwan) Hiroshi Jinnai (Kyoto Institute of Technology, Japan) Masami Kamigaito (Nagoya University, Japan) Takashi Miyata (Kansai University, Japan) Hiroshi Morita (National Institute of Advanced Industrial Science and Technology, Japan) Hideyuki Otsuka (Kyushu University, Japan) Daewon Sohn (Hanyang University, Korea) Keiji Tanaka (Kyushu University, Japan)

  14. Working Smarter, Not Harder: Emphasizing Soft Power in Africa to Achieve US Interests

    DTIC Science & Technology

    2009-03-08

    20080214-11.html (accessed September 2, 2008). 57 Zakaria, Tabassum , “Bush Offers More Aid to Fight Malaria in Africa,” Reuters, February 18, 2008, http...rm/2008/08/107997.htm (accessed October 19, 2008). Tabassum , Zakaria. “Bush Offers More Aid to Fight Malaria in Africa.” Reuters (February 18

  15. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    NASA Astrophysics Data System (ADS)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  16. Technical report: precisely fitting bars on implants in five steps-a CAD/CAM concept for the edentulous mandible.

    PubMed

    Beuer, Florian; Schweiger, Josef; Huber, Martin; Engels, Jörg; Stimmelmayr, Michael

    2014-06-01

    Various treatment concepts have been presented for the edentulous mandible. Manufacturing tension-free and precisely fitting bars on dental implants was previously a great challenge in prosthetic dentistry and required great effort. Modern computer aided design/computer aided manufacturing technology in combination with some clinical modifications of the established workflow enables the clinician to achieve precise results in a very efficient way. The innovative five-step concept is presented in a clinical case. © 2014 by the American College of Prosthodontists.

  17. Note: Measurement of the runaway electrons in the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.

    2012-05-01

    The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.

  18. NMR-based metabolomic analysis of spatial variation in soft corals.

    PubMed

    He, Qing; Sun, Ruiqi; Liu, Huijuan; Geng, Zhufeng; Chen, Dawei; Li, Yinping; Han, Jiao; Lin, Wenhan; Du, Shushan; Deng, Zhiwei

    2014-03-28

    Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using ¹H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined ¹H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation.

  19. Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel.

    PubMed

    Han, Daehoon; Farino, Cindy; Yang, Chen; Scott, Tracy; Browe, Daniel; Choi, Wonjoon; Freeman, Joseph W; Lee, Howon

    2018-05-30

    Electroactive hydrogels (EAH) that exhibit large deformation in response to an electric field have received great attention as a potential actuating material for soft robots and artificial muscle. However, their application has been limited due to the use of traditional two-dimensional (2D) fabrication methods. Here we present soft robotic manipulation and locomotion with 3D printed EAH microstructures. Through 3D design and precise dimensional control enabled by a digital light processing (DLP) based micro 3D printing technique, complex 3D actuations of EAH are achieved. We demonstrate soft robotic actuations including gripping and transporting an object and a bidirectional locomotion.

  20. Development of a Coherent Lidar for Aiding Precision Soft Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Tolson, Robert H.; Powell, Richard W.; Davidson, John B.; Peri, Frank

    2005-01-01

    Coherent lidar can play a critical role in future planetary exploration missions by providing key guidance, navigation, and control (GNC) data necessary for navigating planetary landers to the pre-selected site and achieving autonomous safe soft-landing. Although the landing accuracy has steadily improved over time to approximately 35 km for the recent Mars Exploration Rovers due to better approach navigation, a drastically different guidance, navigation and control concept is required to meet future mission requirements. For example, future rovers will require better than 6 km landing accuracy for Mars and better than 1 km for the Moon plus maneuvering capability to avoid hazardous terrain features. For this purpose, an all-fiber coherent lidar is being developed to address the call for advancement of entry, descent, and landing technologies. This lidar will be capable of providing precision range to the ground and approach velocity data, and in the case of landing on Mars, it will also measure the atmospheric wind and density. The lidar obtains high resolution range information from a frequency modulated-continuous wave (FM-CW) laser beam whose instantaneous frequency varies linearly with time, and the ground vector velocity is directly extracted from the Doppler frequency shift. Utilizing the high concentration of aerosols in the Mars atmosphere (approx. two order of magnitude higher than the Earth), the lidar can measure wind velocity with a few watts of optical power. Operating in 1.57 micron wavelength regime, the lidar can use the differential absorption (DIAL) technique to measure the average CO2 concentration along the laser beam using, that is directly proportional to the Martian atmospheric density. Employing fiber optics components allows for the lidar multi-functional operation while facilitating a highly efficient, compact and reliable design suitable for integration into a spacecraft with limited mass, size, and power resources.

  1. Bilateral Malar Reconstruction Using Patient-Specific Polyether Ether Ketone Implants in Treacher-Collins Syndrome Patients With Absent Zygomas.

    PubMed

    Sainsbury, David C G; George, Alan; Forrest, Christopher R; Phillips, John H

    2017-03-01

    The authors performed bilateral malar reconstruction using polyether ether ketone implants in 3 patients with Treacher-Collins syndrome with absent, as opposed to hypoplastic, zygomata. These patient-specific implants were fabricated using computed-aided design software reformatted from three-dimensional bony preoperative computed tomography images. The first time the authors performed this procedure the implant compressed the globe resulting in temporary anisocoria that was quickly recognized intraoperatively. The implant was immediately removed and the patient made a full-recovery with no ocular disturbance. The computer-aided design and manufacturing process was adjusted to include periorbital soft-tissue boundaries to aid in contouring the new implants. The same patient, and 2 further patients, subsequently underwent malar reconstruction using this soft tissue periorbital boundary fabrication process with an additional 2 mm relief removed from the implant's orbital surface. These subsequent procedures were performed without complication and with pleasing aesthetic results. The authors describe their experience and the salutary lessons learnt.

  2. Education for Social Transformation: Soviet University Education Aid in the Cold War Capitalist World-System

    ERIC Educational Resources Information Center

    Griffiths, Tom G.; Charon Cardona, Euridice

    2015-01-01

    International education is seen as an effective form of soft power. This article reviews one of history's largest and most ambitious attempts to achieve global influence through university education, and to reshape the world--the Soviet university aid program, 1956-91. Drawing on existing research and Soviet archival materials, we lay out and…

  3. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation-Vision-Based Control for Precise Reaching Motion of Upper Limb.

    PubMed

    Oguntosin, Victoria W; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.

  4. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb

    PubMed Central

    Oguntosin, Victoria W.; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J.; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments. PMID:28736514

  5. Metabolic characterization of cultured mammalian cells by mass balance analysis, tracer labeling experiments and computer-aided simulations.

    PubMed

    Okahashi, Nobuyuki; Kohno, Susumu; Kitajima, Shunsuke; Matsuda, Fumio; Takahashi, Chiaki; Shimizu, Hiroshi

    2015-12-01

    Studying metabolic directions and flow rates in cultured mammalian cells can provide key information for understanding metabolic function in the fields of cancer research, drug discovery, stem cell biology, and antibody production. In this work, metabolic engineering methodologies including medium component analysis, (13)C-labeling experiments, and computer-aided simulation analysis were applied to characterize the metabolic phenotype of soft tissue sarcoma cells derived from p53-null mice. Cells were cultured in medium containing [1-(13)C] glutamine to assess the level of reductive glutamine metabolism via the reverse reaction of isocitrate dehydrogenase (IDH). The specific uptake and production rates of glucose, organic acids, and the 20 amino acids were determined by time-course analysis of cultured media. Gas chromatography-mass spectrometry analysis of the (13)C-labeling of citrate, succinate, fumarate, malate, and aspartate confirmed an isotopically steady state of the cultured cells. After removing the effect of naturally occurring isotopes, the direction of the IDH reaction was determined by computer-aided analysis. The results validated that metabolic engineering methodologies are applicable to soft tissue sarcoma cells derived from p53-null mice, and also demonstrated that reductive glutamine metabolism is active in p53-null soft tissue sarcoma cells under normoxia. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Quantitative validation of a computer-aided maxillofacial planning system, focusing on soft tissue deformations.

    PubMed

    Nadjmi, Nasser; Defrancq, Ellen; Mollemans, Wouter; Hemelen, Geert Van; Bergé, Stefaan

    2014-01-01

    The aim of this study was to evaluate the accuracy of 3D soft tissue predictions generated by a computer-aided maxillofacial planning system in patients undergoing orthognathic surgery. Twenty patients with dentofacial dysmorphosis were treated with orthognathic surgery after a preoperative orthodontic treatment. Fourteen patients had an Angle Class II malocclusion; three patients had an Angle class III malocclusion, and three patients had an Angle Class I malocclusion. Skeletal asymmetry was observed in six patient. The surgeries were planned using the Maxilim software. Computer assisted surgical planning was transferred to the patient by digitally generated splints. The validation procedures were performed in the following steps: (1) Standardized registration of the pre- and postoperative Cone Beam CT volumes; (2) Automated adjustment of the bone-related planning to the actual operative bony displacement; (3) Simulation of soft tissue changes; (4) Calculation of the soft tissue differences between the predicted and the postoperative results by distance mapping. Eighty four percent of the mapped distances between the predicted and actual postoperative results measured between -2 mm and +2 mm. The mean absolute linear measurements between the predicted and actual postoperative surface was 1.18. Our study shows the overall prediction was dependent on neither the surgical procedures nor the dentofacial deformity type. Despite some shortcomings in the prediction of the final position of the lower lip and cheek area, this software promises a clinically acceptable soft tissue prediction for orthognathic surgical procedures.

  7. Soft Polydimethylsiloxane Elastomers from Architecture-driven Entanglement Free Design

    PubMed Central

    Cai, Li-Heng; Kodger, Thomas E.; Guerra, Rodrigo E.; Pegoraro, Adrian F.; Rubinstein, Michael; Weitz, David A.

    2015-01-01

    We fabricate soft, solvent-free polydimethylsiloxane (PDMS) elastomers by crosslinking bottlebrush polymers rather than linear polymers. We design the chemistry to allow commercially available linear PDMS precursors to deterministically form bottlebrush polymers, which are simultaneously crosslinked, enabling a one-step synthesis. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable elastic moduli from ~1 to ~100 kPa, below the intrinsic lower limit of traditional elastomers. Moreover, the solvent-free nature of the soft PDMS elastomers enables a negligible contact adhesion compared to commercially available silicone products of similar stiffness. The exceptional combination of softness and negligible adhesiveness may greatly broaden the applications of PDMS elastomers in both industry and research. PMID:26259975

  8. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  9. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  10. Finite-element modeling of soft tissue rolling indentation.

    PubMed

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a soft tissue sample using the ABAQUS FE software package. The aim of this work is to more precisely locate abnormalities within soft tissue organs using RFEM and hence aid surgeons to improve diagnostic ability. The soft tissue is modeled as a nonlinear hyperelastic material with geometrical nonlinearity. The proposed RFEM was validated on a silicone phantom and a porcine kidney sample. The results show that the proposed method can predict the wheel-tissue interaction forces of rolling indentation with good accuracy and can also accurately identify the location and depth of simulated tumors.

  11. Navigational ultrasound imaging: A novel imaging tool for aiding interventional therapies of equine musculoskeletal injuries.

    PubMed

    Lustgarten, M; Redding, W R; Schnabel, L V; Prange, T; Seiler, G S

    2016-03-01

    Navigational ultrasound imaging, also known as fusion imaging, is a novel technology that allows real-time ultrasound imaging to be correlated with a previously acquired computed tomography (CT) or magnetic resonance imaging (MRI) study. It has been used in man to aid interventional therapies and has been shown to be valuable for sampling and assessing lesions diagnosed with MRI or CT that are equivocal on ultrasonography. To date, there are no reports of the use of this modality in veterinary medicine. To assess whether navigational ultrasound imaging can be used to assist commonly performed interventional therapies for the treatment of equine musculoskeletal injuries diagnosed with MRI and determine the appropriateness of regional anatomical landmarks as registration sites. Retrospective, descriptive clinical study. Horses with musculoskeletal injuries of the distal limb diagnosed with MRI scheduled for ultrasound-guided interventional therapies were evaluated (n = 17 horses with a total of 29 lesions). Anatomical landmarks used for image registration for the navigational procedure were documented. Accuracy of lesion location and success of the procedure were assessed subjectively and described using a grading scale. All procedures were accurately registered using regional anatomical landmarks and considered successful based on our criteria. Anatomical landmarks were described for each lesion type. The addition of navigational imaging was considered to greatly aid the procedures in 59% of cases and added information to the remainder of the procedures. The technique was considered to improve the precision of these interventional procedures. Navigational ultrasound imaging is a complementary imaging modality that can be used for the treatment of equine soft tissue musculoskeletal injuries diagnosed with MRI. © 2015 EVJ Ltd.

  12. Porcine dermis implants in soft-tissue reconstruction: current status

    PubMed Central

    Smart, Neil J; Bryan, Nicholas; Hunt, John A; Daniels, Ian R

    2014-01-01

    Soft-tissue reconstruction for a variety of surgical conditions, such as abdominal wall hernia or pelvic organ prolapse, remains a challenge. There are numerous meshes available that may be simply categorized as either synthetic or biologic. Within biologic meshes, porcine dermal meshes have come to dominate the market. This review examines the current evidence for their use and the limitations of knowledge. Although there is increasing evidence to support their safety, long-term follow-up studies that support their efficacy are lacking. Numerous clinical trials that remain ongoing may help elucidate their precise role in soft-tissue reconstruction. PMID:24648721

  13. Three-dimensional virtual planning in orthognathic surgery enhances the accuracy of soft tissue prediction.

    PubMed

    Van Hemelen, Geert; Van Genechten, Maarten; Renier, Lieven; Desmedt, Maria; Verbruggen, Elric; Nadjmi, Nasser

    2015-07-01

    Throughout the history of computing, shortening the gap between the physical and digital world behind the screen has always been strived for. Recent advances in three-dimensional (3D) virtual surgery programs have reduced this gap significantly. Although 3D assisted surgery is now widely available for orthognathic surgery, one might still argue whether a 3D virtual planning approach is a better alternative to a conventional two-dimensional (2D) planning technique. The purpose of this study was to compare the accuracy of a traditional 2D technique and a 3D computer-aided prediction method. A double blind randomised prospective study was performed to compare the prediction accuracy of a traditional 2D planning technique versus a 3D computer-aided planning approach. The accuracy of the hard and soft tissue profile predictions using both planning methods was investigated. There was a statistically significant difference between 2D and 3D soft tissue planning (p < 0.05). The statistically significant difference found between 2D and 3D planning and the actual soft tissue outcome was not confirmed by a statistically significant difference between methods. The 3D planning approach provides more accurate soft tissue planning. However, the 2D orthognathic planning is comparable to 3D planning when it comes to hard tissue planning. This study provides relevant results for choosing between 3D and 2D planning in clinical practice. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Guidelines for Mass Casualty Decontamination During a HAZMAT/Weapon of Mass Destruction Incident. Volumes 1 and 2 (Update)

    DTIC Science & Technology

    2013-08-01

    neutralization: 1. Physical removal involves mechanical action with techniques such as gentle fric- tion (such as rubbing with hands, soft non...sulfur mustard), using gen- tle friction, such as rubbing with hands, a soft cloth, or sponges is recommended to aid in re- moval of the contaminants...account for both initial mass decontamination and secondary de- contamination. Some examples include the use of colored rubber bands and specially de

  15. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  16. Atomic-layer soft plasma etching of MoS2

    PubMed Central

    Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2016-01-01

    Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335

  17. Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chyasnavichyus, Marius; Young, Seth L.; Tsukruk, Vladimir V.

    2015-08-01

    Probing of micro- and nanoscale mechanical properties of soft materials with atomic force microscopy (AFM) gives essential information about the performance of the nanostructured polymer systems, natural nanocomposites, ultrathin coatings, and cell functioning. AFM provides efficient and is some cases the exclusive way to study these properties nondestructively in controlled environment. Precise force control in AFM methods allows its application to variety of soft materials and can be used to go beyond elastic properties and examine temperature and rate dependent materials response. In this review, we discuss experimental AFM methods currently used in the field of soft nanostructured composites and biomaterials. We discuss advantages and disadvantages of common AFM probing techniques, which allow for both qualitative and quantitative mappings of the elastic modulus of soft materials with nanosacle resolution. We also discuss several advanced techniques for more elaborate measurements of viscoelastic properties of soft materials and experiments on single cells.

  18. An evaluation of portion size estimation aids: precision, ease of use and likelihood of future use.

    PubMed

    Faulkner, Gemma P; Livingstone, M Barbara E; Pourshahidi, L Kirsty; Spence, Michelle; Dean, Moira; O'Brien, Sinead; Gibney, Eileen R; Wallace, Julie Mw; McCaffrey, Tracy A; Kerr, Maeve A

    2016-09-01

    The present study aimed to evaluate the precision, ease of use and likelihood of future use of portion size estimation aids (PSEA). A range of PSEA were used to estimate the serving sizes of a range of commonly eaten foods and rated for ease of use and likelihood of future usage. For each food, participants selected their preferred PSEA from a range of options including: quantities and measures; reference objects; measuring; and indicators on food packets. These PSEA were used to serve out various foods (e.g. liquid, amorphous, and composite dishes). Ease of use and likelihood of future use were noted. The foods were weighed to determine the precision of each PSEA. Males and females aged 18-64 years (n 120). The quantities and measures were the most precise PSEA (lowest range of weights for estimated portion sizes). However, participants preferred household measures (e.g. 200 ml disposable cup) - deemed easy to use (median rating of 5), likely to use again in future (all scored either 4 or 5 on a scale from 1='not very likely' to 5='very likely to use again') and precise (narrow range of weights for estimated portion sizes). The majority indicated they would most likely use the PSEA preparing a meal (94 %), particularly dinner (86 %) in the home (89 %; all P<0·001) for amorphous grain foods. Household measures may be precise, easy to use and acceptable aids for estimating the appropriate portion size of amorphous grain foods.

  19. Mycobacterium tuberculosis osteomyelitis in a patient with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS): a case report.

    PubMed

    Mannepalli, Supriya; Mitchell-Samon, Levonne; Guzman, Nilmarie; Relan, Manish; McCarter, Yvette S

    2010-02-23

    The incidence of tuberculosis is increasing in the United States. Extra-pulmonary involvement is more common in patients with HIV/AIDS. The diagnosis of Tuberculosis osteomyelitis requires a high degree of suspicion for accurate and timely diagnosis.We present a case of a 49 year old Caucasian male with HIV/AIDS who presented with a four-month history of soft tissue swelling in the left proximal thigh unresponsive to various broad spectrum antibiotics who was eventually diagnosed with Mycobacterium tuberculosis osteomyelitis of the left proximal femur.

  20. 3D reconstruction optimization using imagery captured by unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bassie, Abby L.; Meacham, Sean; Young, David; Turnage, Gray; Moorhead, Robert J.

    2017-05-01

    Because unmanned air vehicles (UAVs) are emerging as an indispensable image acquisition platform in precision agriculture, it is vitally important that researchers understand how to optimize UAV camera payloads for analysis of surveyed areas. In this study, imagery captured by a Nikon RGB camera attached to a Precision Hawk Lancaster was used to survey an agricultural field from six different altitudes ranging from 45.72 m (150 ft.) to 121.92 m (400 ft.). After collecting imagery, two different software packages (MeshLab and AgiSoft) were used to measure predetermined reference objects within six three-dimensional (3-D) point clouds (one per altitude scenario). In-silico measurements were then compared to actual reference object measurements, as recorded with a tape measure. Deviations of in-silico measurements from actual measurements were recorded as Δx, Δy, and Δz. The average measurement deviation in each coordinate direction was then calculated for each of the six flight scenarios. Results from MeshLab vs. AgiSoft offered insight into the effectiveness of GPS-defined point cloud scaling in comparison to user-defined point cloud scaling. In three of the six flight scenarios flown, MeshLab's 3D imaging software (user-defined scale) was able to measure object dimensions from 50.8 to 76.2 cm (20-30 inches) with greater than 93% accuracy. The largest average deviation in any flight scenario from actual measurements was 14.77 cm (5.82 in.). Analysis of the point clouds in AgiSoft (GPS-defined scale) yielded even smaller Δx, Δy, and Δz than the MeshLab measurements in over 75% of the flight scenarios. The precisions of these results are satisfactory in a wide variety of precision agriculture applications focused on differentiating and identifying objects using remote imagery.

  1. Histologic and morphologic evaluation of explanted bone anchors from bone-anchored hearing aids.

    PubMed

    Mlynski, Robert; Goldberg, Eva; Ebmeyer, Joerg; Scheich, Matthias; Gattenlöhner, Stefan; Schwager, Konrad; Hagen, Rudolf; Shehata-Dieler, Wafaa

    2009-05-01

    Bone-anchored hearing aids are a standard option in rehabilitation of patients with conductive or mixed hearing loss, and also CROS fitting. However, the skin-penetrating bone anchor repeatedly gives reason for discussion about the risk of infection of surrounding tissues as a major cause of malfunction. In the present study, explanted bone anchors with surrounding bone and soft tissue were examined and compared with the morphology of lost implants. The anchors originated from five patients. Two needed explantation due to deafness with the need of cochlea implantation. A third patient underwent explantation due to meningeal irritation by the bone anchor. Another patient lost the implant due to mechanical stress shortly after implantation. The last implant was lost in a child without apparent reason. All implants were clinically free of infection and had been stable for a median implantation period of 12 months. During the explantation procedure, the fixtures were recovered together with the attached soft tissue and bone. The specimens were examined by light microscopy or scanning electron microscopy (SEM). Sectioning for light microscopy was performed with a diamond-coated saw microtome. Histopathologic examination of the surrounding skin and subcutaneous soft tissue showed slight inflammation in one case only. The bone was regularly vital, presenting no signs of inflammation. The threads of the fixtures were filled with bone, with particularly strong attachment to the flank of traction. The SEM investigation exposed the ultrastructural interaction of bone with the implant surface. Filiform- and podocyte-like processes of osteocytes attach to the implant; lost implants did not reflect these features. Implant integration involves both osseointegration as well as soft tissue integration. Titanium oxide as the active implant surface promotes this integration even in unstable implants. The morphologic analysis exposed structural areas of the implant with weak bone-to-metal contact. Optimized implant design with modified surface and threads may additionally improve osseointegration of hearing aid bone anchors.

  2. The use of time-of-flight camera for navigating robots in computer-aided surgery: monitoring the soft tissue envelope of minimally invasive hip approach in a cadaver study.

    PubMed

    Putzer, David; Klug, Sebastian; Moctezuma, Jose Luis; Nogler, Michael

    2014-12-01

    Time-of-flight (TOF) cameras can guide surgical robots or provide soft tissue information for augmented reality in the medical field. In this study, a method to automatically track the soft tissue envelope of a minimally invasive hip approach in a cadaver study is described. An algorithm for the TOF camera was developed and 30 measurements on 8 surgical situs (direct anterior approach) were carried out. The results were compared to a manual measurement of the soft tissue envelope. The TOF camera showed an overall recognition rate of the soft tissue envelope of 75%. On comparing the results from the algorithm with the manual measurements, a significant difference was found (P > .005). In this preliminary study, we have presented a method for automatically recognizing the soft tissue envelope of the surgical field in a real-time application. Further improvements could result in a robotic navigation device for minimally invasive hip surgery. © The Author(s) 2014.

  3. Aids to radiological differential diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, S.; Nakielny, R.

    This book is composed of lists of differential diagnoses divided into categories: bone, spine, joints, respiratory, cardio-vascular, abdomen, gastrointestinal, urinary tract, soft tissues, face and neck, and skull and brain. It does not contain any reproductions of radiographs.

  4. TRADOC Service School Reports. ’Soft Skill Areas.’

    DTIC Science & Technology

    1979-09-01

    situation where Theory Y is appropriate I. Categorize present situation J. Encourage subordinates to participate in planning and decision making activities...soldier I. Assist the soldier in developing a plan for improvement J. Assess extent of the problem K. Define the problem in precise behavioral terms L...THEMSELVES TO THESE CATEGORIES AND SHOULD REPORT ANY AREA WHICH MAY BE PERCEIVED TO FALL WITHIN THE AREA OF SOFT-SKILLS. THE INTENT IS NOT TO CONDUCT A

  5. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  6. Correction of facial and mandibular asymmetry using a computer aided design/computer aided manufacturing prefabricated titanium implant.

    PubMed

    Watson, Jason; Hatamleh, Muhanad; Alwahadni, Ahed; Srinivasan, Dilip

    2014-05-01

    Patients with significant craniofacial asymmetry may have functional problems associated with their occlusion and aesthetic concerns related to the imbalance in soft and hard tissue profiles. This report details a case of facial asymmetry secondary to left mandible angle deficiency due to undergoing previous radiotherapy. We describe the correction of the bony deformity using computer aided design/computer aided manufacturing custom-made titanium onlay using novel direct metal laser sintering. The direct metal laser sintering onlay proved a very accurate operative fit and showed a good aesthetic correction of the bony defect with no reported complications postoperatively. It is a useful low-morbidity technique, and there is no resorption or associated donor-site complications.

  7. New vibro-acoustic paradigms in biological tissues with application to diagnosis of pulmonary disorders

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling

    The fundamental objective of the present study is to improve our understanding of audible sound propagation in the pulmonary system and torso. A related applied objective is to assess the feasibility of using audible acoustics for diagnosis of specific pulmonary conditions, such as pneumothorax (PTX). To accomplish these objectives, this study includes theoretical, computational and experimental developments aimed at: (1) better identifying the mechanical dynamic properties of soft biological tissues found in the torso region, (2) investigating the mechanisms of sound attenuation that occur when a PTX is present using greatly simplified theoretical and computational models, and (3) exploring the feasibility and utility of more comprehensive and precise computational finite element models of audible sound propagation in the pulmonary system and torso that would aid in related diagnostic developments. Mechanical material properties of soft biological tissue are studied for the low audible frequency range. The sensitivity to shear viscoelastic material constants of theoretical solutions for radiation impedance and surface wave motion are compared. Theoretical solutions are also compared to experimental measurements and numerical results from finite element analysis. It is found that, while prior theoretical solutions for radiation impedance are accurate, use of such measurements to estimate shear viscoelastic constants is not as precise as the use of surface wave measurements. The feasibility of using audible sound for diagnosis of pneumothorax is studied. Simplified one- and two-dimensional theoretical and numerical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanism of energy loss when a pneumothorax is present, relative to a baseline case. A canine study on which these models are based predicts significant decreases in acoustic transmission strength when a pneumothorax is presented, in qualitative agreement with experimental measurements in dogs. Finally, the feasibility of building three-dimensional computational models is studied based on CT images of human subject or combination of the Horsfield airway model with geometry of other parts approximate from medical illustration. Preliminary results from these models show the same trend of acoustic energy loss when a PTX is present.

  8. The effect of instantaneous input dynamic range setting on the speech perception of children with the nucleus 24 implant.

    PubMed

    Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan

    2009-06-01

    The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p < 0.001) than with the 30 IIDR. Group mean CNC scores at 60 dB SPL, loudness ratings, and the signal to noise ratios-50 for Bamford-Kowal-Bench Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.

  9. AID Mediates Hypermutation by Deaminating Single Stranded DNA

    PubMed Central

    Dickerson, Sarah K.; Market, Eleonora; Besmer, Eva; Papavasiliou, F. Nina

    2003-01-01

    Activation-induced deaminase (AID) is a protein indispensable for the diversification of immunoglobulin (Ig) genes by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion. To date, the precise role of AID in these processes has not been determined. Here we demonstrate that purified, tetrameric AID can deaminate cytidine residues in DNA, but not in RNA. Furthermore, we show that AID will bind and deaminate only single-stranded DNA, which implies a direct, functional link between hypermutation and transcription. Finally, AID does not target mutational hotspots, thus mutational targeting to specific residues must be attributed to different factors. PMID:12756266

  10. Final-Approach Spacing Aids (FASA) evaluation for terminal-area, time-based air traffic control

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Capron, William R.; Lohr, Gary W.; Crawford, Daniel J.; Tang, Dershuen A.; Rodgers, William G., Jr.

    1993-01-01

    A jointly funded (NASA/FAA) real-time simulation study was conducted at NASA Langley Research Center to gather comparative performance data among three candidate final-approach spacing aid (FASA) display formats. Several objective measures of controller performance and their display eye-scan behavior as well as subjective workload and rating questionnaires were used. For each of two representative pattern-speed procedures (a 170-knot procedure and a 210-knot procedure with speed control aiding), data were gathered, via twelve FAA controllers, using four final-controller display format conditions (manual/ARTS 3, graphic marker, DICE countdown, and centerline slot marker). Measured runway separations were more precise with both the graphic marker and DICE countdown formats than with the centerline slot marker and both (graphic and DICE) improved precision relative to the manual/ARTS 3 format. For three separate rating criteria, the subject controllers ranked the FASA formats in the same order: graphic marker, DICE countdown, and centerline slot marker. The increased precision measured with the 210-knot pattern-speed procedure may indicate the potential for the application of speed-control aiding where higher pattern speeds are practical after the base-to-final turn. Also presented are key FASA issues, a rationale for the formats selected for testing, and their description.

  11. Controllable helical deformations on printed anisotropic composite soft actuators

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Li, Ling; Serjouei, Ahmad; Dong, Longteng; Weeger, Oliver; Gu, Guoying; Ge, Qi

    2018-04-01

    Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.

  12. Fabrication of tissue engineered tympanic membrane patches using computer-aided design and injection molding.

    PubMed

    Hott, Morgan E; Megerian, Cliff A; Beane, Rich; Bonassar, Lawrence J

    2004-07-01

    The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.

  13. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.

    PubMed

    Lantada, Andrés Díaz; Hengsbach, Stefan; Bade, Klaus

    2017-10-16

    In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.

  14. Omni Directional Multimaterial Soft Cylindrical Actuator and Its Application as a Steerable Catheter.

    PubMed

    Gul, Jahan Zeb; Yang, Young Jin; Su, Kim Young; Choi, Kyung Hyun

    2017-09-01

    Soft actuators with complex range of motion lead to strong interest in applying devices like biomedical catheters and steerable soft pipe inspectors. To facilitate the use of soft actuators in devices where controlled, complex, precise, and fast motion is required, a structurally controlled Omni directional soft cylindrical actuator is fabricated in a modular way using multilayer composite of polylactic acid based conductive Graphene, shape memory polymer, shape memory alloy, and polyurethane. Multiple fabrication techniques are discussed step by step that mainly include fused deposition modeling based 3D printing, dip coating, and UV curing. A mathematical control model is used to generate patterned electrical signals for the Omni directional deformations. Characterizations like structural control, bending, recovery, path, and thermal effect are carried out with and without load (10 g) to verify the new cylindrical design concept. Finally, the application of Omni directional actuator as a steerable catheter is explored by fabricating a scaled version of carotid artery through 3D printing using a semitransparent material.

  15. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    PubMed Central

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.

    2014-01-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 ± 0.12, HDintraobserver = 3.6 mm ± 1.5, DCinterobserver = 0.89 ± 0.15, and HDinterobserver = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy. PMID:24726701

  16. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.

    2014-10-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observersmore » on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.« less

  17. Use of piezoelectric bone scalpel in hand and reconstructive microsurgery.

    PubMed

    Arnez, Z; Papa, G; Renzi, N; Ramella, V; Panizzo, N; Toffanetti, F

    2009-01-01

    Performing osteotomies with piezoelectric bone scalpel is also possible with bones of larger diameter/thickness. At the same time, adjacent soft tissues are not in danger from cutting or thermal damage, reducing the risk of damaging neurovascular structures - which is of primary importance in hand and reconstructive microsurgery. These features contribute to the safety and easy execution of the procedure. The resulting bony cut is precise and permits immediate and safe bone fixation. Osteotomy of bones of >1 cm thickness takes 20-30% longer than when using a conventional oscillating saw, though the increased safety of the procedure more than compensates for this. Three cases are presented, illustrating of the use of Genera Ultrasonic for cutting bones of major thickness (metacarpal, fibula and rib) without any complication. Because of its selectivity for bony tissue, precision and ability to protect soft tissues we also advocate the use of the Genera piezoelectric bone scalpel in hand and reconstructive microsurgery.

  18. Experimental evaluation of ontology-based HIV/AIDS frequently asked question retrieval system.

    PubMed

    Ayalew, Yirsaw; Moeng, Barbara; Mosweunyane, Gontlafetse

    2018-05-01

    This study presents the results of experimental evaluations of an ontology-based frequently asked question retrieval system in the domain of HIV and AIDS. The main purpose of the system is to provide answers to questions on HIV/AIDS using ontology. To evaluate the effectiveness of the frequently asked question retrieval system, we conducted two experiments. The first experiment focused on the evaluation of the quality of the ontology we developed using the OQuaRE evaluation framework which is based on software quality metrics and metrics designed for ontology quality evaluation. The second experiment focused on evaluating the effectiveness of the ontology in retrieving relevant answers. For this we used an open-source information retrieval platform, Terrier, with retrieval models BM25 and PL2. For the measurement of performance, we used the measures mean average precision, mean reciprocal rank, and precision at 5. The results suggest that frequently asked question retrieval with ontology is more effective than frequently asked question retrieval without ontology in the domain of HIV/AIDS.

  19. An Implantable Extracardiac Soft Robotic Device for the Failing Heart: Mechanical Coupling and Synchronization.

    PubMed

    Payne, Christopher J; Wamala, Isaac; Abah, Colette; Thalhofer, Thomas; Saeed, Mossab; Bautista-Salinas, Daniel; Horvath, Markus A; Vasilyev, Nikolay V; Roche, Ellen T; Pigula, Frank A; Walsh, Conor J

    2017-09-01

    Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction-relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.

  20. [Initial evolution research for design and process accuracy of one type of domestic computer aided design soft and computer aided manufacture].

    PubMed

    Song, Yang; Zhao, Yi-jiao; Sun, Yu-chun; Lü, Pei-jun; Wang, Yong

    2013-09-01

    To evaluate the design and manufacture accuracy of a domestic computer aided design (CAD) and computer aided manufacture (CAM) system, and to compare it with similar foreign products. Thirty models of posterior-teeth-single-crown preparations were collected, and STL data of these preparations was collected by Denmark 3Shape scanner. Three copings were made for each preparation, the one designed and manufactured using commercial CAD/CAM system (3Shape CAD software and Wieland T1 CAM equipment) was assigned into control group T0, the one designed and manufactured using domestic CAD software (developed by Peking University School and Hospital of Stomatology and Nanjing University of Aeronautics and Astronautics) and Wieland T1 CAM equipment was assigned into experimental group TCAD for design accuracy evaluation, and the one designed and manufactured using 3Shape CAD software and domestic CAM equipment (developed by Peking University School and Hospital of Stomatology, Tsinghua University and ShanDong XinHua Incorporated Company of medical apparatus and instruments) was assigned into experimental group TCAM for manufacture accuracy evaluation. Finally, the marginal fitness were compared and evaluated by using 3D & Profile measurement microscope laser. The marginal fitness of TCAD was 27.98 (19.10, 46.57) µm in buccal, 32.67 (20.65, 50.82) µm in lingual, 27.38 (22.53, 52.61) µm in mesial, 29.50 (22.68, 53.65) µm in distal; of TCAM was 21.69 (15.87, 30.21) µm in buccal, 18.51 (13.50, 22.51) µm in lingual, 19.15 (15.42, 26.89) µm in mesial, 22.77 (18.58, 32.15) µm in distal; and there were no statistical differences compared with T0 [20.16 (17.16, 48.00) µm in buccal, 21.51 (17.05, 28.31) µm in lingual, 23.54 (17.89, 30.04) µm in mesial and 23.94 (17.93, 28.19) µm in distal] except lingual data of TCAD. The design and machining precision of this domestic CAD/CAM system is at the same level of those comparable foreign products.

  1. Low Cost Precision Lander for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Head, J. N.; Gardner, T. G.; Hoppa, G. V.; Seybold, K. G.

    2004-12-01

    For 60 years the US Defense Department has invested heavily in producing small, low mass, precision guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Vision articulated in January 2004. Establishing and resupplying a long term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In the DOD world, such technologies are used routinely and reliably. Hence, it is timely to generate a point design for a precise planetary lander useful for lunar exploration. In this design science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design flies the lander in an inert configuration to the moon, relying on a cruise stage for navigation and TCMs. The lander activates about a minute before impact. A solid booster reduces the vehicle speed to 300-450 m/s. The lander is now about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability, allowing for about 10 km of vehicle divert during terminal descent. This concept of operations is chosen because it closely mimics missile operational timelines used for decades: the vehicle remains inert in a challenging environment, then must execute its mission flawlessly on a moment's notice. The vehicle design consists of a re-plumbed propulsion system, using propellant tanks and thrusters from exoatmospheric programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC) provide data for the terminal guidance algorithms. DSMAC acquires high-resolution images for real-time correlation with a reference map. This system provides ownship position with a resolution comparable to the map. Since the DSMAC can sample at 1.5 mrad, any imaging acquired below 70 km altitude will surpass the resolution available from previous missions. DSMAC has a mode where image data are compressed and downlinked. This capability could be used to downlink live images during terminal guidance. Approximately 500 kbitps telemetry would be required to provide the first live descent imaging sequence since Ranger. This would provide unique geologic context imaging for the landing site. The development path to produce such a vehicle is that used to develop missiles. First, a pathfinder vehicle is designed and built as a test bed for hardware integration including science instruments. Second, a hover test vehicle would be built. Equipped with mass mockups for the science payload, the vehicle would otherwise be an exact copy of the flight vehicle. The hover vehicle would be flown on earth to demonstrate the proper function and integration of the propulsion system, autopilots, navigation algorithms, and guidance sensors. There is sufficient delta-v in the proposed design to take off from the ground, fly a ballistic arc to over 100 m altitude, then guide to a precision soft landing. Once the vehicle has flown safely on earth, then the validated design would be used to produce the flight vehicle. Since this leverages the billions of dollars DOD has invested in these technologies, it should be possible to land useful science payloads precisely on the lunar surface at relatively low cost.

  2. Maine belowground marsh destruction from the European green crab documented by computer-aided tomography

    EPA Science Inventory

    Invasive European green crab (Carcinus maenus) populations have exploded with devastating losses to Maine’s intertidal resources including soft-shell clams, eelgrass beds, and salt marshes. This project quantified the green crab abundance in three different marsh locations ...

  3. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and CAD-CAM interim complete removable and fixed dental prostheses: A clinical report.

    PubMed

    Harris, Bryan T; Montero, Daniel; Grant, Gerald T; Morton, Dean; Llop, Daniel R; Lin, Wei-Shao

    2017-02-01

    This clinical report proposes a digital workflow using 2-dimensional (2D) digital photographs, a 3D extraoral facial scan, and cone beam computed tomography (CBCT) volumetric data to create a 3D virtual patient with craniofacial hard tissue, remaining dentition (including surrounding intraoral soft tissue), and the realistic appearance of facial soft tissue at an exaggerated smile under static conditions. The 3D virtual patient was used to assist the virtual diagnostic tooth arrangement process, providing patient with a pleasing preoperative virtual smile design that harmonized with facial features. The 3D virtual patient was also used to gain patient's pretreatment approval (as a communication tool), design a prosthetically driven surgical plan for computer-guided implant surgery, and fabricate the computer-aided design and computer-aided manufacturing (CAD-CAM) interim prostheses. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Linear Covariance Analysis for a Lunar Lander

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael

    2017-01-01

    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  5. Precision of a CAD/CAM-engineered surgical template based on a facebow for orthognathic surgery: an experiment with a rapid prototyping maxillary model.

    PubMed

    Lee, Jae-Won; Lim, Se-Ho; Kim, Moon-Key; Kang, Sang-Hoon

    2015-12-01

    We examined the precision of a computer-aided design/computer-aided manufacturing-engineered, manufactured, facebow-based surgical guide template (facebow wafer) by comparing it with a bite splint-type orthognathic computer-aided design/computer-aided manufacturing-engineered surgical guide template (bite wafer). We used 24 rapid prototyping (RP) models of the craniofacial skeleton with maxillary deformities. Twelve RP models each were used for the facebow wafer group and the bite wafer group (experimental group). Experimental maxillary orthognathic surgery was performed on the RP models of both groups. Errors were evaluated through comparisons with surgical simulations. We measured the minimum distances from 3 planes of reference to determine the vertical, lateral, and anteroposterior errors at specific measurement points. The measured errors were compared between experimental groups using a t test. There were significant intergroup differences in the lateral error when we compared the absolute values of the 3-D linear distance, as well as vertical, lateral, and anteroposterior errors between experimental groups. The bite wafer method exhibited little lateral error overall and little error in the anterior tooth region. The facebow wafer method exhibited very little vertical error in the posterior molar region. The clinical precision of the facebow wafer method did not significantly exceed that of the bite wafer method. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Strategies of Parkour practitioners for executing soft precision landings.

    PubMed

    Maldonado, Galo; Soueres, Philippe; Watier, Bruno

    2018-04-25

    Parkour landing techniques differ from performances of other sports as they are practiced in urban spaces with uncontrolled surfaces and drop heights. Due to the relatively young age of the sport, few studies have tried to understand how practitioners - called traceurs - succeed at performing these dynamic performances. In this paper, we focus on the precision landing technique, which has a fundamental role in most of the Parkour motions. We analyzed the lower limbs motion of traceurs executing the precision landings from two different heights and compared their performance with untrained participants. We found that traceurs perform a soft landing extending its duration twice than untrained participants do [Formula: see text], increasing the range of motion [Formula: see text] and generating more mechanical energy [Formula: see text] to dissipate the impact. In the Parkour technique, the knee accounted for half of the energy dissipated. The peak joint torques [Formula: see text] and power [Formula: see text] were reduced in the Parkour technique. The increase of the landing height did not modify the proportion of individual joint mechanical energy contribution for dissipation. Our results could be used to enhance Parkour performance, and to understand new ways in which sport practitioners can land in order to prevent injuries.

  7. A novel technique for reference point generation to aid in intraoral scan alignment.

    PubMed

    Renne, Walter G; Evans, Zachary P; Mennito, Anthony; Ludlow, Mark

    2017-11-12

    When using a completely digital workflow on larger prosthetic cases it is often difficult to communicate to the laboratory or chairside Computer Aided Design and Computer Aided Manufacturing system the provisional prosthetic information. The problem arises when common hard tissue data points are limited or non-existent such as in complete arch cases in which the 3D model of the complete arch provisional restorations must be aligned perfectly with the 3D model of the complete arch preparations. In these instances, soft tissue is not enough to ensure an accurate automatic or manual alignment due to a lack of well-defined reference points. A new technique is proposed for the proper digital alignment of the 3D virtual model of the provisional prosthetic to the 3D virtual model of the prepared teeth in cases where common and coincident hard tissue data points are limited. Clinical considerations: A technique is described in which fiducial composite resin dots are temporarily placed on the intraoral keratinized tissue in strategic locations prior to final impressions. These fiducial dots provide coincident and clear 3D data points that when scanned into a digital impression allow superimposition of the 3D models. Composite resin dots on keratinized tissue were successful at allowing accurate merging of provisional restoration and post-preparation 3D models for the purpose of using the provisional restorations as a guide for final CLINICAL SIGNIFICANCE: Composite resin dots placed temporarily on attached tissue were successful at allowing accurate merging of the provisional restoration 3D models to the preparation 3D models for the purposes of using the provisional restorations as a guide for final restoration design and manufacturing. In this case, they allowed precise superimposition of the 3D models made in the absence of any other hard tissue reference points, resulting in the fabrication of ideal final restorations. © 2017 Wiley Periodicals, Inc.

  8. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  9. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    PubMed

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A soft kinetic data structure for lesion border detection.

    PubMed

    Kockara, Sinan; Mete, Mutlu; Yip, Vincent; Lee, Brendan; Aydin, Kemal

    2010-06-15

    The medical imaging and image processing techniques, ranging from microscopic to macroscopic, has become one of the main components of diagnostic procedures to assist dermatologists in their medical decision-making processes. Computer-aided segmentation and border detection on dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopic images have become an important research field mainly because of inter- and intra-observer variations in human interpretations. In this study, a novel approach-graph spanner-for automatic border detection in dermoscopic images is proposed. In this approach, a proximity graph representation of dermoscopic images in order to detect regions and borders in skin lesion is presented. Graph spanner approach is examined on a set of 100 dermoscopic images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates, false positives and false negatives along with true positives and true negatives are quantified by digitally comparing results with manually determined borders from a dermatologist. The results show that the highest precision and recall rates obtained to determine lesion boundaries are 100%. However, accuracy of assessment averages out at 97.72% and borders errors' mean is 2.28% for whole dataset.

  11. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  12. Body Imaging

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Magnetic Resonance Imaging (MRI) and Computer-aided Tomography (CT) images are often complementary. In most cases, MRI is good for viewing soft tissue but not bone, while CT images are good for bone but not always good for soft tissue discrimination. Physicians and engineers in the Department of Radiology at the University of Michigan Hospitals are developing a technique for combining the best features of MRI and CT scans to increase the accuracy of discriminating one type of body tissue from another. One of their research tools is a computer program called HICAP. The program can be used to distinguish between healthy and diseased tissue in body images.

  13. Left-right and front-back spatial hearing with multiple directional microphone configurations in modern hearing aids.

    PubMed

    Carette, Evelyne; Van den Bogaert, Tim; Laureyns, Mark; Wouters, Jan

    2014-10-01

    Several studies have demonstrated negative effects of directional microphone configurations on left-right and front-back (FB) sound localization. New processing schemes, such as frequency-dependent directionality and front focus with wireless ear-to-ear communication in recent, commercial hearing aids may preserve the binaural cues necessary for left-right localization and may introduce useful spectral cues necessary for FB disambiguation. In this study, two hearing aids with different processing schemes, which were both designed to preserve the ability to localize sounds in the horizontal plane (left-right and FB), were compared. We compared horizontal (left-right and FB) sound localization performance of hearing aid users fitted with two types of behind-the-ear (BTE) devices. The first type of BTE device had four different programs that provided (1) no directionality, (2-3) symmetric frequency-dependent directionality, and (4) an asymmetric configuration. The second pair of BTE devices was evaluated in its omnidirectional setting. This setting automatically activates a soft forward-oriented directional scheme that mimics the pinna effect. Also, wireless communication between the hearing aids was present in this configuration (5). A broadband stimulus was used as a target signal. The directional hearing abilities of the listeners were also evaluated without hearing aids as a reference. A total of 12 listeners with moderate to severe hearing loss participated in this study. All were experienced hearing-aid users. As a reference, 11 listeners with normal hearing participated. The participants were positioned in a 13-speaker array (left-right, -90°/+90°) or 7-speaker array (FB, 0-180°) and were asked to report the number of the loudspeaker located the closest to where the sound was perceived. The root mean square error was calculated for the left-right experiment, and the percentage of FB errors was used as a FB performance measure. RESULTS were analyzed with repeated-measures analysis of variance. For the left-right localization task, no significant differences could be proven between the unaided condition and both partial directional schemes and the omnidirectional scheme. The soft forward-oriented system and the asymmetric system did show a detrimental effect compared with the unaided condition. On average, localization was worst when users used the asymmetric condition. Analysis of the results of the FB experiment showed good performance, similar to unaided, with both the partial directional systems and the asymmetric configuration. Significantly worse performance was found with the omnidirectional and the omnidirectional soft forward-oriented BTE systems compared with the other hearing-aid systems. Bilaterally fitted partial directional systems preserve (part of) the binaural cues necessary for left-right localization and introduce, preserve, or enhance useful spectral cues that allow FB disambiguation. Omnidirectional systems, although good for left-right localization, do not provide the user with enough spectral information for an optimal FB localization performance. American Academy of Audiology.

  14. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics

    PubMed Central

    Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong

    2015-01-01

    We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380

  15. Correlations between the MR Diffusion-weighted Image (DWI) and the bone mineral density (BMD) as a function of the soft tissue thickness-focus on phantom and patient

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Sam; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sang-Jeong; Park, Cheol-Soo; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Lee, Jong-Woong; Kim, Ho-Sung; Kim, Eun-Hye; Kweon, Dae Cheol; Yeo, Hwa-Yeon

    2013-02-01

    In this study we used lumbar phantoms to determine if the BMD (bone mineral density) changes when only the thickness of soft tissue is increased. Second, we targeted osteoporosis patients to analyze the dependences of the changes in the SNR (signal-to-noise ratio) and the ADC (apparent diffusion coefficient) on changes in T-score. We used a bone mineral densitometer, phantoms such as an aluminum spine phantom (ASP), a Hologic spine phantom (HSP), and a European spine phantom (ESP), five sheets of acrylic panel, and a water bath to study the effects of changes in the thickness of soft tissue. First, we measured the ASP, the HSP and the ESP. For the measurement of the ASP, we filled it with water to increase the height by 0.5 cm starting from the baseline height. We then did three measurements for each height. For the measurements of the HSP and the ESP, we placed an acrylic panel on the phantom and then did three measurements at each height. We used the ASP to calculate the degree of precision of the standard mode and the thick mode at the maximum height of the water bath. To assess the degree of precision in the measurements of the three types of phantoms, we calculated precision errors and analyzed the correlation between the change in the thickness of soft tissue and the variables of the BMD. Using DWIs (diffusion weighted images), we targeted 30 healthy persons without osteoporosis and 30 patients with a finding of osteoporosis and measured the T-scores for the L1 — L4 (lumbar spine) segments of by the spine using the dual-energy X-ray absorptiometry (DXA) before classifying the measurement at each part of the spine as osteopenia or osteoporosis. We measured the signal intensity on all four parts of L1-L4 in the DWIs obtained using a 1.5T MR scanner and measured the ADC in the ADC map image. We compared changes in the SNR and the ADC for each group. The study results confirmed that an increase in the thickness of the soft tissue had a significant correlation with the BMD and that the SNR and the ADC decreased as the T-score in the DWI went down.

  16. Centering Objects in the Workspace

    ERIC Educational Resources Information Center

    Free, Cory

    2005-01-01

    Drafters must be detail-oriented people. The objects they draw are interpreted and then built with the extreme precision required by today's manufacturers. Now that computer-aided drafting (CAD) has taken over the drafting profession, anything less than exact precision is unacceptable. In her drafting classes, the author expects her students to…

  17. Characterization of Polystyrene Soft Nanoparticles Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Martin, Halie; White, Tyler; Saito, Tomonori; Dadmun, Mark

    Polymer nanocomposites have become a prominent area of research recently. With a growing variety of nanoparticles available, research probing the influence of particle morphology on the overall nanocomposite properties is also increasing. Nanoparticle dispersion is controlled by both the chemical nature and morphology of the nanoparticle where a crosslinked, fuzzy organic nanoparticle is anticipated to enhance the overall miscibility and create a homogenous dispersion within a like-polymer matrix. A semi-batch microemulsion polymerization forms organic, soft nanoparticles where the precise structure of the nanoparticle is controlled by monomer rate of addition and crosslinking density. We will report small angle neutron scattering results that correlate synthetic conditions to the structural characteristics of soft nanoparticles. This analysis provides characterization of the individual nanoparticle molecular weight, the radius of the crosslinked core, the thickness of the fuzzy interfacial layer, and provides insight into the overall topography of the soft nanoparticle. This research provides a pathway to investigate the effect of nanoscale structural features of the nanoparticle on their individual properties and those of nanocomposites that contain these soft nanoparticles. DOE-BES, Division of Materials Sciences and Engineering.

  18. Are bans on kidney sales unjustifiably paternalistic?

    PubMed

    Malmqvist, Erik

    2014-03-01

    This paper challenges the view that bans on kidney sales are unjustifiably paternalistic, that is, that they unduly deny people the freedom to make decisions about their own bodies in order to protect them from harm. I argue that not even principled anti-paternalists need to reject such bans. This is because their rationale is not hard paternalism, which anti-paternalists repudiate, but soft paternalism, which they in principle accept. More precisely, I suggest that their rationale is what Franklin Miller and Alan Wertheimer call 'group soft paternalism'. Group soft paternalistic policies restrict the freedom of autonomous individuals, not for their own good (hard paternalism), but as an unavoidable consequence of seeking to protect other, non-autonomous individuals from harms that they have not voluntarily chosen (soft paternalism). Group soft paternalism supports prohibiting kidney sales on three conditions: (1) that such sales are potentially harmful to vendors, (2) that many vendors would suffer impaired autonomy, and (3) that distinguishing between autonomous and non-autonomous vendors and interfering only with the latter is unfeasible. I provide reasons for thinking that these conditions will often hold. © 2012 John Wiley & Sons Ltd.

  19. Computer aided flexible envelope designs

    NASA Technical Reports Server (NTRS)

    Resch, R. D.

    1975-01-01

    Computer aided design methods are presented for the design and construction of strong, lightweight structures which require complex and precise geometric definition. The first, flexible structures, is a unique system of modeling folded plate structures and space frames. It is possible to continuously vary the geometry of a space frame to produce large, clear spans with curvature. The second method deals with developable surfaces, where both folding and bending are explored with the observed constraint of available building materials, and what minimal distortion result in maximum design capability. Alternative inexpensive fabrication techniques are being developed to achieve computer defined enclosures which are extremely lightweight and mathematically highly precise.

  20. Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Yu-Tao; Zhang, Tian-Yu; Wang, Dan-Yang; Tian, Ye; Yan, Jun-Chao; Tian, He; Yang, Yi; Yang, Fan; Ren, Tian-Ling

    2018-03-01

    In this paper, low-voltage, large-strain flexible electrothermal actuators (ETAs) based on laser-reduced graphene oxide (LRGO)/Ag particle composites were fabricated in a simple and cost-efficient process. By adding Ag particles to the LRGO, the sheet resistance decreased effectively. Under a driving voltage of 28 V, the actuator obtained a bending angle of 192° within 6 s. Besides, the bending deformation could be precisely controlled by the driving voltage ranging from 10° to 192°. Finally, a gripper composed of two actuators was demonstrated to manipulate a piece of polydimethylsiloxane block. With the advantages of low-voltage, fast-response, and easy-to-manufacture, the graphene based ETAs have a promising application in soft robotics and soft machines.

  1. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  2. Hearing rehabilitation in Treacher Collins Syndrome with bone anchored hearing aid

    PubMed Central

    Polanski, José Fernando; Plawiak, Anna Clara; Ribas, Angela

    2015-01-01

    Objective: To describe a case of hearing rehabilitation with bone anchored hearing aid in a patient with Treacher Collins syndrome. Case description: 3 years old patient, male, with Treacher Collins syndrome and severe complications due to the syndrome, mostly related to the upper airway and hearing. He had bilateral atresia of external auditory canals, and malformation of the pinna. The initial hearing rehabilitation was with bone vibration arch, but there was poor acceptance due the discomfort caused by skull compression. It was prescribed a model of bone-anchored hearing aid, in soft band format. The results were evaluated through behavioral hearing tests and questionnaires Meaningful Use of Speech Scale (MUSS) and Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS). Comments: The patient had a higher acceptance of the bone-anchored hearing aid compared to the traditional bone vibration arch. Audiological tests and the speech and auditory skills assessments also showed better communication and hearing outcomes. The bone-anchored hearing aid is a good option in hearing rehabilitation in this syndrome. PMID:26298651

  3. Case Study: Meeting the Demand for Skilled Precision Engineers

    ERIC Educational Resources Information Center

    Sansom, Chris; Shore, Paul

    2008-01-01

    Purpose: This paper aims to demonstrate how science and engineering graduates can be recruited and trained to Masters level in precision engineering as an aid to reducing the skills shortage of mechanical engineers in UK industry. Design/methodology/approach: The paper describes a partnership between three UK academic institutions and industry,…

  4. Soft x-ray tomography for real-time applications: present status at Tore Supra and possible future developments.

    PubMed

    Mazon, D; Vezinet, D; Pacella, D; Moreau, D; Gabelieri, L; Romano, A; Malard, P; Mlynar, J; Masset, R; Lotte, P

    2012-06-01

    This paper is focused on the soft x-ray (SXR) tomography system setup at Tore Supra (DTOMOX) and the recent developments made to automatically get precise information about plasma features from inverted data. The first part describes the main aspects of the tomographic inversion optimization process. Several observations are made using this new tool and a set of shape factors is defined to help characterizing the emissivity field in a real-time perspective. The second part presents a detailed off-line analysis comparing the positions of the magnetic axis obtained from a magnetic equilibrium solver, and the maximum of the reconstructed emissivity field for ohmic and heated pulses. A systematic discrepancy of about 5 cm is found in both cases and it is shown that this discrepancy increases during sawtooth crashes. Finally, evidence of radially localized tungsten accumulation with an in-out asymmetry during a lower hybrid current drive pulse is provided to illustrate the DTOMOX capabilities for a precise observation of local phenomena.

  5. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    NASA Astrophysics Data System (ADS)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  6. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  7. Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials.

    PubMed

    Zeng, Hao; Wasylczyk, Piotr; Wiersma, Diederik S; Priimagi, Arri

    2018-06-01

    For decades, roboticists have focused their efforts on rigid systems that enable programmable, automated action, and sophisticated control with maximal movement precision and speed. Meanwhile, material scientists have sought compounds and fabrication strategies to devise polymeric actuators that are small, soft, adaptive, and stimuli-responsive. Merging these two fields has given birth to a new class of devices-soft microrobots that, by combining concepts from microrobotics and stimuli-responsive materials research, provide several advantages in a miniature form: external, remotely controllable power supply, adaptive motion, and human-friendly interaction, with device design and action often inspired by biological systems. Herein, recent progress in soft microrobotics is highlighted based on light-responsive liquid-crystal elastomers and polymer networks, focusing on photomobile devices such as walkers, swimmers, and mechanical oscillators, which may ultimately lead to flying microrobots. Finally, self-regulated actuation is proposed as a new pathway toward fully autonomous, intelligent light robots of the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rough set soft computing cancer classification and network: one stone, two birds.

    PubMed

    Zhang, Yue

    2010-07-15

    Gene expression profiling provides tremendous information to help unravel the complexity of cancer. The selection of the most informative genes from huge noise for cancer classification has taken centre stage, along with predicting the function of such identified genes and the construction of direct gene regulatory networks at different system levels with a tuneable parameter. A new study by Wang and Gotoh described a novel Variable Precision Rough Sets-rooted robust soft computing method to successfully address these problems and has yielded some new insights. The significance of this progress and its perspectives will be discussed in this article.

  9. Layer-by-layer design method for soft-X-ray multilayers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Masaki; Namioka, Takeshi

    1992-01-01

    A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.

  10. Three-dimensional surgical simulation.

    PubMed

    Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-09-01

    In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Evaluating the physical fit of receiver-in-the-ear hearing aids in infants.

    PubMed

    Caporali, Sueli Aparecida; Schmidt, Erik; Eriksson, Asa; Sköld, Birgitta; Popecki, Barbara; Larsson, Josefina; Auriemmo, Jane

    2013-03-01

    In spite of early identification and intervention efforts achieved by Early Hearing Detection and Intervention (EHDI) programs, many infants with hearing loss experience delays in early vocabulary development in comparison to peers with normal hearing (Mayne, Yoshinaga-Itano, Sedey, 2000a; Mayne, Yoshinaga-Itano, Sedey, Carey, 2000b; Moeller et al, 2007a, 2007b). One of the several factors that may contribute to individual differences in outcomes is inconsistent hearing aid use in this age group. This may be associated with the physical fit when using traditional behind-the-ear (BTE) hearing aids, since they are relatively large in comparison with the small and soft ear of an infant. Receiver-in-the-ear (RITE) hearing aids may be advantageous for use in pediatric fittings, since they are very tiny and lightweight and therefore sit comfortably on a small soft ear. To evaluate the use of a RITE hearing aid with an instant ear-tip especially developed for infants in terms of physical fit, stability, safety, and security of the device, as well as the use of retention tools (remedies for keeping the hearing aid securely on the ear) with this age group. A longitudinal study with hearing impaired infants fitted with RITE hearing aids was performed. Eighteen infants with mild to moderate/severe hearing loss participated in the study. The age range was 2-36 mo. Sixteen infants had worn hearing aids prior to their participation in the study. Each hearing impaired infant was fitted with the RITE hearing aid and an instant ear-tip, the size of which was chosen by the audiologist. The infants used the device for a period of 2-5 mo. Audiologists and parents completed questionnaires at every visit (5-7 visits in total). Responses were obtained using a category rating scale (Stevens, 1975) from 0 to 10. The data were analyzed using descriptive statistics and nonparametric statistics. Sixteen of the 18 children completed the study. At the end of the study, 11 of the 16 children were using the instant ear-tip, whereas five children were fitted with the receiver mounted in a custom earmold. The audiologists rated the RITE solution to provide a safe, stable, and secure fit. The general trend was that ratings improved over time. At the final follow-up session, all median ratings were between 8 and 10. Based on the positive results obtained in the study, the use of an appropriately designed RITE hearing aid is recommended for infants. American Academy of Audiology.

  12. 3D printing of soft-matter to open a new era of soft-matter MEMS/robotics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu

    2017-04-01

    3D printing technology is becoming useful and applicable by the progress of information and communication technology (ICT). It means 3D printer is a kind of useful robot for additive manufacturing and is controlled by computer with human-friendly software. Once user starts to use 3D printing of soft-matter, one can immediately understand computer-aided design (CAD) and engineering (CAE) technology will be more important and applicable for soft-matter systems. User can easily design soft-matter objects and 3D-print them. User can easily apply 3D-printed soft-matter objects to develop new research and application on MEMS and robotics. Here we introduce the recent progress of 3D printing (i.e. additive manufacturing), especially focusing on our 3D gel printing. We are trying to develop new advanced research and applications of 3D gel printer, including GEL-MECHANICS, GEL-PHOTONICS, and GEL-ROBOTICS. In the gel-mechanics, we are developing new gel materials for mechanical engineering. Some gels have high-mechanical strength and shape memory properties. In the gel-photonics. We are applying our original characterizing system, named `Scanning Microscopic Light Scattering (SMILS)', to analyze 3D printed gel materials. In the gel-robotics, we focus on 3D printing of soft parts for soft-robotics made form gel materials, like gel finger. Also we are challenging to apply 3D gel printing to start new company, to innovate new businesses in county side, and to create new 3D-printed foods.

  13. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  14. Area under precision-recall curves for weighted and unweighted data.

    PubMed

    Keilwagen, Jens; Grosse, Ivo; Grau, Jan

    2014-01-01

    Precision-recall curves are highly informative about the performance of binary classifiers, and the area under these curves is a popular scalar performance measure for comparing different classifiers. However, for many applications class labels are not provided with absolute certainty, but with some degree of confidence, often reflected by weights or soft labels assigned to data points. Computing the area under the precision-recall curve requires interpolating between adjacent supporting points, but previous interpolation schemes are not directly applicable to weighted data. Hence, even in cases where weights were available, they had to be neglected for assessing classifiers using precision-recall curves. Here, we propose an interpolation for precision-recall curves that can also be used for weighted data, and we derive conditions for classification scores yielding the maximum and minimum area under the precision-recall curve. We investigate accordances and differences of the proposed interpolation and previous ones, and we demonstrate that taking into account existing weights of test data is important for the comparison of classifiers.

  15. Area under Precision-Recall Curves for Weighted and Unweighted Data

    PubMed Central

    Grosse, Ivo

    2014-01-01

    Precision-recall curves are highly informative about the performance of binary classifiers, and the area under these curves is a popular scalar performance measure for comparing different classifiers. However, for many applications class labels are not provided with absolute certainty, but with some degree of confidence, often reflected by weights or soft labels assigned to data points. Computing the area under the precision-recall curve requires interpolating between adjacent supporting points, but previous interpolation schemes are not directly applicable to weighted data. Hence, even in cases where weights were available, they had to be neglected for assessing classifiers using precision-recall curves. Here, we propose an interpolation for precision-recall curves that can also be used for weighted data, and we derive conditions for classification scores yielding the maximum and minimum area under the precision-recall curve. We investigate accordances and differences of the proposed interpolation and previous ones, and we demonstrate that taking into account existing weights of test data is important for the comparison of classifiers. PMID:24651729

  16. Modeling and control of a dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  17. Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection

    NASA Astrophysics Data System (ADS)

    Acer, Merve; Salerno, Marco; Agbeviade, Kossi; Paik, Jamie

    2015-07-01

    Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5-2.3 mm in thickness, with the sensitivity in the range of 0.07-0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed.

  18. Rise of China in the Caribbean: Impacts for Regional Security

    DTIC Science & Technology

    2013-12-13

    United States, however reluctantly, in flagrant cases of such wrongdoing or impotence, to the exercise of an international police power. — The......aid and soft loans to these countries prior to the 2007 Cricket World Cup and over the past decade has invested heavily in areas such as the tourism

  19. Combining Technology and Narrative in a Learning Environment for Workplace Training.

    ERIC Educational Resources Information Center

    Nelson, Wayne A.; Wellings, Paula; Palumbo, David; Gupton, Christine

    In a project designed to provide training for entry-level job skills in high tech industries, a combination of narrative and technology was employed to aid learners in developing the necessary soft skills (dependability, responsibility, listening comprehension, collaboration, et cetera) sought by employers. The EnterTech Project brought together a…

  20. Three-dimensional visualization system as an aid for facial surgical planning

    NASA Astrophysics Data System (ADS)

    Barre, Sebastien; Fernandez-Maloigne, Christine; Paume, Patricia; Subrenat, Gilles

    2001-05-01

    We present an aid for facial deformities treatment. We designed a system for surgical planning and prediction of human facial aspect after maxillo-facial surgery. We study the 3D reconstruction process of the tissues involved in the simulation, starting from CT acquisitions. 3D iso-surfaces meshes of soft tissues and bone structures are built. A sparse set of still photographs is used to reconstruct a 360 degree(s) texture of the facial surface and increase its visual realism. Reconstructed objects are inserted into an object-oriented, portable and scriptable visualization software allowing the practitioner to manipulate and visualize them interactively. Several LODs (Level-Of- Details) techniques are used to ensure usability. Bone structures are separated and moved by means of cut planes matching orthognatic surgery procedures. We simulate soft tissue deformations by creating a physically-based springs model between both tissues. The new static state of the facial model is computed by minimizing the energy of the springs system to achieve equilibrium. This process is optimized by transferring informations like participation hints at vertex-level between a warped generic model and the facial mesh.

  1. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    PubMed

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  2. Using soft systems methodology to develop a simulation of out-patient services.

    PubMed

    Lehaney, B; Paul, R J

    1994-10-01

    Discrete event simulation is an approach to modelling a system in the form of a set of mathematical equations and logical relationships, usually used for complex problems, which are difficult to address by using analytical or numerical methods. Managing out-patient services is such a problem. However, simulation is not in itself a systemic approach, in that it provides no methodology by which system boundaries and system activities may be identified. The investigation considers the use of soft systems methodology as an aid to drawing system boundaries and identifying system activities, for the purpose of simulating the outpatients' department at a local hospital. The long term aims are to examine the effects that the participative nature of soft systems methodology has on the acceptability of the simulation model, and to provide analysts and managers with a process that may assist in planning strategies for health care.

  3. Synovial Sarcoma in the Foot of a 5-Year-Old ChildA Case Report.

    PubMed

    Lepow, Gary M; Grimmer, Daniel L; Lemar, Onya V; Bridges, Evan A

    2016-07-01

    The purpose of this case report is to present a rare finding of synovial sarcoma in a 5-year-old child. Most soft-tissue masses of the foot are too often presumed to be small and benign; therefore, compared with soft-tissue sarcomas, they are difficult to clinically differentiate and treat. A 5-year-old girl presented with a painful lesion that was diagnosed as synovial sarcoma after an excisional biopsy was performed. This was an unexpected finding of synovial sarcoma involving the tibialis posterior tendon of her right foot. The patient presented with an 8-month history of tenderness and an antalgic gait. We would like to encourage that all soft-tissue tumors of the foot be preoperatively evaluated with the aid of diagnostic imaging so that a well-planned biopsy assessment can be performed, with adequate margins excised.

  4. Tear exchange and contact lenses: A review

    PubMed Central

    Muntz, Alex; Subbaraman, Lakshman N.; Sorbara, Luigina; Jones, Lyndon

    2015-01-01

    Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses. PMID:25575892

  5. Full characterization of an attosecond pulse generated using an infrared driver

    PubMed Central

    Zhang, Chunmei; Brown, Graham G.; Kim, Kyung Taec; Villeneuve, D. M.; Corkum, P. B.

    2016-01-01

    The physics of attosecond pulse generation requires using infrared driving wavelength to reach the soft X-rays. However, with longer driving wavelength, the harmonic conversion efficiency drops significantly. It makes the conventional attosecond pulse measurement using streaking very difficult due to the low photoionization cross section in the soft X-rays region. In-situ measurement was developed for precisely this purpose. We use in-situ measurement to characterize, in both space and time, an attosecond pulse produced by ultrafast wavefront rotation of a 1.8 μm fundamental beam. We confirm what models suggest – that each beamlet is an isolated attosecond pulse in the time domain. We get almost constant flat wavefront curvature through the whole photon energy range. The measurement method is scalable to the soft X-ray spectral region. PMID:27230961

  6. Alveolar Soft Part Sarcoma.

    PubMed

    Jaber, Omar I; Kirby, Patricia A

    2015-11-01

    Alveolar soft part sarcoma is a rare neoplasm usually arising in the soft tissues of the lower limbs in adults and in the head and neck region in children. It presents primarily as a slowly growing mass or as metastatic disease. It is characterized by a specific chromosomal alteration, der(17)t(X:17)(p11:q25), resulting in fusion of the transcription factor E3 (TFE3) with alveolar soft part sarcoma critical region 1 (ASPSCR1) at 17q25. This translocation is diagnostically useful because the tumor nuclei are positive for TFE3 by immunohistochemistry. Real-time polymerase chain reaction to detect the ASPSCR1-TFE3 fusion transcript on paraffin-embedded tissue blocks has been shown to be more sensitive and specific than detection of TFE3 by immunohistochemical stain. Cathepsin K is a relatively recent immunohistochemical stain that can aid in the diagnosis. The recent discovery of the role of the ASPSCR1-TFE3 fusion protein in the MET proto-oncogene signaling pathway promoting angiogenesis and cell proliferation offers a promising targeted molecular therapy.

  7. A Differential GPS Aided Ins for Aircraft Landings

    DTIC Science & Technology

    1995-12-01

    Pseudolite during the Landing A pproach .................................................................................................. 4-9 4.2.1...for precision approaches, areas associated with accuracy, coverage, integrity availability, and aircraft integration must be studied and 1-3...publications [13,20,27,30,57,59] suggests very few studies have been performed which use an integrated INS/GPS for precision approaches. The majority of

  8. Heavy dark matter annihilation from effective field theory.

    PubMed

    Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W

    2015-05-29

    We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

  9. A Modular Soft Robotic Wrist for Underwater Manipulation.

    PubMed

    Kurumaya, Shunichi; Phillips, Brennan T; Becker, Kaitlyn P; Rosen, Michelle H; Gruber, David F; Galloway, Kevin C; Suzumori, Koichi; Wood, Robert J

    2018-04-19

    This article presents the development of modular soft robotic wrist joint mechanisms for delicate and precise manipulation in the harsh deep-sea environment. The wrist consists of a rotary module and bending module, which can be combined with other actuators as part of a complete manipulator system. These mechanisms are part of a suite of soft robotic actuators being developed for deep-sea manipulation via submersibles and remotely operated vehicles, and are designed to be powered hydraulically with seawater. The wrist joint mechanisms can also be activated with pneumatic pressure for terrestrial-based applications, such as automated assembly and robotic locomotion. Here we report the development and characterization of a suite of rotary and bending modules by varying fiber number and silicone hardness. Performance of the complete soft robotic wrist is demonstrated in normal atmospheric conditions using both pneumatic and hydraulic pressures for actuation and under high ambient hydrostatic pressures equivalent to those found at least 2300 m deep in the ocean. This rugged modular wrist holds the potential to be utilized at full ocean depths (>10,000 m) and is a step forward in the development of jointed underwater soft robotic arms.

  10. Validation of 3D documentation of palatal soft tissue shape, color, and irregularity with intraoral scanning.

    PubMed

    Deferm, Julie T; Schreurs, Ruud; Baan, Frank; Bruggink, Robin; Merkx, Matthijs A W; Xi, Tong; Bergé, Stefaan J; Maal, Thomas J J

    2018-04-01

    The purpose of this study was to assess the feasibility of 3D intraoral scanning for documentation of palatal soft tissue by evaluating the accuracy of shape, color, and curvature. Intraoral scans of ten participants' upper dentition and palate were acquired with the TRIOS® 3D intraoral scanner by two observers. Conventional impressions were taken and digitized as a gold standard. The resulting surface models were aligned using an Iterative Closest Point approach. The absolute distance measurements between the intraoral models and the digitized impression were used to quantify the trueness and precision of intraoral scanning. The mean color of the palatal soft tissue was extracted in HSV (hue, saturation, value) format to establish the color precision. Finally, the mean curvature of the surface models was calculated and used for surface irregularity. Mean average distance error between the conventional impression models and the intraoral models was 0.02 ± 0.07 mm (p = 0.30). Mean interobserver color difference was - 0.08 ± 1.49° (p = 0.864), 0.28 ± 0.78% (p = 0.286), and 0.30 ± 1.14% (p = 0.426) for respectively hue, saturation, and value. The interobserver differences for overall and maximum surface irregularity were 0.01 ± 0.03 and 0.00 ± 0.05 mm. This study supports the hypothesis that the intraoral scan can perform a 3D documentation of palatal soft tissue in terms of shape, color, and curvature. An intraoral scanner can be an objective tool, adjunctive to the clinical examination of the palatal tissue.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar

    Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less

  12. Arthroscopic evaluation of soft tissue injuries in tibial plateau fractures: retrospective analysis of 98 cases.

    PubMed

    Abdel-Hamid, Mohamed Zaki; Chang, Chung-Hsun; Chan, Yi-Sheng; Lo, Yang-Pin; Huang, Jau-Wen; Hsu, Kuo-Yao; Wang, Ching-Jen

    2006-06-01

    This investigation arthroscopically assesses the frequency of soft tissue injury in tibial plateau fracture according to the severity of fracture patterns. We hypothesized that use of arthroscopy to evaluate soft tissue injury in tibial plateau fractures would reveal a greater number of associated injuries than have previously been reported. From March 1996 to December 2003, 98 patients with closed tibial plateau fractures were treated with arthroscopically assisted reduction and osteosynthesis, with precise diagnosis and management of associated soft tissue injuries. Arthroscopic findings for associated soft tissue injuries were recorded, and the relationship between fracture type and soft tissue injury was then analyzed. The frequency of associated soft tissue injury in this series was 71% (70 of 98). The menisci were injured in 57% of subjects (56 in 98), the anterior cruciate ligament (ACL) in 25% (24 of 98), the posterior cruciate ligament (PCL) in 5% (5 of 98), the lateral collateral ligament (LCL) in 3% (3 of 98), the medial collateral ligament (MCL) in 3% (3 of 98), and the peroneal nerve in 1% (1 of 98); none of the 98 patients exhibited injury to the arteries. No significant association was noted between fracture type and incidence of meniscus, PCL, LCL, MCL, artery, and nerve injury. However, significantly higher injury rates for the ACL were observed in type IV and VI fractures. Soft tissue injury was associated with all types of tibial plateau fracture. Menisci (peripheral tear) and ACL (bony avulsion) were the most commonly injured sites. A variety of soft tissue injuries are common with tibial plateau fracture; these can be diagnosed with the use of an arthroscope. Level III, diagnostic study.

  13. A novel method for soft tissue retraction during periapical surgery using 3D technology: a case report.

    PubMed

    Patel, S; Aldowaisan, A; Dawood, A

    2017-08-01

    This case report describes a new approach to isolation and soft tissue retraction during endodontic surgery using cone-beam computed tomography (CBCT), computer-aided design (CAD) and three-dimensional (3D) printing. A 53-year-old patient presented for endodontic treatment of her maxillary left central incisor. It was decided to treat this tooth with a microsurgical approach. The data from the diagnostic CBCT scan were also used to make a physical model of the operative site, and CAD software was used to design a soft tissue retractor to be used during the patient's surgery. A custom retractor was then fabricated using a 3D printer. The custom-made retractor enhanced visualization and soft tissue handling during the patient's surgery. The patient was asymptomatic at a 1-year review. No abnormalities were detected during her clinical examination, and radiographic examination revealed complete healing of the surgical site. The significance of proper soft tissue retraction in periapical microsurgery is underemphasized. Geometric data from CBCT scans may be harvested for a variety of uses, adding value to the examination. 3D printing is a promising technology that may potentially have many uses in endodontic surgery. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. 75 FR 10795 - PepsiCo, Inc.; Analysis of Agreement Containing Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... acquisitions of two of its bottlers and the subsequent exclusive license from Dr Pepper Snapple Group, Inc. (``DPSG''), to bottle, distribute and sell the Dr Pepper, Crush, and Schweppes carbonated soft drink... Mug Root Beer. III. Licensor Dr Pepper Snapple Group, Inc. DPSG is a corporation organized, existing...

  15. Experiential Instruction of Listening for College Students: Theoretical and Practical Approaches to Teaching Listening. Evaluating Listening Texts.

    ERIC Educational Resources Information Center

    Kaufmann, Paul

    Eight college listening texts were selected and evaluated by the following criteria: organization, supporting material, and readability. Text organization was assessed by preface material, table of contents, index, and references. Text supporting material was evaluated by the use of hard data, soft data, visual aids, and bibliographies. Text…

  16. Real-time Kinematic Positioning of INS Tightly Aided Multi-GNSS Ionospheric Constrained PPP

    PubMed Central

    Gao, Zhouzheng; Shen, Wenbin; Zhang, Hongping; Niu, Xiaoji; Ge, Maorong

    2016-01-01

    Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), currently, about 80 navigation satellites are operational in orbit. Obviously, PPP performance is dramatically improved with all satellites compared to that of GPS-only PPP. However, the performance of PPP could be evidently affected by unexpected and unavoidable severe observing environments, especially in the dynamic applications. Consequently, we apply Inertial Navigation System (INS) to the Ionospheric-Constrained (IC) PPP to overcome such drawbacks. The INS tightly aided multi-GNSS IC-PPP model can make full use of GNSS and INS observations to improve the PPP performance in terms of accuracy, availability, continuity, and convergence speed. Then, a set of airborne data is analyzed to evaluate and validate the improvement of multi-GNSS and INS on the performance of IC-PPP. PMID:27470270

  17. Real-time Kinematic Positioning of INS Tightly Aided Multi-GNSS Ionospheric Constrained PPP.

    PubMed

    Gao, Zhouzheng; Shen, Wenbin; Zhang, Hongping; Niu, Xiaoji; Ge, Maorong

    2016-07-29

    Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), currently, about 80 navigation satellites are operational in orbit. Obviously, PPP performance is dramatically improved with all satellites compared to that of GPS-only PPP. However, the performance of PPP could be evidently affected by unexpected and unavoidable severe observing environments, especially in the dynamic applications. Consequently, we apply Inertial Navigation System (INS) to the Ionospheric-Constrained (IC) PPP to overcome such drawbacks. The INS tightly aided multi-GNSS IC-PPP model can make full use of GNSS and INS observations to improve the PPP performance in terms of accuracy, availability, continuity, and convergence speed. Then, a set of airborne data is analyzed to evaluate and validate the improvement of multi-GNSS and INS on the performance of IC-PPP.

  18. The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence

    PubMed Central

    Geisberger, Roland; Rada, Cristina; Neuberger, Michael S.

    2009-01-01

    The carboxyterminal region of activation-induced deaminase (AID) is required for its function in Ig class switch recombination (CSR) and also contains a nuclear-export sequence (NES). Here, based on an extensive fine-structure mutation analysis of the AID NES, as well as from AID chimeras bearing heterologous NESs, we show that while a functional NES is indeed essential for CSR, it is not sufficient. The precise nature of the NES is critical both for AID stabilization and CSR function: minor changes in the NES can perturb stabilization and CSR without jeopardizing nuclear export. The results indicate that the AID NES fulfills a function beyond simply providing a signal for nuclear export and suggest the possibility that the quality of exportin-binding may be critical to the stabilization of AID and its activity in CSR. PMID:19351893

  19. Temperature dependent rapid annealing effect induces amorphous aggregation of human serum albumin.

    PubMed

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M; Al-Lohedan, Hammad; Badr, Gamal; Khan, Rizwan Hasan

    2016-01-01

    This study represents an analysis of the thermal aggregation of human serum albumin (HSA) induced by novel rosin modified compounds. The aggregation process causes conformational alterations in the secondary and tertiary structures of the proteins. The conversion of globular protein to amorphous aggregates was carried out by spectroscopic, calorimetric and microscopic techniques to investigate the factors that are responsible for the structural, conformational and morphological alteration in the protein. Our outcome results show that the aggregation of HSA was dependent on the hydrophobicity, charge and temperature, because the formation of amorphous aggregates occurs in the presence of a novel cationic rosin compound, quaternary amine of rosin diethylaminoethyl ester (QRMAE), at 40°C and pH 7.4 (but at 25°C on similar pH value, there was no evidence of aggregate formation). In addition, the parent compound of QRMAE, i.e., abietic acid, and other derivatives such as nonionic rosin compounds [(RMPEG-750) and (RMA-MPEG-750)] do not shows the aggregating property. This work provides precise and necessary information that aid in the understanding the effects of rosin derivative compounds on HSA. This study also restrains important information for athletes, health providers, pharmaceutical companies, industries, and soft drink-processing companies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Laser therapy in the management of dental and oro-facial trauma

    NASA Astrophysics Data System (ADS)

    Darbar, Arun A.

    2007-02-01

    This is a clinical presentation demonstrating the efficacy of laser therapy in the treatment of patients presenting with trauma to both the hard and soft tissue in the orofacial region. The use of laser therapy aids the management of these cases where the patients often present with anxiety and a low pain threshold. The outcomes in these cases indicate good patient acceptance of the treatment, enhanced repair and tissue response suggesting that this form of treatment can be indicated for these patients. A combination of hard and soft lasers are used for the comprehensive dental management and treatment of these cases. The lasers used are a 810nm diode and an Er.CrYSGG.

  1. All-fiber laser at 1.94 µm: effect on soft tissue

    NASA Astrophysics Data System (ADS)

    Pal, Atasi; Pal, Debasis; Das Chowdhury, Sourav; Sen, Ranjan

    2017-02-01

    A focused laser beam at wavelength of strong water absorption at 1.94 μm can be a good scalpel for precision soft tissue surgery. A fiber Bragg grating-based, all-fiber, continuous-wave as well as modulated, cladding pumped, thulium-doped fiber laser at 1.94 μm has been configured to deliver up to 10 W of laser power under pumping at 793 nm having an efficiency of 32 %. The laser was exposed to freshly sacrificed chicken breast at different power level and exposure time. The formalin-fixed samples were examined by microscopy to identify the ablation region, carbonization and necrosis region for laser parameter optimization.

  2. Rough Set Soft Computing Cancer Classification and Network: One Stone, Two Birds

    PubMed Central

    Zhang, Yue

    2010-01-01

    Gene expression profiling provides tremendous information to help unravel the complexity of cancer. The selection of the most informative genes from huge noise for cancer classification has taken centre stage, along with predicting the function of such identified genes and the construction of direct gene regulatory networks at different system levels with a tuneable parameter. A new study by Wang and Gotoh described a novel Variable Precision Rough Sets-rooted robust soft computing method to successfully address these problems and has yielded some new insights. The significance of this progress and its perspectives will be discussed in this article. PMID:20706619

  3. Application of laser scanning confocal microscopy in the soft tissue exquisite structure for 3D scan

    PubMed Central

    Zhang, Zhaoqiang; Ibrahim, Mohamed; Fu, Yang; Wu, Xujia; Ren, Fei; Chen, Lei

    2018-01-01

    Three-dimensional (3D) printing is a new developing technology for printing individualized materials swiftly and precisely in the field of biological medicine (especially tissue-engineered materials). Prior to printing, it is necessary to scan the structure of the natural biological tissue, then construct the 3D printing digital model through optimizing the scanned data. By searching the literatures, magazines at home and abroad, this article reviewed the current status, main processes and matters needing attention of confocal laser scanning microscope (LSCM) in the application of soft tissue fine structure 3D scanning, empathizing the significance of LSCM in this field. PMID:29755838

  4. Intelligent hearing aids: the next revolution.

    PubMed

    Tao Zhang; Mustiere, Fred; Micheyl, Christophe

    2016-08-01

    The first revolution in hearing aids came from nonlinear amplification, which allows better compensation for both soft and loud sounds. The second revolution stemmed from the introduction of digital signal processing, which allows better programmability and more sophisticated algorithms. The third revolution in hearing aids is wireless, which allows seamless connectivity between a pair of hearing aids and with more and more external devices. Each revolution has fundamentally transformed hearing aids and pushed the entire industry forward significantly. Machine learning has received significant attention in recent years and has been applied in many other industries, e.g., robotics, speech recognition, genetics, and crowdsourcing. We argue that the next revolution in hearing aids is machine intelligence. In fact, this revolution is already quietly happening. We will review the development in at least three major areas: applications of machine learning in speech enhancement; applications of machine learning in individualization and customization of signal processing algorithms; applications of machine learning in improving the efficiency and effectiveness of clinical tests. With the advent of the internet of things, the above developments will accelerate. This revolution will bring patient satisfactions to a new level that has never been seen before.

  5. Helical gears with circular arc teeth: Generation, geometry, precision and adjustment to errors, computer aided simulation of conditions of meshing and bearing contact

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Tsay, Chung-Biau

    1987-01-01

    The authors have proposed a method for the generation of circular arc helical gears which is based on the application of standard equipment, worked out all aspects of the geometry of the gears, proposed methods for the computer aided simulation of conditions of meshing and bearing contact, investigated the influence of manufacturing and assembly errors, and proposed methods for the adjustment of gears to these errors. The results of computer aided solutions are illustrated with computer graphics.

  6. High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide

    NASA Astrophysics Data System (ADS)

    Poppe, U.; Faley, M. I.; Zimmermann, E.; Glaas, W.; Breunig, I.; Speen, R.; Jungbluth, B.; Soltner, H.; Halling, H.; Urban, K.

    2004-05-01

    A scanning SQUID microscope based on high-temperature superconductor (HTS) dc-SQUIDs was developed. An extremely soft magnetic amorphous foil was used to guide the flux from room temperature samples to the liquid-nitrogen-cooled SQUID sensor and back. The flux guide passes through the pick-up loop of the HTS SQUID, providing an improved coupling of magnetic flux of the object to the SQUID. The device measures the z component (direction perpendicular to the sample surface) of the stray field of the sample, which is rastered with submicron precision in the x-y direction by a motorized computer-controlled scanning stage. A lateral resolution better than 10 µm, with a field resolution of about 0.6 nT Hz-1/2 was achieved for the determination of the position of the current carrying thin wires. The presence of the soft magnetic foil did not significantly increase the flux noise of the SQUID.

  7. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity.

    PubMed

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T; Wang, Ruikang K; O'Donnell, Matthew

    2016-12-23

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  8. Soft, thin skin-mounted power management systems and their use in wireless thermography

    NASA Astrophysics Data System (ADS)

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2016-05-01

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.

  9. Soft, thin skin-mounted power management systems and their use in wireless thermography.

    PubMed

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A

    2016-05-31

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.

  10. Soft, thin skin-mounted power management systems and their use in wireless thermography

    PubMed Central

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2016-01-01

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios. PMID:27185907

  11. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    PubMed Central

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O’Donnell, Matthew

    2016-01-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea. PMID:28008920

  12. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-12-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  13. Behavioral assessment of adaptive feedback equalization in a digital hearing aid.

    PubMed

    French-St George, M; Wood, D J; Engebretson, A M

    1993-01-01

    An evaluation was made of the efficacy of a digital feedback equalization algorithm employed by the Central Institute for the Deaf Wearable Adaptive Digital Hearing Aid. Three questions were addressed: 1) Does acoustic feedback limit gain adjustments made by hearing aid users? 2) Does feedback equalization permit users with hearing-impairment to select more gain without feedback? and, 3) If more gain is used when feedback equalization is active, does word identification performance improve? Nine subjects with hearing impairment participated in the study. Results suggest that listeners with hearing impairment are indeed limited by acoustic feedback when listening to soft speech (55 dB A) in quiet. The average listener used an additional 4 dB gain when feedback equalization was active. This additional gain resulted in an average 10 rationalized arcsine units (RAU) improvement in word identification score.

  14. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.

    2002-06-01

    Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.

  15. Straightforward and precise approach to replicate complex hierarchical structures from plant surfaces onto soft matter polymer

    PubMed Central

    Speck, Thomas; Bohn, Holger F.

    2018-01-01

    The surfaces of plant leaves are rarely smooth and often possess a species-specific micro- and/or nano-structuring. These structures usually influence the surface functionality of the leaves such as wettability, optical properties, friction and adhesion in insect–plant interactions. This work presents a simple, convenient, inexpensive and precise two-step micro-replication technique to transfer surface microstructures of plant leaves onto highly transparent soft polymer material. Leaves of three different plants with variable size (0.5–100 µm), shape and complexity (hierarchical levels) of their surface microstructures were selected as model bio-templates. A thermoset epoxy resin was used at ambient conditions to produce negative moulds directly from fresh plant leaves. An alkaline chemical treatment was established to remove the entirety of the leaf material from the cured negative epoxy mould when necessary, i.e. for highly complex hierarchical structures. Obtained moulds were filled up afterwards with low viscosity silicone elastomer (PDMS) to obtain positive surface replicas. Comparative scanning electron microscopy investigations (original plant leaves and replicated polymeric surfaces) reveal the high precision and versatility of this replication technique. This technique has promising future application for the development of bioinspired functional surfaces. Additionally, the fabricated polymer replicas provide a model to systematically investigate the structural key points of surface functionalities. PMID:29765666

  16. Use of experimental design for optimisation of the cold plasma ICP-MS determination of lithium, aluminum and iron in soft drinks and alcoholic beverages.

    PubMed

    Bianchi, F; Careri, M; Maffini, M; Mangia, A; Mucchino, C

    2003-01-01

    A sensitive method for the simultaneous determination of (7)Li, (27)Al and (56)Fe by cold plasma ICP-MS was developed and validated. Experimental design was used to investigate the effects of torch position, torch power, lens 2 voltage, and coolant flow. Regression models and desirability functions were applied to find the experimental conditions providing the highest global sensitivity in a multi-elemental analysis. Validation was performed in terms of limits of detection (LOD), limits of quantitation (LOQ), linearity and precision. LODs were 1.4 and 159 ng L(-1) for (7)Li and (56)Fe, respectively; the highest LOD found being that for (27)Al (425 ng L(-1)). Linear ranges of 5 orders of magnitude for Li and 3 orders for Fe were statistically verified for each compound. Precision was evaluated by testing two concentration levels, and good results in terms of both intra-day repeatability and intermediate precision were obtained. RSD values lower than 4.8% at the lowest concentration level were calculated for intra-day repeatability. Commercially available soft drinks and alcoholic beverages contained in different packaging materials (TetraPack, polyethylene terephthalate (PET), commercial cans and glass) were analysed, and all the analytes were detected and quantitated. Copyright 2002 John Wiley & Sons, Ltd.

  17. High-speed Continuous-wave Stimulated Brillouin Scattering Spectrometer for Material Analysis.

    PubMed

    Remer, Itay; Cohen, Lear; Bilenca, Alberto

    2017-09-22

    Recent years have witnessed a significant increase in the use of spontaneous Brillouin spectrometers for non-contact analysis of soft matter, such as aqueous solutions and biomaterials, with fast acquisition times. Here, we discuss the assembly and operation of a Brillouin spectrometer that uses stimulated Brillouin scattering (SBS) to measure stimulated Brillouin gain (SBG) spectra of water and lipid emulsion-based tissue-like samples in transmission mode with <10 MHz spectral-resolution and <35 MHz Brillouin-shift measurement precision at <100 ms. The spectrometer consists of two nearly counter-propagating continuous-wave (CW) narrow-linewidth lasers at 780 nm whose frequency detuning is scanned through the material Brillouin shift. By using an ultra-narrowband hot rubidium-85 vapor notch filter and a phase-sensitive detector, the signal-to-noise-ratio of the SBG signal is significantly enhanced compared to that obtained with existing CW-SBS spectrometers. This improvement enables measurement of SBG spectra with up to 100-fold faster acquisition times, thereby facilitating high spectral-resolution and high-precision Brillouin analysis of soft materials at high speed.

  18. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    PubMed

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  19. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  20. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R.

    PubMed

    Grau, Jan; Grosse, Ivo; Keilwagen, Jens

    2015-08-01

    Precision-recall (PR) and receiver operating characteristic (ROC) curves are valuable measures of classifier performance. Here, we present the R-package PRROC, which allows for computing and visualizing both PR and ROC curves. In contrast to available R-packages, PRROC allows for computing PR and ROC curves and areas under these curves for soft-labeled data using a continuous interpolation between the points of PR curves. In addition, PRROC provides a generic plot function for generating publication-quality graphics of PR and ROC curves. © The Author 2015. Published by Oxford University Press.

  1. Threshold and Jet Radius Joint Resummation for Single-Inclusive Jet Production

    DOE PAGES

    Liu, Xiaohui; Moch, Sven -Olaf; Ringer, Felix

    2017-11-20

    Here, we present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic extension beyond the currently achieved precision. Long-standing numerical issues are overcome by performing the resummation directly in momentum space within soft collinear effective theory. We present the first numerical results for the LHC and observe an improved description of the available data. Our results are of immediate relevance for LHC precision phenomenology including the extraction of parton distribution functions and the QCD strong coupling constant.

  2. 3D Printed Wearable Sensors with Liquid Metals for the Pose Detection of Snakelike Soft Robots.

    PubMed

    Zhou, Luyu; Gao, Qing; Zhan, Jun-Fu; Xie, Chao-Qi; Fu, Jianzhong; He, Yong

    2018-06-18

    Liquid metal-based flexible sensors, which utilize advanced liquid conductive material to serve as sensitive element, is emerging as a promising solution to measure large deformations. Nowadays, one of the biggest challenges for precise control of soft robots is the detection of their real time positions. Existing fabrication methods are unable to fabricate flexible sensors that match the shape of soft robots. In this report, we firstly described a novel 3D printed multi-function inductance flexible and stretchable sensor with liquid metals (LMs), which is capable of measuring both axial tension and curvature. This sensor is fabricated with a developed coaxial liquid metal 3D printer by co-printing of silicone rubber and LMs. Due to the solenoid shape, this sensor can be easily installed on snakelike soft robots and can accurately distinguish different degrees of tensile and bending deformation. We determined the structural parameters of the sensor and proved its excellent stability and reliability. As a demonstration, we used this sensor to measure the curvature of a finger and feedback the position of endoscope, a typical snakelike structure. Because of its bending deformation form consistent with the actual working status of the soft robot and unique shape, this sensor has better practical application prospects in the pose detection.

  3. 75 FR 61141 - In the Matter of The Coca-Cola Company; Analysis of Agreement Containing Consent Order to Aid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... subsequent exclusive license from Dr Pepper Snapple Group, Inc. (``DPSG''), to bottle, distribute, and sell the Dr Pepper, Diet Dr Pepper, and Canada Dry carbonated soft drink brands of DPSG in certain... from the sale of all products were about $31 billion. III. Licensor Dr Pepper Snapple Group, Inc. DPSG...

  4. Use of Vis/NIRS for the determination of sugar content of cola soft drinks based on chemometric methods

    NASA Astrophysics Data System (ADS)

    Liu, Fei; He, Yong

    2008-03-01

    Three different chemometric methods were performed for the determination of sugar content of cola soft drinks using visible and near infrared spectroscopy (Vis/NIRS). Four varieties of colas were prepared and 180 samples (45 samples for each variety) were selected for the calibration set, while 60 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay, standard normal variate (SNV) and Savitzky-Golay first derivative transformation were applied for the pre-processing of spectral data. The first eleven principal components (PCs) extracted by partial least squares (PLS) analysis were employed as the inputs of BP neural network (BPNN) and least squares-support vector machine (LS-SVM) model. Then the BPNN model with the optimal structural parameters and LS-SVM model with radial basis function (RBF) kernel were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias for prediction were 0.971, 1.259 and -0.335 for PLS, 0.986, 0.763, and -0.042 for BPNN, while 0.978, 0.995 and -0.227 for LS-SVM, respectively. All the three methods supplied a high and satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be utilized as a high precision way for the determination of sugar content of cola soft drinks.

  5. Microwave analog experiments on optically soft spheroidal scatterers with weak electromagnetic signature

    NASA Astrophysics Data System (ADS)

    Saleh, H.; Charon, J.; Dauchet, J.; Tortel, H.; Geffrin, J.-M.

    2017-07-01

    Light scattering by optically soft particles is being theoretically investigated in many radiative studies. An interest is growing up to develop approximate methods when the resolution of Maxwell's equations is impractical due to time and/or memory size problems with objects of complex geometries. The participation of experimental studies is important to assess novel approximations when no reference solution is available. The microwave analogy represents an efficient solution to perform such electromagnetic measurements in controlled conditions. In this paper, we take advantage of the particular features of our microwave device to present an extensive experimental study on the electromagnetic scattering by spheroidal particles analogs with low refractive indices, as a first step toward the assessment of micro-organisms with low refractive index and heterogeneities. The spheroidal analogs are machined from a low density material and they mimic soft particles of interest to the light scattering community. The measurements are confronted to simulations obtained with Finite Element Method and T-Matrix method. A good agreement is obtained even with refractive index as low as 1.13. Scattered signals of low intensities are correctly measured and the position of the targets is precisely controlled. The forward scattering measurements show high sensitivity to noise and require careful extraction. The configuration of the measurement device reveals different technical requirements between forward and backward scattering directions. The results open interesting perspectives about novel measurement procedures as well as about the use of high prototyping technologies to manufacture analogs of precise refractive indices and shapes.

  6. A device for high-throughput monitoring of degradation in soft tissue samples.

    PubMed

    Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G

    2018-06-06

    This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Soft Tissue Tumours of the Retroperitoneum

    PubMed Central

    Van Roggen, J. Frans Graadt

    2000-01-01

    Purpose. This review summarizes the more prevalent soft tissue tumours arising in the retroperitoneum and highlights some recent fundamental and diagnostic developments relevant to mesenchymal tumours. Discussion. The retroperitoneum is an underestimated site for benign and malignant neoplastic disease, and represents the second most common site of origin of primary malignant soft tissue tumours (sarcomas) after the deep tissues of the lower extremity. In contrast to the predominance of benign soft tissue lesions over malignant sarcomas elsewhere, retroperitoneal mesenchymal lesions are far more likely to be malignant. The differential diagnosis is primarily with the more common lymphoproliferative and parenchymatous epithelial lesions arising in this area, and with metastatic disease from known or unknown primary sites elsewhere.The most prevalent mesenchymal tumours at this site are of a lipomatous, myogenic or neural nature.Their generally late clinical presentation and poorly accessible location provides numerous clinical challenges; optimal radiological imaging and a properly performed biopsy are essential cogs in the management route. Histopathological diagnosis may be complicated, but has been aided by developments in the fields of immunohistochemistry and tumour (cyto)genetics. Despite significant advances in oncological management protocols, the prognosis remains generally less favourable than for similar tumours at more accessible sites. PMID:18521430

  8. ABO blood grouping from hard and soft tissues of teeth by modified absorption-elution technique.

    PubMed

    Ramnarayan, Bk; Manjunath, M; Joshi, Anagha Ananth

    2013-01-01

    Teeth have always been known as stable tissue that can be preserved both physically and chemically for long periods of time. Blood group substances have been known to be present in both the hard and soft tissues of the teeth. This study aimed at detection of ABO blood group substances from soft and hard tissues of teeth and also to evaluate the reliability of teeth stored for a relatively long period as a source of blood group substances by absorption-elution technique with some modifications. Blood group obtained from the teeth was compared with those obtained from the blood sample. Pulp showed a very large correlation in both fresh and long-standing teeth though it decreased slightly in the latter. Hard tissue showed a large correlation in both the groups indicating that hard tissue is quite reliable to detect blood group and that there is no much difference in the reliability in both the groups. However, combining pulp and hard tissue, correlation is moderate. Correlation of blood grouping with the age, sex, and jaw distribution was carried out. Blood group identification from hard and soft tissues of teeth aids in the identification of an individual.

  9. Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki

    2004-05-01

    We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.

  10. Radiographic Features of Acute Patellar Tendon Rupture.

    PubMed

    Fazal, Muhammad Ali; Moonot, Pradeep; Haddad, Fares

    2015-11-01

    The purpose of our study was to assess soft tissue features of acute patellar tendon rupture on lateral knee radiograph that would facilitate early diagnosis. The participants were divided into two groups of 35 patients each. There were 28 men and seven women with a mean age of 46 years in the control group and 26 men and nine women with a mean age of 47 years in the rupture group. The lateral knee radiograph of each patient was evaluated for Insall-Salvati ratio for patella alta, increased density of the infrapatellar fat pad, appearance of the soft tissue margin of the patellar tendon and bony avulsions. In the rupture group there were three consistent soft tissue radiographic features in addition to patellar alta. These were increased density of infrapatellar fat pad; loss of sharp, well-defined linear margins of the patellar tendon and angulated wavy margin of the patellar tendon while in the control group these features were not observed. The soft tissue radiographic features described in the rupture group are consistent and reliable. When coupled with careful clinical assessment, these will aid in early diagnosis and further imaging will be seldom required. © 2015 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  11. Nanomedicine for safe healing of bone trauma: Opportunities and challenges

    PubMed Central

    Behzadi, Shahed; Luther, Gaurav A.; Harris, Mitchel B.; Farokhzad, Omid C.; Mahmoudi, Morteza

    2017-01-01

    Historically, high-energy extremity injuries resulting in significant soft-tissue trauma and bone loss were often deemed unsalvageable and treated with primary amputation. With improved soft-tissue coverage and nerve repair techniques, these injuries now present new challenges in limb-salvage surgery. High-energy extremity trauma is pre-disposed to delayed or unpredictable bony healing and high rates of infection, depending on the integrity of the soft-tissue envelope. Furthermore, orthopedic trauma surgeons are often faced with the challenge of stabilizing and repairing large bony defects while promoting an optimal environment to prevent infection and aid bony healing. During the last decade, nanomedicine has demonstrated substantial potential in addressing the two major issues intrinsic to orthopedic traumas (i.e., high infection risk and low bony reconstruction) through combatting bacterial infection and accelerating/increasing the effectiveness of the bone-healing process. This review presents an overview and discusses recent challenges and opportunities to address major orthopedic trauma through nanomedical approaches. PMID:28918266

  12. Buckligami: Actuation of soft structures through mechanical instabilities

    NASA Astrophysics Data System (ADS)

    Lazarus, Arnaud; Reis, Pedro

    2013-03-01

    We present a novel mechanism for actuating soft structures, that is triggered through buckling. Our elastomeric samples are rapid-prototyped using digital fabrication and comprise of a cylindrical shell patterned with an array of voids, each of which is covered by a thin membrane. Decreasing the internal pressure of the structure induces local buckling of the ligaments of the pattern, resulting in controllable folding of the global structure. Using rigid inclusions to plug the voids in specific geometric arrangements allows us to excite a variety of different fundamental motions of the cylindrical shell, including flexure and twist. We refer to this new mechanism of buckling-induced folding as ``buckligami.'' Given that geometry, elasticity and buckling are the underlying ingredients of this local folding mechanism, the global actuation is scalable, reversible and repeatable. Characterization and rationalization of our experiments provide crucial fundamental understanding to aid the design of new scale-independent actuators, with potential implications in the field of soft robotics.

  13. Tear exchange and contact lenses: a review.

    PubMed

    Muntz, Alex; Subbaraman, Lakshman N; Sorbara, Luigina; Jones, Lyndon

    2015-01-01

    Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  14. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    PubMed

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  15. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  16. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  17. Electroweak precision data and gravitino dark matter

    NASA Astrophysics Data System (ADS)

    Heinemeyer, S.

    2007-11-01

    Electroweak precision measurements can provide indirect information about the possible scale of supersymmetry already at the present level of accuracy. We review present day sensitivities of precision data in mSUGRA-type models with the gravitino as the lightest supersymmetric particle (LSP). The c2 fit is based on MW, sin2 qeff, (g-2)m , BR (b xAE sl) and the lightest MSSM Higgs boson mass, Mh. We find indications for relatively light soft supersymmetry-breaking masses, offering good prospects for the LHC and the ILC, and in some cases also for the Tevatron.

  18. Reconstruction of Extensive Soft-Tissue Defects with Concomitant Bone Defects in the Lower Extremity with the Latissimus Dorsi-Serratus Anterior-Rib Free Flap.

    PubMed

    Sia, Wei Tee; Xu, Germaine Guiqin; Puhaindran, Mark Edward; Tan, Bien Keem; Cheng, Mathew Hern Wang; Chew, Winston Yoon Chong

    2015-07-01

    The combined latissimus dorsi-serratus anterior-rib (LD-SA-rib) free flap provides a large soft-tissue flap with a vascularized bone flap through a solitary vascular pedicle in a one-stage reconstruction. Seven LD-SA-rib free flaps were performed in seven patients to reconstruct concomitant bone and extensive soft-tissue defects in the lower extremity (tibia, five; femur, one; foot, one). The patients were all male, with an average age of 34 years (range, 20-48 years). These defects were secondary to trauma in five patients and posttraumatic osteomyelitis in two patients. All flaps survived and achieved bony union. The average time to bony union was 9.4 months. Bone hypertrophy of at least 20% occurred in all flaps. All patients achieved full weight-bearing ambulation without aid at an average duration of 23.7 months. Two patients developed stress fractures of the rib flap. There was no significant donor site morbidity, except for two patients who had pleural tears during harvesting of the flap. The LD-SA-rib flap provides a large soft-tissue component and a vascularized bone flap for reconstruction of composite large soft-tissue defects with concomitant bone defects of the lower extremity in a one-stage procedure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Estimating patient-specific soft-tissue properties in a TKA knee.

    PubMed

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. The reliability, precision and clinically meaningful change of walking assessments in multiple sclerosis.

    PubMed

    Learmonth, Yvonne C; Dlugonski, Deirdre D; Pilutti, Lara A; Sandroff, Brian M; Motl, Robert W

    2013-11-01

    Assessing walking impairment in those with multiple sclerosis (MS) is common, however little is known about the reliability, precision and clinically important change of walking outcomes. The purpose of this study was to determine the reliability, precision and clinically important change of the Timed 25-Foot Walk (T25FW), Six-Minute Walk (6MW), Multiple Sclerosis Walking Scale-12 (MSWS-12) and accelerometry. Data were collected from 82 persons with MS at two time points, six months apart. Analyses were undertaken for the whole sample and stratified based on disability level and usage of walking aids. Intraclass correlation coefficient (ICC) analyses established reliability: standard error of measurement (SEM) and coefficient of variation (CV) determined precision; and minimal detectable change (MDC) defined clinically important change. All outcome measures were reliable with precision and MDC varying between measures in the whole sample: T25FW: ICC=0.991; SEM=1 s; CV=6.2%; MDC=2.7 s (36%), 6MW: ICC=0.959; SEM=32 m; CV=6.2%; MDC=88 m (20%), MSWS-12: ICC=0.927; SEM=8; CV=27%; MDC=22 (53%), accelerometry counts/day: ICC=0.883; SEM=28450; CV=17%; MDC=78860 (52%), accelerometry steps/day: ICC=0.907; SEM=726; CV=16%; MDC=2011 (45%). Variation in these estimates was seen based on disability level and walking aid. The reliability of these outcomes is good and falls within acceptable ranges. Precision and clinically important change estimates provide guidelines for interpreting these outcomes in clinical and research settings.

  1. CAD system for footwear design based on whole real 3D data of last surface

    NASA Astrophysics Data System (ADS)

    Song, Wanzhong; Su, Xianyu

    2000-10-01

    Two major parts of application of CAD in footwear design are studied: the development of last surface; computer-aided design of planar shoe-template. A new quasi-experiential development algorithm of last surface based on triangulation approximation is presented. This development algorithm consumes less time and does not need any interactive operation for precisely development compared with other development algorithm of last surface. Based on this algorithm, a software, SHOEMAKERTM, which contains computer aided automatic measurement, automatic development of last surface and computer aide design of shoe-template has been developed.

  2. The Development of a Scanning Soft X-Ray Microscope.

    NASA Astrophysics Data System (ADS)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  3. Analysis of soft x-ray emission spectra of laser-produced dysprosium, erbium and thulium plasmas

    NASA Astrophysics Data System (ADS)

    Sheil, John; Dunne, Padraig; Higashiguchi, Takeshi; Kos, Domagoj; Long, Elaine; Miyazaki, Takanori; O'Reilly, Fergal; O'Sullivan, Gerard; Sheridan, Paul; Suzuki, Chihiro; Sokell, Emma; White, Elgiva; Kilbane, Deirdre

    2017-03-01

    Soft x-ray emission spectra of dysprosium, erbium and thulium ions created in laser-produced plasmas were recorded with a flat-field grazing-incidence spectrometer in the 2.5-8 nm spectral range. The ions were produced using an Nd:YAG laser of 7 ns pulse duration and the spectra were recorded at various power densities. The experimental spectra were interpreted with the aid of the Cowan suite of atomic structure codes and the flexible atomic code. At wavelengths above 5.5 nm the spectra are dominated by overlapping n = 4 - n = 4 unresolved transition arrays from adjacent ion stages. Below 6 nm, n = 4 - n = 5 transitions also give rise to a series of interesting overlapping spectral features.

  4. Transcript Assembly and Quantification by RNA-Seq Reveals Differentially Expressed Genes between Soft-Endocarp and Hard-Endocarp Hawthorns

    PubMed Central

    Zhang, Feng; Liu, Zhongchi; Li, Xiaoming; Li, Wenran; Ma, Yue; Li, He; Liu, Yuexue; Zhang, Zhihong

    2013-01-01

    Hawthorn (Crataegus spp.) is an important pome with a long history as a fruit, an ornamental, and a source of medicine. Fruits of hawthorn are marked by hard stony endocarps, but a hawthorn germplasm with soft and thin endocarp was found in Liaoning province of China. To elucidate the molecular mechanism underlying the soft endocarp of hawthorn, we conducted a de novo assembly of the fruit transcriptome of Crataegus pinnatifida and compared gene expression profiles between the soft-endocarp and the hard-endocarp hawthorn varieties. De novo assembly yielded 52,673 putative unigenes, 20.4% of which are longer than 1,000 bp. Among the high-quality unique sequences, 35,979 (68.3%) had at least one significant match to an existing gene model. A total of 1,218 genes, represented 2.31% total putative unigenes, were differentially expressed between the soft-endocarp hawthorn and the hard-endocarp hawthorn. Among these differentially expressed genes, a number of lignin biosynthetic pathway genes were down-regulated while almost all the flavonoid biosynthetic pathway genes were strongly up-regulated, concomitant with the formation of soft endocarp. In addition, we have identified some MYB and NAC transcription factors that could potentially control lignin and flavonoid biosynthesis. The altered expression levels of the genes encoding lignin biosynthetic enzymes, MYB and NAC transcription factors were confirmed by quantitative RT-PCR. This is the first transcriptome analysis of Crataegus genus. The high quality ESTs generated in this study will aid future gene cloning from hawthorn. Our study provides important insights into the molecular mechanisms underlying soft endocarp formation in hawthorn. PMID:24039819

  5. Electromagnetic navigation technology for more precise electrode placement in the foramen ovale: a technical report.

    PubMed

    Van Buyten, Jean-Pierre; Smet, Iris; Van de Kelft, Erik

    2009-07-01

    Introduction. Interventional pain management techniques require precise positioning of needles or electrodes, therefore fluoroscopic control is mandatory. This imaging technique does however not visualize soft tissues such as blood vessels. Moreover, patient and physician are exposed to a considerable dose of radiation. Computed tomography (CT)-scans give a better view of soft tissues, but there use requires presence of a radiologist and has proven to be laborious and time consuming. Objectives. This study is to develop a technique using electromagnetic (EM) navigation as a guidance technique for interventional pain management, using CT and/or magnetic resonance (MRI) images uploaded on the navigation station. Methods. One of the best documented interventional procedures for the management of trigeminal neuralgia is percutaneous radiofrequency treatment of the Gasserian ganglion. EM navigation software for intracranial applications already exists. We developed a technique using a stylet with two magnetic coils suitable for EM navigation. The procedure is followed in real time on a computer screen where the patient's multislice CT-scan images and three-dimensional reconstruction of his face are uploaded. Virtual landmarks on the screen are matched with those on the patient's face, calculating the precision of the needle placement. Discussion. The experience with EM navigation acquired with the radiofrequency technique can be transferred to other interventional pain management techniques, for instance, for the placement of a neuromodulation electrode close to the Gasserian ganglion. Currently, research is ongoing to extend the software of the navigation station for spinal application, and to adapt neurostimulation hardware to the EM navigation technology. This technology will allow neuromodulation techniques to be performed without x-ray exposure for the patient and the physician, and this with the precision of CT/MR imaging guidance. © 2009 International Neuromodulation Society.

  6. Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture.

    PubMed

    Gu, Dunyin; Tan, Shereen; Xu, Chenglong; O'Connor, Andrea J; Qiao, Greg G

    2017-06-20

    By precisely tuning the network architecture, tough, highly compressible hydrogels were engineered. The hydrogels were made by interconnecting high-functionality hydrophobic domains through linear tri-block chains, consisting of soft hydrophilic middle blocks, flanked with flexible hydrophobic blocks. In showing their applicability, the efficient encapsulation and prolonged release of hydrophobic drugs were achieved.

  7. [Principles of MR-guided interventions, surgery, navigation, and robotics].

    PubMed

    Melzer, A

    2010-08-01

    The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.

  8. Algorithm of first-aid management of dental trauma for medics and corpsmen.

    PubMed

    Zadik, Yehuda

    2008-12-01

    In order to fill the discrepancy between the necessity of providing prompt and proper treatment to dental trauma patients, and the inadequate knowledge among medics and corpsmen, as well as the lack of instructions in first-aid textbook and manuals, and after reviewing the dental literature, a simple algorithm for non-professional first-aid management for various injuries to hard (teeth) and soft oral tissues, is presented. The recommended management of tooth avulsion, subluxation and luxation, crown fracture and lip, tongue or gingival laceration included in the algorithm. Along with a list of after-hour dental clinics, this symptoms- and clinical-appearance-based algorithm is suited to tuck easily into a pocket for quick utilization by medics/corpsmen in an emergency situation. Although the algorithm was developed for the usage of military non-dental health-care providers, this method could be adjusted and employed in the civilian environment as well.

  9. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    PubMed

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.

  10. Summaries of Research - Fiscal Year 1982.

    DTIC Science & Technology

    1982-11-01

    Aids and Preparation for Emergency Endodontic Surgery" to the staff of NDRI. SANTOS, A. presented * Oral Pathology: Review of Common Soft Tissue ...Attachment to a Substrate Coated with Oral Bacterial Endotoxin by Plasma Fibronectin. Journal of Periodontal Research 17:154- 168, 1982. Shklair, I. L...Institute is to conduct research, development, test and evaluation in dental and allied sciences, with particular emphasis on problems of dental and oral

  11. Justification of Estimates for Fiscal Year 1983 Submitted to Congress.

    DTIC Science & Technology

    1982-02-01

    hierarchies to aid software production; completion of the components of an adaptive suspension vehicle including a storage energy unit, hydraulics, laser...and corrosion (long storage times), and radiation-induced breakdown. Solid- lubricated main engine bearings for cruise missile engines would offer...environments will cause "soft error" (computational and memory storage errors) in advanced microelectronic circuits. Research on high-speed, low-power

  12. Can the shell of the green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb and Zn?

    NASA Astrophysics Data System (ADS)

    Yap, C. K.; Ismail, A.; Tan, S. G.; Abdul Rahim, I.

    2003-07-01

    The distributions of Cd, Pb and Zn in the total soft tissues and total shells of the green-lipped mussel Perna viridis were studied in field collected samples as well as from laboratory experimental samples. The results showed that Cd, Pb and Zn were readily accumulated in the whole shells. In mussels sampled from 12 locations along the west coast of Peninsular Malaysia, the ratios of the shell metals to the soft tissue metals were different at each sampling site. Nevertheless, the Cd and Pb levels in the shells were always higher than those in the soft tissues, while the Zn level was higher in the soft tissues than in the shells. In comparison with soft tissues, the degrees of variability for Pb and Cd concentrations in the shells were lower. The lower degrees of variability and significant ( P<0.05) correlation coefficients of Cd and Pb within the shells support the use of the mussel shell as a suitable biomonitoring material for the two metals rather than the soft tissue since this indicated that there is more precision (lower CV) in the determination of metal concentrations in the shell than in the soft tissue. Experimental work showed that the pattern of depuration in the shell was not similar to that of the soft tissue although their patterns of accumulation were similar. This indicated that the depuration of heavy metals in the shell was not affected by the physiological conditions of the mussels. Although Zn could be regulated by the soft tissue, the incorporated Cd, Pb and Zn remained in the shell matrices. The present results support the use of the total shell of P. viridis as a potential biomonitoring material for long-term contamination of Cd, Pb and Zn.

  13. Pericellular plasma clot negates the influence of scaffold stiffness on chondrogenic differentiation.

    PubMed

    Arora, Aditya; Kothari, Anjaney; Katti, Dhirendra S

    2016-12-01

    Matrix stiffness is known to play a pivotal role in cellular differentiation. Studies have shown that soft scaffolds (<2-3kPa) promote cellular aggregation and chondrogenesis, whereas, stiffer ones (>10kPa) show poor chondrogenesis in vitro. In this work we investigated if fibrin matrix from clotted blood can act as a soft surrogate which nullifies the influence of the underlying stiff scaffold, thus promoting chondrogenesis irrespective of bulk scale scaffold stiffness. For this we performed in vitro chondrogenesis on soft (∼1.5kPa) and stiff (∼40kPa) gelatin scaffolds in the presence and absence of pericellular plasma clot. Our results demonstrated that in absence of pericellular plasma clot, chondrocytes showed efficient condensation and cartilaginous matrix secretion only on soft scaffolds, whereas, in presence of pericellular plasma clot, cell rounding and cartilaginous matrix secretion was observed in both soft and stiff scaffolds. More specifically, significantly higher collagen II, chondroitin sulfate and aggrecan deposition was observed in soft scaffolds, and soft and stiff scaffolds with pericellular plasma clot as compared to stiff scaffolds without pericellular plasma clot. Moreover, collagen type I, a fibrocartilage/bone marker was significantly higher only in stiff scaffolds without plasma clot. Therefore, it can be concluded that chondrocytes surrounded by a soft fibrin network were unable to sense the stiffness of the underlying scaffold/substrate and hence facilitate chondrogenesis even on stiff scaffolds. This understanding can have significant implications in the design of scaffolds for cartilage tissue engineering. Cell fate is influenced by the mechanical properties of cell culture substrates. Outside the body, cartilage progenitor cells express significant amounts of cartilage-specific markers on soft scaffolds but not on stiff scaffolds. However, when implanted in joints, stiff scaffolds show equivalent expression of markers as seen in soft scaffolds. This disparity in existing literature prompted our study. Our results suggest that encapsulation of cells in a soft plasma clot, present in any surgical intervention, prevents their perception of stiffness of the underlying scaffold, and hence the ability to distinguish between soft and stiff scaffolds vanishes. This finding would aid the design of new scaffolds that elicit cartilage-like biochemical properties while simultaneously being mechanically comparable to cartilage tissue. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Total mandibular subapical osteotomy and Le Fort I osteotomy using piezosurgery and computer-aided designed and manufactured surgical splints: a favorable combination of three techniques in the management of severe mouth asymmetry in Parry-Romberg syndrome.

    PubMed

    Scolozzi, Paolo; Herzog, Georges

    2014-05-01

    Although its pathogenesis remains obscure, Parry-Romberg syndrome (PRS) has been associated with the linear scleroderma en coup de sabre. PRS is characterized by unilateral facial atrophy of the skin, subcutaneous tissue, muscles, and bones with at least 1 dermatome supplied by the trigeminal nerve. Facial asymmetry represents the most common sequela and can involve the soft tissues, craniomaxillofacial skeleton, dentoalveolar area, and temporomandibular joint. Although orthognathic procedures have been reported for skeletal reconstruction, treatment of facial asymmetry has been directed to augmentation of the soft tissue volume on the atrophic side using different recontouring or volumetric augmentation techniques. Total mandibular subapical osteotomy has been used in the management of dentofacial deformities, such as open bite and mandibular dentoalveolar retrusion or protrusion associated with an imbalance between the lower lip and the chin. Management of orthognathic procedures has been improved by the recent introduction of stereolithographic surgical splints using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology and piezosurgery. Piezosurgery has increased security during surgery, especially for delicate procedures associated with a high risk of nerve injury. The present report describes a combined total mandibular subapical osteotomy and Le Fort I osteotomy using piezosurgery and surgical splints fabricated using CAD and CAM for the correction of severe mouth asymmetry related to vertical dentoalveolar disharmony in a patient with PRS. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. China's health assistance to Africa: opportunism or altruism?

    PubMed

    Lin, Shuang; Gao, Liangmin; Reyes, Melissa; Cheng, Feng; Kaufman, Joan; El-Sadr, Wafaa M

    2016-12-03

    China has made substantial health commitments to Africa in the past several decades. However, while much has been written regarding China-Africa aid overall, relatively little attention has been given to China's health aid. To better understand these investments, we provide an overview of the current framework and characteristics of China's health aid to Africa. China's health assistance has been perceived by some as opportunistic, largely as a demonstration of China's engagement in "soft power" and an attempt to enhance its access to natural resources and political favors by African countries. Others have attributed altruistic intent, aiming to support the advancement of the health of populations in the African continent with a "no strings attached" approach. Our overview demonstrated that despite the magnitude of China's health assistance, many questions remain regarding the scope of this aid, its effectiveness and the governance mechanisms that guide the conceptualization and implementation of such efforts. We also identified the need for a systematic and rigorous evaluation of the various elements of China's health assistance to African countries in order to gain a deeper understanding of how priorities and allocations for health aid are determined, how such aid fits within the specific African country's health strategies and to assess the effectiveness of such aid. Insights garnered through such an assessment could help determine future priorities for investment as well as inform efforts to optimize the value of China's aid for the populations of the recipient countries.

  16. Predicting bone strength with ultrasonic guided waves

    PubMed Central

    Bochud, Nicolas; Vallet, Quentin; Minonzio, Jean-Gabriel; Laugier, Pascal

    2017-01-01

    Recent bone quantitative ultrasound approaches exploit the multimode waveguide response of long bones for assessing properties such as cortical thickness and stiffness. Clinical applications remain, however, challenging, as the impact of soft tissue on guided waves characteristics is not fully understood yet. In particular, it must be clarified whether soft tissue must be incorporated in waveguide models needed to infer reliable cortical bone properties. We hypothesize that an inverse procedure using a free plate model can be applied to retrieve the thickness and stiffness of cortical bone from experimental data. This approach is first validated on a series of laboratory-controlled measurements performed on assemblies of bone- and soft tissue mimicking phantoms and then on in vivo measurements. The accuracy of the estimates is evaluated by comparison with reference values. To further support our hypothesis, these estimates are subsequently inserted into a bilayer model to test its accuracy. Our results show that the free plate model allows retrieving reliable waveguide properties, despite the presence of soft tissue. They also suggest that the more sophisticated bilayer model, although it is more precise to predict experimental data in the forward problem, could turn out to be hardly manageable for solving the inverse problem. PMID:28256568

  17. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel.

    PubMed

    Zhao, Lei; Huang, Jiahe; Zhang, Yuancheng; Wang, Tao; Sun, Weixiang; Tong, Zhen

    2017-04-05

    Facile preparation, rapid actuating, and versatile actions are great challenges in exploring new kinds of hydrogel actuators. In this paper, we presented a facile sticking method to prepare Janus bilayer and multilayer hydrogel actuators that benefited from a special tough and adhesive PAA-clay hydrogel. Combining physical and chemical cross-linking reagents, we endowed the PAA gel with both toughness and adhesion. This PAA gel was reinforced by further cross-linking with Fe 3+ . These two hydrogels with different cross-linking densities exhibited different swelling capabilities and moduli in the media manipulated by pH and ionic strength, thus acting as promising candidates for soft actuators. On the basis of these gels, we designed hydrogel actuators of rapid response in several minutes and precisely controlled actuating direction by sticking two hydrogel layers together. Elaborate soft actuators such as bidirectional bending flytrap, gel hand with grasp, open, and gesturing actions as well as word-writing actuator were prepared. This method could be generalized by using other stimuli-responsive hydrogels combined with the adhesive PAA gel, which would open a new way to programmable and versatile soft actuators.

  18. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: an outcomes comparison.

    PubMed

    Seruya, Mitchel; Fisher, Mark; Rodriguez, Eduardo D

    2013-11-01

    There has been rising interest in computer-aided design/computer-aided manufacturing for preoperative planning and execution of osseous free flap reconstruction. The purpose of this study was to compare outcomes between computer-assisted and conventional fibula free flap techniques for craniofacial reconstruction. A two-center, retrospective review was carried out on patients who underwent fibula free flap surgery for craniofacial reconstruction from 2003 to 2012. Patients were categorized by the type of reconstructive technique: conventional (between 2003 and 2009) or computer-aided design/computer-aided manufacturing (from 2010 to 2012). Demographics, surgical factors, and perioperative and long-term outcomes were compared. A total of 68 patients underwent microsurgical craniofacial reconstruction: 58 conventional and 10 computer-aided design and manufacturing fibula free flaps. By demographics, patients undergoing the computer-aided design/computer-aided manufacturing method were significantly older and had a higher rate of radiotherapy exposure compared with conventional patients. Intraoperatively, the median number of osteotomies was significantly higher (2.0 versus 1.0, p=0.002) and the median ischemia time was significantly shorter (120 minutes versus 170 minutes, p=0.004) for the computer-aided design/computer-aided manufacturing technique compared with conventional techniques; operative times were shorter for patients undergoing the computer-aided design/computer-aided manufacturing technique, although this did not reach statistical significance. Perioperative and long-term outcomes were equivalent for the two groups, notably, hospital length of stay, recipient-site infection, partial and total flap loss, and rate of soft-tissue and bony tissue revisions. Microsurgical craniofacial reconstruction using a computer-assisted fibula flap technique yielded significantly shorter ischemia times amidst a higher number of osteotomies compared with conventional techniques. Therapeutic, III.

  19. Minimally Invasive Ponto Surgery compared to the linear incision technique without soft tissue reduction for bone conduction hearing implants: study protocol for a randomized controlled trial.

    PubMed

    Calon, Tim G A; van Hoof, Marc; van den Berge, Herbert; de Bruijn, Arthur J G; van Tongeren, Joost; Hof, Janny R; Brunings, Jan Wouter; Jonhede, Sofia; Anteunis, Lucien J C; Janssen, Miranda; Joore, Manuela A; Holmberg, Marcus; Johansson, Martin L; Stokroos, Robert J

    2016-11-09

    Over the last years, less invasive surgical techniques with soft tissue preservation for bone conduction hearing implants (BCHI) have been introduced such as the linear incision technique combined with a punch. Results using this technique seem favorable in terms of rate of peri-abutment dermatitis (PAD), esthetics, and preservation of skin sensibility. Recently, a new standardized surgical technique for BCHI placement, the Minimally Invasive Ponto Surgery (MIPS) technique has been developed by Oticon Medical AB (Askim, Sweden). This technique aims to standardize surgery by using a novel surgical instrumentation kit and minimize soft tissue trauma. A multicenter randomized controlled trial is designed to compare the MIPS technique to the linear incision technique with soft tissue preservation. The primary investigation center is Maastricht University Medical Center. Sixty-two participants will be included with a 2-year follow-up period. Parameters are introduced to quantify factors such as loss of skin sensibility, dehiscence of the skin next to the abutment, skin overgrowth, and cosmetic results. A new type of sampling method is incorporated to aid in the estimation of complications. To gain further understanding of PAD, swabs and skin biopsies are collected during follow-up visits for evaluation of the bacterial profile and inflammatory cytokine expression. The primary objective of the study is to compare the incidence of PAD during the first 3 months after BCHI placement. Secondary objectives include the assessment of parameters related to surgery, wound healing, pain, loss of sensibility of the skin around the implant, implant extrusion rate, implant stability measurements, dehiscence of the skin next to the abutment, and esthetic appeal. Tertiary objectives include assessment of other factors related to PAD and a health economic evaluation. This is the first trial to compare the recently developed MIPS technique to the linear incision technique with soft tissue preservation for BCHI surgery. Newly introduced parameters and sampling method will aid in the prediction of results and complications after BCHI placement. Registered at the CCMO register in the Netherlands on 24 November 2014: NL50072.068.14 . Retrospectively registered on 21 April 2015 at ClinicalTrials.gov: NCT02438618 . This trial is sponsored by Oticon Medical AB.

  20. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  1. On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.

    PubMed

    Striganov, S I

    2005-01-01

    The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.

  2. Renormalization of dijet operators at order 1 /Q 2 in soft-collinear effective theory

    NASA Astrophysics Data System (ADS)

    Goerke, Raymond; Inglis-Whalen, Matthew

    2018-05-01

    We make progress towards resummation of power-suppressed logarithms in dijet event shapes such as thrust, which have the potential to improve high-precision fits for the value of the strong coupling constant. Using a newly developed formalism for Soft-Collinear Effective Theory (SCET), we identify and compute the anomalous dimensions of all the operators that contribute to event shapes at order 1 /Q 2. These anomalous dimensions are necessary to resum power-suppressed logarithms in dijet event shape distributions, although an additional matching step and running of observable-dependent soft functions will be necessary to complete the resummation. In contrast to standard SCET, the new formalism does not make reference to modes or λ-scaling. Since the formalism does not distinguish between collinear and ultrasoft degrees of freedom at the matching scale, fewer subleading operators are required when compared to recent similar work. We demonstrate how the overlap subtraction prescription extends to these subleading operators.

  3. Development and in house validation of a new thermogravimetric method for water content analysis in soft brown sugar.

    PubMed

    Ducat, Giseli; Felsner, Maria L; da Costa Neto, Pedro R; Quináia, Sueli P

    2015-06-15

    Recently the use of brown sugar has increased due to its nutritional characteristics, thus requiring a more rigid quality control. The development of a method for water content analysis in soft brown sugar is carried out for the first time by TG/DTA with application of different statistical tests. The results of the optimization study suggest that heating rates of 5°C min(-1) and an alumina sample holder improve the efficiency of the drying process. The validation study showed that thermo gravimetry presents good accuracy and precision for water content analysis in soft brown sugar samples. This technique offers advantages over other analytical methods as it does not use toxic and costly reagents or solvents, it does not need any sample preparation, and it allows the identification of the temperature at which water is completely eliminated in relation to other volatile degradation products. This is an important advantage over the official method (loss on drying). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  5. Soft, Conformal Bioelectronics for a Wireless Human-Wheelchair Interface

    PubMed Central

    Mishra, Saswat; Norton, James J. S.; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong

    2017-01-01

    There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms. PMID:28152485

  6. Patchy Particles of Block Copolymers from Interface-Engineered Emulsions

    NASA Astrophysics Data System (ADS)

    Ku, Kang Hee; Kim, Yongjoo; Yi, Gi-Ra; Jung, Yeon Sik; Kim, Bumjoon

    A simple method for creating soft patchy particles with a variety of three-dimensional shapes has been developed through the evaporation-induced assembly of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) in an oil-in-water emulsion. Depending on the particle volume, a series of patchy particles in the shapes of snowmen, dumbbells, triangles, tetrahedra, and raspberry can be prepared, which are then precisely tuned by modulating the interfacial interaction at the particle/water interface using a mixture of two different surfactants. Moreover, for a given interfacial interaction, the stretching penalty of the BCPs in the patchy particles can be systematically controlled by adding P4VP homopolymers, which decreases the number of patches of soft particles from multiple patches to a single patch but increases the size of the patch. Calculations based on the strong segregation theory supported the experimental observation of various soft patchy particles and identified the underlying principles of their formation with tunable 3D structures.

  7. The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.

    A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.

  8. [Skin and soft tissue complications after orthopedic interventions on tumors : interdisciplinary management].

    PubMed

    Radtke, C; Calliess, T; Windhagen, H; Vogt, P

    2015-03-01

    Interdisciplinary collaboration between orthopedic and plastic surgeons is indicated in reconstructive surgery of the extremities for both traumatic orthopedic fractures with extensive soft tissue damage and musculoskeletal tumor resection. We want to emphasize the need for close cooperation starting in the preoperative planning for reconstruction after tumor resection in order to discuss and establish a unified approach. This is particularly important to establish a joint approach with special consideration of possibly necessary adjuvant therapies. One collaborative approach is for the orthopedic surgeon to resect the tumor and the plastic surgeon to carry out the defect reconstruction for exclusive soft tissue coverage including flap surgery as well as for functional reconstruction depending on the location and extent of tumor resection. Thus, careful preoperative and postoperative communication on the precise location, extent of tumor resection and the therapy timing between the orthopedic surgeon and the plastic surgeon will allow the most effective subsequent repair of the resection site.

  9. Diode laser spectroscopy: precise spectral line shape measurements

    NASA Astrophysics Data System (ADS)

    Nadezhdinskii, A. I.

    1996-07-01

    When one speaks about modern trends in tunable diode laser spectroscopy (TDLS) one should mention that precise line shape measurements have become one of the most promising applications of diode lasers in high resolution molecular spectroscopy. Accuracy limitations of TDL spectrometers are considered in this paper, proving the ability to measure spectral line profile with precision better than 1%. A four parameter Voigt profile is used to fit the experimental spectrum, and the possibility of line shift measurements with an accuracy of 2 × 10 -5 cm -1 is shown. Test experiments demonstrate the error line intensity ratios to be less than 0.3% for the proposed approach. Differences between "soft" and "hard" models of line shape have been observed experimentally for the first time. Some observed resonance effects are considered with respect to collision adiabacity.

  10. Micromechanics and constitutive models for soft active materials with phase evolution

    NASA Astrophysics Data System (ADS)

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  11. Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass Selected Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity

    2014-12-04

    We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply chargedmore » anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.« less

  12. Using Kill-Chain Analysis to Develop Surface Ship CONOPs to Defend Against Anti-Ship Cruise Missiles

    DTIC Science & Technology

    2010-06-01

    used to analyze this problem. The first was a software product from the Palisade Corporation called @Risk for Excel (version 5.5) with Precision...matching range cells in Table 4. Table 5 is for the case with no soft-kill mechanisms used by the ASCM and the numeric values do not take into

  13. [Anterolateral ankle pain: differential diagnosis and approach. A case report].

    PubMed

    García-Renedo, R J; Pérez-Carro, L; Fernández-Torres, J J; Carranza-Bencano, A; Gómez-del Alamo, G

    2011-01-01

    The ankle soft tissue pathology represents a very painful disorder for patients who, often times, are not precisely diagnosed. Anterolateral ankle impingement is a condition that occurs in young people and athletes due to a plantar flexion-inversion mechanism. We report a case of anterolateral ankle impingement describing the arthroscopic technique and making the differential diagnosis considering other conditions.

  14. A lead isotope distribution study in swine tissue using ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brown, L.D.; Casteel, S.W.

    1999-01-01

    In the United States lead is an ubiquitous environmental pollutant that is a serious human health hazard, especially for women of childbearing age, developing fetuses, and young children. Information concerning the uptake and distribution of lead to maternal and fetal tissues during pregnancy is poorly documented. A study was designed using domestic swine and lead isotope enrichment methodology to focus on maternal absorption and distribution of lead into bone and soft tissues, including the fetal compartment, under varying conditions of oral lead exposure and during altered physiological states (pregnant vs unbred). Total lead levels and Pb207/Pb206 ratios in bone (femur and vertebra), blood, and soft tissues (liver, kidney, brain) were determined by ICP-MS. Lead in fetal tissues derived from maternal bone could be differentiated from that derived from exogenous dosing. Unbred swine absorbed much less lead than pregnant females receiving the same dose. The accuracy and precision of ICP-MS at the instrumental level and for the entire method (sample collection, digestion, and analysis) were evaluated for both Pb207/Pb206 ratios and total lead. Several changes were suggested in method design to improve both instrumental and total method precision.

  15. A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma.

    PubMed

    Lazarides, Alexander L; Whitley, Melodi J; Strasfeld, David B; Cardona, Diana M; Ferrer, Jorge M; Mueller, Jenna L; Fu, Henry L; Bartholf DeWitt, Suzanne; Brigman, Brian E; Ramanujam, Nimmi; Kirsch, David G; Eward, William C

    2016-01-01

    The treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.

  16. Raised serum lactate: a marker of necrotizing fasciitis?

    PubMed

    Murphy, George; Markeson, Daniel; Choa, Robert; Armstrong, Anthony

    2013-12-01

    Distinguishing necrotizing fasciitis from non-necrotizing soft-tissue infections remains a difficult clinical judgement call, with a paucity of diagnostic aids to the clinician. The aim of this study was to assess raised serum lactate as a point-of-care test to aid in differentiating necrotizing from non-necrotizing soft tissue infections. The authors performed a post-hoc analysis of a prospectively compiled database. All patients referred to a single surgeon (A.P.A.) as suspected cases of necrotizing fasciitis at one hospital between September 2000 and September 2010 were included. Serum lactate at presentation was recorded, along with demographic and outcome data. Using histological evidence of tissue necrosis as the 'gold standard', patients were divided into those with or without necrotizing fasciitis, and their serum lactate at presentation compared. Fifty three patients met the inclusion criteria. Twenty eight had histologically proven necrosis, 25 did not. Serum lactate (mean±SD) was 4.1±1.62 mmol/l in the necrotizing fasciitis group and 1.8±0.46 mmol/l in the non-necrotizing fasciitis group (p≤0.0001). A serum lactate level above 2.0 mmol/l had a sensitivity of 1.00 and a specificity of 0.76 for necrotizing fasciitis in this series. In this series of patients with suspected necrotizing soft tissue infection, serum lactate levels above 2.0 mmol/l at presentation were strongly associated with the presence of tissue necrosis. Although no test can be relied upon in isolation, our results suggest that serum lactate is a promising adjunct to the diagnosis of necrotizing infection, which could help to expedite appropriate management. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Morphology and mechanics of the teeth and jaws of white-spotted bamboo sharks (Chiloscyllium plagiosum).

    PubMed

    Ramsay, Jason B; Wilga, Cheryl D

    2007-08-01

    The teeth of white-spotted bamboo sharks (Chiloscyllium plagiosum) are used to clutch soft-bodied prey and crush hard prey; however, the dual function is not evident from tooth morphology alone. Teeth exhibit characteristics that are in agreement with a clutching-type tooth morphology that is well suited for grasping and holding soft-bodied prey, but not for crushing hard prey. The dual role of this single tooth morphology is facilitated by features of the dental ligament and jaw joint. Tooth attachment is flexible and elastic, allowing movement in both sagittal and frontal planes. During prey capture spike-like tooth cusps pierce the flesh of soft prey, thereby preventing escape. When processing prey harder than the teeth can pierce the teeth passively depress, rotating inward towards the oral cavity such that the broader labial faces of the teeth are nearly parallel to the surface of the jaws and form a crushing surface. Movement into the depressed position increases the tooth surface area contacting prey and decreases the total stress applied to the tooth, thereby decreasing the risk of structural failure. This action is aided by a jaw joint that is ventrally offset from the occlusal planes of the jaws. The offset joint position allows many teeth to contact prey simultaneously and orients force vectors at contact points between the jaws and prey in a manner that shears or rolls prey between the jaws during a bite, thus, aiding in processing while reducing forward slip of hard prey from the mouth. Together the teeth, dental ligament, and jaws form an integrated system that may be beneficial to the feeding ecology of C. plagiosum, allowing for a diet that includes prey of varying hardness and elusiveness. (c) 2007 Wiley-Liss, Inc.

  18. Depth indicator and stop aid machining to precise tolerances

    NASA Technical Reports Server (NTRS)

    Laverty, J. L.

    1966-01-01

    Attachment for machine tools provides a visual indication of the depth of cut and a positive stop to prevent overcutting. This attachment is used with drill presses, vertical milling machines, and jig borers.

  19. A double hit model for the distribution of time to AIDS onset

    NASA Astrophysics Data System (ADS)

    Chillale, Nagaraja Rao

    2013-09-01

    Incubation time is a key epidemiologic descriptor of an infectious disease. In the case of HIV infection this is a random variable and is probably the longest one. The probability distribution of incubation time is the major determinant of the relation between the incidences of HIV infection and its manifestation to Aids. This is also one of the key factors used for accurate estimation of AIDS incidence in a region. The present article i) briefly reviews the work done, points out uncertainties in estimation of AIDS onset time and stresses the need for its precise estimation, ii) highlights some of the modelling features of onset distribution including immune failure mechanism, and iii) proposes a 'Double Hit' model for the distribution of time to AIDS onset in the cases of (a) independent and (b) dependent time variables of the two markers and examined the applicability of a few standard probability models.

  20. We are all people living with AIDS: myths and realities of AIDS in Brazil.

    PubMed

    Daniel, H

    1991-01-01

    Although AIDS was expected in Brazil, no serious efforts were undertaken to prevent AIDS from taking root. Irresponsible press and media coverage highlighted the spread of AIDS within the gay community of the United States, creating an aura of immunity in Brazil to what was characterized as a "foreign" disorder. When AIDS did surface in 1983, the official response was to adopt an abstract, inappropriate, and ideological "Western" model, in which only stigmatized "others" and "minorities" were at risk of HIV infection. Brazilian health authorities subsequently downplayed the significance of the sale of contaminated blood in HIV transmission, and likewise ignored the rising rates of AIDS among Brazil's one unarguable majority group: the poor. An analysis of efforts to force the "facts" of AIDS to fit a false model's predictions leads to a clearer definition of the broader context of the Brazilian epidemic: we all are people living with AIDS, precisely because we live in this age of AIDS; it is sheer folly to discriminate against persons infected by HIV and to obstruct their participation in efforts to curtail the epidemic's spread; and the necessary response to AIDS is solidarity, not because it is poetic, but because no other response will suffice.

  1. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  2. Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.

    PubMed

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas

    2016-01-01

    Polymer self-assembled nanostructures are used in pharmaceutical sciences as bioactive molecules' delivery systems for therapeutic and diagnostic purposes. Micelles, polyelectrolyte complexes, polymersomes, polymeric nanoparticles, nanogels and polymer grafted liposomes represent delivery vehicles that are marketed and/or under clinical development, as drug formulations. In this mini-review, these, recently appeared in the literature, innovative polymer drug nanocarrier platforms are discussed, starting from their technological development in the laboratory to their potential clinical use, through studies of their biophysics, thermodynamics, physical behavior, morphology, bio-mimicry, therapeutic efficacy and safety. The properties of an ideal drug delivery system are the structural control over size and shape of drug or imaging agent cargo/domain, biocompatibility, nontoxic polymer/ pendant functionality and the precise, nanoscale container and/or scaffolding properties with high drug or imaging agent capacity features. Self-assembled polymer nanostructures exhibit all these properties and could be considered as ideal drug nanocarriers through control of their size, structure and morphology, with the aid of a large variety of parameters, in vitro and in vivo. These modern trends reside at the interface of soft matter self-assembly and pharmaceutical sciences and the technologies for health. Great advantages related to basic science and applications are expected by understanding the self-assembly behavior of these polymeric nanotechnological drug delivery systems, created through bio-inspiration and biomimicry and have potential utilization into clinical applications.

  3. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.

    2015-06-01

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  4. Mexico-U.S. Relations: Issues for Congress

    DTIC Science & Technology

    2008-12-18

    States and Mexico recently resolved a long standing trade dispute involving sugar and high fructose corn syrup . Mexico argued that the sugar side...sugar side letter limited Mexican shipments of sugar. Mexico also complained that imports of high fructose corn syrup (HFCS) sweeteners from the...Mexican Congress imposed a 20% tax on soft drinks made with corn syrup sweeteners to aid the ailing domestic cane sugar industry, and subsequently

  5. Proposal for Development of EBM-CDSS (Evidence-Based Clinical Decision Support System) to Aid Prognostication in Terminally Ill Patients

    DTIC Science & Technology

    2011-10-01

    inconsistency in the representation of the dataset. RST provides a mathematical tool for representing and reasoning about vagueness and inconsistency. Its...use of various mathematical , statistical and soft computing methodologies with the objective of identifying meaningful relationships between condition...Evidence-based Medicine and Health Outcomes Research, University of South Florida, Tampa, FL 2Department of Mathematics , Indiana University Northwest, Gary

  6. Humanitarian Assistance and ’Soft’ Power Projection

    DTIC Science & Technology

    2012-05-04

    organization consisted of military and civilian leadership, which managed the Pacification Programs throughout Vietnam. This program was a historic example...assistance efforts. The directorate that manages humanitarian assistance operations varies from theater to theater. The J9 Directorate labeled as either...2012) 12 (JP) 3-07.3, I-6. 13 A. Cooper Drury et al, The Politics of Humanitarian Aid: U.S. Foreign Disaster Assistance, 1964-1995, (Cambridge

  7. Field performance testing of improved engineered wood fiber surfaces for accessible playground areas

    Treesearch

    Theodore L. Laufenberg; Jerrold E. Winandy

    2003-01-01

    Some engineered wood fiber (EWF) surfaces on playgrounds are soft and uneven, which creates difficulties for those who use mobility aids, such as wheelchairs and walkers. The outdoor field testing reported in this study is part of an effort to stabilize EWF to improve accessibility. The concept is to mix a binder with the upper surface of EWF to create a stiff (firm)...

  8. Relating structure and flow of soft colloids

    NASA Astrophysics Data System (ADS)

    Kundu, S. K.; Gupta, S.; Stellbrink, J.; Willner, L.; Richter, D.

    2013-11-01

    To relate the complex macroscopic flow of soft colloids to details of its microscopic equilibrium and non-equilibrium structure is still one big challenge in soft matter science. We investigated several well-defined colloidal model systems like star polymers or diblock copolymer micelles by linear/non-linear rheology, static/dynamic light scattering (SLS/DLS) and small angle neutron scattering (SANS). In addition, in-situ SANS experiments during shear (Rheo-SANS) revealed directly shear induced structural changes on a microscopic level. Varying the molecular architecture of the individual colloidal particle as well as particle-particle interactions and covering at the same time a broad concentration range from the very dilute to highly concentrated, glassy regime, we could separate contributions from intra- and inter-particle softness. Both can be precisely "tuned" by varying systematically the functionality, 6 ≤ f≤ 64, for star polymers or aggregation number, 30 ≤ N agg ≤ 1000 for diblock copolymer micelles, as well as the degree of polymerization of the individual polymer arm 100 ≤ D p ≤ 3000. In dilute solutions, the characteristic shear rate at which deformation of the soft colloid is observed can be related to the Zimm time of the polymeric corona. In concentrated solutions, we validated a generalized Stokes-Einstein approach to describe the increase in macroscopic viscosity and mesoscopic self diffusion coefficient on approaching the glassy regime. Both can be explained in terms of an ultra-soft interaction potential. Moreover, non-equilibrium structure factors are obtained by Rheo-SANS. All experimental results are in excellent quantitative agreement with recent theoretical predictions.

  9. Comparison of 5 benthic samplers to collect burrowing mayfly nymphs (Hexagenia spp.:Ephemeroptera:Ephemeridae) in sediments of the Laurentian Great Lakes

    USGS Publications Warehouse

    Schloesser, Don W.; Nalepa, Thomas F.

    2002-01-01

    The recent return of burrowing mayfly nymphs (Hexagenia spp.) to western Lake Erie of the Laurentian Great Lakes has prompted a need to find a sampler to obtain the most accurate (i.e., highest mean density) and precise (i.e., lowest mean variance) abundance estimates of nymphs. The abundance of burrowing nymphs is important because it is being used as a measure of ecosystem health to determine management goals for fisheries and pollution abatement programs for waters in both North America and Europe. We compared efficiencies of 5 benthic grab samplers (Ponar, Ekman, petite Ponar, Petersen, and orange-peel) to collect nymphs from sediments of western Lake Erie and Lake St. Clair. Samplers were used at one site with soft substrates in both lakes in 1997 (Ponar, Ekman, petite Ponar, and Petersen) and 1998 (Ponar and Ekman), and at one site with soft and one site with hard substrates in Lake St. Clair in 1999 (Ponar and orange-peel). In addition, the Ponar, Ekman, and Petersen samplers were used at one site with soft substrates of western Lake Erie in 2000 to examine the causes of differences among samplers. The Ponar was more accurate than the other samplers; it collected the highest densities of nymphs for 31 of 32 date and site comparisons. In soft substrates, the order of decreasing overall densities was: Ponar>Petersen>petite Ponar>Ekman in western Lake Erie and Ponar>Petersen> Ekman>petite Ponar in Lake St. Clair in 1997, Ponar>Ekman in both lakes in 1998, and Ponar>orange-peel in Lake St. Clair in 1999. In hard substrates, the Ponar was more accurate than the orange-peel in Lake St. Clair in 1999. Precision of the Ponar was generally greater than the Ekman, petite Ponar, and Petersen but similar to the orange-peel. Higher densities of nymphs obtained with the Ponar than other grabs are attributed to its relatively heavy weight, which allows it to sample deeper in sediments than the Ekman and petite Ponar. Also, the Ponar has a screened top, which allows it to minimize hydraulic shock waves more than the Petersen, and uniform sides, which allow it to sample nymphs more uniformly through sediments than the orange-peel. We recommend that future estimates of burrowing mayfly densities be obtained with a standard Ponar sampler similar to the one used in our study because it will yield the most accurate and precise measurements of burrowing mayfly nymphs such as Hexagenia spp.

  10. Direct Visualization of Conformation and Dense Packing of DNA-Based Soft Colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Lettinga, Paul M.; Dhont, Jan K. G.; Stiakakis, Emmanuel

    2014-12-01

    Soft colloids—such as polymer-coated particles, star polymers, block-copolymer micelles, microgels—constitute a broad class of materials where microscopic properties such as deformability and penetrability of the particle play a key role in tailoring their macroscopic properties which is of interest in many technological areas. The ability to access these microscopic properties is not yet demonstrated despite its great importance. Here we introduce novel DNA-coated colloids with star-shaped architecture that allows accessing the above local structural information by directly visualizing their intramolecular monomer density profile and arm's free-end locations with confocal fluorescent microscopy. Compression experiments on a two-dimensional hexagonal lattice formed by these macromolecular assemblies reveal an exceptional resistance to mutual interpenetration of their charged corona at pressures approaching the MPa range. Furthermore, we find that this lattice, in a close packing configuration, is surprisingly tolerant to particle size variation. We anticipate that these stimuli-responsive materials could aid to get deeper insight in a wide range of problems in soft matter, including the study and design of biomimetic lubricated surfaces.

  11. Precise Geolocation Of Persistent Scatterers Aided And Validated By Lidar DSM

    NASA Astrophysics Data System (ADS)

    Chang, Ling; Dheenathayalan, Prabu; Hanessen, Ramon

    2013-12-01

    Persistent Scatterers (PS) interferometry results in the de- formation history of time-coherent scatterers. Although several applications focus on smooth, spatially correlated signals, we aim for the detection, identification and analysis of single anomalies. These targets can be indicative of, e.g., strain in structures, potentially leading to the failure of such structures. For the identification and analysis it is of the greatest importance to know the exact position of the effective scattering center, to avoid an improper interpretation of the driving mechanism. Here we present an approach to optimize the geolocation of important scatterers, when necessary aided by an a priori Lidar-derived DSM (AHN-1 data) with 15cm and 5m resolution in vertical and horizontal directions, respectively. The DSM is also used to validate the geocoding. We implement our approach on a near-collapse event of a shopping mall in Heerlen, the Netherlands, to generate the precise geolocation of local PS points.

  12. Experience with esthetic reconstruction of complex facial soft tissue trauma: application of the pulsed dye laser.

    PubMed

    Ebrahimi, Ali; Kazemi, Hossein Mohammad; Nejadsarvari, Nasrin

    2014-08-01

    Facial soft tissue injury can be one of the most challenging cases presenting to the plastic surgeon. The life quality and self-esteem of the patients with facial injury may be compromised temporarily or permanently. Immediate reconstruction of most defects leads to better restoration of form and function as well as early rehabilitation. The aim of this study was to present our experience in management of facial soft tissue injuries from different causes. We prospectively studied patients treated by plastic surgeons from 2010 to 2012 suffering from different types of blunt or sharp (penetrating) facial soft tissue injuries to the different areas of the face. All soft tissue injuries were treated primarily. Photography from all patients before, during, and after surgical reconstruction was performed and the results were collected. We used early pulsed dye laser (PDL) post-operatively. In our study, 63 patients including 18 (28.5%) women and 45 (71.5%) men aged 8-70 years (mean 47 years) underwent facial reconstruction due to soft tissue trauma in different parts of the face. Sharp wounds were seen in 15 (23%) patients and blunt trauma lacerations were seen in 52 (77%) patients. Overall, 65% of facial injuries were repaired primary and the remainder were reconstructed with local flaps or skin graft from adjacent tissues. Postoperative PDL therapy done two weeks following surgery for all scars yielded good results in our cases. Analysis of the injury including location, size, and depth of penetration as well as presence of associated injuries can aid in the formulation of a proper surgical plan. We recommend PDL in the early post operation period (two weeks) after suture removal for better aesthetic results.

  13. Experience With Esthetic Reconstruction of Complex Facial Soft Tissue Trauma: Application of the Pulsed Dye Laser

    PubMed Central

    Ebrahimi, Ali; Kazemi, Hossein Mohammad; Nejadsarvari, Nasrin

    2014-01-01

    Background: Facial soft tissue injury can be one of the most challenging cases presenting to the plastic surgeon. The life quality and self-esteem of the patients with facial injury may be compromised temporarily or permanently. Immediate reconstruction of most defects leads to better restoration of form and function as well as early rehabilitation. Objectives: The aim of this study was to present our experience in management of facial soft tissue injuries from different causes. Patients and Methods: We prospectively studied patients treated by plastic surgeons from 2010 to 2012 suffering from different types of blunt or sharp (penetrating) facial soft tissue injuries to the different areas of the face. All soft tissue injuries were treated primarily. Photography from all patients before, during, and after surgical reconstruction was performed and the results were collected. We used early pulsed dye laser (PDL) post-operatively. Results: In our study, 63 patients including 18 (28.5%) women and 45 (71.5%) men aged 8-70 years (mean 47 years) underwent facial reconstruction due to soft tissue trauma in different parts of the face. Sharp wounds were seen in 15 (23%) patients and blunt trauma lacerations were seen in 52 (77%) patients. Overall, 65% of facial injuries were repaired primary and the remainder were reconstructed with local flaps or skin graft from adjacent tissues. Postoperative PDL therapy done two weeks following surgery for all scars yielded good results in our cases. Conclusions: Analysis of the injury including location, size, and depth of penetration as well as presence of associated injuries can aid in the formulation of a proper surgical plan. We recommend PDL in the early post operation period (two weeks) after suture removal for better aesthetic results. PMID:25337516

  14. Update of patient-specific maxillofacial implant.

    PubMed

    Owusu, James A; Boahene, Kofi

    2015-08-01

    Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.

  15. An application framework for computer-aided patient positioning in radiation therapy.

    PubMed

    Liebler, T; Hub, M; Sanner, C; Schlegel, W

    2003-09-01

    The importance of exact patient positioning in radiation therapy increases with the ongoing improvements in irradiation planning and treatment. Therefore, new ways to overcome precision limitations of current positioning methods in fractionated treatment have to be found. The Department of Medical Physics at the German Cancer Research Centre (DKFZ) follows different video-based approaches to increase repositioning precision. In this context, the modular software framework FIVE (Fast Integrated Video-based Environment) has been designed and implemented. It is both hardware- and platform-independent and supports merging position data by integrating various computer-aided patient positioning methods. A highly precise optical tracking system and several subtraction imaging techniques have been realized as modules to supply basic video-based repositioning techniques. This paper describes the common framework architecture, the main software modules and their interfaces. An object-oriented software engineering process has been applied using the UML, C + + and the Qt library. The significance of the current framework prototype for the application in patient positioning as well as the extension to further application areas will be discussed. Particularly in experimental research, where special system adjustments are often necessary, the open design of the software allows problem-oriented extensions and adaptations.

  16. 3D Chemical Patterning of Micromaterials for Encoded Functionality.

    PubMed

    Ceylan, Hakan; Yasa, Immihan Ceren; Sitti, Metin

    2017-03-01

    Programming local chemical properties of microscale soft materials with 3D complex shapes is indispensable for creating sophisticated functionalities, which has not yet been possible with existing methods. Precise spatiotemporal control of two-photon crosslinking is employed as an enabling tool for 3D patterning of microprinted structures for encoding versatile chemical moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Wounded quarks and diquarks in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.

    2007-06-01

    A model in which the soft collisions of the nucleon are described in terms of interactions of its two constituents (a quark and a diquark) is proposed. When adjusted to describe precisely the elastic proton-proton scattering data and supplemented with the idea of wounded constituents, the model accounts rather well for the centrality dependence of particle production in the central rapidity region at RHIC energies.

  18. Spatial Precision in Magnetic Resonance Imaging–Guided Radiation Therapy: The Role of Geometric Distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weygand, Joseph, E-mail: jw2899@columbia.edu; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas; Fuller, Clifton David

    2016-07-15

    Because magnetic resonance imaging–guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into accountmore » relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility–induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility–induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.« less

  19. Retrovirus Studies in Nonhuman Primates at Four Regional Primate Research Centers.

    DTIC Science & Technology

    1990-09-30

    inoculation of the vaginal mucosa with SIV-infected splenocytes. The Heterosexual Transmission of AIDS: A Simian Model. The overall objective of this...rhesus macaques. We have previously reported that SIV can be transmitted across the vaginal mucosa of female rhesus macaques (Miller, et. al., 1990). To...infused through a 2.5mm outer diameter (8 French) soft, plastic, pediatric nasogastric feeding tube (American Pharmaseal, Valencia, Ca.) into the 3 vaginal

  20. CONARC Soft Skills Training Conference.

    DTIC Science & Technology

    1973-04-05

    videocassette) Script of video tape: (Audio portion only) USAMPS Presents DYNAMICS OF HUMAN BEHAVIOR EGO DEFENSE MECHANISMS V-98 Ib I I SCENE fI Mr...prepared for distribution on request to CONARC Training Aids Agency, Fort Eustis, Virginia 23604. In order to secure said presentation a 60 minute video ...potential critical situations with which a driver may have to cope . In order to identify the specific purposes and situations which constitute a given job

  1. U.S.-Mexico Economic Relations: Trends, Issues, and Implications

    DTIC Science & Technology

    2012-01-25

    States and Mexico resolved a long-standing trade dispute in 2006 involving sugar and high fructose corn syrup . Mexico argued that the sugar side letter...sugar side letter limited Mexican shipments of sugar. Mexico also complained that imports of high fructose corn syrup (HFCS) sweeteners from the United...Mexican Congress imposed a 20% tax on soft drinks made with corn syrup sweeteners to aid the ailing domestic cane sugar industry, and subsequently

  2. A Common Programming Language for the Department of Defense--Background and Technical Requirements

    DTIC Science & Technology

    1976-06-01

    Method Findings I. Introduction A. The Problem 1. Software Costs 2. Programming Language 3. Lack of Comrr.onality 4. Common Language 5...accessible soft- ware tools and aids. There are a number of widely held perceptions about the ill effects of the lack of programming language ...cost- effective (at lea~t during development) than de- velopi~g a new programming language specialized to the project. On the other hand,

  3. The Effects of Computer-Aided Antero-Posterior Forehead Movement on Ratings of Facial Attractiveness

    DTIC Science & Technology

    2015-06-01

    were then digitally manipulated at the soft tissue glabella to simulate forward movement by 2, 4, and 6mm and backward by 2mm. Twenty general dentists ...and twenty laypersons then scored the attractiveness of the photographs using a 0-100mm visual analogue scale. RESULTS: Dentists consistently...selected the original photographs without manipulation as one of the most attractive ones. Compared with laypersons, dentists could differentiate the

  4. Intraoperative Radiation Therapy: Characterization and Application

    DTIC Science & Technology

    1989-03-01

    difficult to obtain. Notably, carcinomas of the pancreas, stomach, colon, and rectum, and sarcomas of soft tissue are prime candidates for IORT (2:131...Their pioneering efforts served as the basis for all my work. Mr. John Brohas of the AFIT Model Fabrication Shop aided my efforts considerably by... fabricated to set the collimator jaws to the required 10 cm x 10 cm aperture. The necessary parts are available from Varian. This will help eliminate errors

  5. Understanding the Potential of Aeroelastic Couplings to Stabilize Ground and Air Resonance in a Soft-Inplane Tiltrotor

    NASA Technical Reports Server (NTRS)

    Howard, Anna K. T.

    1999-01-01

    The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.

  6. Latch fittings for the scientific instruments on the space telescope

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.; Kaelber, E.

    1983-01-01

    Latch fittings which kinematically mount the replaceable scientific instruments onto the Space Telescope must maintain precise alignment and thermal stability for on-orbit observations. Design features which are needed to meet stringent criteria include the use of ceramic isolators for thermal and electrical insulation, materials with different coefficients of thermal expansion for athermalization, precision manufacturing procedures, and extremely tight tolerances. A specific latch fitting to be discussed is a ball-and-socket design. In addition, testing, crew aids, and problems will be covered.

  7. Precision Medicine and Men's Health.

    PubMed

    Mata, Douglas A; Katchi, Farhan M; Ramasamy, Ranjith

    2017-07-01

    Precision medicine can greatly benefit men's health by helping to prevent, diagnose, and treat prostate cancer, benign prostatic hyperplasia, infertility, hypogonadism, and erectile dysfunction. For example, precision medicine can facilitate the selection of men at high risk for prostate cancer for targeted prostate-specific antigen screening and chemoprevention administration, as well as assist in identifying men who are resistant to medical therapy for prostatic hyperplasia, who may instead require surgery. Precision medicine-trained clinicians can also let couples know whether their specific cause of infertility should be bypassed by sperm extraction and in vitro fertilization to prevent abnormalities in their offspring. Though precision medicine's role in the management of hypogonadism has yet to be defined, it could be used to identify biomarkers associated with individual patients' responses to treatment so that appropriate therapy can be prescribed. Last, precision medicine can improve erectile dysfunction treatment by identifying genetic polymorphisms that regulate response to medical therapies and by aiding in the selection of patients for further cardiovascular disease screening.

  8. Quantification of 4-Methylimidazole in soft drinks, sauces and vinegars of Greek market using two liquid chromatography techniques.

    PubMed

    Tzatzarakis, Manolis N; Vakonaki, Elena; Moti, Sofia; Alegakis, Athanasios; Tsitsimpikou, Christina; Tsakiris, Ioannis; Goumenou, Marina; Nosyrev, Alexander E; Rizos, Apostolos K; Tsatsakis, Aristidis M

    2017-09-01

    The substance 4-methylimidazole (4-MEI) has raised several concerns regarding its toxicity to humans, although no harmonized classification has yet been decided. The regulatory limits for food products set by various authorities in Europe and the USA differ considerably. The purpose of the present study is to compare two liquid chromatography techniques in order to determine the levels of 4-MEI in food products from the Greek market and roughly estimate the possible exposure and relevant health risk for the consumers. A total of thirty-four samples (soft drinks, beers, balsamic vinegars, energy drinks and sauces) were collected and analyzed. The quality parameters for both analytical methodologies (linearity, accuracy, inter day precision, recovery) are presented. No detectable levels of 4-MEI are found in beers and soft drink samples, other than cola type. On the other hand, 4-MEI was detected in all cola type soft drinks (15.8-477.0 ng/ml), energy drinks (57.1%, 6.6-22.5 ng/ml) and vinegar samples (66.7%, 9.7-3034.7 ng/ml), while only one of the sauce samples was found to have a detectable level of 17.5 ng/ml 4-MEI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Precision Health Economics and Outcomes Research to Support Precision Medicine: Big Data Meets Patient Heterogeneity on the Road to Value.

    PubMed

    Chen, Yixi; Guzauskas, Gregory F; Gu, Chengming; Wang, Bruce C M; Furnback, Wesley E; Xie, Guotong; Dong, Peng; Garrison, Louis P

    2016-11-02

    The "big data" era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR) practices will need to evolve to accommodate individual patient-level HEOR analyses. We propose the concept of "precision HEOR", which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient.

  10. Precision Health Economics and Outcomes Research to Support Precision Medicine: Big Data Meets Patient Heterogeneity on the Road to Value

    PubMed Central

    Chen, Yixi; Guzauskas, Gregory F.; Gu, Chengming; Wang, Bruce C. M.; Furnback, Wesley E.; Xie, Guotong; Dong, Peng; Garrison, Louis P.

    2016-01-01

    The “big data” era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR) practices will need to evolve to accommodate individual patient–level HEOR analyses. We propose the concept of “precision HEOR”, which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient. PMID:27827859

  11. Fabrication, sensation and control of fluidic elastomer actuators and their application towards hand orthotics and prosthetics

    NASA Astrophysics Data System (ADS)

    Zhao, Huichan

    Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have shown potential in a range of robotic applications including prosthetics and orthotics. Despite their advantages and rapid developments, robots using these actuators still have several challenging issues to be addressed. First, the reliable production of low cost and complex actuators that can apply high forces is necessary, yet none of existing fabrication methods are both easy to implement and of high force output. Next, compliant or stretchable sensors that can be embedded into their bodies for sophisticated functions are required, however, many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Finally, feedback control for FEAs is necessary to achieve better performance, but most soft robots are still "open-loop". In this dissertation, I intend to help solve the above issues and drive the applications of soft robotics towards hand orthotics and prosthetics. First, I adapt rotational casting as a new manufacturing method for soft actuators. I present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold increase over similar actuators previously reported. Next, I propose a soft orthotic finger with position control enabled via embedded optical fiber. I monitor both the static and dynamic states via the optical sensor and achieve the prescribed curvatures accurately and with stability by a gain-scheduled proportional-integral-derivative controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop controlled, soft orthotic glove that can be worn by a typical human hand and helpful for grasping light objects, while also providing finger position control. I achieve motion control with inexpensive, binary pneumatic switches controlled by a simple finite-state-machine. Finally, I report the first use of stretchable optical waveguides for strain sensing in a soft prosthetic hand. These optoelectronic strain sensors are easy to fabricate, chemically inert, and demonstrate low hysteresis and high precision in their output signals. I use the optoelectronically innervated prosthetic hand to conduct various active sensation experiments inspired by the capabilities of a real hand.

  12. Results from CoMStOC - The Coronal Magnetic Structures Observing Campaign

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.; Holman, G. D.

    1991-01-01

    The Coronal Magnetic Structures Observing Campaign (CoMStOC) was designed to measure the magnetic field strength and determine its structure in the solar corona. Simultaneous soft X-ray and microwave observations were taken by the Solar Maximum Mission's X-ray Polychromator (XRP) and the Very Large Array (VLA) on four days in the campaign period (Nov 25 to Dec 21, 1987). XRP maps in soft X-ray resonance lines formed at different coronal temperatures provide accurate temperature and emission measure diagnostics. VLA maps at several frequencies in the 20 cm and 6 cm bands yield information on microwave structure, spectrum and polarization. The combined data set separates contributions from the two dominant microwave emission mechanisms, thermal bremsstrahlung and gyroresonance. Where gyroresonance dominates, the coronal magnetic field strength has been determined with the aid of theoretical modeling.

  13. Results from CoMStOC - The Coronal Magnetic Structures Observing Campaign

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Holman, G. D.

    The Coronal Magnetic Structures Observing Campaign (CoMStOC) was designed to measure the magnetic field strength and determine its structure in the solar corona. Simultaneous soft X-ray and microwave observations were taken by the Solar Maximum Mission's X-ray Polychromator (XRP) and the Very Large Array (VLA) on four days in the campaign period (Nov 25 to Dec 21, 1987). XRP maps in soft X-ray resonance lines formed at different coronal temperatures provide accurate temperature and emission measure diagnostics. VLA maps at several frequencies in the 20 cm and 6 cm bands yield information on microwave structure, spectrum and polarization. The combined data set separates contributions from the two dominant microwave emission mechanisms, thermal bremsstrahlung and gyroresonance. Where gyroresonance dominates, the coronal magnetic field strength has been determined with the aid of theoretical modeling.

  14. Complex craniofacial advancement in paediatric patients: Piezoelectric and traditional technique evaluation.

    PubMed

    Spinelli, Giuseppe; Mannelli, Giuditta; Zhang, Yi Xin; Lazzeri, Davide; Spacca, Barbara; Genitori, Lorenzo; Raffaini, Mirco; Agostini, Tommaso

    2015-10-01

    The piezoelectric device allows bone cutting without damaging the surrounding soft tissues. The purpose of this study was to assess the role of this surgical instrument in paediatric craniofacial surgery in terms of safety and surgical outcomes. Thirteen consecutive paediatric patients underwent craniofacial Le Fort osteotomies type III and IV. The saw was used on the right side in seven patients and on the left side in six patients; the piezoelectric instrument was used on the right side in six patients and on the left side in seven patients. Intraoperative blood loss, surgical procedure length, incision precision, postoperative haematoma and swelling, and nerve impairment were evaluated to compare the outcomes of both procedures. A longer surgical procedure was observed in 28% of the patients when using the piezoelectric device (p = 0.032), with an intraoperative blood loss reduction of 18% (p = 0.156). Greater precision in bone cutting was reported, together with a reduction in the requirement to protect and incise adjacent soft tissues during piezoelectric osteotomies. There was a lower incidence of postoperative haematoma and swelling following piezo-osteotomy, and a significant reduction in postoperative nerve impairment (p = 0.002). The ultrasonic surgical device guaranteed a clean bone cut, preserving the integrity of the adjacent soft tissues beneath the bone. Although the time required for a piezoelectric osteotomy was longer, the total operation time remained approximately the same. In conclusion, the device's lack of power appears to be a minor problem compared with the advantages, and an ultrasonic device could be considered a valuable instrument for paediatric craniofacial advancement. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Cannula Versus Sharp Needle for Placement of Soft Tissue Fillers: An Observational Cadaver Study.

    PubMed

    van Loghem, Jani A J; Humzah, Dalvi; Kerscher, Martina

    2017-12-13

    Soft-tissue fillers have become important products for facial rejuvenation. Deep fat compartments and facial bones lose volume during the natural aging process. For the most natural-looking results, deep volumetric injections at strategic sites are therefore preferred. Supraperiosteal placement is performed with a sharp needle or a non-traumatic cannula. The primary objective was to determine whether there is a difference in precision between supraperiosteal placement with a sharp needle compared with a non-traumatic cannula in cadaver specimens. A secondary objective was to analyze the safety profiles of both injection techniques. Cadaver heads were injected with dye material and soft-tissue fillers at multiple aesthetic facial sites on the supraperiosteum and subsequently dissected for observation of dye and filler placement. The non-traumatic cannula technique resulted in product being confined to the deep anatomic layers. In contrast, with the sharp needle technique, material was placed in multiple anatomic layers, from the periosteum to more superficial skin layers. For both techniques results were consistent for all facial sites. Although direct extrapolation from cadavers to the in vivo situation cannot be made, cannulae showed more precision in placement of product. With the sharp needle, the material was injected on the periosteum, and then migrated in a retrograde direction along the trajectory of the needle path, ending up in multiple anatomic layers. The sharp needle technique also showed a higher complication risk with intra-arterial injection occurring, even though the needle tip was positioned on the periosteum and the product was injected with the needle in constant contact with the periosteum. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  16. Fabricating microfluidic valve master molds in SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  17. Soft computing methods for geoidal height transformation

    NASA Astrophysics Data System (ADS)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  18. The prominent role of plastic surgery in the Wenchuan earthquake disaster.

    PubMed

    Zhang, Jianlin; Ding, Wei; Chen, Aimin; Jiang, Hua

    2010-10-01

    : On May 12, 2008, an earthquake of magnitude 8.0 on Richter scale struck Sichuan Province of China and destroyed Wenchuan County. Two days later, a field hospital from the Second Military Medical University (Shanghai, China) arrived at Anxian County near the epicenter as a reinforcement hospital before rehabilitation of the local medical facilities. Surgical services in the field hospital were supplied by general, orthopedic, plastic, anesthetic, obstetrical surgeons, and two physicians. The plastic surgeons were responsible for assessment of all soft tissue injuries at the hospital and patient needs for plastic surgery services in a crisis intervention field hospital. : Information was gathered regarding soft tissue injuries throughout the activities of the hospital. In addition, patient charts, operation reports, and entry and evacuation logs were reviewed for all patients who were admitted and treated in the field hospital. : Of 1,013 patients who were treated in the field hospital in Wenchuan; 102 (10.07%) sought aid for soft tissue injuries, all of which were earthquake related. Twenty-one percent of the operations performed in the hospital were concerned with the treatment of soft tissue injuries, and 15% of the hospital beds were reserved for plastic surgery patients. : Plastic surgery services at a field hospital play a prominent and irreplaceable role in rescuing casualties in formidable conditions especially in a serious earthquake situation.

  19. Histopathological Diagnostic Discrepancies in Soft Tissue Tumours Referred to a Specialist Centre: Reassessment in the Era of Ancillary Molecular Diagnosis

    PubMed Central

    Thway, Khin; Mubako, Taka

    2014-01-01

    Introduction. Soft tissue tumour pathology is a highly specialised area of surgical pathology, but soft tissue neoplasms can occur at virtually all sites and are therefore encountered by a wide population of surgical pathologists. Potential sarcomas require referral to specialist centres for review by pathologists who see a large number of soft tissue lesions and where appropriate ancillary investigations can be performed. We have previously assessed the types of diagnostic discrepancies between referring and final diagnosis for soft tissue lesions referred to our tertiary centre. We now reaudit this 6 years later, assessing changes in discrepancy patterns, particularly in relation to the now widespread use of ancillary molecular diagnostic techniques which were not prevalent in our original study. Materials and Methods. We compared the sarcoma unit's histopathology reports with referring reports on 348 specimens from 286 patients with suspected or proven soft tissue tumours in a one-year period. Results. Diagnostic agreement was seen in 250 cases (71.8%), with 57 (16.4%) major and 41 (11.8%) minor discrepancies. There were 23 cases of benign/malignant discrepancies (23.5% of all discrepancies). 50 ancillary molecular tests were performed, 33 for aiding diagnosis and 17 mutational analyses for gastrointestinal stromal tumour to guide therapy. Findings from ancillary techniques contributed to 3 major and 4 minor discrepancies. While the results were broadly similar to those of the previous study, there was an increase in frequency of major discrepancies. Conclusion. Six years following our previous study and notably now in an era of widespread ancillary molecular diagnosis, the overall discrepancy rate between referral and tertiary centre diagnosis remains similar, but there is an increase in frequency of major discrepancies likely to alter patient management. A possible reason for the increase in major discrepancies is the increasing lack of exposure to soft tissue cases in nonspecialist centres in a time of subspecialisation. The findings support the national guidelines in which all suspected soft tissue tumour pathology specimens should be referred to a specialist sarcoma unit. PMID:25165418

  20. Histopathological diagnostic discrepancies in soft tissue tumours referred to a specialist centre: reassessment in the era of ancillary molecular diagnosis.

    PubMed

    Thway, Khin; Wang, Jayson; Mubako, Taka; Fisher, Cyril

    2014-01-01

    Introduction. Soft tissue tumour pathology is a highly specialised area of surgical pathology, but soft tissue neoplasms can occur at virtually all sites and are therefore encountered by a wide population of surgical pathologists. Potential sarcomas require referral to specialist centres for review by pathologists who see a large number of soft tissue lesions and where appropriate ancillary investigations can be performed. We have previously assessed the types of diagnostic discrepancies between referring and final diagnosis for soft tissue lesions referred to our tertiary centre. We now reaudit this 6 years later, assessing changes in discrepancy patterns, particularly in relation to the now widespread use of ancillary molecular diagnostic techniques which were not prevalent in our original study. Materials and Methods. We compared the sarcoma unit's histopathology reports with referring reports on 348 specimens from 286 patients with suspected or proven soft tissue tumours in a one-year period. Results. Diagnostic agreement was seen in 250 cases (71.8%), with 57 (16.4%) major and 41 (11.8%) minor discrepancies. There were 23 cases of benign/malignant discrepancies (23.5% of all discrepancies). 50 ancillary molecular tests were performed, 33 for aiding diagnosis and 17 mutational analyses for gastrointestinal stromal tumour to guide therapy. Findings from ancillary techniques contributed to 3 major and 4 minor discrepancies. While the results were broadly similar to those of the previous study, there was an increase in frequency of major discrepancies. Conclusion. Six years following our previous study and notably now in an era of widespread ancillary molecular diagnosis, the overall discrepancy rate between referral and tertiary centre diagnosis remains similar, but there is an increase in frequency of major discrepancies likely to alter patient management. A possible reason for the increase in major discrepancies is the increasing lack of exposure to soft tissue cases in nonspecialist centres in a time of subspecialisation. The findings support the national guidelines in which all suspected soft tissue tumour pathology specimens should be referred to a specialist sarcoma unit.

  1. Soft tissue hemangioma with osseous extension: a case report and review of the literature.

    PubMed

    Daoud, Alexander; Olivieri, Brandon; Feinberg, Daniel; Betancourt, Michel; Bockelman, Brian

    2015-04-01

    Soft tissue hemangiomas are commonly encountered lesions, accounting for 7-10 % of all benign soft tissue masses (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010). While the literature describes the great majority of hemangiomas as asymptomatic and discovered only as incidental findings, they do have the potential to induce reactive changes in neighboring structures (Pastushyn et al. Surg Neurol 50(6):535-47, 1998). When these variants occur in close proximity to bone, they may elicit a number of well-documented reactive changes in osseous tissue (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010; DeFilippo et al. Skelet Radiol 25(2):174-7, 1996; Ly et al. AJR Am J Roentgenol 180(6):1695-700, 2003; Sung et al. Skelet Radiol 27(4):205-10, 1998). However, instances of direct extension into bone by soft tissue hemangiomas--that is, infiltration of the mass's vascular components into nearby osseous tissue--are currently undocumented in the literature. In these cases, imaging plays an important role in differentiating hemangiomas from malignant lesions (Mitsionis et al. J Foot Ankle Surg 16(2):27-9, 2010; Sung et al. Skelet Radiol 27(4):205-10, 1998; Pourbagher, Br J Radiol 84(1008):1100-8, 2011). In this article, we present such a case that involved the sacral spine. Imaging revealed a soft tissue mass with direct extension of vascular components into osseous tissue of the adjacent sacral vertebrae. Biopsy and subsequent histopathologic examination led to definitive diagnosis of soft tissue hemangioma. While MRI is widely regarded as the gold standard imaging modality for evaluating hemangiomas, in this report we describe how CT can aid in narrowing the differential diagnosis when one encounters a vascular lesion with adjacent osseous changes. Furthermore, we review the literature as it pertains to the imaging of soft tissue hemangiomas that occur in proximity to osseous tissue, as well as correlate this case to current theories on the pathogenesis of hemangiomas. Radiologists should be aware that benign soft tissue hemangiomas demonstrate a spectrum of imaging findings, including aggressive-appearing changes to adjacent bone.

  2. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An audit of the use of the CO2 laser in oral and maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio L. B.; Santos de Almeida, Darcy

    2004-09-01

    The use of the Carbon dioxide Laser to perform surgical procedures in the oral cavity has been described as a successful method for the treatment of several conditions affecting the maxillofacial region. Several benefits of the use of the CO2 Laser have been reported and includes reduction of postoperative pain and edema, local hemosthasis, reduction of scaring and wound contraction and infection. The aim of this work is to present our clinical experience in performing several surgical procedures using the CO2 Laser to treat soft tissue pathologies of both benign and malign origin as well as on performing pre-prosthetic surgery, apical surgery and on the treatment of pre-malignancies. Our experience demonstrate that the use of the Carbon dioxide Laser in treating oral soft-tissue pathology presents advantages over conventional techniques and local discomfort and pain are the most common complaints after Laser surgery. The Carbon dioxide Laser does not offer any enhanced cure-rate for oral pathology, but rather it is a precise means of removing soft tissue lesions with little upset afterwards.

  4. Rapid tooling method for soft customized removable oral appliances.

    PubMed

    Salmi, Mika; Tuomi, Jukka; Sirkkanen, Rauno; Ingman, Tuula; Mäkitie, Antti

    2012-01-01

    Traditionally oral appliances i.e. removable orthodontic appliances, bite splints and snoring / sleep apnea appliances are made with alginate impressions and wax registrations. Our aim was to describe the process of manufacturing customized oral appliances with a new technique i.e. rapid tooling method. The appliance should ideally be custom made to match the teeth. An orthodontic patient, scheduled for conventional orthodontic treatment, served as a study subject. After a precise clinical and radiographic examination, the approach was to digitize the patient's dental arches and then to correct them virtually by computer. Additive manufacturing was then used to fabricate a mould for a soft customized appliance. The mould was manufactured using stereolithography from Somos ProtoGen O-XT 18420 material. Casting material for the mould to obtain the final appliance was silicone. As a result we managed to create a customized soft orthodontic appliance. Also, the accuracy of the method was found to be adequate. Two versions of the described device were manufactured: one with small and one with moderate orthodontic force. The study person also gave information on the subjective patient adaptation aspects of the oral appliance.

  5. The Natural-CCD Algorithm, a Novel Method to Solve the Inverse Kinematics of Hyper-redundant and Soft Robots.

    PubMed

    Martín, Andrés; Barrientos, Antonio; Del Cerro, Jaime

    2018-03-22

    This article presents a new method to solve the inverse kinematics problem of hyper-redundant and soft manipulators. From an engineering perspective, this kind of robots are underdetermined systems. Therefore, they exhibit an infinite number of solutions for the inverse kinematics problem, and to choose the best one can be a great challenge. A new algorithm based on the cyclic coordinate descent (CCD) and named as natural-CCD is proposed to solve this issue. It takes its name as a result of generating very harmonious robot movements and trajectories that also appear in nature, such as the golden spiral. In addition, it has been applied to perform continuous trajectories, to develop whole-body movements, to analyze motion planning in complex environments, and to study fault tolerance, even for both prismatic and rotational joints. The proposed algorithm is very simple, precise, and computationally efficient. It works for robots either in two or three spatial dimensions and handles a large amount of degrees-of-freedom. Because of this, it is aimed to break down barriers between discrete hyper-redundant and continuum soft robots.

  6. A periodic table of effective field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less

  7. A periodic table of effective field theories

    DOE PAGES

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; ...

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less

  8. A general study of techniques for ultraviolet astrophysical studies on space vehicles

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Fastie, W. G.; Davidsen, A. F.

    1977-01-01

    Recent accomplishments in three areas of UV instrumentation for space astronomy are discussed. These areas include reliable UV photometry, sensitive photon-detection techniques, and precise telescope pointing. Calibration facilities for spectrometers designed to operate in the spectral regions above 1200 A and down to 400 A are described which employ a series of diodes calibrated against electron synchrotron radiation as well as other radiometric standards. Improvements in photon-detection sensitivity achieved with the aid of pulse-counting electronics and multispectral detectors are reported, and the technique of precise subarcsecond telescope pointing is briefly noted. Some observational results are presented which demonstrate the advantages and precision of the instruments and techniques considered.

  9. The effect of crystal structure on the electromechanical properties of piezoelectric Nylon-11 nanowires.

    PubMed

    Choi, Yeon Sik; Kim, Sung Kyun; Williams, Findlay; Calahorra, Yonatan; Elliott, James A; Kar-Narayan, Sohini

    2018-06-19

    Crystal structure is crucial in determining the properties of piezoelectric polymers, particularly at the nanoscale where precise control of the crystalline phase is possible. Here, we investigate the electromechanical properties of three distinct crystalline phases of Nylon-11 nanowires using advanced scanning probe microscopy techniques. Stiff α-phase nanowires exhibited a low piezoelectric response, while relatively soft δ'-phase nanowires displayed an enhanced piezoelectric response.

  10. All-Printed Flexible and Stretchable Electronics.

    PubMed

    Mohammed, Mohammed G; Kramer, Rebecca

    2017-05-01

    A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adhesive capabilities of Staphylococcus aureus and Pseudomonas aeruginosa isolated from tears of HIV/AIDS patients to soft contact lenses.

    PubMed

    Ajayi, B O; Kio, F E; Otajevwo, F D

    2012-01-01

    Fifty conjunctival swab samples collected from ELISA confirmed HIV/AIDS seropositive patients who were referred to the HIV/AIDS laboratories of the University of Benin Teaching Hospital and Central Hospital both based in Benin City, Nigeria were aseptically cultured on appropriate media by standard methods. The resulting isolates/strains, after identification by standard methods, were tested for their ability to adhere to two hydrophobic non-ionic daily wear silicone hydrogel soft contact lenses (i.e. lotrafilcon B, WC 33% and polymacon, WC 38%) as well as to two hydrophilic ionic conventional extended wear silicone hydrogel soft contact lenses (i.e. methafilcon A, WC 55% and omafilcon A, WC 60%) by the adhesiveness/slime production modified vortex/Robin device method. Evidence of adhesiveness/slime production was indicated by presence of a visible stained film lining the surface of the contact lens which was measured and recorded as strong or weak according to the density of the adhered bacterial film. Fourteen (28.0%) Staphylococcus aureus strains and 10 (20.0%) Pseudomonas aeruginosa strains were obtained among other organisms. Staphylococcus aureus strains adhered in decreasing order to lotrafilcon B (55.4 ± 4.7), polymacon (46.4 ± 8.4), methfilcon A (46.4 ± 8.4) and omafilcon A (25.0 ± 6.4) with no significant difference in adhesive strengths of individual strains (P > 0.05). Pseudomonas aeruginosa strains also recorded decreasing adhesive strengths to lotrafilcon B (37.5 ± 8.2), polymacon (28.6 ± 6.3), methafilcon A (26.8 ± 5.5) and omafilcon A (23.2 ± 5.5) also with no significant difference in adhesive strengths of individual strains (P > 0.05). Attachment strengths of Staph. aureus strains to all four contact lenses were higher than those of Pseudomonas aeruginosa strains. Both organisms adhered most to hydrophobic lotrafilcon B and least to hydrophilic omafilcon A. This invitro adhesion studies revealed that daily wear silicone hydrogel low water content, non-ionic contact lenses are more prone to bacterial adhesion than the conventional extended wear hydrogel high water content, ionic contact lenses and hence, there is more risk of microbial adhesion to the former compared to the latter. Other implications are highlighted.

  12. Adhesive Capabilities of Staphylococcus Aureus and Pseudomonas Aeruginosa Isolated from Tears of HIV/AIDS Patients to Soft Contact Lenses

    PubMed Central

    B. O., Ajayi; F.E., Kio; F.D., Otajevwo

    2012-01-01

    Fifty conjunctival swab samples collected from ELISA confirmed HIV/AIDS seropositive patients who were referred to the HIV/AIDS laboratories of the University of Benin Teaching Hospital and Central Hospital both based in Benin City, Nigeria were aseptically cultured on appropriate media by standard methods. The resulting isolates/strains, after identification by standard methods, were tested for their ability to adhere to two hydrophobic non-ionic daily wear silicone hydrogel soft contact lenses (i.e. lotrafilcon B, WC 33% and polymacon, WC 38%) as well as to two hydrophilic ionic conventional extended wear silicone hydrogel soft contact lenses (i.e. methafilcon A, WC 55% and omafilcon A, WC 60%) by the adhesiveness/slime production modified vortex/Robin device method. Evidence of adhesiveness/slime production was indicated by presence of a visible stained film lining the surface of the contact lens which was measured and recorded as strong or weak according to the density of the adhered bacterial film. Fourteen (28.0%) Staphylococcus aureus strains and 10 (20.0%) Pseudomonas aeruginosa strains were obtained among other organisms. Staphylococcus aureus strains adhered in decreasing order to lotrafilcon B (55.4 ± 4.7), polymacon (46.4 ± 8.4), methfilcon A (46.4 ± 8.4) and omafilcon A (25.0 ± 6.4) with no significant difference in adhesive strengths of individual strains (P > 0.05). Pseudomonas aeruginosa strains also recorded decreasing adhesive strengths to lotrafilcon B (37.5 ± 8.2), polymacon (28.6 ± 6.3), methafilcon A (26.8 ± 5.5) and omafilcon A (23.2 ± 5.5) also with no significant difference in adhesive strengths of individual strains (P > 0.05). Attachment strengths of Staph. aureus strains to all four contact lenses were higher than those of Pseudomonas aeruginosa strains. Both organisms adhered most to hydrophobic lotrafilcon B and least to hydrophilic omafilcon A. This invitro adhesion studies revealed that daily wear silicone hydrogel low water content, non-ionic contact lenses are more prone to bacterial adhesion than the conventional extended wear hydrogel high water content, ionic contact lenses and hence, there is more risk of microbial adhesion to the former compared to the latter. Other implications are highlighted. PMID:22980120

  13. Piezosurgery for osteotomies in orbital surgery: Our experience and review of the literature

    PubMed Central

    Iacoangeli, Maurizio; Neri, Piergiorgio; Balercia, Paolo; Lupi, Ettore; Di Rienzo, Alessandro; Nocchi, Niccolò; Alvaro, Lorenzo; Scerrati, Massimo

    2012-01-01

    INTRODUCTION Piezoelectric bone surgery, simply known as Piezosurgery®, is a new promising technique for bone cutting based on ultrasonic microvibrations that allows to perform precise and thin osteotomies with soft tissue sparing. PRESENTATION OF CASE A 45-years-old woman presenting with progressive left ocular pain, diplopia on the lateral left gaze, and visible exophthalmos was admitted to our department. CT scan and MRI images documented a left supero-lateral orbital lesion. A left lateral orbitotomy using the piezoelectric scalpel was performed. The tumour (lacrimal gland lymphoma) was completely removed with no injuries to the orbital structures and with a perfect realignment of the bone stumps. DISCUSSION High powered pneumatic osteotome are commonly used to perform craniotomies. Large bone cutting groove and high temperatures developing at the contact site could produce an uneasy bone healing. The use of a piezoelectric scalpel allows to realize precise and thin osteotomies, facilitating craniotomy's borders ossification and avoiding injuries to non-osseous structures. CONCLUSION Widely used in Oral and Maxillofacial Surgery, Piezosurgery® can also be useful in neurosurgical approaches in order to obtain a faster bone flap re-ossification, a better aesthetic result, and a lower risks of dural layer and soft tissue damage. PMID:23276764

  14. Characteristics of lip-mouth region in smiling position from 80 persons with acceptable faces and individual normal occlusions.

    PubMed

    Zhang, Jiangheng; Chen, Yangxi; Zhou, Xiukun

    2002-09-01

    The characteristics of lip-mouth region including the soft and hard tissues in smiling position with frontal fixed position photographic computer-aided analysis were studied. The subjects were 80 persons (40 male and 40 females, age range: 17 to approximately 25 years) with acceptable faces and individual normal occlusions. The subjects were asked to take maximum smiling position to accept photographic measurement with computer-aided analysis. The maximum smile line could be divided into 3 categories: low smile line (16.25%), average smile line (68.75%), and high smile line (15%). The method adopting maximum smiling position to study the lip-month region is reproducible and comparable. This study would be helpful to provide a quantitative reference for clinical investigation, diagnosis, treatment and efficacy appraisal.

  15. Involvement of activation-induced cytidine deaminase in skin cancer development.

    PubMed

    Nonaka, Taichiro; Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Yamamoto, Norio; Asato, Ryo; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro; Kinoshita, Kazuo

    2016-04-01

    Most skin cancers develop as the result of UV light-induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus-dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics.

  16. Involvement of activation-induced cytidine deaminase in skin cancer development

    PubMed Central

    Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro

    2016-01-01

    Most skin cancers develop as the result of UV light–induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus–dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics. PMID:26974156

  17. Low Cost Precision Lander for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Hoppa, G. V.; Head, J. N.; Gardner, T. G.; Seybold, K. G.

    2004-12-01

    For 60 years the US Defense Department has invested heavily in producing small, low mass, precision-guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Moon to Mars vision articulated in January 2004. Establishing and resupplying a long-term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In our lander design, science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design relies on a cruise stage for navigation and TCMs for the lander's flight to the moon. The landing sequence begins with a solid motor burn to reduce the vehicle speed to 300-450 m/s. At this point the lander is about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability. This allows for about 10 km of vehicle divert during terminal descent. This concept of operations closely mimics missile operational protocol used for decades: the vehicle remains inert, then must execute its mission flawlessly on a moment's notice. The vehicle design uses a propulsion system derived from heritage MDA programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC) provide data for the terminal guidance algorithms. This approach leverages the billions of dollars DoD has invested in these technologies, to land useful science payloads precisely on the lunar surface at relatively low cost.

  18. Validation of a Radiography-Based Quantification Designed to Longitudinally Monitor Soft Tissue Calcification in Skeletal Muscle.

    PubMed

    Moore, Stephanie N; Hawley, Gregory D; Smith, Emily N; Mignemi, Nicholas A; Ihejirika, Rivka C; Yuasa, Masato; Cates, Justin M M; Liu, Xulei; Schoenecker, Jonathan G

    2016-01-01

    Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification.

  19. Validation of a Radiography-Based Quantification Designed to Longitudinally Monitor Soft Tissue Calcification in Skeletal Muscle

    PubMed Central

    Moore, Stephanie N.; Hawley, Gregory D.; Smith, Emily N.; Mignemi, Nicholas A.; Ihejirika, Rivka C.; Yuasa, Masato; Cates, Justin M. M.; Liu, Xulei; Schoenecker, Jonathan G.

    2016-01-01

    Introduction Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Methods Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined. Results Precision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathological state of the mineralization. Conclusions Radiographic analysis can discriminate muscle injury-induced soft tissue calcification from adjacent bone and follow its clinical course over time without requiring the sacrifice of the animal. While the STiCSS cannot identify the specific type of soft tissue calcification present, it is still a useful and valid method by which to quantify the degree of soft tissue calcification. This methodology allows for longitudinal measurements of soft tissue calcification in a single animal, which is relatively less expensive, less time-consuming, and exposes the animal to less radiation than in vivo μCT. Therefore, this high-throughput, longitudinal analytic method for quantifying soft tissue calcification is a viable alternative for the study of soft tissue calcification. PMID:27438007

  20. Mexico-U.S. Relations: Issues for the 109th Congress

    DTIC Science & Technology

    2005-06-02

    argues that a sugar side letter negotiated along with NAFTA limits Mexican shipments of sugar. Mexico also complains that imports of high fructose ... corn syrup (HFCS) sweeteners from the United States constitute dumping, and it imposed anti- dumping duties for some time, even though NAFTA and WTO...imports from the United States. In the last days of 2001, the Mexican Congress imposed a 20% tax on soft drinks made with corn syrup sweeteners to aid the

  1. Custom CAD-CAM healing abutment and impression coping milled from a poly(methyl methacrylate) block and bonded to a titanium insert.

    PubMed

    Proussaefs, Periklis

    2016-11-01

    This article describes a technique in which a custom-made computer-aided design and computer-aided manufacturing (CAD-CAM) healing abutment milled from a poly(methyl methacrylate) (PMMA) block is fabricated and bonded to a titanium metal insert. An impression is made during dental implant surgery, and the CAD-CAM custom-made healing abutment is fabricated before second-stage surgery while appropriate healing time is allowed for the dental implant to osseointegrate. The contours of the healing abutment are based on the contours of a tentatively designed definitive prosthesis. The healing tissue obtains contours that will be compatible with the contours of the definitive prosthesis. After the milling process is complete, a titanium metal insert is bonded to the healing abutment. Placement of the custom-made CAD-CAM healing abutment at second-stage surgery allows the tissue to obtain contours similar to those of the definitive prosthesis. A custom-made CAD-CAM impression coping milled from a PMMA block and with a titanium insert is used for the definitive impression after the soft tissue has healed. This technique allows guided soft tissue healing by using a custom-made CAD-CAM healing abutment and impression coping. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Tooth Eruption Results from Bone Remodelling Driven by Bite Forces Sensed by Soft Tissue Dental Follicles: A Finite Element Analysis

    PubMed Central

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth. PMID:23554928

  3. Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis.

    PubMed

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true 'eruptive force' is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, 'biological response units' in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.

  4. Enjoyment of music by elderly hearing-impaired listeners.

    PubMed

    Leek, Marjorie R; Molis, Michelle R; Kubli, Lina R; Tufts, Jennifer B

    2008-06-01

    Anecdotal evidence suggests that hearing loss interferes with the enjoyment of music, although it is not known how widespread this problem currently is. To estimate the prevalence of music-listening difficulties among a group of elderly hearing aid wearers. Interview. Telephone interviews were conducted with patients who wore hearing aids. Questions regarding several aspects of music listening were included. Sixty-eight hearing-impaired people served as subjects. They had all been seen in the audiology clinic for hearing aid evaluation during the previous year. Subjects were asked questions concerning their use of hearing aids, the importance of listening to music in their lives, their habits and practices concerning music, and difficulties they experienced in listening to music. Almost 30% of the respondents reported that their hearing losses affected their enjoyment of music. About half of the respondents indicated that music was either too loud or too soft, although only about one-third reported difficulties with level contrasts within musical pieces. In contrast to a similar survey carried out 20 years ago, there were many fewer complaints about listening to music. This result may be due in large part to improvements in hearing aids, especially with regard to nonlinear compression. Although new hearing aid technologies have somewhat reduced problems of music enjoyment experienced by hearing-impaired people, audiologists should be aware that some 25-30% of patients may have difficulties with listening to music and may require extra attention to minimize those problems.

  5. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.

    PubMed

    Gravett, Matthew; Cepek, Jeremy; Fenster, Aaron

    2017-11-01

    The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion. The system was mechanically calibrated and the mean image-guided needle targeting and needle trajectory accuracies were quantified in an image-guided tissue mimicking phantom experiment to be 178 ± 54 μm and 0.27 ± 0.65°, respectively. An MR image-guided system for in-bore needle deliveries to soft tissue targets in small animal models has been developed. The results of the needle targeting accuracy experiments in phantoms indicate that this system has the potential to deliver needles to the smallest soft tissue structures relevant in preclinical studies, at a wide variety of needle trajectories. Future work in the form of a fully-automated needle driver with precise depth control would benefit this system in terms of its applicability to a wider range of animal models and organ targets. © 2017 American Association of Physicists in Medicine.

  6. Epidermal differential impedance sensor for conformal skin hydration monitoring.

    PubMed

    Huang, Xian; Yeo, Woon-Hong; Liu, Yuhao; Rogers, John A

    2012-12-01

    We present the design and use of an ultrathin, stretchable sensor system capable of conformal lamination onto the skin, for precision measurement and spatial mapping of levels of hydration. This device, which we refer to as a class of 'epidermal electronics' due to its 'skin-like' construction and mode of intimate integration with the body, contains miniaturized arrays of impedance-measurement electrodes arranged in a differential configuration to compensate for common-mode disturbances. Experimental results obtained with different frequencies and sensor geometries demonstrate excellent precision and accuracy, as benchmarked against conventional, commercial devices. The reversible, non-invasive soft contact of this device with the skin makes its operation appealing for applications ranging from skin care, to athletic monitoring to health/wellness assessment.

  7. Integrating three-dimensional digital technologies for comprehensive implant dentistry.

    PubMed

    Patel, Neal

    2010-06-01

    The increase in the popularity of and the demand for the use of dental implants to replace teeth has encouraged advancement in clinical technology and materials to improve patients' acceptance and clinical outcomes. Recent advances such as three-dimensional dental radiography with cone-beam computed tomography (CBCT), precision dental implant planning software and clinical execution with guided surgery all play a role in the success of implant dentistry. The author illustrates the technique of comprehensive implant dentistry planning through integration of computer-aided design/computer-aided manufacturing (CAD/CAM) and CBCT data. The technique includes clinical treatment with guided surgery, including the creation of a final restoration with a high-strength ceramic (IPS e.max CAD, Ivoclar Vivadent, Amherst, N.Y.). The author also introduces a technique involving CAD/CAM for fabricating custom implant abutments. The release of software integrating CEREC Acquisition Center with Bluecam (Sirona Dental Systems, Charlotte, N.C.) chairside CAD/CAM and Galileos CBCT imaging (Sirona Dental Systems) allows dentists to plan implant placement, perform implant dentistry with increased precision and provide predictable restorative results by using chairside IPS e.max CAD. The precision of clinical treatment provided by the integration of CAD/CAM and CBCT allows dentists to plan for ideal surgical placement and the appropriate thickness of restorative modalities before placing implants.

  8. Three cases of melorheostosis with foot and ankle involvement.

    PubMed

    Pino, Alejandro E; Temple, H Thomas

    2012-08-01

    Melorheostosis is a rare and poorly understood condition of bone and soft tissue with a wide range of clinical presentations. This condition is typically characterized by cortical hyperostosis and pain in the involved extremity, but can also be associated with soft-tissue masses and limb deformities that may be additional sources of disability for those affected by this disease. Characteristic radiographic findings can aid in establishing an accurate diagnosis and the condition should not be mistaken for more aggressive neoplasms. This chronic condition is typically managed nonoperatively, but more invasive measures may be necessary when nonoperative measures fail. In cases of surgical intervention, physicians and patients should be aware that this disease has a high recurrence rate. Although there are only a few reports of melorheostosis in the foot and ankle, it is important to be aware of the difficulties the condition may cause in this anatomical location. Melorheostosis can be a source of significant morbidity when the foot and ankle are involved, especially when complicated by symptomatic soft-tissue masses. In this article, we report 3 cases of melorheostosis in the foot and ankle with distinct presentations and variations in outcomes.

  9. [Clinical-morphological and histometric characteristics of soft tissue wounds in maxilla-facial region of patients in different terms after trauma].

    PubMed

    Fedorina, T A; Braĭlovskaia, T V

    2009-01-01

    504 patients with open traumas of face soft tissues which were given primary surgical wounds treatment with reconstructive operations in maxilla-facial surgical clinics of Samara State Medical University in 2005-2008 also received detailed description. The results of statistical analysis of patients' surgical treatment for the previous 5 year period were listed. It was noted that in the majority of cases (75,5%) patients turned to stomatological aid in first hours or first day and night after receiving the injury, more often there were isolated soft tissue injuries (73,3%), tear-contused and cut wounds put together 80,5%. Morphological and histometric studies of operational-biopsy material let determine the character of changes of leucocyte infiltration and of epithelium - stromal interrelation in different zones of wound edges in patients incoming in different terms after trauma. Objective criteria of tissue excision volumes were received in the process of surgical wound treatment. During last 3 years esthetic results of patient treatment with maxilla-facial traumas improved, the postoperative complications frequency was reduced by 8,1% if compared with the previous 5-year period.

  10. Principles of treatment for soft tissue sarcoma.

    PubMed

    Dernell, W S; Withrow, S J; Kuntz, C A; Powers, B E

    1998-02-01

    Soft tissue sarcomas (STS) are mesenchymal tumors arising from connective tissue elements and are grouped together based on a common biologic behavior. The most common histologic types include malignant peripheral nerve sheath tumors (schwannoma and neurofibrosarcoma) "hemangiopericytoma," fibrosarcoma, and malignant fibrous histiocytoma. These tumors are relatively slow growing yet locally invasive with a high rate of recurrence following conservative management. Appropriate preoperative planning and aggressive surgical resection often result in long-term remission or cure. Identification and evaluation of resection margins are paramount in appropriate case management. The addition of radiotherapy after surgical resection can aid in remission for incompletely resected masses. Systemic chemotherapy for STS should be considered for high-grade tumors with a moderate metastatic potential. Potential prognostic factors include grade, resection margins, size, location, histologic type, and previous treatment, with grade and margins being the most important. Tumor types classified as STS that differ slightly in their presentation or treatment, including synovial cell sarcoma, rhabdomyosarcoma, liposarcoma, and vaccine-associated STS in cats, are discussed. Soft tissue sarcomas can be a frustrating disease to treat, but adherence to solid surgical oncology principles can greatly increase the odds of good disease control.

  11. Light-weight spherical submergence vessel

    NASA Technical Reports Server (NTRS)

    Baker, I.

    1974-01-01

    Design vessel with very low thickness-to-radius ratio to obtain low weight, and fabricate it with aid of precision tracer-lathe to limit and control imperfections in spherical shape. Vessel is thin-walled, spherical, monocoque shell constructed from hemispheres joined with sealed and bolted meridional flange.

  12. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  13. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less

  14. Procalcitonin as a diagnostic and prognostic marker in diabetic foot infection. A current literature review.

    PubMed

    Velissaris, Dimitrios; Pantzaris, Nikolaos-Dimitrios; Platanaki, Christina; Antonopoulou, Nikolina; Gogos, Charalampos

    2018-03-01

    Diabetic foot ulcers (DFUs) are a very common cause of mortality and morbidity. The distinction between infected and non-infected DFU remains a very challenging task for clinicians in everyday practice. Even when infection is documented, the spectrum of diabetic foot infection is wide, ranging from cellulitis and soft tissue infection to osteomyelitis. Procalcitonin (PCT), a well-established sepsis biomarker, has been used in the diagnosis of several infections including osteomyelitis in patients with diabetes mellitus. This review gathers and presents all the relevant data, up until now, regarding the use of PCT as an assessment tool in diabetic patients with foot infection. Current evidence suggests that PCT levels could aid clinicians in distinguishing infected from non-infected DFUs as well as in the distinction between soft tissue infection and bone involvement, but further and larger studies are warranted to confirm these findings.

  15. Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology

    PubMed Central

    Gimpel, Charlotte; Kain, Renate; Laurinavicius, Arvydas; Bueno, Gloria; Zeng, Caihong; Liu, Zhihong; Schaefer, Franz; Kretzler, Matthias; Holzman, Lawrence B.; Hewitt, Stephen M.

    2017-01-01

    Abstract The introduction of digital pathology to nephrology provides a platform for the development of new methodologies and protocols for visual, morphometric and computer-aided assessment of renal biopsies. Application of digital imaging to pathology made substantial progress over the past decade; it is now in use for education, clinical trials and translational research. Digital pathology evolved as a valuable tool to generate comprehensive structural information in digital form, a key prerequisite for achieving precision pathology for computational biology. The application of this new technology on an international scale is driving novel methods for collaborations, providing unique opportunities but also challenges. Standardization of methods needs to be rigorously evaluated and applied at each step, from specimen processing to scanning, uploading into digital repositories, morphologic, morphometric and computer-aided assessment, data collection and analysis. In this review, we discuss the status and opportunities created by the application of digital imaging to precision nephropathology, and present a vision for the near future. PMID:28584625

  16. Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology.

    PubMed

    Barisoni, Laura; Gimpel, Charlotte; Kain, Renate; Laurinavicius, Arvydas; Bueno, Gloria; Zeng, Caihong; Liu, Zhihong; Schaefer, Franz; Kretzler, Matthias; Holzman, Lawrence B; Hewitt, Stephen M

    2017-04-01

    The introduction of digital pathology to nephrology provides a platform for the development of new methodologies and protocols for visual, morphometric and computer-aided assessment of renal biopsies. Application of digital imaging to pathology made substantial progress over the past decade; it is now in use for education, clinical trials and translational research. Digital pathology evolved as a valuable tool to generate comprehensive structural information in digital form, a key prerequisite for achieving precision pathology for computational biology. The application of this new technology on an international scale is driving novel methods for collaborations, providing unique opportunities but also challenges. Standardization of methods needs to be rigorously evaluated and applied at each step, from specimen processing to scanning, uploading into digital repositories, morphologic, morphometric and computer-aided assessment, data collection and analysis. In this review, we discuss the status and opportunities created by the application of digital imaging to precision nephropathology, and present a vision for the near future.

  17. Rationale for the Use of CAD/CAM Technology in Implant Prosthodontics

    PubMed Central

    Abduo, Jaafar; Lyons, Karl

    2013-01-01

    Despite the predictable longevity of implant prosthesis, there is an ongoing interest to continue to improve implant prosthodontic treatment and outcomes. One of the developments is the application of computer-aided design and computer-aided manufacturing (CAD/CAM) to produce implant abutments and frameworks from metal or ceramic materials. The aim of this narrative review is to critically evaluate the rationale of CAD/CAM utilization for implant prosthodontics. To date, CAD/CAM allows simplified production of precise and durable implant components. The precision of fit has been proven in several laboratory experiments and has been attributed to the design of implants. Milling also facilitates component fabrication from durable and aesthetic materials. With further development, it is expected that the CAD/CAM protocol will be further simplified. Although compelling clinical evidence supporting the superiority of CAD/CAM implant restorations is still lacking, it is envisioned that CAD/CAM may become the main stream for implant component fabrication. PMID:23690778

  18. Potential use of ground-based sensor technologies for weed detection.

    PubMed

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  19. High-Precision (MC-ICPMS) Isotope Ratio Analysis Reveals Contrasting Sources of Elevated Blood Lead Levels of an Adult with Retained Bullet Fragments, and of His Child, in Milwaukee, Wisconsin.

    PubMed

    Smith, Kate E; Shafer, Martin M; Weiss, Debora; Anderson, Henry A; Gorski, Patrick R

    2017-05-01

    Exposure to the neurotoxic element lead (Pb) continues to be a major human health concern, particularly for children in US urban settings, and the need for robust tools for assessment of exposure sources has never been greater. The latest generation of multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) instrumentation offers the capability of using Pb isotopic signatures as a tool for environmental source tracking in public health. We present a case where MC-ICPMS was applied to isotopically resolve Pb sources in human clinical samples. An adult male and his child residing in Milwaukee, Wisconsin, presented to care in August 2015 with elevated blood lead levels (BLLs) (>200 μg/dL for the adult and 10 μg/dL for the child). The adult subject is a gunshot victim who had multiple bullet fragments embedded in soft tissue of his thigh for approximately 10 years. This study compared the high-precision isotopic fingerprints (<1 ‰ 2σ external precision) of Pb in the adult's and child's whole blood (WB) to the following possible Pb sources: a surgically extracted bullet fragment, household paint samples and tap water, and a Pb water-distribution pipe removed from servicing a house in the same neighborhood. Pb in the bullet and adult WB were nearly isotopically indistinguishable (matching within 0.05-0.56 ‰), indicating that bullet fragments embedded in soft tissue could be the cause of both acute and chronic elevated blood Pb levels. Among other sources investigated, no single source dominated the child's exposure profile as reflected in the elevated BLL.

  20. Soft tissue differentiation by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre

    2009-07-01

    Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.

  1. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis.

    PubMed

    Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K

    2016-05-10

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.

  2. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate

    NASA Astrophysics Data System (ADS)

    Worthy, Anna; Grosjean, Arnaud; Pfrunder, Michael C.; Xu, Yanan; Yan, Cheng; Edwards, Grant; Clegg, Jack K.; McMurtrie, John C.

    2018-01-01

    Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound—copper(II) acetylacetonate—that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

  3. Implant replacement of the maxillary central incisor utilizing a modified ceramic abutment (Thommen SPI ART) and ceramic restoration.

    PubMed

    Schneider, Robert

    2008-01-01

    The prosthetic restoration of a missing anterior tooth with a dental implant is a challenge. Treatment coordination with a multidisciplinary team is critical in the successful outcome of this type of patient treatment. Newer surgical treatment modalities in the management of hard and soft tissues are becoming common, with very good predictability and long-term stability. Additionally, the use of advanced dental technology and materials such as sintered zirconium allows the restorative practitioner the opportunity to fabricate an esthetic, precise-fitting, biocompatible, and strong definitive prosthesis for the patient, with good longevity. The use of an all-ceramic abutment and restoration is described, along with the "soft tissue sculpting" procedure through the use of a custom provisional restoration. The relative ease and convenience of the procedure is also illustrated.

  4. A soft-contact model for computing safety margins in human prehension.

    PubMed

    Singh, Tarkeshwar; Ambike, Satyajit

    2017-10-01

    The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Role of endo-osseus implant in odonto-oral rehabilitation].

    PubMed

    Vanhakendover, S

    2003-01-01

    Dental implants have critically changed the restorative procedures available to edentulous patients. Biocompatible materials, precise surgical techniques and improved instrumentation give well trained practicioners various opportunities to achieve successful treatments. The necessity of combining full expertise in surgery and rational prosthetic planning with comprehensive occlusal management is emphasized. Recent advances in periodontal treatment of osseous and soft tissue defects, new grafting techniques and surgical approaches have dramatically enlarged the scope of oral implantology.

  6. Is Breast Densitometry a Measure of Breast Cancer Risk

    DTIC Science & Technology

    2001-09-01

    preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose...compositional density. This increases the accuracy, dynamic range and precision of the measurement. This is the principal difference between...vivo whole body %FAT. By subtracting two x-ray images acquired at different x-ray energies, one component (say soft tissue) of a two component model (say

  7. Surface passivation of Fe{sub 3}O{sub 4} nanoparticles with Al{sub 2}O{sub 3} via atomic layer deposition in a rotating fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Chen-Long; Deng, Zhang; Cao, Kun

    2016-07-15

    Iron(II,III) oxide (Fe{sub 3}O{sub 4}) nanoparticles have shown great promise in many magnetic-related applications such as magnetic resonance imaging, hyperthermia treatment, and targeted drug delivery. Nevertheless, these nanoparticles are vulnerable to oxidation and magnetization loss under ambient conditions, and passivation is usually required for practical applications. In this work, a home-built rotating fluidized bed (RFB) atomic layer deposition (ALD) reactor was employed to form dense and uniform nanoscale Al{sub 2}O{sub 3} passivation layers on Fe{sub 3}O{sub 4} nanoparticles. The RFB reactor facilitated the precursor diffusion in the particle bed and intensified the dynamic dismantling of soft agglomerates, exposing every surfacemore » reactive site to precursor gases. With the aid of in situ mass spectroscopy, it was found that a thicker fluidization bed formed by larger amount of particles increased the residence time of precursors. The prolonged residence time allowed more thorough interactions between the particle surfaces and the precursor gas, resulting in an improvement of the precursor utilization from 78% to nearly 100%, even under a high precursor feeding rate. Uniform passivation layers around the magnetic cores were demonstrated by both transmission electron microscopy and the statistical analysis of Al mass concentrations. Individual particles were coated instead of the soft agglomerates, as was validated by the specific surface area analysis and particle size distribution. The results of thermogravimetric analysis suggested that 5 nm-thick ultrathin Al{sub 2}O{sub 3} coatings could effectively protect the Fe{sub 3}O{sub 4} nanoparticles from oxidation. The x-ray diffraction patterns also showed that the magnetic core crystallinity of such passivated nanoparticles could be well preserved under accelerated oxidation conditions. The precise thickness control via ALD maintained the saturation magnetization at 66.7 emu/g with a 5 nm-thick Al{sub 2}O{sub 3} passivation layer. This good preservation of the magnetic properties with superior oxidation resistance will be beneficial for practical magnetic-based applications.« less

  8. Digital image correlation-aided mechanical characterization of the anteromedial and posterolateral bundles of the anterior cruciate ligament.

    PubMed

    Mallett, Kaitlyn F; Arruda, Ellen M

    2017-07-01

    The anterior cruciate ligament (ACL) is one of the most commonly injured soft tissue structures in the articular knee joint, often requiring invasive surgery for patients to restore pre-injury knee kinematics. There is a pressing need to understand the role of the ACL in knee function, in order to select proper replacements. Digital image correlation (DIC), a non-contact full field displacement measurement technique, is an established tool for evaluating non-biological materials. The application of DIC to soft tissues has been in the nascent stages, largely due to patterning challenges of such materials. The ACL is notoriously difficult to mechanically characterize, due to the complex geometry of its two bundles and their insertions. This paper examines the use of DIC to determine the tensile mechanical properties of the AM and PL bundles of ovine ACLs in a well-known loading state. Homogenous loading in the mid-substance of the bundles provides for accurate development of stress/strain curves using DIC. Animal to animal variability is reduced, and the bundles are stiffer than previously thought when tissue-level strains are accurately measured. The anterior cruciate ligament (ACL), a major stabilizing ligament of the articular knee joint, is one of the most commonly injured soft tissue structures in the knee. Often, invasive surgery is required to restore pre-injury knee kinematics, and there are several long-term consequences of ACL reconstructions, including early-onset osteoarthritis. The role of the ACL in knee stability and motion has received much attention in the biomechanics community. This paper examines the use of a non-contact full-field displacement measurement technique, digital image correlation, to determine the tensile mechanical properties of the ACL. The focus of this work is to investigate the intrinsic mechanical properties of the ACL, as new knowledge in these areas will aid clinicians in selecting ACL replacements. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography

    PubMed Central

    Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2013-01-01

    OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418

  10. Biophysical Characterization and Predicted Human Thermal Responses to U.S. Army Body Armor Protection Levels (BAPL)

    DTIC Science & Technology

    2013-09-01

    for ballistic protection in the form of hard (e.g., ceramic plates ) and soft armor materials. The ultimate goal of these protective vests is to...Strain Decision Aid im Vapor permeability im/clo permeability index IOTV Interceptor Outer Tactical Vest m•s meters per second PC Plate Carrier RH...Army Body Armor Protection Levels (BAPL) 0 to 5 Level Configuration Added Weight lbs/kg BAPL 0 No body armor 0 BAPL 1 Vest or plate carrier with

  11. Future Short Range Ground-Based Air Defence: System Drivers, Characteristics and Architectures

    DTIC Science & Technology

    2001-03-01

    vulnerable being on the right. Although for completeness the defended asset characteristics shown in Table 1 are based upon a conventional armoured formation...Camouflage scrimmed draped visual full/thermal EMCON 4 3 2 1 Visibility line of sight occulting/obscured non line of sight "Contact static FLOT fluid...confused mel~e Armour soft semi-hard hard defensive aids Protection Digging in open under cover dug in full o/h protection AD none AAAD CAD fully

  12. Navies and Soft Power: Historical Case Studies of Naval Power and the Nonuse of Military Force

    DTIC Science & Technology

    2015-06-01

    swarms of U-boats conducting unrestricted submarine warfare. By delivering this essential food aid to helpless civilians in Belgium and northern...forward; their food was half a pint of rice per day, with one pint of water. No one can imagine the sufferings of slaves on their passage across, unless...suspicious cargo might include large copper pots for cook- ing food , hundreds of wooden spoons, swords, firearms, shackles, and chains.20 When Cora

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, I.

    Modern therapeutic modalities and emphasis on early detection have made oral cancer a treatable, and in many cases, a curable disease. The role of the dentist in cancer patient management is two-fold. Early detection of oral lesions during routine dental examination has been shown to be a significant factor in cancer diagnosis. The dentist's other role comes after cancer treatment, specifically therapeutic radiation. Ionizing radiation can have permanent effects on both hard and soft tissues. Prescription and use of fluoride gel in topical applicators can aid in assuring oral health for post-cancer patients.

  14. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  15. Projection optics box

    DOEpatents

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  16. CAT & MAUS: A novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement.

    PubMed

    Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen

    2017-09-06

    Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chronic expanding hematoma in the retroperitoneal space: a case report

    PubMed Central

    2013-01-01

    Background Chronic expanding hematoma is a rare condition that develops after surgery, trauma, or injury. It can also develop at any location in the body in the absence of trauma. Clinical findings and various diagnostic imaging modalities can aid in the differential diagnosis of this condition. In general, hematomas are naturally reabsorbed and rarely cause serious problems. However, hematomas that develop slowly without a history of trauma, surgery, or bleeding disorders could be difficult to differentiate from soft tissue neoplasms. In the present case, we describe a patient, without any history or physical evidence of trauma, who exhibited a large chronic expanding hematoma in the retroperitoneal space that resulted in hydronephrosis because of the pressure exerted on the left ureter. Case presentation A 69-year-old man presented to our hospital with a swollen lesion in the left flank. A mass, 19 cm in diameter, was detected in the retroperitoneal space by computed tomography. We suspected the presence of a chronic expanding hematoma, soft tissue tumor, or left renal artery aneurysm. Surgical treatment was performed. However, postoperative histopathological examination indicated that the mass was a nonmalignant chronic expanding hematoma. No recurrence was observed during a 2-year follow-up period. Conclusion In patients without a history of trauma who present slowly growing masses, the differential diagnosis should include chronic expanding hematoma in addition to cysts and soft tissue tumors. Moreover, the use of magnetic resonance imaging and computed tomography is essential to differentiate between chronic expanding hematoma and soft tissue tumors. PMID:24237992

  18. A mechano-acoustic indentor system for in vivo measurement of nonlinear elastic properties of soft tissue.

    PubMed

    Koo, Terry K; Cohen, Jeffrey H; Zheng, Yongping

    2011-11-01

    Soft tissue exhibits nonlinear stress-strain behavior under compression. Characterizing its nonlinear elasticity may aid detection, diagnosis, and treatment of soft tissue abnormality. The purposes of this study were to develop a rate-controlled Mechano-Acoustic Indentor System and a corresponding finite element optimization method to extract nonlinear elastic parameters of soft tissue and evaluate its test-retest reliability. An indentor system using a linear actuator to drive a force-sensitive probe with a tip-mounted ultrasound transducer was developed. Twenty independent sites at the upper lateral quadrant of the buttock from 11 asymptomatic subjects (7 men and 4 women from a chiropractic college) were indented at 6% per second for 3 sessions, each consisting of 5 trials. Tissue thickness, force at 25% deformation, and area under the load-deformation curve from 0% to 25% deformation were calculated. Optimized hyperelastic parameters of the soft tissue were calculated with a finite element model using a first-order Ogden material model. Load-deformation response on a standardized block was then simulated, and the corresponding area and force parameters were calculated. Between-trials repeatability and test-retest reliability of each parameter were evaluated using coefficients of variation and intraclass correlation coefficients, respectively. Load-deformation responses were highly reproducible under repeated measurements. Coefficients of variation of tissue thickness, area under the load-deformation curve from 0% to 25% deformation, and force at 25% deformation averaged 0.51%, 2.31%, and 2.23%, respectively. Intraclass correlation coefficients ranged between 0.959 and 0.999, indicating excellent test-retest reliability. The automated Mechano-Acoustic Indentor System and its corresponding optimization technique offers a viable technology to make in vivo measurement of the nonlinear elastic properties of soft tissue. This technology showed excellent between-trials repeatability and test-retest reliability with potential to quantify the effects of a wide variety of manual therapy techniques on the soft tissue elastic properties. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  19. Does hearing in response to soft-tissue stimulation involve skull vibrations? A within-subject comparison between skull vibration magnitudes and hearing thresholds.

    PubMed

    Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat

    2018-04-03

    Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft-tissue conduction could share the same underlying mechanism, namely the induction of bone vibrations. Studies with the present methodology should be continued in future work in order to obtain further insight into the underlying mechanism of activation of the hearing system. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    PubMed

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  1. Up-scaling expectations among Pakistan's HIV bureaucrats: entrepreneurs of the self and job precariousness post-scale-up.

    PubMed

    Qureshi, Ayaz

    2014-01-01

    Existing research has documented how the expansion of HIV programming has produced new subjectivities among the recipients of interventions. However, this paper contends that changes in politics, power and subjectivities may also be seen among the HIV bureaucracy in the decade of scale-up. One year's ethnographic fieldwork was conducted among AIDS control officials in Pakistan at a moment of rolling back a World Bank-financed Enhanced Programme. In 2003, the World Bank convinced the Musharraf regime to scale up the HIV response, offering a multimillion dollar soft loan package. I explore how the Enhanced Programme initiated government employees into a new transient work culture and turned the AIDS control programmes into a hybrid bureaucracy. However, the donor money did not last long and individuals' entrepreneurial abilities were tested in a time of crisis engendered by dependence on aid, leaving them precariously exposed to job insecurity, and undermining the continuity of AIDS prevention and treatment in the country. I do not offer a story of global 'best practices' thwarted by local 'lack of capacity', but an ethnographic critique of the transnational HIV apparatus and its neoliberal underpinning. I suggest that this Pakistan-derived analysis is more widely relevant in the post-scale-up decade.

  2. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    NASA Astrophysics Data System (ADS)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  3. Experiments on Linguistically-Based Term Associations.

    ERIC Educational Resources Information Center

    Ruge, Gerda

    1992-01-01

    Describes the hyperterm system REALIST (Retrieval Aids by Linguistics and Statistics) with emphasis on its semantic component, which generates term relations from free-text input. Experiments with various similarity measures are discussed, and the quality of the associated terms is evaluated using term recall and term precision measures. (22…

  4. New additions to the cancer precision medicine toolkit.

    PubMed

    Mardis, Elaine R

    2018-04-13

    New computational and database-driven tools are emerging to aid in the interpretation of cancer genomic data as its use becomes more common in clinical evidence-based cancer medicine. Two such open source tools, published recently in Genome Medicine, provide important advances to address the clinical cancer genomics data interpretation bottleneck.

  5. The Use of Instructional Objectives: A Model for Second-Year Podiatric Surgical Residency.

    ERIC Educational Resources Information Center

    Lepow, Gary M.; Levy, Leonard A.

    1980-01-01

    The use of highly specific objectives can be the basis for a second-year podiatric surgical residency program. They show both residents and attending staff precisely the knowledge and skills to be achieved and aid evaluation of students. A series of objectives is provided. (MSE)

  6. How Large Should a Statistical Sample Be?

    ERIC Educational Resources Information Center

    Menil, Violeta C.; Ye, Ruili

    2012-01-01

    This study serves as a teaching aid for teachers of introductory statistics. The aim of this study was limited to determining various sample sizes when estimating population proportion. Tables on sample sizes were generated using a C[superscript ++] program, which depends on population size, degree of precision or error level, and confidence…

  7. Teaching Drafting 101: What Comes First?

    ERIC Educational Resources Information Center

    Carkhuff, Don

    2006-01-01

    Employers require pristine drawings that convey clarity and precision for the production of goods. Can a change in sequence of instruction be expeditious and help teachers better prepare their students for the workplace? Research suggests that combining traditional drafting and computer-aided drafting (CAD) instruction makes sense. It is analogous…

  8. Evaluation of using a depth sensor to estimate the weight of finishing pigs

    USDA-ARS?s Scientific Manuscript database

    A method of continuously monitoring weight would aid producers by ensuring all pigs are healthy (gaining weight) and increasing precision of marketing. Therefore, the objective was to develop an electronic method of obtaining pig weights through depth images. Seven hundred and seventy-two images and...

  9. Evaluation of a depth sensor for weights estimation of growing and finishing pigs

    USDA-ARS?s Scientific Manuscript database

    A method of continuously monitoring animal weight would aid producers by ensuring all pigs are gaining weight and would increase the precision of marketing pigs. Electronically monitoring weight without moving the pigs to the scale would eliminate a source of stress. Therefore, the development of me...

  10. Water deficit and nitrogen fertility effects on NDVI of 'Tifton 85' bermudagrass during regrowth

    USDA-ARS?s Scientific Manuscript database

    A better understanding of how bermudagrass (Cynodon spp.) regrowth is influenced by production inputs will aid in advancing precision management in the southeast US. The objective of this two-yr study was to evaluate how irrigation and nitrogen influence bermudagrass regrowth. Normalized difference ...

  11. [A simple apparatus for controllable drinking without leaks for laboratory rats].

    PubMed

    Huber, D

    1989-01-01

    A simple device for watering laboratory rats is described. It has been made by using commercially available glass tubing (DURAN 50) with outside diameters of 8 mm, 6 mm, and 3 mm, respectively. The tubes were fused at their tips. The drinking tube is fitted to a rubber stopper at the top of a 250 ml soft polyethylene bottle. By this way water-soluble drugs can be administered to rats with high precision.

  12. Performance Analysis of Live-Virtual-Constructive and Distributed Virtual Simulations: Defining Requirements in Terms of Temporal Consistency

    DTIC Science & Technology

    2009-12-01

    events. Work associated with aperiodic tasks have the same statistical behavior and the same timing requirements. The timing deadlines are soft. • Sporadic...answers, but it is possible to calculate how precise the estimates are. Simulation-based performance analysis of a model includes a statistical ...to evaluate all pos- sible states in a timely manner. This is the principle reason for resorting to simulation and statistical analysis to evaluate

  13. A Soft 3D Acoustic Metafluid with Dual-Band Negative Refractive Index.

    PubMed

    Raffy, Simon; Mascaro, Benoit; Brunet, Thomas; Mondain-Monval, Olivier; Leng, Jacques

    2016-03-02

    Spherical silica xerogels are efficient acoustic Mie resonators. When these sub-wavelength inclusions are dispersed in a matrix, the final metafluid may display a negative acoustic refractive index upon a set of precise constraints concerning material properties, concentration, size, and dispersity of the inclusions. Because xerogels may sustain both pressure and shear waves, several bands with negative index can be tailored. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Towards fast, reliable, and manufacturable DEAs: miniaturized motor and Rupert the rolling robot

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert

    2015-04-01

    Dielectric elastomer transducers (DETs) are known for their large strains, low mass and high compliance, making them very attractive for a broad range of applications, from soft robotics to tuneable optics, or energy harvesting. However, 15 years after the first major paper in the field, commercial applications of the technology are still scarce, owing to high driving voltages, short lifetimes, slow response speed, viscoelastic drift, and no optimal solution for the compliant electrodes. At the EPFL's Microsystems for Space Technologies laboratory, we have been working on the miniaturization and manufacturability of DETs for the past 10 years. In the frame of this talk, we present our fabrication processes for high quality thin-_lm silicone membranes, and for patterning compliant electrodes on the sub mm-scale. We use either implantation of gold nano-clusters through a mask, or pad-printing of conductive rubber to precisely shape the electrodes on the dielectric membrane. Our electrodes are compliant, time stable and present strong adhesion to the membrane. The combination of low mechanical- loss elastomers with robust and precisely-defined electrodes allows for the fabrication of very fast actuators that exhibit a long lifetime. We present different applications of our DET fabrication process, such as a soft tuneable lens with a settling time smaller than 175 microseconds, a motor spinning at 1500 rpm, and a self-commutating rolling robot.

  15. Soft network materials with isotropic negative Poisson's ratios over large strains.

    PubMed

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  16. Biomimetic 3D tissue printing for soft tissue regeneration.

    PubMed

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Percutaneous Retrieval of Foreign Bodies Around Vital Vessels Aided with Vascular Intervention: A Technical Note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu-Jun, E-mail: woothingyang2008@126.com; Xing, Guang-Fu, E-mail: xgf8848@126.com

    ObjectiveTo describe a new interventional technique to remove foreign bodies (FBs) embedded in soft tissues around vital vessels.MethodsUnder fluoroscopic guidance and using local anesthesia, percutaneous removal of FBs was performed using forceps in nine patients. All patients suffered from a metallic soft tissue FB located in close proximity to important vessels and one also had a small traumatic pseudoaneurysm adjacent to the FB. Prior to removal of the FB, the position of the nearest vessel was identified using a guide wire or catheter placed into the vessel. Balloon catheter was also simultaneously used to temporarily stop the blood flow ofmore » the nearest artery during the FB removal in three of the nine patients.ResultsAll of the nine FBs with 0–2 mm interval to the nearest vessel were successfully removed in the nine patients without any serious complications. The removed FBs measured 3–12 mm in length and 1–3 mm in width. The total fluoroscopic time of retrieval of each FB was 5–9 min (mean, 6.4 min). The volume of intraoperative bleeding ranged from 5 to 12 ml (mean, 7.5 ml). The length of hospital stay for each patient ranged from 4 to 8 days (mean, 5.5 days).ConclusionVascular intervention-aided percutaneous FB removal is minimally invasive and an effective method for removal of FBs around vital vessels.« less

  18. A technical challenge for robot-assisted minimally invasive surgery: precision surgery on soft tissue.

    PubMed

    Stallkamp, J; Schraft, R D

    2005-01-01

    In minimally invasive surgery, a higher degree of accuracy is required by surgeons both for current and for future applications. This could be achieved using either a manipulator or a robot which would undertake selected tasks during surgery. However, a manually-controlled manipulator cannot fully exploit the maximum accuracy and feasibility of three-dimensional motion sequences. Therefore, apart from being used to perform simple positioning tasks, manipulators will probably be replaced by robot systems more and more in the future. However, in order to use a robot, accurate, up-to-date and extensive data is required which cannot yet be acquired by typical sensors such as CT, MRI, US or common x-ray machines. This paper deals with a new sensor and a concept for its application in robot-assisted minimally invasive surgery on soft tissue which could be a solution for data acquisition in future. Copyright 2005 Robotic Publications Ltd.

  19. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  20. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards.

    PubMed

    Daza, Juan D; Stanley, Edward L; Wagner, Philipp; Bauer, Aaron M; Grimaldi, David A

    2016-03-01

    Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships.

  1. High spatial resolution soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy tomore » use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.« less

  2. Three-frequency Nd:YAG laser for dental treatment

    NASA Astrophysics Data System (ADS)

    Kadlecová, Martina; Dostálová, Tat'jana; Jelínková, Helena; Němec, Michal; Å ulc, Jan; Fibrich, Martin; Bradna, Pavel; Nejezchleb, Karel; Kapitch, Nickalai; Å koda, Václav

    2018-02-01

    In the last decade, lasers found a number of indications in dentistry. However, there is still one problem: the narrow spectrum of usefulness for individual radiation wavelengths. The aim of our study is to demonstrate the use of a compact three-frequency pulsed Nd-YAG laser for more than one treatment, namely disinfection, coagulation, selective ablation, and soft tissue removal. The laser wavelengths and the maximal energies achieved were the following: 1.06 um, 1.32 um, 1.44 um and 830 mJ, 425 mJ, and 200 mJ, respectively. It has been found that all of the investigated wavelengths exhibit disinfection properties. Moreover, radiation of 1.06 um wavelength removes soft tissue and exhibits also coagulation properties. Radiation of 1.44 um is most useful for selective ablation of initial caries and disinfection, and 1.32 um radiation can be used for precise ablation when higher energy is applied.

  3. Poster - Thurs Eve-16: Just-in-time tomography (JiTT).

    PubMed

    Pang, G; Rowlands, J A

    2008-07-01

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room for image-guided radiation therapy. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus is not adequate for imaging targets with intrafraction motion. In this work, a new concept for image-guided radiation therapy- just-in-time tomography (JiTT) - is introduced. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. A system to achieve JiTT is proposed and its feasibility is investigated. Research supported by Siemens. © 2008 American Association of Physicists in Medicine.

  4. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards

    PubMed Central

    Daza, Juan D.; Stanley, Edward L.; Wagner, Philipp; Bauer, Aaron M.; Grimaldi, David A.

    2016-01-01

    Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships. PMID:26973870

  5. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  6. Mimicking biological stress-strain behaviour with synthetic elastomers

    NASA Astrophysics Data System (ADS)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2017-09-01

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  7. Recent Developments in Ground-Borne Noise and Vibration Control

    NASA Astrophysics Data System (ADS)

    Nelson, J. T.

    1996-05-01

    Vibration control provisions available to the transit designer include (among others) precision straightened rail, ballast mats, floating slabs and very soft direct fixation fasteners, in addition to rail grinding, wheel truing, and continuous welded rail. Recently, the Los Angeles Metro has developed specifications for a soft resilient direct fixation fastener to fit the same base dimensions as the standard direct fixation fastener. In San Francisco, low resonance frequency (8 Hz) floating slabs have been constructed to mitigate predicted ground vibration impacts at nearby residential structures. In Atlanta, low resonance frequency loading slabs have been constructed to maintain a low vibration environment in a medical building planned to be built over the subway structure. In Portland and Pasadena, ballast mats have been recommended to control light rail transit ground vibration impacts on housing located at typically 35 feet from the alignment. Each of these provisions are briefly described in view of recent applications at U.S. transit systems.

  8. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  9. A rack-mounted precision waveguide-below-cutoff attenuator with an absolute electronic readout

    NASA Technical Reports Server (NTRS)

    Cook, C. C.

    1974-01-01

    A coaxial precision waveguide-below-cutoff attenuator is described which uses an absolute (unambiguous) electronic digital readout of displacement in inches in addition to the usual gear driven mechanical counter-dial readout in decibels. The attenuator is rack-mountable and has the input and output RF connectors in a fixed position. The attenuation rate for 55, 50, and 30 MHz operation is given along with a discussion of sources of errors. In addition, information is included to aid the user in making adjustments on the attenuator should it be damaged or disassembled for any reason.

  10. Composite panel development at JPL

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  11. Three-dimensional assessment of facial asymmetry: A systematic review.

    PubMed

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-08-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.

  12. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  13. Comparison of Gross Body Fat-Water Magnetic Resonance Imaging at 3 Tesla to Dual Energy X-Ray Absorptiometry in Obese Women

    PubMed Central

    Silver, HJ; Niswender, KD; Kullberg, J; Berglund, J; Johansson, L; Bruvold, M; Avison, MJ; Welch, EB.

    2012-01-01

    Improved understanding of how depot-specific adipose tissue mass predisposes to obesity-related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three-dimensional contiguous “fat-water” MR imaging (FWMRI) covering the majority of a whole-body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type and distribution of adipose and lean soft tissue would show great promise in body composition methodology. Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to DEXA. Anthropometric, FWMRI and DEXA measurements were obtained in twelve women with BMI 30–39.9 kg/m2. Test-retest results found coefficients of variation for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DEXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST and TTLST, respectively. While Bland Altman plots demonstrated agreement between FWMRI and DEXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DEXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully-automated segmentation is fast (<30 minutes total scan and post-processing time), noninvasive, repeatable and cost effective. PMID:23712980

  14. Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures.

    PubMed

    Buytaert, Jan A N; Salih, Wasil H M; Dierick, Manual; Jacobs, Patric; Dirckx, Joris J J

    2011-12-01

    In order to improve realism in middle ear (ME) finite-element modeling (FEM), comprehensive and precise morphological data are needed. To date, micro-scale X-ray computed tomography (μCT) recordings have been used as geometric input data for FEM models of the ME ossicles. Previously, attempts were made to obtain these data on ME soft tissue structures as well. However, due to low X-ray absorption of soft tissue, quality of these images is limited. Another popular approach is using histological sections as data for 3D models, delivering high in-plane resolution for the sections, but the technique is destructive in nature and registration of the sections is difficult. We combine data from high-resolution μCT recordings with data from high-resolution orthogonal-plane fluorescence optical-sectioning microscopy (OPFOS), both obtained on the same gerbil specimen. State-of-the-art μCT delivers high-resolution data on the 3D shape of ossicles and other ME bony structures, while the OPFOS setup generates data of unprecedented quality both on bone and soft tissue ME structures. Each of these techniques is tomographic and non-destructive and delivers sets of automatically aligned virtual sections. The datasets coming from different techniques need to be registered with respect to each other. By combining both datasets, we obtain a complete high-resolution morphological model of all functional components in the gerbil ME. The resulting 3D model can be readily imported in FEM software and is made freely available to the research community. In this paper, we discuss the methods used, present the resulting merged model, and discuss the morphological properties of the soft tissue structures, such as muscles and ligaments.

  15. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.

    PubMed

    Lim, Yi-Je; Deo, Dhanannjay; Singh, Tejinder P; Jones, Daniel B; De, Suvranu

    2009-06-01

    Development of a laparoscopic surgery simulator that delivers high-fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. As experiments on live human patients present significant risks, the use of cadavers presents an alternative. We present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a realistic model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real-time surgery simulator. To investigate the in situ mechanical, static, and dynamic properties of intra-abdominal organs, we have developed a high-precision instrument by retrofitting a robotic device from Sensable Technologies (position resolution of 0.03 mm) with a six-axis Nano 17 force-torque sensor from ATI Industrial Automation (force resolution of 1/1,280 N along each axis), and used it to apply precise displacement stimuli and record the force response of liver and stomach of ten fresh human cadavers. The mean elastic modulus of liver and stomach is estimated as 5.9359 kPa and 1.9119 kPa, respectively over the range of indentation depths tested. We have also obtained the parameters of a quasilinear viscoelastic (QLV) model to represent the nonlinear viscoelastic behavior of the cadaver stomach and liver over a range of indentation depths and speeds. The models are found to have an excellent goodness of fit (with R (2) > 0.99). The data and models presented in this paper together with additional ones based on the principles presented in this paper would result in realistic physics-based surgical simulators.

  16. Identification of exponent from load-deformation relation for soft materials from impact tests

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Romanu, I. C.; Ciornei, M. C.; Sopon, G.

    2018-01-01

    When two bodies are brought into contact, the magnitude of occurring reaction forces increase together with the amplitude of deformations. The load-deformation dependency of two contacting bodies is described by a function having the form F = Cxα . An accurate illustration of this relationship assumes finding the precise coefficient C and exponent α. This representation proved to be very useful in hardness tests, in dynamic systems modelling or in considerations upon the elastic-plastic ratio concerning a Hertzian contact. The classical method for identification of the exponent consists in finding it from quasi-static tests. The drawback of the method is the fact that the accurate estimation of the exponent supposes precise identification of the instant of contact initiation. To overcome this aspect, the following observation is exploited: during an impact process, the dissipated energy is converted into heat released by internal friction in the materials and energy for plastic deformations. The paper is based on the remark that for soft materials the hysteresis curves obtained for a static case are similar to the ones obtained for medium velocities. Furthermore, utilizing the fact that for the restitution phase the load-deformation dependency is elastic, a method for finding the α exponent for compression phase is proposed. The maximum depth of the plastic deformations obtained for a series of collisions, by launching, from different heights, a steel ball in free falling on an immobile prism made of soft material, is evaluated by laser profilometry method. The condition that the area of the hysteresis loop equals the variation of kinetical energy of the ball is imposed and two tests are required for finding the exponent. Five collisions from different launching heights of the ball were taken into account. For all the possible impact-pair cases, the values of the exponent were found and close values were obtained.

  17. The wisdom of nature in integrating science, ethics and the arts.

    PubMed

    Moser, A

    2000-07-01

    This paper deals with an approach to the integration of science (with technology and economics), ethics (with religion and mysticism), the arts (aesthetics) and Nature, in order to establish a world-view based on holistic, evolutionary ethics that could help with problem solving. The author suggests that this integration is possible with the aid of "Nature's wisdom" which is mirrored in the macroscopic pattern of the ecosphere. The corresponding eco-principles represent the basis for unifying soft and hard sciences resulting in "deep sciences". Deduction and induction will remain the methodology for deep sciences and will include conventional experiments and aesthetic and sentient experiences. Perception becomes the decisive factor with the senses as operators for the building of consciousness through the subconscious. In this paper, an attempt at integrating the concepts of the "true", the "right" and the "beautiful" with the aid of Nature's wisdom is explained in more detail along with consequences.

  18. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis.

    PubMed

    Jain, Sumeet; Jain, Parul

    2016-01-01

    Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  19. CT and MRI of superficial solid tumors

    PubMed Central

    Zhang, Jingfeng; Li, Yanyuan; Zhao, Yilei

    2018-01-01

    Superficial solid masses are common conditions in clinical practice, however, some of which can be easily diagnosed and others would be difficult. Although imaging of superficial masses is not always characteristic, it would be helpful to give a definitive diagnosis or narrow a differential diagnosis. Crossing-section imaging can depicture the masses directly, find some pathognomonic signs and demonstrate their relationship with adjacent structures, which can provide decision support for clinician’s reference. Computed tomography (CT) can be used to detect calcifications and bone erosion which could not be seen on radiographs. Magnetic resonance imaging (MRI) is the preferred way for evaluating soft tissue lesions and provides information on hemorrhage, necrosis, edema, cystic and myxoid degeneration, and fibrosis. Other advantages of MRI are its superior soft tissue resolution and any profile imaging, which can aid the assessment of extension and adjacent infiltration. Positron emission tomography (PET)/CT and PET/MRI have been increasingly used in bone and soft tissue sarcomas and provides advantages in the initial tumor staging, tumor grading, therapy assessment, and recurrence detection. Therefore, imaging examination can play an important role in treatment decision making for superficial solid tumors. Here we review the important conditions presenting as superficial mass and show the imaging of typical cases diagnosed in our hospital. PMID:29675364

  20. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.

    PubMed

    Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi

    2017-01-01

    Accurate identification of the material properties of the plantar soft tissue is important for computer-aided analysis of foot pathologies and design of therapeutic footwear interventions based on subject-specific models of the foot. However, parameter identification of the hyperelastic material properties of plantar soft tissues usually requires an inverse finite element analysis due to the lack of a practical contact model of the indentation test. In the present study, we derive an analytical contact model of a spherical indentation test in order to directly estimate the material properties of the plantar soft tissue. Force-displacement curves of the heel pads are obtained through an indentation experiment. The experimental data are fit to the analytical stress-strain solution of the spherical indentation in order to obtain the parameters. A spherical indentation approach successfully predicted the non-linear material properties of the heel pad without iterative finite element calculation. The force-displacement curve obtained in the present study was found to be situated lower than those identified in previous studies. The proposed framework for identifying the hyperelastic material parameters may facilitate the development of subject-specific FE modeling of the foot for possible clinical and ergonomic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Soft Argon-Propane Dielectric Barrier Discharge Ionization.

    PubMed

    Schütz, Alexander; Lara-Ortega, Felipe J; Klute, Felix David; Brandt, Sebastian; Schilling, Michael; Michels, Antje; Veza, Damir; Horvatic, Vlasta; García-Reyes, Juan F; Franzke, Joachim

    2018-03-06

    Dielectric barrier discharges (DBDs) have been used as soft ionization sources (DBDI) for organic mass spectrometry (DBDI-MS) for approximately ten years. Helium-based DBDI is often used because of its good ionization efficiency, low ignition voltage, and homogeneous plasma conditions. Argon needs much higher ignition voltages than helium when the same discharge geometry is used. A filamentary plasma, which is not suitable for soft ionization, may be produced instead of a homogeneous plasma. This difference results in N 2 , present in helium and argon as an impurity, being Penning-ionized by helium but not by metastable argon atoms. In this study, a mixture of argon and propane (C 3 H 8 ) was used as an ignition aid to decrease the ignition and working voltages, because propane can be Penning-ionized by argon metastables. This approach leads to homogeneous argon-based DBDI. Furthermore, operating DBDI in an open environment assumes that many uncharged analyte molecules do not interact with the reactant ions. To overcome this disadvantage, we present a novel approach, where the analyte is introduced in an enclosed system through the discharge capillary itself. This nonambient DBDI-MS arrangement is presented and characterized and could advance the novel connection of DBDI with analytical separation techniques such as gas chromatography (GC) and high-pressure liquid chromatography (HPLC) in the near future.

  2. A survey of injury knowledge and technical needs of junior Rugby Union coaches in Townsville (North Queensland).

    PubMed

    Carter, Anthony F; Muller, Reinhold

    2008-04-01

    Data of the injury knowledge and technical needs of registered coaches of junior Rugby Union teams in the Townsville district junior Rugby Union (North Queensland) were collected via a questionnaire mailed to coaches to determine the knowledge of the management, risk and protective factors of injury. A total of 35 completed self-administered questionnaires were returned in March 2003 for a response rate of 100%. Half of all coaches (54%, n=18) identified the upper limb of the tackler as the body part most likely to be injured in a tackle and one-quarter (26%, n=9) identified the lower limb of the ball carrier. Half (46%, n=16) of coaches identified rest/ice/compression/elevation as the treatment for soft tissue injury. The total injury knowledge score increased with the total number of seasons coached (Spearman's r(s)=0.401, p=0.017). Coaches with a current first aid qualification were more likely to identify rest/ice/compression/elevation as the treatment for soft tissue injury (Fishers Exact test, p=0.002). The results of this survey demonstrate that coaches of junior Rugby Union teams require education of the mechanisms of injury and procedures for the early management of minor and soft tissue in Rugby Union coaching courses.

  3. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  4. Accuracy of Dolphin visual treatment objective (VTO) prediction software on class III patients treated with maxillary advancement and mandibular setback.

    PubMed

    Peterman, Robert J; Jiang, Shuying; Johe, Rene; Mukherjee, Padma M

    2016-12-01

    Dolphin® visual treatment objective (VTO) prediction software is routinely utilized by orthodontists during the treatment planning of orthognathic cases to help predict post-surgical soft tissue changes. Although surgical soft tissue prediction is considered to be a vital tool, its accuracy is not well understood in tow-jaw surgical procedures. The objective of this study was to quantify the accuracy of Dolphin Imaging's VTO soft tissue prediction software on class III patients treated with maxillary advancement and mandibular setback and to validate the efficacy of the software in such complex cases. This retrospective study analyzed the records of 14 patients treated with comprehensive orthodontics in conjunction with two-jaw orthognathic surgery. Pre- and post-treatment radiographs were traced and superimposed to determine the actual skeletal movements achieved in surgery. This information was then used to simulate surgery in the software and generate a final soft tissue patient profile prediction. Prediction images were then compared to the actual post-treatment profile photos to determine differences. Dolphin Imaging's software was determined to be accurate within an error range of +/- 2 mm in the X-axis at most landmarks. The lower lip predictions were most inaccurate. Clinically, the observed error suggests that the VTO may be used for demonstration and communication with a patient or consulting practitioner. However, Dolphin should not be useful for precise treatment planning of surgical movements. This program should be used with caution to prevent unrealistic patient expectations and dissatisfaction.

  5. Improving Fine Control of Grasping Force during Hand–Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand

    PubMed Central

    Fu, Qiushi; Santello, Marco

    2018-01-01

    The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional single-gain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pick-and-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands. PMID:29375360

  6. Soft-plastic brace for lower limb fractures in patients with spinal cord injury.

    PubMed

    Uehara, K; Akai, M; Kubo, T; Yamasaki, N; Okuma, Y; Tobimatsu, Y; Iwaya, T

    2013-04-01

    Retrospective study at a rehabilitation center. Patients with spinal cord injury, even if they are wheelchair users, sometimes suffer from fractures of the lower limb bones. As their bones are too weak to have surgery, and because a precise reduction is not required for restoration, such patients are often indicated for conservative treatment. This case series study investigated the use of a hinged, soft-plastic brace as a conservative approach to treating fractures of the lower extremities of patients with spinal cord injury. National Rehabilitation Center, Japan. Fifteen patients (male, n=10; female, n=5; average age, 52.7 years) with 19 fractures of the femur or the tibia who were treated with a newly-developed hinged, soft-plastic brace were studied. All of them used wheelchairs. We analyzed the time taken for fracture union and for wearing orthotics, degree of malalignment, femorotibial angle and side effects. The fractures in this series were caused by relatively low-energy impact. The average time taken for fracture union was 80.1 (37-189) days, and the average amount of time spent wearing orthotics was 77.9 (42-197) days. On final X-ray imaging, the average femorotibial angle was 176.9° (s.d. ±8.90), and 15° of misalignment in the sagittal plane occurred in one patient. A hinged, soft-plastic brace is a useful option as a conservative approach for treating fractures of the lower extremities in patients with spinal cord injury.

  7. FlexAID: Revisiting Docking on Non-Native-Complex Structures.

    PubMed

    Gaudreault, Francis; Najmanovich, Rafael J

    2015-07-27

    Small-molecule protein docking is an essential tool in drug design and to understand molecular recognition. In the present work we introduce FlexAID, a small-molecule docking algorithm that accounts for target side-chain flexibility and utilizes a soft scoring function, i.e. one that is not highly dependent on specific geometric criteria, based on surface complementarity. The pairwise energy parameters were derived from a large dataset of true positive poses and negative decoys from the PDBbind database through an iterative process using Monte Carlo simulations. The prediction of binding poses is tested using the widely used Astex dataset as well as the HAP2 dataset, while performance in virtual screening is evaluated using a subset of the DUD dataset. We compare FlexAID to AutoDock Vina, FlexX, and rDock in an extensive number of scenarios to understand the strengths and limitations of the different programs as well as to reported results for Glide, GOLD, and DOCK6 where applicable. The most relevant among these scenarios is that of docking on flexible non-native-complex structures where as is the case in reality, the target conformation in the bound form is not known a priori. We demonstrate that FlexAID, unlike other programs, is robust against increasing structural variability. FlexAID obtains equivalent sampling success as GOLD and performs better than AutoDock Vina or FlexX in all scenarios against non-native-complex structures. FlexAID is better than rDock when there is at least one critical side-chain movement required upon ligand binding. In virtual screening, FlexAID results are lower on average than those of AutoDock Vina and rDock. The higher accuracy in flexible targets where critical movements are required, intuitive PyMOL-integrated graphical user interface and free source code as well as precompiled executables for Windows, Linux, and Mac OS make FlexAID a welcome addition to the arsenal of existing small-molecule protein docking methods.

  8. Cystic mediastinal masses and the role of MRI.

    PubMed

    Madan, Rachna; Ratanaprasatporn, Lisa; Ratanaprasatporn, Linda; Carter, Brett W; Ackman, Jeanne B

    2017-12-27

    While some cystic masses can be definitively diagnosed on CT, others remain indeterminate. Because of its intrinsic superior soft tissue resolution, MR is an important tool in the evaluation of select mediastinal masses that are incompletely characterized on CT. This review describes how non-vascular MR provides greater diagnostic precision in the evaluation of indeterminate cystic mediastinal masses on CT. It also emphasizes key MR pulse sequences for optimal evaluation of problematic mediastinal masses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A Case Study in Locating the Architectural Roots of Technical Debt

    DTIC Science & Technology

    2015-01-16

    SoftServe is using, such as SonarQube ? RQ3: Is it possible to quantify the return on investment of removing architecture debts? In other words, is it possible...the Titan tool chain did differ significantly from the files reported as sources of technical debt by SonarQube . The precision and recall of Titan...tools such as SonarQube . But not all of these code problems are certain to cause maintenance or quality problems. In fact, no existing work has been

  10. Identification of two-phase flow regime based on electrical capacitance tomography and soft-sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin

    2008-10-01

    This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.

  11. Effects of Sensing Capability on Ground Platform Survivability During Ground Forces Maneuver Operations

    DTIC Science & Technology

    2014-09-01

    Hellfire missiles, Hydra -70mm rockets, and M230 30mm automatic cannon (Boeing 2014). Hellfire missiles have shaped-charge HEAT warheads and are...capable of destroying an MBT. These missiles have an operational range between 500 m to 8,000 m (AeroWeb 2014). The Hydra -70mm rocket is also capable of...platforms, but it lacks precision (Army Technology 2014). Similar to the Hydra -70mm rocket, the M230 30mm cannon is effective against soft skin

  12. A soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Jandura, Louise

    1990-01-01

    Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.

  13. Piezosurgery to perform hyoid bone osteotomies in thyroglossal duct cyst surgery.

    PubMed

    Salgarelli, Attilio Carlo; Robiony, Massimo; Consolo, Ugo; Collini, Marco; Bellini, Pierantonio

    2011-11-01

    Ultrasonic bone-cutting surgery has been introduced as a feasible alternative to the conventional sharp instruments used in craniomaxillofacial surgery because of its precision and safety. The device used is unique in that the cutting action occurs when the tool is used on mineralized tissues and stops on soft tissues. This work describes the use of piezosurgery for hyoid bone resection in thyroglossal duct cyst surgery, briefly reviews the literature on the surgical technique, and reports our experience with 12 cases.

  14. The illuminating role of laser scanning digital elevation models in precision agriculture experimental designs - an agro-ecology perspective

    USDA-ARS?s Scientific Manuscript database

    Laser scanning data streams, when linked with multi-spectral, hyperspectral, apparent soil electro-conductivity (ECa), or other kinds of geo-referenced data streams, aid in the creation of maps that allow useful applications in agricultural systems. These combinations of georeferenced information p...

  15. DOSESCREEN: a computer program to aid dose placement

    Treesearch

    Kimberly C. Smith; Jacqueline L. Robertson

    1984-01-01

    Careful selection of an experimental design for a bioassay substantially improves the precision of effective dose (ED) estimates. Design considerations typically include determination of sample size, dose selection, and allocation of subjects to doses. DOSESCREEN is a computer program written to help investigators select an efficient design for the estimation of an...

  16. [Enzyme kinetic glucose determination by the glucose dehydrogenase method. Enzyme kinetic substrate determination using competitive inhibitors, II (author's transl)].

    PubMed

    Müller-Matthesius, R

    1975-05-01

    The sensitivity of enzyme kinetic substrate determinations can be improved with the aid of competitive inhibitors. As an example, the determination of glucose dehydrogenase in the presence of potassium thiocyanate is described. The method has the advantage of rapid operation with satisfactory precision.

  17. Multi-functional dielectric elastomer artificial muscles for soft and smart machines

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Gisby, Todd A.; McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.

    2012-08-01

    Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local "arm" level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators and sensors. With the DE switch, we can produce logic gates, oscillators, and a memory element, the building blocks for a soft computer, thus bringing us closer to emulating smart living structures like the octopus arm. The goal of future research is to develop fully soft machines that exploit smart actuation networks to gain capabilities formerly reserved to nature, and open new vistas in mechanical engineering.

  18. Array-based satellite phase bias sensing: theory and GPS/BeiDou/QZSS results

    NASA Astrophysics Data System (ADS)

    Khodabandeh, A.; Teunissen, P. J. G.

    2014-09-01

    Single-receiver integer ambiguity resolution (IAR) is a measurement concept that makes use of network-derived non-integer satellite phase biases (SPBs), among other corrections, to recover and resolve the integer ambiguities of the carrier-phase data of a single GNSS receiver. If it is realized, the very precise integer ambiguity-resolved carrier-phase data would then contribute to the estimation of the receiver’s position, thus making (near) real-time precise point positioning feasible. Proper definition and determination of the SPBs take a leading part in developing the idea of single-receiver IAR. In this contribution, the concept of array-based between-satellite single-differenced (SD) SPB determination is introduced, which is aimed to reduce the code-dominated precision of the SD-SPB corrections. The underlying model is realized by giving the role of the local reference network to an array of antennas, mounted on rigid platforms, that are separated by short distances so that the same ionospheric delay is assumed to be experienced by all the antennas. To that end, a closed-form expression of the array-aided SD-SPB corrections is presented, thereby proposing a simple strategy to compute the SD-SPBs. After resolving double-differenced ambiguities of the array’s data, the variance of the SD-SPB corrections is shown to be reduced by a factor equal to the number of antennas. This improvement in precision is also affirmed by numerical results of the three GNSSs GPS, BeiDou and QZSS. Experimental results demonstrate that the integer-recovered ambiguities converge to integers faster, upon increasing the number of antennas aiding the SD-SPB corrections.

  19. A retrospective study on traumatic dental and soft-tissue injuries in preschool children in Zagreb, Croatia.

    PubMed

    Vuletić, Marko; Škaričić, Josip; Batinjan, Goran; Trampuš, Zdenko; Čuković Bagić, Ivana; Jurić, Hrvoje

    2014-02-01

    The purpose of this study was to analyze data according to gender, age, cause, number of traumatized teeth, time elapsed before treatment and type of tooth from the records of traumatized children. A retrospective study was conducted in the Department of Paediatric Dentistry at the University Dental Clinic in Zagreb, Croatia using the documentation of 128 patients (61 males and 67 females) aged 1 month to 6 years with injuries of primary teeth between February 2009 and January 2013. Trauma was seen in 217 primary teeth, which implies that the number of injured primary teeth was 1.69 per child. The maxillary central incisors were the most frequently affected teeth (81.1%), they were followed by maxillary lateral incisors, while the least affected were mandibular central incisors. Traumatic dental injuries involved periodontal tissue 2.82 times more frequently than hard dental and pulp tissue. The main cause of teeth injury was fall (67.2%) and the majority of injuries occurred at home (51.6%) (p<0.05). Of 128 patients who received treatment 71 (55.5%) also had soft-tissue injuries. The distribution of soft-tissue injuries by gender (35 males, 36 females) was not statistically significant. Comparing children with soft-tissue injuries and those without them, a statistically significant difference was found in the time of arrival (p<0.01). The results of this study showed the need of informing about preventive measures against falls at home and the methods of providing first aid in dental trauma injuries.

  20. A retrospective study on traumatic dental and soft-tissue injuries in preschool children in Zagreb, Croatia

    PubMed Central

    Vuletić, Marko; Škaričić, Josip; Batinjan, Goran; Trampuš, Zdenko; Bagić, Ivana Čuković; Jurić, Hrvoje

    2014-01-01

    The purpose of this study was to analyze data according to gender, age, cause, number of traumatized teeth, time elapsed before treatment and type of tooth from the records of traumatized children. A retrospective study was conducted in the Department of Paediatric Dentistry at the University Dental Clinic in Zagreb. Croatia using the documentation of 128 patients (61 males and 67 females) aged 1 month to 6 years with injuries of primary teeth between February 2009 and January 2013. Trauma was seen in 217 primary teeth, which implies that the number of injured primary teeth was 1.69 per child. The maxillary central incisors were the most frequently affected teeth (81.1%), they were followed by maxillary lateral incisors, while the least affected were mandibular central incisors. Traumatic dental injuries involved periodontal tissue 2.82 times more frequently than hard dental and pulp tissue. The main cause of teeth injury was fall (67.2%) and the majority of injuries occurred at home (51.6%) (p<0.05). Of 128 patients who received treatment 71 (55.5%) also had soft-tissue injuries. The distribution of soft-tissue injuries by gender (35 males, 36 females) was not statistically significant. Comparing children with soft-tissue injuries and those without them, a statistically significant difference was found in the time of arrival (p<0.01). The results of this study showed the need of informing about preventive measures against falls at home and the methods of providing first aid in dental trauma injuries. PMID:24579964

  1. Smooth muscle tumors of soft tissue and non-uterine viscera: biology and prognosis.

    PubMed

    Miettinen, Markku

    2014-01-01

    Smooth muscle tumors are here considered an essentially dichotomous group composed of benign leiomyomas and malignant leiomyosarcomas. Soft tissue smooth muscle tumors with both atypia and mitotic activity are generally diagnosed leiomyosarcomas acknowledging potential for metastasis. However, lesions exist that cannot be comfortably placed in either category, and in such cases the designation 'smooth muscle tumor of uncertain biologic potential' is appropriate. The use of this category is often necessary with limited sampling, such as needle core biopsies. Benign smooth muscle tumors include smooth muscle hamartoma and angioleiomyoma. A specific category of leiomyomas are estrogen-receptor positive ones in women. These are similar to uterine leiomyomas and can occur anywhere in the abdomen and abdominal wall. Leiomyosarcomas can occur at any site, although are more frequent in the retroperitoneum and proximal extremities. They are recognized by likeness to smooth muscle cells but can undergo pleomorphic evolution ('dedifferentiation'). Presence of smooth muscle actin is nearly uniform and desmin-positivity usual. This and the lack of KIT expression separate leiomyosarcoma from GIST, an important problem in abdominal soft tissues. EBV-associated smooth muscle tumors are a specific subcategory occurring in AIDS or post-transplant patients. These tumors can have incomplete smooth muscle differentiation but show nuclear EBER as a diagnostic feature. In contrast to many other soft tissue tumors, genetics of smooth muscle tumors are poorly understood and such diagnostic testing is not yet generally applicable in this histogenetic group. Leiomyosarcomas are known to be genetically complex, often showing 'chaotic' karyotypes including aneuploidy or polyploidy, and no recurrent tumor-specific translocations have been detected.

  2. Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint

    NASA Astrophysics Data System (ADS)

    Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.

    2016-07-01

    This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.

  3. BaHigh-force magnetic tweezers with force feedback for biological applications

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100nN onto 5μm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  4. High-force magnetic tweezers with force feedback for biological applications.

    PubMed

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100 nN onto 5 microm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  5. Design of Computer-aided Instruction for Radiology Interpretation: The Role of Cognitive Task Analysis

    PubMed Central

    Pusic, Martin V.; LeBlanc, Vicki; Patel, Vimla L.

    2001-01-01

    Traditional task analysis for instructional design has emphasized the importance of precisely defining behavioral educational objectives and working back to select objective-appropriate instructional strategies. However, this approach may miss effective strategies. Cognitive task analysis, on the other hand, breaks a process down into its component knowledge representations. Selection of instructional strategies based on all such representations in a domain is likely to lead to optimal instructional design. In this demonstration, using the interpretation of cervical spine x-rays as an educational example, we show how a detailed cognitive task analysis can guide the development of computer-aided instruction.

  6. A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization

    PubMed Central

    Okoniewski, Stephen R.; Carter, Ashley R.; Perkins, Thomas T.

    2017-01-01

    Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (i) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (ii) minimizing sample motion relative to the optical trap using a 3-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03–2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging. PMID:27844426

  7. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  8. The longitudinal fibromuscular component of the soft palate in the fifteen-week human fetus: musculus uvulae and palatine raphe.

    PubMed

    Langdon, H L; Klueber, K

    1978-10-01

    The structural relationships of the longitudinal fibromuscular component of the soft palate (musculus uvulae and raphe) were studied using histologic sections from 19 early human fetal specimens. Musculus uvulae arises in association with the palatine aponeurosis near the beginning of the second quadrant of the velum, follows a sigmoid course, and terminates near the base of the uvula. In addition, an occasional muscular loop may arise from the bony palate, arch downwards, and then recur into the uvular muscle. A complex relationship exists between the raphe in the velum and several palatal muscles. With regard to musculus uvulae, small muscular bundles arise from the raphe to embrace the muscle near its crest. These branches may aid in contouring the dorsal surface of the velum in the region of the levator eminence to complement the surface of the posterior pharyngeal wall and thus enhance the efficiency of the velopharyngeal seal.

  9. 3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.

    PubMed

    Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M; Saltzman, Daniel A; Konety, Badrinath R; Sweet, Robert M; McAlpine, Michael C

    2018-03-01

    The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.

  10. 3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors

    PubMed Central

    Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B.; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M.; Saltzman, Daniel A.; Konety, Badrinath R.

    2017-01-01

    The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured. PMID:29608202

  11. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    PubMed

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.

  12. Simulation and analysis of differential GPS

    NASA Astrophysics Data System (ADS)

    Denaro, R. P.

    NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.

  13. A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids.

    PubMed

    Sang-Soo Je; Rivas, F; Diaz, R E; Jiuk Kwon; Jeonghwan Kim; Bakkaloglu, B; Kiaei, S; Junseok Chae

    2009-10-01

    A microelectromechanical-systems (MEMS)-based electromagnetically actuated loudspeaker to reduce form factor, cost, and power consumption, and increase energy efficiency in hearing-aid applications is presented. The MEMS loudspeaker has multilayer copper coils, an NiFe soft magnet on a thin polyimide diaphragm, and an NdFeB permanent magnet on the perimeter. The coil impedance is measured at 1.5 Omega, and the resonant frequency of the diaphragm is located far from the audio frequency range. The device is driven by a power-scalable, 0.25-mum complementary metal-oxide semiconductor class-D SigmaDelta amplifier stage. The class-D amplifier is formed by a differential H-bridge driven by a single bit, pulse-density-modulated SigmaDelta bitstream at a 1.2-MHz clock rate. The fabricated MEMS loudspeaker generates more than 0.8-mum displacement, equivalent to 106-dB sound pressure level (SPL), with 0.13-mW power consumption. Driven by the SigmaDelta class-D amplifier, the MEMS loudspeaker achieves measured 65-dB total harmonic distortion (THD) with a measurement uncertainty of less than 10%. Energy-efficient and cost-effective advanced hearing aids would benefit from further miniaturization via MEMS technology. The results from this study appear very promising for developing a compact, mass-producible, low-power loudspeaker with sufficient sound generation for hearing-aid applications.

  14. Magnet and Semi Precision Attachment in an Implant Retained Partial Denture for the Rehabilitation of an Irradiated Marginal Mandibulectomy Patient: A Case Report

    PubMed Central

    Guttal, Satyabodh Shesharaj; Kulkarni, Sudhindra S; Kudva, Adarsh; Thakur, Srinath

    2015-01-01

    Surgical treatment of malignancies in the oral cavity (mandible, tongue, floor of the mouth, alveolus, buccal sulcus) often results in an unfavourable anatomic condition for prosthodontic rehabilitation. Hence, maxillofacial prosthetic rehabilitation becomes a mightier task when resection is accompanied by radiation therapy. In selected cases, implant therapy comes to rescue. The following report throws light on the case of prosthetic rehabilitation of a patient who underwent right marginal mandibulectomy and right partial glossectomy, with the aid of a single implant, semi precision attachment and magnet supported partial denture. PMID:26501028

  15. Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time.

    PubMed

    Harriman, O L J; Leake, M C

    2011-12-21

    The soft matter of biological systems consists of mesoscopic length scale building blocks, composed of a variety of different types of biological molecules. Most single biological molecules are so small that 1 billion would fit on the full-stop at the end of this sentence, but collectively they carry out the vital activities in living cells whose length scale is at least three orders of magnitude greater. Typically, the number of molecules involved in any given cellular process at any one time is relatively small, and so real physiological events may often be dominated by stochastics and fluctuation behaviour at levels comparable to thermal noise, and are generally heterogeneous in nature. This challenging combination of heterogeneity and stochasticity is best investigated experimentally at the level of single molecules, as opposed to more conventional bulk ensemble-average techniques. In recent years, the use of such molecular experimental approaches has become significantly more widespread in research laboratories around the world. In this review we discuss recent experimental approaches in biological physics which can be applied to investigate the living component of soft condensed matter to a precision of a single molecule. © 2011 IOP Publishing Ltd Printed in the UK & the USA

  16. Plasma-assisted physical vapor deposition surface treatments for tribological control

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1990-01-01

    In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.

  17. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Preliminary research on dual-energy X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  19. On the convergence of nanotechnology and Big Data analysis for computer-aided diagnosis.

    PubMed

    Rodrigues, Jose F; Paulovich, Fernando V; de Oliveira, Maria Cf; de Oliveira, Osvaldo N

    2016-04-01

    An overview is provided of the challenges involved in building computer-aided diagnosis systems capable of precise medical diagnostics based on integration and interpretation of data from different sources and formats. The availability of massive amounts of data and computational methods associated with the Big Data paradigm has brought hope that such systems may soon be available in routine clinical practices, which is not the case today. We focus on visual and machine learning analysis of medical data acquired with varied nanotech-based techniques and on methods for Big Data infrastructure. Because diagnosis is essentially a classification task, we address the machine learning techniques with supervised and unsupervised classification, making a critical assessment of the progress already made in the medical field and the prospects for the near future. We also advocate that successful computer-aided diagnosis requires a merge of methods and concepts from nanotechnology and Big Data analysis.

  20. A new milling machine for computer-aided, in-office restorations.

    PubMed

    Kurbad, Andreas

    Chairside computer-aided design/computer-aided manufacturing (CAD/CAM) technology requires an effective technical basis to obtain dental restorations with optimal marginal accuracy, esthetics, and longevity in as short a timeframe as possible. This article describes a compact, 5-axis milling machine based on an innovative milling technology (5XT - five-axis turn-milling technique), which is capable of achieving high-precision milling results within a very short processing time. Furthermore, the device's compact dimensioning and state-of-the-art mode of operation facilitate its use in the dental office. This model is also an option to be considered for use in smaller dental laboratories, especially as the open input format enables it to be quickly and simply integrated into digital processing systems already in use. The possibility of using ceramic and polymer materials with varying properties enables the manufacture of restorations covering all conceivable indications in the field of fixed dental prosthetics.

  1. Alveolar soft part sarcoma: the new primary intracranial malignancy : A case report and review of the literature.

    PubMed

    Kumar, Aditaya; Alrohmain, B; Taylor, W; Bhattathiri, P

    2017-07-26

    The purpose of this paper is to serve as a reference to aid in the management of this poorly understood intracranial malignancy. The authors report their experience treating the eighth ostensible case of a primary intracranial alveolar soft part sarcoma (ASPS). A 21-year-old man presented to hospital after collapsing. He gave a 1-year history of headache, a 2-month history of reduced visual acuity and on examination had left facial paraesthesia with left-sided incoordination. MRI of the brain revealed a large left posterior fossa mass. The patient underwent resection of the tumour with good recovery in function. Immunohistochemical analysis of the tumour specimen confirmed an ASPS, and multimodal imaging in search of an extra-cranial disease primary was negative. A review of the literature yielded only seven other cases of primary intracranial ASPS. A variety of diagnostic imaging modalities were employed in search of a disease primary, as were various combinations of surgical resection, chemotherapy and radiotherapy as treatment. Half of the cases documented delayed disease recurrence. The authors discuss the following: the unique radiological and immunohistological characteristics of this disease including the potential for its misdiagnosis; the investigations required to diagnose a primary intracranial ASPS; the efficacy of current medical and surgical treatment options and the factors that will aid in prognostication. This is the first review of this new primary intracranial malignancy. From our analysis, we offer a joint radiological and immunohistochemical algorithm for the diagnosis of primary intracranial ASPS and specific operative considerations prior to resection.

  2. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.

    PubMed

    Fan, Yingwei; Zhang, Boyu; Chang, Wei; Zhang, Xinran; Liao, Hongen

    2018-03-01

    Complete resection of diseased lesions reduces the recurrence of cancer, making it critical for surgical treatment. However, precisely resecting residual tumors is a challenge during operation. A novel integrated spectral-domain optical-coherence-tomography (SD-OCT) and laser-ablation therapy system for soft-biological-tissue resection is proposed. This is a prototype optical integrated diagnosis and therapeutic system as well as an optical theranostics system. We develop an optical theranostics system, which integrates SD-OCT, a laser-ablation unit, and an automatic scanning platform. The SD-OCT image of biological tissue provides an intuitive and clear view for intraoperative diagnosis and monitoring in real time. The effect of laser ablation is analyzed using a quantitative mathematical model. The automatic endoscopic scanning platform combines an endoscopic probe and an SD-OCT sample arm to provide optical theranostic scanning motion. An optical fiber and a charge-coupled device camera are integrated into the endoscopic probe, allowing detection and coupling of the OCT-aiming beam and laser spots. The integrated diagnostic and therapeutic system combines SD-OCT imaging and laser-ablation modules with an automatic scanning platform. OCT imaging, laser-ablation treatment, and the integration and control of diagnostic and therapeutic procedures were evaluated by performing phantom experiments. Furthermore, SD-OCT-guided laser ablation provided precision laser ablation and resection for the malignant lesions in soft-biological-tissue-lesion surgery. The results demonstrated that the appropriate laser-radiation power and duration time were 10 W and 10 s, respectively. In the laser-ablation evaluation experiment, the error reached approximately 0.1 mm. Another validation experiment was performed to obtain OCT images of the pre- and post-ablated craters of ex vivo porcine brainstem. We propose an optical integrated diagnosis and therapeutic system. The primary experimental results show the high efficiency and feasibility of our theranostics system, which is promising for realizing accurate resection of tumors in vivo and in situ in the future.

  3. Effect and accuracy of emergency dispatch telephone guidance to bystanders in trauma: post-hoc analysis of a prospective observational study.

    PubMed

    Bakke, Håkon Kvåle; Steinvik, Tine; Ruud, Håkon; Wisborg, Torben

    2017-03-07

    Emergency medical communication centres (EMCCs) dispatch and allocate ambulance resources, and provide first-aid guidance to on-scene bystanders. We aimed to 1) evaluate whether dispatcher guidance improved bystander first aid in trauma, and 2) to evaluate whether dispatchers and on-scene emergency medical services (EMS) crews identified the same first aid measures as indicated. For 18 months, the crew on the first EMS crew responding to trauma calls used a standard form to assess bystander first aid. Audio recordings of the corresponding telephone calls from bystanders to the EMCC were reviewed. A total of 311 trauma calls were included. The on-scene EMS crew identified needs for the following first-aid measures: free airway in 26 patients, CPR in 6 patients, and hypothermia prevention in 179 patients. EMCC dispatchers advised these measures, respectively, in 16 (62%), 5 (83%), and 54 (30%) of these cases. Dispatcher guidance was not correlated with correctly performed bystander first aid. For potentially life saving first aid measures, all (20/20) callers who received dispatcher guidance attempted first aid, while only some few (4/22) of the callers who did not receive dispatcher guidance did not attempt first aid. Overall, the EMCC dispatchers had low sensitivity and specificity for correctly identifying trauma patients requiring first-aid measures. Dispatcher guidance did not significantly influence whether on-scene bystander first aid was performed correctly or attempted in this study setting, with a remarkably high willingness to perform first-aid. However, the findings for potentially lifesaving measures suggests that there may be differences that this study was unable to detect. This study found a high rate of first-aid willingness and performance, even without dispatcher prompting, and a low precision in dispatcher advice. This underlines the need for further knowledge about how to increase EMCC dispatchers' possibility to identify trauma patients in need of first aid. The correlation between EMCC-guidance and bystander first aid should be investigated in study settings with lower spontaneous first-aid rates.

  4. Technology as Teammate: Examining the Role of External Cognition in Support of Team Cognitive Processes

    PubMed Central

    Fiore, Stephen M.; Wiltshire, Travis J.

    2016-01-01

    In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences. PMID:27774074

  5. Technology as Teammate: Examining the Role of External Cognition in Support of Team Cognitive Processes.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J

    2016-01-01

    In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.

  6. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.).

    PubMed

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  7. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.)

    PubMed Central

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The ‘Tunisia’ variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate. PMID:28594931

  8. An Assessment of Imaging Informatics for Precision Medicine in Cancer.

    PubMed

    Chennubhotla, C; Clarke, L P; Fedorov, A; Foran, D; Harris, G; Helton, E; Nordstrom, R; Prior, F; Rubin, D; Saltz, J H; Shalley, E; Sharma, A

    2017-08-01

    Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician's feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine. Georg Thieme Verlag KG Stuttgart.

  9. Toward Precision Healthcare: Context and Mathematical Challenges

    PubMed Central

    Colijn, Caroline; Jones, Nick; Johnston, Iain G.; Yaliraki, Sophia; Barahona, Mauricio

    2017-01-01

    Precision medicine refers to the idea of delivering the right treatment to the right patient at the right time, usually with a focus on a data-centered approach to this task. In this perspective piece, we use the term “precision healthcare” to describe the development of precision approaches that bridge from the individual to the population, taking advantage of individual-level data, but also taking the social context into account. These problems give rise to a broad spectrum of technical, scientific, policy, ethical and social challenges, and new mathematical techniques will be required to meet them. To ensure that the science underpinning “precision” is robust, interpretable and well-suited to meet the policy, ethical and social questions that such approaches raise, the mathematical methods for data analysis should be transparent, robust, and able to adapt to errors and uncertainties. In particular, precision methodologies should capture the complexity of data, yet produce tractable descriptions at the relevant resolution while preserving intelligibility and traceability, so that they can be used by practitioners to aid decision-making. Through several case studies in this domain of precision healthcare, we argue that this vision requires the development of new mathematical frameworks, both in modeling and in data analysis and interpretation. PMID:28377724

  10. Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents.

    PubMed

    Herron, Maggie; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J; Abbott, Nicholas L

    2016-10-03

    We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga 3+ (antibiofilm agent)- and Ag + (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga 3+ and Ag + from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga 3+ and Ag + can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.

  11. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  12. A transcriptional serenAID: the role of noncoding RNAs in class switch recombination

    PubMed Central

    Yewdell, William T.; Chaudhuri, Jayanta

    2017-01-01

    Abstract During an immune response, activated B cells may undergo class switch recombination (CSR), a molecular rearrangement that allows B cells to switch from expressing IgM and IgD to a secondary antibody heavy chain isotype such as IgG, IgA or IgE. Secondary antibody isotypes provide the adaptive immune system with distinct effector functions to optimally combat various pathogens. CSR occurs between repetitive DNA elements within the immunoglobulin heavy chain (Igh) locus, termed switch (S) regions and requires the DNA-modifying enzyme activation-induced cytidine deaminase (AID). AID-mediated DNA deamination within S regions initiates the formation of DNA double-strand breaks, which serve as biochemical beacons for downstream DNA repair pathways that coordinate the ligation of DNA breaks. Myriad factors contribute to optimal AID targeting; however, many of these factors also localize to genomic regions outside of the Igh locus. Thus, a current challenge is to explain the specific targeting of AID to the Igh locus. Recent studies have implicated noncoding RNAs in CSR, suggesting a provocative mechanism that incorporates Igh-specific factors to enable precise AID targeting. Here, we chronologically recount the rich history of noncoding RNAs functioning in CSR to provide a comprehensive context for recent and future discoveries. We present a model for the RNA-guided targeting of AID that attempts to integrate historical and recent findings, and highlight potential caveats. Lastly, we discuss testable hypotheses ripe for current experimentation, and explore promising ideas for future investigations. PMID:28535205

  13. Data mining of audiology patient records: factors influencing the choice of hearing aid type

    PubMed Central

    2012-01-01

    Background This paper describes the analysis of a database of over 180,000 patient records, collected from over 23,000 patients, by the hearing aid clinic at James Cook University Hospital in Middlesbrough, UK. These records consist of audiograms (graphs of the faintest sounds audible to the patient at six different pitches), categorical data (such as age, gender, diagnosis and hearing aid type) and brief free text notes made by the technicians. This data is mined to determine which factors contribute to the decision to fit a BTE (worn behind the ear) hearing aid as opposed to an ITE (worn in the ear) hearing aid. Methods From PCA (principal component analysis) four main audiogram types are determined, and are related to the type of hearing aid chosen. The effects of age, gender, diagnosis, masker, mould and individual audiogram frequencies are combined into a single model by means of logistic regression. Some significant keywords are also discovered in the free text fields by using the chi-squared (χ2) test, which can also be used in the model. The final model can act a decision support tool to help decide whether an individual patient should be offered a BTE or an ITE hearing aid. Results The final model was tested using 5-fold cross validation, and was able to replicate the decisions of audiologists whether to fit an ITE or a BTE hearing aid with precision in the range 0.79 to 0.87. Conclusions A decision support system was produced to predict the type of hearing aid which should be prescribed, with an explanation facility explaining how that decision was arrived at. This system should prove useful in providing a "second opinion" for audiologists. PMID:22595091

  14. Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design

    PubMed Central

    Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen

    2014-01-01

    Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability. PMID:25255843

  15. Molecular engineering of chiral colloidal liquid crystals using DNA origami

    NASA Astrophysics Data System (ADS)

    Siavashpouri, Mahsa; Wachauf, Christian H.; Zakhary, Mark J.; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir

    2017-08-01

    Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.

  16. Molecular engineering of chiral colloidal liquid crystals using DNA origami.

    PubMed

    Siavashpouri, Mahsa; Wachauf, Christian H; Zakhary, Mark J; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir

    2017-08-01

    Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.

  17. Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design

    NASA Astrophysics Data System (ADS)

    Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen

    2014-09-01

    Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability.

  18. The perfuming of paper - technical and safety problems.

    PubMed

    Lawton, P D; Forbes, D M

    1980-12-01

    Synopsis This paper describes the rapid growth and diversity of consumer products based on cellulose fibres since the second world war, paying particular attention to soft tissue. The early use of perfumes as reodorants, based on traditional reodorisation knowledge, quickly gave way to the more sophisticated use of perfumes in their own right as a valuable and sometimes indispensable aid to the marketer of soft tissue. Special attention is devoted to the problem of selecting from the very wide range of perfumery ingredients available to perfumers, those which may be suitable for paper perfumery. The tests to evaluate their suitability are described and some of the results presented. The importance of the phenomena of fixation is examined in view of the nature of the product to be perfumed and its unusually long shelf life. The limitations of odour types available for paper products is discussed and a typical paper perfume formula studied. The paper concludes with an illustrated description of the general methods used today for the manufacture of soft tissue. An appraisal of the various methods that have been tried, and are used today to incorporate perfume into the products is also described. During this latter part of the presentation attention will be focused on the advantages and disadvantages of the methods selected with regard to their efficiency, installation, maintenance commitment and safety considerations.

  19. Demonstration of a Fast, Precise Propane Measurement Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zahniser, M. S.; Roscioli, J. R.; Nelson, D. D.; Herndon, S. C.

    2016-12-01

    Propane is one of the primary components of emissions from natural gas extraction and processing activities. In addition to being an air pollutant, its ratio to other hydrocarbons such as methane and ethane can serve as a "fingerprint" of a particular facility or process, aiding in identifying emission sources. Quantifying propane has typically required laboratory analysis of flask samples, resulting in low temporal resolution and making plume-based measurements infeasible. Here we demonstrate fast (1-second), high precision (<300 ppt) measurements of propane using high resolution mid-infrared spectroscopy at 2967 wavenumbers. In addition, we explore the impact of nearby water and ethane absorption lines on the accuracy and precision of the propane measurement. Finally, we discuss development of a dual-laser instrument capable of simultaneous measurements of methane, ethane, and propane (the C1-C3 compounds), all within a small spatial package that can be easily deployed aboard a mobile platform.

  20. Precise determination of the 113Cd fourth-forbidden non-unique β -decay Q value

    NASA Astrophysics Data System (ADS)

    Gamage, N. D.; Bollen, G.; Eibach, M.; Gulyuz, K.; Izzo, C.; Kandegedara, R. M. E. B.; Redshaw, M.; Ringle, R.; Sandler, R.; Valverde, A. A.

    2016-08-01

    Using Penning trap mass spectrometry, we have performed a precise determination of the Q value for the highly forbidden β decay of 113Cd. An independent measurement of the Q value fixes the end-point energy in a fit to the 113Cdβ -decay spectrum. This provides a strong test of systematics for detectors that have observed this decay, such as those developed for β β -decay searches in cadmium and other isotopes. It will also aid in the theoretical description of the β -decay spectrum. The result, Qβ=323.89 (27 ) keV , agrees at the 1.3 σ level with the value obtained from the 2012 Atomic Mass Evaluation [Chin. Phys. C 36, 1603 (2012), 10.1088/1674-1137/36/12/003], but is a factor of almost four more precise. We also report improved values for the atomic masses of 113Cd,113In, and 112Cd.

  1. Lyme disease: the promise of Big Data, companion diagnostics and precision medicine

    PubMed Central

    Stricker, Raphael B; Johnson, Lorraine

    2016-01-01

    Lyme disease caused by the spirochete Borrelia burgdorferi has become a major worldwide epidemic. Recent studies based on Big Data registries show that >300,000 people are diagnosed with Lyme disease each year in the USA, and up to two-thirds of individuals infected with B. burgdorferi will fail conventional 30-year-old antibiotic therapy for Lyme disease. In addition, animal and human evidence suggests that sexual transmission of the Lyme spirochete may occur. Improved companion diagnostic tests for Lyme disease need to be implemented, and novel treatment approaches are urgently needed to combat the epidemic. In particular, therapies based on the principles of precision medicine could be modeled on successful “designer drug” treatment for HIV/AIDS and hepatitis C virus infection featuring targeted protease inhibitors. The use of Big Data registries, companion diagnostics and precision medicine will revolutionize the diagnosis and treatment of Lyme disease. PMID:27672336

  2. PROSPECT - A Precision Oscillation and Spectrum Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Xianyi; Prospect Collaboration

    2017-01-01

    PROSPECT, the PRecision Oscillation and SPECTrum Experiment, is a multi-phased short baseline reactor antineutrino experiment that aims to precisely measure the U-235 antineutrino spectrum and prob for oscillation effects involving a possible Δm2 1 eV2 scale sterile neutrino. In PROSPECT Phase-I, an optically segmented Li-6 loaded liquid scintillator detector will be deployed at at the baseline of 7-12m from the High Flux Isotope Reactor at the Oak Ridge National Laboratory. PROSPECT will measure the spectrum of U-235 to aid in resolving the unexplained inconsistency between predictive spectral models and recent experimental measurements using LEU cores, while the oscillation measurement will probe the best fit region suggested by global fitting studies within 1-year data taking. This talk will introduce the design of PROSPECT Phase-I, the discovery potential of the experiment, and the progress the collaboration has made toward realizing PROSPECT Phase-I. Department of Energy

  3. Computer-Aided Grading of Lymphangioleiomyomatosis (LAM) using HRCT

    PubMed Central

    Yao, Jianhua; Avila, Nilo; Dwyer, Andrew; Taveira-DaSilva, Angelo M.; Hathaway, Olanda M.; Moss, Joel

    2010-01-01

    Lymphangioleiomyomatosis (LAM) is a multisystem disorder associated with proliferation of smooth muscle-like cells, which leads to destruction of lung parenchyma. Subjective grading of LAM on HRCT is imprecise and can be arduous especially in cases with severe involvement. We propose a computer-aided evaluation system that grades LAM involvement based on analysis of lung texture patterns. A committee of support vector machines is employed for classification. The system was tested on 36 patients. The computer grade demonstrates good correlation with subjective radiologist grade (R=0.91, p<0.0001) and pulmonary functional tests (R=0.85, p<0.0001). The grade also provides precise progression assessment of disease over time. PMID:21625320

  4. Public health and precision medicine share a goal.

    PubMed

    Vaithinathan, Asokan G; Asokan, Vanitha

    2017-05-01

    The advances made in genomics and molecular tools aid public health programs in the investigation of outbreaks and control of diseases by taking advantage of the precision medicine. Precision medicine means "segregating the individuals into subpopulations who vary in their disease susceptibility and response to a precise treatment" and not merely designing of drugs or creation of medical devices. By 2017, the United Kingdom 100,000 Genomes Project is expected to sequence 100,000 genomes from 70,000 patients. Similarly, the Precision Medicine Initiative of the United States plans to increase population-based genome sequencing and link it with clinical data. A national cohort of around 1 million people is to be established in the long term, to investigate the genetic and environmental determinants of health and disease, and further integrated to their electronic health records that are optional. Precision public health can be seen as administering the right intervention to the needy population at an appropriate time. Precision medicine originates from a wet-lab while evidence-based medicine is nurtured in a clinic. Linking the quintessential basic science research and clinical practice is necessary. In addition, new technologies to employ and analyze data in an integrated and dynamic way are essential for public health and precision medicine. The transition from evidence-based approach in public health to genomic approach to individuals with a paradigm shift of a "reactive" medicine to a more "proactive" and personalized health care may sound exceptional. However, a population perspective is needed for the precision medicine to succeed. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  5. Optimizing Functional Outcomes in Mandibular Condyle Reconstruction With the Free Fibula Flap Using Computer-Aided Design and Manufacturing Technology.

    PubMed

    Lee, Z-Hye; Avraham, Tomer; Monaco, Casian; Patel, Ashish A; Hirsch, David L; Levine, Jamie P

    2018-05-01

    Mandibular defects involving the condyle represent a complex reconstructive challenge for restoring proper function of the temporomandibular joint (TMJ) because it requires precise bone graft alignment for full restoration of joint function. The use of computer-aided design and manufacturing (CAD/CAM) technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap without the need for additional adjuncts. The purpose of this study was to analyze clinical and functional outcomes after reconstruction of mandibular condyle defects using only a free fibula graft with the help of virtual surgery techniques. A retrospective review was performed to identify all patients who underwent mandibular reconstruction with only a free fibula flap without any TMJ adjuncts after a total condylectomy. Three-dimensional modeling software was used to plan and execute reconstruction for all patients. From 2009 through 2014, 14 patients underwent reconstruction of mandibular defects involving the condyle with the aid of virtual surgery technology. The average age was 38.7 years (range, 11 to 77 yr). The average follow-up period was 2.6 years (range, 0.8 to 4.2 yr). Flap survival was 100% (N = 14). All patients reported improved facial symmetry, adequate jaw opening, and normal dental occlusion. In addition, they achieved good functional outcomes, including normal intelligible speech and the tolerance of a regular diet with solid foods. Maximal interincisal opening range for all patients was 25 to 38 mm with no lateral deviation or subjective joint pain. No patient had progressive joint hypomobility or condylar migration. One patient had ankylosis, which required release. TMJ reconstruction poses considerable challenges in bone graft alignment for full restoration of joint function. The use of CAD/CAM technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap through precise planning and intraoperative manipulation with optimal functional outcomes. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Noncontact viscoelastic measurement of polymer thin films in a liquid medium using a long-needle AFM

    NASA Astrophysics Data System (ADS)

    Guan, Dongshi; Barraud, Chloe; Charlaix, Elisabeth; Tong, Penger

    We report noncontact measurement of the viscoelastic property of polymer thin films in a liquid medium using frequency-modulation atomic force microscopy (FM-AFM) with a newly developed long-needle probe. The probe contains a long vertical glass fiber with one end adhered to a cantilever beam and the other end with a sharp tip placed near the liquid-film interface. The nanoscale flow generated by the resonant oscillation of the needle tip provides a precise hydrodynamic force acting on the soft surface of the thin film. By accurately measuring the mechanical response of the thin film, we obtain the elastic and loss moduli of the thin film using the linear response theory of elasto-hydrodynamics. The experiment verifies the theory and demonstrates its applications. The technique can be used to accurately measure the viscoelastic property of soft surfaces, such as those made of polymers, nano-bubbles, live cells and tissues. This work was supported by the Research Grants Council of Hong Kong SAR.

  7. Primary leiomyosarcoma in the colon

    PubMed Central

    Yang, Jing

    2018-01-01

    Abstract Rationale: Leiomyosarcoma (LMS) is a common type of soft tissue sarcoma. Primary colonic LMS in general is a very rare entity, accounting for 1% to 2% of gastrointestinal malignancies. Patient concerns: We report a case of 55-year-old female who presented with a sudden onset of sharp right lower quadrant abdominal pain. Electronic colonoscopy showed a normal lumen. However, an abdominal computed tomography scan revealed a mass of soft tissue attenuation inseparable from the ascending colon which appeared as a gastrointestinal stromal tumor (GIST). Diagnoses: It is important to diagnose LMS definitively by immunohistochemical profiling of smooth muscle actin, desmin, and CD34. Interventions: She underwent laparotomy and right hemicolectomy, and histology confirmed a colonic LMS. The patient received no oncological treatment after surgery. Outcomes: No recurrence or metastasis was observed at 5 months postoperatively. It is crucial to identify colonic LMS precisely based on immunohistochemistry, and thereby distinguish it from GIST. Lessons: Further investigation on LMS cases so far is required to establish standard treatment strategies. PMID:29443772

  8. Soft tissue effects of the THC:YAG laser on canine vocal cords.

    PubMed

    Kay, S L; Oz, M C; Haber, M; Blitzer, A; Treat, M R; Trokel, S L

    1992-09-01

    Recently, a laser based on a thulium-holmium-chromium (THC) doped Yttrium-aluminum-garnet (YAG) rod has been developed that produces light of 2.15 microns wavelength and can be transmitted through a low OH- silica fiberoptic cable. This wavelength falls on one of the peaks of the energy absorption spectrum of water. Thus, the THC:YAG laser eliminates the disadvantage of a cumbersome delivery system found in the CO2 laser while still providing precise cutting and minimal tissue injury inherent in lasers emitting light absorbed by water. We evaluated the soft tissue effects of this laser on canine vocal cords. Ablative lesions were produced by the THC:YAG laser and histologically examined on postoperative days 1, 7, and 28. Results indicate that the depth of tissue penetration is easily controlled and the healing response to tissue injury is comparable to that of the CO2 laser. The THC:YAG laser should prove to be a superior laser for use in otorhinolaryngology, especially when adapted to a flexible endoscope.

  9. Design of Functional Materials based on Liquid Crystalline Droplets.

    PubMed

    Miller, Daniel S; Wang, Xiaoguang; Abbott, Nicholas L

    2014-01-14

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems.

  10. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  11. Size-controlled synthesis of gold bipyramids using an aqueous mixture of CTAC and salicylate anions as the soft template.

    PubMed

    Yoo, Hyojong; Jang, Min Hoon

    2013-08-07

    One-dimensional (1D) gold (Au) bipyramids are successfully synthesized through a facile seed-mediated method using cetyltrimethylammonium chloride (CTAC), Au seed nanoparticles, Ag(+) ions, and ascorbic acid. The length and optical properties of the synthesized Au bipyramids are controlled with precision by varying the amount of salicylate anions (Sal(-)) added during the synthesis. The micelles formed from CTA(+)-Sal(-) mixtures in aqueous solutions act as effective templates for the size-controlled synthesis of 1D nanocrystals.

  12. Radiographic landmarks for locating the femoral origin of the superficial medial collateral ligament.

    PubMed

    Hartshorn, Timothy; Otarodifard, Karimdad; White, Eric A; Hatch, George F Rick

    2013-11-01

    Little has been written about the use of radiographic landmarks for locating the origin of the superficial medial collateral ligament (sMCL). A standardized radiographic landmark for the sMCL origin using intraoperative fluoroscopic imaging may be of value in aiding the surgeon in accurate femoral tunnel placement in the setting of extensive soft tissue disruption and bony attrition. To determine a reproducible radiographic landmark that will assist in correct femoral tunnel placement in sMCL repair and reconstruction. Descriptive laboratory study. Ten fresh-frozen unmatched human cadaveric knees were dissected, and the origin of the sMCL was exposed. A 2-mm metallic marker was then placed at the center of the femoral origin of the sMCL. True lateral fluoroscopically assisted digital radiographs were obtained of the knee with the posterior and distal femoral condyles overlapping in a standardized fashion. With the use of computer software, reference lines were drawn on the images, creating 4 quadrants. Two independent examiners performed quantitative measurements of the sMCL origin in relation to this axis and to the Blumensaat line. Mean measurements showed the sMCL origin to be closely related to the intersection point of the Blumensaat line and a line drawn distally from the posterior femoral cortex on a true lateral radiograph. The sMCL origin was found at a mean point 1.6 ± 4.3 mm posterior and 4.9 ± 2.1 mm proximal to the intersection of a line paralleling the posterior femoral cortex and a line drawn perpendicular to the posterior femoral cortical line, where it intersects the Blumensaat line. In 5 of 10 specimens, the center of the sMCL origin fell precisely on the Blumensaat line. The remaining specimens had sMCL origins anterior to the Blumensaat line. The femoral origin of the sMCL was found in the proximal and posterior quadrants in 8 of 10 specimens. With a relatively small amount of deviation, the sMCL origin can be consistently identified on a true lateral radiograph of the knee using reproducible reference lines on fluoroscopic imaging. Accurate identification of the femoral origin of the sMCL can be accomplished by intraoperative fluoroscopic imaging. This information may be of significant benefit in repairing acute injuries and in reconstructive procedures complicated by bony attrition and soft tissue loss.

  13. A repeated-measures analysis of the effects of soft tissues on wrist range of motion in the extant phylogenetic bracket of dinosaurs: Implications for the functional origins of an automatic wrist folding mechanism in Crocodilia.

    PubMed

    Hutson, Joel David; Hutson, Kelda Nadine

    2014-07-01

    A recent study hypothesized that avian-like wrist folding in quadrupedal dinosaurs could have aided their distinctive style of locomotion with semi-pronated and therefore medially facing palms. However, soft tissues that automatically guide avian wrist folding rarely fossilize, and automatic wrist folding of unknown function in extant crocodilians has not been used to test this hypothesis. Therefore, an investigation of the relative contributions of soft tissues to wrist range of motion (ROM) in the extant phylogenetic bracket of dinosaurs, and the quadrupedal function of crocodilian wrist folding, could inform these questions. Here, we repeatedly measured wrist ROM in degrees through fully fleshed, skinned, minus muscles/tendons, minus ligaments, and skeletonized stages in the American alligator Alligator mississippiensis and the ostrich Struthio camelus. The effects of dissection treatment and observer were statistically significant for alligator wrist folding and ostrich wrist flexion, but not ostrich wrist folding. Final skeletonized wrist folding ROM was higher than (ostrich) or equivalent to (alligator) initial fully fleshed ROM, while final ROM was lower than initial ROM for ostrich wrist flexion. These findings suggest that, unlike the hinge/ball and socket-type elbow and shoulder joints in these archosaurs, ROM within gliding/planar diarthrotic joints is more restricted to the extent of articular surfaces. The alligator data indicate that the crocodilian wrist mechanism functions to automatically lock their semi-pronated palms into a rigid column, which supports the hypothesis that this palmar orientation necessitated soft tissue stiffening mechanisms in certain dinosaurs, although ROM-restricted articulations argue against the presence of an extensive automatic mechanism. Anat Rec, 297:1228-1249, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  14. Determination of gardenia yellow colorants in soft drink, pastry, instant noodles with ultrasound-assisted extraction by high performance liquid chromatography-electrospray ionization tandem mass spectrum.

    PubMed

    Zhou, Wei-E; Zhang, Yuan; Li, Yang; Ling, Yun; Li, Hong-Na; Li, Shao-Hui; Jiang, Shou-Jun; Ren, Zhi-Qin; Huang, Zhi-Qiang; Zhang, Feng

    2016-05-13

    A novel, rapid and simple analytical method was developed for the quantitative determination of crocin, crocetin and geniposide in soft drink, pastry and instant noodles. The solid samples were relatively homogenized into powders and fragments. The gardenia yellow colorants were successively extracted with methanol using ultrasound-assisted extraction. The analytes were quantitatively measured in the extracts by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. High correlation coefficients (r(2)>0.995) of crocin, crocetin and geniposide were obtained within their linear ranges respectively (50-1000ng/mL, 50-1000ng/mL, 15-240ng/mL) by external standard method. The limits of detection (LODs) were 0.02μg/g for crocin, 0.01μg/g for crocetin and 0.002μg/g for geniposide. And the limits of quantitation (LOQs) were in the ranges of 0.05-0.45μg/g for crocin, and in the ranges of 0.042-0.32μg/g for crocetin, and in the ranges of 0.02-0.15μg/g for geniposide in soft drink, pastry and instant noodles samples. The average recoveries of crocin, crocetin and geniposide ranged from 81.3% to 117.6% in soft drink, pastry and instant noodles. The intra- and inter-day precisions were respectively in the range of 1.3-4.8% and 1.7-11.8% in soft drink, pastry and instant noodle. The developed methods were successfully validated and applied to the soft drink, pastry, and instant noodles collected from the located market in Beijing from China. Crocin, crocetin and geniposide were detected in the collected samples. The average concentrations ranged from 0.84 to 4.20mg/g for crocin, and from 0.62 to 3.11mg/g for crocetin, and from 0.18 to 0.79mg/g for gardenia in various food samples. The method can provide evidences for government to determine gardenia yellow pigments and geniposide in food. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Satellite-Based Fusion of Image/Inertial Sensors for Precise Geolocation

    DTIC Science & Technology

    2009-03-01

    largest contributor and is a valid approximation of orbital position prediction [15]. According to Newton, the gravitational force of the Earth onto an...steps in developing an image-aided navigation system for an orbiting satellite is the understanding of the satellite’s trajectory around the Earth . This...Development . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Low Earth Orbit Simulation . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 High Earth

  16. Glideslope Descent-Rate Cuing to Aid Carrier Landings

    DTIC Science & Technology

    1980-10-01

    provided a sufficiently precise indication ofdescent rate close to the ship. Sensitivity of the arrows was set at alevel that during pretesting...Washington, D.C. 20036 Alexancria, Virginia 22314 American Psychological Assoc. 1 Human Factors Society 2 Psyc. INFO Document Control Unit Attn...Research (Code 458) Behavioral & Social Sciences Psychological Sciences Division 5001 Eisenhower Avenue 800 N. Quincy Street Alexandria, Virginia 22333

  17. The Role of Cue-Target Translation in Backward Inhibition of Attentional Set

    ERIC Educational Resources Information Center

    Houghton, George; Pritchard, Rhys; Grange, James A.

    2009-01-01

    Backward inhibition (BI) refers to a reaction time cost incurred when returning to a recently abandoned task compared to returning to a task not recently performed. The effect has been proposed to reflect an inhibitory mechanism that aids transition from one task to another. The question arises as to precisely what aspects of a task may be…

  18. 76 FR 18653 - Atlantic Highly Migratory Species; Bluefin Tuna Bycatch Reduction in the Gulf of Mexico Pelagic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... BFT by 56.5 percent. Although limited information exists about the effects of weak hooks on BFT post- release mortality, post-release mortality is expected to be reduced because BFT likely straighten the weak... information will aid in further understanding more precisely the effects of weak hook use on BFT post-release...

  19. Text mining for search term development in systematic reviewing: A discussion of some methods and challenges.

    PubMed

    Stansfield, Claire; O'Mara-Eves, Alison; Thomas, James

    2017-09-01

    Using text mining to aid the development of database search strings for topics described by diverse terminology has potential benefits for systematic reviews; however, methods and tools for accomplishing this are poorly covered in the research methods literature. We briefly review the literature on applications of text mining for search term development for systematic reviewing. We found that the tools can be used in 5 overarching ways: improving the precision of searches; identifying search terms to improve search sensitivity; aiding the translation of search strategies across databases; searching and screening within an integrated system; and developing objectively derived search strategies. Using a case study and selected examples, we then reflect on the utility of certain technologies (term frequency-inverse document frequency and Termine, term frequency, and clustering) in improving the precision and sensitivity of searches. Challenges in using these tools are discussed. The utility of these tools is influenced by the different capabilities of the tools, the way the tools are used, and the text that is analysed. Increased awareness of how the tools perform facilitates the further development of methods for their use in systematic reviews. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Small Aircraft Data Distribution System

    NASA Technical Reports Server (NTRS)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  1. Complex facial deformity reconstruction with a surgical guide incorporating a built-in occlusal stent as the positioning reference.

    PubMed

    Fang, Jing-Jing; Liu, Jia-Kuang; Wu, Tzu-Chieh; Lee, Jing-Wei; Kuo, Tai-Hong

    2013-05-01

    Computer-aided design has gained increasing popularity in clinical practice, and the advent of rapid prototyping technology has further enhanced the quality and predictability of surgical outcomes. It provides target guides for complex bony reconstruction during surgery. Therefore, surgeons can efficiently and precisely target fracture restorations. Based on three-dimensional models generated from a computed tomographic scan, precise preoperative planning simulation on a computer is possible. Combining the interdisciplinary knowledge of surgeons and engineers, this study proposes a novel surgical guidance method that incorporates a built-in occlusal wafer that serves as the positioning reference.Two patients with complex facial deformity suffering from severe facial asymmetry problems were recruited. In vitro facial reconstruction was first rehearsed on physical models, where a customized surgical guide incorporating a built-in occlusal stent as the positioning reference was designed to implement the surgery plan. This study is intended to present the authors' preliminary experience in a complex facial reconstruction procedure. It suggests that in regions with less information, where intraoperative computed tomographic scans or navigation systems are not available, our approach could be an effective, expedient, straightforward aid to enhance surgical outcome in a complex facial repair.

  2. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  3. Systems Concepts for Integrated Air Defense of Multinational Mobile Crisis Reaction Forces (Concepts de systemes pour la defense aerienne integree de forces internationales mobiles d’intervention en situation de crise)

    DTIC Science & Technology

    2001-03-01

    characteristics shown in Table 1 are based upon a conventional armoured formation, and implicitly at divisional level or above, they could also apply at lower...widely dispersed Ease of Physical big/hot mid-size/cool small/cold targeting Camouflage scrimmed draped visual full/thermal EMCON 4 3 2 1 Visibility...line of sight occulting/obscured non line of sight Contact static FLOT fluid confused melée Armour soft semi-hard hard defensive aids Protection

  4. Graphics Standards in the Computer-Aided Acquisition and Logistic Support (CALS) Program Fiscal Year 1989 Volume 2: MIL-D-28003 Revisions, CGM registration

    DTIC Science & Technology

    1990-05-01

    Naming in CALS U Based on the above rationale and trade studies, including a basic set of trademarked names in the CALS AP should be considered I during a...names for font lists. Based on the various trade studies in this report, including the one on font substitution below the following naming technique...COPYRIGHT SIGN 2/10 -FEMININE ORDINAL INDICATOR I 2/11 LEFT ANGLE QUOTATION MARK 2/12 NOr SIGN 2/13 SOFT HYPHEN 2/14 REGISTERED TRADE MARK SIGN m 2/15

  5. Use of cornmeal bolus as an aid in obtaining cranial four-vessel angiograms.

    PubMed

    Weathers, R M; Lee, A

    1975-01-01

    In cranial angiography it has always been difficult to visualize extracranial vessels of the cervico-thoracic region, upon one radiograph, by using the same exposure factors for both regions. For this reason, we experimented and found that by applying a dry cornmeal bolus on specific areas of the neck a technically superior radiograph of these regions can be achieved. This bolus simulated added soft tissue to the cervical region. The density of the cervical region is now similar to that of the upper thoracic. As a result, factors set for one exposure will adequately penetrate both areas.

  6. [Anorectal manifestations of sexually transmissible diseases. Kaposi's sarcoma].

    PubMed

    Libeskind, M; Malbran, J; Agard, D; Pannetier, C; Lecouillard, C; Ivanovic, A

    1984-01-01

    The proctologist is above all concerned with the known recrudescence of venereal diseases. Examples reviewed are diseases of bacterial origin (syphilis, gonorrhea, soft chancre, donovanosis and chlamydiosis), appropriate antibiotic therapy and diseases of viral origin (herpes, condyloma acuminatum). Also noted are other bacterial, viral and parasitic diseases and, indeed, cancers of which Kaposi's sarcoma is the example, even though these are not manifested anorectally. New data on Kaposi's sarcoma, its' relationships with venereal disease and AIDS are presented. With these complex problems, the central role of male homosexuality and lowered cellular immunity widens considerably the professional scope of the proctologist.

  7. Comparison of gross body fat-water magnetic resonance imaging at 3 Tesla to dual-energy X-ray absorptiometry in obese women.

    PubMed

    Silver, Heidi J; Niswender, Kevin D; Kullberg, Joel; Berglund, Johan; Johansson, Lars; Bruvold, Morten; Avison, Malcolm J; Welch, E Brian

    2013-04-01

    Improved understanding of how depot-specific adipose tissue mass predisposes to obesity-related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three-dimensional (3D) contiguous "fat-water" MR imaging (FWMRI) covering the majority of a whole-body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type, and distribution of adipose and lean soft tissue would show great promise in body composition methodology. Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to dual-energy X-ray absorptiometry (DXA). Anthropometric, FWMRI, and DXA measurements were obtained in 12 women with BMI 30-39.9 kg/m(2) . Test-retest results found coefficients of variation (CV) for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST, and TTLST, respectively. While Bland-Altman plots demonstrated agreement between FWMRI and DXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully-automated segmentation is fast (<30-min total scan and post-processing time), noninvasive, repeatable, and cost-effective. Copyright © 2012 The Obesity Society.

  8. The design and validation of a magnetic resonance imaging-compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition.

    PubMed

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2015-10-01

    Changes in the mechanical properties of the plantar soft tissue in people with diabetes may contribute to the formation of plantar ulcers. Such ulcers have been shown to be in the causal pathway for lower extremity amputation. The hydraulic plantar soft tissue reducer (HyPSTER) was designed to measure in vivo, rate-dependent plantar soft tissue compressive force and three-dimensional deformations to help understand, predict, and prevent ulcer formation. These patient-specific values can then be used in an inverse finite element analysis to determine tissue moduli, and subsequently used in a foot model to show regions of high stress under a wide variety of loading conditions. The HyPSTER uses an actuator to drive a magnetic resonance imaging-compatible hydraulic loading platform. Pressure and actuator position were synchronized with gated magnetic resonance imaging acquisition. Achievable loading rates were slower than those found in normal walking because of a water-hammer effect (pressure wave ringing) in the hydraulic system when the actuator direction was changed rapidly. The subsequent verification tests were, therefore, performed at 0.2 Hz. The unloaded displacement accuracy of the system was within 0.31%. Compliance, presumably in the system's plastic components, caused a displacement loss of 5.7 mm during a 20-mm actuator test at 1354 N. This was accounted for with a target to actual calibration curve. The positional accuracy of the HyPSTER during loaded displacement verification tests from 3 to 9 mm against a silicone backstop was 95.9% with a precision of 98.7%. The HyPSTER generated minimal artifact in the magnetic resonance imaging scanner. Careful analysis of the synchronization of the HyPSTER and the magnetic resonance imaging scanner was performed. With some limitations, the HyPSTER provided key functionality in measuring dynamic, patient-specific plantar soft tissue mechanical properties. © IMechE 2015.

  9. Molecular profiling of sarcomas: new vistas for precision medicine.

    PubMed

    Al-Zaid, Tariq; Wang, Wei-Lien; Somaiah, Neeta; Lazar, Alexander J

    2017-08-01

    Sarcoma is a large and heterogeneous group of malignant mesenchymal neoplasms with significant histological overlap. Accurate diagnosis can be challenging yet important for selecting the appropriate treatment approach and prognosis. The currently torrid pace of new genomic discoveries aids our classification and diagnosis of sarcomas, understanding of pathogenesis, development of new medications, and identification of alterations that predict prognosis and response to therapy. Unfortunately, demonstrating effective targets for precision oncology has been elusive in most sarcoma types. The list of potential targets greatly outnumbers the list of available inhibitors at the present time. This review will discuss the role of molecular profiling in sarcomas in general with emphasis on selected entities with particular clinical relevance.

  10. A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization.

    PubMed

    Okoniewski, Stephen R; Carter, Ashley R; Perkins, Thomas T

    2017-01-01

    Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (1) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (2) minimizing sample motion relative to the optical trap using a three-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03-2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging.

  11. Recreational injuries in Washington state national parks.

    PubMed

    Stephens, Bradford D; Diekema, Douglas S; Klein, Eileen J

    2005-01-01

    The objectives of this study were to identify the number and types of recreational injuries sustained by visitors to Mount Rainier National Park and Olympic National Park in Washington State and to compare the nature of injuries sustained by children compared with adults. We retrospectively reviewed case incident reports obtained by rangers in Mount Rainer National Park and Olympic National Park between 1997 and 2001. Data collected included victim age, gender, date of injury, activity preinjury, type of injury, and mechanism of injury. There were 535 cases of recreational wilderness injuries (including 19 total deaths), yielding a rate of 22.4 injuries per million visits. The mean age of injury victims was 34 years. Males were more likely to sustain injury than were females (59% vs 41%). Most injuries occurred during summer months between noon and 6:00 PM, and 90% occurred during daylight hours. The most common preinjury activities included hiking (55%), winter sports (15%), and mountaineering (12%), and the most common types of injuries included sprains, strains and soft tissue injuries (28%), fractures or dislocations (26%), and lacerations (15%). A total of 121 (23%) of the injuries occurred in children (<18 years of age). There were 19 deaths in the 2 national parks (18 men, 1 woman); all victims were adults. Hiking (58%) and mountaineering (26%) were the most common activities at the time of death. Mechanism of death included falls (37%), medical (eg, myocardial infarction) (21%), drowning (5%), and suicide (5%). The most common type of injury was soft tissue injury, and injuries occurred most commonly while hiking, during daylight hours, and in the summer. Preinjury activities and types of injuries were different in children compared with adults. Knowledge of how and when injuries occur in national parks can assist in determining what resources are needed to help provide a safer environment for park visitors. This study may also aid prevention strategies in the national parks, guide training of rangers, aid in the preparation of first aid kits, and further the education of people who participate in wilderness activities.

  12. [Numerical finite element modeling of custom car seat using computer aided design].

    PubMed

    Huang, Xuqi; Singare, Sekou

    2014-02-01

    A good cushion can not only provide the sitter with a high comfort, but also control the distribution of the hip pressure to reduce the incidence of diseases. The purpose of this study is to introduce a computer-aided design (CAD) modeling method of the buttocks-cushion using numerical finite element (FE) simulation to predict the pressure distribution on the buttocks-cushion interface. The buttock and the cushion model geometrics were acquired from a laser scanner, and the CAD software was used to create the solid model. The FE model of a true seated individual was developed using ANSYS software (ANSYS Inc, Canonsburg, PA). The model is divided into two parts, i.e. the cushion model made of foam and the buttock model represented by the pelvis covered with a soft tissue layer. Loading simulations consisted of imposing a vertical force of 520N on the pelvis, corresponding to the weight of the user upper extremity, and then solving iteratively the system.

  13. Involving new actors to achieve ART scaling-up: difficulties in an HIV/AIDS counselling and testing centre in Cameroon.

    PubMed

    Yakam, J C Y Tantchou; Gruénais, M-E

    2009-03-01

    The high HIV/AIDS-related mortality among young adults is devastating countries in sub-Saharan Africa. The implementing capacity of the health systems is the main limiting factor of antiretroviral treatment (ART) scaling-up;(1) this capacity depends mainly on the health workforce. Tackling the issue of human resources for health is thus of paramount importance to achieve universal access to ART and for the survival of health systems in time of AIDS. To support such a process, the World Health Organization stresses the importance of task shifting(2) from medical doctors to nurses and from nurses to community health workers. Such task shifting is not easy to achieve but undoubtedly needed. This paper raises issues about the involvement of new actors(3) without precise redefinitions of roles and task-shifting procedures. We take the example of a 'Centre de Prévention et de Dépistage Volontaire du VIH/sida'(4) in one major town of the Far-North province of Cameroon (Central Africa). The study was qualitative. Observations were carried out in the service and in-depth interviews conducted with health workers and actors of Cameroon's National AIDS Control Committee. These interviews were recorded and transcribed. The material was analysed using keywords. KEY RESULT: The involvement of new actors in a context of human resources for health shortage and health system crisis creates confusion and role conflicts, which lead to frustration. It favours the appearance of chinks within which these new actors slip and 'find their way' in the system; it finally raises problems related to their legitimacy and position within the existing hierarchy. KEY POLICY MESSAGE: It is necessary, when involving new staff members (particularly when they do not belong to internationally recognized health professionals such as nurses, doctors and pharmacists), to redefine roles and build precise task-shifting procedures so that everyone may still have a place in the whole system and feel useful.

  14. Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible.

    PubMed

    Hayama, Hironari; Fueki, Kenji; Wadachi, Juro; Wakabayashi, Noriyuki

    2018-03-01

    It remains unclear whether digital impressions obtained using an intraoral scanner are sufficiently accurate for use in fabrication of removable partial dentures. We therefore compared the trueness and precision between conventional and digital impressions in the partially edentulous mandible. Mandibular Kennedy Class I and III models with soft silicone simulated-mucosa placed on the residual edentulous ridge were used. The reference models were converted to standard triangulated language (STL) file format using an extraoral scanner. Digital impressions were obtained using an intraoral scanner with a large or small scanning head, and converted to STL files. For conventional impressions, pressure impressions of the reference models were made and working casts fabricated using modified dental stone; these were converted to STL file format using an extraoral scanner. Conversion to STL file format was performed 5 times for each method. Trueness and precision were evaluated by deviation analysis using three-dimensional image processing software. Digital impressions had superior trueness (54-108μm), but inferior precision (100-121μm) compared to conventional impressions (trueness 122-157μm, precision 52-119μm). The larger intraoral scanning head showed better trueness and precision than the smaller head, and on average required fewer scanned images of digital impressions than the smaller head (p<0.05). On the color map, the deviation distribution tended to differ between the conventional and digital impressions. Digital impressions are partially comparable to conventional impressions in terms of accuracy; the use of a larger scanning head may improve the accuracy for removable partial denture fabrication. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Knowledge-based engineering of a PLC controlled telescope

    NASA Astrophysics Data System (ADS)

    Pessemier, Wim; Raskin, Gert; Saey, Philippe; Van Winckel, Hans; Deconinck, Geert

    2016-08-01

    As the new control system of the Mercator Telescope is being finalized, we can review some technologies and design methodologies that are advantageous, despite their relative uncommonness in astronomical instrumentation. Particular for the Mercator Telescope is that it is controlled by a single high-end soft-PLC (Programmable Logic Controller). Using off-the-shelf components only, our distributed embedded system controls all subsystems of the telescope such as the pneumatic primary mirror support, the hydrostatic bearing, the telescope axes, the dome, the safety system, and so on. We show how real-time application logic can be written conveniently in typical PLC languages (IEC 61131-3) and in C++ (to implement the pointing kernel) using the commercial TwinCAT 3 programming environment. This software processes the inputs and outputs of the distributed system in real-time via an observatory-wide EtherCAT network, which is synchronized with high precision to an IEEE 1588 (PTP, Precision Time Protocol) time reference clock. Taking full advantage of the ability of soft-PLCs to run both real-time and non real-time software, the same device also hosts the most important user interfaces (HMIs or Human Machine Interfaces) and communication servers (OPC UA for process data, FTP for XML configuration data, and VNC for remote control). To manage the complexity of the system and to streamline the development process, we show how most of the software, electronics and systems engineering aspects of the control system have been modeled as a set of scripts written in a Domain Specific Language (DSL). When executed, these scripts populate a Knowledge Base (KB) which can be queried to retrieve specific information. By feeding the results of those queries to a template system, we were able to generate very detailed "browsable" web-based documentation about the system, but also PLC software code, Python client code, model verification reports, etc. The aim of this paper is to demonstrate the added value that technologies such as soft-PLCs and DSL-scripts and design methodologies such as knowledge-based engineering can bring to astronomical instrumentation.

  16. Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands.

    PubMed

    Choi, Jungil; Xue, Yeguang; Xia, Wei; Ray, Tyler R; Reeder, Jonathan T; Bandodkar, Amay J; Kang, Daeshik; Xu, Shuai; Huang, Yonggang; Rogers, John A

    2017-07-25

    During periods of activity, sweat glands produce pressures associated with osmotic effects to drive liquid to the surface of the skin. The magnitudes of these pressures may provide insights into physiological health, the intensity of physical exertion, psychological stress factors and/other information of interest, yet they are currently unknown due to absence of means for non-invasive measurement. This paper introduces a thin, soft wearable microfluidic system that mounts onto the surface of the skin to enable precise and routine measurements of secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands (surface SPSG, or s-SPSG) at nearly any location on the body. These platforms incorporate an arrayed collection of unit cells each of which includes an opening to the skin, an inlet through which sweat can flow, a capillary bursting valve (CBV) with a unique bursting pressure (BP), a corresponding microreservoir to receive sweat and an outlet to the surrounding ambient to allow release of backpressure. The BPs systematically span the physiologically relevant range, to enable a measurement precision approximately defined by the ratio of the range to the number of unit cells. Human studies demonstrate measurements of s-SPSG under different conditions, from various regions of the body. Average values in healthy young adults lie between 2.4 and 2.9 kPa. Sweat associated with vigorous exercise have s-SPSGs that are somewhat higher than those associated with sedentary activity. For all conditions, the forearm and lower back tend to yield the highest and lowest s-SPSGs, respectively.

  17. A scanning tunneling microscope capable of imaging specified micron-scale small samples.

    PubMed

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt∕Ir wire to an isolated individual 32.5 × 32.5 μm(2) graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  18. Ex vivo evaluation of super pulse diode laser system with smart temperature feedback for contact soft-tissue surgery

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory

    2018-02-01

    Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.

  19. Accuracy of five intraoral scanners compared to indirect digitalization.

    PubMed

    Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine

    2017-06-01

    Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.

  20. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    PubMed

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of Navigation Doppler Lidar for Future Landing Mission

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III

    2016-01-01

    A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.

  2. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives

    PubMed Central

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2012-01-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902

  3. Creating Habitable Zones, at all Scales, from Planets to Mud Micro-Habitats, on Earth and on Mars

    NASA Astrophysics Data System (ADS)

    Nisbet, Euan; Zahnle, Kevin; Gerasimov, M. V.; Helbert, Jörn; Jaumann, Ralf; Hofmann, Beda A.; Benzerara, Karim; Westall, Frances

    The factors that create a habitable planet are considered at all scales, from planetary inventories to micro-habitats in soft sediments and intangibles such as habitat linkage. The possibility of habitability first comes about during accretion, as a product of the processes of impact and volatile inventory history. To create habitability water is essential, not only for life but to aid the continual tectonic reworking and erosion that supply key redox contrasts and biochemical substrates to sustain habitability. Mud or soft sediment may be a biochemical prerequisite, to provide accessible substrate and protection. Once life begins, the habitat is widened by the activity of life, both by its management of the greenhouse and by partitioning reductants (e.g. dead organic matter) and oxidants (including waste products). Potential Martian habitats are discussed: by comparison with Earth there are many potential environmental settings on Mars in which life may once have occurred, or may even continue to exist. The long-term evolution of habitability in the Solar System is considered.

  4. Creating Habitable Zones, at all Scales, from Planets to Mud Micro-Habitats, on Earth and on Mars

    NASA Astrophysics Data System (ADS)

    Nisbet, Euan; Zahnle, Kevin; Gerasimov, M. V.; Helbert, Jörn; Jaumann, Ralf; Hofmann, Beda A.; Benzerara, Karim; Westall, Frances

    2007-03-01

    The factors that create a habitable planet are considered at all scales, from planetary inventories to micro-habitats in soft sediments and intangibles such as habitat linkage. The possibility of habitability first comes about during accretion, as a product of the processes of impact and volatile inventory history. To create habitability water is essential, not only for life but to aid the continual tectonic reworking and erosion that supply key redox contrasts and biochemical substrates to sustain habitability. Mud or soft sediment may be a biochemical prerequisite, to provide accessible substrate and protection. Once life begins, the habitat is widened by the activity of life, both by its management of the greenhouse and by partitioning reductants (e.g. dead organic matter) and oxidants (including waste products). Potential Martian habitats are discussed: by comparison with Earth there are many potential environmental settings on Mars in which life may once have occurred, or may even continue to exist. The long-term evolution of habitability in the Solar System is considered.

  5. 17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Advanced Epithelial Cancer, Malignant Lymphoma, or Sarcoma

    ClinicalTrials.gov

    2013-02-06

    AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Chondrosarcoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Nodal Marginal Zone B-cell Lymphoma; Ovarian Sarcoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Osteosarcoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Uterine Sarcoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Stage IV Uterine Sarcoma; Unspecified Adult Solid Tumor, Protocol Specific

  6. Computed tomographic anatomy of the heads of blue-and-gold macaws (Ara ararauna), African grey parrots (Psittacus erithacus), and monk parakeets (Myiopsitta monachus).

    PubMed

    Veladiano, Irene A; Banzato, Tommaso; Bellini, Luca; Montani, Alessandro; Catania, Salvatore; Zotti, Alessandro

    2016-12-01

    OBJECTIVE To create an atlas of the normal CT anatomy of the head of blue-and-gold macaws (Ara ararauna), African grey parrots (Psittacus erithacus), and monk parakeets (Myiopsitta monachus). ANIMALS 3 blue-and-gold macaws, 5 African grey parrots, and 6 monk parakeets and cadavers of 4 adult blue-and-gold macaws, 4 adult African grey parrots, and 7 monk parakeets. PROCEDURES Contrast-enhanced CT imaging of the head of the live birds was performed with a 4-multidetector-row CT scanner. Cadaveric specimens were stored at -20°C until completely frozen, and each head was then sliced at 5-mm intervals to create reference cross sections. Frozen cross sections were cleaned with water and photographed on both sides. Anatomic structures within each head were identified with the aid of the available literature, labeled first on anatomic photographs, and then matched to and labeled on corresponding CT images. The best CT reconstruction filter, window width, and window level for obtaining diagnostic images of each structure were also identified. RESULTS Most of the clinically relevant structures of the head were identified in both the cross-sectional photographs and corresponding CT images. Optimal visibility of the bony structures was achieved via CT with a standard soft tissue filter and pulmonary window. The use of contrast medium allowed a thorough evaluation of the soft tissues. CONCLUSIONS AND CLINICAL RELEVANCE The labeled CT images and photographs of anatomic structures of the heads of common pet parrot species created in this study may be useful as an atlas to aid interpretation of images obtained with any imaging modality.

  7. Soft Chemical Fabrication of Iron-Based Thin Film Electrocatalyst for Water Oxidation under Neutral pH and Structure-Activity Tuning by Cerium Incorporation.

    PubMed

    Saha, Jony; Radhakrishnan, T P

    2017-08-29

    Design of electrocatalysts for the fundamentally important oxygen evolution reaction can be greatly aided by systematic structure-activity tuning via composition variation. We have explored the iron-cerium system as they are the most abundant transition and rare earth metals, and also due to the mutualistic impact of their size and electronic attributes that can induce critical changes in the structure and electrochemical activity. Submicrometer thick films of a series of Fe(III)-Ce(III) phosphate(oxyhydroxide) (FeCePH) are fabricated using a soft chemical strategy involving surfactant-aided assembly, spin-coating, and mild thermal annealing. FT-IR, Raman, and X-ray photoelectron spectroscopies, chemical analysis, X-ray diffraction, and electron microscopy reveal the systematic structural, electronic, and morphological variation, on tuning the iron-cerium composition. Nitrogen adsorption-desorption studies show the surface area increasing and pore size distribution shrinking with the cerium content, indicating its structure-directing role. The electrocatalysis of water oxidation by FeCePH films on FTO-coated glass is studied in neutral pH conditions. The overpotential and Tafel slope decrease with increasing cerium content, reaching minima at the optimal Fe:Ce ratio of 1:0.5; the turnover frequency shows a corresponding increase and maximum. The trends are explained on the basis of the structural changes in the films, and the coupling of Ce 3+ /Ce 4+ with Fe 3+ /Fe 4+ that leads to active state regeneration. This study presents a rational strategy to tune the efficiency of easily fabricated transition metal-based electrocatalyst thin films through rare earth metal incorporation; it should prove useful in the design of cost-effective catalysts for water oxidation.

  8. Soft tubular microfluidics for 2D and 3D applications

    PubMed Central

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck

    2017-01-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs. PMID:28923968

  9. Soft tubular microfluidics for 2D and 3D applications

    NASA Astrophysics Data System (ADS)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  10. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets†

    PubMed Central

    Muluneh, M.

    2015-01-01

    Microfluidic chips have been developed to generate droplets and microparticles with control over size, shape, and composition not possible using conventional methods. However, it has remained a challenge to scale-up production for practical applications due to the inherently limited throughput of micro-scale devices. To address this problem, we have developed a self-contained microchip that integrates many (N = 512) micro-scale droplet makers. This 3 × 3 cm2 PDMS microchip consists of a two-dimensional array of 32 × 16 flow-focusing droplet makers, a network of flow channels that connect them, and only two inputs and one output. The key innovation of this technology is the hybrid use of both soft-lithography and direct laser-micromachining. The microscale resolution of soft lithography is used to fabricate flow-focusing droplet makers that can produce small and precisely defined droplets. Deeply engraved (h ≈ 500 μm) laser-machined channels are utilized to supply each of the droplet makers with its oil phase, aqueous phase, and access to an output channel. The engraved channels' low hydrodynamic resistance ensures that each droplet maker is driven with the same flow rates for highly uniform droplet formation.To demonstrate the utility of this approach, water droplets (d ≈ 80 μm) were generated in hexadecane on both 8 × 1 and 32 × 16 geometries. PMID:24166156

  11. Vision-Aided Autonomous Precision Weapon Terminal Guidance Using a Tightly-Coupled INS and Predictive Rendering Techniques

    DTIC Science & Technology

    2011-03-01

    b b are additive accelerometer and gyro noises and w b abias and wbbbias are accelerometer bias and gyro bias noises. These will described in further...order accelerometer bias time constant and w b abias is the additive accelerometer bias noise, and ḃb = − 1 τb bb +wbbbias (2.43) where τb is the first

  12. Reproducibility in a multiprocessor system

    DOEpatents

    Bellofatto, Ralph A; Chen, Dong; Coteus, Paul W; Eisley, Noel A; Gara, Alan; Gooding, Thomas M; Haring, Rudolf A; Heidelberger, Philip; Kopcsay, Gerard V; Liebsch, Thomas A; Ohmacht, Martin; Reed, Don D; Senger, Robert M; Steinmacher-Burow, Burkhard; Sugawara, Yutaka

    2013-11-26

    Fixing a problem is usually greatly aided if the problem is reproducible. To ensure reproducibility of a multiprocessor system, the following aspects are proposed; a deterministic system start state, a single system clock, phase alignment of clocks in the system, system-wide synchronization events, reproducible execution of system components, deterministic chip interfaces, zero-impact communication with the system, precise stop of the system and a scan of the system state.

  13. Electron Beam "Writes" Silicon On Sapphire

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus

    1988-01-01

    Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.

  14. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  15. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.

    PubMed

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  16. TU-B-210-01: MRg HIFU - Bone and Soft Tissue Tumor Ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanouni, P.

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less

  17. Accessing microfluidics through feature-based design software for 3D printing.

    PubMed

    Shankles, Peter G; Millet, Larry J; Aufrecht, Jayde A; Retterer, Scott T

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

  18. Accessing microfluidics through feature-based design software for 3D printing

    PubMed Central

    Shankles, Peter G.; Millet, Larry J.; Aufrecht, Jayde A.

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to ‘jump-over’ channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics. PMID:29596418

  19. Symbolic interactionism in grounded theory studies: women surviving with HIV/AIDS in rural northern Thailand.

    PubMed

    Klunklin, Areewan; Greenwood, Jennifer

    2006-01-01

    Although it is generally acknowledged that symbolic interactionism and grounded theory are connected, the precise nature of their connection remains implicit and unexplained. As a result, many grounded theory studies are undertaken without an explanatory framework. This in turn results in the description rather than the explanation of data determined. In this report, the authors make explicit and explain the nature of the connections between symbolic interactionism and grounded theory research. Specifically, they make explicit the connection between Blumer's methodological principles and processes and grounded theory methodology. In addition, the authors illustrate the explanatory power of symbolic interactionism in grounded theory using data from a study of the HIV/AIDS experiences of married and widowed Thai women.

  20. Computer aided exercise electrocardiographic testing and coronary arteriography in patients with angina pectoris and with myocardial infarction.

    PubMed Central

    Angelhed, J E; Bjurö, T I; Ejdebäck, J; Selin, K; Schlossman, D; Griffith, L S; Bergstrand, R; Vedin, A; Wilhelmsson, C

    1984-01-01

    A set of electrocardiographic criteria for the diagnosis of coronary artery disease was evaluated in two different groups of patients examined by computer aided 12 lead exercise electrocardiographic stress testing and coronary arteriography. One group consisted of patients with severe angina pectoris and the other of patients who had suffered a myocardial infarction three years before the study. Angiographically determined categories of patients could be identified with satisfactory precision by the electrocardiographic criteria under test in the patients with angina pectoris but not in those with infarction. A new method of classifying patients on the basis of data from coronary arteriography improved the correlation with ST segment analysis compared with conventional classification. PMID:6743432

Top