Science.gov

Sample records for aike volcanic field

  1. Sensitivity to volcanic field boundary

    NASA Astrophysics Data System (ADS)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  2. Origin and evolution of the Laguna Potrok Aike maar (Southern Patagonia, Argentina) as revealed by seismic data

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; de Batist, M. A.; Niessen, F.; Anselmetti, F.; Ariztegui, D.; Haberzettl, T.; Ohlendorf, C.; Zolitschka, B.

    2009-12-01

    Seismic reflection and refraction data provide insights into the sedimentary infill and the underlying volcanic structure of Laguna Potrok Aike, a maar lake situated in the Pali Aike Volcanic Field, Southern Patagonia. The lake has a diameter of ~3.5 km, a maximum water depth of ~100 m and a presumed age of ~770 ka. Its sedimentary regime is influenced by climatic and hydrologic conditions related to the Antarctic Circumpolar Current, the Southern Hemispheric Westerlies and sporadic outbreaks of Antarctic polar air masses. Multiproxy environmental reconstructions of the last 16 ka document that this terminal lake is highly sensitive to climate change. Laguna Potrok Aike has recently become a major focus of the International Continental Scientific Drilling Program and was drilled down to 100 m below lake floor in late 2008 within the PASADO project. The sediments are likely to contain a continental record spanning the last ca. 80 kyrs unique in the South American realm. Seismic reflection data show relatively undisturbed, stratified lacustrine sediments at least in the upper ~100 m of the sedimentary infill but are obscured possibly by gas and/or coarser material in larger areas. A model calculated from seismic refraction data reveals a funnel-shaped structure embedded in the sandstone rocks of the surrounding Santa Cruz Formation. This funnel structure is filled by lacustrine sediments of up to 370 m in thickness. These can be separated into two distinct subunits with low acoustic velocities of 1500-1800 m s-1 in the upper subunit pointing at unconsolidated lacustrine muds, and enhanced velocities of 2000-2350 m s-1 in the lower subunit. Below these lacustrine sediments, a unit of probably volcanoclastic origin is observed (>2400 m s-1). This sedimentary succession is well comparable to other well-studied sequences (e.g. Messel and Baruth maars, Germany), confirming phreatomagmatic maar explosions as the origin of Laguna Potrok Aike.

  3. Recurrence rates of volcanism in basaltic volcanic fields: An example from the Springerville volcanic field, Arizona

    SciTech Connect

    Condit, C.D.; Connor, C.B.

    1996-10-01

    A spatio-temporal near-neighbor model is used to identify and map variations in the recurrence rate of volcanism in the Springerville volcanic field, Arizona, a large field on the Colorado Plateau boundary. Detailed mapping of individual lava flows and their associated vents, together with radiometric and paleomagnetic dating, demonstrates that 366 volcanic events have formed the Springerville volcanic field. A near-neighbor spatio-temporal recurrence-rate model using seven near-neighbor volcanoes and a 0.5 m.y. time window reveals that (1) areas of waxing and waning magmatism in the Springerville volcanic field are much more localized and (2) volcanic activity within these areas is much more intense than implied by field-wide temporal trends. Because volcanic activity is spatially and temporally clustered, forecasting subsequent activity is more successful if the spatio-temporal recurrence-rate model is used, rather than the average recurrence rates. This success indicates that spatio-temporal recurrence-rate models are useful tools for the quantification of long-term volcanic hazards in basaltic volcanic fields. 61 refs., 13 figs., 2 tabs.

  4. Origin and evolution of the Laguna Potrok Aike maar (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Gebhardt, A. C.; de Batist, M.; Niessen, F.; Anselmetti, F. S.; Ariztegui, D.; Ohlendorf, C.; Zolitschka, B.

    2009-04-01

    Laguna Potrok Aike, a maar lake in southern-most Patagonia, is located at about 110 m a.s.l. in the Pliocene to late Quaternary Pali Aike Volcanic Field (Santa Cruz, southern Patagonia, Argentina) at about 52°S and 70°W, some 20 km north of the Strait of Magellan and approximately 90 km west of the city of Rio Gallegos. The lake is almost circular and bowl-shaped with a 100 m deep, flat plain in its central part and an approximate diameter of 3.5 km. Steep slopes separate the central plain from the lake shoulder at about 35 m water depth. At present, strong winds permanently mix the entire water column. The closed lake basin contains a sub saline water body and has only episodic inflows with the most important episodic tributary situated on the western shore. Discharge is restricted to major snowmelt events. Laguna Potrok Aike is presently located at the boundary between the Southern Hemispheric Westerlies and the Antarctic Polar Front. The sedimentary regime is thus influenced by climatic and hydrologic conditions related to the Antarctic Circumpolar Current, the Southern Hemispheric Westerlies and sporadic outbreaks of Antarctic polar air masses. Previous studies demonstrated that closed lakes in southern South America are sensitive to variations in the evaporation/precipitation ratio and have experienced drastic lake level changes in the past causing for example the desiccation of the 75 m deep Lago Cardiel during the Late Glacial. Multiproxy environmental reconstruction of the last 16 ka documents that Laguna Potrok Aike is highly sensitive to climate change. Based on an Ar/Ar age determination, the phreatomagmatic tephra that is assumed to relate to the Potrok Aike maar eruption was formed around 770 ka. Thus Laguna Potrok Aike sediments contain almost 0.8 million years of climate history spanning several past glacial-interglacial cycles making it a unique archive for non-tropical and non-polar regions of the Southern Hemisphere. In particular, variations of

  5. Origin and evolution of the Laguna Potrok Aike maar (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Gebhardt, A. C.; de Batist, M.; Niessen, F.; Anselmetti, F. S.; Ariztegui, D.; Ohlendorf, C.; Zolitschka, B.

    2009-04-01

    Laguna Potrok Aike, a maar lake in southern-most Patagonia, is located at about 110 m a.s.l. in the Pliocene to late Quaternary Pali Aike Volcanic Field (Santa Cruz, southern Patagonia, Argentina) at about 52°S and 70°W, some 20 km north of the Strait of Magellan and approximately 90 km west of the city of Rio Gallegos. The lake is almost circular and bowl-shaped with a 100 m deep, flat plain in its central part and an approximate diameter of 3.5 km. Steep slopes separate the central plain from the lake shoulder at about 35 m water depth. At present, strong winds permanently mix the entire water column. The closed lake basin contains a sub saline water body and has only episodic inflows with the most important episodic tributary situated on the western shore. Discharge is restricted to major snowmelt events. Laguna Potrok Aike is presently located at the boundary between the Southern Hemispheric Westerlies and the Antarctic Polar Front. The sedimentary regime is thus influenced by climatic and hydrologic conditions related to the Antarctic Circumpolar Current, the Southern Hemispheric Westerlies and sporadic outbreaks of Antarctic polar air masses. Previous studies demonstrated that closed lakes in southern South America are sensitive to variations in the evaporation/precipitation ratio and have experienced drastic lake level changes in the past causing for example the desiccation of the 75 m deep Lago Cardiel during the Late Glacial. Multiproxy environmental reconstruction of the last 16 ka documents that Laguna Potrok Aike is highly sensitive to climate change. Based on an Ar/Ar age determination, the phreatomagmatic tephra that is assumed to relate to the Potrok Aike maar eruption was formed around 770 ka. Thus Laguna Potrok Aike sediments contain almost 0.8 million years of climate history spanning several past glacial-interglacial cycles making it a unique archive for non-tropical and non-polar regions of the Southern Hemisphere. In particular, variations of

  6. PASADO - ICDP Deep Drilling at Laguna Potrok Aike (Argentina): A 50 ka Record of Increasing Environmental Dynamics

    NASA Astrophysics Data System (ADS)

    Zolitschka, Bernd; Anselmetti, Flavio; Ariztegui, Daniel; Francus, Pierre; Gebhardt, Catalina; Kliem, Annette Hahn Pierre; Lücke, Andreas; Ohlendorf, Christian; Schäbitz, Frank; Wastegard, Stefan

    2010-05-01

    Laguna Potrok Aike, located in the South-Patagonian province of Santa Cruz (52°58'S, 70°23'W), was formed by a volcanic (maar) eruption in the late Quaternary Pali Aike Volcanic Field several hundred thousand years ago. This archive holds a unique record of paleoclimatic and paleoecological variability from a region sensitive to variations in southern hemispheric wind and pressure systems, which provide a significant cornerstone for the understanding of the entire global climate system. Moreover, Laguna Potrok Aike is close to many active volcanoes allowing a better understanding of the history of volcanism in the Pali Aike Volcanic Field as well as in the Andean mountain chain, the latter located in a distance of less than 150 km to the west. Finally, Patagonia is the source region of eolian dust blown from the South American continent into the South Atlantic and onto the Antarctic ice sheet. The currently ongoing global climate change, the thread of volcanic hazards as well as of regional dust storms are of increasing socio-economic relevance and thus challenging scientific themes that are tackled for southernmost South America with an interdisciplinary research approach in the framework of the ICDP-funded "Potrok Aike Maar Lake Sediment Archive Drilling Project" (PASADO). Using the GLAD800 drilling platform seven holes were drilled in the southern spring of 2008. A total of 510 m of lacustrine sediments were recovered by an international scientific team from the central 100 m deep basin with an excellent core recovery rate of 94.4%. The reference profile with a composite depth of 106 m consists of undisturbed laminated and sand-layered lacustrine silts with an increasing number of coarse gravel layers, turbidites and homogenites with depth. Below 80 m composite depth two mass-movement deposits (10 m and 5 m in thickness) are recorded. These deposits show tilted and distorted layers as well as nodules of fine-grained sediments and randomly distributed gravel

  7. Reappraisal of the significance of volcanic fields

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo

    2016-01-01

    "Volcanic field" is a term commonly used to loosely describe a group of volcanoes. Often, it is implicitly assumed that the volcanoes on a volcanic field are small, monogenetic and dominantly basaltic, but none of those attributes is indispensable on some definitions of the term. Actually, the term "volcanic field" can be used to describe a group of purely monogenetic edifices, a group of mixed monogenetic and polygenetic edifices, or even a group formed only by purely polygenetic edifices. Differences between each of those alternatives might be important, but the extent to which those differences are truly relevant remains still to be explored. Furthermore, there are several limitations on the current knowledge of this type of volcanic activity that explain the lack of a comprehensive effort to study volcanic fields in global contexts. In this work, issues concerning current definitions of a volcanic field are examined, and some criteria that can be used to distinguish volcanic fields from non-field volcanoes are suggested. Special attention is given to the role played by spatial scale on such a distinction. Also, the tectonic implications of their spatial distribution are explored. In particular, it is shown that volcanic fields are an important component of volcanic activity at a global scale that is closely associated to diffuse plate boundaries, and might well be considered the archetypical volcanic form of such tectonic scenarios.

  8. Deep Drilling at Laguna Potrok Aike, Argentina: Recovery of a Paleoclimate Record for the Last Glacial from the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Zolitschka, B.; Anselmetti, F.; Ariztegui, D.; Corbella, H.; Francus, P.; Gebhardt, C.; Hahn, A.; Kliem, P.; Lücke, A.; Ohlendorf, C.; Schäbitz, F.

    2009-12-01

    Laguna Potrok Aike, located in the South-Patagonian province of Santa Cruz (52°58’S, 70°23’W), was formed 770 ka ago by a volcanic (maar) eruption. Within the framework of the ICDP-funded project PASADO two sites were drilled from September to November 2008 using the GLAD800 drilling platform. A total of 513 m of lacustrine sediments were recovered from the central deep basin by an international team. The sediments hold a unique record of paleoclimatic and paleoecological variability from a region sensitive to variations in southern hemispheric wind and pressure systems and thus significant for the understanding of the global climate system. Moreover, Laguna Potrok Aike is close to many active volcanoes allowing a better understanding of the history of volcanism in the Pali Aike Volcanic Field and in the nearby Andean mountain chain. These challenging scientific themes need to be tackled in a global context as both are of increasing socio-economic relevance. On-site core logging based on magnetic susceptibility data documents an excellent correlation between the quadruplicate holes drilled at Site 1 and between the triplicate holes recovered from Site 2. Also, correlation between both sites located 700 m apart from each other is feasible. After splitting the cores in the lab, a reference profile was established down to a composite depth of 107 m for the replicate cores from Site 2. Sediments consist of laminated and sand-layered lacustrine silts with an increasing number of turbidites and homogenites with depth. Below 80 m composite depth two mass movement deposits (10 m and 5 m in thickness) are recorded. These deposits show tilted and distorted layers as well as nodules of fine grained sediments and randomly distributed gravel. Such features indicate an increased slump activity probably related to lake level fluctuations or seismicity. Also with depth coarse gravel layers are present and point to changes in hydrological conditions in the catchment area

  9. High-resolution Late Pleistocene paleomagnetic secular variation record from Laguna Potrok Aike, Southern Patagonia (Argentina): preliminary results from the ICDP-PASADO drilling

    NASA Astrophysics Data System (ADS)

    Lisé-Pronovost, Agathe; St-Onge, Guillaume; Haberzettl, Torsten; Pasado Science Team

    2010-05-01

    High-resolution paleomagnetic reconstructions from sedimentary sequences are scarce in the Southern Hemisphere. Therefore, the millennial- to centennial-scale variability of the geomagnetic field is under-represented in the Southern Hemisphere relative to the Northern Hemisphere and the possible global nature of that variability cannot be assessed. Here we present the first high-resolution Late Pleistocene paleomagnetic secular variation (PSV) reconstruction from the continental archive Laguna Potrok Aike south of 42°S in South America. Laguna Potrok Aike (51°58'S, 70°23'W) is a maar lake located in the Pali Aike Volcanic Field in southern Patagonia (Argentina). Previous studies revealed very high Holocene sedimentation rates (> 100 cm/ka) in the center of the lake. During the austral spring 2008, the multi-national Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) science team drilled two ~100 m holes under the framework of the International Continental scientific Drilling Program (ICDP). A preliminary Holocene age model based on comparison of magnetic susceptibility data from the PASADO core with the well-dated (radiocarbon- and tephra-based chronology) core located nearby in the center of the lake (PTA03-12) indicates a continuous deposition of ~19 m of lacustrine sediments since the last 16 ka cal. BP. Hysteresis measurements using an alternating gradient force magnetometer indicate a magnetic assemblage dominated by magnetite grains in the pseudo-single domain range. Principal component analysis (PCA) inclination and declination profiles were constructed from the stepwise alternating field demagnetization of the natural remanent magnetization (NRM) measured on u-channels at 1 cm intervals using a 2G Enterprises cryogenic magnetometer. The PCA inclinations vary around the expected geocentric axial dipole (GAD) inclination for the latitude of the coring site and the maximum angular deviation (MAD) values are generally lower than 5°, indicating

  10. Migration of volcanism in the San Francisco volcanic field, Arizona.

    USGS Publications Warehouse

    Tanaka, K.L.; Shoemaker, E.M.; Ulrich, G.E.; Wolfe, E.W.

    1986-01-01

    The remanent magnetization of volcanic rocks has been determined at 650 sites in this volcanic field in the S part of the Colorado plateau. The polarity of remanent magnetization, combined with K/Ar age determinations, spatial and petrographic association, stratigraphic relations and state of preservation of the cinder cones, provides a basis of assignment to a known magnetic polarity epoch of 610 mafic vents and >100 intermediate to silicic flows, flow sequences and vents. Basaltic volcanism migrated NE before Matoyama time (2.48-5.0 m.y.) at a rate of approx 1.2 cm/yr and eastward over the past 2.5 m.y. at a rate of 2.9 cm/yr. Total magma production and frequency of basaltic eruption accelerated between 5 and 0.25 m.y. and have decreased thereafter; this evolutionary sequence, coupled with the Sr-isotopic composition of the rocks, can be explained by magmatism caused by shear heating at the base of the lithosphere. The eastward drift of volcanism represents the absolute westward motion of the North America plate.-L.C.H.

  11. Laguna Potrok Aike, Argentina: the first non-tropical environmental record in South America extending far beyond the Late-Glacial - a progress report

    NASA Astrophysics Data System (ADS)

    Zolitschka, B.; Anselmetti, F.; Ariztegui, D.; Corbella, H.; Francus, P.; Gebhardt, C.; Lücke, A.; Ohlendorf, C.; Schäbitz, F.; Pasado Science Team

    2009-04-01

    Within the framework of the ICDP-funded "Potrok Aike maar lake sediment archive drilling project" (PASADO) an international team of scientists carried out interdisciplinary research at the unique mid-Pleistocene (770 ka) maar lake of Laguna Potrok Aike in southern Patagonia (Province of Santa Cruz, Argentina). This lake is very sensitive to variations in southern hemispheric wind and pressure systems and thus holds a unique and continuous lacustrine record of climatic and ecological variability of global significance. Moreover, Southern Patagonia with its many active volcanoes is an ideal location to better understand the regional history of volcanism. These are two challenging geo-scientific themes that need to be tackled, especially as both of them have an increasing socio-economic relevance. Three months of drilling activities that finished last November 2008 were carried out by DOSECC from the drilling platform R/V "Kerry Kelts". More than 500 m of lacustrine sediments were recovered. This sedimentary archive will provide (1) new insights into the processes of regional back arc volcanism within the Pali Aike Volcanic Field itself as well as the more distant explosive volcanism of the Andean mountain chains; and, (2) high-resolution (decadal) quantitative climate and environmental reconstructions supported by multiple dating and stratigraphic correlations. Marine - ice core - terrestrial linkages will be emphasized as well as the incorporation of results from global climate modelling simulations for the last ca. 100 ka. The two drilled sites in the central deep basin of Laguna Potrok Aike have been selected based on four seismic surveys carried out between 2003 and 2005. Sediments were recovered at both drilled sites down to a subbottom depth of slightly more than 100 m using the GLAD800 drill rig with the hydraulic piston corer tool (HPC) at water depths varying between 95 and 100 m. The total core recovery is 94%. On-site core logging with the multi sensor

  12. The San Francisco volcanic field, Arizona

    USGS Publications Warehouse

    Priest, S.S.; Duffield, W.A.; Malis-Clark, Karen; Hendley, J. W., II; Stauffer, P.H.

    2001-01-01

    Northern Arizona's San Francisco Volcanic Field, much of which lies within Coconino and Kaibab National Forests, is an area of young volcanoes along the southern margin of the Colorado Plateau. During its 6-million-year history, this field has produced more than 600 volcanoes. Their activity has created a topographically varied landscape with forests that extend from the Pi?on-Juniper up to the Bristlecone Pine life zones. The most prominent landmark is San Francisco Mountain, a stratovolcano that rises to 12,633 feet and serves as a scenic backdrop to the city of Flagstaff.

  13. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  14. Twilight of a Volcanic Field: 11 Million Years of Basaltic Volcanism in the Southwestern Nevada Volcanic Field, USA

    NASA Astrophysics Data System (ADS)

    Perry, F. V.; Valintine, G. A.

    2007-12-01

    Following the end of major caldera-forming silicic volcanism in the Southwestern Nevada Volcanic Field (SNVF), at least 10 episodes of alkalic basaltic volcanism have occurred over the last ~11 Ma. An understanding of the past behavior of the volcanic field provides insight for forecasting future eruptive behavior for use in hazard assessment for the high-level radioactive waste repository at Yucca Mountain. A program of geophysics, drilling, Ar-Ar dating and geochemistry conducted since 2004 by Los Alamos National Laboratory and the U.S. Geological Survey, combined with previous and ongoing petrogenetic and physical volcanology studies, sheds more light on the early and middle evolution of the volcanic field, much of which has been buried in alluvial basins. Volumes of erupted basalt have drastically declined over the history of the field, from as much as 50 km3 in the Miocene to about 0.5 km3 in the Pleistocene. The volume decrease is accompanied by a drastic decrease in extension rate, suggesting a close link between magmatism and tectonism. Neodymium and strontium isotopic analyses indicate that enriched lithospheric mantle has been the source of basalt throughout the history of the field. Decreasing eruption volumes are accompanied by an approximate doubling of Ce/Yb ratios, indicating that the volume decrease reflects a decrease in degree of partial melting of the lithospheric source. Eruption style has also changed with time, reflecting an increase in magma volatile content, consistent with decreased amounts of partial melting of a volatile-bearing source. These observations are consistent with a model in which the lithospheric mantle source was hottest during the period of major silicic volcanism and the presence of an active subduction system. After the breakdown of subduction, continued thermal input into the lithosphere ceased, and the lithosphere began to conductively cool. Melt accumulation in non-convecting, static lithosphere is probably related to

  15. The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province

    NASA Astrophysics Data System (ADS)

    Pankhurst, R. J.; Leat, P. T.; Sruoga, P.; Rapela, C. W.; Márquez, M.; Storey, B. C.; Riley, T. R.

    1998-04-01

    The field occurrence, age, classification and geochemistry of the Mesozoic volcanic rocks of Patagonia and West Antarctica are reviewed, using published and new information. Dominated by rhyolitic ignimbrites, which form a bimodal association with minor mafic and intermediate lavas, these constitute one of the largest silicic igneous provinces known, equivalent in size to many mafic LIPs. Diachronism is recognized between the Early-Middle Jurassic volcanism of eastern Patagonia (Marifil and Chon Aike formations) and the Middle Jurassic-earliest Cretaceous volcanism of the Andean Cordillera (El Quemado, Ibañez and Tobı´fera formations). This is accompanied by a change in geochemical characteristics, from relatively high-Zr and -Nb types in the east to subalkaline arc-related rocks in the west, although the predominance of rhyolites remains a constant factor. All of the associated mafic rocks are well fractionated compared to direct mantle derivatives. Petrogenetic models favour partial melting of immature lower crust as a result of the intrusion of basaltic magmas, possibly with some hybridisation of the liquids and subsequent fractionation by crystal settling or solidification and remelting. The formation of large amounts of intracrustal silicic melt acted as a density barrier against the further rise of mafic magmas, which are thus rare in the province.

  16. Spatial distribution and alignments of volcanic centers: Clues to the formation of monogenetic volcanic fields

    NASA Astrophysics Data System (ADS)

    Le Corvec, Nicolas; Spörli, K. Bernhard; Rowland, Julie; Lindsay, Jan

    2013-09-01

    Monogenetic basaltic volcanic fields occur worldwide in tectonic environments ranging from extensional to convergent. Understanding similarities and differences between these fields may help to characterize key controls on their generation. Such volcanic fields consist of numerous volcanic centers, each of which represents a pathway of magma from its source to the surface. We analyzed the spatial distribution of volcanic centers in 37 monogenetic volcanic fields, and assuming that the distribution of volcanic centers relative to each other is matched by a similar source pattern within the mantle, applied the following methods for each: (1) the Poisson Nearest Neighbor (PNN) analysis, representing the degree to which the distribution of the volcanic centers departs from a predicted Poisson distribution, and (2) a volcanic alignment analysis to ascertain the preferential pathways, if any, used by the magma to reach the surface. This is the first comprehensive global comparison of such analyses. Magma pathways within the brittle upper crust are influenced to various degrees by two end-member situations: (1) formation of new extension fractures perpendicular to the least compressive stress (σ3) and (2) re-activation of pre-existing fractures that are near-parallel to the maximum principal stress (σ1). The results of the PNN analysis show that, independently of the tectonic environment, most volcanic fields display a clustered distribution of their volcanic centers. Alignment analysis shows that either the ambient tectonic environment exerts a strong influence on the preferential orientations of the volcanic alignments, or that it is in competition with other factors (e.g., pre-existing structures, local stress changes due to older intrusions). Overall, these results indicate that the propagation of the magma (and therefore the spatial distribution of the volcanic centers within volcanic fields) is the product of an interplay between deep level influences (i

  17. Paleomagnetic Study of El Pinacate Volcanic Field, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez Trejo, A.; Alva-Valdivia, L. M.; Paleomagnetism Laboratory, Geophysics Institute, UNAM

    2011-12-01

    This Paleomagnetic study reports the results of 235 cores from 19 sites of different lava flows, reporting results of the magnetic properties such as Susceptibility vs.Temperature, hysteresis, FORC analysis, etc. Results of the desmagnetization process by alternating fields and temperature and the Paleointensity experiments. El Pinacate Volcanic Field (PVF) is located on the NNW region of Sonora, Mexico, and it consists on older lava flows, covered and surrounded by some cinder cones and younger lava flows, result of two different volcanic events, the older one, the event Pre Pinacate (Miocene) and the younger one Pinacate (Quaternary). Cinder cones are the most common volcanic structures on the area, there are more than 400 of them, and with all the lava flows, covering a 1,500 km2 area. There are 8 maars, volcanic structures result of phreatomagmatic activity (El Elegante) and a tuff cone (Cerro Colorado). El Pinacate is a monogenetic volcanic field that includes more than 400 volcanic structures and lava flows, dominated principally by basalts. The principal volcanic event Pinacate started its activity from the early Quaternary, untilt 1.1 Ma; and the last volcanic series started at 780 Ka to 32 Ka , the principal volcanic shield, including the principal volcanic structures as cinder cones, maars and lava flows. However, the principal objetive of this work is to calculate tha Paleosecular Variation and the Geomagnetic Paleointensity, based on previous geochronological studies.

  18. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-03-01

    Kernel density estimation is presented as a new, non-parametric method for quantifying the spatial arrangement of volcanic fields. It is applied to two vent fields in Tharsis Province, Mars, to produce insightful spatial density functions.

  19. Temporal and Spatial Analysis of Monogenetic Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Kiyosugi, Koji

    Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir. We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism. We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more

  20. Volcanology, geochemistry and age of the Lausitz Volcanic Field

    NASA Astrophysics Data System (ADS)

    Büchner, J.; Tietz, O.; Viereck, L.; Suhr, P.; Abratis, M.

    2015-11-01

    The Lausitz (Lusatia) Volcanic Field is part of the Central European Volcanic Province, and its magmas represent an alkaline trend from olivine nephelinites and basanites to trachytes and phonolites, typical for intraplate settings. Neighbouring volcanic fields are the České Středohoří Mountains to the south-west and the Fore-Sudetic Basin in Lower Silesia to the east. More than 1000 volcanic structures associated with approximately 500 vents have been located within this volcanic field. Residuals of scoria cones, lava lakes, lava flows and maar-diatreme in filling occur in situ near the level of the original syn-volcanic terrain. In more deeply eroded structures, volcanic relicts outcrop as plugs or feeders. Evolved rocks occur as monogenetic domes or intrusions in diatremes, while their volcaniclastic equivalents are rare. Twenty-three localities were dated using the 40Ar/39Ar method. The ages range from 35 to 27 Ma, with a focus around 32-29 Ma, indicating Late Eocene and mainly Oligocene volcanism for the LVF. Differentiated rocks appear to be slightly younger than less differentiated. No geographical age clusters are apparent.

  1. The Zuni-Bandera Volcanic Field, NM: An Analog for Exploring Planetary Volcanic Terrains

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Garry, W. B.; Zimbelman, J. R.; Crumpler, L. S.; Aubele, J. C.

    2010-12-01

    The Zuni-Bandera volcanic field, near Grants, New Mexico, is comprised of volcanic deposits from several basaltic eruptions during the last million years. This vent field exhibits a diverse group of coalesced lava flows and displays well-preserved volcanic features including a’a and pahoehoe flows, collapsed lava tubes, cinder cones and low shields. The McCartys flow is a 48-km long inflated basalt flow and is the youngest in the field at around 3000 years old. Over the last three years we have used the Zuni-Bandera volcanic field, and the McCartys flow in particular, as a terrestrial analog for exploring planetary volcanic fields, and understanding the role of lava sheet inflation in flow field development. We have conducted three different styles of analog tests, 1) basic field science focused on understanding lava sheet inflation, 2) mission operations tests related to EVA design and real-time modification of traverse plans, and 3) science enabling technology tests. The Zuni-Bandera field is an ideal location for each style of analog test because it provides easy access to a diverse set of volcanic features with variable quality of preservation. However, many limitations must also be considered in order to maximize lessons learned. The McCartys flow displays well-preserved inflation plateaus that rise up to 15 m above the surrounding field. The preservation state enables textures and morphologies indicative of this process to be characterized. However, the pristine nature of the flow does not compare well with the much older and heavily modified inflated flows of Mars and the Moon. Older flows west of McCartys add value to this aspect of analog work because of their degraded surfaces, development of soil horizons, loose float, and limited exposure of outcrops, similar to what might be observed on the Moon or Mars. EVA design tests and science enabling technology tests at the Zuni-Bandera field provide the opportunity to document and interpret the relationships

  2. Constraining the onset of flood volcanism in Isle of Skye Lava Field, British Paleogene Volcanic Province

    NASA Astrophysics Data System (ADS)

    Angkasa, Syahreza; Jerram, Dougal. A.; Svensen, Henrik; Millet, John M.; Taylor, Ross; Planke, Sverre

    2016-04-01

    In order to constrain eruption styles at the onset of flood volcanism, field observations were undertaken on basal sections of the Isle of Skye Lava Field, British Paleogene Volcanic Province. This study investigates three specific sections; Camus Ban, Neist Point and Soay Sound which sample a large area about 1500 km2 and can be used to help explain the variability in palaeo-environments at the onset of flood volcanism. Petrological analysis is coupled with petrophysical lab data and photogrammetry data to create detailed facies models for the different styles of initiating flood basalt volcanism. Photogrammetry is used to create Ortho-rectified 3D models which, along with photomontage images, allow detailed geological observations to be mapped spatially. Petrographic analyses are combined with petrophysical lab data to identify key textural variation, mineral compositions and physical properties of the volcanic rocks emplaced during the initial eruptions. Volcanism initiated with effusive eruptions in either subaerial or subaqueous environments resulting in tuff/hyaloclastite materials or lava flow facies lying directly on the older Mesozoic strata. Volcanic facies indicative of lava-water interactions vary significantly in thickness between different sections suggesting a strong accommodation space control on the style of volcanism. Camus Ban shows hyaloclastite deposits with a thickness of 25m, whereas the Soay Sound area has tuffaceous sediments of under 0.1m in thickness. Subaerial lavas overly these variable deposits in all studied areas. The flood basalt eruptions took place in mixed wet and dry environments with some significant locally developed water bodies (e.g. Camus Ban). More explosive eruptions were promoted in some cases by interaction of lavas with these water bodies and possibly by local interaction with water - saturated sediments. We record key examples of how palaeotopography imparts a primary control on the style of volcanism during the

  3. Evolution of volcanic rocks and associated ore deposits in the Marysvale volcanic field, Utah

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Rowley, Peter D.; Naeser, Charles W.; Mehnert, Harald H.; Hedge, Carl E.; Ludwig, Kenneth R.

    1994-01-01

    A geological account on the igneous activity and associated mineral deposition in the volcanic field of Marysvale in Utah is presented. Three episodes (34-22 Ma, 22-14 Ma and 9-5 Ma) involved in the volcanic rock eruption and associated mineralization are described. The first episode is believed to have occurred during the time of tectonic convergence when two contrasting suites of rocks, Mount Dutton Formation and Bullion Canyon Volcanics, erupted concurrently. Mineralization during this period was sparse. In the second episode, change from intermediate to bimodal volcanism occurred. During the third episode, basaltic compositions did not change. Although major element constituent had rhyolites similar to that of the second episode, rhyolites had a marked radiogenic isotope characteristic difference.

  4. Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico

    NASA Astrophysics Data System (ADS)

    Lynch, D. J.; Musselman, T. E.; Gutmann, J. T.; Patchett, P. J.

    1993-02-01

    Six volcanic rocks, reconnaissance samples representing most of the temporal and compositional variation in the Pinacate volcanic field of Sonora and Arizona, are characterized for major element and NdSr isotopic compositions. The samples consist of basanite through trachyte of an early shield volcano, and alkali basalts and a tholeiite from later craters and cinder cones. With the exception of the trachyte sample, which has increased 87Sr/ 86Sr due to crustal effects, all 87Sr/ 86Sr values fall between 0.70312 and 0.70342, while ɛNd values are all between + 5.0 and + 5.7. Clinopyroxene in a rare spinel-lherzolite nodule derived from the uppermost mantle beneath the field has 87Sr/ 86Sr of 0.70320 but ɛNd of + 8.8, three ɛNd units higher than the volcanic rocks. Both the volcanic rocks and the nodule record the presence of asthenospheric, rather than enriched lithospheric mantle beneath Pinacate. This is consistent with one or both of (a) proximity of Pinacate to the Gulf of California spreading center and (b) presence of similar asthenospheric mantle signatures in volcanic rocks over a wide contiguous area of the southwestern USA. We consider the comparison to other southwestern USA magma sources as the more relevant alternative, although a definite conclusion is not possible at this stage.

  5. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  6. Neogene rhyolites of the northern Jemez volcanic field, New Mexico

    SciTech Connect

    Loeffler, B.M.; Vaniman, D.T.; Baldridge, W.S.; Shafiqullah, M.

    1988-06-10

    Volcanic centers previously mapped as the 20 Ma El Rechuelos Rhyolite in the northern Jemez volcanic field, New Mexico, include three distinct episodes of rhyolitic volcanism. An early (7.5 Ma) extrusive dome of flow-banded biotite rhyolite and an intermediate (5.8 Ma) rhyolite, possibly a volcanic neck, correspond in age to rhyolites of the Keres Group in the southern Jemez volcanic field. Three other extrusive domes of aphyric, pumiceous rhyolite and obsidian comprise a late volcanic episode, dated at 2.0 Ma. We retain the name El Rechuelos Rhyolite only for these late centers. Another center, farther north than the others but previously mapped with the El Rechuelos Rhyolite, is a dacite pumice ring whose age (5.2 Ma), petrography, major- and trace-element chemistry, and Sr initial ratio all suggest it should be included with rocks of the Tschicoma Formation. Nd and Sr isotopic ratios of the Neogene rhyolites of the northern Jemez volcanic field suggest that these rhyolites were not produced by partial melting of either upper or lower crust. Rather, they may have been generated from a mantle-derived mafic magma, such as the nearby Lobato Basalt, by fractional crystallization with concomitant assimilation of small amounts (<6%) of lower crust. If the El Rechuelos is derived from a lower crust magma chamber, as seems likely, then it is not related to the bandelier magma system, even though it is part of a continuum of rhyolite volcanism ranging from 3.6 Ma to 130,000 years ago that includes the Bandelier and precursor rhyolitic units. copyright American Geophysical Union 1988

  7. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  8. Spatio-volumetric hazard estimation in the Auckland volcanic field

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  9. What controls the distribution of volcanoes within monogenetic volcanic fields: Insights from spatial distribution and alignments of volcanic centers

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; Sporli, K. B.; Rowland, J. V.; Lindsay, J. M.

    2012-04-01

    Basaltic volcanic fields are distributed worldwide in tectonic environments ranging from extensional to convergent. Understanding similarities and differences between these fields may help us to characterize key controls on their generation. Basaltic volcanic fields are composed of numerous volcanic centers which represent the end point of the pathway of magma from its source to the surface. We analyzed the spatial distribution of volcanic centers of 37 different monogenetic volcanic fields using similar analyses for each volcanic field: 1) the Poisson Nearest Neighbor (PNN) analysis representing the degree to which an observation (i.e., the distribution of the volcanic centers) departs from a predicted Poisson distribution; here we assume that the distribution of volcanic centers relative to each other is representative of the source behavior within the mantle, and 2) a volcanic alignment analysis to ascertain the preferential pathways, if any, used by the magma to reach the surface. We consider the end-member geometries for magma pathways within the brittle upper crust to be representative of: 1) newly formed extension fractures perpendicular to the least compressive stress (σ3), or 2) pre-existing fractures that are near-parallel to the maximum principal stress (σ1). Although these methods have been used to characterize monogenetic volcanic fields elsewhere, this is the first comprehensive global comparison of the resulting data using these methods. The results of the PNN analysis show that most volcanic fields display a clustered distribution of their volcanic centers, which is independent of the tectonic environment. The results of the volcanic alignment analyses show either that the tectonic environment may exert a strong influence on the preferential orientations of the volcanic alignments, or be in competition with other factors (e.g., pre-existing structures, local stress changes due to older intrusions). The combination of these results emphasises the

  10. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  11. Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.

    2002-01-01

    The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and

  12. Tectonic implications of space-time patterns of Cenozoic volcanism in the Palo Verde Mountain volcanic field, southeastern California

    SciTech Connect

    Murray, K.S.

    1981-01-01

    Variations in Cenozoic volcanism in the western United States are believed to correlate closely with changes in tectonic setting. A transition in volcanic association from calc-alkaline to fundamentally basaltic volcanism and subsequent crustal extension, appears to have coincided temporally with the initial collision of the East Pacific Rise with the continental margin trench off western North America, between 28 and 25 Ma. The volcanic stratigraphy of the Palo Verde Mountain volcanic field is broadly similar to other volcanic centers in southeastern California and can be divided into tripartite regional stratigraphy. A basal sequence of andesitic to rhyolitic lava flows, plugs, domes, and extensive pyroclastic deposits rests unconformably on pre-Cenozoic basement rocks. The basal sequence is intruded by cogenetic Cenozoic plutonic rocks and overlain by basaltic to rhyolitic lava flows, dikes, and a second widespread assemblage of pyroclastic deposits, cumulatively referred to as the silicic sequence. The youngest volcanic rocks of the field include olivine basalt flows and breccia which occur at scattered localities in the Palo Verde Mountains. The age, stratigraphy, and chemistry of the intermediate and basaltic composition volcanic rocks broadly supports previously cited volcanic-tectonic models, if modified to incorporate modern plate reconstruction theory. This modification results in a southeast migration of the transition to basaltic volcanism to southeastern California occurring significantly later in time than the previously cited ages of transition. Moreover, this southeast migration of the volcanic transition is coincident with the inception of Basin and Range faulting and the initiation of movement on the San Andreas fault south of the Transverse Ranges, corresponding to the southward migration of the Pacific-Cocos Ridge.

  13. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    NASA Astrophysics Data System (ADS)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  14. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  15. Shield fields: Concentrations of small volcanic edifices on Venus

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    Pre-Magellan analysis of the Venera 15/16 data indicated the existence of abundant small volcanic edifices, each less than or equal to 20 km diameter, interpreted to be predominantly shield volcanoes and occurring throughout the plains terrain, most common in equidimensional clusters. With the analysis of Magellan data, these clusters of greater than average concentration of small volcanic edifices have been called 'shield fields'. Although individual small shields can and do occur almost everywhere on the plains terrain of Venus, they most commonly occur in fields that are well-defined, predominantly equant, clusters of edifices. Major questions include why the edifices are concentrated in this way, how they relate to the source of the eruptive material, and what the possible relationship of shield fields to plains terrain is. There are three possible models for the origin of fields and small shields: (1) a field represents an 'island' of higher topography subsequently surrounded by later plains material; and (2) a field represents the area of magma reservoir.

  16. Geology and geochemistry of volcanic centers within the eastern half of the Sonoma volcanic field, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Rytuba, James J.; Langenheim, V.E.; Fleck, Robert J.

    2011-01-01

    The volcanic fields in the California Coast Ranges north of San Francisco Bay are temporally and spatially associated with the northward migration of the Mendocino triple junction and the transition from subduction and associated arc volcanism to a slab window tectonic environment. Our geochemical analyses from the Sonoma volcanic field highlight the geochemical diversity of these volcanic rocks, allowing us to clearly distinguish these volcanic rocks from those of the roughly coeval ancestral Cascades magmatic arc to the west, and also to compare rocks of the Sonoma volcanic field to rocks from other slab window settings.

  17. Audiomagnetotelluric data, Taos Plateau Volcanic Field, New Mexico

    USGS Publications Warehouse

    Ailes, Chad E.; Rodriguez, Brian D.

    2011-01-01

    The U.S. Geological Survey is conducting a series of multidisciplinary studies of the San Luis Basin as part of the Geologic framework of the Rio Grande Basins project. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, audiomagnetotelluric surveys, and hydrologic and lithologic data are being used to better understand the aquifers. This report describes a regional east-west audiomagnetotelluric sounding profile acquired in late July 2009 across the Taos Plateau Volcanic Field. No interpretation of the data is included.

  18. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    SciTech Connect

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities.

  19. Petrogenesis of Cenozoic volcanic rocks in the NW sector of the Gharyan volcanic field, Libya

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Cucciniello, Ciro; Melluso, Leone; Tassinari, Colombo C. G.; dè Gennaro, Roberto; Serracino, Marcello

    2012-12-01

    The north-western sector of the Gharyan volcanic field (northern Libya) consists of trachytic-phonolitic domes emplaced between ~ 41 and 38 Ma, and small-volume mafic alkaline volcanic centres (basanites, tephrites, alkali basalts, hawaiites and rare benmoreites) of Middle Miocene-Pliocene age (~ 12-2 Ma). Two types of trachytes and phonolites have been recognized on the basis of petrography, mineralogy and geochemistry. Type-1 trachytes and phonolites display a smooth spoon-shaped REE pattern without negative Europium anomalies. Type-2 trachytes and phonolites show a remarkable Eu negative anomaly, higher concentration in HFSE (Nbsbnd Tasbnd Zrsbnd Hf), REE and Ti than Type-1 rocks. The origin of Type-1 trachytes and phonolites is compatible with removal of clinopyroxene, plagioclase, alkali feldspar, amphibole, magnetite and titanite starting from benmoreitic magmas, found in the same outcrops. Type-2 trachytes and phonolites could be the result of extensive fractional crystallization starting from mafic alkaline magma, without removal of titanite. In primitive mantle-normalized diagrams, the mafic rocks (Mg# = 62-68, Cr up to 514 ppm, Ni up to 425 ppm) show peaks at Nb and Ta and troughs at K. These characteristics, coupled with low 87Sr/86Sr(i) (0.7033-0.7038) and positive ɛNd (from + 4.2 to + 5.3) features typical of the mafic anorogenic magmas of the northern African plate and of HIMU-OIB-like magma in general. The origin of the mafic rocks is compatible from a derivation from low degree partial melting (3-9%) shallow mantle sources in the spinel/garnet facies, placed just below the rigid plate in the uppermost low-velocity zone. The origin of the igneous activity is considered linked to passive lithospheric thinning related to the development of continental rifts like those of Sicily Channel (e.g., Pantelleria and Linosa) and Sardinia (e.g., Campidano Graben) in the Central-Western Mediterranean Sea.

  20. Sills of the San Rafael Volcanic Field, Utah

    NASA Astrophysics Data System (ADS)

    Gallant, E.; Connor, C.; Connor, L.; Richardson, J. A.; Wetmore, P. H.

    2014-12-01

    Substantial populations, such as Mexico City, Auckland, and Portland, are built within or near monogenetic fields, so it is important to understand both eruption precursors and magma plumbing systems in such areas. Directly observing the plumbing systems of this rarely witnessed eruption style provides valuable insight into the nature of magmatic transport and storage within the shallow crust, as well as the associated monogenetic eruptive processes. Within the San Rafael Desert of Central Utah is an exposed Pliocene complex of approximately 2000 mapped dikes, 12 sills, and 60 conduits eroded to a depth of 800 m below the paleosurface. A combination of airborne LiDAR (ALS), provided by NCALM, and terrestrial LiDAR (TLS) surveys are used to map the dip of 5 major sills within a 35 sq km area. The ALS provides a 1 m aerial resolution of exposed volcanic features and the TLS gives vertical measurements to cm accuracy. From these data we determine that the 5-25 m thick sills in this area dip approximately 1 to 6 degrees. Field observations show that steps in sills and related fabrics indicate flow direction in sills during emplacement and that sills normally propagate down dip in the Entrada sandstone host rock away from apparent feeder dikes and conduits. Some sills have foundered roofs, especially near conduits, suggesting that nearly neutrally buoyant magmas emplaced into sills along bed partings in the Entrada, differentiated, and in some cases flowed back into conduits. By volume, at 800 m depth in the San Rafael, nearly all igneous rock (approximately 90 percent) is located in sills rather than in dikes or conduits. These observations are consistent with geochemical models that suggest differentiation in shallow sills explains geochemical trends observed in single monogenetic volcanoes in some active fields. Deformation associated with sill inflation and deflation may be a significant precursor to eruptive activity in monogenetic volcanic fields.

  1. Space Radar Image of Pinacate Volcanic Field, Mexico

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the Pinacate Volcanic Field in the state of Sonora, Mexico, about 150 kilometers (93 miles) southeast of Yuma, Arizona. The United States/Mexico border runs across the upper right corner of the image. More than 300 volcanic vents occur in the Pinacate field, including cinder cones that experienced small eruptions as recently as 1934. The larger circular craters seen in the image are a type of volcano known as a 'maar', which erupts violently when rising magma encounters groundwater, producing highly pressurized steam that powers explosive eruptions. The highest elevations in the volcanic field, about 1200 meters (4000 feet), occur in the 'shield volcano' structure shown in bright white, occupying most of the left half of the image. Numerous cinder cones dot the flanks of the shield. The yellow patches to the right of center are newer, rough-textured lava flows that strongly reflect the long wavelength radar signals. Along the left edge of the image are sand dunes of the Gran Desierto. The dark areas are smooth sand and the brighter brown and purple areas have vegetation on the surface. Radar data provide a unique means to study the different types of lava flows and wind-blown sands. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 18, 1994. The image is 57 kilometers by 48 kilometers (35 miles by 30 miles) and is centered at 31.7 degrees north latitude, 113.4 degrees West longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  2. Volcanism-sedimentation interaction in the Campo de Calatrava Volcanic Field (Spain): a magnetostratigraphic and geochronological study

    NASA Astrophysics Data System (ADS)

    Herrero-Hernández, Antonio; López-Moro, Francisco Javier; Gallardo-Millán, José Luis; Martín-Serrano, Ángel; Gómez-Fernández, Fernando

    2015-01-01

    This work focuses on the influence of Cenozoic volcanism of the Campo de Calatrava volcanic field on the sedimentation of two small continental basins in Spain (Argamasilla and Calzada-Moral basins). The volcanism in this area was mainly monogenetic, according to the small-volume volcanic edifices of scoria cones that were generated and the occurrence of tuff rings and maars. A sedimentological analysis of the volcaniclastic deposits led to the identification of facies close to the vents, low-density (dilute) pyroclastic surges, secondary volcanic deposits and typical maar deposits. Whole-rock K/Ar dating, together with palaeomagnetic constraints, yielded an age of 3.11-3.22 Ma for the onset of maar formation, the deposition finished in the Late Gauss-Early Matuyana. Using both techniques and previous paleontological data allowed it to be inferred that the maar formation and the re-sedimentation stage that occurred in Argamasilla and Calzada-Moral basins were roughly coeval. The occurrence of syn-eruption volcaniclastic deposits with small thicknesses that were separated by longer inter-eruption periods, where fluvial and lacustrine sedimentation was prevalent, together with the presence of small-volume volcanic edifices indicated that there were short periods of volcanic activity in this area. The volcanic activity was strongly controlled by previous basement faults that favoured magma feeding, and the faults also controlled the location of volcanoes themselves. The occurrence of the volcanoes in the continental basins led to the creation of shallow lakes that were related to the maar formation and the modification of sedimentological intra-basinal features, specifically, valley slope and sediment load.

  3. Magmatic Evolution in the Los Tuxtlas Volcanic Field, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Koster, A.; Kobs-Nawotniak, S. E.

    2012-12-01

    Magma evolution within the Los Tuxtlas Volcanic Field (LTVF) is poorly understood. The LTVF is a basaltic, monogenetic field in Veracruz, Mexico, that contains approximately 400 vents and has been active for the last 7 Ma, including a sub-Plinian eruption in 1793. The field is structurally controlled, with cones forming NW-SE lines consistent with local extension. By understanding magmatic evolution through ascent, storage, and mixing, it is possible to more accurately predict future trends in the system. Samples from two alignments of cinder cones located between San Martin Tuxtlas volcano and Laguna Catemaco were analyzed petrographically and geochemically. Geochemical data were plotted in Fenner and Harker diagrams to identify trends, including fractional crystallization and magma recharge. Mineral modes were calculated via point counting in thin sections, and micro-textural variations were noted. Cone morphometry was used as a rough proxy for age along with field relationships to develop an approximate order of events along the alignments. Preliminary data suggest that the aligned vents are part of a linked magmatic plumbing system undergoing periodic recharge.

  4. The Satah Mountain and Baldface Mountain volcanic fields: Pleistocene hot spot volcanism in the Anahim Volcanic Belt, west-central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian; Guest, Bernard; Russell, James K.; Benowitz, Jeff A.

    2015-03-01

    The Satah Mountain and Baldface Mountain volcanic fields (SMVF, BMVF) comprise more than three dozen small volcanic centers and erosional remnants thereof. These fields are located in the Chilcotin Highland of west-central British Columbia, Canada, and are spatially associated with the Anahim Volcanic Belt (AVB), a linear feature of alkaline to peralkaline plutonic and volcanic centers of Miocene to Holocene ages. The AVB has been postulated to be the track of a hot spot passing beneath the westward moving Cordilleran lithosphere. We test the AVB hot spot model by applying whole-rock 40Ar/39Ar geochronology ( n = 24) and geochemistry. Whole-rock chemical compositions of volcanic rock samples ( n = 59) from these two fields suggest a strong geochemical affinity with the nearby Itcha Range shield volcano; however, SMVF and BMVF centers are mostly small in volume (<1 km3) and differ in composition from one another, even where they are in close spatial proximity. Trace element and REE patterns of mafic AVB lavas are similar to ocean island basalts (OIB), suggesting a mantle source for these lavas. The age ranges for the SMVF ( n = 11; ~2.21 to ~1.43 Ma) and BMVF ( n = 7; ~3.91 to ~0.91 Ma) are largely coeval with the Itcha Range. The distribution of volcanoes in these two volcanic fields is potentially consistent with the postulated AVB hot spot track. Eruption rates in the SMVF were high enough to build an elongated ridge that deviates from the E-W trend of the AVB by almost 90°. This deviation might reflect the mechanisms and processes facilitating magma generation and ascent through the lithosphere in this tectonically complex region and may also indicate interaction of the potential hot spot with (pre)existing fracture systems in vicinity of the Itcha Range.

  5. Sedimentation architecture of the volcanically-dammed Alf valley in the West Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Eichhorn, Luise; Lange, Thomas; Engelhardt, Jörn; Polom, Ulrich; Pirrung, Michael; Büchel, Georg

    2015-04-01

    In the southeastern part of the Quaternary West Eifel Volcanic Field, the Alf valley with its morphologically wide (~ 500 m) and flat valley bottom is visibly outstanding. This flat valley bottom was formed during the Marine Isotope Stage 2 due to fluviolacustrine sediments which deposited upstream of a natural volcanic dam. The dam consisted of lava and scoria breccia from the Wartgesberg Volcano complex (Cipa 1958, Hemfler et al. 1991) that erupted ~ 31 BP (40Ar/ 39Ar dating on glass shards, Mertz, pers. communication 2014). Due to this impoundment, the Alf creek turned into a dendritic lake, trapping the catchment sediments. The overall aim is to create the sedimentation architecture of the Alf valley. In comparison to maar archives like Holzmaar or Meerfelder Maar in the vicinity, the fluviolacustrine sediments of the Alf valley show clay-silt lamination despite the water percolation. This archive covers the transition from the Last Glacial Maximum to Early Holocene (Pirrung et al. 2007). Focus of this study is the creation of a 3D model by applying the program ESRI ArcGIS 10.2 to reconstruct the pre-volcanic Alf valley. Moreover, the sedimentation architecture is reconstructed and the sediment fill quantified. Therefore, the digital elevation model with 5 m resolution from the State Survey and Geobasis Information of Rhineland-Palatinate, polreduced magnetic data measured on top of the Strohn lava stream, shear seismic data and core stratigraphies were utilized. Summarizing previous results, Lake Alf had a catchment area of ~ 55 km² (Meerfelder Maar: 1.27 km²) and a surface area of 8.2 km² (Meerfelder Maar: 0.24 km²) considering a maximum lake water level of 410 m a.s.l.. In the deepest parts (~ 50 m) of Lake Alf, lake sediments are laminated, up to 21 m thick and show a very high sedimentation rate ~ 3 mm a-1 (Dehner Maar ~ 1.5 mm a-1, (Sirocko et al. 2013)). The sediments become coarser upstream und stratigraphically above the fine-grained lake sediments

  6. Geothermal Fields on the Volcanic Axis of Mexico

    SciTech Connect

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  7. Wave field decomposition of volcanic tremor at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Waite, G. P.; Kenyon, L. M.

    2013-12-01

    A dense, small-aperture array of 12 short-period seismometers was deployed on the west flank of Pacaya volcano (Guatemala) and operated for 14 days in January 2011. The data were used to investigate the properties of the volcanic tremor wave field at the volcano. Volcanic tremor has been proven to be a powerful tool for eruption forecasting, therefore, identifying its source locations may shed new light on the dynamics of the volcano system. A preliminary spectral analysis highlights that most of the seismic energy is associated with six narrow spectral peaks between 1 and 6 Hz. After taking topography into account, we performed frequency-slowness analyses using the MUSIC algorithm and the semblance technique with the aim to define and locate the different components contributing to the wave field. Results show a complex wave field, with possibly multiple sources. We identify peaks at frequencies < 2 Hz as being related to anthropogenic sources coming from the N- NW direction where the geothermal plant and San Vincente Pacaya village are located. Azimuth measurements indicate that the 3 Hz signal propagates from the SE direction and it has been attributed to the new vent on the southeast flank of Pacaya Volcano. However, the presence of secondary peaks with azimuths of ˜ 200°, 150° and 70° seems to suggest either nonvolcanic sources or perhaps the presence of structural heterogeneities that produce strong scattered waves. At higher frequencies, results show effects of array aliasing, and therefore have not been considered in this study. The dispersive properties of the wave field have been investigated using the Spatial Auto-Correlation Method (SPAC). The dispersion characteristics of Rayleigh waves have been then inverted to find a shallow velocity model beneath the array, which shows a range of velocities from about 0.3 km/s to 2 km/s, in agreement with slowness values of the frequency bands considered. In detail, apparent velocities of 1-2 km/s dominate at

  8. Geochemistry of high-potassium rocks from the mid-Tertiary Guffey volcanic center, Thirtynine Mile volcanic field, central Colorado

    SciTech Connect

    Wobus, R.A.; Mochel, D.W. ); Mertzman, S.A.; Eide, E.A.; Rothwarf, M.T. ); Loeffler, B.M.; Johnson, D.A. ); Keating, G.N.; Sultz, K. ); Benjamin, A.E. ); Venzke, E.A. ); Filson, T. )

    1990-07-01

    The Guffey volcanic center is the largest within the 2000 km{sup 2} mid-Tertiary Thirtynine Mile volcanic field of central Colorado. This study is the first to provide extensive chemical data for these alkalic volcanic and subvolcanic rocks, which present the eroded remnants of a large stratovolcano of Oligocene age. Formation of early domes and flows of latite and trachyte within the Guffey center was followed by extrusion of a thick series of basalt, trachybasalt, and shoshonite flows and lahars. Plugs, dikes, and vents ranging from basalt to rhyolite cut the thick mafic deposits, and felsic tuffs breccias chemically identical to the small rhyolitic plutons are locally preserved. Whole-rack major and trace element analyses of 80 samples, ranging almost continuously from 47% to 78% SiO{sub 2}, indicate that the rocks of the Guffey center are among the most highly enriched in K{sub 2}O (up to 6%) and rare earth elements (typically 200-300 ppm) of any volcanic rocks in Colorado. These observations, along with the relatively high concentrations of Ba and Rb and the depletion of Cr and Ni, suggest an appreciable contribution of lower crustal material to the magmas that produced the Thirtynine Mile volcanic rocks.

  9. Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina)

    NASA Astrophysics Data System (ADS)

    Mazzarini, F.; Fornaciai, A.; Bistacchi, A.; Pasquarè, F. A.

    2008-09-01

    Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35°S and 38°S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7-49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5-48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48-49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime.

  10. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    PubMed

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region. PMID:17774792

  11. Petrogenesis of Late Cenozoic volcanic rocks from the Raton-Clayton volcanic field, northeastern New Mexico and southeastern Colorado

    SciTech Connect

    Zhu, J.; Stormer, J.C.; Wright, J.E. . Dept. of Geology and Geophysics); Middlefeldt, D.D. )

    1993-04-01

    The Raton-Clayton volcanic field, located in the eastern flank of the Rio Grande rift on the Great Plains, is at the northeastern end of the Jemez lineament. A broad variety of late Cenozoic volcanic rocks ranging from rhyodacites through basalts to basanites and nephelinites, with well established ages, provides a good probe of magma sources at different depths down to the mantle. New Sr, Nd and Pb isotopic data on late Cenozoic volcanic rocks from the Raton-Clayton volcanic field yield significant variations. [sup 87]Sr/[sup 86]Sr ratios vary from 0.70397--0.70499, [var epsilon][sub Nd] values range from [minus]3.7--2.4, [sup 206]Pb/[sup 204]Pb ratios are in the range of 17.43--18.48, [sup 207]Pb/[sup 204]Pb from 15.45--15.54 and [sup 208]Pb/[sup 204]Pb from 37.27--38.05. The mafic feldspathoidal rocks, believed to be derived from the enriched mantle reservoir with little crustal contamination, show relatively homogeneous [sup 87]Sr/[sup 86]Sr (ca. 0.7041) and [var epsilon][sub Nd] (ca. 2). A positive trend of Pb isotopic ratios, however, suggests possible mantle heterogeneity in Pb isotopic composition beneath the continent. Isotopic data from basaltic lavas display well defined variation trends, bringing to light the role of crustal components in the magmatic process. A strong signature of upper crustal involvement is indicated in the formation of tholeiitic basalts with dicktytaxitic texture, while isotope data from alkali olivine basalts and Capulin trachybasalts suggest lower crust contaminations of these rocks. An apparent isotopic variation trend of the dicktytaxitic basalts is well correlated with geographic location from south to north. Significant discrepancies in isotopic compositions of more silicic rocks compared with those of similar rocks from the Taos Plateau volcanic field to the west, may indicate either large differences in lower crustal composition or different mechanisms in generating these magmas.

  12. Magnetotelluric data, Taos Plateau Volcanic Field, New Mexico

    USGS Publications Warehouse

    Ailes, Chad E.; Rodriguez, Brian D.

    2010-01-01

    The population of the San Luis Basin region of northern New Mexico is growing. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's groundwater resources. An important issue in managing the groundwater resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal groundwater aquifers. The shallow unconfined aquifer and the deeper confined Santa Fe Group aquifer in the San Luis Basin are the main sources of municipal water for the region. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the San Luis Basin. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey called magnetotellurics (MT), and hydrologic and lithologic data are being used to better understand the aquifers. This report describes a regional east-west MT sounding profile acquired in late July 2009 across the Taos Plateau Volcanic Field where drillhole data are sparse. Resistivity modeling of the MT data can be used to help map changes in electrical resistivity with depths that are related to differences in rock types. These various rock types help control the properties of aquifers. The purpose of this report is to release the MT sounding data collected along the east-west profile. No interpretation of the data is included.

  13. Ancient Mudflows in the Tuxtla Volcanic Field, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Espindola, J.; Zamora-Camacho, A.; Godinez, M.

    2011-12-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic enclave in eastern Mexico at the margin of the Gulf of Mexico. Due to the high rates of precipitation floods and mudflows are common. Resulting from a systematic study of geologic hazard in the TVF we found several mudflow deposits that impacted pre-Columbian settlements. Sections of the deposits were observed in detail and sampled for granulometric studies. The deposits contained materials suitable for dating: ceramic shards and some of them charcoal fragments. Shards from the interior of the deposit were collected and placed in black bags to prevent the action of light and to be analyzed by thermoluminiscense (TL), the charcoal samples were dated using standard radiocarbon methods (C-14). The sites were dubbed La Mojarra (18°37.711', 95°18.860'), Revolución (18° 35.848', 95°11.412'), Pisatal (18°36.618', 95°10.634'), and Toro Prieto (18°38.229, 95°12.037'). These places were named after the nearby villages the first two, lake Pisatal the third and Toro Prieto creek the fourth. All the deposits occur close to the margins of riverbeds or lakes. Samples of these sites yielded ages of 1176±100 (TL), 1385±70 (C-14), 1157±105 (TL), 2050+245-235 (C-14), respectively. These locations have undergone recurrent floods in the last decades, showing that these phenomena impact the same areas over centuries. The dates mentioned are important because, no vestiges of human settlements had been reported in the area, which in the past was covered by a dense forest. The settlements must have been very small and depended of such cities as nearby Matacapan an important city with strong ties to Teotihuacán in central Mexico. The ages agree with the findings of archeologic studies in Matacapan, which indicate that the population became increasingly ruralized since the late classic period (≈ 600-800 AD).

  14. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon

    NASA Astrophysics Data System (ADS)

    Blum, T.; Strickland, A.; Valley, J. W.

    2012-12-01

    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrc<4.7 ‰). Despite the growing data set of low-δ18O melts within, and proximal to, the Snake River Plain (SRP) Large Igneous Province, debate persists regarding both the mechanisms for low-δ18O magma petrogenesis, and their relative influence in the SRP. The LOVF is associated with widespread silicic volcanism roughly concurrent with the eruption of the Steens-Columbia River Basalt Group between ~17-15Ma. Silicic activity in the LOVF is limited to 16-15Ma, when an estimated 1100km3 of weakly peralkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision

  15. A new approach for dating Quaternary volcanism by TL: The example of the Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Zoeller, Ludwig; Richter, Daniel; Klinger, Philip; van den Bogaard, Paul

    2013-04-01

    Middle to Upper Pleistocene and Holocene volcanic eruptions are difficult to date by Ar/Ar techniques when K-rich minerals such as sanidines are not present, as is the case in mafic and some intermediate rocks. However, these may contain phlogopite crystals suitable for Ar/Ar dating. Direct luminescence dating of volcanic feldspar is hampered by a poorly understood phenomenon of long-term signal instability called "anomalous fading" which, however, is apparently not present in quartz. To circumvent the fading problem involved in luminescence dating of volcanic rocks lacking quartz we sampled quartz-bearing crustal xenoliths from the Quaternary West and the East Eifel Volcanic Fields. Sufficient heating for zeroing of the acquired geological TL during eruption is sometimes but not always visible in the field and among others depends on the size of the xenolith. Quartz grains were extracted from the xenoliths by crushing, density separation and etching in HF or H2SiF6. The orange-red TL emission from quartz is known to have a very high saturation dose and was therefore employed using a new "lexsyg" luminescence reader equipped with a special detection unit for measuring this orange-red TL emission. Additionally, the existing data base of Ar/Ar dating results is increased by a series of new laser ablation step heating Ar/Ar dating results from samples extracted from identical volcanic eruptions. These can serve as verification of the luminescence dating attempts. Some first preliminary TL dating results in the range up to ca. 500 ka will be presented and discussed. Apparently, some TL ages from quartz extracts underestimate the Ar/Ar ages significantly. Possible explanations of age underestimates will be presented for discussion.

  16. Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA

    USGS Publications Warehouse

    Morgan, L.A.; McIntosh, W.C.

    2005-01-01

    The Snake River Plain (SRP) developed over the last 16 Ma as a bimodal volcanic province in response to the southwest movement of the North American plate over a fixed melting anomaly. Volcanism along the SRP is dominated by eruptions of explosive high-silica rhyolites and represents some of the largest eruptions known. Basaltic eruptions represent the final stages of volcanism, forming a thin cap above voluminous rhyolitic deposits. Volcanism progressed, generally from west to east, along the plain episodically in successive volcanic fields comprised of nested caldera complexes with major caldera-forming eruptions within a particular field separated by ca. 0.5-1 Ma, similar to, and in continuation with, the present-day Yellowstone Plateau volcanic field. Passage of the North American plate over the melting anomaly at a particular point in time and space was accompanied by uplift, regional tectonism, massive explosive eruptions, and caldera subsidence, and followed by basaltic volcanism and general subsidence. The Heise volcan ic field in the eastern SRP, Idaho, represents an adjacent and slightly older field immediately to the southwest of the Yellowstone Plateau volcanic field. Five large-volume (>0.5 km3) rhyolitic ignimbrites constitute a time-stratigraphic framework of late Miocene to early Pliocene volcanism for the study region. Field relations and high-precision 40Ar/39Ar age determinations establish that four of these regional ignimbrites were erupted from the Heise volcanic field and form the framework of the Heise Group. These are the Blacktail Creek Tuff (6.62 ?? 0.03 Ma), Walcott Tuff (6.27 ?? 0.04 Ma), Conant Creek Tuff (5.51 ?? 0.13 Ma), and Kilgore Tuff (4.45 ?? 0.05 Ma; all errors reported at ?? 2??). The fifth widespread ignimbrite in the regions is the Arbon Valley Tuff Member of the Starlight Formation (10.21 ?? 0.03 Ma), which erupted from a caldera source outside of the Heise volcanic field. These results establish the Conant Creek Tuff as a

  17. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Woolford, J. M.

    2015-09-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ˜1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ˜17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ˜17 ka, and produced a lava flow field covering ˜35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  18. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    USGS Publications Warehouse

    Vazquez, Jorge A.; Woolford, Jeff M

    2015-01-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  19. Morphological Study of Jaraguay and San Borja Volcanic Fields, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, R.; Canon-Tapia, E.

    2005-12-01

    Volcanism younger than 12.5 Ma has occurred mainly as monogenetic volcanic fields along the Baja California Peninsula, but until now very little attention has been given to the morphological description of this type of volcanism. In this study we present the preliminary results of the first stage of elaboration of a Geographical Information System (GIS) of the northernmost volcanic fields of the Peninsula; Jaraguay and San Borja, which are among the less studied fields in the region. The present status of the GIS includes the main morphological characteristics and localization of over 350 eruptive centers identified in both volcanic fields. Our data show that over 90% of the eruptive centers are cinder cones, whereas the rest of volcanic structures include some stratovolcanos, shield volcanoes and calderas. Detailed analysis of digital elevation models and 14 m resolution Landsat TM images show a remarkable diversity of the size of reported eruptive centers: the average height lies around 720 m with peaks that reaches 1,412 m asl. Preliminary graphic analyses show local concentrations of the biggest volcanic structures in some areas in both fields. This spatial distribution is more evident at the San Borja volcanic field where the biggest volcanic centers are systematically located in its south and north-western boundaries. A similar concentration of bigger volcanic structures is found at the western edge of Jaraguay volcanic field where cinder cones are largely confined to its eastern most edge. The observed morphological changes of volcanic structures occur in both cases within a distance of less than 100 km. We interpret such variations as the result of heterogeneities of the low velocity zone below this particular area of the Baja California Peninsula, although the final evaluation of the distribution of the regional stress field and its relationship with the actual spatial distribution of eruptive centers must wait until more information becomes available. In

  20. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-01-01

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  1. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-04-01

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  2. [Expression, purification of recombinant cationic peptide AIK in Escherichia coli and its antitumor activity].

    PubMed

    Fan, Fangfang; Sun, Huiying; Xu, Hui; Liu, Jiawei; Zhang, Haiyuan; Li, Yilan; Ning, Xuelian; Sun, Yue; Bai, Jing; Fu, Songbin; Zhou, Chunshui

    2015-12-01

    AIK is a novel cationic peptide with potential antitumor activity. In order to construct the AIK expression vector by Gateway technology, and establish an optimal expression and purification method for recombinant AIK, a set of primers containing AttB sites were designed and used to create the AttB-TEV-FLAG-AIR fusion gene by overlapping PCR. The resulting fusion gene was cloned into the donor vector pDONR223 by attB and attP mediated recombination (BP reaction), then, transferred into the destination vector pDESTl 5 by attL and attR mediated recombination (LR reaction). All the cloning was verified by both colony PCR and DNA sequencing. The BL21 F. coli transformed by the GST-AIR expression plasmid was used to express the GST-AIK fusion protein with IPTG induction and the induction conditions were optimized. GST-AIR fusion protein was purified by glutathione magnetic beads, followed by rTEV cleavage to remove GST tag and MTS assay to test the growth inhibition activity of the recombinant AIR on human leukemia HL-60 cells. We found that a high level of soluble expression of GST-AIK protein (more than 30% out of the total bacterial proteins) was achieved upon 0.1 mmol/L ITPG induction for 4 h at 37 °C in the transformed BL21 F. coli with starting OD₆₀₀ at 1.0. Through GST affinity purification and rTEV cleavage, the purity of the resulting recombinant AIK was greater than 95%. And the MTS assays on HL-60 cells confirmed that the recombinant AIK retains an antitumor activity at a level similar to the chemically synthesized AIK. Taken together, we have established a method for expression and purification of recombinant AIK with a potent activity against tumor cells, which will be beneficial for the large-scale production and application of recombinant AIK in the future. PMID:27093838

  3. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  4. Rapid uplift during 2007-2012 at Laguna del Maule volcanic field, Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Le Mevel, H.; Feigl, K.; Ali, T.; Cordova V., M. L.; DeMets, C.; Singer, B. S.

    2012-12-01

    The Laguna del Maule (LdM) volcanic field includes an unusual concentration of post-glacial rhyolitic lava coulees and domes, dated between 24 to 2 thousand years old that cover more than 100 square kilometers and erupted from 24 vents that encircle a 20-km-diameter lake basin on the range crest. The recent concentration of rhyolite is unparalleled in the Southern Volcanic Zone of the Andes. Moreover, the western portion of the LdM volcanic field has experienced rapid uplift since 2007, leading to questions about the current configuration of the magmatic system and processes that drive the ongoing inflation. We aim to quantify the active deformation of the LdM volcanic field and its evolution with time. To do so, we use interferometric synthetic aperture radar (InSAR) data acquired by three satellite missions: Envisat in 2003 and 2004, ALOS between 2007 and 2010, and TerraSAR-X in 2012. An interferogram spanning March 2003 to February 2004 "shows no deformation" (Fournier et al., 2010). From 2007 through 2012, however, the shortening of the satellite-to-ground distance revealed a range change rate of greater than 200 mm/yr along the radar line of sight. The deformation includes a circular area 20 km in diameter centered on the western portion of the circle of young rhyolite domes. To analyze the InSAR results, we employ the General Inversion for Phase Technique (GIPhT; Feigl and Thurber, 2009; Ali and Feigl, 2012). We have considered several hypotheses to interpret this deformation. Artefacts such as orbital errors, atmospheric perturbations or topographic contribution cannot account for the observed signal. We also reject the hypothesis of uplift due to gravitational unloading of the crust based on our modeling of independently measured lake level variations over the observed time interval. We thus attribute the deformation to the intrusion of magma into the upper crust below the southwest region of the LdM volcanic field. The best fit to the InSAR data is

  5. A newly discovered Pliocene volcanic field on the western Sardinia continental margin (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Conforti, Alessandro; Budillon, Francesca; Tonielli, Renato; De Falco, Giovanni

    2016-02-01

    A previously unknown submerged volcanic field offshore western Sardinia (western Mediterranean Sea), has been identified based on swath bathymetric data collected in 2009, 2010 and 2013, and high-resolution seismic profiles collected in 2011 and 2013. About 40 conical-shaped volcanic edifices (maximum width of about 1600 m and maximum height of about 180 m) and several lava outcrops (up to 1,200 m wide) were recognized at 20 to 150 m water depth over an area of 800 km2. The volcanic edifices are mainly eruptive monogenic vents, mostly isolated with a rather distinct shape, or grouped to form a coalescent volcanic body in which single elements are often still recognizable. High-resolution seismics enabled identifying relationships between the volcanic bodies and continental margin successions. The edifices overlie a major erosional surface related to the margin exposure following the Messinian salinity crisis, and are overlain by or interbedded with an early Pliocene marine unit. This seismo-stratigraphic pattern dates the volcanic activity to the early Pliocene, in agreement with the radiometric age of the Catalano island lavas (4.7 Ma) reported in earlier studies. The morphometry of the volcanic bodies suggests that cone erosion was higher at shallow water depths. Indeed, most of the shallow edifices are strongly eroded and flattened at 125 to 130 m water depth, plausibly explained by recurrent sub-aerial exposure during Pleistocene sea-level lowstands, whereas cones in deeper water are much better preserved. Volcanic vents and lava deposits, hereafter named the Catalano volcanic field (CVF), are emplaced along lineaments corresponding to the main directions of the normal fault system, which lowered the Sinis Basin and the western Sardinia continental margin. The CVF represents a volumetrically relevant phase of the late Miocene - Quaternary anorogenic volcanic cycle of Sardinia, which is related to the first stage of the extensional tectonics affecting the island

  6. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  7. Development of a risk assessment tool for volcanic urban environments: RiskScape and the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Deligne, N. I.; Leonard, G.; King, A.; Wilson, G.; Wilson, T.; Lindsay, J. M.

    2013-12-01

    Auckland city, home to a third of New Zealand's population, is situated on top of the Auckland Volcanic Field (AVF), which last erupted roughly 500 years ago. Since 2008, the Determining Volcanic Risk in Auckland (DEVORA) program has investigated the geologic context of the AVF, improved timing constraints of past eruptions, explored possible tempo-spatial-volume eruption trends, and identified likely styles and hazards of future eruptions. DEVORA is now moving into development of risk and societal models for Auckland. The volcanic module of RiskScape, a multi-hazard risk assessment tool developed by Crown Research Institutes GNS Science and NIWA, will be expanded and used to model risk and impact to the built environment and population caused by a future AVF eruption. RiskScape models casualties, damage and disruption caused by various hazards, the resulting reduced functionality of assets, and associated clean up costs. A strength of RiskScape is that the effect of various mitigation strategies can be explored by strengthening asset attributes and examining resulting changes in the output risk evaluation. We present our framework for building a volcano hazard exposure module for RiskScape along with our approach for assessing asset vulnerability through the development of fragility functions. We also present the framework for engagement with regional Auckland stakeholders, including representatives of local and regional governments and utility companies, to identify complementary needs to ensure that final risk products are relevant and useable by end users.

  8. A quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: Geology, distribution and morphology of the volcanic vents

    NASA Astrophysics Data System (ADS)

    Rodríguez, S. R.; Morales-Barrera, W.; Layer, P.; González-Mercado, E.

    2010-11-01

    The most abundant volcanic manifestations along the east-west trending Trans-Mexican Volcanic Belt (TMVB) are the scoria cones. These have been grouped by other authors in extended monogenetic volcanic fields such as Michoacán-Guanajuato, Chichinautzin, Apan and Los Tuxtlas. Here we present geological and morphological data of a relatively unknown group of monogenetic volcanoes located on the east flank of the Cofre de Perote volcano (CP), around the city of Xalapa in the state of Veracruz, Mexico. Within an area of about 2400 km 2, the "Xalapa Monogenetic Volcanic Field" (XMVF) contains over 50 late Quaternary volcanoes. Most of them are scoria cones, but small shield volcanoes and tuff rings also occur. The lava flows produced by these volcanoes are constrained by an abrupt topography and cover a great percentage of the surface on the eastern and northeastern flanks of CP, between 3000 and 500 m a.s.l. The representative rocks of the different volcanic centers include olivine basalt, basaltic andesite with phenocrysts of plagioclase, pyroxene and minor olivine, and andesite with phenocrysts of plagioclase and pyroxene. SiO 2 and Al 2O 3 contents of the rocks vary between 45 and 62 wt% and 15 to 18 wt%, respectively. Most of the basaltic rocks have MgO contents between 4.2 and 9 wt%, Ni and Cr concentrations between 23 and 180 and 10 to 380 ppm, respectively, with a typical calc-alkaline behavior. Trace elements suggest two types of magmas; the most abundant are characterized by an enrichment of LILE and LREE with negative anomalies of Nb and Ti, which denote a calc-alkaline affinity. Others are LILE depleted and show high concentrations of MgO, Cr, and Ni, which is typical of primary calc-alkaline magmas. The mean scoria cone morphological values are: cone height (Hco) = 90.8 m, cone diameter (Wco) = 686.38 m, crater diameter (Wcr) = 208.49 m and 0.12 km 3 for the cone volume. We dated twelve different scoria cones using the 40Ar/ 39Ar method; for the other

  9. Multiplet earthquake relocations and stacked waveform inversions in the Yellowstone volcanic field and implications for volcanic-tectonic interactions

    NASA Astrophysics Data System (ADS)

    Massin, F.; Farrell, J.; Smith, R. B.; Shelly, D. R.

    2012-12-01

    Abnormally high earthquake rates and episodic crustal deformation suggest that the Yellowstone hotspot affects the tectonics of the western United States. However the relationship between the Yellowstone volcanic system and the surrounding tectonic regime remains poorly known. We study the structure and stress field for quantitative modeling of volcano-tectonic interactions using multiplet analysis. Our analysis shows that earthquake rates of Yellowstone are coincident with the uplift and subsidence episodes of the 0.64 Ma Yellowstone caldera: a relative decrease of multiplet activity accompanies each subsidence episode between 1997 and 2010. Our research focuses on the determination of crustal seismogenic structures and related stress perturbations that are responsible for the abnormally intense and cyclic earthquake activity. We consider each multiplet as a homogenous set of earthquakes produced by the same seismic source or fault. We integrate results from double-difference hypocenter relocations and source mechanism determinations to evaluate active fault properties. Hypocenters are constrained by a median of 50 P-wave and 12 S-wave differential arrival times (up to 4062 P-waves and 1187 S-waves). Composite focal mechanism solutions are determined for multiplets with 64 P-wave polarity observations or more. We compare multilinear regression planes of hypocenters of large multiplets and their composite focal mechanisms to choose fault planes and slip directions. We then develop detailed analysis of the largest earthquake swarms in Yellowstone, e.g. the Autumn 1985, the 2008 Yellowstone Lake and the 2010 Madison Plateau earthquake swarms to examine if swarm earthquakes occur on one continuous fault plane or on a network of independent segments with variable orientations. To independently confirm the interpreted fault plane we also invert for the moment tensors of the largest multiplets with a cumulative seismic moment over Mw3. The moment tensors are decomposed

  10. Patterns of volcanism along the southern margin of the Colorado Plateau - The Springerville field

    NASA Technical Reports Server (NTRS)

    Condit, Christopher D.; Crumpler, L. S.; Aubele, Jayne C.; Elston, Wolfgang E.

    1989-01-01

    Results from studies of the 2.1- to 0.3-my-old Springerville volcanic field are summarized, including research on geologic mapping, volume, age, chemical characterization, composition, temporal variations, and effusion and migration rates. It is found that the rocks of the field are predominantly alkali olivine and transitional basalts, with subordinate proportions of hawaiite and tholeiite. The evolution of the field is described as an early pulse of tholeiitic volcanism followed by a peak in alkali olivine basalt production in the middle of the field's eruptive history, and a late peak in evolved alkalic rock production about 0.5 my after the alkali olivine basalt peak.

  11. A 3D model of crustal magnetization at the Pinacate Volcanic Field, NW Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    García-Abdeslem, Juan; Calmus, Thierry

    2015-08-01

    The Pinacate Volcanic Field (PVF) is located near the western border of the southern Basin and Range province, in the State of Sonora NW Mexico, and within the Gulf of California Extensional Province. This volcanic field contains the shield volcano Santa Clara, which mainly consists of basaltic to trachytic volcanic rocks, and reaches an altitude of ~ 1200 m. The PVF disrupts a series of discontinuous ranges of low topographic relief aligned in a NW direction, which consist mainly of Proterozoic metamorphic rocks and Proterozoic through Paleogene granitoids. The PVF covers an area of approximately 60 by 55 km, and includes more than 400 well-preserved cinder cones and vents and eight maar craters. It was active from about 1.7 Ma until about 13 ka. We have used the ages and magnetic polarities of the volcanic rocks, along with mapped magnetic anomalies and their inverse modeling to determine that the Pinacate Volcanic Field was formed during two volcanic episodes. The oldest one built the Santa Clara shield volcano of basaltic and trachytic composition, and occurred during the geomagnetic Matuyama Chron of reverse polarity, which also includes the normal polarity Jaramillo and Olduvai Subchrons, thus imprinting both normal and reverse magnetization in the volcanic products. The younger Pinacate series of basaltic composition represents monogenetic volcanic activity that extends all around the PVF and occurred during the subsequent geomagnetic Brunhes Chron of normal polarity. Magnetic anomalies toward the north of the Santa Clara volcano are the most intense in the PVF, and their inverse modeling indicates the presence of a large subsurface body magnetized in the present direction of the geomagnetic field. This suggests that the magma chambers at depth cooled below the Curie temperature during the Brunhes Chron.

  12. Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto Andesite, San Juan Volcanic Field, Colorado, USA

    USGS Publications Warehouse

    Parat, F.; Dungan, M.A.; Lipman, P.W.

    2005-01-01

    Locally, voluminous andesitic volcanism both preceded and followed large eruptions of silicic ash-flow tuff from many calderas in the San Juan volcanic field. The most voluminous post-collapse lava suite of the central San Juan caldera cluster is the 28 Ma Huerto Andesite, a diverse assemblage erupted from at least 5-6 volcanic centres that were active around the southern margins of the La Garita caldera shortly after eruption of the Fish Canyon Tuff. These andesitic centres are inferred, in part, to represent eruptions of magma that ponded and differentiated within the crust below the La Garita caldera, thereby providing the thermal energy necessary for rejuvenation and remobilization of the Fish Canyon magma body. The multiple Huerto eruptive centres produced two magmatic series that differ in phenocryst mineralogy (hydrous vs anhydrous assemblages), whole-rock major and trace element chemistry and isotopic compositions. Hornblende-bearing lavas from three volcanic centres located close to the southeastern margin of the La Garita caldera (Eagle Mountain - Fourmile Creek, West Fork of the San Juan River, Table Mountain) define a high-K calc-alkaline series (57-65 wt % SiO2) that is oxidized, hydrous and sulphur rich. Trachyandesitic lavas from widely separated centres at Baldy Mountain-Red Lake (western margin), Sugarloaf Mountain (southern margin) and Ribbon Mesa (20 km east of the La Garita caldera) are mutually indistinguishable (55-61 wt % SiO2); they are characterized by higher and more variable concentrations of alkalis and many incompatible trace elements (e.g. Zr, Nb, heavy rare earth elements), and they contain anhydrous phenocryst assemblages (including olivine). These mildly alkaline magmas were less water rich and oxidized than the hornblende-bearing calc-alkaline suite. The same distinctions characterize the voluminous precaldera andesitic lavas of the Conejos Formation, indicating that these contrasting suites are long-term manifestations of San Juan

  13. Paleomagnetism of the Pleistocene Tequila Volcanic Field (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Rodríguez Ceja, M.; Goguitchaichvili, A.; Calvo-Rathert, M.; Morales-Contreras, J.; Alva-Valdivia, L.; Rosas Elguera, J.; Urrutia Fucugauchi, J.; Delgado Granados, H.

    2006-10-01

    This paper presents new paleomagnetic results from 24 independent cooling units in Tequila area (western Trans-Mexican Volcanic Belt). These units were recently dated by means of state-of-the-art 40Ar-39Ar method (Lewis-Kenedy et al., 2005) and span from 1130 to 150 ka. The characteristic paleodirections are successfully isolated for 20 cooling units. The mean paleodirection, discarding intermediate polarity sites, is I = 29.6°, D = 359.2°, k = 26, α95 = 7.1°, n = 17, which corresponds to the mean paleomagnetic pole position Plat = 85.8°, Plong = 84.3°, K = 27.5, A95 = 6.9°. These directions are practically undistinguishable from the expected Plestocene paleodirections, as derived from reference poles for the North American polar wander curve and in agreement with previously reported directions from western Trans-Mexican Volcanic Belt. This suggests that no major tectonic deformation occurred in studied area since early-middle Plestocene to present. The paleosecular variation is estimated trough the study of the scatter of virtual geomagnetic poles giving SF = 15.4 with SU = 19.9 and SL = 12.5 (upper and lower limits respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. (1991) for the last 5 Myr. The interesting feature of the paleomagnetic record obtained here is the occurrence of an intermediate polarity at 671± 13 ka which may correspond the worldwide observed Delta excursion at about 680-690 ka. This gives the volcanic evidence of this event. Two independent lava flows dated as 362± 13 and 354± 5 ka respectively, yield transitional paleodirections as well, probably corresponding to the Levantine excursion.

  14. Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.

    2015-01-01

    The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.

  15. Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.

    1999-01-01

    Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the

  16. Origin of north Queensland Cenozoic volcanism: Relationships to long lava flow basaltic fields, Australia

    NASA Astrophysics Data System (ADS)

    Sutherland, F. L.

    1998-11-01

    A plume model proposed for north Queensland late Cenozoic volcanism and long lava flow distribution combines basalt ages with recent seismic studies of Australia's mantle, regional stress fields, and plate motion. Several basalt fields overlie mantle "thermal" anomalies, and other fields outside these anomalies can be traced to them through past lithospheric motion. Elsewhere, anomalies close to Australia's eastern rift margin show little volcanism, probably due to gravity-enhanced compression. Since final collision of north Queensland with New Guinea, areas of basaltic volcanism have developed over 10 Myr, and episodes appear to migrate southward from 15° to 20°S. Long lava flows increase southward as area/volume of fields increases, but topography, vent distributions, and uplifts play a role. This is attributed to magmatic plume activation within a tensional zone, as lithosphere moves over mantle thermal anomalies. The plume model predicts peak magmatism under the McBride field, coincident with the Undara long lava flow and that long lava flow fields will erupt for another 5-10 Myr. Queensland's movement over a major N-S thermal system imparts a consistent isotopic signature to its northern younger basalts, distinct to basalts from older or more southern thermal systems. Australia's motion toward this northern thermal system will give north Queensland fields continued vigorous volcanism, in contrast to the Victorian field which is leaving its southern thermal system.

  17. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  18. The role of phreatomagmatism in a Plio-Pleistocene high-density scoria cone field: Llancanelo Volcanic Field (Mendoza), Argentina

    NASA Astrophysics Data System (ADS)

    Risso, Corina; Németh, Károly; Combina, Ana María; Nullo, Francisco; Drosina, Marina

    2008-01-01

    The Plio-Pleistocene Llancanelo Volcanic Field, together with the nearby Payun Matru Field, comprises at least 800 scoria cones and voluminous lava fields that cover an extensive area behind the Andean volcanic arc. Beside the scoria cones in the Llancanelo Field, at least six volcanoes show evidence for explosive eruptions involving magma-water interaction. These are unusual in the context of the semi-arid climate of the eastern Andean ranges. The volcanic structures consist of phreatomagmatic-derived tuff rings and tuff cones of olivine basalt composition. Malacara and Jarilloso tuff cones were produced by fallout of a range of dry to wet tephra. The Malacara cone shows more evidence for a predominance of wet-emplaced units, with a steep slump-slope characterized by many soft-sediment deformation structures, such as: undulating bedding planes, truncated beds and water escape features. The Piedras Blancas and Carapacho tuff rings resulted from explosive eruptions with deeper explosion loci. These cones are hence dominated by lapilli tuff and tuff units, emplaced mainly by wet and/or dry pyroclastic surges. Carapacho is the only centre that appears to have started with phreatomagmatic eruptions, with lowermost tephra being rich in non-volcanic country rocks. The presence of deformed beds with impact sags, slumping textures, asymmetrical ripples, dunes, cross- and planar lamination, syn-volcanic faulting and accretionary lapilli beds indicate an eruption scenario dominated by excessive water in the transportational and depositional regime. This subordinate phreatomagmatism in the Llancanelo Volcanic Field suggests presence of ground and/or shallow surface water during some of the eruptions. Each of the tuff rings and cones are underlain by thick, fractured multiple older lava units. These broken basalts are inferred to be the horizons where rising magma interacted with groundwater. The strong palagonitization at each of the phreatomagmatic cones formed hard beds

  19. Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua

    NASA Astrophysics Data System (ADS)

    Avellán, Denis Ramón; Macías, José Luis; Pardo, Natalia; Scolamacchia, Teresa; Rodriguez, Dionisio

    2012-02-01

    The Nejapa Volcanic Field (NVF) is located on the western outskirts of Managua, Nicaragua. It consists of at least 30 volcanic structures emplaced along the N-S Nejapa fault, which represents the western active edge of the Managua Graben. The study area covers the central and southern parts of the volcanic field. We document the basic geomorphology, stratigraphy, chemistry and evolution of 17 monogenetic volcanic structures: Ticomo (A, B, C, D and E); Altos de Ticomo; Nejapa; San Patricio; Nejapa-Norte; Motastepe; El Hormigón; La Embajada; Asososca; Satélite; Refinería; and Cuesta El Plomo (A and B). Stratigraphy aided by radiocarbon dating suggests that 23 eruptions have occurred in the area during the past ~ 34,000 years. Fifteen of these eruptions originated in the volcanic field between ~ 28,500 and 2,130 yr BP with recurrence intervals varying from 400 to 7,000 yr. Most of these eruptions were phreatomagmatic with minor strombolian and fissural lava flow events. A future eruption along the fault might be of a phreatomagmatic type posing a serious threat to the more than 500,000 inhabitants in western Managua.

  20. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Christiansen, Robert L.

    2001-01-01

    This region of Yellowstone National Park has been the active focus of one of the Earth's largest magmatic systems for more than 2 million years. The resulting volcanism has been characterized by the eruption of voluminous rhyolites and subordinate basalts but virtually no lavas of intermediate composition. The magmatic system at depth remains active and drives the massive hydrothermal circulation for which the park is widely known. Studies of the volcanic field using geologic mapping and petrology have defined three major cycles of rhyolitic volcanism, each climaxed by the eruption of a rhyolitic ash-flow sheet having a volume of hundreds of thousands of cubic kilometers. The field also has been analyzed in terms of its magmatic and tectonic evolution, including its regional relation to the Snake River plain and to basin-range tectonic extension.

  1. Eruptive and sedimentary evolution of the Pliocene Grad Volcanic Field, North-east Slovenia

    NASA Astrophysics Data System (ADS)

    Kralj, Polona

    2011-04-01

    Middle to Upper Pliocene (~ 3 Ma) Grad Volcanic Field (SW Pannonian basin system) encompasses an area of about 3 km 2, of which some 1.7 km 2 belong to the outcropping volcanics. Pyroclastic and syn-eruptively reworked volcaniclastic deposits are the most widespread in occurrence. Remains of an autobrecciated lava flow, a residual neck and their peperites are partially reworked by a large debris flow. Volcanic activity occurred in a continental depositional environment dominated by alluvial fan and braided river systems. Streams draining from the north-west to the south-east were infilling a rapidly subsiding Radgona Depression. The style of volcanic activity was mainly explosive and was reinforced by hydrovolcanic processes. Three volcanic centres probably existed, and they migrated spatially and temporally from the north to the south over a distance of some 5.6 km. The rocks of the northernmost volcanic centre are fairly eroded and contain abundant, up to 10 cm sized lherzolite xenoliths. The largest crater developed about 2.5 km to the south. From an early maar stage, a tuff-cone, and subsequently, a tuff-ring evolved. The crater was filled with eroded pyroclastic material and stream load. A new vent became active some 500 m to the south. Initial stage was mainly magmatic and produced pyroclastic flow and fall deposits. Late-stage eruptions were predominantly hydrovolcanic (phreatomagmatic and phreatic), and built up a small tuff-cone having some 300 m in diameter. Trachybasaltic and subordinate basanitic magmas erupting in the Grad Volcanic Field are geochemically distinguishable from the neighbouring occurrences in the South Styrian Basin and the South Burgenland Swell. Relatively lower abundance of TiO 2, MgO, Sc, V and Cu, and higher abundance of MnO, P 2O 5, Zn, Sr, Zr, Hf, Nb, Ba, Ta and U indicate somewhat different source and/or evolutionary pattern.

  2. Paleomagnetic evidence bearing on the structural development of the Latir volcanic field near Questa, New Mexico

    SciTech Connect

    Hagstrum, J.T.; Lipman, P.W.; Elston, D.P.

    1982-09-10

    The mid-Tertiary Latir volcanic field in northern New Mexico comprises intermediate-composition volcanics overlain by a regional ash flow sheet and associated lavas of rhyolitic composition that are all cut by silicic-alkalic grantic intrusives. Deeply exposed along the eastern flank of the Rio Grande rift, the silicic extrusive and intrusive rocks all yield radiometric ages of about 23 m.y., within analytical uncertainties. Flow banding and eutaxitic structures within the extrusive units indicate intense structural deformation, which for the most part increases toward the Questa caldera. Paleomagnetic study was undertaken to obtain information on the orientation of the eruptive and intrusive units and to employ the magnetic directions for an evaluation of the tectonic and igneous history of the caldera and enclosing volcanic field. Radiometric ages and the paleomagnetic data indicate that an episode of pronounced extension coincided with a major pulse of igneous activity in the region 23 m.y. ago. Eastward tilting of the volcanic units appears to have been closely followed by caldera collapse and then by resurgent doming of the caldera. Welded tuff units within the caldera were turned on end and together with older volcanic units were incorporated in a collapse megabreccia. The megabreccia and other nearby units were partially or entirely overprinted by a thermochemical aureole associated with the resurgent doming and attendant hydrothermal circulation. The stocks of the resurgent dome appear to have undergone no significant later tilting.

  3. Rock-magnetic signature of precipitation and extreme runoff events in south-eastern Patagonia since 51,200 cal BP from the sediments of Laguna Potrok Aike

    NASA Astrophysics Data System (ADS)

    Lisé-Pronovost, A.; St-Onge, G.; Gogorza, C.; Jouve, G.; Francus, P.; Zolitschka, B.

    2014-08-01

    A 106-m long sediment sequence from the maar lake Laguna Potrok Aike in southern Patagonia was recovered in the framework of the International Continental Scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO). About half of the sedimentary sequence is composed of mass movement deposits (MMDs) and the event-corrected record reaches back to 51,200 cal BP. Here we present a high-resolution rock-magnetic study revealing two sedimentary facies associated with MMDs and characterized by two different types of spurious gyroremanent magnetization (GRM) acquired during static alternating field demagnetization. The first rock-magnetic signature is detected in MMDs composed of reworked sand and tephra material. The signature consists of GRM acquired during demagnetization of the natural remanent magnetization (NRM) and other rock-magnetic properties typical of iron sulfides such as greigite. We interpret these intervals as authigenic formation of iron sulfides in suboxic conditions within the MMD. The second rock-magnetic signature consists of a series of 10 short intervals located on the top of MMDs characterized by GRM acquisition during demagnetization of the isothermal remanent magnetization (IRM). Based on geological, limnological, stratigraphic and climatic evidence these layers are interpreted as reflecting pedogenic hematite and/or goethite brought to the lake by runoff events related to precipitation and permafrost melt. The pedogenic iron minerals mobilized from the catchment most likely settled out of suspension on top of MMDs after a rapid remobilization event. The series of runoff events corresponds to periods of increased lacustrine productivity in Laguna Potrok Aike and are coeval within the limit of the chronology to warm periods of the Last Glacial as recorded in Antarctica, the deglaciation in the mid-latitudes of the Southern Hemisphere and enhanced precipitation during the Early Holocene in southeastern

  4. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band

  5. Tectonic controls on the Pleistocene-Holocene Wudalianchi volcanic field (northeastern China)

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chen, Hongzhou

    2005-01-01

    The Wudalianchi volcanic field developed during the Pleistocene-Holocene but is dormant at present. Its latest eruption occurred in 1719-1721 AD. The volcanic rocks are high-potassium alkaline basalts derived from the upper mantle (c. 100-120 km depth) as indicated by geochemical data. The field is located in an old tectonic transition zone surrounded by four regional normal faults. The volcanic craters are aligned along NE-NNE-striking fractures and faults, although a NNW-striking sub-surface fracture zone probably controlled the eruptions beginning at 1.33±0.08 Ma. Beneath the volcanic field, the Moho interface lies at a depth of 33.5-35 km. Eruptions evolved from fissure type to central type eruptions. The field is characterized by an intraplate tectonic setting in a non-orogenic compressional regime which resulted from the subduction of the West Pacific plate beneath the eastern Asian continental margin starting 3-2 Ma ago.

  6. Linking microbial assemblages to paleoenvironmental conditions from the Holocene and Last Glacial Maximum times in Laguna Potrok Aike sediments, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, Aurele; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda

    2014-05-01

    Laguna Potrok Aike is a closed basin located in the southern hemisphere's mid-latitudes (52°S) where paleoenvironmental conditions were recorded as temporal sedimentary sequences resulting from variations in the regional hydrological regime and geology of the catchment. The interpretation of the limnogeological multiproxy record developed during the ICDP-PASADO project allowed the identification of contrasting time windows associated with the fluctuations of Southern Westerly Winds. In the framework of this project, a 100-m-long core was also dedicated to a detailed geomicrobiological study which aimed at a thorough investigation of the lacustrine subsurface biosphere. Indeed, aquatic sediments do not only record past climatic conditions, but also provide a wide range of ecological niches for microbes. In this context, the influence of environmental features upon microbial development and survival remained still unexplored for the deep lacustrine realm. Therefore, we investigated living microbes throughout the sedimentary sequence using in situ ATP assays and DAPI cell count. These results, compiled with pore water analysis, SEM microscopy of authigenic concretions and methane and fatty acid biogeochemistry, provided evidence for a sustained microbial activity in deep sediments and pinpointed the substantial role of microbial processes in modifying initial organic and mineral fractions. Finally, because the genetic material associated with microorganisms can be preserved in sediments over millennia, we extracted environmental DNA from Laguna Potrok Aike sediments and established 16S rRNA bacterial and archaeal clone libraries to better define the use of DNA-based techniques in reconstructing past environments. We focused on two sedimentary horizons both displaying in situ microbial activity, respectively corresponding to the Holocene and Last Glacial Maximum periods. Sequences recovered from the productive Holocene record revealed a microbial community adapted to

  7. Geochemistry of Spencer-High Point Volcanic Field Lava Flows, Idaho

    NASA Astrophysics Data System (ADS)

    Iwahashi, G. S.; Hughes, S. S.

    2007-12-01

    Lava flows in Spencer-High Point (SHP) volcanic field, an ~1700 sq km mafic volcanic rift zone located near Yellowstone in the eastern Snake River Plain (ESRP), have been compared physically and chemically to other ESRP olivine tholeiites. Overall, SHP lavas are geochemically similar to other ESRP olivine tholeiites but their geomorphology is entirely different. The structural alignment of vents and fissures in an east-west direction in the Spencer-High Point region contrasts with most of the ESRP volcanic features aligned northwest-southeast. Numerous cinder cones at SHP, features that characterize Craters of the Moon volcanic field, are unusual on most of the eastern Snake River Plain. This study agrees with preliminary geochemical data by Leeman (1982) and Kuntz et al. (1992) suggesting that SHP lavas are typical ESRP basalts. However, a broad range of geochemical compositions exists in the SHP field that is similar to the entire range of ESRP olivine tholeiites. A few of the samples are actually closer in composition to lavas present at Craters of the Moon but only a limited number of samples from vents with physically higher relief, in the central and eastern portions of the field show these evolved chemical compositions. Typically Ta ranges 0.5-4.5ppm, La 20-90ppm, Ba 200-1100ppm and Cr 7-550ppm. Some lava flows in the central and eastern sections of SHP volcanic field also contain crustal xenoliths, implying a prolonged crustal history. These results although preliminary, suggest that the SHP system represents a possible petrologic transition between the dominant ESRP tholeiites and the evolved compositions found at Craters of the Moon.

  8. Uranium geochemistry of selected rock units from the Marysvale Volcanic Field, Piute County, Utah

    SciTech Connect

    Hoffer, R.L.

    1982-01-01

    The Marysvale Volcanic Field is an area rich in uranium. This study was undertaken to determine if the uranium deposits might be of volcanogenic origin. This geochemical study consisted of determining the major, minor and trace element concentrations of the major volcanic units, and the relationships of the rock chemistry to uranium mineralization. The units in the Marysvale Volcanic Field, consist of ash-flow tuffs, intermediate lava flows, and associated intrusives of the Bullion Canyon volcanics and ash-flow tuffs, volcaniclastic deposits, domes and stocks of the Mount Belknap volcanics. When compared to overlaying welded tuff or rhyolitic units, the vitrophyric samples from the Mount Belknap volcanic units, are all enriched in F, Cs, and U, and that 50% of the vitrophyres are enriched in Cr, Cu, Mo, Ni, Zr, Pb, Sr, V, and Zn. Overlying untis have been devitrified and have released U as well as other trace elements into the volcanogenic system. This study has reevaluated the Marysvale Central Mining District and has proposed another theory as to the origin of the uranium deposits in that area. This hypothesis places a previously unidentified caldera around the area, and this author has named it the Marysvale caldera. Evidence for this caldera includes: arcurate faults which surround the region; alteration patterns which appear to form a circular pattern along the boundary of the proposed caldera; the presence of small monzonite intrusive bodies appear to ring the caldera; the presence of ash-flow tuffs which thicken appreciably along the northeast boundary of the caldera; and the central intrusive which may represent a resurgent phase of the proposed caldera. This seems to be a viable alternative to the magmatic hydrothermal origin for the uranium deposits presently proposed for the Central Mining District.

  9. Measurements and Slope Analyses of Quaternary Cinder Cones, Camargo Volcanic Field, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Gallegos, M. I.; Espejel-Garcia, V. V.

    2012-12-01

    The Camargo volcanic field (CVF) covers ~3000 km2 and is located in the southeast part of the state of Chihuahua, within the Basin and Range province. The CVF represents the largest mafic alkali volcanic field in northern Mexico. Over a 300 cinder cones have been recognized in the Camargo volcanic field. Volcanic activity ranges from 4.7 to 0.09 Ma revealed by 40Ar/39Ar dating methods. Previous studies say that there is a close relationship between the cinder cone slope angle, due to mechanical weathering, and age. This technique is considered a reliable age indicator, especially in arid climates, such as occur in the CVF. Data were acquired with digital topographic maps (DRG) and digital elevation models (DEM) overlapped in the Global Mapper software. For each cone, the average radius (r) was calculated from six measurements, the height (h) is the difference between peak elevation and the altitude of the contour used to close the radius, and the slope angle was calculated using the equation Θ = tan-1(h/r). The slope angles of 30 cinder cones were calculated showing angles ranging from 4 to 15 degrees. A diffusion model, displayed by an exponential relationship between slope angle and age, places the ages of these 30 cones from 215 to 82 ka, within the range marked by radiometric methods. Future work include the analysis of more cinder cones to cover the whole CVF, and contribute to the validation of this technique.

  10. Pleistocene Volcanic Fields in the Anahim Volcanic Belt: What, why, how? - Chilcotin Highland, West-Central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian; Guest, Bernard

    2013-04-01

    A large number of volcanic features, including stratovolcanoes, cinder cones, domes, flows and erosional remnants of these exist in the eastern part of the Anahim Volcanic Belt (AVB) around Satah Mountain and Baldface Mountain. These two fields (abbreviated SMVF and BMVF below) are located south and east of the Itcha Ranges in the Chilcotin Highland of west-central British Columbia. Petrographic, geochemical and geochronological studies are hoped to clarify the volcano-tectonic association of these fields and if/how they relate to the nearby AVB. The studies might also provide corroboration of the hot-spot that has been proposed as the source of magmatism in the area, ranging from mid-Miocene ages in the western part of the AVB to Holocene ages at its eastern end at Nazko Cone. During two field campaigns, 20 centres in the SMVF aligned on a NNW-SSE trending topographic high and seven centres in the BMVF were studied with a focus on geochemistry and ages of the erupted lavas. With the exception of Satah Mountain, the most prominent and best-preserved edifice, individual centres are generally small in elevation (200-300 m) and volume. At almost all edifices, there is evidence for glacial modification, which likely removed most of the once-existing (?) pyroclastic material; water-magma interaction could be observed at one centre as well. Extensive coverage by glacial till limits outcrops to cliffs on the edifices' flanks or to local "windows" in the Quaternary deposits. This makes stratigraphic relationships, both within the fields and the surrounding volcanic rocks of the AVB and Chilcotin Flood Basalts (CFB), unclear. Preliminary XRF results indicate a high variability of the lavas, even between centres close to each other. Erupted lavas range from undersaturated basanites (44 wt% SiO2), trachybasalts and trachytes to high-alkali phonolites (14 wt% Na2O+K2O). In general, larger structures in the SMVF appear to have erupted more evolved rocks whereas smaller centres

  11. 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: Implications for duration and migration of volcanic activity

    NASA Astrophysics Data System (ADS)

    Moufti, M. R.; Moghazi, A. M.; Ali, K. A.

    2013-01-01

    New 40Ar/39Ar ages, based on incremental heating techniques for groundmass separates of 25 samples, are presented for the Harrat Al-Madinah volcanic field, part of Harrat Rahat in the north western part of the Arabian plate. This area is an active volcanic field characterized by the occurrence of two historical eruptions approximately in 641 and 1256 AD. Field investigations of the main volcanic landforms indicate dominantly monogenetic strombolian eruptions, in addition to local more explosive eruptions. The lavas consist mainly of olivine basalt and hawaiite flows with minor evolved rocks of mugearite, benmoreite, and trachyte that occur mainly as domes, tuff cones and occasionally as lava flows. Previous K/Ar dating shows that the Harrat Al-Madinah lava flows and associated domes comprise seven units spanning an age range of ca. 1.7 Ma-Recent. The new 40Ar/39Ar age determinations confirm, to a great extent, the previously obtained K/Ar ages in the sense that no major systematic biases were found in the general stratigraphy of the different flow units. However, the 40Ar/39Ar plateau ages show that volcanism in this area began in the Neogene (˜10 Ma) and continued to Recent, with the most voluminous eruptions occurring in the Quaternary. Neogene volcanism occurred in at least three pulses around 10, 5 and 2 Ma, whereas Quaternary volcanism produced at least seven units reflecting lava flow emplacement in the time period of 1.90 Ma-Recent. Thus, the whole duration of volcanic activity in the Harrat Al-Madinah (10 Ma-Recent) appears much longer than that previously identified. The longevity of volcanism in the same part of the moving Arabian plate and absence of evidence for uni-directional migration of volcanic activity indicate that there is no fixed plume beneath this region. The NNW-trending distribution of the volcanic vents is parallel to the Red Sea, and suggests their origin is related to periodic extensional episodes along the reactivated Red Sea fault

  12. The Carrán-Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting

    NASA Astrophysics Data System (ADS)

    Bucchi, Francisco; Lara, Luis E.; Gutiérrez, Francisco

    2015-12-01

    Understanding the relationship between monogenetic and polygenetic volcanism has been a long-standing goal in volcanology, especially in cases where these two styles of volcanism are coeval and geographically adjacent. We studied the Carrán-Los Venados (CLV) volcanic field and made comparisons with published data on CLV's polygenetic neighbor Puyehue-Cordón Caulle (PCC) in the Southern Andean arc, using quantitative tools and recent numerical simulations of magma reservoir formation. CLV is a basaltic to basaltic andesitic volcanic field composed of 65 post-glacial scoria cones and maars and a 1-km-high Pleistocene stratovolcano, whereas PCC is a basaltic to rhyolitic composite volcano. Our results point to three main differences between CLV and PCC: (1) the CLV magmas differentiate at low-crustal reservoirs, followed by rapid ascent to the surface, while the PCC magmas stagnate and differentiate in lower- and upper-crustal reservoirs; (2) CLV is elongated in the NE direction while PCC is elongated in the NW direction. Under the current stress field (N60°E σHmax), these two volcanic alignments correspond, respectively, to local extensional and compressive deformation zones within the arc; and (3), the post-glacial CLV magma flux was estimated to be 3.1 ± 1.0 km3/ky, which is similar to the average magma flux estimated for PCC; however, the PCC magma flux is estimated at approximately twice this value during peak eruptive periods (5.5 ± 1.1 km3/ky). Based on numerical simulations, CLV is in a limit situation to create and sustain a mush-type upper-crustal reservoir containing highly crystalline magma, which is however not eruptible. The PCC volcanic system would have been able to create a stable reservoir containing eruptible silicic magma during periods of peak magma flux. We postulate that monogenetic volcanism occurs at CLV due to both low magma flux and an extensional/transtensional regime that favors rapid magma rise without storage and differentiation in

  13. Internal architecture of the Tuxtla volcanic field, Veracruz, Mexico, inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli

    2016-09-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to

  14. Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: Tectonics and volcanism of San Borja volcanic field

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, Raquel; Cañón-Tapia, Edgardo; Brandle, Jose Luis; Ortega-Rivera, M. Amabel; Lee, James K. W.; Spelz, Ronald M.; Hinojosa-Corona, Alejandro

    2010-04-01

    Because of its long-lived (Late Miocene to Pleistocene) post-subduction volcanic activity and location, the San Borja volcanic field (SBVF) is a key area for understanding the physical mechanisms controlling the spatial distribution of post-subduction volcanism on the Peninsula of Baja California. In this paper, we study the distribution and general characteristics of individual eruptive centers in the SBVF, aiming to provide insight into the changing physical nature of post-subduction magmatism and the control on vent location in a very unique tectonic setting. Volcanic activity has built more than 227 high-magnesium andesites (HMA) monogenetic scoria cones and thick lava flows capping large mesas during the last 12.5 Ma. The average (mean) eruptive center in the SBVF has a height of 85 m, a basal diameter of 452 m and a slope angle of 30°. Our volcanic alignment analysis of this field is based on field data, satellite images, and a quantitative method for detecting volcanic center alignments. The morphologic data, together with new 40Ar/ 39Ar geochronology data have been used to refine our alignment analysis and to better delineate the temporal evolution of post-subduction volcanic activity in this field. The available ages vary from 3.53 ± 0.18 to 10 ± 0.23 Ma suggesting that the long-lived HMA volcanism occurred almost continuously (with some concentration of pulses) throughout Late Miocene and extending to the Pleistocene and even into the Quaternary, replacing the arc-related activity of the Comondú arc which vanished in this area around 12.5 Ma. Alignment analysis confirms a NW-SE direction as the preferred orientation of volcanic alignments and shows that vent elongations do not display a strong parallelism in any particular direction, marking the absence of matches between lineaments defined by multiple vents and orientations of vent elongation. The results of the volcanic alignment analysis allowed us to infer the direction of the maximum

  15. Spurious behavior in volcanic records of geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Vella, Jerome; Valet, Jean-Pierre; Soler, Vicente; Legoff, Maxime

    2016-04-01

    Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal. Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled three lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last reversal. The results show an evolution of the magnetization direction from top to bottom. Thermal demagnetization experiments were conducted using different heating and cooling rates. Similarly, continuous demagnetization and measurements. In both cases, we did not notice any remagnetization associated with mineralogical transformations during the experiments. Magnetic grain sizes do not show any correlation with the amplitude of the deviations. Microscopic observations indicate poor exsolution, which could suggests post-cooling thermochemical remagnetization processes.

  16. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  17. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Johnson, Clark M.; Lipman, Peter W.

    1988-09-01

    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes

  18. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.

    1988-01-01

    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes

  19. An integrated model for the deep structure of the Chyulu Hills volcanic field, Kenya

    NASA Astrophysics Data System (ADS)

    Novak, O.; Ritter, J. R. R.; Altherr, R.; Garasic, V.; Volker, F.; Kluge, C.; Kaspar, T.; Byrne, G. F.; Sobolev, S. V.; Fuchs, K.

    1997-09-01

    The Chyulu Hills, a 1.4 Ma B.P. to Holocene volcanic field located about 150 km to the east of the Kenya rift, is one of the few locations on Earth for which detailed geochemical (volcanic rocks), thermobarometric (xenoliths), seismological and gravity data are available. This paper combines these data to achieve an integrated seismic-petrological model for the deep structure of this volcanic field. Results of a wide-angle reflection and refraction experiment reveal an average crustal thickness of 40 km and a thickness of 20 km for the lower crust. Beneath the volcanic field, the crust thickens to about 44 km. In this region a low-velocity body (LVZ) is modelled which extends from about 30 ± 5 km depth to the Moho. The LVZ is characterised by an increased vP/ vS-ratio ranging from 1.81 to 1.93 depending on the possible extents of this body. This is in contrast to the surrounding crust where a ratio of only about 1.76 is observed. In the same area, the results of a teleseismic tomography study show a P-wave low-velocity anomaly of -3%. The seismic data can be explained by either an anorthositic body directly above the Moho in the region of the Chyulu Hills or by the presence of partial melt. Directly beneath the Chyulu Hills, a P-wave velocity of 7.9 km/s is determined for the uppermost mantle; this velocity is 0.2-0.3 km/s lower than that of the surrounding mantle region. The teleseismic tomography model suggests a P-wave low-velocity anomaly of -2.5 to -3.5% in the uppermost mantle (<70 km depth). Widespread garnet-bearing pyroxenitic and lherzolitic mantle xenoliths are mostly well equilibrated and suggest an apparent lithospheric thickness of about 105 km. Most garnet-free spinel harzburgitic xenoliths and some garnet pyroxenitic xenoliths were significantly heated before they were sampled and erupted by the host magmas. Heating events lasted for less than 210 ka as indicated by chemical diffusion profiles observed in orthopyroxene grains. It is suggested that

  20. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    SciTech Connect

    Moll-Stalcup, E.J.; Arth, J.G. )

    1991-12-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ({sup 87}Sr/{sup 86}Sr){sub i}, higher ({sup 143}Nd/{sup 144}Nd){sub i}, and moderate LREE and HREE contents (group 1), and a group having higher ({sup 87}Sr/{sup 86}Sr){sub i}, lower ({sup 143}Nd/{sup 144}Nd){sub i}, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 (({sup 87}Sr/{sup 86}Sr){sub i} = 0.7033; ({sup 143}Nd/{sup 144}Nd){sub i} = 0.5129), and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian continental middle or upper crust under this part of the volcanic field. However, the ultimate source of some of the rocks in the Yukon-Koyukuk province that have high {sup 87}Sr/{sup 86}Sr and low {sup 143}Nd/{sup 144}Nd ratios may be old sub-continental mantle and/or lower crust, which was previously subducted beneath the Yukon-Koyukuk province during Early Cretaceous arc-continent collision.

  1. Exploitation of oil in a volcanic cone by horizontal drilling in the Elaine field, south Texas

    SciTech Connect

    Martinez, P.A.; Kushner, P.L.; Harbaugh, J.W.

    1991-03-01

    The Uvalde volcanic field west and southwest of San Antonio contains many buried volcanic cones that offer attractive places to exploit with horizontal drilling. These buried cones were formed by eruption of basaltic flows and cinders during the Cretaceous when the Austin Chalk and immediately overlying strate were deposited. The cones vary in size, some being as much as 2 mi in diameter and 1000 ft in vertical dimension. During eruptions, flows and ejecta reacted with sea water, producing intermixtures of basaltic material and limestone. These cones provide attractive targets for oil exploration. The Elaine field about 90 mi southwest of San Antonio is associated with a buried volcanic cone that is now being exploited with horizontal drilling. Horizontal Drilling and Production, Inc., ('HDP') drilled the Autumn 1 as the initial horizontal well at Elaine. A vertical hole was drilled through the cone and underlying Austin Chalk, reconfirming the presence of the oil zone at the contact between volcanics and chalk. Moving back up the hole, a cement plug was set within the volcanics, and a horizontal hole was directed on a N 70W azimuth. The inclined hole's vertical angle had progressively decreased with distance to about 30{degree} from the horizontal when the oil zone was reentered. The hole's inclination continued to decrease within the oil zone, becoming horizontal after about 600 ft. With further distance, the hole passed beneath the oil zone, where its inclination was then reversed so that it climbed gradually and reentered the oil zone before reaching its terminal distance of 1500 horizontal feet. The well was completed on August 17, 1990, with an indicated initial production of 1609 BOPD.

  2. Stratigraphic relations and lithologic variations in the Jemez volcanic field, New Mexico

    SciTech Connect

    Gardner, J.N.; Goff, F.; Garcia, S.; Hagan, R.C.

    1986-02-10

    Over 100 radiometric dates and recent detailed geologic mapping allow some refinements of the stratigraphic relations of major units and generalization of temporal lithologic variations in the Jemez volcanic field. Volcanism had begun in the area by about 16.5 Ma with episodic eruptions of alkaline basalts. By 13 Ma, alkaline volcanism had been replaced with eruptions of more voluminous olivine tholeiite. High-silica rhyolite, derived from melts of lower crust, also was erupting by about 13 Ma. Basalt and high-silica rhyolite continued to be erupted until about 7 and 6 Ma, respectively, but effusions of dominantly andesitic differentiates of basalt that began as early as about 12 Ma volumetrically overshadowed all other eruptive products between 10 and 7 Ma. From 7 to 13 the dominant erupted lithology was dacite, which appears to have been generated by mixing of magmas whose compositions are approximated by earlier andesites and high-silica rhyolites. Less than 4--3 Ma volcanism was dominated by eruption of rhyolitic tuffs.

  3. Lithologic, age group, magnetopolarity, and geochemical maps of the Springerville Volcanic Field, east-central Arizona

    USGS Publications Warehouse

    Condit, Christopher D.; Crumpler, Larry S.; Aubele, Jayne C.

    1999-01-01

    The Springerville volcanic field is one of the many late Pliocene to Holocene, mostly basaltic, volcanic fields present near the Colorado Plateau margin (fig. 1, in pamphlet). The field overlies the lithospheric transition zone between the Colorado Plateau and the Basin and Range Province (Condit and others, 1989b). Establishing relations in time, space, and composition of the rocks of these plateau-margin fields offers the possibility to integrate more fully into a regional synthesis the detailed geochemistry of these fields now being examined (for example, Perry and others, 1987; Fitton and others, 1988; Menzies and others, 1991). The work also provides baseline information for understanding mantle properties and processes at different depths and locations. Because the Springerville field is the southernmost of the plateau-margin fields, and because it contains both tholeiitic and alkalic rocks (tables 1 and 2, in pamphlet), it is a particularly important location for establishing these patterns in time, space, and composition. Our four thematic maps of the Springerville field were compiled by using digital mapping techniques so that associated petrologic and chemical data could be conveniently included in a geographic information system for one of the plateau-margin fields. Parts of these maps have been included in Condit (1995), a stand-alone Macintosh2 computer program that takes advantage of their digital format.

  4. Contributions to Astrogeology: Geology of the lunar crater volcanic field, Nye County, Nevada

    NASA Technical Reports Server (NTRS)

    Scott, D. H.; Trask, N. J.

    1971-01-01

    The Lunar Crater volcanic field in east-central Nevada includes cinder cones, maars, and basalt flows of probably Quaternary age that individually and as a group resemble some features on the moon. Three episodes of volcanism are separated by intervals of relative dormancy and erosion. Changes in morphology of cinder cones, degree of weathering, and superposition of associated basalt flows provide a basis for determining the relative ages of the cones. A method has been devised whereby cone heights, base radii, and angles of slope are used to determine semiquantitatively the age relationships of some cinder cones. Structural studies show that cone and crater chains and their associated lava flows developed along fissures and normal faults produced by tensional stress. The petrography of the basalts and pyroclastics suggests magmatic differentiation at depth which produced interbedded subalkaline basalts, alkali-olivine basalts, and basanitoids. The youngest flows in the field are basanitoids.

  5. Hydrogen chloride 37Cl/35Cl isotopic ratio field analyzer for the investigation of volcanic plumes

    NASA Astrophysics Data System (ADS)

    D'Amato, Francesco; Burton, Mike; Chiarugi, Antonio; Viciani, Silvia

    2015-04-01

    We present a new analyzer for the in-field measurement of the isotopic ratio 37Cl/35Cl in the hydrogen chloride emitted by volcanoes, developed within the frame of the ERC Project CO2Volc (Grant 279802). The Project aims to the measurement of several molecular species in the volcanic plumes. The analyzer is based on molecular spectroscopy. The volcanic plume interacts in a multipass cell with two laser beams at suitable wavelengths. From the absorptions of the two beams by the two isotopologues the isotopic ratio is retrieved. We report here the results of the laboratory checks of the instrument, and the results of a measurement campaign carried out on Etna and Vulcano. The campaign aimed to verify not only the in-field performances of the analyzer but also to assess its robustness in such a hostile environment.

  6. Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California

    USGS Publications Warehouse

    Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.

    1998-01-01

    Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.

  7. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.

    2016-06-01

    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  8. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    USGS Publications Warehouse

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  9. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  10. Records of magmatic change as preserved in zircon: examples from the Yellowstone Volcanic Field

    NASA Astrophysics Data System (ADS)

    Rivera, T. A.

    2015-12-01

    Zircon crystals have been used as proxies for their host magmatic composition and as records of the evolution and differentiation of silicic magma systems through the use of integrated techniques such as cathodoluminescence imaging, LA-ICPMS trace element analysis, thermometry, and high-precision CA-IDTIMS U/Pb dating. This petrochronologic approach can aid in identifying crystal populations arising from discrete pulses of magmatism, reconstructing the growth histories of those populations, quantifying the chemical evolution of the host magma, and determining the timing and tempo of that chemical evolution. The Yellowstone Volcanic Field hosts both large and small volume silicic eruptions whose zircon records can provide insights to magmatic processes using a petrochronologic approach. Morphological and thermochemical trends preserved in zircon grains extracted from the three Yellowstone super-eruptions and a small volume precursory eruption indicate that magmatism in the volcanic field is punctuated, characterized by numerous pulses of melting, differentiation, and solidification occurring prior to eruption. U/Pb zircon dating constrains magma assembly to geologically short timescales, with populations of earlier solidified zircon incorporated into the nascent magma just prior to eruption. This requires punctuated intervals of high magmatic flux be superimposed on longer durations of a much lower background flux. Thus super-eruptions within the Yellowstone Volcanic Field result from rapid production and evolution of magma, and preceded by periods of smaller volume magma production that undergo similar differentiation processes over comparable timescales.

  11. The Lathrop Wells volcanic center: Status of field and geochronology studies

    SciTech Connect

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1992-03-01

    The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed.

  12. A first hazard analysis of the Quaternary Harrat Al-Madinah volcanic field, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El Difrawy, M. A.; Runge, M. G.; Moufti, M. R.; Cronin, S. J.; Bebbington, M.

    2013-11-01

    The northern portion of the 20,000 km2 Harrat Rahat basaltic field in NW Saudi Arabia (Harrat Al-Madinah) has hosted some of the most recent volcanic eruptions in the country. Rapid growth of the city of Al-Madinah has spread out onto the lava flows and scoria cones of the Harrat, increasing exposure to any potential renewed volcanism. We present here a first-order probabilistic hazard analysis related to new vent formation and subsequent lava flow from this volcanic field. The 501 visible eruption vent sites were integrated with aeromagnetic survey data (as representative of potential regions of buried volcanic vents) to develop a probability density function for new eruption sites using Gaussian kernel smoothing. This revealed a NNW striking zone of high spatial hazard terminating < 10 km south of the city. Using the properties of the AD1256 eruption lava flows and the spatial PDF, an analysis of lava hazard was carried out. Assuming a future lava-producing eruption, around 25% of the city of Al-Madinah is exposed to a probability of 0.001 to 0.005 of lava inundation. The temporal eruption recurrence rate is estimated at approximately one vent per 3300 years, but the temporal record of the field is so poorly constrained that the lower and upper bounds for the recurrence interval are 13,300 yrs and 70 yrs, respectively. Applying a Poisson temporal model, this results in a worst-case lava inundation recurrence interval of approximately 14,300 years.

  13. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    SciTech Connect

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  14. Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany)

    NASA Astrophysics Data System (ADS)

    Rausch, Juanita; Grobéty, Bernard; Vonlanthen, Pierre

    2015-01-01

    The Eifel region in western central Germany is the type locality for maar volcanism, which is classically interpreted to be the result of explosive eruptions due to shallow interaction between magma and external water (i.e. phreatomagmatic eruptions). Sedimentary structures, deposit features and particle morphology found in many maar deposits of the West Eifel Volcanic Field (WEVF), in contrast to deposits in the East Eifel Volcanic Field (EEVF), lack the diagnostic criteria of typical phreatomagmatic deposits. The aim of this study was to determine quantitatively the shape of WEVF and EEVF maar ash particles in order to infer the governing eruption style in Eifel maar volcanoes. The quantitative shape characterization was done by analyzing fractal dimensions of particle contours (125-250 μm sieve fraction) obtained from Scanning electron microscopy (SEM) and SEM micro-computed tomography (SEM micro-CT) images. The fractal analysis (dilation method) and the fractal spectrum technique confirmed that the WEVF and EEVF maar particles have contrasting multifractal shapes. Whereas the low small-scale dimensions of EEVF particles (Eppelsberg Green Unit) coincide with previously published values for phreatomagmatic particles, the WEVF particles (Meerfelder Maar, Pulvermaar and Ulmener Maar) have larger values indicating more complex small-scale features, which are characteristic for magmatic particles. These quantitative results are strengthening the qualitative microscopic observations, that the studied WEVF maar eruptions are rather dominated by magmatic processes. The different eruption styles in the two volcanic fields can be explained by the different geological and hydrological settings found in both regions and the different chemical compositions of the magmas.

  15. An investigation into the utilization of HCMM thermal data for the descrimination of volcanic and Eolian geological units. [Craters of the Moon volcanic field, Idaho; San Francisco volcanic field, Arizona; High Desert, California; and the Cascade Range, California and Oregon

    NASA Technical Reports Server (NTRS)

    Head, J. W., III (Principal Investigator)

    1982-01-01

    Analysis of HCMM data shows that the resolution provided by the thermal data is inadequate to permit the identification of individual lava flows within the volcanic test sites. Thermal data of southern California reveals that dune complexes at Kelso and Algodomes are found to be too small to permit adequate investigation of their structure. As part of the study of the San Francisco volcanic field, marked variations in the thermal properties of the region between Flagstaff and the Utah State border were observed. Several well-defined units within the Grand Canyon and the Colorado Plateau were recognized and appear to be very suitable for analysis with HCMM, SEASAT and LANDSAT images. Although individual volcanic constructs within the Cascade Range are too small to permit detailed characterization with the thermal data, the regional volcano/tectonic setting offers a good opportunity for comparing the possible thermal distinction between this area and sedimentary fold belts such as those found in the eastern United States. Strong intra-regional variations in vegetation cover were also tentatively identified for the Oregon test site.

  16. Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Di Traglia, F.; Cimarelli, C.; de Rita, D.; Gimeno Torrente, D.

    2009-03-01

    The Croscat pyroclastic succession has been analysed to investigate the transition between different eruptive styles in basaltic monogenetic volcanoes, with particular emphasis on the role of phreatomagmatism in triggering Violent Strombolian eruptions. Croscat volcano, an 11 ka basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF) shows pyroclastic deposits related both to magmatic and phreatomagmatic explosions. Lithofacies analysis, grain size distribution, chemical composition, glass shard morphologies, vesicularity, bubble-number density and crystallinity of the Croscat pyroclastic succession have been used to characterize the different eruptive styles. Eruptions at Croscat began with fissural Hawaiian-type fountaining that rapidly changed to eruption types transitional between Hawaiian and Strombolian from a central vent. A first phreatomagmatic phase occurred by the interaction between magma and water from a shallow aquifer system at the waning of the Hawaiian- and Strombolian-types stage. A Violent Strombolian explosion then occurred, producing a widespread (8 km 2), voluminous tephra blanket. The related deposits are characterized by the presence of wood-shaped, highly vesicular scoriae. Glass-bearing xenoliths (buchites) are also present within the deposit. At the waning of the Violent Strombolian phase a second phreatomagmatic phase occurred, producing a second voluminous deposit dispersed over 8.4 km 2. The eruption ended with a lava flow emission and consequent breaching of the western-side of the volcano. Our data suggest that the Croscat Violent Strombolian phase was related to the ascent of deeper, crystal-poor, highly vesicular magma under fast decompression rate. Particles and vesicles elongation and brittle failure observed in the wood-shaped clasts indicate that fragmentation during Violent Strombolian phase was enhanced by high strain-rate of the magma within the conduit.

  17. Spatial and Alignment Analyses for a field of Small Volcanic Vents South of Pavonis Mons Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Glaze, L. S.; Greeley, R.; Hauber, E.; Baloga, S. M.; Sakimoto, S. E. H.; Williams, D. A.; Glotch, T. D.

    2008-01-01

    The Tharsis province of Mars displays a variety of small volcanic vent (10s krn in diameter) morphologies. These features were identified in Mariner and Viking images [1-4], and Mars Orbiter Laser Altimeter (MOLA) data show them to be more abundant than originally observed [5,6]. Recent studies are classifying their diverse morphologies [7-9]. Building on this work, we are mapping the location of small volcanic vents (small-vents) in the Tharsis province using MOLA, Thermal Emission Imaging System, and High Resolution Stereo Camera data [10]. Here we report on a preliminary study of the spatial and alignment relationships between small-vents south of Pavonis Mons, as determined by nearest neighbor and two-point azimuth statistical analyses. Terrestrial monogenetic volcanic fields display four fundamental characteristics: 1) recurrence rates of eruptions,2 ) vent abundance, 3) vent distribution, and 4) tectonic relationships [11]. While understanding recurrence rates typically requires field measurements, insight into vent abundance, distribution, and tectonic relationships can be established by mapping of remotely sensed data, and subsequent application of spatial statistical studies [11,12], the goal of which is to link the distribution of vents to causal processes.

  18. Paleomagnetism and tectonic interpretations of the Taos Plateau volcanic field, Rio Grande rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to late stage extensional environment of the Rio Grande rift was investigate using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chron. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counter-clockwise rotating Espanola block.

  19. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Ni, Sidao; Zhang, Baolong; Bao, Feng; Zhang, Senqi; Deng, Yang; Yuen, David A.

    2016-05-01

    The Wudalianchi Volcano Field (WDF) is a typical intraplate volcano in northeast China with generation mechanism not yet well understood. As its last eruption was around 300 years ago, the present risk for volcano eruption is of particular public interest. We have carried out a high-resolution ambient noise tomography to investigate the location of magma chambers beneath the volcanic cones with a dense seismic array of 43 seismometers and ~ 6 km spatial interval. Significant low-velocity anomalies up to 10% are found at 7-13 km depth under the Weishan volcano, consistent with the pronounced high electrical-conductivity anomalies from previous magnetotelluric survey. We propose these extremely low velocity anomalies can be interpreted as partial melting in a shallow magma chamber with volume at least 200 km3 which may be responsible for most of the recent volcanic eruptions in WDF. Therefore, this magma chamber may pose a serious hazard for northeast China.

  20. Improved Constraints on the Eruptive History of Northern Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.; Downs, D. T.; Calvert, A. T.; Sherrod, D. R.; Hassan, K. H.; Muquyyim, F. A.; Ashur, M. S.

    2015-12-01

    Harrat Rahat is a large (~20,000 km2) alkalic volcanic field located in central western Saudi Arabia. A variety of eruptive products ranging from alkali basalt to trachyte have erupted at Harrat Rahat over the past ~10 m.y., with the most recent eruptions occurring at 641 CE (uncertain) and 1256 CE in the northern part of the volcanic field. Despite the field's young age and its close proximity to two major city centers, the eruptive history of Harrat Rahat remains poorly constrained. Previous researchers grouped the volcanic strata of northern Harrat Rahat into seven subunits based on limited K-Ar and 40Ar/39Ar dating, and on the degree of erosion displayed by the eruptive products. The youngest eruptive products (subunits Qm7 - Qm4) are thought to be ≤600 ka, whereas the older lavas (Qm3 - Qm1) are thought to be >600 ka. However, due to the sparse geochronologic control on the ages of the eruptive units, it remains unclear if the currently defined subunits accurately reflect the age distribution of lavas in northern Harrat Rahat. Additionally, the temporal relation between basaltic magmatism and the more evolved eruptive products has yet to be examined. To better constrain the eruptive history of Harrat Rahat we measured >50 new 40Ar/39Ar eruption ages for Qm1 through Qm5 lavas in northern Harrat Rahat. These new 40Ar/39Ar ages suggest that the majority of volcanism in the region occurred ≤400 ka and is significantly younger than previously thought, indicating that the magmatic system at Harrat Rahat has been more active over the past 400 kyr then previously recognized. Additionally, these new age data suggest that nearly all trachytic magmatism occurred <125 ka and was preceded by a pulse of more mafic magmatism. It is likely the magmatic system at Harrat Rahat reached an evolved state late in the history of the volcanic field due to increased and/or prolonged input of basaltic magmas into the crust.

  1. Geomorphometric analysis of the scoria cones of the San Francisco Volcanic Field using polar coordinate transformation

    NASA Astrophysics Data System (ADS)

    Vörös, Fanni; Koma, Zsófia; Karátson, Dávid; Székely, Balázs

    2016-04-01

    Scoria cones are often studied using geomorphometric and traditional GIS methods, e.g. aspect, slope histograms, area, cone height/width ratio. In order to enhance the non-symmetric shape components in contrast to the conical forms, we used a new approach in our research: the polar coordinate transformation (PCT) introduced by Székely & Karátson (2004). The study area is the classic cluster of scoria cones at the San Francisco Volcanic Field (SFVF) encompassing roughly 600 scoria cones as well as the San Francisco stratovolcano. Our goal is to analyse the even slight asymmetric shape of the scoria cones, and to generalize our findings. The area is a well-studied volcanic field, with a great number of available geological and geomorphological information, so comparing our PCT results with the data in literature is feasible. Polar coordinate transformation, being a one-to-one transformation, maps the original Cartesian coordinates (X, Y in meters) to radial distance (m) and azimuth (°) values. Our inputs were digitized polygons. We created images in the transformed coordinate system that clearly show the asymmetrical shape of the scoria cones. This asymmetry is found to be related to some extent to denudation, and to the age of the volcanic edifice that correlates with differential erosion. However, original asymmetries related to formation (e.g. rifting, emplacement on slope, eruption variations etc.) are also reasonable. The applied technique allows to define new derivatives of volcano-geomorphological parameters. The resultant scoria cone patterns have been manually categorized, however, the results are suitable for automated classification which is our next purpose. BSz contributed as an Alexander von Humboldt Research Fellow. Székely, B. & Karátson, D. (2004): DEM-based morphometry as a tool for reconstructing primary volcanic landforms: examples from the Börzsöny Mountains, Hungary, Geomorphology 63:25-37.

  2. Mechanisms of low-flux intraplate volcanic fields - Basin and Range and Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Valentine, G.; Hirano, N.

    2009-05-01

    Many fields of small-volume, scattered volcanoes that typically have alkaline affinities occur in intraplate settings. The underlying mechanisms of these intraplate volcanoes are enigmatic; they often do not correlate with anomalous heat sources or upwelling mantle (as in hot spots, mid-ocean ridges, and active continental rifts), or with fluids introduced by actively-subducting lithosphere. We compare the characteristics of two low volume-flux intraplate volcanic fields, one in a continental setting that is characterized by slow extension (western U.S.A.), and the other on the floor of the northwest Pacific Ocean in a region of plate flexure. The comparison supports an interpretation that the fundamental driving mechanism for low magma-flux volcanic fields, which episodically erupt scattered, small-volume volcanoes over millions of years, is regional-scale deformation of compositionally-heterogeneous upper mantle. Deformation serves to mechanically focus partial melts that might be present due to locally-depressed solidus temperatures caused by slightly higher volatile contents, creating sufficient melt buoyancy to trigger magma ascent via magma-driven fractures (dikes). The key role of deformation in collecting magmas and triggering dike ascent and eruption, without influx of new material or heat into the source region, supports the definition of such systems as tectonically-controlled, and is likely applicable at other low-flux, diffuse volcanic fields. Differences in the degree of fractionation and wall-rock contamination in the two fields is related to vertical variations in principal-stress orientation that may cause stalling of ascending dikes.

  3. The Auckland volcanic field, New Zealand: Geophysical evidence for structural and spatio-temporal relationships

    NASA Astrophysics Data System (ADS)

    Cassidy, John; Locke, Corinne A.

    2010-08-01

    Geophysical data from the monogenetic Auckland volcanic field reveal complex structural and spatio-temporal relationships at different scales. The volcanic field is coincident with regional magnetic and gravity anomalies that mark a major crustal suture and with a discontinuity marking a significant structural asperity. Here, the linear regional magnetic anomaly splays into a wide band of NNW-trending lineaments, arising from serpentinised shear zones in the upper crust, that matches the extent of the volcanic field and that may reflect a region of crustal weakness creating preferential permeability. However, there appears to be no simple correlation between the locations of individual vents and these lineaments that might delineate more shallow structural controls with this orientation, probably as a consequence of other structural influences. High-resolution aeromagnetic data over the volcanic field show that the volcanoes have a wide range of magnetic signatures indicating a variability of subsurface structure. Scoria cone volcanoes typically have strong anomalies (up to several 100 nT) whilst tuff-ring volcanoes typically have weak anomalies (less than 50 nT), though the surface geology is not always an indicator of the nature and extent of the subsurface deposits. Both cone and tuff-ring volcanoes in the Auckland field appear to be underlain by subsurface bowl-shaped bodies of basalt, implying that their eruption histories commonly involve lava ponding into early excavated craters. The present geophysical data give no evidence for subsurface dyke-like structures or for substantial near-surface volumes of basaltic rocks where there are no known eruption centres or buried flows. Aeromagnetic and palaeomagnetic data suggest that a number of adjacent vents with an implied structural linkage may be contemporaneous, though other examples occur where vents of clearly different ages exploit the same apparent structure. A unique feature of the Auckland field is that at

  4. Rock magnetic study and paleomagnetic reconstruction from the maar Lake Laguna Potrok Aike, southern Argentina: preliminary results from the PASADO-ICDP record

    NASA Astrophysics Data System (ADS)

    Lise-Pronovost, A.; St-Onge, G.; Gogorza, C. G.; Haberzettl, T.; PASADO Team

    2010-12-01

    In the framework of the International Continental scientific Drilling Program (ICDP), the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) team drilled Laguna Potrok Aike (52°S, 70°W) in southern Argentina during austral spring 2008. A composite sedimentary sequence of 106 meters from the center of the lake was recovered. Here we present a high-resolution rock magnetic study and paleomagnetic reconstruction for the uppermost 50 m of the PASADO-ICDP composite profile. The natural remanent magnetization (NRM), the anhysteretic and two isothermal remanent magnetizations (ARM, IRM and SIRM) were measured at 1 cm intervals using a 2G u-channel cryogenic magnetometer. Hysteresis properties were measured at ca. 50 cm intervals using a Princeton Measurements Corporation alternating gradient force magnetometer. Temperature dependence of magnetic susceptibility was measured from 50°C to 700°C using a Bartington furnace and susceptibility meter system for all core catcher samples and low field volumetric magnetic susceptibility (kLF) was measured at 1 cm intervals using a multi sensor core logger (MSCL). Preliminary results indicate that the magnetic assemblage of the uppermost 50 m is dominated by low coercivity minerals such as magnetite with grains ranging from pseudo single to multi domain (PSD to MD). The magnetic assemblage of the uppermost ca. 8 meters is characterized by magnetic grains fining upward, as indicated by grain size ratios (kARM/kLF, MDFARM/MDFIRM, ARM/SIRM) and the coercivity ratio Hcr/Hc. These results are consistent with the mid-Holocene lake level rise at Laguna Potrok Aike inferred from geochemical and elemental proxies. Beyond the currently available chronology (ca. 19 m; 16 000 cal BP) and down to 50 m, magnetic grains are generally coarser and rapidly deposited layers become more numerous, most likely because of stronger winds at the end of the last glacial period. Rapidly deposited layers such as turbidites and reworked tephra

  5. Evolution of a magmatic system during continental extension: The Mount Taylor volcanic field, New Mexico

    SciTech Connect

    Perry, F.V. ); Baldridge, W.S. ); DePaolo, D.J. Lawrence Berkeley Lab., Berkeley, CA ); Shafiqullah, M. )

    1990-11-10

    In this paper the authors present geologic mapping, K-Ar chronology, major and trace element data, mineral chemistry, and Nd, Sr, and O isotopic data for volcanic rocks of the Mount Taylor volcanic field (MTVF). The MTVF lies on the tectonic boundary between the Basin and Range province and the southeastern Colorado Plateau and is dominated by Mount Taylor, a composite volcano active from {approx}3 to 1.5 m.y. ago. Growth of the volcano began with eruption of rhyolite, followed by quartz latite and finally latite. Basalts erupted throughout the lifetime of the volcano. Rare mixing of evolved hy-hawaiite and rhyolite produced a few intermediate magmas, primarily in the early history of the field. Mixing may have occurred when rhyolite magmas in the lower crust ascended to upper crustal levels and were injected into the bases of mafic magma chambers. Small amounts of crustal assimilation accompanied fractional crystallization and affected all the evolved MTVF rocks. Assimilation/fractional crystallization occurred primarily in the lower crust as hy-hawaiite differentiated to mugearite or latite. Early in the history of the field, evolved lower crustal magmas ascended into the upper crust, where density filtering and a reduced tensional stress field inhibited further ascent until magmas evolved to rhyolite or quartz latite. Later in the history of the field, latite magmas ascended directly from the lower crust and erupted without further significant differentiation because of increased crustal extension.

  6. Titanium and oxygen isotope diffusion in quartz-phenocrysts from a Jurassic rhyolite, Chon Aike Province (Fitz Roy, Patagonia)

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Putlitz, B.; Baumgartner, L. P.; Escrig, S.; Meibom, A.; Leresche, S.; Vennemann, T. W.

    2014-12-01

    The volcanic El Quemado Complex was deposited during the breakup of Gondwana during the Middle and Late Jurassic. It is part of a large silicic igneous province, which includes the Chon Aike Province in Southern Patagonia and related rocks from the Antarctic Peninsula [1]. The Complex consists of rhyolitic and dacitic ignimbrites and air-fall tuffs, intercalated with andesitic to rhyolitic lava flows. New LA-ICPMS U/Pb-dates of zircons from the Fitz Roy area yield ages between 148 and 153Ma. No inherited zircons were found, suggesting that the temperature of 850°C calculated from zircon saturation is a minimum temperature. Lava flows are typically rich in quartz phenocrysts, which preserved magmatic trace element zoning, as revealed by cathodoluminescence (CL): light cores are surrounded by several darker and lighter zones towards the rim. The δ18O-values for quartz of between 11 to 14 ‰ are compatible with a crustal source for the magma and the SIMS analyses of phenocrysts reveal no zoning in O-isotope compositions. High-resolution Ti-profiles were obtained by NanoSIMS with a beam size of ~200 nm and a minimum step size of ~120 nm. Several lines perpendicular to the magmatic zoning of the quartz-phenocrysts were measured. The profiles show sharp changes in the 48Ti/29Si-ratio over a distance of 5 μm, which correlate with CL-intensity changes. The profiles can be used for diffusion chronometry. The distances obtained from NanoSIMS profiles were used to calculate maximum diffusional relaxation times. Assuming a step function as initial condition and extrusion temperatures from zircon saturation of 850°C, we obtain a maximum residence time for the quartz-phenocrysts of 3.5 years. [1] Pankhurst R.J., Riley T.R., Fanning C.M., Kelley S.P., 2000. J. Pet., 41, 605-625.

  7. Potential field and bathymetric investigation of the Monowai volcanic centre, Kermadec Arc: implications for caldera formation and volcanic evolution

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Watts, A. B.; Peirce, C.

    2014-06-01

    The Monowai volcanic centre, located on the Tonga-Kermadec Arc, consists of a basaltic-andesitic submarine stratovolcano and adjacent caldera. Recent surveys have shown that it is active, but little is known about its structure and evolution. Here we present a combined analysis of swath bathymetry and potential field data from Monowai, acquired during cruise SO215 on the R/V Sonne, in 2011 April-June. The Monowai caldera is associated with a 20-25 mGal Bouguer gravity anomaly high and a broad positive magnetic anomaly. Short-wavelength magnetic anomalies of up to +1400 and -800 nT are observed along the caldera rim and on the summit of the stratovolcano. Inversion of the Bouguer gravity anomaly data shows that the caldera high is caused by a buried dense body consisting of a main unit extending from 3 to 6 km depth, and a shallower ring structure that underlies the rim of Monowai caldera and extends from the seafloor to the top of the main unit. We estimate the average density contrast to be about +450 kg m-3, corresponding to a density of 2650-2850 kg m-3, suggesting a mafic composition. The ring structure is interpreted as set of ring dykes and the main unit as a solidified or partly solidified magma chamber system (the Monowai pluton). The volume of the main unit is estimated to be 200-300 km3. The observed magnetic anomalies are consistent with magmatic intrusion within the Bruhnes magnetic polarity. Analysis of the swath bathymetry data shows that Monowai is located inside a 20-km-wide graben, part of an en-echelon, left-stepping horst and graben system that spans the length of the arc and backarc. The Monowai caldera is elongated perpendicular to the direction of rifting, suggesting that it is affected by the regional stress regime. Geomorphological analysis suggests that the caldera consists of a single collapse structure and that its complex shape and multiple ring faults can be attributed to prolonged activity and multiple collapse episodes. It remains

  8. Seismic and GPS constraints on the dynamics and kinematics of the Yellowstone volcanic field

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Jordan, M.; Puskas, C.; Waite, G. P.

    2007-12-01

    The seismically and volcanically Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have modified continental lithosphere producing the Yellowstone-Snake River Plain-Newberry silicic volcanic field (YSRPN) system, with its NE volcanically active Yellowstone volcanic field. The size and accessibility of the Yellowstone area has allowed a range of geophysical experiments including earthquake monitoring and seismic and GPS imaging of this system. Seismicity is dominated by small-magnitude normal- to oblique-slip faulting earthquake swarms with shallow focal depths, maximum of ~5 km, restricted by high temperatures and a weak elastic layer. There is developing evidence of non-double couple events. Outside the caldera, earthquakes are deeper, ~20 km, and capable of M 7+ earthquakes. We integrate the results from a multi-institution experiment that recorded data from 110 seismic stations and 180 GPS stations for 1999-2004. The tomographic images confirm the existence of a low Vp-body beneath the Yellowstone caldera at depths greater than 8 km, possibly representing hot, crystallizing magma. A key result of our study is a volume of anomalously low Vp and Vp/Vs in the northwestern part of the volcanic field at shallow depths of <2.0 km. Theoretical calculations of changes in P- to S-wave velocity ratios indicate that these anomalies can be interpreted as porous, gas-filled rock. GPS-measured episodes of caldera kinematics reveals uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 70 mm/yr of accelerated uplift, 2004-2007. The stress field inverted from seismic and GPS data is dominated by regional SW extension with superimposed volumetric expansion and uplift from local volcanic sources. Mantle tomography derived from integrated inversion of teleseismic and local earthquake data constrained by geoid, crustal

  9. Paleomagnetism and Tectonic Interpretations of the Taos Plateau Volcanic Field, Rio Grande Rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to the late stage extensional environment of the Rio Grande rift was investigated using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chiron. Alternating field demagnetization, aided by principal component analysis, yields 55 sites with stable directions representing both normal and reversed polarities, and five sites indicating transitional fields. Mean direction of the normal and inverted reversed sites is I=49.3 deg. and D=356.7 deg. (alpha(sub 95)=3.6 deg). Angular dispersion of the virtual geomagnetic poles is 16.3 deg, which is consistent with paleosecular variation model G, fit to data from the past 5 m.y. Comparison with the expected direction indicates no azimuthal rotation of the Taos Plateau volcanic field; inclination flattening for the southern part of the plateau is 8.3 deg +/- 5.3 deg. Previous paleomagnelic data indicate 10 deg- 15 deg counterclockwise rotation of die Espanola block to the south over the past 5 m.y. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern

  10. The Maars of the Tuxtla Volcanic Field: the Example of 'laguna Pizatal'

    NASA Astrophysics Data System (ADS)

    Espindola, J.; Zamora-Camacho, A.; Hernandez-Cardona, A.; Alvarez del Castillo, E.; Godinez, M.

    2013-12-01

    Los Tuxtlas Volcanic Field (TVF), also known as Los Tuxtlas massif, is a structure of volcanic rocks rising conspicuously in the south-central part of the coastal plains of eastern Mexico. The TVF seems related to the upper cretaceous magmatism of the NW part of the Gulf's margin (e.g. San Carlos and Sierra de Tamaulipas alkaline complexes) rather than to the nearby Mexican Volcanic Belt. The volcanism in this field began in late Miocene and has continued in historical times, The TVF is composed of 4 large volcanoes (San Martin Tuxtla, San Martin Pajapan, Santa Marta, Cerro El Vigia), at least 365 volcanic cones and 43 maars. In this poster we present the distribution of the maars, their size and depths. These maars span from a few hundred km to almost 1 km in average diameter, and a few meters to several tens of meters in depth; most of them filled with lakes. As an example on the nature of these structures we present our results of the ongoing study of 'Laguna Pizatal or Pisatal' (18° 33'N, 95° 16.4'W, 428 masl) located some 3 km from the village of Reforma, on the western side of San Martin Tuxtla volcano. Laguna Pisatal is a maar some 500 meters in radius and a depth about 40 meters from the surrounding ground level. It is covered by a lake 200 m2 in extent fed by a spring discharging on its western side. We examined a succession of 15 layers on the margins of the maar, these layers are blast deposits of different sizes interbedded by surge deposits. Most of the contacts between layers are irregular; which suggests scouring during deposition of the upper beds. This in turn suggests that the layers were deposited in a rapid series of explosions, which mixed juvenile material with fragments of the preexisting bedrock. We were unable to find the extent of these deposits since the surrounding areas are nowadays sugar cane plantations and the lake has overspilled in several occassions.

  11. Changements climatiques et variations du champ magnetique terrestre dans le sud de la Patagonie (Argentine) depuis 51 200 ans reconstitues a partir des proprietes magnetiques des sediments du lac Laguna Potrok Aike

    NASA Astrophysics Data System (ADS)

    Lise-Pronovost, Agathe

    Rock magnetism is influenced by climate and by the Earth's magnetic field. The goal of this thesis is to use the rock magnetic properties of the long sedimentary sequence from the lake Laguna Potrok Aike (106 m, 51200 cal BP) to derive paleomagnetic and paleoclimatic records in a key area of the Southern Hemisphere that is poorly documented. Laguna Potrok Aike (52°S, 70°W) is located in southeastern Patagonia (Argentina) in the path of the strong Southern Hemisphere westerly winds and in the source area of the dust deposited in Antarctica during Glacial periods. The lake geographical location is therefore ideal to reconstruct past changes in aeolian activity and climate changes in Patagonia. It is also a key location to reconstruct past changes of the geomagnetic field because the Southern Hemisphere is significantly under-documented relative to the Northern Hemisphere. In addition, the proximity of the South Atlantic Anomaly (SAA) as well as the Southern Hemisphere high flux lobes could allow identifying differences in the paleomagnetic field evolution in southern South America relative to the much more documented Northern Hemisphere. For his strong potential to provide high-resolution climatic, aeolian and paleomagnetic records beyond the last climatic transition, the maar lake Laguna Potrok Aike was drilled in the framework of the International scientific Continental Drilling Program (ICDP) for the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO). In this thesis, high-resolution rock-magnetic and physical properties are used in order to reconstruct paleoclimate and paleomagnetic records from the southernmost part of South America. In the first chapter, the full-vector paleomagnetic record (inclination, declination and relative paleointensity) derived from the sediments of Laguna Potrok Aike. A grain size influence on the relative paleointensity record (NRM/ARM) was corrected using the median destructive field of the natural remanent

  12. Cross-arc geochemical variations in volcanic fields in Honduras C.A.: progressive changes in source with distance from the volcanic front

    NASA Astrophysics Data System (ADS)

    Patino, Lina C.; Carr, Michael J.; Feigenson, Mark D.

    A geochemical traverse across Honduras reveals the heterogeneity of the mantle underneath Central America. Alkali basalts from Lake Yojoa (170km behind the front) have low 87Sr/86Sr but high La/Yb, and elevated incompatible trace element abundances, consistent with derivation from a normal mid-ocean ridge basalt source mantle via low degrees of melting. These lavas lack evidence for an enriched source thought to be intermingled with normal mid-ocean ridge basalt source mantle beneath most of Central America. The amplitude of the subducted slab signature decreases smoothly with distance from the volcanic front. Lavas from Zacate Grande, the area nearest to the volcanic front (17 km behind the arc), display large ion lithophile element enrichment and high field strength element depletion indicating the involvement of subducted material in magma genesis. Components of subducted material are not evident in lavas from Lake Yojoa, the area furthest from the arc. Basalts and basaltic andesites from Tegucigalpa, 102 km behind the volcanic front, are geochemically intermediate between those of Lake Yojoa and Zacate Grande. The lavas from Tegucigalpa show a decreased influence of the subduction component, and are affected by assimilation-fractional crystallization processes at shallow depths. The gradual decrease in the subducted component from the volcanic front to Zacate Grande, Tegucigalpa and finally Lake Yojoa contrasts with the abrupt decrease documented for southeast Guatemala, the only other area in Central America where a cross-arc transect has been studied.

  13. Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S-70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile

    NASA Astrophysics Data System (ADS)

    Salas, Pablo A.; Rabbia, Osvaldo M.; Hernández, Laura B.; Ruprecht, Philipp

    2016-06-01

    In the Andean Southern Volcanic Zone (SVZ), the broad distribution of mafic compositions along the recent volcanic arc occurs mainly south of 37°S, above a comparatively thin continental crust (≤~35 km) and mostly associated with the dextral strike-slip regime of the Liquiñe-Ofqui Fault Zone (LOFZ). North of 36°S, mafic compositions are scarce. This would be in part related to the effect resulting from protracted periods of trapping of less evolved ascending magmas beneath a thick Meso-Cenozoic volcano-sedimentary cover that lead to more evolved compositions in volcanic rocks erupted at the surface. Here, we present whole-rock and olivine mineral chemistry data for mafic rocks from four monogenetic vents developed above a SVZ segment of thick crust (~45 km) in the Descabezado Grande volcanic field (~35.5°S). Whole-rock chemistry (MgO > 8 wt%) and compositional variations in olivine (92 ≥ Fo ≥ 88 and Ni up to ~3650 ppm) indicate that some of the basaltic products erupted through these vents (e.g., Los Hornitos monogenetic cones) represent primitive arc magmas reaching high crustal levels. The combined use of satellite images, regional data analysis and field observations allow to recognize at least 38 mafic monogenetic volcanoes dispersed over an area of about 5000 km2 between 35.5° and 36.5°S. A link between ancient structures inherited from pre-Andean tectonics and the emplacement and distribution of this mafic volcanism is suggested as a first-order structural control that may explain the widespread occurrence of mafic volcanism in this Andean arc segment with thick crust.

  14. Possible earthquake precursor and drumbeat signal detected at the Nirano Mud Volcanic Field, Italy

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Suski Ricci, Barbara; Kenkel, Johannes; Ricci, Tullio; Fuchs, Florian; Miller, Stephen A.; Kemna, Andreas; Conventi, Marzia

    2016-04-01

    We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes. Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelectrical study. Next, we deployed a broad-band seismic station to understand the typical seismic signal generated at depth. Seismic records show a background noise below 2 s, sometimes interrupted by pulses of drumbeat-like high-frequency signals lasting from several minutes to hours. Drumbeat signal was previously discovered in geysers and at magmatic volcanoes. To date this is the first observation of drumbeat signal observed in mud volcanoes. In 2013 June we recorded a M4.7 earthquake, that occurred approximately 60 km far from our seismic station. According to empirical estimations the Nirano mud volcanic field should not have been affected by the M4.7 earthquake. Yet, before the seismic event we recorded an increasing amplitude of the signal in the 10-20 Hz frequency band. The signal emerged approximately two hours before the earthquake and lasted for about three hours. We performed an analysis of the 95th percentile of the root mean square amplitude of the waveforms for the day of the earthquake. This statistical analysis suggests the presence of a possible precursory signal about 10 minutes before the earthquake indicating the occurrence of enhanced fluid flow in the subsurface that may be related to pressure build up in the preparation zone of the earthquake.

  15. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    NASA Astrophysics Data System (ADS)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  16. Scaling laws of the size-distribution of monogenetic volcanoes within the Michoacán-Guanajuato Volcanic Field (Mexico)

    NASA Astrophysics Data System (ADS)

    Pérez-López, R.; Legrand, D.; Garduño-Monroy, V. H.; Rodríguez-Pascua, M. A.; Giner-Robles, J. L.

    2011-04-01

    The Michoacán-Guanajuato Volcanic Field displays about 1040 monogenetic volcanoes mainly composed of basaltic cinder cones. This monogenetic volcanic field is the consequence of a dextral transtensive tectonic regime within the Transmexican Volcanic Belt (TMVB), the largest intra continental volcanic arc around the world, related to the subduction of the Rivera and Cocos plates underneath the North American Plate. We performed a statistical analysis for the size-distribution of the basal diameter (Wco) for cinder cones. Dataset used here was compiled by Hasenaka and Carmichael (1985). Monogenetic volcanoes obey a power-law very similar to the Gutenberg-Richter law for earthquakes, with respect to their size-distribution: log 10 ( N >= Wco ) = α - β log10( Wco), with β = 5.01 and α = 2.98. Therefore, the monogenetic volcanoes exhibit a (Wco) size-distribution empirical power-law, suggesting a self-organized criticality phenomenon.

  17. The Satah Mountain and Baldface Mountain Volcanic Fields, Chilcotin Highland, West-Central British Columbia

    NASA Astrophysics Data System (ADS)

    Kuehn, C.; Guest, B.

    2012-12-01

    A large number of volcanic features, including stratovolcanoes, cinder cones, domes, flows and erosional remnants of these exist in the Satah Mountain Volcanic Field (SMVF) and Baldface Mountain Volcanic Fields (BMVF), located near the Itcha Ranges in the Chilcotin Highland of west-central British Columbia. Petrographical, geochemical and geochronological studies are hoped to clarify the volcano-tectonic association of these fields and their relation with the nearby Anahim Volcanic Belt (AVB) and possibly provide a confirmation for the hot-spot that has been proposed as the source of magmatism in the area from the mid-Miocene to the Holocene. During field work, 20 centres in the SMVF aligned on a NNW-SSE trending topographic high and seven centres in the BMVF were studied with a focus on geochemistry and ages of the lavas erupted. With the exception of Satah Mountain, the most prominent and best-preserved edifice, individual centres are generally small in height (200-300 m) and volume. There is clear evidence for glacial modification of edifices, which likely removed most of the once-existing pyroclastic material, and water-magma interaction could be observed at one centre as well. Extensive coverage by glacial till limits outcrops to cliffs on the edifices' flanks or to local "windows" in the Quaternary deposits. This makes stratigraphic relationships, both within the fields and the surrounding volcanic rocks of the Anahim Volcanic Belt (AVB) and Chilcotin Flood Basalts (CFB), unclear. Preliminary XRF results indicate a high variability of the lavas, even between centres close to each other. Erupted lavas range from undersaturated basanites (44 wt% SiO2), trachybasalts and trachytes to high-alkali phonolites (14 wt% Na2O+K2O). In general, larger structures in the SMVF appear to have erupted more evolved rocks whereas smaller centres, often just remnants of plugs and necks, and centres in the BMVF erupted more primitive rocks. In addition, whole-rock ages were

  18. Raton-Clayton Volcanic Field magmatism in the context of the Jemez Lineament

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Pontbriand, A.

    2013-12-01

    The Raton-Clayton Volcanic Field (RCVF) was active from 9 Ma to approximately 50 Ka and stretches from Raton, New Mexico in the west to Clayton, New Mexico in the east. The field occurs in the Great Plains at the northeastern end of the Jemez Lineament, a major crustal feature and focus of volcanism that extends southwest to the Colorado Plateau in Arizona and encompasses five other major volcanic fields. Jemez Lineament magmatism is temporally related to Rio Grande Rift magmatism, though it extends NE and SW from the rift itself, and it has been suggested that it represents an ancient crustal suture that serves as a conduit for magmatism occurring beneath the larger region of north and central New Mexico (Magnani et al., 2004, GEOL SOC AM BULL, 116:7/8, pp. 1-6). This study extends our work into the RCVF from prior and ongoing work in the Mount Taylor Volcanic Field, where we identified different mantle sources with varying degrees of subduction alteration and we determined some of the crustal processes that contribute to the diversity of magma chemistry and eruptive styles there (e.g., AGU Fall Meeting, abst. #V43D-2884 and #V43D-2883). In the RCVF, we are analyzing multiple phases by electron microprobe and plagioclase phenocrysts and glomerocrysts by LA-ICPMS for Sr isotopes and trace elements. We are undertaking this investigation with the following goals: (1) to evaluate previous magma mixing and crustal assimilation models for Sierra Grande andesites (Zhu, 1995, unpublished Ph.D. dissertation, Rice University; Hesse, 1999, unpublished M.S. thesis, Northern Arizona University); (2) to evaluate subduction-modified mantle as the source for RCVF basanites (specifically those at Little Grande); and (3) to assess the possible role of deep crustal cumulates in buffering transitional basalts. In the larger context, these data will be used to evaluate the varying degree of subduction-modification and the effect of crustal thickness on magmatism along the Jemez

  19. Combined absolute and relative gravity measurement for microgravity monitoring in Aso volcanic field

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Yoshikawa, Shin; Fujimitsu, Yasuhiro; Kagiyama, Tsuneomi; Fukuda, Yoichi

    2014-05-01

    Absolute measurement with a portable A10-017 absolute gravimeter at some benchmarks in the Aso volcanic field are valuable for reducing uncertainties of regional gravity variations and will be useful for delineating the long term trends of gravity changes. A10 absolute gravimeter is a new generation of portable absolute instrument and has accuracy 10 microGal. To further the development of a high precision gravity data, we also conducted measurement using two relative gravimeter (Scintrex CG-5 [549] and LaCoste type G-1016) to be combined with an A10 absolute gravimeter. The using absolute gravimeter along with relative gravimeter can reduce drift correction factor and improve the result of gravity change data in microgravity monitoring. Microgravity monitoring is a valued tool for mapping the redistribution of subsurface mass and for assessing changes in the fluid as a dynamic process in volcanic field. Gravity changes enable the characterization of subsurface processes: i.e., the mass of the intrusion or hydrothermal flow. A key assumption behind gravity monitoring is that changes in earth's gravity reflect mass-transport processes at depth [1]. The absolute gravity network was installed at seven benchmarks using on May 2010, which re-occupied in October 2010, and June 2011. The relative gravity measurements were performed at 28 benchmarks in one month before the eruption on May 2011 and then followed by series of gravity monitoring after the eruption in every three to five months. Gravity measurements covered the area more than 60 km2 in the west side of Aso caldera. Some gravity benchmarks were measured using both absolute and relative gravimeter and is used as the reference benchmarks. In longer time period, the combined gravity method will improve the result of gravity change data for monitoring in the Aso volcanic field. As a result, the gravity changes detected the hydrothermal flow in the subsurface which has a correlation to water level fluctuation in the

  20. Geologic map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Lava compositions other than various types of basalt are uncommon here. Andesite is abundant on and around Mount Adams but is very rare east of the Klickitat River. The only important nonbasaltic composition in the map area is rhyolite, which crops out in several patches around the central highland of the volcanic field, mainly in the upper canyons of Satus and Kusshi Creeks and Wilson Charley canyon. Because the rhyolites were some of the earliest lavas erupted here, they are widely concealed by later basalts and therefore crop out only in local windows eroded by canyons that cut through the overlying basalts.

  1. Geochemical and Isotopic Evidences of the Magmatic Sources in the Eastern Sector of the Trans-Mexican Volcanic Belt: Xihuingo-Chichicuautla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.

    2011-12-01

    The study of magmatism in the Trans-Mexican Volcanic Belt (TMVB) has great importance due to several features such as its obliquity with respect to the Middle American Trench and its petrological and geochemical variability, which are not common in most typical volcanic arcs. Although several papers have contributed significantly to the understanding of most important magmatic processes in this province, there are still several questions such as the characterization of magmatic sources. In the present work, we provide new stratigraphic, petrographic, geochemical and Sr, Nd and Pb isotopic data as well as some K-Ar age determinations from the Xihuingo-Chichicuautla volcanic field (XCVF), located at the eastern part of the TMVB, with the aim to identify the magmatic sources that produced the main volcanic rocks. The volcanic structures in the XCVF are divided in two main groups according to the petrographic and geochemical compositions: 1) dacitic domes, andesitic lava flows and some dacitic-rhyolitic ignimbrites and 2) scoria cones, shield volcanoes and associated lava flows of basalt to basaltic-andesite composition. Distribution of most volcanic structures is probably controlled by NE-SW fault and fractures system. This fault system was studied by other authors who established that volcanic activity started ca. 13.5 Ma ago, followed by a volcanic hiatus of ca. 10 Ma, and the late volcanic activity began ca. 3 to 1 Ma. In this work we dated 2 rock samples by K-Ar method, which yielded ages of 402 and 871 Ka, which correspond to the most recent volcanic activity in this study area. The volcanic rocks of the XCVF display compositions from basalts to rhyolites but in general all rocks show trace element patterns typical of magmatic arcs. However, we can identify two main magmatic sources: a depleted magmatic source represented by dacitic-andesitic rocks which present a LILE enrichment with respect to HFSE indicating that a magmatic source was modified by fluids

  2. The Puelche volcanic field: Extensive Pleistocene rhyolite lava flows in the Andes of central Chile

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Godoy, E.; Drake, Robert E.; Singer, B.

    1999-01-01

    A remote volcanic field in the rugged headwaters of the Rio Puelche and Rio Invernada (35.8??S) constitutes the largest cluster of Quaternary rhyolite lava flows yet identified in the Andean Southern Volcanic Zone. The Puelche Volcanic Field belongs to an intra-arc belt of silicic magmatic centers that extends, at least, 140 km north-south and lies well east of the volcanic front but nonetheless considerably west of the intraplate extensional fields of basaltic and alkaline centers of pampean Argentina. The authors' mapping has distinguished one shallow intrusive mass of early Pleistocene biotite rhyodacite (70.5% SiO2), 11 eruptive units of mid-Pleistocene high-K biotite-rhyolite lava (71.3-75.6% SiO2), and 4 eruptive units of basaltic andesite (53.95-4.9% SiO2), the conduits of which cut some of the rhyolites. Basal contacts of the rhyolite lava flows (and subjacent pyroclastic precursors) are generally scree covered, but glacial erosion has exposed internal flow structures and lithologic zonation superbly. Thicknesses of individual rhyolite lava flows range from 75 m to 400 m. Feeders for several units are well exposed. Cliff-draping unconformities and intracanyon relationships among the 11 rhyolite units show that the eruptive sequence spanned at least one glacial episode that accentuated the local relief. Lack of ice-contact features suggests, however, that all or most eruptions took place during non-glacial intervals probably between 400 ka and 100 ka. Post-eruptive glacial erosion reduced the rhyolites to several non-contiguous remnants that altogether cover 83 km2 and represent a surviving volume of about 21 km3. Consideration of slopes, lava thicknesses, and paleotopography suggest that the original area and volume were each about three times greater. Phenocryst content of the rhyolites ranges from 1 to 12%, with plagioclase>>biotite>FeTi oxides in all units and amphibole conspicuous in the least silicic. The chemically varied basaltic andesites range from

  3. Preliminary isostatic gravity map of the Sonoma volcanic field and vicinity, Sonoma and Napa Counties, California

    USGS Publications Warehouse

    Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.

    2006-01-01

    This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.

  4. First-order estimate of the Canary Islands plate-scale stress field: Implications for volcanic hazard assessment

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Martí, J.; Villaseñor, A.

    2016-06-01

    In volcanic areas, the existing stress field is a key parameter controlling magma generation, location and geometry of the magmatic plumbing systems and the distribution of the resulting volcanism at surface. Therefore, knowing the stress configuration in the lithosphere at any scale (i.e. local, regional and plate-scale) is fundamental to understand the distribution of volcanism and, subsequently, to interpret volcanic unrest and potential tectonic controls of future eruptions. The objective of the present work is to provide a first-order estimate of the plate-scale tectonic stresses acting on the Canary Islands, one of the largest active intraplate volcanic regions of the World. In order to obtain the orientation of the minimum and maximum horizontal compressive stresses, we perform a series of 2D finite element models of plate scale kinematics assuming plane stress approximation. Results obtained are used to develop a regional model, which takes into account recognized archipelago-scale structural discontinuities. Maximum horizontal compressive stress directions obtained are compared with available stress, geological and geodynamic data. The methodology used may be easily applied to other active volcanic regions, where a first order approach of their plate/regional stresses can be essential information to be used as input data for volcanic hazard assessment models.

  5. Short-time electrical effects during volcanic eruption: Experiments and field measurements

    NASA Astrophysics Data System (ADS)

    Büttner, Ralf; Zimanowski, Bernd; Röder, Helmut

    2000-02-01

    Laboratory experiments on the fragmentation and expansion of magmatic melt have been performed using remelted volcanic rock at magmatic temperatures as magma simulant. A specially designed dc amplifier in combination with high speed data recording was used to detect short-time electrostatic field effects related to the fragmentation and expansion history of the experimental system, as documented by simultaneous force and pressure recording, as well as by high-speed cinematography. It was found that (1) the voltage-time ratio of electrostatic field gradients (100 to 104 V/s) reflects different physical mechanisms of fragmentation and expansion and (2) the maximum voltage measured in 1 m distance (-0.1 to -180 V) can be correlated with the intensity of the respective processes. Based on these experimental results, a field method was developed and tested at Stromboli volcano in Italy. A 0.8 m rod antenna was used to detect the dc voltage against local ground (i.e., the electrostatic field gradient), at a distance of 60 to 260 m from the respective vent. Upwind position of the detection site was chosen to prevent interference caused by contact of charged ash particles with the antenna. A standard 8 Hz geophone was used to detect the accompanying seismicity. Three types of volcanic activity occurred during the surveillance operation; two of these could be clearly related to specific electrical and seismical signals. A typical delay time was found between the electrical and the seismical signal, corresponding to the seismic velocity within the crater deposits. Using a simple first-order electrostatic model, the field measurements were recalibrated to the laboratory scale. Comparison of field and laboratory data at first approximation revealed striking similarities, thus encouraging the further development of this technique for real-time surveillance operation at active volcanoes.

  6. Morphometric and morphological development of Holocene cinder cones: A field and remote sensing study in the Tolbachik volcanic field, Kamchatka

    NASA Astrophysics Data System (ADS)

    Inbar, Moshe; Gilichinsky, Michael; Melekestsev, Ivan; Melnikov, Dmitry; Zaretskaya, Natasha

    2011-04-01

    The evolution of landscape over time is a central aspect of geological, paleogeographical and geomorphological studies. Volcanic features like cinder cones offer the opportunity to monitor the processes and development of the landscape. Cinder cones are perhaps the simplest and most common volcanic landforms in the world. Morphological and morphometric study of cinder cones has proven an efficient tool for determining their relative dates, and the erosional processes affecting them. The extensive Kamchatka volcanic province (Russian Far East), with its large Tolbachik cinder cone field, is an excellent case study for spatial and temporal classification and calibration of changes in morphometric values with time. We show how the morphological and morphometric values of the monogenetic cinder cones, measured in the field and by digital elevation models, can be used to validate their age and erosional processes. Field data were GPS measurements of cinder cones formed at the Tolbachik 1975-1976 eruption and of Holocene cinder cones; erosion processes on the cinder cones and lava flows were identified and evaluated. For every studied cinder cone morphometric parameters were assessed on the basis of remotely sensed data and digital elevation model. Morphometric measurements were taken of cone height and slope and average axis diameter and the height-width ratio was obtained. The comparison of morphometric parameters calculated from ASTER DEM and topographic map clearly supports the concept of relative morphometric dating as the most recent cinder cones are always associated with the highest slopes and h/W ratio. The measured morphometric values of the recent Tolbachik cinder cones are valuable benchmark data for determining erosion rates, such as the measured values for the Paricutin cone in Mexico after the 1943 eruption. The variability of the morphometric values of the recent cinder cones is due to their lithological coarse composition. A comparison with the older

  7. The `Strawberry Volcanic Field' of Northeastern Oregon: Another Piece of the CRB Puzzle?

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2010-12-01

    The Mid to Late Miocene Strawberry Volcanics field (SVF) located along the southern margin of the John Day valley of NE Oregon, comprise a diverse group of volcanic rocks ranging from basalt to rhyolite. The main outcrop area of the SVF (3,400 km2) is bordered by units from the Columbia River Basalt Group (CRBG), with the main CRB units to the north, the Picture Gorge Basalt to the east and Steens Basalt to the south. The geographic position and age of the Strawberry Volcanics make a genetic relationship to CRB volcanism likely, yet little is known about this diverse volcanic field. This research aims at refining the stratigraphic and age relationships as well as the petrology and geochemistry of magmas associated with the SVF. Previous investigations (e.g. Robyn, 1977) found that the SVF was active between 20 to 10 Ma with the main pulse largely being coeval with the 15 Ma CRBG eruptions. Lavas and tuffs from the SVF are calc-alkaline with low FeO*/MgO (~ 2.56 wt. %), high Al2O3 (~ 16.4 wt. %), low TiO2 (~ 1.12 wt.%), and span the entire compositional range from basalt to rhyolite (47-78 wt. % SiO2) with andesite as the dominant lithology. Basaltic lavas from the SVF have compositional affinities to earlier Steens Basalt, and some trace element concentrations and ratios are indistinguishable from those of CRBG lavas (e.g. Zr, Ba, Sr, and Ce/Y). Andesites are calc-alkaline, but contrary to typical arc (orogenic) andesites, SVF andesites are exceedingly phenocryst poor (<3% phenocrysts with microphenocrysts of plagioclase and lesser pyroxene which occasionally occur in crystal clots instead of single crystals). In addition, some lavas (basaltic-intermediate) are phenocryst-rich (~25%), containing plagioclase, olivine, opx, and cpx. However, phenocrysts in these lavas are strongly zoned and resorbed, and in general, these lavas are volumetrically insignificant compared with the phenocrysts poor andesites. Rhyolitic lavas are also phenocryst poor (< 3%) and appear to

  8. Sediment-enriched adakitic magmas from the Daisen volcanic field, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Feineman, Maureen; Moriguti, Takuya; Yokoyama, Tetsuya; Terui, Sakiko; Nakamura, Eizo

    2013-08-01

    The Quaternary Southwest Japan Arc is a product of subduction of the hot, young Philippine Sea Plate beneath the Eurasian Continental Plate. The magmas erupted from the Southwest Japan Arc belong to a category of magmas commonly referred to as "adakites" or "adakitic magmas". These magmas show trace element evidence for interaction with garnet at depth, and may be associated with partial melting of subducted altered oceanic crust. Also found throughout the southern Sea of Japan region are alkali basalts with little apparent connection to the subduction zone. We have determined major element, trace element, and Sr, Nd, Pb, and U-Th isotopic compositions for a bimodal suite of lavas erupted at the Daisen volcanic field in the Southwest Japan Arc. These magmas consist of mildly alkaline basalts and a calcalkaline intermediate suite, separated by a ˜10 wt.% silica gap. The intermediate magmas show trace element and isotopic evidence for interaction with garnet, consistent with partial melting of the hot, young (˜20 Ma) Philippine Sea Plate. The Daisen intermediate magmas are distinct from other adakitic magmas in their radiogenic isotopic characteristics, consistent with a significant contribution (˜25%) from subducted Nankai Trough sediments. Our data suggest that the basalts erupted at the Daisen volcanic field are not parental to the intermediate magmas, and contain a small contribution of EM1-like mantle common in Sea of Japan alkali basalts but not apparent in the Daisen intermediate magmas.

  9. Analysis of the Magmatic - Hydrothermal volcanic field of Tacora Volcano, northern Chile, using passive seismic tomography

    NASA Astrophysics Data System (ADS)

    Pavez Orrego, Claudia; Comte, Diana; Gutierrez, Francisco; Gaytan, Diego

    2016-04-01

    The results of a passive seismic tomography developed in the Tacora Volcano, northern Chile, are presented. In this area, the main thermal manifestations are fumarolic fields mainly distributed in the western flank of the volcano. Around the volcanic area were installed 17 short period seismic stations, between August and December, 2014. Using the P and S wave arrival times of the seismicity record, a 3D velocity model was determined through a passive seismic tomography. For a better visualization of low and high velocity anomalies, the Leapfrog Viewer Software has been used. The areas of high Vp /Vs values, located directly under the volcanic chain, are interpreted as fluid-saturated areas, corresponding to the recharge zone of the hydrothermal system. Meanwhile, low Vp /Vs values represent the location of a magmatic reservoir and circulation networks of magmatic-hydrothermal fluids. The final model it was contrasted with available geochemical information showing a match between the low Vp/Vs areas (magma reservoirs / hydrothermal fluids), fumarolic fields and surface hydrothermal alteration. Finally, we present a cluster analysis using the percentage variation of %dVp, with which we have found a method for the identification of clay level areas related with the intermediate values of Vp/Vs (1.70 - 1.75) and the degassification zones.

  10. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  11. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes - A case study of Black Tank scoria cone, Cima Volcanic Field, California

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-08-01

    Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.

  12. Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

    NASA Astrophysics Data System (ADS)

    Rufer, Daniel; Preusser, Frank; Schreurs, Guido; Gnos, Edwin; Berger, Alfons

    2014-05-01

    The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe-Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

  13. The eruption history of the quaternary Eifel volcanic fields: Implications from the ELSA - Tephra - Stack

    NASA Astrophysics Data System (ADS)

    Förster, Michael; Sirocko, Frank

    2015-04-01

    Numerous tephra layers occur in maar sediments in the quaternary Eifel volcanic fields. The sediments were systematically drilled and cored since 1998 by the Eifel Laminated Sediment Archive project (ELSA) (Sirocko et al. 2013). These maar sediments are laminated and the tephra is easily recognizeable by a coarser grain size. Additionaly, tephra layers appear dark grey to black in color. The ashes were sieved to a fraction of 250 - 100 µm and sorted into grains of: reddish and greyish sandstone, quartz, amphibole, pyroxene, scoria and pumice, sanidine, leucite and biotite. A minimum of 100 grains for each tephra layer were used for a sediment petrographic tephra characterisation (SPTC). The grain counts resemble the vol. -% of each grain species. Three types of tephra could be identified by their distinctive grain pattern: (1) phreatomagmatic tephra, rich in basement rocks like greyish/reddish sandstone and quartz. (2) Strombolian tephra, rich in scoria and mafic minerals like pyroxene. (3) evolved tephra, rich in sanidine and pumice. 16 drill-cores, covering the last 500 000 years have been examined. Younger cores were dated by 14C ages and older cores by optical stimulated luminescence. Independently from this datings, the drill-cores were cross-correlated by pollen and the occurences of specific marker-tephra layers, comprising characteristic grain-types. These marker-tephra layers are especially thick and of evolved composition with a significant abundance of sanidine and pumice. The most prominent tephra layers of this type are the Laacher See tephra, dated to 12 900 b2k by Zolitschka (1998), the 40Ar/39Ar dated tephra layers of Dümpelmaar, Glees and Hüttenberg, dated to 116 000 b2k, 151 000 b2k and 215 000 b2k by van den Bogaard & Schmincke (1990), van den Bogaard et al. (1989). These datings set the time-frame for the eruption-phases of the quaternary Eifel Volcanic Fields. Our study refines these findings and shows that phases of activity are very

  14. Further constraints for the Plio-Pleistocene geomagnetic field strength: New results from the Los Tuxtlas volcanic field (Mexico)

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.

    2001-09-01

    A rock-magnetic, paleomagnetic and paleointensity study was carried out on 13 Plio-Pleistocene volcanic flows from the Los Tuxtlas volcanic field (Trans Mexican Volcanic Belt) in order to obtain some decisive constraints for the geomagnetic field strength during the Plio-Pleistocene time. The age of the volcanic units, which yielded reliable paleointensity estimates, lies between 2.2 and 0.8 Ma according to the available K/Ar radiometric data. Thermomagnetic investigations reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting from oxy-exsolution that probably occurred during the initial flow cooling. Unblocking temperature spectra and relatively high coercivity point to 'small' pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Six flows yield reverse polarity magnetization, five flows are normally magnetized, and one flow shows intermediate polarity magnetization. Evidence of a strong lightning-produced magnetization overprint was detected for one site. The mean pole position obtained in this study is Plat = 83.7°, Plong = 178.1°, K = 36, A95 = 8.1°, N =10 and the corresponding mean paleodirection is I = 31.3°, D = 352°, k = 37, a95 = 8.2°, which is not significantly different from the expected direction estimated from the North American apparent polar wander path. Thirty-nine samples were pre-selected for Thellier palaeointensity experiments because of their stable remanent magnetization and relatively weak-within-site dispersion. Only 21 samples, coming from four individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 6.4 to 9.1 × 1022 Am2. Combining the coeval Mexican data with the available comparable quality Pliocene paleointensity results yield a mean VDM of 6.4 × 1022 Am2, which is almost 80% of the present geomagnetic axial dipole. Reliable

  15. Evolution of Rhyolite at Laguna del Maule, a Rapidly Inflating Volcanic Field in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Singer, B. S.; Jicha, B. R.; Hildreth, E. W.; Fierstein, J.; Rogers, N. W.

    2012-12-01

    The Laguna del Maule Volcanic Field (LdM) is host to both the foremost example of post-glacial rhyolitic volcanism in the southern Andes and rapid, ongoing crustal deformation. The flare-up of high-silica eruptions was coeval with deglaciation at 24 ka. Rhyolite and rhyodacite domes and coulees totaling 6.5 km3 form a 20 km ring around the central lake basin. This spatial and temporal concentration of rhyolite is unprecedented in the history of the volcanic field. Colinear major and trace element variation suggests these lavas share a common evolutionary history (Hildreth et al., 2010). Moreover, geodetic observations (InSAR & GPS) have identified rapid inflation centered in the western side of the rhyolite dome ring at a rate of 17 cm/year for five years, which has accelerated to 30 cm/yr since April 2012. The best fit to the geodetic data is an expanding magma body located at 5 km depth (Fournier et al., 2010; Le Mevel, 2012). The distribution of high-silica volcanism, most notably geochemically similar high-silica rhyolite lavas erupted 12 km apart of opposite sides of the lake within a few kyr of each other, raises the possibility that the shallow magma intrusion represents only a portion of a larger rhyolitic body, potentially of caldera forming dimensions. We aim to combine petrologic models with a precise geochronology to formulate a model of the evolution of the LdM magma system to its current state. New 40Ar/39Ar age determinations show rhyolitic volcanism beginning at 23 ka with the eruption of the Espejos rhyolite, followed by the Cari Launa Rhyolite at 14.5 ka, two flows of the Barrancas complex at 6.4 and 3.9 ka, and the Divisoria rhyolite at 2.2 ka. In contrast, significant andesitic and dacitic volcanism is largely absent from the central basin of LdM since the early post-glacial period suggesting a coincident basin-wide evolution from andesite to dacite to rhyolite and is consistent with a shallow body of low-density rhyolite blocking the eruption

  16. Differentiation of cinder cone magmas from the Michoacan-Guanajuato Volcanic Field, central Mexico

    SciTech Connect

    Hasenaka, T.

    1985-01-01

    The Michoacan-Guanajuato Volcanic Field (area:40,000 km/sup 2/) contains various small volcanic centers of 3 Ma to Recent age, including 900 cinder and lava cones, and contrast to other portions of the Mexican Volcanic Belt (MVB) with large composite volcanoes. Among 224 scoria and lava samples studied for chemistry and mineralogy, 165 samples are calc-alkaline (basalt, andesite, and dacite), 21 are alkaline (mainly basalt), and 38 are transitional between the two (mainly basalt). The majority of rocks are 01 basalt and 01 andesite with pyroxene and hornblende andesites being subordinate. Their MgO content is relatively high compared with lavas from composite volcanoes in the MVB, and indicate an earlier stage of differentiation. Four samples have Mg-number >70 and Ni content >235 ppm, a criteria of magmas equilibrated with mantle olivine. They include all the rock groups but phenocryst assemblage is always 01+Cpx+Pl. Other samples are plotted between this and 1-atmosphere Ol-Cpx-Pl cotectic. Ol-liquid, two pyroxenes, and magnetite-ilmenite temperatures decrease from 1200/sup 0/C to 900/sup 0/C with increasing FeO*/MgO ratio which also corresponds to the changing mineral assemblages. Calculated oxygen fugacities are on or slightly above Ni-NiO buffer line. Calc-alkaline and alkaline basalts are not related; both are parental. Less differentiated character of cinder cone magmas may result from their transportation under local extensional stress and absence of long-lived shallow magma reservoirs is common in composite volcanoes.

  17. The Lathrop Wells Volcanic Center: Status of field and geochronology studies

    NASA Astrophysics Data System (ADS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results.

  18. The Lathrop Wells volcanic center: Status of field and geochronology studies

    SciTech Connect

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1993-03-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results.

  19. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone. Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to

  20. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at ~ 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single ~ 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins ~ 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  1. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    NASA Astrophysics Data System (ADS)

    Sakkas, V.; Meju, M. A.; Khan, M. A.; Haak, V.; Simpson, F.

    2002-03-01

    Electromagnetic experiments were conducted in 1995 as part of a multidisciplinary research project to investigate the deep structure of the Chyulu Hills volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM) and broadband (120-0.0001 Hz) magnetotelluric (MT) soundings were made at eight stations along a seismic survey line and the data were processed using standard techniques. The TEM data provided effective correction for static shifts in MT data. The MT data were inverted for the structure in the upper 20 km of the crust using a 2-D inversion scheme and a variety of starting models. The resulting 2-D models show interesting features but the wide spacing between the MT stations limited model resolution to a large extent. These models suggest that there are significant differences in the physical state of the crust between the northern and southern parts of the Chyulu Hills volcanic field. North of the Chyulu Hills, the resistivity structure consists of a 10-12-km-thick resistive (up to 4000 Ω m) upper crustal layer, ca. 10-km-thick mid-crustal layer of moderate resistivity (˜50 Ω m), and a conductive substratum. The resistive upper crustal unit is considerably thinner over the main ridge (where it is ca. 2 km thick) and further south (where it may be up to 5 km thick). Below this cover unit, steep zones of low resistivity (0.01-10 Ω m) occur underneath the main ridge and at its NW and SE margins (near survey positions 100 and 150-210 km on seismic line F of Novak et al. [Novak, O., Prodehl, C., Jacob, A.W.B., Okoth, W., 1997. Crustal structure of the southern flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B., Prodehl, C. (Eds.), Structure and Dynamic Processes in the Lithosphere of the Afro-Arabian Rift System. Tectonophysics, vol. 278, 171-186]). These conductors appear to be best developed in upper crustal (1-8 km) and middle crustal (9-18 km) zones in the areas

  2. Rock-magnetic proxies of wind intensity and dust since 51,200 cal BP from lacustrine sediments of Laguna Potrok Aike, southeastern Patagonia

    NASA Astrophysics Data System (ADS)

    Lisé-Pronovost, Agathe; St-Onge, Guillaume; Gogorza, Claudia; Haberzettl, Torsten; Jouve, Guillaume; Francus, Pierre; Ohlendorf, Christian; Gebhardt, Catalina; Zolitschka, Bernd

    2015-02-01

    The sedimentary archive from Laguna Potrok Aike is the only continuous record reaching back to the last Glacial period in continental southeastern Patagonia. Located in the path of the Southern Hemisphere westerly winds and in the source region of dust deposited in Antarctica during Glacial periods, southern Patagonia is a vantage point to reconstruct past changes in aeolian activity. Here we use high-resolution rock-magnetic and physical grain size data from site 2 of the International Continental scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) in order to develop magnetic proxies of dust and wind intensity at 52°S since 51,200 cal BP. Rock-magnetic analysis indicates the magnetic mineral assemblage is dominated by detrital magnetite. Based on the estimated flux of magnetite to the lake and comparison with distal dust records from the Southern Ocean and Antarctica, kLF is interpreted as a dust indicator in the dust source of southern Patagonia at the millennial time scale, when ferrimagnetic grain size and coercivity influence are minimal. Comparison to physical grain-size data indicates that the median destructive field of isothermal remanent magnetization (MDFIRM) mostly reflects medium to coarse magnetite bearing silts typically transported by winds for short-term suspension. Comparison with wind-intensity proxies from the Southern Hemisphere during the last Glacial period and with regional records from Patagonia since the last deglaciation including marine, lacustrine and peat bog sediments as well as speleothems reveals similar variability with MDFIRM up to the centennial time scale. MDFIRM is interpreted as a wind-intensity proxy independent of moisture changes for southeastern Patagonia, with stronger winds capable of transporting coarser magnetite bearing silts to the lake.

  3. Some field observations and experimental insights on volcanic ash aggregates (Invited)

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.

    2013-12-01

    The aggregation of ash- to dust-sized pyroclasts is a well-documented process that deeply impacts the internal dynamics and atmospheric dispersal of volcanic plumes, the geometry of the resulting fallout deposits, and the nature and occurrence of associated hazards. As such, studies of the aggregation processes have been actively promoted since decades, with an escalation after the civil aviation crisis from the 2010 Ejyafiallajokull eruption. Here we illustrate the potential of high-speed imaging in the study of ash aggregation and aggregates settling both in laboratory experiments and directly in the field. Under weak eruption plumes from the Ejyafiallajokull (Iceland), Yasur (Vanuatu), and Sakurajima (Japan) volcanoes, high-speed imaging systems captured the settling of ash-sized pyroclasts, both as individual particles and as aggregates. Relevant parameters such as the size and the settling velocity of the particles and aggregates are derived directly by image analysis, within the system spatial resolution limits. Field sampling and laboratory analyses of the imaged particles is then used to investigate their overall size distribution and textural-chemical features. In addition, the same high-speed imaging system is used to record the individual volcanic explosion, if discrete, or volcanic episode, for ongoing activity, from which the settling particles originated, potentially illuminating the sources of the ash and other relevant processes (e.g., eruption style, plume rise dynamics, electrification). In order to better constrain the observed phenomena, we are currently performing two sets of laboratory experiments. The first set of experiments aims to characterize the settling properties of individual particles, in order to allow distinguishing them from the aggregates in the field-based images. Such experiments, consisting in the imaging of free-falling individual particles, will also be used in the future to assess the simultaneous settling of large numbers

  4. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  5. The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types

    NASA Astrophysics Data System (ADS)

    Lewis-Kenedi, Catherine B.; Lange, Rebecca A.; Hall, Chris M.; Delgado-Granados, Hugo

    2005-06-01

    The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units ≤1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2 3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5 6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22 43% basalt, ~0.4 1% basaltic andesite, ~29 54% andesite, ~2 3% dacite, and ~18 40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely

  6. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    USGS Publications Warehouse

    Moll-Stalcup, E. J.; Arth, Joseph G.

    1991-01-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ( 87Sr 86Sr)i, higher ( 143Nd 144Nd)i, and moderate LREE and HREE contents (group 1), and a group having higher ( 87Sr 86Sr)i, lower ( 143Sr 144Sr)i, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 [( 87Sr 86Sr)i = 0.7033; ( 143Nd 144Nd)i = 0.5129], and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). In contrast to the basalts, group 1 andesites have higher ( 87Sr 86Sr)i and lower ( 143Nd 144Nd)i, and represent interaction of mantle-derived magmas with the lower crust of Koyukuk terrane. Group 2 andesites have ( 87Sr 86Sr)i and ( 143Nd 144Nd)i that are near bulk-earth values and probably formed by partial melting of the lower crust of Koyukuk terrane. The central pluton and rhyolite porphyries are isotopically uniform ( 87Sr 86Sr)i ??? 0.704, ( 143Nd 144Nd)i ??? 0.51275, and are interpreted to have formed by melting of young mafic to intermediate crustal rocks or by fractionation of group 1 andesites. The rhyolite domes have an isotopic range similar to that of the basalts and andesites [( 87Sr 86Sr)i = 0.70355-0.70499; ( 143Nd 144Nd)i = 0.51263-0.51292], which suggests they formed by fractionation of the and site and basalt magmas. Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian

  7. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    USGS Publications Warehouse

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  8. Eruption style and flow emplacement in the Submarine North Arch Volcanic Field, Hawaii

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Uto, Kozo; Satake, Kenji; Davis, Alicé S.

    The North Arch Volcanic Field covers about 24,000 km2 of seafloor north of Oahu and has an estimated volume between 1,000 and 1,250 km3. The field straddles the Hawaiian flexural arch about 250 km north of the axis of the island chain and surrounds numerous Cretaceous volcanic ridges, circular flat-topped volcanoes, and low-relief regions of sediment-covered seafloor. New SeaBeam bathymetric maps that cover about 1/3 of the flow field reveal nearly 100 volcanic structures ranging from low shields to steep cones. One shield is modified by a pit crater, approximately 1.1×1.25 km and 300 m deep. A lava flow in the SE part of the volcanic field covers about 3,600 km2, has an estimated volume of 36-72 km3, and apparently erupted from a 75-km-long NNW-trending fissure system. A 108-km-long flow advanced north in a graben parallel to the Cretaceous mid-ocean ridge that formed the crust; its surface gradient is 1.9 m/km (slope of 0.1°). Shinkai 6500 submersible dive 502 explored one of the composite volcanoes and observed and collected dense alkalic basalt sheet flows erupted after vesicular basanite pillow basalts and fragmental hyaloclastite that make up the steep-sided cone. Dive 503 collected alkalic basalt sheet flows and pillow basalt from the top 122 m of the southern wall of a pit crater that formed by collapse caused by a decrease in magma volume from a shallow storage chamber located 1-2 km below the surface. The volume change may have been caused by loss of gas bubbles from the stored magma when replenishment ceased at the end of the eruption. The surficial drapery-folded sheet flow is covered by only a few cm of sediment, indicating that it is younger than the 0.5-1.5 Ma ages previously estimated for North Arch flows and vents. The near-vent constructs and flow characteristics indicate that vigorous eruption of highly vesicular lava constructed steep-sided cones of pillow basalt and hyaloclastite whereas steady eruption of dense lava that had lost its bubbles

  9. Further paleomagnetic results for the San Juan volcanic field of southern Colorado

    USGS Publications Warehouse

    Beck, M.E., Jr.; Sheriff, S.D.; Diehl, J.F.; Hailwood, E.A.; Lipman, P.W.

    1977-01-01

    Combining paleomagnetic data for 17 new sites from the northwest portion of the (Oligocene) San Juan volcanic field of southern Colorado with data for 29 sites previously published yields a paleomagnetic pole at 85??N, 114??E (with a 95% confidence circle of 7.5?? radius). A further combination of the San Juan data with the results of other studies on rocks of Oligocene age from tectonically stable parts of North America gives a mid-Tertiary reference pole located at 81??N, 132.5??E, with a confidence circle of approximately 4??. Mid-Tertiary paleomagnetic poles for the western edge of the continent diverge markedly from this reference pole. ?? 1977.

  10. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and. Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse. Copyright 2009 by the American Geophysical Union.

  11. Lead and strontium isotopes in rocks of the Absaroka volcanic field, Wyoming

    USGS Publications Warehouse

    Peterman, Z.E.; Doe, B.R.; Prostka, H.J.

    1970-01-01

    The Absaroka volcanic field is comprised of predominant andesitic volcaniclastic rocks and less abundant potassium-rich mafic lavas (shoshonites and absarokites). Strontium and lead isotopic variations preclude a simple derivation from an isotopically uniform source: Sr87/Sr86, 0.7042 to 0.7090; Pb206/Pb204, 16.31 to 17.30; Pb208/Pb204, 36.82 to 37.64. We postulate that these rocks were derived from a lower crust or upper mantle which underwent a preferential loss of uranium relative to lead approximately 2800??200 m.y. ago. Variations in lead and strontium isotopic compositions are thought to reflect small inhomogeneities in U/Pb and Rb/Sr ratios in the source. ?? 1970 Springer-Verlag.

  12. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    NASA Astrophysics Data System (ADS)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  13. Studying monogenetic volcanoes with a terrestrial laser scanner: case study at Croscat volcano (Garrotxa Volcanic Field, Spain)

    NASA Astrophysics Data System (ADS)

    Geyer, A.; García-Sellés, D.; Pedrazzi, D.; Barde-Cabusson, S.; Marti, J.; Muñoz, J. A.

    2015-03-01

    Erosional processes (natural or anthropogenic) may partly destroy the relatively small-sized volcanic edifices characteristic of monogenetic volcanic zones, leaving their internal structure well exposed. Nevertheless, the study of these outcrops may be extremely challenging due to restricted accessibility or safety issues. Digital representations of the outcrop surface have been lately used to overcome such difficulties. Data acquired with terrestrial laser scanning instruments using Light Detection and Ranging technology enables the construction of such digital outcrops. The obtained high-precision 3-D terrain models are of greater coverage and accuracy than conventional methods and, when taken at different times, allow description of geological processes in time and space. Despite its intrinsic advantages and the proven satisfactory results, this technique has been little applied in volcanology-related studies. Here, we want to introduce it to the volcanological community together with a new and user-friendly digital outcrop analysis methodology for inexperienced users. This tool may be useful, not only for volcano monitoring purposes, but also to describe the internal structure of exposed volcanic edifices or to estimate outcrop erosion rates that may be helpful in terms of hazard assessment or preservation of volcanic landscapes. We apply it to the Croscat volcano, a monogenetic cone in the La Garrotxa Volcanic Field (Catalan Volcanic Zone, NE Spain), quarrying of which leads to a perfect view of its interior but restricts access to its uppermost parts. Croscat is additionally one of the most emblematic symbols of the La Garrotxa Volcanic Field Natural Park, and its preservation is a main target of the park administration.

  14. Monogenetic volcanic fields and their geoheritage values of western Saudi Arabia and their implication to holistic geoeducation projects locally and globally (Invited)

    NASA Astrophysics Data System (ADS)

    Nemeth, K.; Moufti, R.

    2013-12-01

    Monogeneitc volcanic fields are the most common manifestation of volcanism on Earth and other planets. They composed of small volume and short lived volcanoes each of them with a relatively simple eruption history. In spite of recent researches demonstrated complex, repeated and geochemically distinct eruption histories commonly associated with te formation of small-volume volcanoes, they are still considerred as volcanoes that are in human-scale and therefore ideal to use them as educational tools or part of volcanic geoheritage projects including geopark developments. In the western margin of the Kingdom of Saudi Arabia there are at least 9 intracontinental volcanic fields subparalell with the Red Sea Rift ranging from alkaline basaltic to basalt-trachyte bimodal dispersed volcanic systems. Among these volcanic fields the geoheritage value of three fields were recently evaluated and proposed that they are suitable for further development to establish the first volcanic geoparks in the Arabian Peninsula in the area of 1) Al Madinah (AMVF) 2) Kishb (KVF) and 3) Hutaymah Volcanic Fields (HVF). The AMVF offers a natural concept based on specific volcanic precinct ordering of its volcanic geoheritages from the most accessable and most common volcanism that is historically significant (eg. scoria and lava spatter cones with extensive lava fields) toward a more adventure geotourism style approach in remote, less common but more destructive type of volcanism (eg. trachytic explosion craters). In the contrary, the KVF is a perfect site where phreatomagmatic volcanism and their consequences were identified as a major driving force for further geopark developments. The HVF with its rich archaeological and cultural sites and superbly exposed variously eroded tuff rings and maars offer a good location to develop geoeducation programs to highlight short- and long-term climatic and hydrologic changes in an area a volcanic field evolved. The three Saudi projects also demonstrate

  15. Group II Xenoliths from Lunar Crater Volcanic Field, Central Nevada: Evidence for a Kinked Geotherm

    NASA Astrophysics Data System (ADS)

    Roden, M.; Mosely, J.; Norris, J.

    2015-12-01

    Group II xenoliths associated with the 140 Ka Easy Chair Crater, Lunar Crater volcanic field, NV, consist of amphibole rich-inclusions including amphibolites, pyroxenites, and gabbros. Abundant minerals in these inclusions are kaersutite, aluminous (7.3-9.7 wt% Al2O3), calcic clinopyroxene, primarily diopside, and olivine (Mg# 69-73) with accessory spinel, sulfide and apatite. Although most apatites are fluor-hydroxyapatite solid solutions, one xenolith contains Cl- and OH-rich apatite suggesting that Cl may have been an important constituent in the parent magma(s) . The xenoliths show abundant evidence for equilibration at relatively low temperatures including amphibole and orthopyroxene exsolution in clinopyroxene, and granules of magnetite in hercynite hosts. If latter texture is due to exsolution, then this particular Group II xenolith equilibrated at temperatures near or below 500oC or at a depth of about 15 km along a conductive geotherm. It may be that all the Group II xenoliths equilibrated at low temperatures given the abundant exsolution textures although Fe-Mg exchange relations suggest equilibration at temperatures in excess of 800oC. Low equilibration temperatures are in conflict with the unusually high equilibration temperatures, >1200oC (Smith, 2000) displayed by Group I xenoliths from this same volcanic field. Taken at face value, the geothermometric results indicate unusually high temperatures in the upper mantle, normal temperatures in the crust and the possibility of a kinked geotherm in the region. Curiously the LCVF lies in an area of "normal" heat flow, south of the Battle Mountain area of high heat flow but the number of heat flow measurements in the Lunar Crater area is very low (Humphreys et al., 2003; Sass, 2005). References: Humphreys et al., 2003, Int. Geol. Rev. 45: 575; Sass et al., 2005, http://pubs.usgs.gov/of/2005/1207/; Smith, 2000, JGR 105: 16769.

  16. CCP Receiver-Function Imaging of the Moho beneath Volcanic Fields in Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Blanchette, A. R.; Mooney, W. D.; Klemperer, S. L.; Zahran, H. M.; El-Hadidy, S. Y.

    2015-12-01

    We are searching for structural complexity in the crust and upper mantle beneath the Neogene volcanic fields ('harrats') of western Saudi Arabia. We determined P-wave seismic receiver functions for 50 broadband seismographic stations located within or adjacent to three volcanic fields: Harrats Lunayyir, Rahat, and Khaybar. There are 18 seismographic stations within Lunayyir, 11 in Khaybar, and 15 in Rahat with average interstation spacing of 10 km, 30km, and 50 km. For each station we calculated 300 to 600 receiver functions with an iterative time-domain deconvolution; noisy receiver functions (outliers) were rejected by cross correlating each receiver function with a station stack; we only accepted those with a cross correlation coefficient ≥ 0.6. We used these receiver functions to create a common-conversion point (CCP) image of the crust and upper mantle. The Moho and lithosphere-asthenosphere boundary (LAB) are clearly imaged, particularly beneath Lunayyir, and have average depths of about 38 km and 60 km. We do not find any evidence for structural disruption of the Moho within our ~70 km x 70 km image of the Moho beneath Lunayyir. We image a clear crust-mantle boundary beneath Rahat and Khaybar also at ~38 km, 2-3 km deeper than anticipated from prior receiver function results outside of the harrats. Mid-crustal low velocity zones seen locally beneath all three harrats, most commonly at 10-15 km or 15-20 km in depth, may more likely represent silicic Precambrian basement than accumulations of magma. Estimates of up to ~0.5 km3 of magma erupted during each eruptive episode are consistent with the lack of a disrupted Moho. However, the total erupted volume of magma, e.g. > 1000 km3 at Rahat, together with associated intrusions from the mantle, is consistent with crustal thickening of ~2 km beneath the harrats.

  17. Parallel simulation of particle transport in an advection field applied to volcanic explosive eruptions

    NASA Astrophysics Data System (ADS)

    Künzli, Pierre; Tsunematsu, Kae; Albuquerque, Paul; Falcone, Jean-Luc; Chopard, Bastien; Bonadonna, Costanza

    2016-04-01

    Volcanic ash transport and dispersal models typically describe particle motion via a turbulent velocity field. Particles are advected inside this field from the moment they leave the vent of the volcano until they deposit on the ground. Several techniques exist to simulate particles in an advection field such as finite difference Eulerian, Lagrangian-puff or pure Lagrangian techniques. In this paper, we present a new flexible simulation tool called TETRAS (TEphra TRAnsport Simulator) based on a hybrid Eulerian-Lagrangian model. This scheme offers the advantages of being numerically stable with no numerical diffusion and easily parallelizable. It also allows us to output particle atmospheric concentration or ground mass load at any given time. The model is validated using the advection-diffusion analytical equation. We also obtained a good agreement with field observations of the tephra deposit associated with the 2450 BP Pululagua (Ecuador) and the 1996 Ruapehu (New Zealand) eruptions. As this kind of model can lead to computationally intensive simulations, a parallelization on a distributed memory architecture was developed. A related performance model, taking into account load imbalance, is proposed and its accuracy tested.

  18. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-01-01

      Based on volcanic stratigraphy, geochronology, remnant paleosurfaces, and paleopotentiometric surfaces in mining districts and alteration zones, present landforms in the Bodie Hills volcanic field reflect incremental construction of stratovolcanoes and large- to small-volume flow-domes, magmatic inflation, and fault displacements. Landform evolution began with construction of the 15–13 Ma Masonic and 13–12 Ma Aurora volcanic centers in the northwestern and northeastern parts of the field, respectively. Smaller volcanoes erupted at ~11–10 Ma in, between, and south of these centers as erosional detritus accumulated north of the field in Fletcher Valley. Distally sourced, 9.7–9.3 Ma Eureka Valley Tuff filled drainages and depressions among older volcanoes and was partly covered by nearly synchronous eruptives during construction of four large 10–8 Ma volcanoes, in the southern part of the field. The lack of significant internal fault displacement, distribution of Eureka Valley Tuff, and elevation estimates derived from floras, suggest that the Bodie Hills volcanic field attained present elevations mostly through volcano construction and magmatic inflation, and that maximum paleoelevations (>8,500 ft) at the end of large volume eruptions at ~8 Ma are similar to present elevations.

  19. Application of a diffusion model to simulate erosion of scoria cones in the San Francisco volcanic field, Arizona

    SciTech Connect

    Hooper, D.M.; Sheridan, M.F. )

    1992-01-01

    A computer model for simulating the erosion of scoria (cinder) cones by diffusive processes is being formulated to investigate their long-term degradation. The model uses a two-dimensional diffusion algorithm expressed in finite-difference form to operate upon a three-dimensional scoria cone input as a matrix of elevation values (essentially a DTM). The computer simulation exhibits degradation from an initial conical form, through crater infilling, and finally into a low-relief, shield-like hill. This preliminary and simplest version of the model successfully mimicked the degradation pattern observed in degraded cones of the San Francisco volcanic field, Arizona. The scoria cones in this volcanic field range in age from Early Pliocene to Holocene and demonstrate a decrease in cone height/width ratio and slope with an increase in age. Morphometric relationships offer an opportunity to establish a relative age scheme and to loosely date cones of unknown age in a given volcanic field. The systematic decrease with time of scoria cone height, height/width ratio, and slope is the basis for a relative dating scheme. Morphometry is derived from 1:24,000-scale, 20-ft.-contour topographic maps and from calibrated field photographs. Morphometric parameters obtained from computer simulations and from actual degraded cones are calibrated by a least-squares technique with cones that have been dated by radiometric or other absolute age-dating methods. Comparative morphology of scoria cones is a potentially useful age-dating tool for mapping volcanic fields.

  20. Occurrence of an unknown Atlantic eruption in the Chaîne des Puys volcanic field (Massif Central, France)

    NASA Astrophysics Data System (ADS)

    Jouannic, G.; Walter-Simonnet, A. V.; Bossuet, G.; Cubizolle, H.; Boivin, P.; Devidal, J. L.; Oberlin, C.

    2014-08-01

    A volcanic ash layer, called MF1, was recently identified in Holocene sediments from the Gourgon and Molhiac peat bogs (Monts du Forez, French Massif Central). This ash layer consists of colorless shards with a heterogeneous trachytic to rhyolitic composition. The trace elements analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) attest to a local origin. Radiocarbon dating of peat samples taken within and below the ash layer indicates the best age at 6339 ± 61 cal yr BP, i.e. an age contemporaneous with the volcanic activity of Montchal, Montcineyre and Pavin volcanoes from the Chaîne des Puys volcanic field. These volcanoes are characterized by basaltic and trachytic products, thus the rhyolitic composition of MF1 tephra suggests that it is likely originated from an unknown eruption. These results again confirm the interest of studying the distal volcanic ash fallouts in order to establish or specify records of past eruptions of volcanic fields. Identification of this new tephra layer also provides an additional tephrochronological marker for Eastern French Massif Central.

  1. On the Trail of Missing Heat: Forward Gravity Modeling of the San Francisco Volcanic Field, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Fry, B. N.; Morgan, P.

    2003-12-01

    The San Francisco volcanic field is a Quaternary field in northern Arizona, the age and size of which suggests there is a high possibility for an associated exploitable high temperature geothermal resource. Sunset Crater, the youngest dated feature in the field, erupted less than 1000 years ago. The youngest felsic volcanism in the area, located near Strawberry Crater, has been dated at about 51,000 years b.p. Felsic magmas are viscous, and therefore felsic magmatism is generally associated with upper crustal plutons, whereas mafic magmas commonly form surface flows. Heat from felsic magmatism tends to remain near subsurface ponds of the magma. Felsic magmatic systems can sustain substantial geothermal heat for tens to hundreds of thousands of years after emplacement. Knowledge of the quantity and distribution of felsic magmatism is therefore paramount to understanding the geothermal potential of the field. Surface heat flow in the study area ranges from ˜20 to ˜50 mW/m2, anomalously low for the region. Hydrological characteristics of the San Francisco volcanic field are thought to mask increased surface heat flow from the magmatic system. The deep water table (>300m) and a 2-level hydraulic system prevent characteristic surface manifestations of hydrothermal potential, such as hot springs and elevated surface heat flow. Lack of these thermal features at the surface precludes analysis of the resource based solely on surficial mapping and measurements. Forward modeling of the gravity field of a 50 km x 45 km area covering the eastern San Francisco volcanic field has been completed. Results suggest that a large felsic body ( ˜-0.15 g/cc contrast) trends northeastward under the Sugarloaf Mountain-O'Leary Peak-Strawberry Crater magmatic trend. This trend parallels a regional basement fabric, likely of early- to middle-Proterozoic origin. These results are being correlated with new surface geologic mapping and radiometric dating of young felsic volcanic rocks to

  2. Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of plutonic and volcanic rocks

    USGS Publications Warehouse

    Johnson, C.M.; Czamanske, G.K.; Lipman, P.W.

    1989-01-01

    Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) ???25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23-25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19-23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole

  3. Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1998-01-01

    Differential magnetic fields have been monitored along the San Andreas fault and the Long Valley caldera since 1974. At each monitoring location, proton precession magnetometers sample total magnetic field intensity at a resolution of 0.1 nT or 0.25 nT. Every 10 min, data samples are transmitted via satellite telemetry to Menlo Park, CA for processing and analysis. The number of active magnetometer sites has varied during the past 21 years from 6 to 25, with 12 sites currently operational. We use this network to identify magnetic field changes generated by earthquake and volcanic processes. During the two decades of monitoring, five moderate earthquakes (M5.9 to M7.3) have occurred within 20 km of magnetometer sites located along the San Andreas fault and only one preseismic signal of 1.5 nT has been observed. During moderate earthquakes, coseismic magnetic signals, with amplitudes from 0.7 nT to 1.3 nT, have been identified for 3 of the 5 events. These observations are generally consistent with those calculated from simple seismomagnetic models of these earthquakes and near-fault coseismic magnetic field disturbances rarely exceed one nanotesla. These data are consistent with the concept of low shear stress and relatively uniform displacement of the San Andreas fault system as expected due to high pore fluid pressure on the fault. A systematic decrease of 0.8-1 nT/year in magnetic field has occurred in the Long Valley caldera since 1989. These magnetic field data are similar in form to observed geodetically measured displacements from inflation of the resurgent dome. A simple volcanomagnetic model involving pressure increase of 50 MPa/a at a depth of 7 km under the resurgent dome can replicate these magnetic field observations. This model is derived from the intrusion model that best fits the surface deformation data. ?? 1998 Elsevier Science B.V.

  4. Postglacial eruptive history of Laguna del Maule volcanic field in Chile, from fallout stratigraphy in Argentina

    NASA Astrophysics Data System (ADS)

    Fierstein, J.; Sruoga, P.; Amigo, A.; Elissondo, M.; Rosas, M.

    2012-12-01

    The Laguna del Maule (LdM) volcanic field, which surrounds the 54-km2 lake of that name, covers ~500 km2 of rugged glaciated terrain with Quaternary lavas and tuffs that extend for 40 km westward from the Argentine frontier and 30 km N-S from the Rio Campanario to Laguna Fea in the Southern Volcanic Zone of Chile. Geologic mapping (Hildreth et al., 2010) shows that at least 130 separate vents are part of the LdM field, from which >350 km3 of products have erupted since 1.5 Ma. These include a ring of 36 postglacial rhyolite and rhyodacite coulees and domes that erupted from 24 separate vents and encircle the lake, suggesting a continued large magma reservoir. Because the units are young, glassy, and do not overlap, only a few ages had been determined and the sequence of most of the postglacial eruptions had not previously been established. However, most of these postglacial silicic eruptions were accompanied by explosive eruptions of pumice and ash. Recent investigations downwind in Argentina are combining stratigraphy, grain-size analysis, chemistry, and radiocarbon dating to correlate the tephra with eruptive units mapped in Chile, assess fallout distribution, and establish a time-stratigraphic framework for the postglacial eruptions at Laguna del Maule. Two austral summer field seasons with a tri-country collaboration among the geological surveys of the U.S., Chile, and Argentina, have now established that a wide area east of the volcanic field was blanketed by at least 3 large explosive eruptions from LdM sources, and by at least 3 more modest, but still significant, eruptions. In addition, an ignimbrite from the LdM Barrancas vent complex on the border in the SE corner of the lake traveled at least 15 km from source and now makes up a pyroclastic mesa that is at least 40 m thick. This ignimbrite (72-75% SiO2) preceded a series of fall deposits that are correlated with eruption of several lava flows that built the Barrancas complex. Recent 14C dates suggest

  5. Geochemistry and petrogenesis of the Gallego Volcanic Field, Solomon Islands, SW Pacific and geotectonic implications

    NASA Astrophysics Data System (ADS)

    Petterson, M. G.; Haldane, M. I.; Smith, D. J.; Billy, D.; Jordan, N. J.

    2011-08-01

    The Upper Miocene to present day Gallego Volcanic Field (GVF) is located in northwest Guadalcanal, Solomon Islands, SW Pacific, and potentially includes the offshore Savo volcano. The GVF is a multi-centred complex covering an area of ~ 800 km 2 on Guadalcanal and a further ~ 30 km 2 on the island of Savo, north of west Guadalcanal. GVF volcanism is characterised by effusive eruptions of lava, intrusion of sub-volcanic plutons, as well as pyroclastic flow and fall deposits dominated by block and ash flow deposits. Geochemical analysis of a representative suite of samples from the GVF demonstrates that the GVF comprise largely a 'main suite' of basalts to andesites and minor trachyandesites. The predominant mineralogy of the GVF comprises plagioclase, amphibole, clinopyroxene and magnetite-ilmenite. Associated with the 'main suite' are cognate nodules composed of hornblendite, gabbros, and clinopyroxenite. Interpretation of major and trace element geochemistry and petrographic studies suggests that fractionation was dominated by early clinopyroxene, and later amphibole + clinopyroxene + minor plagioclase. Geochemical features such as the incompatibility of Sr suggest that plagioclase largely crystallised en-masse late in the fractionation sequence. The presence of amphibole and late fractionation of plagioclase is suggestive of derivation from initially water-rich magmas. The region is characterised by strong geographically-related geochemical variations as evidenced by the Woodlark (and Manus) basins: basalts become more arc-like within the ocean basins with decreasing distance to the subducting trench. The GVF-Savo volcanoes are spatially and geochemically affected by deep N-S fractures that show some evidence of sympathetic geochemical variations with distance from the trench (e.g. Sr/Y ratios). Comparison with a range of international data for Th/Nb vs Pb/Nb and Dy/Yb vs SiO 2 indicate that: amphibole was indeed a strong controlling phase on magmatic evolution

  6. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)

    NASA Astrophysics Data System (ADS)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.

    2007-05-01

    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  7. Eruptive History of the Rhyolitic Guangoche Volcano, Los Azufres Volcanic Field, Central Mexico

    NASA Astrophysics Data System (ADS)

    Rangel Granados, E.; Arce, J. L.; Macias, J. L.; Layer, P. W.

    2014-12-01

    Guangoche is a rhyolitic and polygenetic volcano with a maximum elevation of 2,760 meters above sea level. It is situated to the southwest of the Los Azufres Volcanic Field (LAVF), in the central sector of the Trans-Mexican Volcanic Belt. Guangoche volcano is the youngest volcano described within the LAVF. It shows a horseshoe shaped crater open to the south, with a central lava dome. Its eruptive history during late Pleistocene has been intense with six explosive eruptions that consists of: 1) A southwards sector collapse of the volcano that generated a debris avalanche deposit with megablocks of heterogenous composition; 2) A plinian-type eruption that generated a pumice fall deposit and pyroclastic density currents by column collapse at 30.6 ka; 3) A plinian-type eruption "White Pumice Sequence" (29 ka) that developed a 22-km-high eruptive column, with a MDR of 7.0 x 107 kg/s (vol. = 0.53 km3); 4) A dome-destruction event, "Agua Blanca Pyroclastic Sequence" at 26.7 ka, that deposited a block-and-ash flow deposit; 5) A subplinian-plinian type eruption "Ochre Pyroclastic Sequence" (<26 ka) with an important initial phreatomagmatic phase, that generated pyroclastic density currents and pumice fallouts. The subplinian-plinian event generated a 16-km-high eruptive column, with a MDR of 1.9 x 107 kg/s, and magma volume of 0.38 km3; 6) The eruptive history ended with a subplinian eruption (<<26 ka), that generated a multilayered fall deposit, that developed a 11-km-high eruptive column, with a MDR of 2.9 x 106 kg/s and a magma volume of 0.26 km3. Volcanic activity at Guangoche volcano has been intense and future activity should not be discarded. Unfortunately, the last two events have not been dated yet. Guangoche rhyolitic magma is characterized by low-Ba contents suggesting crystal mush extraction for their genesis.

  8. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  9. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  10. Age and petrology of the Tertiary As Sarat volcanic field, southwestern Saudi Arabia

    USGS Publications Warehouse

    du Bray, E.A.; Stoeser, D.B.; McKee, E.H.

    1991-01-01

    Harrat As Sarat forms the second smallest and southernmost of the basalt fields of western Saudi Arabia and is part of a voluminous Red Sea rift-related continental alkali basalt province. The rocks of the As Sarat were emplaced during the first stage of Red Sea rifting and represent the northernmost extension of the Tertiary Trap Series volcanics that occur mainly in the Yemen Arab Republic and Ethiopia. The field consists of up to 580 m of basalt flows, that are intruded by basaltic plugs, necks, minor dikes, and highly evolved peralkaline trachyte intrusions. K-Ar ages indicate that the As Sarat field formed between 31 and 22 Ma and contains an eruption hiatus of one million years that began about 25 Ma ago. Pre-hiatus flows are primarily hypersthene normative intersertal subalkaline basalt, whereas the majority of post-hiatus flows are nepheline normative alkali basalt and hawaiite with trachytic textures. Normative compositions of the basalts are consistent with their genesis by partial melting at varying depths. Trace element abundances in the basalt indicate that varying degrees of partial melting and fractional crystallization (or crystal accumulation) had major and minor roles, respectively, in development of compositional variation in these rocks. Modeling indicates that the pre-hiatus subalkaline basalts represent 8-10 percent mantle melting at depths of about 70 km and the post-hiatus alkali basalts represent 4-9 percent mantle melting at depths greater than 70 km. ?? 1991.

  11. Preliminary Ambient Noise and Seismic Interferometry Analysis of the Laguna del Maule Volcanic Field, Chile

    NASA Astrophysics Data System (ADS)

    Wespestad, C.; Thurber, C. H.; Bennington, N. L.; Zeng, X.; Cardona, C.; Keranen, K. M.; Singer, B. S.

    2015-12-01

    Laguna del Maule Volcanic Field is a large, restless, youthful rhyolitic system in the Southern Andes of Chile. We present a preliminary examination of ambient noise data at this site from 12 University of Wisconsin and 6 OVDAS (Southern Andean Volcano Observatory) broadband seismometers for a 3 month period. Ambient noise tomography seeks to correlate pairs of stations, with one station acting as a virtual source and the other a receiver, generating empirical Green's functions between each pair. The noise correlation functions (NCFs) were computed for day-long and hour-long windows, then the final NCFs were obtained from stacking each time window set. The hour-long NCFs converged more rapidly, so this time window was chosen for use in later stages. This study used phase weighted stacking of the NCFs instead of linear stacking in order to achieve a better signal to noise ratio (SNR), although linearly stacked Green's functions were also created to confirm the improvement. Phase weighted stacking can detect signals with weak amplitudes much more clearly than linear stacking by finding coherence of signals in multiple frequency bins and down-weighting the importance of amplitude for correlation (Schimmel and Gallart, 2007). The Frequency-Time Analysis Technique was utilized to measure group velocity, and initial results show it to be about 2 km/s on average. Fluctuations of the average velocity between different station pairs across this dense array will provide a preliminary indication of the location and size of the magma system. This study also applied seismic interferometry using ambient noise to determine temporal changes in seismic velocity occurring at Laguna del Maule. Initial results show temporal changes in seismic velocity correlated to seasonal changes in the hydrologic cycle (rain, snow pack, snow melt, etc.). Current work focuses on identifying changes in seismic velocity associated with ongoing volcanic processes.

  12. Managing a Monogenetic Volcanic Field As a World Heritage Nomination: Implications for Science, Outreach, and Hazards

    NASA Astrophysics Data System (ADS)

    Olive-Garcia, C.; van Wyk de Vries, B.

    2014-12-01

    Monogenetic volcanoes form a large proportion of the world's volcanoes. They are in all tectonic environments and thus provide a significant link to understand fundamental geological processes such as plate tectonics. The Chaîne des Puys - Limagne fault World Heritage nomination is a prime example of this link where monogenetic volcanism, continental rifting, uplift and erosion are highlighted, and are made understandable to the lay person, though the actions on over 80 aligned monogenetic volcanoes. Such geoheritage is essential for monogenetic and other geological risks to be communicated to the wider public. The current scientific interest on monogenetic volcanoes is quite recent, and because of this, and probably their global distribution but small size, they have not received their due importance from a geoheritage standpoint. Some individual sites and some fields are protected and developed as attractions, but there has been no coherent global strategy for defining monogenetic heritage, or for linking sites. This is starting through the monogenetic commission of IAVCEI, and with wider participation of the IUGS and other bodies. The Chaîne des Puys - Limagne Fault UNESCO project is an example of how public awareness, at a global scale, and be increased through geoheritage. This is done integrating local stakeholders: population, industry, science, landscapers, artists, sports, government. This builds on existing protection and sustainable activities, integrating them with education programs. The result is to create a populace that 'thinks geological', and which leads visitors to also become geologically aware. This is helped by a monogenetic landscape that is easily readable and by links made to other geological sites around the world. We will explain how this process is ongoing. The project started over 35 years ago, and is a long-term vision to develop geological understanding and protection of this unique monogenetic and tectono-volcanic site.

  13. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    USGS Publications Warehouse

    Lipman, Peter W.

    2007-01-01

    Plutons thus provide an integrated record of prolonged magmatic evolution, while volcanism offers snapshots of conditions at early stages. Growth of subvolcanic batholiths involved sustained multistage open-system processes. These commonly involved ignimbrite eruptions at times of peak power input, but assembly and consolidation processes continued at diminishing rates long after peak volcanism. Some evidence cited for early incremental pluton assembly more likely records late events during or after volcanism. Contrasts between relatively primitive arc systems dominated by andesitic compositions and small upper-crustal plutons versus more silicic volcanic fields and associated batholiths probably reflect intertwined contrasts in crustal thickness and magmatic power input. Lower power input would lead to a Cascade- or Aleutian-type arc system, where intermediate-composition magma erupts directly from middle- and lower-crustal storage without development of large shallow plutons. Andean and southern Rocky Mountain–type systems begin similarly with intermediate-composition volcanism, but increasing magma production, perhaps triggered by abrupt changes in plate boundaries, leads to development of larger upper-crustal reservoirs, more silicic compositions, large ignimbrites, and batholiths. Lack of geophysical evidence for voluminous eruptible magma beneath young calderas suggests that near-solidus plutons can be rejuvenated rapidly by high-temperature mafic recharge, potentially causing large explosive eruptions with only brief precursors.

  14. Reconstruction of the Landeskrone Scoria Cone in the Lusatian Volcanic Field, Eastern Germany — Long-term degradation of volcanic edifices and implications for landscape evolution

    NASA Astrophysics Data System (ADS)

    Büchner, Jörg; Tietz, Olaf

    2012-05-01

    Remnants of numerous monogenetic volcanoes are preserved in the Central European Volcanic Province (CEVP). The Landeskrone Hill, a monogenetic scoria cone in the Lusatian Volcanic Field, is reconstructed here. This was done using measurements of the dip of columnar jointing of lava lake basalts and the detailed mapping of the volcaniclastic rocks. The reconstruction implies a large scoria cone and a lava lake; filling the crater with a thickness of more than 110 m. Volcanic activity was characterized by strombolian eruptions possibly after an opening phreatomagmatic phase. A scoria cone was developed in an initial maar-diatreme volcano. A late phreatomagmatic phase could explain the unusual modified crater of the scoria cone. The conduit was emptied and so the crater was widened in this late eruption stage. An increased magma flux probably induced a change in the eruptive style and, finally, the crater was filled in a single event by a lava lake. This effusive phase completed the multi-stage volcano development. The 34 Ma-old volcano is an excellent example for the persistence of relicts of monogenetic volcanoes over a long period of time. There are some other remnants of monogenetic scoria cones that survived degradation processes in the area. With respect to the present surface, the reconstruction of the paleosurface implies low uplift and erosion rates of about 3 mm/ka since the Oligocene. These denudation values support and expand on the previously published fission track data (prior to the Upper Cretaceous) and glacial-sedimentological data on neotectonic movements since the Middle Pleistocene. The erosion rate estimated by physical volcanological data implies stagnation of tectonic uplift from the Upper Paleogene to the Middle Neogene and a reactivation of tectonic movement for the Lusatian Massif in the Middle Pleistocene. Thus, the reconstructed edifice provides a powerful tool for the study of landscape evolution by clearly defining the characteristics of

  15. Pyroclastic deposits of the Mount Edgecumbe volcanic field, southeast Alaska: eruptions of a stratified magma chamber

    USGS Publications Warehouse

    Riehle, J.R.; Champion, D.E.; Brew, D.A.; Lanphere, M.A.

    1992-01-01

    The Mount Edgecumbe volcanic field in southeastern Alaska consists of 5-6 km3 (DRE) of postglacial pyroclasts that overlie Pleistocene lavas. All eleven pyroclast vents align with the long axis of the field, implying that the pyroclast magma conduits followed a crustal fissure. Most of these vents had previously erupted lavas that are compositionally similar to the pyroclasts, so a persistent magma system (chamber) had likely evolved by the onset of the pyroclastic eruptions. The pyroclastic sequence was deposited in about a millennium and is remarkable for a wide range of upward-increasing silica contents (51-72% SiO2), which is consistent with rise of coexisting magmas at different rates governed by their viscosity. Basaltic and andesitic lava flows have erupted throughout the lifetime of the field. Rhyolite erupted late; we infer that it formed early but was hindered from rising by its high viscosity. Most of the magmas-and all siliceous ones-erupted from vents on the central fissure. Basalt has not erupted from the center of the field during at least the latter part of its lifetime. Thus the field may illustrate basalt underplating: heat and mass flux are concentrated at the center of a stratified magma chamber in which a cap of siliceous melt blocks the rise of basalt. Major-element, strontium isotope, and mineral compositions of unaltered pyroclasts are broadly similar to those of older lavas of similar SiO2 content. Slightly fewer phenocrysts, inherited grains, and trace amphibole in pyroclastic magmas may be due simply to faster rise and less undercooling and degassing before eruption relative to the lavas. Dacite occurs only in the youngest deposits; the magma formed by mixing of andesitic and rhyolitic magmas erupted shortly before by the dacitic vents. ?? 1992.

  16. 40Ar/39Ar Ages for the Sentinel-Arlington Volcanic Field, Southwestern Arizona

    NASA Astrophysics Data System (ADS)

    Cave, S. R.; Greeley, R.; Champion, D. E.; Turrin, B. D.

    2007-12-01

    The Sentinel Plains lava field and proximate small (<10 km diameter) shield volcanoes, collectively referred to as the Sentinel-Arlington Volcanic Field (SAVF) are composed of mostly basaltic lava flows with a small percentage of magmatic and phreatomagmatic tephra deposits. SAVF is located ~75 km southwest of Phoenix, Arizona, and covers ~600 km2. SAVF lies on the eastern terminus of the Gila River graben within the Basin and Range physiographic province. A series of northwest-trending normal faults cut across the surrounding terrain, indicating that the loci of the SAVF eruptive centers could be controlled by structural trends. The volcanic centers of SAVF erupted near the Gila River channel, damming and diverting the river at least twice, forming small ephemeral lakes. The relative timing of the SAVF eruptions was determined in order to unravel the SAVF eruptive history as well as the timing of the ancient Gila River interactions that led to the development of the Painted Rock transverse drainage. The absolute timing was determined in order datermine causal relationships with local tectonism. The SAVF basal contact is ~30 m above the Holocene surface where exposed along the current river channel; and the lavas show similar amounts mantling by aeolian dust, development of pedogenic calcium carbonate, and subsequent incision by radial ephemeral drainages. Relative timing of eruptive events was determined by stratigraphic and embayment relationships. Continuity of distal flows exposed in cross-sections to their source vents could be established using field work, and confirmed using geomagnetic secular variation and geochemical analyses. Edifices generally corresponded to discreet geomagnetic inclination, declination, and paleointensity values. Older eruptive events exhibited normal polarity, while stratigraphically younger events exhibited reversed polarity. Most lavas were alkali olivine basalt with a range of unnormalized SiO2 weight percentages ranging from 47

  17. Spatial analysis of the Los Tuxtlas Volcanic Field (LTVF) and hazard implications

    NASA Astrophysics Data System (ADS)

    Sieron, K.; Alvarez, D.

    2013-05-01

    The Tuxtlas volcanic field (LTVF) is located in the southern part of Veracruz state (Mexico) adjacent to the Gulf of Mexico and consists of 4 large volcanic edifices, 3 of them considered inactive and the active San Martin shield volcano. The monogenetic volcanoes belonging to the younger series are represented by hundreds of scoria cones and tens of maars and tuff cones, all of which show ages less than 50,000 years. In comparison to other monogenetic fields, the scoria cone density is quite elevated with 0.2 cones/km2, although the highest scoria cone density can be observed along narrow zones corresponding to the main NW-SE fault system where it reaches 0.7 cones/km2. Scoria cones occur as single edifices and in clusters and show individual edifice volumes of 0.0009 km3 to 0.2 km3, cone heights varying between 21.39 m and 299.21 m. Lava flows associated to scoria cones originate especially along the main NW-SE trending main fault and present run out distances up to 11 kilometers. Only few radiocarbon and Ar-Ar dates exist for the LTVF, mostly because of the high cone density and dense vegetation of the Los Tuxtlas region. Therefore, morphological parameters were used to estimate relative ages. In consequence, the scoria cones can be subdivided into four age groups; the members of each group do not seem to follow any particular trend and are rather scattered throughout the field. The explosive (or wet) equivalents of the mainly basaltic strombolian scoria cones are explosion craters, such as maars and tuff cones, show the highest concentration along the border of the two main geological units to the S of the area with the highest scoria cone concentration. Although the relatively small scale strombolian eruptions associated to scoria cone emplacement do not represent a considerable hazard for the surrounding population, lava flows can easily extent to the main urban zones accommodating about 262,384 inhabitants. Within the area prone to maar formation, the hazard

  18. San Francisco Volcanic Field, Arizona, as AN Analog for Lunar and Martian Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Hodges, K.; Eppler, D.; Horz, F.; Lofgren, G. E.; Hurtado, J. M.; Desert Rats Science Team

    2010-12-01

    Terrestrial analog sites are an important tool that planetary geologists and engineers can use to examine both the geologic processes that shape other planetary surfaces as well as to develop and test technologies that are needed for the exploration of planetary surfaces. During the Apollo era, sites like Meteor Crater, Arizona, were used to train astronauts in the protocols and practices of field geology so that their lunar surface activities would be more geologically productive and efficient. As we enter a new period of planetary surface exploration, analogs will be increasingly important in preparing the next generation of both human and robotic planetary explorers. No single analog will be representative of another planetary surface, but testing technologies in a variety of settings will provide NASA and other space agencies with the operational knowledge needed to launch exploratory missions. The site we present here is one of many that can be used to explore surface operations on other planetary surfaces. The San Francisco Volcanic Field (SFVF), containing both SP Crater and Black Point Lava Flow (BPLF), Arizona, is currently being used as the test site for the Desert Research and Technology Studies (D-RATS) field test, coordinated by Johnson Space Center (JSC) and involving several other NASA centers. During the 2010 test, two habitat rovers (Space Exploration Vehicles, or SEVs) operated simultaneously, each with one astronaut crewmember and one geologist crewmember. The mission lasted 14 days and traversed some 150 km. The geologic setting of SFVF includes a series of ~2 Ma basaltic lava flows overlying Triassic sedimentary rocks, both among the predominant rock types that are found primarily on Mars. SFVF has also been identified as an analog to the Marius Hills on the Moon, a Constellation site of interest. In addition, D-RATS 2010 is simulating operational scenarios based on notional traverses near the Malapert Massif on the lunar surface. While SFVF is

  19. Compositional variation of lavas from a young volcanic field on the Southern Mid-Atlantic Ridge, 8°48'S

    NASA Astrophysics Data System (ADS)

    Haase, K.; Brandl, P. A.; Melchert, B.; Hauff, F.; Garbe-Schoenberg, C.; Paulick, H.; Kokfelt, T. F.; Devey, C. W.

    2012-12-01

    Volcanic eruptions along the mid-oceanic ridge system are the most abundant signs of volcanic activity on Earth but little is known about the timescales and nature of these processes. The main parameter determining eruption frequency as well as magma composition appears to be the spreading rate of the mid-oceanic ridge. However, few observations on the scale of single lava flows exist from the slow-spreading Mid-Atlantic Ridge so far. Here we present geological observations and geochemical data for the youngest volcanic features of the so-called A2 segment (Bruguier et al., 2003, Hoernle et al., 2011) of the slow-spreading (33 mm/yr) southern Mid-Atlantic Ridge at 8°48'S. This segment has a thickened crust of about 9 km indicating increased melt production in the mantle. Side-scan sonar mapping revealed a young volcanic field with high reflectivity that was probably erupted from two volcanic fissures each of about 3 km length. Small-scale sampling of the young lava field at 8°48'S by ROV and wax corer and geochemical analyses of the volcanic glasses reveal three different compositional lava units along this about 11 km long portion of the ridge. Based on the incompatible element compositions of volcanic glasses (e.g. K/Ti, Ce/Yb) we can distinguish two lava units forming the northern and the larger southern part of the lava field covering areas of about 5 and 9 square kilometres, respectively. Basalts surrounding the lava field and from an apparently old pillow mound within the young flows are more depleted in incompatible elements than glasses from the young volcanic field. Radium disequilibria suggest that most lavas from this volcanic field have ages of 3000 to 5000 yrs whereas the older lavas surrounding the lava field are older than 8000 yrs. Faults and a thin sediment cover on many lavas support the ages and indicate that this part of the Mid-Atlantic Ridge is in a tectonic rather than in a magmatic stage. Lavas from the northern and southern ends of the

  20. Imaging the deep source of the Rotorua and Waimangu geothermal fields, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Heise, W.; Caldwell, T. G.; Bertrand, E. A.; Hill, G. J.; Bennie, S. L.; Palmer, N. G.

    2016-03-01

    Magnetotelluric data were recorded in a 45 × 10 km band crossing the Rotorua and Waimangu geothermal fields in the northern part of the Taupo Volcanic Zone in the central North Island of New Zealand. 3-D inverse modelling of these data show that beneath the low resistivity areas marking the near surface geothermal fields, localised electrically conductive zones are present in the crust below about 2.5 and 3.5 km depth at Rotorua and Waimangu, respectively. At increasing depth these conductive zones broaden and appear to merge with a larger conductive zone at 8 km depth situated between the geothermal systems. At Rotorua the top of the conductive zone is situated directly beneath the area of greatest surface heat and gas discharge. At Waimangu the uppermost part of the deeper conductive zone is situated beneath the western part of Lake Rotomahana, also an area of intense surface thermal activity and high heat flux. The localised conductive zones are interpreted to be high temperature (quasi-magmatic) fluids rising from a broader zone of partial melt at deeper levels.

  1. Mantle xenocrysts of Chompolo field of the alkaline volcanics, Aldan shield, South Yakutia.

    NASA Astrophysics Data System (ADS)

    Nikolenko, Evgeny; Tychkov, Nikolay; Afanasiev, Valentin

    2015-04-01

    New mineralogical and chemical constraints for 10 dikes, veins (360-800m) and pipes (60-110 m) of Chompolo field discovered in 1957-1958 are discussed. Feld is located within Central Aldan Archean and Paleoproterozoic granulite-orthogneiss superterrane of Aldan-Stanovoy Shield, with peak of metamorphism - 2.1-1.9 Ga (Smelov, Timofeev, 2007). Originally (Shilina and Zeitlin 1959) and later (Kostrovitsky and Garanin 1992, Ashchepkov, Vladykin et al. 2001) these rocks were classified as kimberlites by mineralogy including pyrope, Cr spinel, and Cr diopside. Panina and Vladykin (1994), Davies et al, (2006) identified them as lamprophyres and lamproites. The age of Chompolo rocks is pre-Jurassic (Vladimirov et. al., 1989) dated by 40Ar/39Ar as 164.7±1 Ma (233.7±2.2 next plato)(unpublished Ashchepkov). The Rb-Sr isochron for lamprophyre "intrusions 104" indicate later age of 131±4 Ma (Zaitsev, Smelov, 2010). Magmatic bodies (Aldanskaya, Sputnik, Gornaya, Ogonek, Perevalnaya, Kilier-E) were studied during 2012-2013 fieldworks. Most of igneous rocks occur as inequigranular volcanic breccias with micro- or crypto-crystalline groundmass of K feldspar (up to 16.3 wt.% K2O, up to 3.2 wt.% FeO), chlorite, opaque minerals, melanocratic xenocrysts and phenocrysts (garnet, pyroxene, amphibole, Cr spinel, apatite, zircon, mica), and abundant xenogenic fragments of wallrock and crystalline basement. Garnet chemistry records the presence of mantle and crustal material. Mantle garnets lack the common megacryst, wehrlite, and high-temperature lherzolite varieties. Mantle mineralization prevails in the Aldan dike and the Sputnik, Gornaya, and Ogonek pipes, while crustal and elcogitic material is in the Perevalnaya and Kilier-E pipes. The Cr spinel consists of (in wt%) 3.5 to 50.9 Al2O3, 18.6-63.5 wt% Cr2O3, 6.1 to 19.1 MgO, and 0 to 1.61 TiO2. Al and Cr in spinels are in inverse proportion. The Chompolo alkaline volcanic rocks are most similar to the Central Aldan lamproites in trace

  2. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    USGS Publications Warehouse

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    define the beginning of the Brunhes Chron and helps constrain the Brunhes-Matuyama boundary. The Bishop ash, which was dispersed as far east as Nebraska, Kansas, and Texas, provides an important tephrostratigraphic marker throughout the Western United States. The obsidian domes of both the Mono and Inyo Craters, which were produced by rhyolitic eruptions in the past 40,000 years, have been well studied, including extensive scientific drilling through the domes. Exploratory drilling to 3-km depth on the resurgent dome and subsequent instrumentation of the Long Valley Exploratory Well (LVEW) have led to a number of important new insights. Scientific drilling also has been done within the Casa Diablo geothermal field, which, aside from drilling, has been commercially developed and is currently feeding 40 MW of power into the Southern California Edison grid. Studies in all the above-mentioned volcanic fields have contributed to the extensive scientific literature published on the Long Valley region. Although most of this scientific literature has been published since 1970, a significant amount of historical literature extends backward to the late 1800s. The purpose of this bibliography is to compile references pertaining to the Long Valley region from all time periods and all Earth science fields into a single listing, thus providing an easily accessible guide to the published literature for current and future researchers.

  3. The Aurora volcanic field, California-Nevada: oxygen fugacity constraints on the development of andesitic magma

    NASA Astrophysics Data System (ADS)

    Lange, R. A.; Carmichael, Ian S. E.

    1996-10-01

    The Aurora volcanic field, located along the northeastern margin of Mono Lake in the Western Great Basin, has erupted a diverse suite of high-K and shoshonitic lava types, with 48 to 76 wt% SiO2, over the last 3.6 million years. There is no correlation between the age and composition of the lavas. Three-quarters of the volcanic field consists of evolved (<4 wt% MgO) basaltic andesite and andesite lava cones and flows, the majority of which contain sparse, euhedral phenocrysts that are normally zoned; there is no evidence of mixed, hybrid magmas. The average eruption rate over this time period was ˜200 m3/km2/year, which is typical of continental arcs and an order of magnitude lower than that for the slow-spreading mid-Atlantic ridge. All of the Aurora lavas display a trace-element signature common to subduction-related magmas, as exemplified by Ba/Nb ratios between 52 and 151. Pre-eruptive water contents ranged from 1.5 wt% in plagioclase-rich two-pyroxene andesites to ˜6 wt% in a single hornblende lamprophyre and several biotite-hornblende andesites. Calculated oxygen fugacities fall within 0.4 and +2.4 log units of the Ni-NiO buffer. The Aurora potassic suite follows a classic, calc-alkaline trend in a plot of FeOT/MgO vs SiO2 and displays linear decreasing trends in FeOT and TiO2 with SiO2 content, suggesting a prominent role for Fe-Ti oxides during differentiation. However, development of the calc-alkaline trend through fractional crystallization of titanomagnetite would have caused the residual liquid to become so depleted in ferric iron that its oxygen fugacity would have fallen several log units below that of the Ni-NiO buffer. Nor can fractionation of hornblende be invoked, since it has the same effect as titanomagnetite in depleting the residual liquid in ferric iron, together with a thermal stability limit that is lower than the eruption temperatures of several andesites (˜1040 1080°C; derived from two-pyroxene thermometry). Unless some progressive

  4. Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.; Cronin, Shane J.

    2011-01-01

    The Auckland Volcanic Field (AVF) with 49 eruptive centres in the last c. 250 ka presents many challenges to our understanding of distributed volcanic field construction and evolution. We re-examine the age constraints within the AVF and perform a correlation exercise matching the well-dated record of tephras from cores distributed throughout the field to the most likely source volcanoes, using thickness and location information and a simple attenuation model. Combining this augmented age information with known stratigraphic constraints, we produce a new age-order algorithm for the field, with errors incorporated using a Monte Carlo procedure. Analysis of the new age model discounts earlier appreciations of spatio-temporal clustering in the AVF. Instead the spatial and temporal aspects appear independent; hence the location of the last eruption provides no information about the next location. The temporal hazard intensity in the field has been highly variable, with over 63% of its centres formed in a high-intensity period between 40 and 20 ka. Another, smaller, high-intensity period may have occurred at the field onset, while the latest event, at 504 ± 5 years B.P., erupted 50% of the entire field's volume. This emphasises the lack of steady-state behaviour that characterises the AVF, which may also be the case in longer-lived fields with a lower dating resolution. Spatial hazard intensity in the AVF under the new age model shows a strong NE-SW structural control of volcanism that may reflect deep-seated crustal or subduction zone processes and matches the orientation of the Taupo Volcanic Zone to the south.

  5. Eruptive history, petrology, and petrogenesis of the Joe Lott Tuff Member of the Mount Belknap Volcanics, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Budding, Karin E.

    1982-01-01

    The Joe Lott Tuff Member of the Mount Belknap Volcanics is the largest rhyolitic ash-flow tuff sheet in the Marysvale volcanic field. It was erupted 19 m.y. ago, shortly after the changeover from intermediate-composition calc-alkalic volcanism to bimodal basalt-rhyolite volcanism. Eruption of the tuff resulted in the formation of the Mount Belknap Caldera whose pyroclastic intracaldera stratigraphy parallels that in the outflow facies. The Joe Loft Tuff Member is a composite ash-flow sheet that changes laterally from a simple cooling unit near the source to four distinct cooling units toward the distal end. The lowest of these units is the largest and most widespread; it is 64 m thick and contains a basal vitrophyre. Eruption of the lower unit led to the initial collapse of the caldera. The lower unit is followed upward by a 43 m middle unit, a 26 m pink-colored unit which is separated by a prominent air- fall layer, and a 31 m upper unit. The Joe Loft Tuff Member is an alkali rhyolite with 75.85-77.31 wt. % silica and 8.06-9.32 wt. % K2O+Na2O; the agpaitic index (Na2O+ K2O/Al2O3) is .77-.98. The tuff contains about I% phenocrysts of quartz, sanidine, oligoclase, augite, apatite, zircon, sphene, biotite, and oxidized Fe-Ti oxides. The basal vitrophyre contains accessory allanite, chevkinite, and magnesiohastingsite. The main cooling units are chemically and mineralogically zoned indicating that the magma chamber restratified prior to each major eruption. Within each of the two thickest cooling units, the mineralogy changes systematically upwards; the Or content and relative volume of sanidine decreases and An content of plagioclase increases. The basal vitrophyre of the lower unit has a bulk composition that lies in the thermal trough near the minima of Or-Ab-Q at 1 kb PH2O. Microprobe analyses of feldspar and chemical modeling on experimental systems indicate that pre-eruption temperatures were near 750?C and that the temperature increased during the eruption of

  6. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  7. Identification of maars and similar volcanic landforms in the West Eifel Volcanic Field through image processing of DTM data: efficiency of different methods depending on preservation state

    NASA Astrophysics Data System (ADS)

    Seib, Nadine; Kley, Jonas; Büchel, Georg

    2013-04-01

    The West Eifel Volcanic Field comprises 98 maars, tuff rings, and scoria rings of volcanoes younger than 700 ka. Digital Terrain Models (DTMs) allow to automatically measure morphologic parameters of volcanic edifices such as slope angles, diameters, elevations, floor, and slope surface areas. Based on their morphological characteristics, we subdivided the West Eifel volcanoes into five morphometric groups which reflect different stages of erosion. Group I, II, and IV comprise clear ring-shaped structures. The difference between these groups is that a tephra ring is well preserved in Group I, partially preserved in Group II and absent in Group IV. The original shapes of Group III maars have been lost more substantially than in Groups I, II, or IV, but they nevertheless retain a negative shape (a depression) and have characteristic channel systems, which can be used as search criteria. Maar-diatremes of Group V are eroded down to their feeder pipes and form hills. In order to locate potential volcanic depressions that are likely to be maar volcanoes, we defined common search criteria such as circular negative landforms or particular drainage system patterns for all groups except the least well-preserved Group V. These criteria were taken as the basis for further processing of the DTM data. The first processing step consisted of constructing a residual relief calculated as the difference between a filtered (smoothed) topographic surface and the original DTM data. This identifies local topographic features. We propose a method for regulating the degree of smoothing which is based on filtering of local maxima according to their distance from a surface constructed from local minima. The previously defined search criteria for Groups I to IV such as specific ranges of curvature, slope, circularity, density of the drainage network were then applied to the residual relief in order to extract maar shapes. Not all criteria work equally well for all morphological groups

  8. High-silica rhyolite magmatism in the Big Pine volcanic field, eastern California

    NASA Astrophysics Data System (ADS)

    Lidzbarski, M. I.; Vazquez, J. A.

    2007-12-01

    The Quaternary Big Pine volcanic field (BPVF) located in the Owens Valley of eastern California is dominated by basaltic cinder cones and associated lava flows, but contains a single rhyolite lava erupted at circa 1 Ma. Despite its uniqueness, the petrogenesis of this rhyolite is poorly known. At nearby Coso volcanic field, an abundance of rhyolite relative to basalt suggests crustal melting by mafic magmas stalled in mid to upper crustal reservoirs, whereas the paucity of rhyolite relative to basalt at BPVF suggests only brief crustal residence of ascending mafic magmas (Mordick and Glazner, 2006). In order to determine the origin of rhyolite magmatism at BPVF (e.g., crustal melting versus extreme fractionation), we have examined the geochemical and petrographic characteristics of the Fish Springs high-silica rhyolite. The Fish Springs rhyolite comprises a single thick coulee with a volume of at least 0.05 km3 (DRE) of highly evolved (~76 wt.% SiO2) magma. The outer portions of the coulee are composed of autobrecciated and felsitic rhyolite, and internal portions, as exposed by quarrying, are pumiceous perlite with local obsidian. Fish Springs rhyolite is crystal poor (~1%), with small (<0.5 mm) phenocrysts of generally euhedral to subhedral plagioclase, sanidine, quartz, orthopyroxene, clinopyroxene, biotite, hornblende, Fe-Ti oxides, apatite, pyrrhotite, and zircon, as well as apparent xenoliths and xenocrysts of metamorphic and igneous wallrocks. Orthopyroxene phenocrysts show compositional zoning, with rims that contain higher Mg and lower Fe concentrations than cores. Trace element concentrations in Fish Springs rhyolite are characterized by very low concentrations of typically compatible elements such as Ba (~15 ppm), Sr (~8 ppm), La (~10 ppm) and Zr (~80 pm), as well as a pronounced europium anomaly, comparable to other high-silica rhyolites elsewhere in the Owens Valley, and suggesting high degrees of feldspar and accessory mineral fractionation. Samples

  9. Trace Element Geochemistry of Basaltic Tephra in Maar Cores; Implications for Centre Correlation, Field Evolution, and Mantle Source Characteristics of the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopkins, J. L.; Leonard, G.; Timm, C.; Wilson, C. J. N.; Neil, H.; Millet, M. A.

    2014-12-01

    Establishing volcanic hazard and risk management strategies hinges on a detailed understanding of the type, timing and tephra dispersal of past eruptions. In order to unravel the pyroclastic eruption history of a volcanic field, genetic links between the deposits and eruption source centre need to be established. The Auckland Volcanic Field (AVF; New Zealand) has been active for ca. 200 kyr and comprises ca. 53 individual centres covering an area of ca. 360km2. These centres show a range of sizes and eruptive styles from maar craters and tuff rings, to scoria cones and lava flows consistent with both phreatomagmatic and magmatic eruptions. Superimposition of the metropolitan area of Auckland (ca. 1.4 million inhabitants) on the volcanic field makes it critically important to assess the characteristics of the volcanic activity, on which to base assessment and management of the consequent hazards. Here we present a geochemical approach for correlating tephra deposits to their source centres. To acquire the most complete stratigraphic record of pyroclastic events, maar crater cores from different locations, covering various depths and thus ages across the field were selected. Magnetic susceptibility and x-ray density scanning of the cores was used to identify the basaltic tephra horizons, which were sampled and in-situ analysis of individual shards undertaken for major and trace elements using EPMA and LA-ICP-MS techniques, respectively. Our results show that tephra shard trace element ratios are comparable and complementary to the AVF whole rock database. The use of specific trace element ratios (e.g. Gd/Yb vs. Zr/Yb) allows us to fingerprint and cross correlate tephra horizons between cores and, when coupled with newly acquired 40Ar-39Ar age dating and eruption size estimates, correlate horizons to their source centres. This integrated style of study can provide valuable information to help volcanic hazard management and forecasting, and mitigation of related risks.

  10. Petrology and geochemistry of high cascade volcanics in southern Washington: Mount St. Helens volcano and the Indian Heaven basalt field

    SciTech Connect

    Smith, D.R.

    1984-01-01

    Mount St. Helens volcano (Washington, USA) has been characterized by four eruptive periods during the last 2200 years. Eruptive products include a wide spectrum of rock types including basaltic to andesitic lavas, andesitic to dacitic pyroclastic flows and tephra, and dacite domes. The major and trace element compositions of some andesites and dacites are broadly consistent with their derivation from a basaltic andesite parental magma by fractional cyrstallization processes involving the observed phenocryst assemblages. However, the strontium and oxygen isotopic compositions of representative samples of the Mount St. Helens suite indicate that closed system processes cannot explain the isotopic variations. The isotopic rations are positively correlated with one another and the bulk composition (SiO/sub 2/, Mg number, etc.). The vents of the nearby Indian Heaven Quaternary volcanic field erupted several basalt types which can be defined on the basis of major and trace element composition - calcalkaline (low and high TiO/sub 2/ varieties), transitional, and tholeiitic. Several of these basalt types occur at Mount St. Helens as well, but Indian Heaven lavas are generally more primitive as indicated by higher Mg/(Mg + Fe) ratios. The distribution of volcanic rock types in relation to local structures in the Cascade Range of southern Washington and northern Oregon suggests that crustal structure may influence the degree of evolution of specific volcanic fields. Cascade arc suggests that volcanic arc magma evolution does not necessarily produce a continuous sequence from tholeiitic to calcalkaline rocks in time or space.

  11. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  12. Rhyolite thermobarometry and the shallowing of the magma reservoir, Coso volcanic field, California

    USGS Publications Warehouse

    Manley, C.R.; Bacon, C.R.

    2000-01-01

    The compositionally bimodal Pleistocene Coso volcanic field is located at the western margin of the Basin and Range province ~ 60 km north of the Garlock fault. Thirty-nine nearly aphyric high-silica rhyolite domes were emplaced in the past million years: one at 1 Ma from a transient magma reservoir, one at ~ 0.6 Ma, and the rest since ~ 0.3 Ma. Over the past 0.6 My, the depth from which the rhyolites erupted has decreased and their temperatures have become slightly higher. Pre-eruptive conditions of the rhyolite magmas, calculated from phenocryst compositions using the two-oxide thermometer and the Al-in-hornblende barometer, ranged from 740??C and 270 MPa (2.7 kbar; ~ 10 km depth) for the ~ 0.6 Ma magma, to 770??C and 140 MPa (1.4 kbar; ~ 5.5 km) for the youngest (~ 0.04 Ma) magma. Results are consistent with either a single rhyolitic reservoir moving upward through the crust, or a series of successively shallower reservoirs. As the reservoir has become closer to the surface, eruptions have become both more frequent and more voluminous.

  13. Impact of reduced near-field entrainment of overpressured volcanic jets on plume development

    NASA Astrophysics Data System (ADS)

    Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.

    2012-05-01

    Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.

  14. Marine tephrochronology of the Mt. Edgecumbe volcanic field, southeast Alaska, USA

    USGS Publications Warehouse

    Addison, Jason A.; Beget, James E.; Ager, Thomas A.; Finney, Bruce P.

    2010-01-01

    The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, experienced a large multiple-stage eruption during the last glacial maximum (LGM)-Holocene transition that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major oxide compositions of glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine cryptotephras were also identified. Three of these units appear to be derived from mid-Holocene MEVF activity, while the youngest cryptotephra corresponds well with the White River Ash eruption at not, vert, similar 1147 cal yr BP. Furthermore, the sedimentology of the Sitka Sound marine core EW0408-40JC and high-resolution SWATH bathymetry both suggest that extensive pyroclastic flow deposits associated with the activity that generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may pose significant risk to local population centers.

  15. Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone plateau volcanic field.

    USGS Publications Warehouse

    Hildreth, W.; Christiansen, R.L.; O'Neil, J.R.

    1984-01-01

    This Wyoming volcanic field has undergone repeated eruption of rhyolitic magma strongly depleted in 18O. Large calderas subsided 2.0, 1.3 and 0.6 m.y. ago on eruption of ash-flow sheets. More than 60 other rhyolite lavas and tuffs permit reconstruction of the long-term chemical and isotopic evolution of the silicic system. Narrow delta 18O ranges in the ash-flow sheets contrast with wide delta 18O variation in post-caldera lavas. The earliest post-collapse lavas are 3-6per mille lighter than the preceding ash-flow sheets. The 18O depletions were short-lived events that immediately followed caldera subsidence and sequences of post-caldera lavas record partial recovery toward pre-caldera delta 18O values. Contemporaneous extra-caldera rhyolites show no effects of the repeated depletions. Although some contamination by foundering roof rocks seems to be required, water was probably the predominant contaminant.-W.H.B.

  16. Discriminating lava flows of different age within Nyamuragira's volcanic field using spectral mixture analysis

    NASA Astrophysics Data System (ADS)

    Li, Long; Canters, Frank; Solana, Carmen; Ma, Weiwei; Chen, Longqian; Kervyn, Matthieu

    2015-08-01

    In this study, linear spectral mixture analysis (LSMA) is used to characterize the spectral heterogeneity of lava flows from Nyamuragira volcano, Democratic Republic of Congo, where vegetation and lava are the two main land covers. In order to estimate fractions of vegetation and lava through satellite remote sensing, we made use of 30 m resolution Landsat Enhanced Thematic Mapper Plus (ETM+) and Advanced Land Imager (ALI) imagery. 2 m Pleiades data was used for validation. From the results, we conclude that (1) LSMA is capable of characterizing volcanic fields and discriminating between different types of lava surfaces; (2) three lava endmembers can be identified as lava of old, intermediate and young age, corresponding to different stages in lichen growth and chemical weathering; (3) a strong relationship is observed between vegetation fraction and lava age, where vegetation at Nyamuragira starts to significantly colonize lava flows ∼15 years after eruption and occupies over 50% of the lava surfaces ∼40 years after eruption. Our study demonstrates the capability of spectral unmixing to characterize lava surfaces and vegetation colonization over time, which is particularly useful for poorly known volcanoes or those not accessible for physical or political reasons.

  17. Impact of reduced near-field entrainment of overpressured volcanic jets on plume development

    USGS Publications Warehouse

    Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.

    2012-01-01

    Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.

  18. Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona

    SciTech Connect

    Kempton, P.D.; Hawkesworth, C.J. ); Harmon, R.S. ); Moorbath, S. )

    1990-12-01

    Mafic to intermediate composition granulite xenoliths occur in Pliocene to Recent alkali basalts from the Geronimo Volcanic Field (GVF), southeastern Arizona, USA. The range of compositions and mineral assemblages observed suggests that the ultimate derivation of these rocks is from a variety of protoliths and that more than one mechanism has operated during the geologic evolution of the lower crust in this area. Two-pyroxene, two-feldspar granulites (meta-diorites) have major and trace element characteristics similar to estimates of post-Archaen lower crust. Low {sup 143}Nd/{sup 144}Nd values and Proterozoic Nd-depleted-mantle model ages (1.2-1.4 Ga) for these rocks require that Precambrian material exists in the lower crust of southeastern Arizona, either as the meta-diorites themselves or as older crust available for melting during production of the meta-diorite protoliths. K-feldspar-free granulites have more mafic compositions and their trace element characteristics are consistent with a cumulate origin. A negative correlation of {sup 208}Pb/{sup 204}Pb vs. {sup 206}Pb/{sup 204}Pb suggests that the meta-cumulate granulites represent mixing between Basin and Range age lavas with older meta-diorite crust and is, thus, evidence for Cenozoic underplating of the lower crust beneath the Basin and Range.

  19. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (<1 m in diameter) that were blown down by dilute PDCs up to 0.7-0.9 km from the vent. Beyond this trees were encapsulated and buried in growth position up to the total runout distance of 1.6-1.8 km. This observation suggests that the dynamic pressure of the current quickly dropped as it travelled away from source. Using the tree diameter and yield strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and <10 kPa beyond 0.9 km, and (b) the total run-out distance must be between 1.6 and 1.8 km. Model results suggest the two main forces controlling the runout distance and Pdyn over the extent of the current are

  20. Magnetotelluric Studies of the Laguna del Maule Volcanic Field, Central Chile

    NASA Astrophysics Data System (ADS)

    Cordell, D. R.; Unsworth, M. J.; Diaz, D.; Pavez, M.; Blanco, B.

    2015-12-01

    Geodetic data has shown that the surface of the Laguna del Maule (LdM) volcanic field in central Chile has been moving upwards at rates >20 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body at ~5 km depth beneath the lake (2.8 km b.s.l.). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and included data from a geothermal exploration project. MT phase tensor analysis indicates that the resistivity structure of the region is largely three-dimensional for signals with periods longer than 1 s, which corresponds to depths >5 km. The MT data were inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model which included topography. Four primary features were identified in the model: 1) A north-south striking, 10 km by 5 km, low-resistivity zone (<5 Ωm) northwest of the inflation centre at a depth of ~5 km (2.8 km b.s.l.) is interpreted as a zone of partial melt which may be supplying material via conduits to account for the observed ground deformation; 2) A shallow low-resistivity feature ~400 m beneath the lake surface (1.8 km a.s.l.) and spatially coincident with the inflation centre is interpreted to be a zone of hydrothermal alteration; 3) A thin, low-resistivity feature to the west of LdM at a depth of ~250 m (2.2 km a.s.l.) is interpreted to be the clay cap of a potential geothermal prospect; 4) A large, low-resistivity zone beneath the San Pedro-Tatara Volcanic Complex to the west of LdM at a depth of ~10 km (8 km b.s.l.) is interpreted to be a zone of partial melt. Further MT data collection is planned for 2016 which will expand the current grid of MT stations to better constrain the lateral extent of the observed features and give greater insight into the dynamics of this restless magma system.

  1. Continued Rapid Uplift at Laguna del Maule Volcanic Field (Chile) from 2007 through 2014

    NASA Astrophysics Data System (ADS)

    Le Mével, H.; Feigl, K. L.; Cordova, L.; DeMets, C.; Lundgren, P.

    2014-12-01

    The current rate of uplift at Laguna del Maule (LdM) volcanic field in Chile is among the highest ever observed geodetically for a volcano that is not actively erupting. Using data from interferometric synthetic aperture radar (InSAR) and the Global Positioning System (GPS) recorded at five continuously operating stations, we measure the deformation field with dense sampling in time (1/day) and space (1/hectare). These data track the temporal evolution of the current unrest episode from its inception (sometime between 2004 and 2007) to vertical velocities faster than 200 mm/yr that continue through (at least) July 2014. Building on our previous work, we evaluate the temporal evolution by analyzing data from InSAR (ALOS, TerraSAR-X, TanDEM-X) and GPS [http://dx.doi.org/ 10.1093/gji/ggt438]. In addition, we consider InSAR data from (ERS, ENVISAT, COSMO-Skymed, and UAVSAR), as well as constraints from magneto-telluric (MT), seismic, and gravity surveys. The goal is to test the hypothesis that a recent magma intrusion is feeding a large, existing magma reservoir. What will happen next? To address this question, we analyze the temporal evolution of deformation at other large silicic systems such as Yellowstone, Long Valley, and Three Sisters, during well-studied episodes of unrest. We consider several parameterizations, including piecewise linear, parabolic, and Gaussian functions of time. By choosing the best-fitting model, we expect to constrain the time scales of such episodes and elucidate the processes driving them.

  2. Stress Field and Dike Propagation within a Partially Submerged Volcanic Edifice

    NASA Astrophysics Data System (ADS)

    Tait, S.; Taisne, B.; Manga, M.; Pasquet, E.; Limare, A.; Bhat, H.

    2013-12-01

    In order to better understand dike propagation within and flank collapse on volcanic islands, we performed a set of analogue laboratory experiments. We created conic edifices of gelatin and measured their deformation under their own weight whilst we varied the level to which they were partially submerged. In most experiments the lower part of the edifice was submerged in water while the upper part was surrounded by air, but in some cases oil was used as the fluid surrounding the upper part of the edifice in order to change density differences. The gelatin was typically made of a sugar (or glycerol) solution so that it was approximately 10-30% denser than water, and its strength was varied by using different gelatin concentrations. The strain field was visualized from the birefringence pattern created by placing the gelatin between sheets of polarising film with the directions crossed. One first order feature of the strain field is an approximately elliptical shaped extensional region, centered below the summit and at approximately sea-level. The second feature is a region of strong sub-horizontal shear in the lower most part of the edifice, close to the lower, rigid no-slip boundary. We also observed the behaviour of dikes injected into the base of the edifice from below: these dikes were filled with water or salt solution so that they had variable amounts of positive buoyancy with respect to the edifice. If all, or a very large fraction, of the edifice was submerged, the dike typically propagated vertically and erupted at the summit. If the edifice was only partially submerged, however, the dikes typically switched from dominantly vertical to horizontal propagation and erupted on the flanks of the edifice, very often at sea level.

  3. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    SciTech Connect

    Grauch, V.J.S.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

    2000-06-08

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The authors have loosely divided the region into six domains based on structural style and overall geophysical character. For each domain, they review the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work. Where possible, they note abrupt changes in geophysical fields as evidence for potential structural or lithologic control on ground-water flow. They use inferred lithology to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses for regional ground-water pathways where no drill-hole information exists. The authors discuss subsurface features in the northwestern part of the Nevada Test Site and west of the Nevada Test Site in more detail to address potential controls on regional ground-water flow away from areas of underground nuclear-weapons testing at Pahute Mesa. Subsurface features of hydrogeologic importance in these areas are (1) the resurgent intrusion below Timber Mountain, (2) a NNE-trending fault system coinciding with western margins of the Silent Canyon and Timber Mountain caldera complexes, (3) a north-striking, buried fault east of Oasis Mountain extending for 15 km, which they call the Hogback fault, and (4) an east-striking transverse fault or accommodation zone that, in part, bounds Oasis Valley basin on the south, which they call the Hot Springs fault. In addition, there is no geophysical nor geologic evidence for a substantial change in subsurface physical properties within a corridor extending from the northwestern corner of the Rainier Mesa caldera to Oasis Valley basin (east of Oasis Valley discharge area). This observation supports the hypothesis of other investigators that regional ground water

  4. Volcanic sanidinites: an example for the mobilization of high field strength elements (HFSE) in magmatic systems

    NASA Astrophysics Data System (ADS)

    Aßbichler, Donjá; Heuss-Aßbichler, Soraya; Müller, Dirk; Kunzmann, Thomas

    2016-04-01

    In earth science the mobility of high field strength elements (HFSE) is generally discussed in context of hydrothermal processes. Recent investigations mainly address processes in (late) magmatic-, metamorphic- and submarine hydrothermal systems. They have all in common that H2O is main solvent. The transport of HFSE is suggested to be favored by volatiles, like boron, fluorine, phosphate and sulfate (Jiang et al., 2005). In this study processes in magmatic system are investigated. Sanidinites are rare rocks of igneous origin and are found as volcanic ejecta of explosive volcanoes. They consist mainly of sanidine and minerals of the sodalite group. The very porous fabric of these rocks is an indication of their aggregation from a gaseous magmatic phase. The large sanidine crystals (up to several centimeters) are mostly interlocking, creating large cavities between some crystals. In these pores Zr crystallizes as oxide (baddeleyite, ZrO2) or silicate (zircon, ZrSiO4). The euhedral shape of these minerals is a further indication of their formation out of the gas phase. Furthermore, bubbles in glass observed in some samples are evidence for gas-rich reaction conditions during the formation of the sanidinites. The formation of sanidinites is suggested to be an example for solvothermal processes in natural systems. Solvothermal processes imply the solvation, transport and recrystallization of elements in a gas phase. Results obtained from whole rock analysis from sanidinites from Laacher See (Germany) show a positive correlation between LOI, sulfate, Cl, and Na with the HFSE like Zr. Na-rich conditions seem to ameliorate the solvothermal transport of Zr. All these features point to the formation of sanidinites in the upper part of a magma chamber, where fluid consisting of SO3 and Cl compounds in addition to H2O, CO2 and HFSE (high field strength elements) like Zr accumulate.

  5. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus

    PubMed Central

    Higuchi, Akira; Toriniwa, Hiroko; Komiya, Tomoyoshi; Nakayama, Tetsuo

    2016-01-01

    An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development. PMID:26930411

  6. Re-examining the Petrogenesis of the Tschicoma Dacite, Jemez Volcanic Field, NM: Geochemical and Geochronologic Evidence for Distinct Pulses of Volcanism

    NASA Astrophysics Data System (ADS)

    Justet, L.; Spell, T. L.; Thirlwall, M.

    2002-12-01

    Coupled sets of Sr and Nd isotopic, major and trace element, and 40Ar/39Ar age data were obtained for 22 of 24 of the mapped Tschicoma Formation dacite domes in the Jemez Volcanic Field (JVF), New Mexico. These data indicate that Tschicoma Formation dacite was erupted in two distinct pulses that underwent different petrologic evolutions. The first pulse was erupted ~7.4-7.2 Ma in the northwest portion of the JVF as a series of andesite and trachyandesite domes. Magmas erupted from these vents may be chemically related to one another by simple fractional crystallization models. Isotopic compositions vary from 87Sr/86Sr = 0.70493 to 0.70506 and ɛNd = -2.2 to -3.6 and suggest that minor lower crustal contamination occurred. The second eruptive interval occurred ~4-3 Ma. Activity was centered in the northeast portion of the JVF and was exclusively dacitic in composition. These magmas evolved by fractional crystallization and mixing with basaltic magmas. Modeling implies that fractionation of a small amount of observed phenocrysts was accompanied by significant amounts of basaltic contamination. The isotopic data range from 87Sr/86Sr = 0.70450 to 0.70433 and ɛNd = -3.3 to -2.0 and also demand addition of less evolved mafic magma. The data further suggest that a Lobato basalt sample collected in the vicinity of the dacite vents represents the mafic contaminant. This Lobato basalt was erupted coincident with the dacite eruptions and isotpically lies on-trend with the dacite mixing line. Previous K/Ar dates and geochemistry suggest a continuum of dacitic eruptions from 3.2 to 6.9 Ma, and did not resolve the two pulses of volcanism. Thus, mapped Tschicoma dacite actually represents two chronologically and chemically distinct magmatic events, separated by ~3 Ma. Previous work on the JVF suggests that the JVF's early evolution was dominated by an andesite shield while it's later evolution was characterized by an initial period of dacitic volcanism accompanied by minor

  7. A geologic and anthropogenic journey from the Precambrian to the new energy economy through the San Juan volcanic field

    USGS Publications Warehouse

    Yager, Douglas B.; Burchell, Alison; Johnson, Raymond H.

    2010-01-01

    The San Juan volcanic field comprises 25,000 km2 of intermediate composition mid-Tertiary volcanic rocks and dacitic to rhyolitic calderas including the San Juan–Uncompahgre and La Garita caldera-forming super-volcanoes. The region is famous for the geological, ecological, hydrological, archeological, and climatological diversity. These characteristics supported ancestral Puebloan populations. The area is also important for its mineral wealth that once fueled local economic vitality. Today, mitigating and/or investigating the impacts of mining and establishing the region as a climate base station are the focuses of ongoing research. Studies include advanced water treatment, the acid neutralizing capacity (ANC) of propylitic bedrock for use in mine-lands cleanup, and the use of soil amendments including biochar from beetle-kill pines. Biochar aids soil productivity and revegetation by incorporation into soils to improve moisture retention, reduce erosion, and support the natural terrestrial carbon sequestration (NTS) potential of volcanic soils to help offset atmospheric CO2 emissions. This field trip will examine the volcano-tectonic and cultural history of the San Juan volcanic field as well as its geologic structures, economic mineral deposits and impacts, recent mitigation measures, and associated climate research. Field trip stops will include a visit to (1) the Summitville Superfund site to explore quartz alunite-Au mineralization, and associated alteration and new water-quality mitigation strategies; (2) the historic Creede epithermal-polymetallic–vein district with remarkably preserved resurgent calderas, keystone-graben, and moat sediments; (3) the historic mining town of Silverton located in the nested San Juan–Silverton caldera complex that exhibits base-metal Au-Ag mineralization; and (4) the site of ANC and NTS studies. En route back to Denver, we will traverse Grand Mesa, a high NTS area with Neogene basalt-derived soils and will enjoy a soak

  8. Initial results from the Volcanic Risk in Saudi Arabia project: Microearthquakes in the northern Harrat Rahat monogenetic volcanic field, Madinah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Alvarez, M. G.; Abdelwahed, M. F.; Aboud, E.; Lindsay, J. M.; Mokhtar, T. A.; Moufti, M. R.

    2012-12-01

    An 8-station borehole seismic research array is recording microearthquake data in northern Harrat Rahat. This recently active monogenetic volcanic field lies southeast of the Islamic holy city of Madinah, Kingdom of Saudi Arabia. The VORiSA seismographs are operated in collaboration between King Abdulaziz University in Jeddah and the Institute of Earth Science and Engineering, University of Auckland, in New Zealand. The goal of the VORiSA project is to evaluate the seismic and volcanic hazard around Madinah. To this end, we will evaluate the local earthquake activity including the extent to which local earthquakes are tectonic or volcanic. We also will use seismicity to understand the subsurface structure. The analytical goals of the seismic research array are the following: (1) Calculate a new seismic velocity model, (2) Map subsurface structures using seismic tomography, and (3) Explore for fracture zones using shear wave splitting analysis. As compared to seismographs installed on the surface, borehole seismometers detect smaller and more numerous microearthquake signals. The sensitivity and location of the borehole sensors in the VORiSA array are designed to detect these weak signals. The array has a total aperture of 17 km with station spacing at 5 - 10 km. The seismometers are housed in IESE model S21g-2.0, two Hz, 3-component borehole sondes. Sensor depths range from 107 - 121 m. The data acquisition system at each stand-alone station consists of a Reftek 130-01, 6-channel, 24 bit data logger which records at 250 samples per second. The power source is a deep cycle battery with solar recharge. Local temperatures reach extremes of 0° to 50°C, so the battery and recorder are contained in a specially designed underground vault. The vault also provides security in the remote and sparsely populated volcanic field. Recording began on 31 March 2012. An average of one earthquake every three days suggests that currently this is not a highly seismic area. However

  9. Subsurface fluid distribution and possible seismic precursory signal at the Salse di Nirano mud volcanic field, Italy

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Ricci, Barbara Suski; Kenkel, Johannes; Ricci, Tullio; Fuchs, Florian; Miller, Stephen A.; Kemna, Andreas

    2016-02-01

    Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes. We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelectrical study. Next, we deployed a broad-band seismic station in the area to understand the typical seismic signal generated by the mud volcano. Seismic records show a background noise below 2 s, sometimes interrupted by pulses of drumbeat-like high-frequency signals lasting from several minutes to hours. To date this is the first observation of drumbeat signal observed in mud volcanoes. In 2013 June we recorded a M4.7 earthquake, that occurred approximately 60 km far from our seismic station. According to empirical estimations the Nirano mud volcanic field should not have been affected by the M4.7 earthquake. Yet, before the seismic event we recorded an increasing amplitude of the signal in the 10-20 Hz frequency band. The signal emerged approximately two hours before the earthquake and lasted for about three hours. Our statistical analysis suggests the presence of a possible precursory signal about 10 min before the earthquake.

  10. Geologic Map of Part of the Uinkaret Volcanic Field, Mohave County, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Hamblin, W. Kenneth; Wellmeyer, Jessica L.; Dudash, Stephanie L.

    2001-01-01

    The geologic map of part of the Uinkaret Volcanic Field is one product of a cooperative project between the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management to provide geologic information about this part of the Grand Canyon-Parashant Canyon National Monument of Arizona. The Uinkaret Volcanic Field is a unique part of western Grand Canyon where volcanic rocks have preserved the geomorphic development of the landscape. Most of the Grand Canyon, and parts of adjacent plateaus have already been mapped. This map completes one of the remaining areas where uniform quality geologic mapping was needed. A few dozen volcanoes and lava flows within the Grand Canyon are not included in the map area, but their geologic significance to Grand Canyon development is documented by Hamblin (1994) and mapped by Billingsley and Huntoon (1983) and Wenrich and others (1997). The geologic information in this report may be useful to resource managers of the Bureau of Land Management for range management, biological, archaeological, and flood control programs. The map area lies within the Shivwits, Uinkaret, and Kanab Plateaus, which are subplateaus of the Colorado Plateaus physiographic province (Billingsley and others, 1997), and is part of the Arizona Strip north of the Colorado River. The nearest settlement is Colorado City, Arizona, about 58 km (36 mi) north of the map area (fig. 1). Elevations range from about 2,447 m (8,029 ft) at Mount Trumbull, in the northwest quarter of the map area, to about 732 m (2,400 ft) in Cove Canyon, in the southeast quarter of the map area. Vehicle access is via the Toroweap and Mount Trumbull dirt roads (fig. 1). Unimproved dirt roads traverse other parts of the area except in designated wilderness. Extra fuel, two spare tires, and extra food and water are highly recommended for travelers in this remote area. The U.S. Bureau of Land Management, Arizona Strip Field Office, St. George, Utah manages most of the area. In

  11. The evolution of the Eagle Peak volcano — a distinctive phase of middle miocene volcanism in the western Mogollon-Datil volcanic field, New Mexico

    NASA Astrophysics Data System (ADS)

    Bove, Dana J.; Ratté, James C.; McIntosh, William C.; Snee, Lawrence W.; Futa, Kiyoto

    1995-12-01

    The andesitic to dacitic Eagle Peak volcano represents a distinctive phase of Middle Miocene, post-caldera volcanism in the western part of the Mogollon-Datil volcanic field in southwestern New Mexico. Erupted during Basin and Range extensional tectonism, rocks of the Eagle Peak volcano are chemically and isotopically distinct from the bimodal suite, extension-related basalt and rhyolite that also erupted in this area from the Early Miocene to the Pleistocene. Instead, they have close petrogenetic affinities to the early post-caldera ( 27-23 Ma) calc-alkaline, Bearwallow Mountain Andesite erupted from shield volcanos aligned along prominent Basin and Range fault structures. Geologic mapping and detailed petrographic and chemical studies of the Eagle Peak volcano has enabled the distinction of five different flow units, a central plug and a feeder dike. The flows were erupted from a central vent and two subsidiary "satellitic" centers on the western and southwestern flanks of the volcano. {40Ar }/{39Ar } age-spectrum and paleomagnetic studies indicate that the Eagle Peak volcano was active between 12.1 and 11.4 Ma; its activity spanned at least one magnetic polarity reversal. With exception of late satellitic eruptions on the northwestern margin of the volcano, central vent and satellitic flows were erupted in rapid succession and have an average age of 11.7 Ma. The central plug yielded a plateau age of 11.4 Ma, which is a minimum of 90,000 years (2σ) younger than the 11.7 Ma average age of the central vent and satellitic flows. Major-oxide, trace-element and isotope geochemistry define two distinct magmatic series: a central vent and a satellitic series. Rocks of the satellitic series, although similar in modal mineralogy and rare earth element patterns, are slightly more alkaline and relatively enriched in the high field strength elements Nb, Ta, P and Ti compared to the central vent eruptives. Sr and Nd isotopes further demonstrate these differences; a sample of

  12. Rock-magnetic signatures of aeolian activity, precipitation and extreme runoff events from the sediments of Laguna Potrok Aike (southern Patagonia) since 51,200 cal BP

    NASA Astrophysics Data System (ADS)

    St-Onge, G.; Lisé-Pronovost, A.; Gogorza, C. S. G.; Haberzettl, T.; Jouve, G.; Francus, P.; Ohlendorf, C.; Gebhardt, C.; Zolitschka, B.

    2014-12-01

    The sedimentary archive from Laguna Potrok Aike is the only continuous record reaching back to the last Glacial period in continental southeastern Patagonia. Here we use high-resolution u-channel, as well as discrete rock-magnetic and physical grain size data from the 106 m long core (~51,200 cal BP) of site 2 of the ICDP Potrok Aike maar lake Sediment Archive Drilling project (PASADO) in order to develop magnetic proxies of dust and wind intensity, as well as precipitation and extreme runoff events. Rock-magnetic analyses indicate the magnetic mineral assemblage is dominated by detrital magnetite and that low field magnetic susceptibility (kLF) can be interpreted as a dust indicator in the dust source of southern Patagonia at the millennial time scale. On shorter time scales however, kLF variability is correlated to ferrimagnetic grain size and coercivity. Comparison to physical grain-size data indicates that the median destructive field of the isothermal remanent magnetisation (MDFIRM) mostly reflects medium to coarse magnetite bearing silts typically transported by winds for short-term suspension and that MDFIRM can be interpreted as a wind-intensity proxy, with stronger winds capable of transporting coarser silts to the lake. In addition, about half of the sedimentary sequence is composed of mass movement deposits (MMDs). Within these MMDs, two distinct sedimentary facies can easily be identified. The first rock-magnetic signature is detected in MMDs composed of reworked sand and tephra material. The signature consists of a gyroremanent magnetisation (GRM) acquired during demagnetisation of the natural remanent magnetisation (NRM) and other rock-magnetic properties typical of iron sulfides such as greigite. We interpret these intervals as authigenic formation of iron sulfides in suboxic conditions within the MMD. The second rock-magnetic signature consists of 10 short intervals located on the top of MMDs characterized by GRM acquisition during demagnetisation

  13. Conditions of basaltic magma generation at Mount Baker Volcanic Field, North Cascades

    NASA Astrophysics Data System (ADS)

    McCallum, I. S.; Mullen, E. K.

    2011-12-01

    Significant unresolved questions remain on the processes of mantle melting throughout the wide range of thermal conditions encompassed by subduction zones. For example, subducting slabs in "hot" arc settings are thought to dehydrate at relatively shallow depths, yet volcanoes develop in locations indistinguishable from those in "cold" arcs. The northern Cascade arc is considered a classic end-member example of a "hot" subduction zone because the subducting crust is extremely young, 6-10 Ma at the trench [1], with a thick layer of insulating sediment and a relatively low convergence rate [2]. The most magmatically productive volcanic center of the northern Cascades is the Mt. Baker volcanic field (MBVF) [3], and here we glean information from the most primitive MBVF lavas to develop a petrogenetic model for basalt generation in a "hot" arc setting. Whole-rock geochemical data and the compositions of coexisting minerals are used to establish the initial water contents and redox states of the magmas, and the temperatures and pressures of segregation from the mantle. Melt silica activities indicate the MBVF magmas segregated from their residual mantle source assemblages at depths ranging from 60 to 40 km, corresponding to a few km shallower than the hot core of the mantle wedge [4] to the base of the crust. Plagioclase core compositions indicate that the initial water contents of the magmas ranged from 1.7 to 2.3 wt. % H2O, and show a good inverse correlation with segregation depths. Fe-Ti oxide pairs and spinel inclusions in olivine phenocrysts indicate redox states slightly more oxidizing than the quartz-fayalite-magnetite buffer. Segregation depths are also strongly correlated with temperatures calculated from olivine-liquid equilibria, which range from 1286°C to 1350°C. Coupled with the most recent thermal model for the subducting slab in northern Cascadia [4], we use petrologic phase equilibria for the P-T stability of mineral assemblages in the mantle and

  14. 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA

    USGS Publications Warehouse

    Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.

    2014-01-01

    The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.

  15. Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo County, California.

    USGS Publications Warehouse

    Bacon, C.R.; Macdonald, R.; Smith, R.L.; Baedecker, P.A.

    1981-01-01

    The high-silica rhyolite domes and lava flows of the bimodal Pleistocene part of the Coso volcanic field provide an example of the early stages of evolution of a silicic magmatic system of substantial size and longevity. Major and trace element compositions are consistent with derivation from somewhat less silicic parental material by liquid state differentiation processes in compositionally and thermally zoned magmatic systems. Seven chemically homogeneous eruptive groups can be distinguished on the basis of trace element and K/Ar data. The oldest two groups are volumetrically minor and geochemically distinct from the younger groups, all five of which appear to have evolved from the same magmatic system. Erupted volume-time relations suggest that small amounts of magma were bled from the top of a silicic reservoir at a nearly constant long-term rate over the last 0.24Ma. The interval of repose between eruptions appears to be proportional to the volume of the preceding eruptive group. This relationship suggests that eruptions take place when some parameter which increases at a constant rate reaches a critical value; this parameter may be extensional strain accumulated in roof rocks. Extension of the lithosphere favors intrusion of basalt into the crust, attendant partial melting, and maintenance of a long-lived silicic magmatic system. The Coso silicic system may contain a few hundred cubic kilometers of magma. The Coso magmatic system may eventually have the potential for producing voluminous pyroclastic eruptions if the safety valve provided by rapid crustal extension becomes inadequate to 1) defuse the system through episodic removal of volatile-rich magma from its top and 2) prohibit migration of the reservoir to a shallow crustal level.-from Authors

  16. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic Field, California

    USGS Publications Warehouse

    Miller, J.S.; Wooden, J.L.

    2004-01-01

    Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.

  17. Petrochemistry of late miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia

    USGS Publications Warehouse

    Morgan, VI G.B.; London, D.; Luedke, R.G.

    1998-01-01

    Late Miocene peraluminous volcanic rocks of the Morococala field, Bolivia, define a layered stratigraphy of basal andalusite-, biotite-(?? Muscovite)-bearing rhyolite tuffs (AR), overlain by cordierite-, biotite-bearing rhyolite tuffs (CR), and capped by biotite-beanng quartz latite tuffs, lavas, and late domal flows (QL). Mineral and whole-rock compositions become more evolved from top to bottom, with differentiation reflected by decreasing Ca, Ba, Mg, Fe, and rare earth elements (REE) versus increasing F, Na/K, and aluminosity from QL to AR. Mineral, whole-rock, and glass inclusion compositions are consistent with derivation of all three rock types from a single stratified magma reservoir, but age and spatial relations between the three units make this unlikely. Genesis of the QL involved biotite-dehydration melting of an aluminous source at T > 750??C and P ??? 4-6 kbar. If not co-magmatic with QL, the other units were generated primarily by muscovite-dehydration melting at T = 730-750??C and P ??? 3??5-4??5 kbar for CR, and T ??? 750??C for AR with pre-emptive residence at low pressure (1??5-3??0 kbar). Low hematite contents (XHem ??? 0??06) of ilmenite grains in AR, CR, and early grains (as inclusions in plagioclase and sanidine cores) in QL indicate reduced conditions imposed by a graphite-bearing source. Compositional variability among texturally later oxides (ilmenite with XHem = 0??06-0??50, primary magnetite), however, apparently records progressive increases in pre-eruptive f(O2) in QL. Plagioclase-melt equilibria and electron microprobe analysis difference for quartz-hosted glass inclusions suggest pre-emptive melt H2O contents ??? 5-7 wt % for the AR, ???4-6 wt % for the CR, and ???3-5 wt % for the QL.

  18. The origin of bajaites from the San Borja Volcanic Field in Baja California Norte, Mexico

    NASA Astrophysics Data System (ADS)

    Bibbins, M.; Castillo, P.; Negrete-Aranda, R.; Canon-Tapia, E.; Alva-Valdivia, L. M.; Garcia-Amador, B. I.

    2014-12-01

    Baja California is a peninsula in western Mexico that was formed through a dynamic tectonic history of convergence, rifting and strike slip motion. At approximately 13 Ma, subduction along the northwestern coast of Mexico stopped, subsequently the Gulf of California opened and strike slip faults formed parallel to the ancient trench. After subduction ended, arc-related magmatism continued as the Baja peninsula was forming until about 2 Ma. The lavas erupting in the peninsula have variable compositions including calc-alkalic and tholeiitic arc basalts and bajaites. The term bajaite is a collective term for the high magnesian andesites and basaltic andesites in Baja California that have adakitic characteristics. Adakites, on the other hand, are arc lavas characterized by high silica content and Sr/Y and La/Yb ratios; these are generally believed to have formed through melting of subducted basaltic crust. The origin of bajaite is controversial. It has been proposed as product of melting of either subducted basaltic crust primarily because of its adakitic characteristics (Saunders et al, 1987) or metasomatized mantle wedge because of its arc lava-like geochemical features (Castillo, 2008); it has also been proposed as a mixture of differentiated and mafic arc lavas (Streck et al, 2007). The composition of bajaite is similar to that of the bulk continental crust and, thus, its true origin can shed light on the mechanism for continental growth. In this study, we use geochemical techniques to resolve some of the controversies surrounding the origin of bajaite. We analyze the petrographic, major element, trace element, and Sr-Nd-Pb isotopic compositions of bajaites from the San Borja Volcanic Field in Baja California Norte, Mexico to better constrain their petrogenetic history and origin.

  19. Megacrystic pyroxene basalts sample deep crustal gabbroic cumulates beneath the Mount Taylor volcanic field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, Mariek E.; Schrader, Christian M.; Crumpler, Larry S.; Rowe, Michael C.; Wolff, John A.; Boroughs, Scott P.

    2016-04-01

    Distributed over the ~ 2.3 m.y. history of the alkaline and compositionally diverse Mount Taylor Volcanic Field (MTVF), New Mexico is a widespread texturally distinct family of differentiated basalts that contain resorbed megacrysts (up to 3 cm) of plagioclase, clinopyroxene, and olivine ± Ti-magnetite ± ilmenite ± orthopyroxene. These lavas have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. Gabbroic and megacrystic clinopyroxenes form positive linear arrays in TiO2 (0.2-2.3 wt.%) with respect to Al2O3 (0.7-9.3 wt.%). Plagioclase (An41-80) from representative thin sections analyzed for 87Sr/86Sr by laser ablation ICP-MS range from 0.7036 to 0.7048. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, the pyroxene and plagioclase megacrysts appear to track the differentiation of a gabbroic pluton (or related plutons) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. Clinopyroxene-liquid geobarometry calculations suggest that crystallization occurred near the crust-mantle transition at an average of ~ 1200 °C and 12-13 kbar. The distribution of the megacrystic pyroxene basalts suggests that a gabbroic intrusive body underlies subregions of the MTVF that have generated silicic magmas. The gabbro is interpreted to be a significant heat and mass input into the lower crust that is capable of driving the petrogenesis of diverse silicic compositions (through fractionation and crustal assimilation), including mugearites, trachytes, trachy-andesites and dacites, high-Si rhyolites, and topaz rhyolites of the MTVF.

  20. Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1992-01-01

    Microtopographic profiles were measured and power spectra calculated for dated lava flow surfaces at Cima volcanic field in the eastern Mojave Desert of California in order to quantify changes in centimeter- to meter-scale roughness as a function of age. For lava flows younger than about 0.8 m.y., roughness over all spatial scales decreases with age, with meter-scale roughness decreasing slightly more than centimeter scales. Flows older than about 0.8 m.y. show a reversal of this trend, becoming as rough as young flows at these scales. Modeling indicates that eolian deposition can explain most of the change observed in the offset, or roughness amplitude, of power spectra of flow surface profiles up to 0.8 m.y. Other processes, such as rubbing and stone pavement development, appear to have a minor effect in this age range. Changes in power spectra of surfaces older than about 0.8 m.y. are consistent with roughening due to fluvial dissection. These results agree qualitatively with a process-response model that attributes systematic changes in flow surface morphology to cyclic changes in the rates of eolian, soil formation, and fluvial processes. Identification of active surficial processes and estimation of the extent of their effects, or stage of surficial evolution, through measurement of surface roughness will help put the correlation of surficial units on a quantitative basis. This may form the basis for the use of radar remote sensing data to help in regional correlations of surficial units.

  1. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    SciTech Connect

    Ridley, W.I.; Perfit, M.R.; Smith, M.F.; Jonasson, I.R.

    1994-06-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85{degree}49 feet W and 85{degree} 55 feet W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens` equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (<10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. 50 refs., 10 figs., 4 tabs.

  2. Petrofabric and seismic properties of lithospheric mantle xenoliths from the Calatrava volcanic field (Central Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, P.; Ábalos, B.; Gil Ibarguchi, J. I.; Sarrionandia, F.; Carracedo, M.; Fernández-Armas, S.

    2016-06-01

    The microstructural and petrofabric study of peridotite xenoliths from the El Aprisco (Neogene Calatrava Volcanic Field) has provided new information on deformation mechanisms, ambient conditions and seismic properties of the central Iberian subcontinental mantle. Olivine, orthopyroxene, clinopyroxene, amphibole and spinel constitute the mineral assemblage in equilibrium. Their microstructure indicates that they accommodated crystal-plastic deformation under high water fugacity conditions. Crystallographic preferred orientation patterns of key minerals were determined with the EBSD technique. The xenoliths exhibit B, C and A olivine fabrics. B-type fabrics, involving the (010)[001] slip system, may develop in domains where deformation occurs under comparatively lower temperature, higher water-content and faster strain rates. They are interpreted here as the result of deformation in a suprasubduction mantle setting triggered by changing conditions imposed by a cooler subducting slab that incorporated fluids into the system. Xenoliths with olivine C-type fabrics involve activation of the dominant (100)[001] slip system, denote intracrystalline slip at higher temperatures and water-contents. They are here interpreted to sample lithospheric mantle domains where the impact of those new conditions was not so strong. Finally, the A-type fabrics, characteristic of the (010)[100] slip system, are frequent in the mantle under moderate to high temperature. These fabrics are considered here as characteristic of the mantle prior to subduction. The olivine fabrics constrain heterogeneous seismic properties. Propagation orientation of P waves (8.27-8.51 km/s) coincides with olivine [100] axis concentrations, whereas the fastest S1 waves (5.13-5.22 km/s) propagate parallel to [010] axis minima. The maximum shear wave birefringence (VS1-VS2 = 0.17-0.37 km/s) is close to the direction of the macroscopic lineation. Heterogeneity of calculated seismic properties would concur with

  3. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  4. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    NASA Astrophysics Data System (ADS)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  5. The mantle and basalt-crust interaction below the Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Crumpler, L. S.; Schmidt, M. E.

    2010-12-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans ~3.8-1.5 Ma (K-Ar, Perry et al., 1990). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor (Perry et al., 1990). Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato (Crumpler, 1980) and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of cone-building. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative (Perry et al., 1990), on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated

  6. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is

  7. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  8. The ~ 2000 yr BP Jumento volcano, one of the youngest edifices of the Chichinautzin Volcanic Field, Central Mexico

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Muñoz-Salinas, E.; Castillo, M.; Salinas, I.

    2015-12-01

    The Chichinautzin Volcanic Field is situated at the southern limit of the Basin of Mexico and the Metropolitan area of Mexico City, the third most populated city around the world. The Chichinautzin Volcanic field holds more than 220 monogenetic volcanoes. Xitle is the youngest of these with an estimated age of 1.6 ky BP. Xitle's eruptive activity took place during the Mesoamerican Mexican Pre-classic period and is related to the destruction of Cuicuilco Archaeological Site, the oldest civilization known in Central Mexico. However, there are still several regional cones that have not been dated. Based on 14C ages, stratigraphic and geomorphologic criteria, we conclude that the Jumento volcano, located to the west of Xitle, is one of the youngest cones of the Chichinautzin Volcanic Field. The Jumento volcano has a basaltic andesite composition, and its eruptive activity was initially hydromagmatic, followed by Strombolian and finally effusive events occurred recorded through: (1) a sequence of hydromagmatic pyroclastic surges and ashfall layers emplaced at a radius of > 5 km from the crater with charcoal fragments at its base; this activity built the Jumento's cone with slopes of 32°; and (2) lava flows that breached the southern part of the cone and flowed for up to 2.5 km from the vent. The resulting 14C ages for this volcano yielded a maximum age of ~ 2 ky BP. Morphometric analysis indicates that the state of degradation of Jumento cone is similar to the Xitle, suggesting that the Jumento could be in the state of degradation of a volcanic structure of similar age or younger adding credence to the probable radiocarbon age of ~ 2 ky BP for the Jumento edifice.

  9. Evolution of unrest at Laguna del Maule volcanic field (Chile) from InSAR and GPS measurements, 2003 to 2014

    NASA Astrophysics Data System (ADS)

    Le Mével, Hélène; Feigl, Kurt L.; Córdova, Loreto; DeMets, Charles; Lundgren, Paul

    2015-08-01

    The Laguna del Maule (LdM) volcanic field in the southern volcanic zone of the Chilean Andes exhibits a large volume of rhyolitic material erupted during postglacial times (20-2 ka). Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation. Analysis of new GPS and Interferometric Synthetic Aperture Radar (InSAR) data reveals uplift rates greater than 190 mm/yr between January 2013 and November 2014. The geodetic data are modeled as an inflating sill at depth. The results are used to calculate the temporal evolution of the vertical displacement. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2010. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation. Modeling historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates.

  10. Megacrystic Clinopyroxene Basalts Sample A Deep Crustal Underplate To The Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    The alkaline and compositionally diverse (basanite to high-Si rhyolite) Mount Taylor Volcanic Field (MTVF), New Mexico comprises 4 regions that cover ~75 x 40 km2: (1) Mount Taylor, a large composite volcano and a surrounding field of basaltic vents; (2) Grants Ridge, constructed of topaz rhyolitic ignimbrite and coulees; (3) Mesa Chivato, a plateau of alkali basalts and mugearitic to trachytic domes; and (4) the Rio Puero basaltic necks. Distributed throughout its history (~3.6 to 1.26 Ma; Crumpler and Goff, 2012) and area (excepting Rio Puerco Necks) is a texturally distinct family of differentiated basalts (Mg# 43.2-53.4). These basalts contain resorbed and moth-eaten megacrysts (up to 2 cm) of plagioclase, clinopyroxene, and olivine ±Ti-magnetite ±ilmenite ±rare orthopyroxene. Some megacrystic lava flows have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. For instance, gabbroic and megacrystic clinopyroxenes form linear positive arrays in TiO2 (0.2-2.3 wt%) with respect to Al2O3 (0.7-9.3 wt%). The lowest Al clinopyroxenes are found in a gabbroic inclusion and are associated with partially melted intercumulus orthopyroxene. Megacrystic and gabbroic plagioclase (An 41-80) in 4 representative thin sections were analyzed for 87Sr/86Sr by Laser Ablation ICP-MS. 87Sr/86Sr values for the suite range from 0.7036 to 0.7047. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, these megacrysts track the differentiation of an intrusive body (or related bodies) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. The intrusive body likely underplates portions of the MTVF that have generated silicic magmas (Mount Taylor, Grants Ridge, Mesa Chivato). Although disequilibrium is implied by resorbed

  11. Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2012-04-01

    By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.

  12. Temporal compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California

    NASA Astrophysics Data System (ADS)

    Blondes, Madalyn S.; Reiners, Peter W.; Ducea, Mihai N.; Singer, Brad S.; Chesley, John

    2008-05-01

    Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal-compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/ 39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na 2O. SiO 2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/ 86Sr systematically decreases (0.7063-0.7055) and ɛ Nd increases (- 3.4 to - 1.1). 187Os/ 188Os is highly radiogenic (0.20-0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 10 5-10 6 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (10 0-10 2 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/ 39Ar ages combined with chemistry from

  13. Increasing Interaction of Alkaline Magmas with Lower Crustal Gabbroic Cumulates over the Evolution of Mt. Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Crumpler, L. S.; Schrader, C.

    2010-12-01

    The Mount Taylor Volcanic Field at the southeastern edge of the Colorado Plateau, New Mexico erupted diverse alkaline magmas from ~3.8 to 1.5 Ma (Crumpler, 1980; Perry et al., 1990). The earliest eruptions include high silica topaz rhyolites of Grants Ridge (plagioclase, quartz, biotite) and Si-under saturated basanites and trachytes at Mt Taylor stratovolcano. Mt. Taylor was later constructed of stacks of thick, trachyandesitic to rhyolitic lava flows that were subsequently eroded into a ~4-km across amphitheatre opening toward the southeast. Early Mt. Taylor rhyolitic lavas exposed within the amphitheatre contain quartz, plagioclase, hornblende, and biotite (± sanidine) phenocrysts. Later cone-building trachydacite to trachyandesite lavas are crystal-rich with plagioclase and augite megacrysts (± hornblende, ± quartz) and record an overall trend of decreasing SiO2 with time. The last eruptions ~1.5 Ma from the stratovolcano (Perry et al. 1990) produced thick (>70 m), viscous lava flows that contain up to 50% zoned plagioclase phenocrysts. While SiO2 decreased among the silicic magmas, the degree of silica saturation increased among peripheral basaltic magmas from basanite to ne-normative hawaiite to hy-normative basalts. Evidence of increasing crustal contamination within the basalts includes zoned plagioclase megacrysts, augite and plagioclase cumulate texture xenoliths with accompanying xenocrysts. These textures within the basalts combined with abundant, complex plagioclase among the cone-building silicic magmas imply interaction and mixing with gabbroic cumulate mush in the lower crust beneath Mt. Taylor Volcano. Contemporaneous basanitic to trachytitc volcanism in the northern part of the volcanic field at Mesa Chivato (Crumpler, 1980) was more widely distributed, smaller volume, and produced mainly aphyric magmas. The lower crustal gabbroic cumulates either do not extend northward beneath Mesa Chivato, or they were not accessed by lower magma flux rate

  14. Transitional Evolution of the Geomagnetic Field Recorded in Long Volcanic Sequences: Insights From Icelandic and Hawaiian Lavas

    NASA Astrophysics Data System (ADS)

    Lau, J. K.; Herrero-Bervera, E.; Valet, J.

    2007-12-01

    We have studied the short-term evolution of the geomagnetic field recorded by long volcanic sequences in Iceland and Hawaii. The eastern Icelandic sequences correspond to 45 and 49 individual lava flows sampled and range in age from 12.9 to 10.21 Ma as reported by Watkins and Walker [Watkins and Walker, 1977. Am J. Sci. 277, 513-584] and are labeled as profiles C and D. Also sampled were long volcanic sequences in the Waianae, Koolau (island of O"ahu) and Mauna Loa (Big Island of Hawaii) volcanoes. We have studied in detail the directional characteristics of three successive reversals, the Gilbert-Gauss, the Lower and the Upper Mammoth reversals recorded by the Waianae lavas. These results confirm that large oscillations of directions precede or follow the reversals, which shows waveforms typical of paleosecular variation with their amplitude being considerably amplified by the decrease of the dipole. There is no apparent preferred location for the virtual geomagnetic poles (VGP). In addition to the directional analyses, determinations of absolute paleointensity were attempted on more than 540 samples, which document the field variations surrounding the Lower Mammoth transition. A period of a weak field dominated before the reversal; then the transition was initiated by a transit from normal to reverse polarity followed by a short restoration of field intensity in reverse polarity. A second episode of a very weak field was accompanied by a return to positive inclinations before reaching the reverse polarity. The very strong and apparent rapid recovery of the dipole following completion of the reversal culminated at a value of 16 x 1022 Am2 similar to field intensities reported for the other detailed volcanic records of reversals studied so far. The asymmetry between the pre- and the post-reversal phases appears as a dominant characteristic and indicates the importance of field regeneration to initiate a new stable polarity interval. In addition we have obtained

  15. Investigating the deep cool lacustrine biosphere: Lake Potrok Aike, Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, A.; Ariztegui, D.; Pawlowski, J.; Templer, S. P.

    2009-12-01

    Microbial activity on recent sediments is fully recognized as a major player in lithification processes. These omnipresent organisms have the capacity of catalyzing and enhancing diagenetic reactions even in extreme environments from the very surface of the sediments to as deep as 4.5 km below the water column. Living bacterial communities have been tracked down into deep sediments and even into the deeper basaltic sub-seafloors. Although the distribution and diversity of microbes in marine sediments through depth have been studied for some years already, there is a lack of these investigations in the lacustrine realm. Furthermore, geomicrobiology studies in modern lakes allow taking a closer look into early diagenetic processes linked to microbial activity in subrecent sediments. The foci of most of these studies, however, have been either very shallow sediments and/or the water column. More than 500 meters of sedimentary cores were retrieved from Lake Portok Aike, a crater lake located in Southern Patagonia within the framework of the ICDP-sponsored PASADO project (Potrok Aike Maar Lake Sediment Archive Drilling Project). A 100 meters long core was dedicated to geomicrobiology sampling, allowing the inspection of undisturbed deep lacustrine sediments. Special windows were cut in the liners for direct sampling under the most sterile conditions possible immediately after core recovery. In situ ATP measurements are used as indication of living organisms within the sediments. Various samples were chemically fixed and/or frozen for methane determination, bacterial cell counting, DGGE (molecular fingerprinting technique) and cell cultivation. In situ ATP data reveal a constant low microbial activity below 40 m sediment depth whereas three main peaks appear at 37, 10 and 5 meters respectively. Studying the microbial community based on 16S rDNA, we identified a broad, but conserved diversity pattern in the older sediments. In contrast, the diversity seems to decrease and

  16. A geostatistical method applied to the geochemical study of the Chichinautzin Volcanic Field in Mexico

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Roberge, J.; Urbina Oviedo, C. A.

    2011-12-01

    The origin of magmatism and the role of the subducted Coco's Plate in the Chichinautzin volcanic field (CVF), Mexico is still a subject of debate. It has been established that mafic magmas of alkali type (subduction) and calc-alkali type (OIB) are produced in the CVF and both groups cannot be related by simple fractional crystallization. Therefore, many geochemical studies have been done, and many models have been proposed. The main goal of the work present here is to provide a new tool for the visualization and interpretation of geochemical data using geostatistics and geospatial analysis techniques. It contains a complete geodatabase built from referred samples over the 2500 km2 area of CVF and its neighbour stratovolcanoes (Popocatepetl, Iztaccihuatl and Nevado de Toluca). From this database, map of different geochemical markers were done to visualise geochemical signature in a geographical manner, to test the statistic distribution with a cartographic technique and highlight any spatial correlations. The distribution and regionalization of the geochemical signatures can be viewed in a two-dimensional space using a specific spatial analysis tools from a Geographic Information System (GIS). The model of spatial distribution is tested with Linear Decrease (LD) and Inverse Distance Weight (IDW) interpolation technique because they best represent the geostatistical characteristics of the geodatabase. We found that ratio of Ba/Nb, Nb/Ta, Th/Nb show first order tendency, which means visible spatial variation over a large scale area. Monogenetic volcanoes in the center of the CVF have distinct values compare to those of the Popocatepetl-Iztaccihuatl polygenetic complex which are spatially well defined. Inside the Valley of Mexico, a large quantity of monogenetic cone in the eastern portion of CVF has ratios similar to the Iztaccihuatl and Popocatepetl complex. Other ratios like alkalis vs SiO2, V/Ti, La/Yb, Zr/Y show different spatial tendencies. In that case, second

  17. A Disequilibrium Melting Spectrum: Partially Melted Crustal Xenoliths from the Wudalianchi Volcanic Field, NE China.

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; McGee, L. E.

    2015-12-01

    Disequilibrium melting has been established as a common process occurring during crustal anatexis and thus demonstrates that crustal assimilation by ascending mantle-derived magmas is likley not a closed system. Observations of extreme compositional heterogeneity within partial melts derived from crustal xenoliths have been documented in several recent examples, however, the retention or transfer of elements to and from residues and glasses, and their relative contributions to potential crustal contaminants warrants further investigation. Sampled lavas from the Huoshaoshan volcano in the Holocene Wudalianchi volcanic field of Northeast China contain crustal xenoliths which preserve a spectrum of partial melting both petrographically and geochemically, thus providing an excellent, natural example of crustal anatexis. Correlations exist between the volume of silicic glass preserved within the xenoliths and bulk rock SiO2 (70-83 wt%), Al2O3 (16-8 wt%), glass 87Sr/86Sr (0.715-0.908), abundances of elements common in feldspars and micas (Sr, Ba, Rb) and elements common in accessory minerals (Y, Zr, Nb). These correlations are likely associated with the consumption of feldspars and micas and the varying retention of accessory phases during partial melting. The xenoliths which contain the greater volumes of silicic glass and residual quartz (interpreted as being the most melted) were found within pahoehoe lava, whilst the least melted xenoliths were found within scoria of the summit cone of Huoshaoshan; thus it is interpreted that the extent of melting is linked to the immersion time in the lava. Small-scale (mm) mingling and transfer of material from the enclosing lava to the xenolith is observed, however, modelling of potential contaminant compositions is inconsistent with crustal contamination during lava petrogenesis. It is inferred that crustal contamination in sampled lavas is localized within the open magmatic system and most likely occurs at the contact zone

  18. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.

    2014-04-01

    Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption

  19. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    SciTech Connect

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas.

  20. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  1. Origins and exploration significance of replacement and vein-type alunite deposits in the Marysvale volcanic field, west central Utah.

    USGS Publications Warehouse

    Cunningham, C.G.; Rye, R.O.; Steven, T.A.; Mehnert, H.H.

    1984-01-01

    Alunite in the Marysvale volcanic field forms two (three are described) different types of deposits which contrast in appearance and conditions of origin: 1) Replacement deposits are generally fine-grained and formed by near-surface replacement of intermediate-composition volcanic rocks. The deposits form a bead necklace around a monzonite stock. Each deposit is zoned horizontally from alunitic cores to kaolinitic and propylitic envelopes and zoned vertically from pyrite/propylite upward through alunite/jarosite/hematite to a silica cap. Alunite does not extend below 100 m. Sulphur isotope ratios agree with derivation from underlying Mesozoic evaporites. 2) Natroalunite of 14-m.y. age crosscuts replacement-type alunite deposits. Its S-isotope ratios are comparable with those of pyrite in the volcanics. The Na may be from underlying Mesozoic halites. 3) Veins of coarse-grained alunite of 14-m.y. age filled extension fractures above a postulated stock. S-isotope ratios indicate a probable magmatic source. The contrasting properties of the Marysvale alunite deposits preclude any simple relation to ore deposits, but serve to refine interpretations based on other geological considerations. The replacement deposits are a logical near-surface result of skarn forming processes at depth around the monzonite stock. The vein- type deposits are a logical near-surface result of porphyry metallization in an underlying stock. -G.J.N.

  2. Melding Research on the Navajo Volcanic Field into Undergraduate Curriculum to Promote Scientific Literacy

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.

    2011-12-01

    This presentation highlights the curricular design and preliminary outcomes of undergraduate research in the Department of Geosciences at Fort Lewis College (FLC), supported by an NSF-RUI project on the Navajo volcanic field (NVF). A prime impact of this project was to support the education and career development of undergraduate students by further developing basic knowledge and skills in the context of authentic inquiry on petrologic-based research topics. Integrating research into the curriculum promoted scientific habits of mind by engaging students as "active agents" in discovery, and the creative development and testing of ideas. It also gave students a sense of ownership in the scientific process and knowledge construction. The initial phase of this project was conducted in Igneous Petrology at FLC in 2010. Eleven students were enrolled in this course which allowed them to work as a team in collaboration with the PI, and engage in all aspects of research to further develop and hone their skills in scientific inquiry. This course involved a small component of traditional lecture in which selected topics were discussed to provide students with a foundation to understand magmatic processes. This was complemented by a comprehensive review of the literature in which students read and discussed a spectrum of articles on Tertiary magmatism in the western United States and the NVF. Invited lectures by leading-scientists in geology provided opportunities for discussions and interaction with professional geologists. All of the students in the class engaged in the active collection of petrologic data in the field and laboratory sessions, and were introduced to the use of state-of-the art analytical tools as part of their experiences. Four students were recruited from the course to design, develop, and conduct long-term research projects on selected petrologic topics in the NVF. This research allowed these students to engage in the "messy" process of testing existing

  3. Field-based study of volcanic ash via visible and thermal high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Del Bello, Elisabetta

    2015-04-01

    Subaerial explosive volcanic activity ejects a mixture of gas-ash-pyroclasts in the atmosphere. Parameterizing the physical processes responsible for ash injection and plume dynamics is crucial to constrain numerical models and forecasts of potentially hazardous ash dispersal events. In this study we present preliminary results from a new method based on visible and thermal high-speed video processing from Strombolian and Vulcanian explosions. High-speed videos were recorded by a Optronis CR600x2 camera (1280x1024 pixels definition, 500 Hz frame rate) for the visible and by a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) for the thermal. Qualitatively, different dynamics of ash injection and dispersal can be identified. High speed cameras allow us to observe all the different phases during volcanic plume dispersion with a very good time resolution. Multiple features were already observed about volcanic plumes, but this tool give a better accuracy to our observations and allow us to better define previously observed features and to be able to identify new ones. Quantitatively before using our videos a pre-processing is needed which aim is to isolate the plume from the background by using different types of filters without altering the data, to allow us to use automated procedures to track volcanic plumes. In this study we extract data from these videos (plume height, velocity, temperature, mass, volume,...) using different software tools. Doing this allow us to be able to define and constrain main parameters and processes in function of the observed volcano and explosion type, but also to find correlations between parameters and establish empirical relations. We define range of values for each parameter and their respective impact on plume dynamics and stability, to be able to obtain characteristic fields of values for each case and link it to explosions type and evolution.

  4. Preliminary paragenetic interpretation of the Quaternary topaz rhyolite lava domes of the Blackfoot volcanic field, southeastern Idaho

    NASA Astrophysics Data System (ADS)

    Lochridge, W. K., Jr.; McCurry, M. O.; Goldsby, R.

    2015-12-01

    The Quaternary topaz rhyolite lava domes of the bimodal, basalt-dominated Blackfoot volcanic field (BVF), SE Idaho occur in three clusters. We refer to these as the China Hat lava dome field (southernmost; ~ 57 ka), and the 1.4 to 1.5 Ma Sheep Island and White Mountain (northernmost) lava dome fields. The rhyolites and surrounding, more voluminous basalt lavas closely resemble coeval Quaternary rocks erupted to the north along the Eastern Snake River Plain segment of the Yellowstone-Snake River Plain volcanic track. However rhyolites in BVF are distinguished by having more evolved Sr- and Nd-isotopic ratios, as well as having phenocryst assemblages that includes hydrous phases (biotite and hornblende), thorite, and vapor-phase topaz. This study seeks to improve our understanding of the unique conditions of magma evolution that led to these differences. We focus on textural features of major and accessory phenocrysts as a basis for inferring paragenesis for rhyolites from the China Hat lava dome field. Preliminary work indicates that there are three sequentially formed populations of textures among magmatic phases: 1. population of anhedral quartz and plagioclase; 2. population of euhedral grains that includes quartz, sandine, plagioclase, biotite, hornblende, Fe-Ti oxides, zircon and apatite; 3. boxy cellular (skeletal?) sanidine and quartz. We speculate that the first population are resorbed antecrysts, the second formed prior to eruption as autocrysts (at or near equilibrium?), and the third formed soon before or during eruption.

  5. Alkaline Basalts of The Quaternary Buffalo Valley Volcanic Field, NW Fish Creek Mountains, North-central Nevada, Great Basin

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.

    2008-12-01

    The Buffalo Valley volcanic field, 5 km southwest of Battle Mountain, consists of approximately 11 cinder cones and associated flows. Youthful volcanoes are rare in the region, and thus this field offers the opportunity to investigate mantle sources currently beneath the central Great Basin. Most of the eruptive centers are distributed along the northwestern margin of the Fish Creek Mountains, a mid-Tertiary caldera complex, along a 13-km-long northeasterly trend that is perpendicular to the regional stress field (or GPS velocity field), suggesting fault control or eruption from a now-buried fissure. The cones are geomorphologically youthful, with well-defined, commonly breached craters. At least one cone, situated slightly east of the main trend, consists of only a thin mantle of scoria and bombs overlying grey Paleozoic limestone. Previous K-Ar and Ar-Ar dating indicate that the cones are between 1.29 and 0.95 Ma in age. Two other nearby Quaternary volcanic centers lie northeast of the Fish Creek Mountains (K-Ar date of 3.3 Ma) and in the center of the Fish Creek caldera (age unknown). Rare Tertiary basalts and more common Tertiary andesites lie around the margin of the caldera. Lavas from the Buffalo Valley cones have vesicular flow tops and more massive interiors. All Quaternary centers are similar petrographically, including 1-2% olivine phenocrysts and megacrysts up to 1 cm in size, and characteristic plagioclase megacrysts that are rarely up to 4 cm long, commonly in a glassy matrix. Two cone samples are alkalic basalt and tephrite with Mg numbers of 0.55, high TiO2 (2.4%), K2O (2.0%), light REE, Nb (60 ppm), but low Cr and Ni (80 ppm), Pb (2 ppm), Ba (450 ppm) and 87Sr/86Sr (0.70375) compared to Late Pliocene/Quaternary volcanic rocks from the western Great Basin near Reno/Carson City/Fallon. The Buffalo Valley cones are similar chemically to lavas from the Pliocene-Quaternary Lunar Craters volcanic field in central Nevada, and are melts of mantle that is

  6. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  7. Ground Penetrating Radar and Magnetic Investigations of Phreatomagmatic Tephra Rings in the San Francisco Volcanic Field, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Marshall, A. M.; Kruse, S.; Macorps, E.; Charbonnier, S. J.

    2015-12-01

    Ground Penetrating Radar (GPR) can be a valuable geophysical tool for studying near-surface volcanic stratigraphy in areas where outcrops do not exist. Likewise, high resolution ground-based magnetic surveys have the potential to reveal significant features not exposed at the surface, especially in the case of small-volume basaltic volcanoes. Here we present the results of geophysical studies to investigate the eruptive history of deposits surrounding phreatomagmatic eruption sites, and why some may become magnetized. Magnetic surveys undertaken at basaltic phreatomagmatic sites suggest that some tuff rings carry no discernable magnetic signature, while others reveal slight to significant magnetic anomalies. Material deposited in the tephra ring could become magnetized through Thermal Remanent Magnetization - emplacement of magnetically susceptible material above 560° C. In this case tephra layers would need to be deposited in sufficient thickness to retain high temperatures long enough for the magnetic material to orient itself to the magnetic field. To test this hypothesis we examine GPR data collected at Rattlesnake Maar in the San Francisco Volcanic Field, Arizona, and we will collect GPR data at two other tephra rings in the same volcanic field. The first site, Sugarloaf Mountain, is an active quarry with excellent exposures of tephra ring stratigraphy. Although this site is rhyolitic in composition and not suitable for magnetic study, it is an excellent site to determine how well GPR reflectors correlate with actual stratigraphy. The second site, an un-named phreatomagmatic ring nearby, will then be studied by GPR and walking magnetic survey. GPR reflectors will be compared to depositional patterns defined in previous studies and correlated with magnetic survey results to determine if a correlation can be made - little to no magnetization where only thin units are recorded by GPR, and positive magnetization where thick units are recorded.

  8. Seismic data acquisition over San Juan volcanic field, San Juan sag, south-central Colorado

    SciTech Connect

    Henkel, R.P. )

    1989-09-01

    The San Juan sag, a foreland basin along the Uncompahgre-Brazos uplift, contains Mesozoic sediments overlain by up to 10,000 ft of Tertiary volcanics. Petroleum exploration beneath thick volcanic cover requires successful acquisition of seismic data; however, experience elsewhere has generally produced only marginal results. Commencing in 1983, Meridian Oil recorded 18 seismic lines comprising 260 mi of conventional and portable data. Noise test were performed at two sites to evaluate seismic response and to determine source and receiver parameters. Vibroseis, shothole, and surface dynamite were examined as sources and gave comparable results. Coherent noise trains with velocities from 4,000 to 8,000 ft/sec and dominant frequencies of 10 to 15 Hz were generated in the Tertiary section. The predominant factor affecting data quality was outcrop lithology. Data recorded over alluvial and other Quaternary deposits tended to be good to fair. Data quality over Tertiary volcanics was variable and highly unit dependent, ranging from fair over andesites and volcaniclastics, poor over ash-flow tuffs, and uniformly very poor over basalts. Seismic source appeared to have only a minor effect on quality. Data processing involved no unusual operations. Velocity filtering was used to suppress near-surface generated coherent noise, Refraction statics were applied to lines with significant elevation or lithologic variations. A successful acquisition program helped to establish the presence of a Mesozoic sedimentary section beneath the volcanics. these data revealed large structural features within the sedimentary section as well as a dramatic angular unconformity at the top of the Cretaceous section.

  9. The Cerro Bitiche Andesitic Field: petrological diversity and implications for magmatic evolution of mafic volcanic centers from the northern Puna

    NASA Astrophysics Data System (ADS)

    Maro, Guadalupe; Caffe, Pablo J.

    2016-07-01

    The Cerro Bitiche Andesitic Field (CBAF) is one of the two largest mafic volcanic fields in northern Puna (22-24° S) and is spatially and temporally associated with ignimbrites erupted from some central Andean Altiplano-Puna Volcanic Complex calderas. The CBAF comprises seven scoria cones and widespread high-K calcalkaline lava flows that cover an area of 200 km2. Although all erupted rocks have a relatively narrow chemical range (56-62 % SiO2, 3-6 % MgO), there is a broad diversity of mineral compositions and textures. The least evolved lavas (˜58-61 % SiO2) are high-Mg andesites with scarce (<10 %) microphenocrysts of either olivine or orthopyroxene. The small compositional range and low phenocryst content indicate evolution controlled by low percentages (<10 %) of fractional crystallization of olivine and clinopyroxene of magmas similar to the least evolved rocks from the field, accompanied by assimilation during rapid ascent through the crust. Evolved andesites (˜62 wt% SiO2), on the other hand, are porphyritic rocks with plagioclase + orthopyroxene + biotite and ubiquitous phenocryst disequilibrium textures. These magmas were likely stored in crustal reservoirs, where they experienced convection caused by mafic magma underplating, magma mixing, and/or assimilation. Trace element and mineral compositions of CBAF lavas provide evidence for complex evolution of distinct magma batches.

  10. Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea

    NASA Astrophysics Data System (ADS)

    Brenna, Marco; Cronin, Shane J.; Smith, Ian E. M.; Sohn, Young Kwan; Maas, Roland

    2012-09-01

    Jeju Island is the emergent portion of a basaltic volcanic field developed over the last c. 1.8 Ma on continental crust. Initial volcanism comprised dispersed, small-volume (< 0.01 km3) alkali basaltic eruptions that incrementally constructed a tuff pile. Lavas and scoria from continuing small-scaled monogenetic volcanism capped this foundation. From c. 0.4 Ma large-volume (> 1 km3) eruptions began, with lavas building a composite shield. Three magma suites can be recognized: Early Pleistocene high-Al alkali (HAA), and Late Pleistocene to Holocene low-Al alkali (LAA) and subalkali (SA). The chemical similarity between small-volume and primitive large-volume eruptions suggests analogous parent magmas and fractionation histories that are independent of erupted volumes. The large-volume magmas evolved to trachyte, which erupted in two distinct episodes: the HAA Sanbangsan suite at c. 750 ka and the LAA Hallasan suite at c. 25 ka. Sr and Nd isotopes indicate that the early trachytes were contaminated by upper crustal material, whereas the later magmas were not. Both suites bear a Nd isotope signature indicative of lower crustal interaction. Sub-suites transitional between HAA and LAA, and between LAA and SA, indicate that melting occurred in discrete, but adjacent, mantle domains. Throughout the evolution of this volcano, each magma batch erupted separately, and a centralized plumbing system was never created. The Island's central peak (Mt. Halla 1950 m a.s.l.) is therefore not a sensu stricto stratovolcano, but marks the point of peak magma output in a distributed magmatic system. Jeju's shape and topography thus represent the spatial variation of fertility of the mantle below it. An increase in melt production in the Late Pleistocene was related to a deepening of the melting zone due to regional tectonic rearrangements. Temporal coincidences between magmatic pulses on Jeju and large-scale caldera eruptive events along the nearest subduction system in Kyushu, Japan

  11. Carbon and nitrogen isotope composition of core catcher samples from the ICDP deep drilling at Laguna Potrok Aike (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late

  12. Fracture development within a stratovolcano: The Karaha-Telaga Bodas geothermal field, Java volcanic arc

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.

    2004-01-01

    Karaha-Telaga Bodas, a vapour-dominated geothermal system located in an active volcano in western Java, is penetrated by more than two dozen deep geothermal wells reaching depths of 3 km. Detailed paragenetic and fluid-inclusion studies from over 1000 natural fractures define the liquid-dominated, transitional and vapour-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by ashallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures that developed were filled with carbonates at shallow depths, and by quartz, epidote and actinolite at depths and temperatures over 1 km and 300??C. The system underwent numerous cycles of overpressuring, documented by subhorizontal tensile fractures, anastomosing tensile fracture patterns and implosion breccias. The development of the liquidsystem was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were selectively deposited in fractures that had the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapour-dominated conditions were initiated at this time within a vertical chimney overlying the still hot intrusion. As pressures declined, these conditions spread outward to form the marginal vapour-dominated region encountered in the drill holes. Downward migration of the chimney, accompanied by growth of the marginal vapour-dominated regime, occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. As the liquids boiled off, condensate that formed at the top of the vapour-dominated zone percolated downward and low

  13. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    SciTech Connect

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L.; Combs, J.

    1996-11-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  14. Revealing the eruptive dynamics of post-glacial effusive volcanism in the western part of Laguna del Maule Volcanic Field: Insights into a complex magmatic system

    NASA Astrophysics Data System (ADS)

    Cáceres, F.; Castruccio, A.; Parada, M. Á.

    2015-12-01

    In this study we analyzed six Quaternary lava flows and one lava dome from Laguna del Maule Volcanic Field, in the Chilean Andes, in order to create a volcano-petrological eruptive model to get ideas about pre- and syn-eruptive stages, the main factors that control the broad distribution of vents and the architecture of magma reservoir. We estimated eruptive parameters such as effusion rates and erupted volumes, extrinsic and intrinsic lava flows emplacement controlling factors, magma ascent rates and pre-eruptive thermodynamics conditions to determine different stages in magma evolution from magma reservoir to emplacement of lava at surface. The analyzed lavas have andesitic-to-rhyolitic compositions, blocky morphology with volumes about a few cubic kilometers, thicknesses up to 140 m, maximum widths of 5 km and maximum lengths of 10 km. Modeling of the advance of these flows gives effusion rates of 10-1-102 m3s-1 and eruptions of a few months to years. Petrologic studies which include quantitative textural analyses and mineral and glass compositions, reveal similar provenance and crystalizing temperatures of similar minerals, coupled with similar pressures, H2O content and oxygen fugacity by similar lava composition, meanwhile individual chamber size estimations show an overlap sharing volume in near chambers indicating the equivalent provenance. Our main results about dynamics of lava flows suggest a crustal yield strength control in the emplacement over the internal viscosity of the flow for each lava. On the other hand, non-rhyolitic units appear to come from chambers located in similar depths and with coinciding volumes which indicate that the eruptions were triggered by the injection of different magma batches into a crystal-rich magma reservoir that could be divided into many sub-compartments which could explain the broad distribution of the vents. In addition, rhyolitic units also show similar thermodynamics conditions and coming from equivalent chambers.

  15. Petrology and Geochemistry of Hydrothermally Altered Volcanic Rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.

    2015-12-01

    The Iheya North hydrothermal field is located in the middle Okinawa Trough, a young and actively spreading back-arc basin extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. In this hydrothermal field, two scientific drilling expeditions (IODP Exp 331 and SIP CK14-04) were conducted using a deep-sea drilling vessel "Chikyu," and samples from a total of 27 holes were taken. Through these expeditions, Kuroko-type volcanogenic massive sulfide deposits (VMS), hydrothermally altered volcanic rocks, and pumiceous and pelagic sediments were recovered. The recovered core provided important information about the relationship between hydrothermal activity, alteration, and ore mineralization. Whole-rock major element composition and trace element (TE) patterns of pumices were very similar to those of rhyolites in the middle Okinawa Trough (RMO). However, pumices were relatively enriched in chalcophile elements Sr and Nb, which suggest incipient mineralization. Volcanic rock generally demonstrated strong silicification and was greenish pale gray in color. Regardless of severe alteration, some rock displayed major element composition broadly similar to the RMO. Alteration was evidenced by an increase in the content of SiO2 and MgO, and decrease in Al2O3, Na2O, and K2O content. The most striking geochemical feature of altered volcanic rock was the discordance between texture and the degree of modification of TEs. Some samples showed decussate texture occupied by petal-like quartz with severe silicification, but no prominent disturbance of concentration and patterns of TEs were observed. In contrast, samples with well-preserved igneous porphyritic texture showed very low TE content and modification of TE patterns. These results suggest that the modification of texture and composition of TEs, as well as silicification, do not occur by a uniform process, but several processes. This may reflect the differences in temperature and the

  16. Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA

    NASA Astrophysics Data System (ADS)

    Muirhead, James D.; Van Eaton, Alexa R.; Re, Giuseppe; White, James D. L.; Ort, Michael H.

    2016-02-01

    Although monogenetic volcanic fields pose hazards to major cities worldwide, their shallow magma feeders (<500 m depth) are rarely exposed and, therefore, poorly understood. Here, we investigate exposures of dikes and sills in the Hopi Buttes volcanic field, Arizona, to shed light on the nature of its magma feeder system. Shallow exposures reveal a transition zone between intrusion and eruption within 350 m of the syn-eruptive surface. Using a combination of field- and satellite-based observations, we have identified three types of shallow magma systems: (1) dike-dominated, (2) sill-dominated, and (3) interconnected dike-sill networks. Analysis of vent alignments using the pyroclastic massifs and other eruptive centers (e.g., maar-diatremes) shows a NW-SE trend, parallel to that of dikes in the region. We therefore infer that dikes fed many of the eruptions. Dikes are also observed in places transforming to transgressive (ramping) sills. Estimates of the observable volume of dikes (maximum volume of 1.90 × 106 m3) and sills (minimum volume of 8.47 × 105 m3) in this study reveal that sills at Hopi Buttes make up at least 30 % of the shallow intruded volume (˜2.75 × 106 m3 total) within 350 m of the paeosurface. We have also identified saucer-shaped sills, which are not traditionally associated with monogenetic volcanic fields. Our study demonstrates that shallow feeders in monogenetic fields can form geometrically complex networks, particularly those intruding poorly consolidated sedimentary rocks. We conclude that the Hopi Buttes eruptions were primarily fed by NW-SE-striking dikes. However, saucer-shaped sills also played an important role in modulating eruptions by transporting magma toward and away from eruptive conduits. Sill development could have been accompanied by surface uplifts on the order of decimeters. We infer that the characteristic feeder systems described here for the Hopi Buttes may underlie monogenetic fields elsewhere, particularly where

  17. Reverse Faulting as a Crucial Mechanism for Magma Ascent in Compressional Volcanic Arcs: Field Examples from the Central Andes

    NASA Astrophysics Data System (ADS)

    Aron, F. A.; Gonzalez, G.; Cembrano, J. M.; Veloso, E. E.

    2010-12-01

    The nature of crustal deformation in active arcs and the feedback mechanisms between tectonics and magma transport constitute fundamental problems in the understanding of volcanic systems. Additionally, for geothermal energy exploration, a better understanding of how crustal architecture and stress field controls fluid ascent and heat transfer from deep levels to the surface is crucial. The Central Andes volcanic belt is an excellent, modern example of such systems but, the scarcity of good outcrops has limited our ability to define the relations between structure and volcanism. In the Salar de Atacama Basin of northern Chile, there are good exposures of folded and faulted Neogene units (continental sediments, volcanic rocks and ignimbrites) and reverse faults spatially and temporally related to volcanic edifices. The subsurface of the study area has been interpreted by previous authors as a thin-skinned, 6-8 km-deep, east-vergent compressional belt. We carried out structural mapping, Digital Elevation Models (DEMs) analyses, strain tensor analyses and fault-related fold kinematic modelling to assess the causal relationship between compressional deformation and magmatism in this region. Field observations indicate that the structures deformed progressively Oligocene-Miocene continental sedimentary units, the upper sedimentary infill of the Salar de Atacama basin (Pliocene-Present), and Pliocene-Pleistocene Ignimbrites. The topographic expression of the compressional belt corresponds to a set of subparallel, asymmetric, fault-related-folds, which can be seen in the field as prominent NS-trending ridges with heights ranging between 50 and 400 m. Furthermore, we found evidence of a ~100 km-long structure along the active magmatic arc, so-called Miscanti Fault. This fault represents the easternmost expression of the above mentioned compressional belt. Pleistocene-Holocene monogenetic cones and strato-volcanoes are located either at the hinge zone of fault

  18. Stratigraphy, geochronology and evolution of the Mt. Melbourne volcanic field (North Victoria Land, Antarctica)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Lucci, Federico; Phillips, David; Cozzupoli, Domenico; Runci, Valentina

    2012-11-01

    Mt. Melbourne (2,732 m a.s.l.) is a large quiescent stratovolcano located in Northern Victoria Land (Antarctica) and is one of a handful of volcanoes on the Antarctic plate with the potential for large-scale explosive eruptions. During the XVIII Italian Expedition in 2002-2003, the Mt. Melbourne volcanic succession was studied in terms of stratigraphy and sampled for 40Ar/39Ar age determinations and geochemistry. The early, Lower Pleistocene, volcanism was largely alkali basaltic to hawaiitic in composition and monogenetic in style, producing tens of small scoria cones and lava flows scattered over a wide area across the Transantarctic Mountains (Random Hills Period). During the Middle Pleistocene, volcanic activity focused to the area of the Mt. Melbourne stratovolcano, where several monogenetic centres show the transition from early sub-glacial/subaqueous conditions to emergent subaerial conditions (Shield Nunatak Period). The oldest exposed deposit associated with the early activity of the Mt. Melbourne stratovolcano (Mt. Melbourne Period) is a trachytic subaerial ignimbrite dated at 123.6 ± 6.0 ka, which reflects the establishment of a crustal magma chamber. Above the ignimbrite a succession of alkali basaltic, hawaiitic, and subordinate benmoreitic lavas and scoria cones is exposed, dated at 90.7 ± 19.0 ka. The Holocene deposits are exposed at the top of Mt. Melbourne, where the crater rim is composed of trachytic to rhyolitic pumice fall deposits, which are also extensively dispersed around the volcano, likely originated from Plinian-scale eruptions. The most recent explosive deposit proved difficult to date accurately because very low quantities of radiogenic 40Ar were released, resulting in imprecise plateau ages of 50 ± 70 and 35 ± 22 ka.

  19. Determining volcanic SO2 plume heights in satellite observations using meteorological wind fields

    NASA Astrophysics Data System (ADS)

    Keicher, Viktoria; Hörmann, Christoph; Sihler, Holger; Platt, Ulrich; Wagner, Thomas

    2016-04-01

    Satellite observations nowadays provide the global monitoring of volcanic plumes via sulphur dioxide (SO2) that is injected into the Earth's atmosphere. In turn, SO2 may lead to the formation of sulphate aerosols that can influence climate via direct and indirect radiative effects. The retrieval of SO2 requires an accurate plume height estimate in order to constrain total amounts for such events. One of the main difficulties for the retrieval is the typically unknown atmospheric profile resulting from unknown initial conditions (individual explosions over an extended time period leading to different gas layer altitudes and influencing the atmospheric transport pattern). In recent years, satellite observations helped to improve global SO2 estimates, but still large uncertainties exist. Passive satellite remote sensing using measurements in the UV/vis spectral range for example offers the opportunity to observe the location of a plume in two dimensions, but information about the corresponding height is sparse. Furthermore, information about these plume profiles is not only interesting in itself (e.g. to assess the radiative effect of volcanic plumes). It is also important for the quantitative interpretation of satellite observations. Here, we present first results for a newly developed approach using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) in combination with data for different volcanic SO2 plumes as observed by the second generation Global Ozone Monitoring Instrument (GOME-2). The main plume information that can be retrieved by the satellite (i.e. plume location and observation time) are used as initial input parameters in order to estimate the plume's profile at the time of the measurements. For selected case studies we use these trajectories to further estimate values the eruption time and height. The correspondingly modelled values can also be used to verify the results when they are compared to direct local observations and

  20. Crustal deformation and magmatic processes at Laguna del Maule volcanic field (Chile): Geodetic measurements and numerical models

    NASA Astrophysics Data System (ADS)

    Le Mevel, Helene

    The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation measured by interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2016, and data from the Global Positioning System (GPS) recorded since 2012 at five stations. The inflating region includes most of the 16--km-by--14--km ring of rhyolitic domes and coulees. The fastest-moving GPS station (MAU2) has a velocity vector of [[special character omited]72 +/- 4, 19 +/- 1, 194 +/- 3] mm/yr between 2012 and 2016 for the eastward, northward, and upward components, respectively. First, we model the InSAR observations assuming a rectangular dislocation in a half space with uniform elastic properties. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2011. Modeling of historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation and present a new dynamic model to describe this process. A Newtonian fluid characterized by its viscosity, density, and pressure flows through a vertical conduit, intruding into a reservoir embedded in an elastic domain and leading to time-dependent surface deformation. Using a grid-search optimization, we minimize the misfit to the InSAR displacement data by varying the three parameters governing the analytical solution: the characteristic timescale tauP for magma propagation, the injection pressure, and the inflection time when the acceleration switches from positive to negative. For a spheroid with semi-major axis a = 6200 m, semi-minor axis c = 100 m, located at a

  1. Coupling observable data to the spatio-temporal properties of natural hazards, An application to the volcanic field of Harrat Rahat, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Runge, M.; Bebbington, M. S.; Cronin, S. J.; Lindsay, J. M.; Moufti, R.

    2013-12-01

    The volcanic field of Harrat Rahat in Saudi Arabia is a highly complex volcanic system with 950+ volcanic cones or craters distributed over 20,000 km2 and with evidence of volcanic activity spanning from 10 Ma to present with two historical eruptions in 641 AD and 1256 AD. This record, the proximity of Harrat Rahat to the city of Al-Madinah, and a possible stalled eruption in 1999 AD, drives a need to quantify the likelihood and magnitude of future eruptions. For volcanic fields, as is common for the majority of natural hazards, we cannot yet directly observe the underlying geophysical processes, nor do we understand them sufficiently to create reliable, predictive models. However, technological advancements and novel monitoring techniques facilitate the collection of a vast range of data types from satellite based to subsurface measurements for a region of interest. Observable data for Harrat Rahat include: vent locations, volumes and spatial distributions of past eruptive products, aeromagnetic and seismic interpretations of sub-surface structure, and regional tectonic models. We present here a bootstrap method whereby observed data values at the locations and times of an eruption are compared to values sampled at random points in space-time. This allows direct determination of the relationship (if any) between each observable data set and the spatio-temporal recurrence rates of volcanism in Harrat Rahat.

  2. Petrologic evolution of divergent peralkaline magmas from the Silent Canyon caldera complex, southwestern Nevada volcanic field

    USGS Publications Warehouse

    Sawyer, D.A.; Sargent, K.A.

    1989-01-01

    The Silent Canyon volcanic center consists of a buried Miocene peralkaline caldera complex and outlying peralkaline lava domes. Two widespread ash flow sheets, the Tub Spring and overlying Grouse Canyon members of the Miocene Belted Range Tuff, were erupted from the caldera complex and have volumes of 60-100 km3 and 200 km3, respectively. Eruption of the ash flows was preceded by widespread extrusion of precaldera comendite domes and was followed by extrusion of postcollapse peralkaline lavas and tuffs within and outside the caldera complex. Lava flows and tuffs were also deposited between the two major ash flow sheets. Rocks of the Silent Canyon center vary significantly in silica content and peralkalinity. Weakly peralkaline silicic comendites (PI 1.0-1.1) are the most abundant precaldera lavas. Postcollapse lavas range from trachyte to silicic comendite; some have anomalous light rare earth element (LREE) enrichments. Silent Canyon rocks follow a common petrologic evolution from trachyte to low-silica comendite; above 73% SiO2, compositions of the moderately peralkaline comendites diverge from those of the weakly peralkaline silicic comendites. The development of divergent peralkaline magmas, toward both pantelleritic and weakly peralkaline compositions, is unusual in a single volcanic center. -from Authors

  3. Geothermal test hints at oil potential in eastern Arizona volcanic field

    SciTech Connect

    Rauzi, S.L. )

    1993-01-03

    A recently drilled geothermal well, funded by the US Department of Energy and the Arizona Department of Commerce, has provided information about the geology of east-central Arizona and west-central New Mexico. Tonto Drilling Services in cooperation with New Mexico State University completed the well, the 1 Alpine-Federal, at a total depth of 4,505 ft. The well is located among volcanic rocks in the Apache-Sitgreaves National Forest about 6 miles north of the town of Alpine and 6.2 miles west of the Arizona-New Mexico line. The well was drilled to determine the hot dry rock geothermal potential of Precambrian rocks. The operator expected to penetrate Precambrian at about 4,200 ft, but the hole was still in Permian rocks at that depth and was in a mafic dike that intruded the Permian rocks at the total depth of 4,505 ft. The hole did show that Cretaceous and Permian strata contain potentially important source rocks for oil and gas that are apparently unaffected by nearby volcanism. These potential oil source rocks are the focus of this article.

  4. Stratigraphy, geochronology and evolution of the Mt. Melbourne volcanic field (North Victoria Land, Antarctica)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Lucci, Federico

    2016-04-01

    Mt. Melbourne (2,732 ma.s.l.) is a large quiescent stratovolcano located in Northern Victoria Land (Antarctica) and is one of a handful of volcanoes on the Antarctic plate with the potential for large-scale explosive eruptions. The early, Lower Pleistocene, volcanism was largely alkali basaltic to hawaiitic in composition and monogenetic in style, producing tens of small scoria cones and lava flows scattered over a wide area across the Transantarctic Mountains (Random Hills Period). During the Middle Pleistocene, volcanic activity focused to the area of the Mt. Melbourne stratovolcano, where several monogenetic centres show the transition from early subglacial/ subaqueous conditions to emergent subaerial conditions (Shield Nunatak Period). The oldest exposed deposit associated with the early activity of the Mt. Melbourne stratovolcano (Mt. Melbourne Period) is a trachytic subaerial ignimbrite dated at 123.6±6.0 ka, which reflects the establishment of a crustal magma chamber. Above the ignimbrite a succession of alkali basaltic, hawaiitic, and subordinate benmoreitic lavas and scoria cones is exposed, dated at 90.7±19.0 ka. The most recent deposits are exposed at the top of Mt. Melbourne, where the crater rim is composed of trachytic to rhyolitic pumice fall deposits, which are also extensively dispersed around the volcano, originated from Plinian-scale eruptions. The most recent explosive deposit proved difficult to date accurately because very low quantities of radiogenic 40Ar were released, resulting in imprecise plateau ages of 50±70 and 35±22 ka.

  5. Earthquake swarm activity highlights crustal faulting associated with the Waimangu-Rotomahana-Mt Tarawera geothermal field, Taupo Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Bannister, Stephen; Sherburn, Steven; Bourguignon, Sandra

    2016-03-01

    The Waimangu-Rotomahana-Mt.Tarawera geothermal field (WRTGF) in the Taupo Volcanic Zone, New Zealand, experiences frequent but sporadic earthquake swarms with durations of less than 1 day. Here we examine detailed locations of the seismic activity using precise double-difference relative location techniques. We utilize a combination of cross-correlation-derived arrival times and catalogue-based arrival times from 582 earthquakes recorded in the area between 2004 and 2015 for the relocation analysis. The new earthquake locations highlight a ~ 6 km long NE-SW lineation, which we infer to represent a sub-surface fault that extends along the northern side of Waimangu geothermal system and the north-western end of Lake Rotomahana. We suggest that this structural feature acts as a permeable pathway for aqueous fluid and CO2 release up to the surface geothermal field and Lake Rotomahana, from a deeper magmatic source.

  6. Authigenic, detrital and diagenetic minerals in the Laguna Potrok Aike sediment sequence

    NASA Astrophysics Data System (ADS)

    Nuttin, L.; Francus, P.; Preda, M.; Ghaleb, B.; Hillaire-Marcel, C.

    2013-07-01

    The ˜100 m-long Laguna Potrok Aike sediment sequence yielded a record spanning the Last Glacial period to the Holocene. This paper presents and discusses two aspects of the mineralogy of the lake. The first aspect is based on a semi-quantitative X-ray diffraction analysis of bulk and clay mineralogical assemblages. Minor mineralogical changes are observed throughout the glacial section suggesting relatively uniform sediment sources. The transition into the Holocene is characterized by increasing fluxes of endogenic calcite thought to relate to lower lake levels. The second aspect is based on analysis of uranium-series disequilibria in diagenetic vivianite from the glacial section. U-series ages were expected to yield minimum ages for the host-sediment. Unfortunately, very little authigenic U is present in vivianite grains. The low primary productivity of the lake and thus low organic carbon fluxes might have prevented the development of strong redox gradients at the water-sediment interface and thus reduced diagenetic U-uptake into the sediment. One vivianite sample, at a 56.9 m composite depth, yielded enough authigenic uranium to calculate a 230Th-age of 29.4 ± 5.9 ka (±2σ). This age is younger than the one indicated by the radiocarbon chronology. It is thus concluded that a relatively late diagenetic evolution of the U-Th system characterizes the recovered vivianite minerals. The authigenic U displays a very high excess in 234U (over 238U) with an activity ratio of 4.58 ± 0.58 (±2σ). It suggests that it originates from the transfer of highly fractionated U from surrounding detrital minerals through very low U-content pore waters.

  7. Ship Rock Diatreme: is it a Classical Volcano? New Evidence on Magma Ascent and Emplacement Within the Navajo Volcanic Field

    NASA Astrophysics Data System (ADS)

    Rotzien, J. R.; Mayhew, B.; Yospin, S.; Beiki, A.; Tewksbury, C.; Hardman, D.; Bank, C.; Noblett, J.; Semken, S.; Kroeger, G.

    2007-12-01

    The Navajo Volcanic Field (NVF) is an area of late-Tertiary volcanism along the New Mexico-Arizona border near the Four Corners region of the American Southwest. Among the roughly 80 exhumed diatremes that comprise the NVF, Ship Rock and The Thumb are two diatremes that present an interesting problem concerning magma ascent and emplacement within the NVF. Are the diatremes remnants of classical volcanoes with underlying magma chambers, or are the diatremes formed from buds off of upward propagating dike swarms? The 2006 Keck Consortium Geophysics Project collected non-invasive gravity and magnetic data to image the subsurface of Ship Rock and The Thumb to suggest constraints concerning the formation of these diatremes within the Navajo Volcanic Field. At Ship Rock, we collected over 120 gravity points spaced 500 m apart along 10 lines. We also collected about 65,000 magnetic points that cover an area of 1,570,000 square meters surrounding Ship Rock. The gravity data reveal gravity lows several kilometers away from Ship Rock, probably as a result of thick sedimentary units close to the surface. A steep gradient of 5 mGal/km separates the gravity lows from a strong gravity high immediately to the southwest of Ship Rock. We interpret this gravity high to be uneven basement topography or a magma chamber at depth; further studies are required to determine which of the interpretations is more likely. The Ship Rock magnetic data show the prominent west and northeast dikes extend well beyond their surface outcrops while the southern dike extends only to its visible termination. The magnetic data we collected at The Thumb along ~18 km of lines reveal a linear northeast-southwest trending magnetic anomaly about 105 to 360 nT in amplitude that crosses the diatreme. We interpret the anomaly to be a dike beneath The Thumb. Models of the total field magnetic data suggest a dike at shallow depths of about 0.1 to 4.8 m and widths of about 0.25 to 1.5 m with a steep dip to the

  8. Size, distribution, and magma output rate for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico

    NASA Astrophysics Data System (ADS)

    Hasenaka, T.

    1994-10-01

    The Michoacán-Guanajuato Volcanic Field (MGVF), in the west-central Mexican Volcanic Belt (MVB), contains nearly 400 medium-sized volcanoes in addition to 1000 small monogenetic cones. The area is distinct from other parts of the MVB, where large composite volcanoes predominate. Shield volcanoes are dominant among medium-sized volcanoes, which also include minor lava domes and composite volcanoes. The location, height, basal diameter, and crater diameter (when applicable) of 378 medium-sized volcanoes were catalogued, and the slope angles and volumes were calculated from these data. The median shield volcano has a height of 340 m, a basal diameter of 4100 m, an average slope angle of 9.4°, and a volume of 1.7 km 3. The shield volcanoes in the MGVF are similar in size to Icelandic-type shield volcanoes, but the former have much higher slope angles and smaller basal diameters than the latter. Within the MGVF, these medium-sized volcanoes are located between 190 km and 430 km from the Middle America Trench; the distribution area is similar to that of small cones, but clusters and alignments are not as obvious for the medium-sized cones. The shield density is highest between 270 and 280 km from the Middle America Trench, 20 km farther than the density maximum for small cones. Ten medium-sized volcanoes were considered younger than 40,000 yr B.P. from lava flow morphology. The slope angle and a ratio of height to basal diameter are not useful age indicators, because they seem to reflect difference in original shield shape. K-Ar ages of shield volcanoes reveal that the volcanoes located north of latitude 19°55'N were active between 1 Ma and 3 Ma, whereas those south of latitude 19°55'N were active since 1 Ma. The average volcanic output rate estimated for the last 1 Ma is 0.7 km 3/1000 yr., whereas that for the period of 1-3 Ma is 0.2 km 3/1000 yr. An increase in magma production occurred around 1 Ma in response to migration of volcanism and probably to a change in

  9. 3-dimensional geometric modeling and parameter estimation of scoria cones of the San Francisco Volcanic Field, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Király, E.; Székely, B.; Bata, T.; Lócsi, L.; Karátson, D.

    2009-04-01

    The almost global availability of medium- and high-resolution Digital Terrain Models (DTMs) paved the way of new approaches in volcanic geomorphology. The increasing importance of understanding of surface processes that act during the degradation of volcanic edifices also mean a demand for geometric modeling of their surface, in order to derive parameters from the topography that are suitable for further analysis. Our study area, the San Francisco Volcanic Field (SFVF), is a ca. 4500 km2-large volcanic region situated around the San Francisco stratovolcano at Flagstaff, Arizona (USA) that hosts some 600 scoria and lava domes, numerous lava flows with extensive volcanic ash deposits. Because of the wide range in size and age, as well as contrasting degradation of these volcanic features, several authors have analysed them in the last decades to derive general rules of their lowering. Morphometric parameters were determined that were expected to be suitable to fulfill this requirement. In his pioneering work, Wood (1980a,b) considered 40 scoria cones, while almost two decades later Hooper and Sheridan (1998) included 237 features in their study. Their manual morphometric analyses were based on topographic maps that are time consuming, therefore their limited scope can now be extended with the availability of digital data. In the initial phase of our project more than 300 cones were analysed using the classic approach (height of the cone, width of the cone and crater, etc.). Additionally the slope histogram were analysed in order to classify the cones into different evolutionary categories. These analyses led to the selection of a few volcanoes, that entered in the next processing phase. Firstly the derivation of parameters in two-dimensional approach were carried out. Horizontal and vertical cross sections were extracted from the DTM, and the resulting planar curves were analysed via parameter estimation. The horizontal planar outlines were approached with circles

  10. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field

    USGS Publications Warehouse

    Hildreth, W.; Halliday, A.N.; Christiansen, R.L.

    1991-01-01

    Since 2.2 Ma, the Yellowstone Plateau Volcanic Field has produced ~6000 km3 of rhyolite tuffs and lavas in >60 separate eruptions, as well as ~100 km3 of tholeiitic basalt from >50 vents peripheral to the silicic focus. Intermediate eruptive products are absent. Early postcollapse rhyolites show large shifts in Nd, Sr, Pb, and O isotopic composition caused by assimilation of roof rocks and hydrothermal brines during collapse and resurgence. Younger intracaldera rhyolite lavas record partial isotopic recovery toward precaldera ratios. Thirteen extracaldera rhyolites show none of these effects and have sources independent of the subcaldera magma system. Contributions from the Archaean crust have extreme values and wide ranges of Nd-, Sr, and Pb-isotope ratios, but Yellowstone rhyolites have moderate values and limited ranges. This requires their deep-crustal sources to have been pervasively hybridized by distributed intrusion of Cenozoic basalt, most of which was probably contemporaneous with the Pliocene and Quaternary volcanism. Most Yellowstone basalts had undergone cryptic clinopyroxene fractionation in the lower crust or crust-mantle transition zone and, having also ascended through or adjacent to crustal zones of silicic-magma generation, most underwent some crustal contamination. -from Authors

  11. Plio-Pleistocene paleomagnetic secular variation and time-averaged field: Ruiz-Tolima volcanic chain, Colombia

    NASA Astrophysics Data System (ADS)

    Sánchez-Duque, A.; Mejia, V.; Opdyke, N. D.; Huang, K.; Rosales-Rivera, A.

    2016-02-01

    Paleomagnetic results obtained from 47 Plio-Pleistocene volcanic flows from the Ruiz-Tolima Volcanic Chain (Colombia) are presented. The mean direction of magnetization among these flows, which comprise normal (n = 43) and reversed (n = 4) polarities, is Dec = 1.8°, Inc = 3.2°, α95 = 5.0°, and κ = 18.4. This direction of magnetization coincides with GAD plus a small persistent axial quadrupolar component (around 5%) at the site-average latitude (4.93°). This agreement is robust after applying several selection criteria (α95 < 10º α95 < 5.5º polarities: normal, reversed, and tentatively transitional). The data are in agreement with Model G proposed by McElhinny and McFadden (1997) and the fit is improved when sites tentatively identified as transitional (two that otherwise have normal polarity) are excluded from the calculations. Compliance observed with the above mentioned time-averaged field and paleosecular variation models, is also observed for many recent similar studies from low latitudes, with the exception of results from Galapagos Islands that coincide with GAD and tend to be near sided.

  12. 40Ar/39Ar geochronology and geochemical reconnaissance of the Eocene Lowland Creek volcanic field, west-central Montana

    USGS Publications Warehouse

    Dudas, F.O.; Ispolatov, V.O.; Harlan, S.S.; Snee, L.W.

    2010-01-01

    We report geochronological and geochemical data for the calc-alkalic Lowland Creek volcanic field (LCVF) in westcentral Montana. 40Ar/ 39Ar age determinations show that the LCVF was active from 52.9 to 48.6 Ma, with tuff-forming eruptions at 52.9 ?? 0.14 and 51.8 ?? 0.14 Ma. These dates span the age range of vigorous Eocene igneous activity in the Kamloops-Absaroka-Challis belt. The LCVF evolved upward from basal rhyolites (SiO 2>71 wt%) to dacites and andesites (SiO 2 > 62 wt%). Compositional change parallels a transition from early explosive volcanism to late effusive activity. Four geochemical components can be detected in the rocks. A component with 206Pb/204Pb < 16.5 and epsilon;Nd near-15 is predominant in anhydrous, two-pyroxene dacites; hydrous rhyolites, rhyodacites, and dacites with epsilon;Nd below-10 are dominated by a second component; hydrous rocks with 206Pb/ 204Pb > 18.3 and epsilon;Nd>-9 contain a third component; and an andesite with low Nd content and epsilon;Nd near-9 probably contains a fourth component. The first three components probably derive from the lower and middle crust, whereas the fourth is probably from the lithospheric mantle. ?? 2010 by The University of Chicago.

  13. Vegetation history in southern Patagonia: first palynological results of the ICDP lake drilling project at Laguna Potrok Aike, Argentina

    NASA Astrophysics Data System (ADS)

    Schäbitz, Frank; Michael, Wille

    2010-05-01

    Laguna Potrok Aike located in southern Argentina is one of the very few locations that are suited to reconstruct the paleoenvironmental and climatic history of southern Patagonia. In the framework of the multinational ICDP deep drilling project PASADO several long sediment cores to a composite depth of more than 100 m were obtained. Here we present first results of pollen analyses from sediment material of the core catcher. Absolute time control is not yet available. Pollen spectra with a spatial resolution of three meters show that Laguna Potrok Aike was always surrounded by Patagonian Steppe vegetation. However, the species composition underwent some marked proportional changes through time. The uppermost pollen spectra show a high contribution of Andean forest and charcoal particles as it can be expected for Holocene times and the ending last glacial. The middle part shows no forest and relatively high amounts of pollen from steppe plants indicating cold and dry full glacial conditions. The lowermost samples are characterized by a significantly different species composition as steppe plants like Asteraceae, Caryophyllaceae, Ericaceae and Ephedra became more frequent. In combination with higher charcoal amounts and an algal species composition comparable to Holocene times we suggest that conditions during the formation of sediments at the base of the record were more humid and/or warmer causing a higher fuel availability for charcoal production compared to full glacial times.

  14. Structural and morphometric irregularities of eroded Pliocene scoria cones at the Bakony-Balaton Highland Volcanic Field, Hungary

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2012-01-01

    Scoria cones of the Mio-Pliocene Bakony-Balaton Highland Volcanic Field (BBHVF) are built up by wide range of volcanic rocks, including intercalated lava flows/dykes, pyroclastic breccias and scoriaceous lapilli with various degrees of welding or agglutination. According to K-Ar and Ar-Ar dating, ages of the fourteen scoria cones within the field span between 5.2 and 2.5 Ma. From these fourteen, seven cones were selected which are suitable for morphometric analysis, i.e. visible in the field and have identifiable boundaries. The morphometric data were either derived by manual measurement on topographic maps and by Digital Elevation Model-based calculations. Using the same input contour line data from 1:10,000 maps, basic cone parameters such as cone height, basal and crater width have been measured in order to calculate parameters like H co/W co ratio and average slope angle. The results of these 'three-parameter'-based manual calculations have been compared to the DEM-based results in order to highlight the controls of degradation, pitfalls in morphometric parameterization and the differences between these two calculation methods. Based on the results, three main controlling conditions have been identified that are together responsible for the preservation and erosion of the scoria cones located in the BBHVF: (1) age of the cone, (2) climate during the degradation and the (3) inner architecture of the edifice. In terms of morphometric dating, the traditional, 'three-parameter'-based method tends to give inaccurate results on (1) scattered and/or truncated cones and (2) on the edifices characterised by highly effusive behaviour during the emplacement.

  15. Prehistoric Agriculture and Soil Fertility on Lava Flows in Northern Arizona, USA: Results from the San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Anderson, K. C.

    2013-12-01

    The San Francisco Volcanic Field in northern Arizona is home to ~600 cinder cones, the youngest of which is Sunset Crater (erupted ~AD 1100). This study documents trends in available phosphate and nitrate content with time, testing whether lowered soil pH from the addition of Sunset cinders increased soil fertility and became a factor in Anasazi agricultural success. Soil fertility is examined both before and after Sunset's eruption in soils of different ages that have developed from eolian deposition on top of lava flows. An increase in phosphate and nitrate levels following acidification would suggest that the presence of Sunset cinders brought the soils to the optimal pH for mobilization of these nutrients. The combined effects of the cinder layer retaining nutrients and water, wetter climates, and increases in phosphate and nitrate (both limiting nutrients for plant growth), would have contributed to Anasazi agricultural success after Sunset's eruption. Samples for this study were taken from eolian-derived soils of different ages atop lava flows in the San Francisco Volcanic Field. OSL data from these soils on Strawberry and SP Craters' lava flows yielded age estimates of ~12.3 ka (Strawberry) and ~32.7 ka (SP), on which a soil chronosequence was based. Results from the chronosequence supported these OSL ages, indicating that soils on the SP flow are older than those on the Strawberry flow. Field descriptions, Harden Development Indices, particle size analysis, and nutrient content analysis were used for this aspect of the project. An experimental acid wash method will be used to simulate the addition of Sunset's acidic cinders, and will yield data for phosphate and nitrate content after Sunset erupted. Preliminary results indicate that phosphate and nitrate accumulate in upper, eolian-derived horizons (Av, Bw) and in more deeply buried carbonate horizons (Bk). Higher concentrations of phosphate and nitrate were found in older (SP) soils than younger

  16. The anatomy of a cinder cone: preliminary paleomagnetic, rock magnetic, structural, and petrologic data from the La Cienega volcano, Cerros del Rio volcanic field, northern New Mexico

    NASA Astrophysics Data System (ADS)

    Petronis, M. S.; Foucher, M.; Lineline, J.; Van Wyk de Vries, B.

    2011-12-01

    The Cerros del Rio volcanic field is one of several middle Pliocene to Pleistocene basaltic volcanic fields of the axial Rio Grande Rift in central and northern New Mexico. It is a monogenetic volcanic field that comprises about 60 cinder-spatter cones, occupies ~ 700 km2, and ranges in age from 2.7 Ma to 1.1 Ma. Eruptive centers are typically central vent volcanoes, ranging from low-relief shields to steep-sided, breached cinder and spatter cone remnants. They represent short eruptive events that likely were derived from rapidly evolving reservoir-conduit systems. Mining activity has exposed the volcanic plumbing system of the Cienega Mine cinder cone, just west of Santa Fe, NM. Here, geologists from France and USA have been investigating the exposed roots of this eviscerated Pliocene volcano to investigate magma conduit geometry, magma flow structures, and eruption patterns. We are testing models for magma transport and volcano construction using a variety of field and laboratory tools. Common models of volcanic construction envision the magma feeder as a dike or pipe-like conduit transporting molten rock from a deep reservoir to the eruptive vent. We posit that small volcanic pluming systems are inherently more complex and actually involve numerous feeder geometries throughout the volcano lifespan. Our preliminary work suggests that the simple exteriors of some cinder cones hide a long life and complex history, both of which would change the appreciation of the related volcanic hazards in active systems. The Cienega Mine cinder cone consists of several meter- to decimeter-wide intrusions that connect to eruptive centers. These intrusions show a continuity of brittle to ductile structures from their margins to interiors. We have collected samples across each intrusion as well as along strike for anisotropy of magnetic susceptibility (AMS) and petrographic analysis in order to establish magma flow patterns. AMS results yield a remarkably consistent dataset that

  17. Plumbing of continental basaltic volcanoes from the mantle to the surface, 1: Insights from field relationships at the Lunar Crater Volcanic Field (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Cortes, J. A.; Widom, E.; Smith, E. I.

    2011-12-01

    Monogenetic intraplate volcanoes offer unique insights into the linkages between magma sources, crustal ascent, and eruption processes. We focus here on the northernmost part of the Lunar Crater Volcanic Field (LCVF), Nevada, with ~45 monogenetic volcanoes in a 10 km long, 5 km wide band. Within that band, many volcanoes occur in localized clusters with up to 5 volcanoes (of different ages) per square kilometer. Most of the clusters are elongated in a direction that parallels the trend of the LCVF as a whole. Currently it is uncertain whether such clusters are related to faults in the underlying rocks because of the thick, young cover of basaltic volcanic products. However, in other areas, especially along the periphery of the volcanic field, vents often correspond with pre-existing normal faults, and it seems likely that elongated clusters represent areas of repeated (over time scales of ~1-2 Ma) injection of feeder dikes into faults in the shallow crust. The edges of the volcanic field in the northernmost part are defined by sharp boundaries, where there is a sharp transition from high volcano concentration on one side, to no volcanoes on the other. A fundamental question is whether this transition reflects a similar spatial distribution in the mantle source area, or whether it is due entirely to shallow structural controls on magma ascent. The northernmost part of the LCVF provides an ideal case study for testing relationships between physical parameters (volume, fissure length, eruptive style) and geochemistry. We focus on three volcanoes, two of which are closely spaced (~500 m) but occurred at times separated by 100s ka (based upon surface morphology). The older of these two, informally called the OPB volcano (older, phenocryst bearing) is likely mid-Pleistocene in age; the younger is referred to as YMB (younger, megacrysts bearing). The third volcano, previously named Marcath/Black Rock, is the youngest in the volcanic field, located ~4 km southwest of OPB

  18. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  19. Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah

    USGS Publications Warehouse

    Best, M.G.; Christiansen, E.H.; Blank, H.R., Jr.

    1989-01-01

    The Indian Peak volcanic field is representative of the more than 50 000 km3 of ashflow tuff and tens of calderas in the Great Basin that formed during the Oligocene-early Miocene "ignimbrite flareup' in southwestern North America. These dominantly high-K calc-alkaline rocks are a record of the birth, maturation, and death of a large, open, continental magma system that was probably initiated and sustained by influx of mafic magma derived from a southward-migrating locus of magma production in the mantle. Recurrent production of very large batches (some greater than 3000 km3) of quite uniform dacite magmas appears to have required combination of andesite magma and crustal silicic material in vigorously convecting chambers. Compositional data indicate that rhyolites are polygenetic. As the main locus of mantle magma production shifted southward, trachydacite magma could have been produced by fractionation of andesitic magma within the crust. -from Author

  20. Paleomagnetism and Rock Magnetic Properties from Quaternary Lavas and Tuffs of the Yellowstone Plateau Volcanic Field

    NASA Astrophysics Data System (ADS)

    Harlan, S. S.; Morgan, L. A.

    2008-12-01

    We report paleomagnetic and rock magnetic from rhyolite lava flows, ignimbrites, and basalt flows associated with the Yellowstone Caldera, within and surrounding Yellowstone National Park. These data were collected in order to understand sources of magnetic variations observed in high resolution aeromagnetic data reported by Finn and Morgan (2002), and to better understand the evolution of the Yellowstone magmatic system. Most paleomagnetic samples are from volcanic rocks of the third eruptive cycle (1.2 Ma to 0.070 Ma), including the ca. 0.640 Ma Lava Creek Tuff, postcaldera rhyolite flows, and contemporaneous marginal or post-caldera basalt flows. Magnetic intensities for samples ranged from 0.12 A/m to 5.9 A/m, with volume susceptibilities of 2.14x10-4 to 1.45x10-3 SI; Q ratios range from 0.67 to 23.8. As expected, most sites yield well-defined paleomagnetic directions of north declination and moderate positive inclination consistent with remanence acquisition during the Brunhes polarity chron. However, a few sites from older units such as the rhyolites of the Harlequin Lake (0.839 ± 0.007 Ma) and Lewis Canyon (0.853 ± 0.008 Ma) flows, and the basalts from the Junction Butte flow (at Tower Falls, 2.16 ± 0.04 Ma) and Hepburn Mesa (2.2 Ma) yield reverse polarity magnetizations (40Ar/39Ar dates from Obradovich, 1992, and Harlan, unpublished (Hepburn Mesa flow)). Rock magnetic behavior, including high coercivities during AF demagnetization, high laboratory unblocking temperatures, and susceptibility vs. temperature determinations indicate that remanence in the rhyolitic samples is carried by a combination of single or pseudo-single domain magnetite and/or hematite; in the basalt flows magnetite and high-Ti titanomagnetite carrys the remanence. Paleomagnetic results from 46 sites in 27 separate flows yields a grand mean direction with a declination of 356.9° and inclination of 61.9° (k = 35.2, α95 = 4.8°). VGPs calculated from the site-mean directions yield a

  1. Magma Injection Models to Quantify Reservoir Dynamics at Laguna del Maule Volcanic Field, Chile, between 2007 and 2015.

    NASA Astrophysics Data System (ADS)

    Le Mével, H.; Gregg, P. M.; Feigl, K. L.

    2015-12-01

    Moving beyond the widely used kinematic models for the deformation sources, we present new dynamic models to describe the process of injecting magma into an existing magma reservoir. The 3-dimensional numerical models account for a viscoelastic, gravitationally loaded domain with spatially variable rheological properties. A Newtonian fluid characterized by its viscosity, density, and overpressure (relative to the lithostatic value) intrudes into a viscoelastic solid via a conduit leading to the reservoir. Using the Finite Element Method (FEM), we simultaneously solve the coupled quasi-static elastic and Navier-Stokes governing equations for the solid and the fluid, respectively, using the COMSOL Multiphysics software. The fluid and the solid interact through buoyancy and viscoelastic relaxation, leading to time-dependent deformation. To quantify the "strength" of the source, we define the product of the volume change (in cubic meters) and pressure change (in Pascals) as the "volcanic moment" (in Newton-meters or Joules). This quantity serves as a basis for comparing the calculated displacement fields to analytical solutions. After validating our injection model, we apply it to the ongoing episode of unrest at Laguna del Maule (Chile). Since 2007, the volcanic field there has been deforming at an exceptionally high rate, with vertical velocities up to 200 mm/yr, as measured by GPS and Interferometric Synthetic Aperture Radar (InSAR) between 2013 and 2014, as described recently by Le Mével et al. (2015, Geophys. Res. Lett. http://dx.doi.org/10.1002/2015GL064665). We are modeling the geodetic data to analyze the temporal and spatial evolution of the displacement. These models constrain the mass flux of material into the reservoir and thus its impact on the stress in the crust. Our results contribute to understanding the current unrest episode at Laguna del Maule and to assessing geodetic signals at other active volcanoes.

  2. Petrology and Sr and Nd isotopic characteristics of five late Cretaceous-early Tertiary volcanic fields in western Alaska

    SciTech Connect

    Moll-Stalcup, E.J.

    1987-01-01

    Chemical and Sr and Nd isotopic characteristics were studied in an attempt to determine if old continental crust having high /sup 87/Sr//sup 86/Sr (SIR) and low /sup 143/Nd//sup 144/Nd (NIR) underlies the Yukon-Koyukuk province. The Blackburn Hills, Yukon River, and Kanuti fields lie within the Yukon-Koyukuk province and the Sischu and Nowitna fields overlie Paleozoic and Precambrian metamorphic terranes to the southeast. The Nowitna field is chiefly andesite having SIR = 0.7044-0.7051 and NIR = 0.51256-0.51257. The Sischu field is chiefly rhyolite and dacite having high SIR (0.7079-0.7140) and low NIR (0.51246-0.51252), which suggests that old continental crust was involved in their genesis, either by direct partial melting or by large degrees of assimilation. The Blackburn Hills field consists of medium-K basalt, andesite, and rhyolite intruded by a small granodiorite pluton and has SIR = 0.7033-0.7052 and NIR = 0.51253-51290. The Yukon River field is basalt, andesite, dacite, and rhyolite having SIR = 0.70374-0.70511 and NIR = 0.51270-0.51284, and much of its isotopic variation can be modeled by assimilation of seawater-altered oceanic crust during fractionation of basalt. Isotopic compositions of most felsic rocks from the Blackburn Hills field (SIR = 0.7038-0.7041) and dacites from the Kanuti volcanic field (SIR = 0.7043-0.7048) require little or no old continental crust in their genesis, suggesting that ancient crust does not extend beneath this part of the Yukon-Koyukuk province. However, the ultimate source of the shoshonitic lower crust of the Koyukuk terrane (SIR = 0.705, NIR = 0.5125) may be continental mantle, which may have been thrust under this part of the Yukon-Koyukuk province during arc-continent collision in the early Cretaceous.

  3. What is controlling spectral reflectance of lava flows? First results of a field spectrometric survey of volcanic surfaces on Tenerife Island

    NASA Astrophysics Data System (ADS)

    Li, Long; Kervyn, Matthieu; Solana, Carmen; Canters, Frank

    2014-05-01

    Space-based remote sensing techniques have demonstrated their great value in volcanic studies thanks to their synoptic spatial coverage and the repeated acquisitions. On satellite images, volcanic surfaces display a wide range of colors, and therefore contrasted reflectance spectra. Understanding the factors controlling the spectral reflectance of volcanic materials at different wavelength is essential to mapping volcanic areas. Detailed investigation into spectra of volcanic materials are, however, restricted due to the trade-off between spatial and spectral resolution of space-based sensors, such as Hyperion imagery that allows resolving 220 spectral bands ranging from 400 to 2500 nm with a spatial resolution of 30 meters. In order to better understand reflectance of volcanic materials, especially lava, a field campaign was launched in Tenerife Island, Spain in November 2013 with an ASD FieldSpec 3 to document the reflectance spectra of historical mafic lava flow surfaces. 20 specific lava and lapilli surfaces, with contrasted age, surface roughness, weathering condition and vegetation coverage were characterized, using a systematic recording method documenting the spectra's variability within a 15×15 m2 area. Results show that all the volcanic materials have great differences in spectral reflectance. Among them, lava's reflectance is low but still slightly higher than that of lapilli. Comparison of rough and smooth lava surfaces on the same lava flow suggests that roughness tends to increase the reflectance of lava surfaces. Also, vegetation and lichen alter lava's reflectance in some spectral regions, especially through a rise in the near infrared part of the spectrum. It is therefore suggested that reflectance spectra of lava evolve over time due to weathering processes, such as chemical alteration and growth of lichen and moss. In addition, it is possible to compare field measurements with spectra derived from Hyperion imagery, resulting in a strong match

  4. Extension-related origin of magmas from a garnet-bearing source in the Los Tuxtlas volcanic field, Mexico

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.

    2006-09-01

    The Los Tuxtlas volcanic field (LTVF) of late Miocene to Recent age is a key area to understand the consequences of the current subduction of the Cocos plate beneath the North American plate, as well as the competing effects of the ongoing extension along the Gulf of Mexico coast. Geochemical and radiogenic (Sr, Nd, and Pb) isotope data are used to constrain the origin of these 7 Ma to Recent magmas in this area. The basanitic and alkaline basaltic rocks show highly steep light rare-earth element-enriched patterns implying residual garnet in their mantle source, whereas the evolved alkaline and sub-alkaline rocks have less steep rare-earth element patterns consistent with a contribution from the continental crust. Geochemical and isotope data from the LTVF are compared with those from continental rifts, extension-related areas, continental break-up regions, and island and continental arcs, including the Central American volcanic arc related to the subduction of the same oceanic plate (Cocos plate), as well as with those from the two nearby Mexican provinces [the Eastern Alkaline Province (EAP) and the eastern part of the Mexican Volcanic Belt (E-MVB)]. These data for the LTVF primitive rocks are similar to rifts, extension-related areas and continental break-up regions, including the two Mexican provinces, but different from island and continental arcs, including the northern part of the Central American Volcanic Arc (CAVA). The LTVF rocks show an unusual Th and U enrichment with respect to Ba and Rb, which also renders a distinct negative Nb anomaly (with respect to Th and K) in them. These rocks also show a negative Nb anomaly (with respect to Ba and La) that is similar to numerous rift, extension-related areas, and continental break-up regions, but distinct from all arcs around the world, indicating that the magma genesis processes in the LTVF are similar to those in rifts. The “Sr-shift”, shown to be a typical feature of most, if not all, island and

  5. A New Geomagnetic Field Model for the last 2k years based on high quality archaeomagnetic and volcanic data

    NASA Astrophysics Data System (ADS)

    Campuzano, Saioa A.; Gómez-Paccard, Miriam; Pavón-Carrasco, Francisco Javier; Osete, María Luisa

    2016-04-01

    The knowledge of the ancient Earth's magnetic field is crucial to understand its origin and future evolution. In this context, the palaeomagnetic studies provide useful information about the past geomagnetic field registered in rocks, lava flows, sediments or archaeological materials. The continuous upgrade of the palaeomagnetic database during the last decade has allowed the generation of global geomagnetic field models based on different palaeomagnetic data and techniques (such as the SHA.DIF.14K, ARCH3K.1, CALS3K.4b, pfm9k.1a models, among others). Some recent studies have pointed out that the archaeointensity database might not be reliable enough, by observing high scatter in the records. Here, we present a new global geomagnetic model for the last 2000 years, SHAQ2K, based on high quality archaeomagnetic and volcanic intensity data. For this purpose we classify the palaeointensity data in two quality categories following widely accepted palaeomagnetic criteria based on the methodology used during the laboratory treatment of the samples and on the number of specimens finally used to calculate the mean intensities. Respect to the modelling process, we use the spherical harmonic analysis in space and cubic b-splines in time, also applying a spatial and temporal regularization which minimizes the energy of the geomagnetic field at the core-mantle boundary. The implications of the differences between this new model and other previously published global geomagnetic models are discussed.

  6. Seismic activity and stress tensor inversion at Las Tres Vírgenes Volcanic and Geothermal Field (México)

    NASA Astrophysics Data System (ADS)

    Antayhua-Vera, Yanet; Lermo-Samaniego, Javier; Quintanar-Robles, Luis; Campos-Enríquez, Oscar

    2015-10-01

    We analyze local earthquakes occurring between 2003 and 2012 at the Las Tres Vírgenes Volcanic and Geothermal Field (TVVGF) to establish their temporal and spatial distribution, and relationships with local and regional fault systems, water injection, acid stimulation and steam production tests. We obtained focal mechanisms and inverted data for the stress tensor to understand the local and regional stress fields. We analyzed 423 local earthquakes with magnitudes between 0.1 and 2.9 Mc and hypocentral depths from 0.2 to 7.4 km b.s.l. The cutoff depth at ~ 7.4 km possibly delineates the brittle-ductile transition zone. We identified seven swarms (from 1 to 7). Swarms 1 (December 2009), 2 (May 2010), 3 (June-July 2010) and 7 (December 2012) are strongly correlated with injection processes; whereas swarms 5 (April 2012) and 6 (September 2012) are correlated with local tectonic faults. Stress inversion showed NW-SE, E-W and NE-SW extensional orientations (Shmin), in agreement with the local tectonic stress field; while NE-SW compressional orientations (SHmax) are correlated with the regional tectonic stress field.

  7. A Potential Field and Geomorphological Study of Monowai Volcano: Interplay Between Volcanism and Tectonics on the Tonga-Kermadec arc

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Watts, A. B.; Peirce, C.

    2013-12-01

    The dynamics of caldera formation is affected by internal factors, such as magma chamber properties, and regional tectonic stresses. Understanding their inter-relation is important for assessing volcanic hazard and reconstructing volcano and arc evolution. We present a combined analysis of swath bathymetry and potential field data from the Monowai volcanic centre, Kermadec arc, acquired during cruise SO215 on the R/V Sonne, in April-June 2011. Monowai comprises an active stratovolcano and a large caldera, both submarine. The caldera is associated with a 25 mGal Bouguer gravity anomaly high and a broad positive magnetic anomaly. Short-wavelength magnetic anomalies of up to +1400 and -800 nT are observed along the caldera rim and on the summit of Monowai cone. Inversion of the Bouguer gravity anomaly shows that the caldera high is caused by a dense body with density contrast of +450 kg/m^3. The body has a volume of ~250 km^3 and consist of a main massive unit at 3-6 km depth and a shallower ring structure underlying the caldera rim. The density of the main body is 2650-2850 kg/m^3, compatible with a mafic composition. The ring structure is interpreted as set of ring dykes and the main unit as a solidified or partly solidified magma chamber system (the Monowai pluton). Geomorphological analysis suggests that the caldera's complex structure can be attributed to protracted activity on a single caldera structure and to multiple cycles of inflation and collapse. The underlying pluton might have grown incrementally as a series of sill-like intrusions. It remains unclear whether the current eruption at Monowai cone is fed directly from a small underlying magma chamber, or laterally from the Monowai pluton. Observations of radial fissure ridges on the flanks suggest that a shallow magma body was recently emplaced beneath the summit causing inflation and extensional cracks. Monowai lies inside a 20 km wide graben, part of an en-echelon, left-stepping horst and graben system

  8. Carbonatite associated with ultramafic diatremes in the Avon Volcanic District, Missouri, USA: Field, petrographic, and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Shavers, Ethan J.; Ghulam, Abduwasit; Encarnacion, John; Bridges, David L.; Luetkemeyer, P. Benjamin

    2016-04-01

    Here we report field, petrographic, and geochemical analyses of the southeast Missouri Avon Volcanic District intrusive rocks and present the first combined textural and geochemical evidence for the presence of a primary magmatic carbonatite phase among ultramafic dikes, pipes, and diatremes of olivine melilitite, alnöite, and calciocarbonatite. The δ13CVPDB values measured for primary calciocarbonatite as well as carbonates in olivine melilitite and alnöite rocks range from - 3.8‰ to - 8.2‰, which are within the typical range of mantle values and are distinct from values of the carbonate country rocks, 0.0‰ to - 1.3‰. The carbonate oxygen isotope compositions for the intrusive lithologies are in the range of 21.5‰ to 26.2‰ (VSMOW), consistent with post-emplacement low temperature hydrothermal alteration or kinetic fractionation effects associated with decompression and devolatilization. Metasomatized country rock and breccia-contaminated igneous lithologies have carbonate δ13CVPDB values gradational between primary carbonatite values and country rock values. Unaltered sedimentary dolomite breccia and mafic spheroids entrained by calciocarbonatite and the lack of microstratigraphic crystal growth typical of carbonate replacement, also exclude the possibility of hydrothermal replacement as the cause of the magmatic-textured carbonates. Rare earth element (REE) patterns for the alnöite, olivine melilitite, and carbonatite are similar to each other with strong light REE enrichment and heavy REE depletion relative to MORB. These patterns are distinct from those of country rock rhyolite and sedimentary carbonate. These data suggest that rocks of the Avon Volcanic District represent a single ultramafic-carbonatite intrusive complex possibly derived from a single mantle source.

  9. Depositional environments, diagenesis, and porosity of upper cretaceous volcanic-rich Tokio sandstone reservoirs, Haynesville Field, Clairborne Parish, Louisiana

    SciTech Connect

    Clark, W.J.

    1995-10-01

    Tokio Formation sandstones produce oil from volcanic-rich to quartzose lithic sandstones in the Haynesville Field. The Tokio interval is approximately 210 feet thick and has been divided into four sandstone zones separated by shales or scoured contacts. In ascending order, the four zones are the RA, S3, S2, and S1. The RA is composed of quartzose sublitharenites inferred to have been deposited in delta front bars and distributary channels. The upper three zones are composed of sublitharenite and feldspathic litharenite to quartzose litharenite. The upper sands are interpreted to have been deposited in littoral environments including storm influenced shelf, tidal flats and channels, and barrier island/strand plain. The diagenesis of these sands is strongly related to composition: greater percentages of cements and secondary porosity occur in lithic-rich sandstones. Diagenetic cements in quartzose sandstones are mainly quartz overgrowths with minor early K-spar overgrowths on plagioclase, early chlorite-rims, and late patchy calcite, pyrite, and rare dolomite and siderite. Diagenesis in lithic-rich sands includes greater amounts of chlorite rim and pore-filling kaolinite cements and less quartz-overgrowth and other cements. The effect of the original mineralogy and diagenetic minerals on wireline logs includes: (1) reduction of SP due to cements, (2) increase in GR response due to K-spar and volcanic detritus, (3) higher resistivity due to carbonate minerals, and (4) increase in irreducible water saturation due to pore-lining and pore-filling clay. Thus, potential reservoir zones with lithic-rich sandstones like the Tokio could be overlooked in many areas around the world.

  10. Post-seismic deformation of the Chilean volcanic arc (32°S-38°S): field and numerical studies

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Trippanera, Daniele; van Dinther, Ylona; Acocella, Valerio; Gerya, Taras

    2015-04-01

    Eruptive rates in volcanic arcs increase significantly after subduction zone mega-thrust earthquakes. Over short time periods the response of the arc is attributed to the passage of seismic waves and to the elastic deformation of the upper plate. A second peak of volcanic activity, however, occurs decades to centuries latter. A kinematic mechanism that controls such a long term response has yet to be proposed and verified. In 2010 the M8.8 Maule earthquake struck in Central Chile causing normal stress reductions in the arc as high as 1MPa (from about 32°S to about 38°S) on optimally oriented faults. In such regions the shallow (i.e. less than 30 km deep) post-seismic intra-arc seismic activity increased remarkably in the post-seismic period. We combine classical geological methods with numerical models of seismic cycles calibrated for the Central Chile subduction zone to investigate the key processes driving the deformation of the volcanic arc and the reactivation of volcanic systems over long timescales (e.g. decades to centuries). First, we undertook a geological field survey around and across the Nevados de Chillan volcanic complex, (~36.5°S). We mapped the distribution and orientation of faults and dikes to better describe the long-term deformation occurring in the this part of the volcanic arc. We concentrated in this region as the volcano was affected by the Maule earthquake and its aftershocks. In addition, the volcanic complex is elongated along a NW-SE direction, which is sub-parallel to the orientation of basement lineaments that are thought to be reactivated by supra-lithostatic fluid and magmatic pressures occurring during the post-seismic period. Second, we run 2D numerical simulations of several seismic cycles with a viscous-elasto-plastic seismo-thermo-mechanical code that accounts for a realistic geometry and rheology of the compressive margin. The code includes spontaneously developing faults and the morphology of the volcanic arc, which affects

  11. Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (western Turkey) using cosmogenic 3He and 10Be

    NASA Astrophysics Data System (ADS)

    Heineke, Caroline; Niedermann, Samuel; Hetzel, Ralf; Akal, Cüneyt

    2015-04-01

    The Kula volcanic field is the youngest volcanic province in western Anatolia and covers an area of about 600 km2 around the town Kula (Richardson-Bunbury, 1996). Its alkali basalts formed by melting of an isotopically depleted mantle in a region of long-lived continental extension and asthenospheric upwelling (Prelevic et al., 2012). Based on morphological criteria and 40Ar/39Ar dating, four phases of Quaternary activity have been distinguished in the Kula volcanic field (Richardson-Bunbury, 1996; Westaway et al., 2006). The youngest lava flows are thought to be Holocene in age, but so far only one sample from this group was dated by 40Ar/39Ar at 7±2 ka (Westaway et al., 2006). In this study, we analysed cosmogenic 3He in olivine phenocrysts from three basalt flows and one cinder cone to resolve the Holocene history of volcanic eruptions in more detail. In addition, we applied 10Be exposure dating to two quartz-bearing xenoliths found at the surface of one flow and at the top of one cinder cone. The exposure ages fall in the range between ~500 and ~3000 years, demonstrating that the youngest volcanic activity is Late Holocene in age and therefore distinctly younger than previously envisaged. Our results show that the Late Holocene lava flows are not coeval but formed over a period of a few thousand years. We conclude that surface exposure dating of very young volcanic rocks provides a powerful alternative to 40Ar/39Ar dating. References Prelevic, D., Akal, C. Foley, S.F., Romer, R.L., Stracke, A. and van den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, 53, 1019-1055. Richardson-Bunbury, J.M. (1996). The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine, 133, 275-283. Westaway, R., Guillou, H., Yurtmen, S., Beck, A

  12. Mapping the edge of the Cerros del Rio volcanic field, New Mexico: a piece of the puzzle to understanding a potential geothermal resource

    NASA Astrophysics Data System (ADS)

    Pellerin, L.; Gallegos, M.; Goebel, M.; Murphy, B. S.; Smith, J.; Soto, D.; Swiatlowski, J.; Volk, C.; Welch, M.; Feucht, D. W.; Hollingshaus, B.; Bedrosian, P. A.; McPhee, D. K.

    2012-12-01

    The Cerros del Rio volcanic field located west of Santa Fe, New Mexico spans the southwestern part of the Espanola Basin with the Rio Grande to the west. Underlying the volcanics are the Santa Fe Group sediments, which contain the Ancha Formation, an important aquifer in the region. High temperature gradients in water wells reveal a potential geothermal prospect. In 2012 the Summer of Applied Geophysical Experience (SAGE) program acquired transient electromagnetic (TEM), audiomagnetotelluric (AMT), gravity and ground magnetic data to determine the buried eastern margin of the volcanic field and the connectivity related to the underlying sediments. The roughly EW 5-km long transect was sited from USGS aeromagnetic data to cross the boundary of the Cerros del Rio volcanic field. TEM data collected at ten stations, at 200-400 m spacing, along the transect employed an in-loop configuration with a square 100 m x 100 m transmitter loop and both a Zonge receiver coil and a 5 m square receiver loop. The 5 m loop allowed for the recovery of early-time data that was saturated when using the Zonge coil. AMT data were acquired at eight stations, at 400-500 m spacing, using the Geometric Stratagem system recording from 92 kHz to 10 Hz; a horizontal magnetic dipole transmitter was used to augment low signal strength at around 1 kHz. Gravity data along the profile were acquired using CG-3 and CG-5 Scintrex gravimeters with a station interval >250 m. Magnetic data were acquired with a Geometrics Cesium vapor G-858 magnetometer for about 3500 m along the profile at a 0.5 second sampling rate. Two volcanic flows interbedded with Ancha Formation and overlying Santa Fe Group sediments were identified in both the TEM and AMT modeling. High surface resistivity zones (>300 ohm-m) with depths ranging from ~100 to 300 m define the volcanic flows and correspond to high densities (2.3 to 2.55 g/cm3), while low resistivity zones (<30 ohm-m) correspond to lower densities (~2.1 g/cm3). High

  13. Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G)

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.

    2011-01-01

    The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.

  14. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A case study from Wadi Natash volcanic field, south Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Madani, Ahmed

    2015-10-01

    This paper aims at revealing the spectral characteristics of the olivine basalts exposed at Wadi Natash area, Egypt, using FieldSpec spectroradiometer. It also evaluates band ratios and fusion techniques for mapping purposes using ASTER data. Several volcanic episodes occurred during Early- to Late-Cretaceous are recorded in the study area. Early-Cretaceous olivine basalts are highly carbonated. Late-Cretaceous eruptions took place throughout several volcanic cones aligned in NW direction. Based on FieldSpec measurements and petrographic data, two groups of olivine basalt namely `A' and `B' are recognized. Fresh olivine basalt (group A) is characterized by low flat spectral profile with overall low reflectance values (˜20%). Spectral profile of altered olivine basalt (group B) shows moderate reflectance values (˜37%) with four little absorption features around the 1.10, 1.40, 2.00 and 2.35 μm wavelength regions. These absorption features are attributed mainly to the presence of chlorite and carbonate alteration products as indicated by petrographic examination. ASTER false colour composite band ratio image (3/2:R, 8/1:G and 8/5:B) discriminates easily the fresh and altered basalts by deep blue and reddish blue colours respectively. Image fusion between previously mentioned FCC ratios image and high spatial resolution ASTER panchromatic image are carried out using brovey and HSV transformation methods. Visual and statistical assessment methods proved that HSV fusion image yields better image interpretability results compared to brovey image. It improves the spatial resolution of original FCC ratios image with acceptable spectral preservation. The present study proved the usefulness of FieldSpec spectral profiles and the processed ASTER data for discriminating different olivine basalt groups exposed at the study area.

  15. Volcanic edifice alignment detection software in MATLAB: Test data and preliminary results for shield fields on Venus

    NASA Astrophysics Data System (ADS)

    Thomson, Bradley J.; Lang, Nicholas P.

    2016-08-01

    The scarcity of impact craters on Venus make it difficult to infer the relative ages of geologic units. Stratigraphic methods can be used to help infer the relative ordering of surface features, but the relatively coarse resolution of available radar data means ambiguity about the timing of certain features is common. Here we develop a set of statistical tools in MATLAB to help infer the relative timing between clusters of small shield volcanoes and sets of fractures in the surrounding terrain. Specifically, we employed two variants of the two-point azimuth method to detect anisotropy in the distribution of point-like features. The results of these methods are shown to successfully identify anisotropy at two spatial scales: at the whole-field level and at scales smaller than a set fraction of the mean value. Initial results on the test cases presented here are promising, at least for volcanic fields emplaced under uniform conditions. These methods could also be used for detecting anisotropy in other point-like geologic features, such as hydrothermal vents, springs, and earthquake epicenters.

  16. Eruptive conditions and depositional processes of Narbona Pass Maar volcano, Navajo volcanic field, Navajo Nation, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Clarke, Amanda B.; Semken, Steven

    2009-01-01

    Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5-20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic

  17. Detailed 40Ar/39Ar chronology of the Tancítaro Volcanic Field, Michoacán, Mexico

    NASA Astrophysics Data System (ADS)

    Ownby, S.; Delgado-Granados, H.; Lange, R.; Hall, C. M.

    2005-12-01

    The Tancítaro volcanic field (TVF) is characterized by over 300 cinder cones and fissure fed lava flows, in addition to the ~10 shield volcanoes and 1 large andesite stratovolcano, ~60 km3 Volcán Tancítaro. The TVF is part of the larger Michoacán Guanajuato volcanic field (MGVF) in the Trans Mexican Volcanic Belt, related to subduction of the Cocos plate. We report new 40Ar/39Ar age constraints on the most recent activity from Volcán Tancítaro. Previously, there was only one K-Ar date 530±60 ka for this volcano; Ban et al. (1992). It has been the site of at least two debris avalanche deposits (Capra et al., 2002; Garduno-Monroy, 1999; Ownby et al., 2004), and continues to threaten the cities of Uruapan and Apatzingán in the state of Michoacán, which have a combined population of >300,000. The most recent activity produced a thin blanket of ash (~1-5 m thick along the flanks of the volcano); this ash is tightly bracketed by dates on two nearby shield volcanoes, one underneath (268±14 ka) and the other on top (267±12 ka) of this ash layer. It appears to have triggered a large debris avalanche deposit off the steep slopes of V. Tancítaro (the distinctive ash is mixed in with this avalanche deposit), which itself is bracketed by two cinder cones, one underneath (425±45 ka) and the other on top (179±77 ka). The timing of this ash eruption is close to that for four different andesite lavas from near the summit of V. Tancítaro, which yielded ages of 251±25 ka, 241±25 ka, 228±16 ka, 223±23 ka, respectively. Other dates from the main edifice of V. Tancítaro reveal two earlier episode of activity at ~450 and ~700 ka. We also report an additional set of ~50 40Ar/39Ar ages on various cinder cones, shields, and fissure-fed flows that are peripheral to V. Tancítaro. The samples range in age from ~980 ka to the present, with no obvious breaks in time. They range continuously from 51-62 wt% SiO2, with no breaks in composition. It appears that neither dacite

  18. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  19. Partial record of a Miocene geomagnetic field excursion: Paleomagnetic data from the Paiute Ridge volcanic center, southern Nevada

    SciTech Connect

    Ratcliff, C.D.; Geissman, J.W.; Perry, F.V. ); Crowe, B.M. )

    1993-04-01

    In the Palute Ridge area, northern Halfpint Range, a complex system of late Miocene (about 8.5 Ma) intrusive and extrusive alkaline mafic rocks crops out over an area of about 25km[sup 2]. Post-magmatic faulting and erosion have resulted in excellent exposure of this sub-volcanic center, allowing for a detailed study of mechanisms and timing of magma emplacement. Paleomagnetic data have been obtained from over 50 sites in mafic rocks, and host ash-flow tuffs and carbonate strata, to better understand the duration of magmatic activity. Magnetizations, isolated in progressive alternating field and thermal demagnetization, for most of the sites at Palute Ridge deviate significantly from expected directions for a time-averaged late Miocene field. Demagnetization data show that there are two types of sample behavior. First, samples with close to expected reverse polarity directions (e.g., the chilled margin of a sill, D=209.2, l=[minus]36.4, [alpha]95=13.2, N=5, k=34.8). Second, and far more common, are samples giving magnetizations of southwest to northwest declination, with both shallow to moderate positive and negative inclination. Within this second grouping are several sites, including syenite pods which differentiated in situ from a large lopolith, having mean declinations that are due west and of shallow inclination. Contact tests performed at several sites are positive and show a clear correlation between sample position and isolated remanence direction. The authors preferred interpretation of the anomalously directed magnetization is that these rocks acquired a TRM during either a high amplitude excursion, or the transitional portion of a field reversal. Thermal models based on larger intrusions [+-] 10m thick at Paiute Ridge indicate that the magmas could cool through estimated magnetization blocking temperatures within weeks or months of emplacement.

  20. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-SP Mountain Area of the San Francisco Volcanic Field

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2015-01-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  1. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-Sp Mountain Area of the San Francisco Volcanic Field

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Eppler, D. B.; Needham, D. H.; Evans, C. A.; Skinner, J. A.; Feng, W.

    2015-12-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  2. Iridium enrichment in volcanic dust from blue ice fields, Antarctica, and possible relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1989-01-01

    The analysis of samples of volcanic ash dust layers from the Lewis Cliff/Beardmore Glacier in Antarctica shows that some of the samples contain Ir concentrations up to 7.5 ppb. It is shown that the Ir is positively correlated with Se, As, Sb, and other volcanogenic elements. The results show that Ir may be present in some volcanic ash deposits, suggesting that the Ir in the K/T boundary clays is not necessarily of cosmic origin, but may have originated from mantle reservoirs tapped during extensive volcanic eruptions possibly triggered by impact events.

  3. Volcanic plume and bomb field masses from thermal infrared camera imagery

    NASA Astrophysics Data System (ADS)

    Harris, A. J. L.; Delle Donne, D.; Dehn, J.; Ripepe, M.; Worden, A. K.

    2013-03-01

    Masses erupted during normal explosions at Stromboli volcano (Italy) are notoriously difficult to measure. We present a method that uses thermal infrared video for cooling bomb fields to obtain the total power emitted by all hot particles emitted during an explosion. A given mass of magma (M) will emit a finite amount of thermal power, defined by M cp(Te-T0), cp and Te being magma specific heat capacity and temperature, and T0 being ambient temperature. We use this relation to convert the total power emitted by the bomb field to the mass required to generate that power. To do this we extract power flux curves for the field and integrate this through time to obtain total power (E). This is used to estimate mass (Q) in Q=E/cp(Te-T0). When applied to individual bombs we obtain masses of between 1 and 9 kg per bomb, or a volume of 970 and 6500 cm3. These volumes equate to spheres with diameters 12 and 27 cm. For the entire bomb field we obtain volumes of 7-28 m3. We calculate masses for 32 eruptions and obtain typical bomb masses of between 103 and 104 kg per eruption. In addition, we estimate that between 102 and 103 kg of gas and ash are emitted as part of a mixed plume of bombs, gas and ash. We identify two types of eruption on the basis of the erupted bomb masses and the ratio of the plume's gas-and-ash component to the bomb component. The first type is bomb-dominated, is characterized by bomb masses of 104 kg and has ash-gas/ bomb ratios of ˜0.02. The second type is ash-and-gas dominated, is characterized by erupted bomb masses of 103 kg and has ash-gas/bomb ratios of around one, and as high as two. There is no correlation between the quantity of bombs and quantity of gas-ash erupted. In addition, while source pressure for each explosion correlates with the quantity of gas and ash erupted, the mass of bombs emitted varies independently of pressure.

  4. Magmatic infiltration and melting in the lower crust and upper mantle beneath the Cima volcanic field, California

    USGS Publications Warehouse

    Wilshire, H.G.; McGuire, A.V.

    1996-01-01

    Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ???7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts (> ??? 60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents.

  5. Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent

    NASA Astrophysics Data System (ADS)

    Denis, Carole M. M.; Demouchy, Sylvie; Shaw, Cliff S. J.

    2013-05-01

    We report major element compositions and water contents in upper mantle minerals from peridotites transported by silica undersaturated, mafic alkaline lavas from three volcanoes Rockeskyllerkopf, Dreiser Weiher, and Meerfelder Maar of the Eifel Volcanic Field (West Germany). The hydrogen concentrations (expressed in ppm wt. H2O) obtained from unpolarized and polarized Fourier transform infrared (FTIR) spectroscopy give water contents for olivine, enstatite and diopside of ~ 6 ppm wt. H2O, ~ 200 ppm wt. H2O and ~ 285 ppm wt. H2O, respectively. The hydrogen concentration in individual olivine grains is strongly heterogeneous whereas that in pyroxenes is homogeneous. Profiles measured across crystallographically oriented single-crystals of olivine using polarized infrared radiation reveal hydrogen depleted rims that are interpreted to be due to partial dehydration by ionic diffusion during the ascent of the xenolith to the surface. Using experimentally obtained diffusion coefficients for hydrogen in olivine at high temperature and high pressure, we estimate that the duration of the dehydration for the spinel-bearing xenoliths is limited to a few hours yielding rates of magma ascent from 3 ms- 1 to 12 ms- 1. Our study suggests that the water contents of the upper mantle based solely on measurements of mantle-derived olivine, when concentration is not homogeneous, underestimate the true water content of the equilibrated uppermost mantle and that pyroxenes are a better proxy to constrain uppermost mantle water contents.

  6. Intense monotonic infrasound at Volcan Villarrica: Insights from an Integrated Seismo-acousto-optico-thermo-UV imager field approach

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Anderson, J.; Sanderson, R. W.; McIntosh, W. C.; Goto, A.; Waite, G. P.; Palma, J.; Richardson, J. P.

    2011-12-01

    Toward understanding the origin of the intense (>50 Pa RMS at crater rim) monotone tremor at Volcan Villarrica (Chile), we have deployed instrumentation, including cameras, suspended above the basaltic lava lake. In 2010 we observed a 65-m diameter spatter roof perforated by a 10 m-diameter vent (or skylight) providing a view into a 25 m-tall cavity and roiling lava lake beneath. Conjoint visual observations and infrasound modeling suggest that the 0.77 Hz infrasonic signal is a Helmholtz resonance phenomenon similar to that previously postulated for Kilauea and Shishaldin. A February-March 2011 field campaign was aimed at understanding the relation between surface activity and degassing and thermal flux by deploying a dense linear array of broadband seismo-acoustic sensors on the upper slopes of the volcano and within the upper crater. We also lowered time-synchronized cameras, pressure sensors, and thermocouples down into the vent. Against the background of intense infrasonic tremor we observed discrete strombolian eruptions and spattering events, which generate a preponderance of 5-10 Hz infrasound. A stable peaked infrasound monotone ranging from 0.65-0.8 Hz has been reported by our group and others at Villarrica in 2002, 2008, 2009, 2010, 2011. We propose that the conduit/vent geometry largely control the frequency content of the infrasound whereas the amplitude of the oscillation is controlled by gas emission rates, which we were able to quantify for SO2 in 2011 using UV absorption imagery.

  7. Process interpretation of laminated lacustrine sediments from the valley of the river Alf, Quaternary West Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Eichhorn, Luise; Pirrung, Michael; Zolitschka, Bernd; Büchel, Georg

    2016-04-01

    High-resolution annually laminated sediment archives from lakes Holzmaar and Meerfelder Maar located in the Quaternary West Eifel Volcanic Field are in the focus of many investigations (e.g. Brauer et al. 2001, Zolitschka 1991). These publications are related to predominantly biogenic varves covering the last ca. 14 ka years, i.e. the Lateglacial and the Holocene. In our study, laminated sediments consisting of clay-silt couplets are presented from paleolake Alf. This paleolake formed in a valley dammed by volcanic products, and covers the Pleniglacial between 31 and 24 ka BP (Pirrung et al. 2007). The focus of our study is the characterization of the structure of clay-silt couplets and the determination of their origin. The applied granulometry revealed mean grain sizes of 10 μm for the light laminae (colors refer to core scan photo) and 14 μm for the dark laminae (both middle silt). X-ray diffraction confirms identical mineral phases for light and dark laminae, with light laminae being clay-enriched containing a higher amount of sericite and chlorite while dark laminae are enriched in quartz. X-ray fluorescence and detrital microfacies analysis on thin sections indicate that calcite dominates in the dark laminae. Microscopically, three different types of silt layers are present. Type I are laminae with homogeneous sublayers, Type II are graded laminae and Type III are laminae with graded sublayers. Processes causing the formation of these silt lamination types can be attributed to repeatedly occurring snow melting, permafrost thawing or rain events linked with sediment delivery from the catchment into the lake. The amount of precipitation and melt water, sediment discharge and density stratification lead to gravity suspension fall out, partial erosion of previously deposited unconsolidated sediments and resuspension in the lake. Brauer, A., et al. (2001). Lateglacial varve chronology and biostratigraphy of lakes Holzmaar and Meerfelder Maar, Germany. Boreas 30

  8. Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Gao, Jian-Feng; Zhou, Mei-Fu; Robinson, Paul T.; Wang, Christina Yan; Zhao, Jun-Hong; Malpas, John

    2015-02-01

    The Tengchong volcanic field east of the Burma arc in SW China comprises numerous Quaternary volcanoes. The volcanic rocks can be grouped into four units, numbered 1-4 from oldest to youngest. Units 1, 3 and 4 are composed of trachybasalt, basaltic trachyandesite and trachyandesite, respectively, whereas Unit 2 consists of hornblende dacite. Primary minerals in the dacite include plagioclase, clinopyroxene, amphibole and magnetite, all set in a glassy groundmass. Some of the dacites are moderately to highly weathered and show effects of low temperature alteration, with loss on ignition (LOI) up to 9.6 wt% and positive correlations of LOI with Al2O3, but negative correlations with SiO2, CaO and Na2O. Fresh dacites (LOI <3 wt%) belong to the calk-alkaline series and have pronounced negative Ti, Nb and Ta anomalies. They have whole-rock 87Sr/86Sr ratios ranging from 0.7090 to 0.7101, εNd values from -10.8 to -11.8, and εHf values from -5.1 to -6.8. Many of the large plagioclase crystals in the fresh dacites have reverse zoning, ranging from An55 in the cores to An72 in the rims. The smaller phenocrysts have relatively uniform An values between 56 and 50. One plagioclase crystal has an An value of 33.5. Plagioclase in the fresh dacite has relatively high Sr contents and 87Sr/86Sr ratios ranging from 0.7050 to 07125 except for one value of 0.7516, whereas plagioclase in the altered dacite has low Sr contents and highly variable Sr isotopic compositions (0.7039-0.7138), indistinguishable from those of the fresh rocks. Both An values and Sr isotopic compositions of the plagioclase indicate mixing of mantle- and crustally-derived magmas. We therefore propose that mantle-derived basaltic magma caused partial melting of the lower-middle crust and that mixing of the mafic and felsic magmas produced the dacite in staging magma chambers. The dacites contain minerals crystallized from both the mafic and felsic magmas, as well as a few xenocrysts plucked from the country rocks.

  9. Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington

    USGS Publications Warehouse

    Jicha, B.R.; Hart, G.L.; Johnson, C.M.; Hildreth, W.; Beard, B.L.; Shirey, S.B.; Valley, J.W.

    2009-01-01

    Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P)n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. ??18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal

  10. The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    McGee, Lucy E.; Millet, Marc-Alban; Smith, Ian E. M.; Németh, Károly; Lindsay, Jan M.

    2012-12-01

    Compositional variation through basaltic monogenetic eruptive sequences provides a unique view into the processes and source heterogeneity of small-scale magmatic systems. A well-exposed, continuous sequence on Motukorea volcano in the Auckland Volcanic Field, New Zealand, consists of an early tuff ring, scoriaceous deposits and late lava flows which allow the evolution of the eruption to be studied at very high resolution. The deposits show a spectrum of basaltic compositions from Mg# 60 nephelinite (early tuff ring) to Mg# 70 alkalic basalt (lava). Within the deposits of each main eruptive phase (i.e. tuff, scoria and lava) very little variation is observed in major element chemistry, suggesting that fractional crystallisation has a limited effect. Systematic changes in trace element chemistry, however, are significant through the sequence. The major and trace element features observed through the sequence are inferred to be primarily due to the mixing of two magma batches, with a two-fold increase in the degree of melting between these. Variation in Pb-isotopic compositions up-sequence indicates subtle changes in mantle source with samples representing the start of the eruption displaying higher 207Pb/204Pb than the latter parts of the eruption. This chemical change coincides with a switch in the mode of eruption, with the arrival at the surface of magmas produced by larger degrees of partial melting resulting in the beginning of a more effusive eruption phase. The silica-undersaturated, high total alkali, low Al2O3 and higher 207Pb/204Pb nature of the samples from the tuff units suggests that these samples were produced by melting of relatively young eclogite domains. The lower 207Pb/204Pb, higher silica, lower total alkali nature of the samples from the scoria and lava reflects the exhaustion of these domains and the resultant melting of the surrounding garnet-peridotite matrix. This detailed study shows that the petrogenesis of small volcanic centres may be

  11. Geology of the Mohon Mountain volcanic field, Yavapai and Mohave Counties, Arizona: A preliminary report

    NASA Technical Reports Server (NTRS)

    Simmons, Ardyth M.; King, John S.

    1987-01-01

    Field mapping has produced a preliminary picture of Mohon Mountain as a composite volcano, in which pyroclastic ash and larger tephra erupted alternately with flows of rhyodacite and dacite. An analog study which uses imagery of lunar and Martian features will compare the overall shape of the vent complex, including its breached southern flank and satellite vents, to similar landforms found on Mars and the Moon which are believed to have formed similar processes. Ash flow sheets were hypothesized to comprise the outer slopes of Olympus Mons suggesting that explosive eruptions which are more volatile-rich than those which produce basalt flows are not confined to terrestrial settings but may also be found on bodies such as Mars, which have a thicker crust and deeper magma source in the mantle. The analog study will explore further evidence for explosive eruptions on Mars and the Moon.

  12. Field measurement of penetrator seismic coupling in sediments and volcanic rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Frohlich, C.

    1979-01-01

    Field experiments were conducted to determine experimentally how well a seismometer installed using a penetrator would be coupled to the ground. A dry lake bed and a lava bed were chosen as test sites to represent geological environments of two widely different material properties. At each site, two half-scale penetrators were fired into the ground, a three-component geophone assembly was mounted to the aft end of each penetrator, and dummy penetrators were fired at various distances to generate seismic signals. The recorded signals were digitized, and cross-spectral analyses were performed to compare the observed signals in terms of power spectral density ratio, coherence and phase difference. The analyses indicate that seismometers deployed by penetrators will be as well coupled to the ground as are seismometers installed by conventional methods for the frequency range of interest in earthquake seismology, although some minor differences were observed at frequencies near the upper limit of the frequency band.

  13. Magnetotelluric survey for exploration of a volcanic-rock reservoir in the Yurihara oil and gas field, Japan

    SciTech Connect

    Mitsuhata, Yuji; Matsuo, Koichi; Minegishi, Masato

    1999-03-01

    The Yurihara oil and gas field is located on the southern edge of Akita Prefecture, northeastern Japan. In this area, drilling, surface geological surveys and many seismic surveys have been used to investigate the geological structure. Wells drilled into the Nishikurosawa Basalt Group (NBG) of Miocene age found oil and gas reservoirs at depths of 1.5--2 km. Oil and gas are now being produced commercially and further exploration is required in the surrounding areas. However, since the neighboring areas are covered with young volcanic products from the Chokai volcano, and have a rough topography, the subsurface distribution of the NBG must be investigated using other methods in addition to seismic reflection. According to the well data, the resistivity of the NBG is comparatively higher than that of the overlying sedimentary formations, and therefore the magnetotelluric (MT) method is expected to be useful for the estimation of the distribution of the NBG. An MT survey was conducted along three survey lines in this area. Each line trended east-west, perpendicular to the regional geological strike, and was composed of about 25 measurement sites. Induction vectors evaluated from the magnetic field show that this area has a two-dimensional structure. The evaluated resistivity sections are in agreement with the log data. In conclusion, the authors were able to detect resistive layers (the NBG) below conductive layers. The results indicate that the NBG becomes gradually less resistive from north to south. In the center of the northern line, an uplifted resistive area is interpreted as corresponding to the reservoir. By comparison with a seismic section, the authors prove the effectiveness of the integration of seismic and MT surveys for the investigation of the morphology and internal structure of the NBG. On other survey lines, the resistive uplifted zones are interpreted as possible prospective areas.

  14. Field Measurements of Penetrator Seismic Coupling in Sediments and Volcanic Rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Frohlich, C.; Blanchard, M. B.; Murphy, J. P.

    1979-01-01

    Field experiments were conducted to determine how well a seismometer installed using a penetrator would be coupled to the ground. A dry-lake bed and a lava bed were chosen as test sites to represent geological environments of two widely different material properties. At each site, two half-scale penetrators were fired into the ground, a three-component geophone assembly was mounted to the aft end of each penetrator, and dummy penetrators were at various distances to generate seismic signals. These signals were detected by the penetrator-mounted geophone assembly and by a reference geophone assembly buried or anchored to surface rock and 1-m from the penetrator. The recorded signals were digitized, and cross-spectral analyses were performed to compare the observed signals in terms of power spectral density ratio, coherence, and phase difference. The analyses indicate that seismometers deployed by penetrators will be as well coupled to the ground as are seismometers installed by conventional methods for the frequency range of interest in earthquake seismology.

  15. Volcano-Tectonic Evolution of the Central Death Valley Volcanic Field - Insights Derived from the Geologic Map of the Death Valley Junction 30' x 60' Quadrangle

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Fridrich, C.; Chan, C. F.; Zellman, K. L.; Workman, J. B.

    2014-12-01

    The geologic map of the Death Valley Junction 30' x 60' quadrangle encompasses many geologic features recording the Cenozoic volcano-tectonic evolution of central Death Valley. Most notable is the central Death Valley rhombochasm. The rhombochasm is a 65x80-km rhombic pull-apart basin complex that occupies the releasing step-over between the northern Death Valley—Furnace Creek and southern Death Valley faults. Stewart (1983) documented this feature by palinspastically restoring offset thrust fault segments and isopachs, thereby closing the rhombochasm. The central Death Valley volcanic field records the coincident and related magmatism that occurred during the extension and strike-slip strain that formed the rhombochasm. In the multi-stage evolution of this tectonomagmatic feature, changes in volcanic and structural styles, rates, and loci were synchronized, both spatially and temporally. The volcanic field covers an area of 3600 km2, and consists of >700 km3 of lava flows, domes, and pyroclastic deposits. Cenozoic map units reflect four major eruptive stages: Stage 1 (11-9 Ma: rhyolite and andesite), Stage 2 (9-7.5 Ma: dacite>basalt>andesite), Stage 3 (7-5 Ma: dacite>basalt), and Stage 4 (4.5-0.7 Ma: basalt). The predominant loci of eruptive centers migrated northwestward during this volcanic evolution, coeval with northwestward migration of adjacent depocenters. Stage 1 and 2 volcanism is broadly correlative to the supradetachment stage of rhombochasm development. Related intrusions include exposed upper-plate hypabyssal and lower-plate plutonic bodies. Stage 3 and 4 volcanism occurred during two tectonic stages in which higher-angle faults cut across the detachment fault, forming basins that are nested within the original detachment-floored area of the rhombochasm. Time-transgressive changes from dominantly silicic and intermediate magmas in Stages 1 and 2 to dominantly mafic and lesser intermediate magmas in Stages 3 and 4 coincided with decreases in eruptive

  16. Comparing and Reconciling Traditional Field and Photogeologic Mapping Techniques: Lessons from the San Francisco Volcanic Field, Arizona

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.

    2014-01-01

    Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.

  17. Holocene Flows of the Cima Volcanic Field, Mojave Desert, Part 2: Flow Rheology from Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Robertson, T.; Whittington, A. G.; Soldati, A.; Sehlke, A.; Beem, J. R.; Gomez, F. G.

    2014-12-01

    Lava flow morphology is often utilized as an indicator of rheological behavior during flow emplacement. Rheological behavior can be characterized by the viscosity and yield strength of lava, which in turn are dependent on physical and chemical properties including crystallinity, vesicularity, and bulk composition. We are studying the rheology of a basaltic lava flow from a monogenetic Holocene cinder cone in the Cima lava field (Mojave Desert, California). The flow is roughly 2.5 km long and up to 700m wide, with a well-developed central channel along much of its length. Samples were collected along seven different traverses across the flow, along with real-time kinematic (RTK) GPS profiles to allow levee heights and slopes to be measured. Surface textures change from pahoehoe ropes near the vent to predominantly jagged `a`a blocks over the majority of the flow, including all levees and the toe. Chemically the lava shows little variation, plotting on the trachybasalt-basanite boundary on the total alkali-silica diagram. Mineralogically the lava is dominated by plagioclase, clinopyroxene and olivine phenocrysts, with abundant flow-aligned plagioclase microcrystals. The total crystal fraction is ~50% near the vent, with higher percentages in the distal portion of the flow. Vesicularity varies between ~10 and more than ~60%. Levees are ~10-15m high with slopes typically ~25-35˚, suggesting a yield strength at final emplacement of ~150,000 Pa. The effective emplacement temperature and yield strength of lava samples will be determined using the parallel-plate technique. We will test the hypothesis that these physical and rheological properties of the lava during final emplacement correlate with spatial patterns in flow morphology, such as average slope and levee width, which have been determined using remote sensing observations (Beem et al. 2014).

  18. Voluminous low δ18O magmas in the late Miocene Heise volcanic field, Idaho: Implications for the fate of Yellowstone hotspot calderas

    USGS Publications Warehouse

    Bindeman, I.N.; Watts, K.E.; Schmitt, A.K.; Morgan, L.A.; Shanks, P.W.C.

    2007-01-01

    We report oxygen isotope compositions of phenocrysts and U-Pb ages of zircons in four large caldera-forming ignimbrites and post-caldera lavas of the Heise volcanic field, a nested caldera complex in the Snake River Plain, that preceded volcanism in Yellowstone. Early eruption of three normal δ18O voluminous ignimbrites with δ18Oquartz = 6.4‰ and δ18Ozircon = 4.8‰ started at Heise at 6.6 Ma, and was followed by a 2‰–3‰ δ18O depletion in the subsequent 4.45 Ma Kilgore caldera cycle that includes the 1800 km3 Kilgore ignimbrite, and post-Kilgore intracaldera lavas with δ18Oquartz = 4.3‰ and δ18Ozircon = 1.5‰. The Kilgore ignimbrite represents the largest known low-δ18O magma in the Snake River Plain and worldwide. The post-Kilgore low δ18O volcanism likely represents the waning stages of silicic magmatism at Heise, prior to the reinitiation of normal δ18O silicic volcanism 100 km to the northeast at Yellowstone. The occurrence of low δ18O magmas at Heise and Yellowstone hallmarks a mature stage of individual volcanic cycles in each caldera complex. Sudden shifts in δ18O of silicic magmas erupted from the same nested caldera complexes argue against any inheritance of the low δ18O signature from mantle or crustal sources. Instead, δ18O age trends indicate progressive remelting of low δ18O hydrothermally altered intracaldera rocks of previous eruptions. This trend may be generally applicable to older caldera complexes in the Snake River Plain that are poorly exposed.

  19. Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, USA

    USGS Publications Warehouse

    Lipman, P.W.

    1988-01-01

    Structural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3-5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dactitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites defined resurgent intrusions within the caldera and discontinuous ring dikes along its margins: a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15-20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defined boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Paleomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption. -from Author

  20. Terrestrial Analog Field Investigations to Enable Science and Exploration Studies of Impacts and Volcanism on the Moon, NEAs, and Moons of Mars

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer Lynne; Colaprete, Anthony; Cohen, Barbara; Elphic, Richard; Garry, William; Hodges, Kip; Hughes, Scott; Kim, Kyeon; Lim, Darlene; McKay, Chris; Osinski, Gordon R.; Petro, Noah; Sears, Derek; Squyres, Steve; Tornabene, Livio

    2013-01-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  1. Volcanic mesocyclones.

    PubMed

    Chakraborty, Pinaki; Gioia, Gustavo; Kieffer, Susan W

    2009-03-26

    A strong volcanic plume consists of a vertical column of hot gases and dust topped with a horizontal 'umbrella'. The column rises, buoyed by entrained and heated ambient air, reaches the neutral-buoyancy level, then spreads radially to form the umbrella. In classical models of strong volcanic plumes, the plume is assumed to remain always axisymmetric and non-rotating. Here we show that the updraught of the rising column induces a hydrodynamic effect not addressed to date-a 'volcanic mesocyclone'. This volcanic mesocyclone sets the entire plume rotating about its axis, as confirmed by an unprecedented analysis of satellite images from the 1991 eruption of Mount Pinatubo. Destabilized by the rotation, the umbrella loses axial symmetry and becomes lobate in plan view, in accord with satellite records of recent eruptions on Mounts Pinatubo, Manam, Reventador, Okmok, Chaiten and Ruang. The volcanic mesocyclone spawns waterspouts or dust devils, as seen in numerous eruptions, and groups the electric charges about the plume to form the 'lightning sheath' that was so prominent in the recent eruption of Mount Chaiten. The concept of a volcanic mesocyclone provides a unified explanation for a disparate set of poorly understood phenomena in strong volcanic plumes. PMID:19325632

  2. Volcanic Mesocyclones

    NASA Astrophysics Data System (ADS)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2008-12-01

    A strong volcanic plume is customarily modeled as a cylindrical, rising column topped with an axisymmetric, radially spreading umbrella. In this talk we argue that standard models of strong volcanic plumes are missing a crucial component: a "volcanic mesocyclone" that sets the column rotating about its axis. We show theoretically that the volcanic mesocyclone is induced by the entrainment of air into the rising column, which is set rotating about its vertical axis. The umbrella inherits the rotation of the column, and we show that the rotation of the umbrella can be verified directly for the 1991 eruption of Mount Pinatubo and indirectly for several other eruptions. Once rotating, the umbrella becomes destabilized by centrifugal forces and undergoes an hitherto unknown form of the Rayleigh-Taylor instability. As a result, the edge of the umbrella becomes lobate, as has been observed in numerous satellite records. We also show that the volcanic mesocyclone spawns tornadoes in the form of waterspouts or dustdevils, as seen in numerous eruptions, and modifies the distribution of electric charges about the plume, leading to the formation of lightning sheaths, as seen in the recent eruption of Chaitén. The concept of volcanic mesocyclone allows us to give a unified explanation to a broad set of disparate, poorly understood phenomena in volcanic plumes.

  3. Partial melting and fractionation in the Mesa Chivato alkali basalt-trachyte series, Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Schmidt, M. E.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    Mesa Chivato comprises a series of alkaline cones, flows, and domes within the Mount Taylor Volcanic Field (MTVF) in northwest New Mexico. Compositions range from alkali basalt to trachyte. Intermediate magmas are less well represented than mafic and felsic rocks, but benmoreites and transitional benmoreite-trachytes provide a window into the differentiation processes. Major element, trace element, and isotopic data suggest that petrogenesis of benmoreite proceeded by fractional crystallization of mafic liquids and magma mixing with partially melted mafic rocks. Major element mass balance models permit the derivation of transitional benmoreite/trachyte from the benmoreite by 20-25% crystallization of microphenocryst phases (olivine, plagioclase, Ti-magnetite, and apatite) and further fractionation to trachyte by 10-15% crystallization of olivine, plagioclase and alkali feldspar, Fe-Ti oxide, and apatite. These models are supported by SiO2-Sr and -Ba systematics. However, the hawaiite to benmoreite gap cannot be crossed by fractional crystallization alone. While major element models permit the mafic lavas to yield the benmoreite, they require extensive fractionation of clinopyroxene and plagioclase - this is unsupported by petrography (clinopyroxene phenocrysts are rare in the mafic rocks and lacking in the intermediate rocks) and cannot explain the benmoreite's very high Sr contents (>1800 ppm), which would have been depleted by plagioclase fractionation. From LA-ICPMS analysis of plagioclase: 87Sr/86Sr of early alkali basalt (0.70285-0.70300) and late hawaiite (0.70406-0.70421) bracket the 87Sr/86Sr of the benmoreite (0.70361-0.70406). Thus, either could represent the fractionated liquid parental to the benmoreite and the other the partially melted source.

  4. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  5. Holocene flows of the Cima volcanic field, Mojave Desert (California), Part 1: Remote sensing and multi-scale morphometry

    NASA Astrophysics Data System (ADS)

    Beem, J. R.; Luecke, A.; Polun, S. G.; Robertson, T.; Savage, A.; Soldati, A.; Whittington, A. G.; Gomez, F. G.

    2014-12-01

    Lava flow morphology and texture can provide insight into rheological and other physical properties of the flow. Studies of terrestrial and extra-terrestrial lava flows rely heavily on remotely sensed observations. This research aims to quantify micromorphology and texture of a Holocene lava flow in the Cima volcanic field (eastern California) using digital elevation models and radar backscatter imagery. We are testing the hypothesis that spatial patterns in morphometry and backscatter roughness correspond with varying rheological conditions during emplacement. The site is ideally suited for morphological study owing to the youthfulness of the flow, as well as the lack of vegetation and minimal surface erosion resulting from the high desert climate. The studied lava flow spans approximately 2.5 km and exhibits well defined lobate forms and lava ropes with clear A'a' to Pahoehoe transitions. This study assesses lava flow micromorphology using a very high resolution (5 cm pixel) digital elevation model (DEM). The DEM was constructed from low-altitude aerial photos acquired using a remotely-controlled model aircraft. In addition to the DEM, the resulting orthoimagery provided a basis for distinguishing pristine lava flow surfaces from areas covered by vegetation and/or eolian deposits. Longer-wavelength morphology (spatial scales greater than 1 meter) is analyzed using a 50 cm pixel DEM produced using stereoscopic NAPP aerial photographs. Roughness estimates are compared with radar backscatter images including steeply incident C-band (5.6 cm wavelength) and L-band (24 cm wavelength) satellite data, as well as shallow incidence Ku-band data (1.7 cm wavelength) acquired using a ground-based imaging radar from an adjacent cinder cone. Photogrammetry and radar provide complementary information on lava flow morphology and micromorphological roughness, which are assessed at different spatial scales using general statistics, as well as the local hypsometric integral.

  6. Monitoring Surface Moisture of Crater-fill Sediment in Extreme hydroclimatic conditions (Ubehebe Volcanic Field, Death Valley, California).

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Zent, A.; McKay, C. P.

    2014-12-01

    The long term monitoring of soil surface moisture is key for constraining surface hydrology processes in extreme weather and climatic settings and their impact on biological and geological components of desert environments. We tested and applied the use of miniature data loggers to acquire novel Temperature (T) and water content (weight percent, wt%) of fine-grained sediments deposited during rain events at Ubehebe Crater (UC), the larger and deeper crater within a volcanic field in Death Valley. The Miniaturized in situ systems are compliant with Death Valley National Park's regulations to conduct scientific research in wilderness and sacred sites. About 130,000 hours of recorded soil moisture and temperature were acquired in relation to the hydroclimatic conditions (2009-current). Total annual rainfall in the area range from ~50mm to <250 mm/y in water years (WY) 2004-to date. These values are representative of the climatic context of the Mojave Region as they encompass the wettest (2005, 2011) and driest years (2002, 2007, 2012, 2013, 2014) of the last ~120 years (Western Regional Climate Center, www.wrcc.dri.edu). To date, surface (0.5 cm to 2 cm-depth) moisture of intra-crater deposits can vary from dry-very dry (1-3wt % to - 10 wt%) to wet-saturated (10-60 wt%). Over saturated conditions occur in ephemeral ponds, which appear to form once a year as a result of winter and summer rainstorms, and may last for one-two weeks (2009-2014 study years). Summer storms can yield ca. 40% to 60% of the total annual precipitation (WY 2011 thru 2014). The intensity and temporal distribution of annual storms together with ground temperature extremes (-16 to +67 ºC) influence moisture distribution and retention within the crater's floor.

  7. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  8. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    NASA Astrophysics Data System (ADS)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have <55% SiO2), have high-K calc-alkaline compositions, and have negative Ti-P-Nb-Ta anomalies and high Ba/Nb, Ba/Ta, and La/Nb typical of subduction-related continental margin arcs. BHVF rocks include mafic trachyandesite/basaltic andesite (50%), silicic trachyandesite-dacite (40%), and rhyolite (10%). Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during formation of BHVF. Subduction ceased beneath the Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change

  9. Lateglacial and Holocene climatic changes in south-eastern Patagonia inferred from carbonate isotope records of Laguna Potrok Aike (Argentina)

    NASA Astrophysics Data System (ADS)

    Oehlerich, M.; Mayr, C.; Gussone, N.; Hahn, A.; Hölzl, S.; Lücke, A.; Ohlendorf, C.; Rummel, S.; Teichert, B. M. A.; Zolitschka, B.

    2015-04-01

    First results of strontium, calcium, carbon and oxygen isotope analyses of bulk carbonates from a 106 m long sediment record of Laguna Potrok Aike, located in southern Patagonia are presented. Morphological and isotopic investigations of μm-sized carbonate crystals in the sediment reveal an endogenic origin for the entire Holocene. During this time period the calcium carbonate record of Laguna Potrok Aike turned out to be most likely ikaite-derived. As ikaite precipitation in nature has only been observed in a narrow temperature window between 0 and 7 °C, the respective carbonate oxygen isotope ratios serve as a proxy of hydrological variations rather than of palaeotemperatures. We suggest that oxygen isotope ratios are sensitive to changes of the lake water balance induced by intensity variations of the Southern Hemisphere Westerlies and discuss the role of this wind belt as a driver for climate change in southern South America. In combination with other proxy records the evolution of westerly wind intensities is reconstructed. Our data suggest that weak SHW prevailed during the Lateglacial and the early Holocene, interrupted by an interval with strengthened Westerlies between 13.4 and 11.3 ka cal BP. Wind strength increased at 9.2 ka cal BP and significantly intensified until 7.0 ka cal BP. Subsequently, the wind intensity diminished and stabilised to conditions similar to present day after a period of reduced evaporation during the "Little Ice Age". Strontium isotopes (87Sr/86Sr ratio) were identified as a potential lake-level indicator and point to a lowering from overflow conditions during the Glacial (∼17 ka cal BP) to lowest lake levels around 8 ka cal BP. Thereafter the strontium isotope curve resembles the lake-level curve which is stepwise rising until the "Little Ice Age". The variability of the Ca isotope composition of the sediment reflects changes in the Ca budget of the lake, indicating higher degrees of Ca utilisation during the period with

  10. Semi-automatic delimitation of volcanic edifice boundaries: Validation and application to the cinder cones of the Tancitaro-Nueva Italia region (Michoacán-Guanajuato Volcanic Field, Mexico)

    NASA Astrophysics Data System (ADS)

    Di Traglia, Federico; Morelli, Stefano; Casagli, Nicola; Garduño Monroy, Victor Hugo

    2014-08-01

    The shape and size of monogenetic volcanoes are the result of complex evolutions involving the interaction of eruptive activity, structural setting and degradational processes. Morphological studies of cinder cones aim to evaluate volcanic hazard on the Earth and to decipher the origins of various structures on extraterrestrial planets. Efforts have been dedicated so far to the characterization of the cinder cone morphology in a systematic and comparable manner. However, manual delimitation is time-consuming and influenced by the user subjectivity but, on the other hand, automatic boundary delimitation of volcanic terrains can be affected by irregular topography. In this work, the semi-automatic delimitation of volcanic edifice boundaries proposed by Grosse et al. (2009) for stratovolcanoes was tested for the first time over monogenetic cinder cones. The method, based on the integration of the DEM-derived slope and curvature maps, is applied here to the Tancitaro-Nueva Italia region of the Michoacán-Guanajuato Volcanic Field (Mexico), where 309 Plio-Quaternary cinder cones are located. The semiautomatic extraction allowed identification of 137 of the 309 cinder cones of the Tancitaro-Nueva Italia region, recognized by means of the manual extraction. This value corresponds to the 44.3% of the total number of cinder cones. Analysis on vent alignments allowed us to identify NE-SW vent alignments and cone elongations, consistent with a NE-SW σmax and a NW-SE σmin. Constructing a vent intensity map, based on computing the number of vents within a radius r centred on each vent of the data set and choosing r = 5 km, four vent intensity maxima were derived: one is positioned in the NW with respect to the Volcano Tancitaro, one in the NE, one to the S and another vent cluster located at the SE boundary of the studied area. The spacing of centroid of each cluster (24 km) can be related to the thickness of the crust (9-10 km) overlying the magma reservoir.

  11. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  12. Late Pleistocene to Holocene soil development and environments in the Long Gang Volcanic Field area, Jilin Province, NE China

    NASA Astrophysics Data System (ADS)

    Sauer, Daniela; Zhang, Xinrong; Knöbel, Jette; Maerker, Lutz

    2014-05-01

    Late Pleistocene to Holocene shifts of climate and vegetation in the Long Gang Volcanic Field in NE China have been reconstructed, e. g. by Steblich et al. (2009), based on Maar lake sediment cores. In this study, we investigated soil development during the Late Pleistocene and Holocene and linked it to the climate and vegetation reported in the literature. Three pedons were described and analyzed on a crater wall surrounding a maar. The lower part of the slope is covered by basic pyroclastics that are obviously younger than the maar itself. Pedon 1 is located on the upper slope, where the younger pyroclastics are not present; thus it developed over the entire Holocene and part of the Late Pleistocene. Pedon 2 is on the toe slope and developed from the young basic pyroclastics. Vegetation remains, charred by fire that was caused by the volcanic ash fall, were found in the lowermost part of the pyroclastics layer, on top of a paleosol. Charcoal fragments were dated to 18950-18830 cal BP (using INTCAL 09). Thus, pedon 2 developed since around 18.9 ka BP, whereas the development of the paleosol that was buried under the pyroclastics (pedon 3), was stopped at this time. Pedons 1 and 2 are Vitric Andosols, developed mainly from basic pyroclastics, as evidenced by the composition of rock fragments in the soils, comprising 78 / 81 mass % lapilli and 22 / 19 mass % gneiss fragments, respectively. Pedon 3 is a Cutanic Luvisol (Chromic) that developed entirely from gneiss fragments produced by the maar explosion. Lab data suggest increasing intensity of pedogenesis in the direction: Pedon 3 (paleosol) < Pedon 2 < Pedon 1, reflected e. g. in increasing Fed/Fet ratios, decreasing molar ratios of (Ca+K+Na)/Al, and decreasing pH. However, it needs to be considered that lapilli are more readily weatherable than gneiss fragments. The profile morphology of the paleosol, characterized by reddish-brown color (7.5YR), strong angular blocky structure and well-expressed illuvial clay

  13. New seismo-stratigraphic and marine magnetic data of the Gulf of Pozzuoli (Naples Bay, Tyrrhenian Sea, Italy): inferences for the tectonic and magmatic events of the Phlegrean Fields volcanic complex (Campania)

    NASA Astrophysics Data System (ADS)

    Aiello, Gemma; Marsella, Ennio; Fiore, Vincenzo Di

    2012-06-01

    A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.

  14. Lead and strontium isotopes and related trace elements as genetic tracers in the Upper Cenozoic rhyolite-basalt association of the Yellowstone Plateau volcanic field.

    USGS Publications Warehouse

    Doe, B.R.; Leeman, W.P.; Christiansen, R.L.; Hedge, C.E.

    1982-01-01

    Pb, U, Th, Rb and Sr contents and Pb- and Sr-isotopic compositions, together with field and petrological data, are consistent with the hypothesis of derivation of the basaltic and rhyolitic magmas of this volcanic field from source regions in the upper mantle and lower crust, respectively. It is suggested that the isotopic signatures of the basalts were inherited from a 2600 m.y.-old mantle 'keel' attached to the continental crust and were essentially unaffected by passage of the magma through the latter.R.J.P.

  15. Nd- and Pb-isotope variations in the multicyclic central caldera cluster of the San Juan volcanic field, Colorado, and implications for crustal hybridization

    SciTech Connect

    Riciputi, L.R.; Johnson, C.M. )

    1990-10-01

    The {epsilon}{sub Nd} values for six large-volume (100-3000 km{sup 3}) ash-flow tuffs and associated lavas from the multicyclic central caldera cluster of the San Juan volcanic field in south-central Colorado are between those of Proterozoic crust in the region and mantle-derived basaltic magmas, and the values generally become progressively higher in progressively younger tuffs and lavas. The increase in the {epsilon}{sub Nd} values of the tuffs, from -8.0 to -6.0 with decreasing age, can be modeled by assimilation and crystal fractionation of a mantle-derived magma, accompanied by an increase of {approx} 4 units in {epsilon}{sub Nd} values of the assimilated crust. The postulated increase in {epsilon}{sub Nd} values of the crust is envisioned to have occurred by hybridization of the crust through continued injection of mantle-derived magmas during the life of the magmatic system. Decreasing {sup 206}Pb/{sup 204}Pb ratios observed in progressively younger tuffs following the initiation of caldera-related volcanism cannot, however, be solely explained by addition of mantle-derived magmas to the crust, but are more likely to reflect the transfer of lower-crustal Pb into the upper crust as the magmatic system evolved. Input of large volumes (> 300,000 km{sup 3} in the San Juan volcanic field) of mantle-derived magma resulted in extensive hybridization of preexisting crust, suggesting that large-scale silicic volcanism involves generation of large quantities of new crust.

  16. Inverse steptoes in Las Bombas volcano, as an evidence of explosive volcanism in a solidified lava flow field. Southern Mendoza-Argentina

    NASA Astrophysics Data System (ADS)

    Risso, Corina; Prezzi, Claudia; Orgeira, María Julia; Nullo, Francisco; Margonari, Liliana; Németh, Karoly

    2015-11-01

    Here we describe the unusual genesis of steptoes in Las Bombas volcano- Llancanelo Volcanic Field (LVF) (Pliocene - Quaternary), Mendoza, Argentina. Typically, a steptoe forms when a lava flow envelops a hill, creating a well-defined stratigraphic relationship between the older hill and the younger lava flow. In the Llancanelo Volcanic Field, we find steptoes formed with an apparent normal stratigraphic relationship but an inverse age-relationship. Eroded remnants of scoria cones occur in "circular depressions" in the lava field. To express the inverse age-relationship between flow fields and depression-filled cones here we define this landforms as inverse steptoes. Magnetometric analysis supports this inverse age relationship, indicating reverse dipolar magnetic anomalies in the lava field and normal dipolar magnetization in the scoria cones (e.g. La Bombas). Negative Bouguer anomalies calculated for Las Bombas further support the interpretation that the scoria cones formed by secondary fracturing on already solidified basaltic lava flows. Advanced erosion and mass movements in the inner edge of the depressions created a perfectly excavated circular depression enhancing the "crater-like" architecture of the preserved landforms. Given the unusual genesis of the steptoes in LVF, we prefer the term inverse steptoe for these landforms. The term steptoe is a geomorphological name that has genetic implications, indicating an older hill and a younger lava flow. Here the relationship is reversed.

  17. Complex plumbing of monogenetic scoria cones and implications for Strombolian-style eruptions: examples from the Lunar Crater Volcanic Field (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Hintz, A. R.; Valentine, G. A.

    2010-12-01

    Monogenetic volcanoes represent a major proportion of terrestrial volcanoes, often occurring in groups or clusters (i.e. volcanic fields), or in association with polygenetic volcanoes. Historical observations of eruptions from such volcanoes have been few, though the increased knowledge gained from these direct observations has greatly improved our understanding of monogenetic eruptive dynamics. Two eroded remnants of scoria cones, located within the Lunar Crater Volcanic Field, Nevada were examined and have been shown to reveal internal complexities of lateral and vertical dike growth, lava bocca formation and wandering, as well as information about their early eruptive phases and eruptive styles. These eroded remnants represent several of the many older (Early-Pliocene) monogenetic volcanoes in this field and are inferred to be good analogues for the younger (Pleistocene and Quaternary) less eroded volcanoes within the field. The preserved internal plumbing geometries including dikes, dike sets, radial dikes, and spatter mounds, along with analyses of local variations in crystal distributions and vesicle bands/layers in the near-vent areas allow for application of the field-based observations to current models of Strombolian-style eruptions.

  18. Potential field and bathymetric constraints on volcanism and tectonics at the submarine Monowai cone and caldera (Kermadec arc)

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Watts, A. B.; Peirce, C.; Hunter, J.; Basset, D.; Stratford, W.; Kalnins, L. M.

    2012-04-01

    Repeat swath-bathymetric surveys have been carried out over the Monowai volcanic centre since 1998. The system is one of the most active in the Tonga-Kermadec arc and comprises an active submarine stratovolcano (the Monowai cone) and a hydrothermally active submarine mafic caldera (the Monowai caldera), the largest known mafic caldera on Earth. During a recent survey in April-June 2011 on board R/V Sonne we collected additional bathymetric data as well as, for the first time, marine gravity and magnetic data over the volcanic centre. The Monowai caldera is characterised by a Bouguer gravity anomaly high, corresponding to a mass excess of ~1.5·1013 kg. Forward modelling and inversion of the anomaly require a shallow body with a high-density contrast of several tens of km3. The body likely represents an igneous intrusion, perhaps a system of sills, of about 4-5 km radius and 1-2 km thick. The intrusive body is slightly elongate in a direction perpendicular to the strike of a system of extensive faults that dissects the northwestern part of the volcanic arc. Conversely, the Monowai cone is characterised by a Bouguer gravity anomaly low, indicating the absence of a high density core common at many stratovolcanoes, and perhaps the presence of melt in the uppermost part of the crust. A relatively low-density edifice may be indicative of a fast formation mechanism, as suggested by repeat bathymetric observations of very fast growth at the summit of Monowai cone. The orientation of bathymetric features, faults and gravity anomalies, and the southward migration of volcanic activity by about 400 m over the past 8 years, are indicative of a close interplay between volcanism and tectonics at Monowai.

  19. The Use of Handheld X-Ray Fluorescence (XRF) Technology in Unraveling the Eruptive History of the San Francisco Volcanic Field, Arizona

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Evans, C. A.; Hodges, K.

    2012-12-01

    While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld x-ray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist. We employ handheld x-ray fluorescence (XRF) technology, originally developed for work in industry and mining, to the understanding of and differentiation between multiple volcanic flow lobes. Using the handheld XRF, we analyzed a series of basalts and basaltic andesites collected from different flows in the San Francisco Volcanic Field in northern Arizona in conjunction with recent NASA tests of technologies for human scientific exploration of other planetary surfaces. Our objective was to determine whether this technology is able to distinguish between multiple eruptive pulses. Very little published geochemical work from this area is

  20. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  1. Magma mixing in the Yellowstone Plateau Volcanic Field brought to light by X-ray microtomography and chemical analysis

    NASA Astrophysics Data System (ADS)

    Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald Bruce

    2015-04-01

    The Yellowstone Plateau Volcanic Field (YVF) hosts at least four mixed magma complexes (Wilcox, 1944; Christiansen et al. 2007; Pritchard et al., 2013). We focus on the well-exposed Grizzly Lake complex. The main evidence of mixing in igneous rocks is commonly found as textural heterogeneities, such as i) flow structures, ii) magmatic enclaves and iii) physico-chemical disequilibria in melt and crystals (e.g. Perugini and Poli, 2012). From the geochemical and mineralogical point of view, quantitative and qualitative analyses of chemical and textural heterogeneity in mixed rocks highlights the important role of mixing dynamics in producing geochemical complexities and heterogeneities (Kratzmann et al., 2009). Zoned crystals and complex mineralogical associations are also considered, in many cases, evidence for mixing (e.g., Murphy at al., 1998; Couch et al., 2001). The generation of such textures implies the development of large contact interfaces between interacting melts/solids through which chemical and crystals exchanges are strongly amplified, leading to highly variable degrees of homogenization depending on differing element mobility (e.g. Perugini et al., 2006; 2008; De Campos et al., 2011; Perugini et al., 2012; Perugini and Poli, 2012; Morgavi et al., 2013a, b, c). Despite the abundant literature regarding magma mixing processes, only a few studies are focused on describing and quantifying the inter-relationship between the morphological texture of mixing patterns and the geochemical variability in mixed rhyolitic and basaltic complexes. (Freundt and Schmincke 1992; Morgavi et al., 2013 a, b, c;). Here, we combine two analytical techniques; X-ray computed microtomography and microprobe analysis to study the texture and chemistry of mixed rocks. Since mixed rocks of Grizzly Lake in the YVF had a very complex history and evolution, a significant amount of chemical measurements were needed to characterize the phases. In addition, X-ray microtomography was

  2. Magma Differentiation and Storage Inferred from Crystal Textures at Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Witter, M. R.; Mahood, G. A.; Stelten, M. E.; Downs, D. T.; Zahran, H. M.

    2015-12-01

    We present results of a petrographic study of Harrat Rahat volcanic field in western Saudi Arabia as part of a collaborative project between the U.S.G.S. and the Saudi Geological Survey. Lavas range in composition from alkali basalt to trachyphonolite. Basalts have <2-10 vol.% phenocrysts of euhedral olivine and plagioclase (± minor clinopyroxene). In intermediate lavas, phenocrysts (<5 vol.%) of olivine and plagioclase are resorbed, and plagioclase also exhibits sieve textures and strong zoning, indicative of complex magmatic histories. Trachyphonolite lavas have 0-35 vol.% large phenocrysts of anorthoclase and trace fayalitic olivine but are characterized by a size distribution of crystals that is seriate in hand specimen, so that most exceeded 45% crystals at the time of eruption. Some contain groundmass alkali amphibole. Crystal size distributions (CSD) of crystal-rich trachyphonolites produce simple linear trends (see below), which are interpreted as signifying that all the crystals are related through a common nucleation and growth history, at more or less constant pressure. Linear CSDs indicate no loss of small crystals due to reheating of magmas by recharge, no gain of small crystals due to late-stage nucleation on ascent or degassing, and no addition of large phenocrysts by crystal accumulation or magma mixing. Experimental studies demonstrate that silica-undersaturated evolved magmas like those erupted at Harrat Rahat can form by fractionation of alkali basalts at crustal depths greater than ~25 km. The observed phenocryst assemblage in the trachyphonolites, however, forms at shallow depths, ~2-4 km, according to MELTS modeling. Coupled with CSD data, this suggests that deep extraction events yield crystal-poor trachyphonolite magmas that rise to the upper crust where they undergo crystallization. Extensive shallow crystallization of trachyphonolites may have triggered eruptions by causing vapor saturation, which lowers magma density via vesiculation and

  3. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and

  4. Influences of quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California

    USGS Publications Warehouse

    McFadden, L.D.; Wells, S.G.; Dohrenwend, J.C.

    1986-01-01

    Soils formed in loess are evidence of both relict and buried landscapes developed on Pliocene-to-latest Pleistocene basalt flows of the Cima volcanic field in the eastern Mojave Desert, California. The characteristics of these soils change systematically and as functions of the age and surface morphology of the lava flow. Four distinct phases of soil development are recognized: phase 1 - weakly developed soils on flows less than 0.18 M.y. old; phase 2 - strongly developed soils with thick argillic horizons on 0.18 - 0.7 M.y. old flows; phase 3 - strongly developed soils with truncated argillic horizons massively impregnated by carbonate on 0.7 to 1.1 M.y. old flows; and phase 4 - degraded soils with petrocalcic rubble on Pliocene flows. A critical aspect of the development of stage 1 soils is the evolution of a vesicular A horizon which profoundly affects the infiltration characteristics of the loess parent materials. Laboratory studies show that secondary gypsum and possibly other salt accumulation probably occurred during the period of phase 1 soil development. Slight reddening of the interiors of peds from vesicular-A horizons of phase 1 soils and presence of weakly developed B horizons indicates a slight degree of in situ chemical alteration. However, clay and Fe oxide contents of these soils show that these constituents, as well as carbonates and soluble salts, are incorporated as eolian dust. In contrast to phase 1 soils, chemical and mineralogical analysis of argillic horizons of phase 2 soils indicate proportionally greater degrees of in-situ chemical alteration. These data, the abundant clay films, and the strong reddening in the thick argillic horizons suggest that phase 2 and phase 3 soils formed during long periods of time and periodically were subjected to leaching regimes more intense than those that now exist. Flow-age data and soil-stratigraphic evidence also indicate that several major loess-deposition events occurred during the past ??? 1.0 M

  5. The Volatile Element Evolution of Intra-plate Alkaline Rocks as Recorded by Apatite: An Example from the Hegau Volcanic Field (Southwest Germany)

    NASA Astrophysics Data System (ADS)

    Von Der Handt, A.; Rahn, M. K. W.; Wang, L. X.; Marks, M. A. W.

    2014-12-01

    The role of volatiles in the petrogenesis of alkaline intra-plate magmas has been the subject of an increasing number of experimental studies. The study of naturally occurring rocks and their volatile contents is often complicated by syn- and post-eruptive degassing and alteration processes. Minerals that incorporate volatiles into their structure such as apatites are often more faithful recorders of the pre-eruptive volatile budget. The Hegau volcanic field in Southwest Germany is part of the Central European Volcanic Province, lies around 60-70 km to the east of the Upper Rhine graben and of Miocene age. Three main lithological units can be distinguished (1) olivine melilites (2) phonolites and (3) the "Deckentuff" series referring to a series of diatreme-filling pipe breccias and lapilli tuff layers. Carbonatites occur subordinately in the Hegau province. Earlier radiometric age dating suggested distinct phases of volcanic activity of Deckentuffs, melilites and phonolites with little overlap, but new apatite fission-track and (U-Th)/He age data suggest a synchronous activity. Apatite is an abundant accessory phase in the Deckentuff and phonolite series and we investigated its major, trace and volatile element composition by EPMA, SIMS and cathodoluminescence imaging. Pronounced core-rim zoning of apatite in places attests that diffusional equilibration was very limited and they likely retained their primary compositions. This allows us to trace the entire magmatic evolution of the Hegau province from its most primitive to most evolved products as well as resolve it in time by combining age dating with compositional analysis. Apatite compositions fall along the OH-F join with low Cl-contents (<0.5 wt%). Volatile contents (Cl, OH, S) are highest in most primitive compositions and decrease with further evolution while F increases. Multiple magmatic cycles can be discerned with a general trend to the more evolved phonolite compositions toward the end of volcanic

  6. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (<1%) to pre-production CO 2

  7. Dikes, sills, and stress-regime evolution during emplacement of the Jagged Rocks Complex, Hopi Buttes Volcanic Field, Navajo Nation, USA

    NASA Astrophysics Data System (ADS)

    Re, Giuseppe; White, J. D. L.; Ort, M. H.

    2015-03-01

    The dikes and related intrusions formed below small volcanoes in volcanic fields are remnants of the simplest volcanic plumbing systems. Their geometry is controlled by interaction of magma-driven cracks with country rock, and reveals regional structural and stress patterns at the time of their emplacement. The shallow stress field, however, may change during the time an intrusion complex is emplaced, in response to addition or removal of magma and country rock during associated surface eruptions. The Jagged Rocks Complex, in the Miocene Hopi Buttes Volcanic Field, Navajo Nation, Arizona, is exposed 300-350 m below the pre-eruptive surface. It comprises a group of generally NW-SE striking dikes, punctuated in places by buds, a saucer-like intrusion, larger pyroclastic massifs and a diatreme. We made measurements of 13 dikes, divided into 172 segments, with thicknesses from 8 to 122 cm (mean 43 cm) and lengths of 60 to 780 m. Several sills and inclined sheets in places are thicker than dikes, having mean thicknesses of 48 cm and 73 cm respectively. Dikes typically show straight, parallel, and en echelon patterns, while sills and inclined sheets are curved. The northwestern dikes differ from the rest in containing large mafic crystals, and are inferred to have been emplaced after the others. We find that the strike of the overall complex (dikes and other sheets, elongate massifs and aligned sub-cylindrical bodies) reflects a crystalline-basement control that is evident throughout Hopi Buttes. Over the period of the complex's emplacement, local stress patterns were not stable. We infer that excavation of deep maar craters, and perhaps the construction of a scoria cone at the surface, modified the local stress patterns to favor emplacement of sills and en echelon dikes later in the complex's evolution, in contrast to simple straight dikes as the complex first formed.

  8. Characteristics of zircons from volcanic ash-derived tonsteins in Late Permian coal fields of eastern Yunnan, China

    USGS Publications Warehouse

    Zhou, Y.; Ren, Y.; Tang, D.; Bohor, B.

    1994-01-01

    Kaolinitic tonsteins of altered synsedimentary volcanic ash-fall origin are well developed in the Late Permian coal-bearing formations of eastern Yunnan Province. Because of their unique origin, wide lateral extent, relatively constant thickness and sharp contacts with enclosing strata, great importance has been attached to these isochronous petrographic markers. In order to compare tonsteins with co-existing, non-cineritic claystones and characterize the individuality of tonsteins from different horizons for coal bed correlation, a semi-quantitative method was developed that is based on statistical analyses of the concentration and morphology of zircons and their spatial distribution patterns. This zircon-based analytical method also serves as a means for reconstructing volcanic ash-fall dispersal patterns. The results demonstrate that zircons from claystones of two different origins (i.e., tonstein and non-cineritic claystone) differ greatly in their relative abundances, crystal morphologies and spatial distribution patterns. Tonsteins from the same area but from different horizons are characterized by their own unique statistical patterns in terms of zircon concentration values and morphologic parameters (crystal length, width and the ratio of these values), thus facilitating stratigraphic correlation. Zircons from the same tonstein horizon also show continuous variation in these statistical patterns as a function of areal distribution, making it possible to identify the main path and direction in which the volcanic source materials were transported by prevailing winds. ?? 1994.

  9. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A., Jr.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  10. Spatial and Alignment Analyses for a Field of Small Volcanic Vents South of Pavonis Mons and Implications for the Tharsis Province, Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Glaze, Lori S.; Greeley, Ronald; Hauber, Ernst; Baloga, Stephen; Sakimoto, Susan E. H.; Williams, David A.; Glotch, Timothy D.

    2009-01-01

    A field of small volcanic vents south of Pavonis Mons was mapped with each vent assigned a two-dimensional data point. Nearest neighbor and two-point azimuth analyses were applied to the resulting location data. Nearest neighbor results show that vents within this field are spatially random in a Poisson sense, suggesting that the vents formed independently of each other without sharing a centralized magma source at shallow depth. Two-point azimuth results show that the vents display north-trending alignment relationships between one another. This trend corresponds to the trends of faults and fractures of the Noachian-aged Claritas Fossae, which might extend into our study area buried beneath more recently emplaced lava flows. However, individual elongate vent summit structures do not consistently display the same trend. The development of the volcanic field appears to display tectonic control from buried Noachian-aged structural patterns on small, ascending magma bodies while the surface orientations of the linear vents might reflect different, younger tectonic patterns. These results suggest a complex interaction between magma ascension through the crust, and multiple, older, buried Tharsis-related tectonic structures.

  11. The nature of the crust in the Yukon-Koyukuk province as inferred from the chemical and isotopic composition of five Late Cretaceous to Early Tertiary volcanic fields in western Alaska

    USGS Publications Warehouse

    Moll-Stalcup, E.; Arth, Joseph G.

    1989-01-01

    Late Cretaceous and early Tertiary volcanic and plutonic rocks in western Alaska comprise a vast magmatic province extending from the Alaska Range north to the Arctic Circle, south to Bristol Bay, and west to the Bering Sea Shelf. The chemical and isotopic composition of five of these Late Cretaceous to early Tertiary volcanic fields in the north central part of this province were studied to determine if Paleozoic or older continental crust underlies the Yukon-Koyukuk province. -from Authors

  12. Lower crustal earthquake swarms beneath Mammoth Mountain, California - evidence for the magmatic roots to the Mammoth Mountain mafic volcanic field?

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Shelly, D. R.

    2010-12-01

    Mammoth Mountain is a cluster of dacitic domes erupted ~ 68 ka. It stands on the SW topographic rim of Long Valley caldera in eastern CA. Structurally, it is outboard of the caldera ring-fracture system and its magmatic system is genetically distinct from that of the caldera. It resides within a field of mafic (basaltic) vents that erupted between 190 - 8 ka. A series of phreatic explosions from the north flank of the mountain some 700 ybp attest to the infusion of heat to shallow depths shortly prior to the 600 ybp eruptions of the Inyo Domes 6 to 12 km north of the Mountain. Unrest beneath Mammoth Mountain since 1980 has included 1) swarms of brittle-failure earthquakes in the upper 10 km of the crust that define concentric elliptical ring-like patterns centered beneath the summit, 2) mid-crustal (depths 10 to 20 km) long-period volcanic earthquakes, 3) the onset of diffuse CO2 degassing in 1990 following an 11-month-long swarm of shallow (<10 km), brittle-failure earthquakes in 1989, 4) occasional very-long-period earthquakes at depths of ~ 3 km, and 5) brief swarms of lower-crustal, brittle-failure earthquakes at depths of 20 to 30 km, including sizable episodes June 16-17, 2006 and September 29-30, 2009. Seismic waveform correlation analysis at multiple stations reveals that these lower-crustal, brittle-failure swarms consist of tens to hundreds of repeated similar events and also serves to identify many events not included in the Northern California Seismic Network (NCSN) catalog. In the case of the 2009 episode, an evolution in waveform is clearly discernible over the sequence, suggesting a corresponding evolution in source location or mechanism. Work is ongoing to take advantage of the waveform similarity to estimate precise hypocentral locations of these events in order to distinguish between these possibilities.We suggest that the brittle-failure earthquakes at depths of 20 to 30 km are occurring within the more mafic mid- to lower-crust, which can remain

  13. Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan.

    PubMed

    Qadir, Abdul; Malik, Riffat Naseem

    2011-12-01

    Concentration of heavy metals (lead (Pb), cadmium (Cd), chromium (Cr), and copper (Cu)) was determined in the liver, gills, kidneys, and muscles of eight edible fish species (Channa punctata, Cirrhinus reba, Labeo rohita, Heteropneustes fossilis, Mystus cavasius, Oreochromis niloticus, Puntius sophore, and Wallago attu) from upstream and downstream zones of the Nullah Aik and Palkhu tributaries of the River Chenab located in the Sialkot district known for its tanning industries worldwide. The pattern of metal accumulation in studied organs was in the order: Cr > Pb > Cu > Cd. Liver showed greater metal accumulation, followed by gills, kidneys, and muscles. Accumulation of Pb and Cr was significantly different in organs between upstream and downstream zones. Accumulation was greater in fish species dwelling downstream, indicating impairment of ambient stream water due to untreated discharge of industrial and municipal effluents into studied streams. Highest concentration of Pb and Cr and lowest of Cd was detected in H. fossilis whereas Cu showed higher concentration and Cr lowest concentration in P. sophore. In contrast, lower concentration of Pb and Cu was recorded in M. cavasius, O. niloticus, and W. attu. Mean concentrations of Cd, Cr, and Cu were higher in pre-monsoon compared to post-monsoon season. Measured concentrations of Pb, Cd, and Cr in muscles of species such as C. punctata, W. attu, L. rohita, P. sophore, and O. niloticus were above permissible limits of heavy metals for human consumption, indicating potential health risks. Therefore, these fish species from studied locations should be avoided for human diet. PMID:21424780

  14. Rocks of the Thirtynine Mile volcanic field as possible sources of uranium for epigenetic deposits in central Colorado, USA.

    USGS Publications Warehouse

    Dickinson, K.A.

    1987-01-01

    The most likely volcanic source rock for uranium in epigenetic deposits of the Tallahassee Creek uranium district and nearby areas is the Wall Mountain Tuff. The widespread occurrence of the Tuff, its high apparent original uranium content, approx 11 ppm, and its apparent loss of uranium from devitrification and other alteration suggest its role in providing that element. An estimate of the original Th/U ratio is based on the present thorium and uranium contents of the basal vitrophyre of the Tuff from Castle Rock Gulch, Hecla Junction and other areas.-from Author

  15. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  16. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  17. Accessory mineral U-Th-Pb ages and 40Ar/39Ar eruption chronology, and their bearing on rhyolitic magma evolution in the Pleistocene Coso volcanic field, California

    USGS Publications Warehouse

    Simon, J.I.; Vazquez, J.A.; Renne, P.R.; Schmitt, A.K.; Bacon, C.R.; Reid, M.R.

    2009-01-01

    We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ??? 230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ???85 ka rhyolites yielded ages between ???100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ???200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (???10's to 100's ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies. ?? The Author(s) 2009.

  18. A new high resolution total magnetic intensity data set of the Laacher See Volcano in the East-Eifel volcanic field, Germany

    NASA Astrophysics Data System (ADS)

    Goepel, A.; Queitsch, M.; Lonschinski, M.; Eitner, A.; Meisel, M.; Reißig, S.; Engelhardt, J.; Büchel, G.; Kukowski, N.

    2012-04-01

    The Laacher See Volcano (LSV) is part of the Quaternary East-Eifel volcanic field (EVF) located in the western part of Germany, where at least 103 eruptive centers have been identified. The Laacher See volcano explosively erupted about 6.3 km3 of phonolitic magma during a dominantly phreato-plinian eruption at about 12,900 BP. Despite numerous previous studies the eruptive history of LSV is not fully unveiled. For a better understanding of the eruptive history of LSV several geophysical methods, including magnetic, gravimetric and bathymetric surveys have been applied on and around Laacher See Volcano. Here we focus on the magnetic and bathymetric data. The presented high resolution magnetic data covering an area of about 25 km2 (20,000 sample points) and were collected using ground based proton magnetometers (GEM Systems GSM-19TGW, Geometrics G856) during several field campaigns. In addition, a magnetic survey on the lake was done using a non-magnetic boat as platform. The bathymetric survey was conducted on profiles (total length of 235 km) using an echo sounder GARMIN GPSMap 421. Depth data were computed to a bathymetric model on a 10 m spaced regular grid. A joint interpretation of magnetic, morphologic and bathymetric data allows us to search for common patterns which can be associated with typical volcanic features. From our data at least one new eruptive center and lava flow could be identified. Furthermore, the new data suggest that previously identified lava flows have not been accurately located.

  19. Channel and tube flow features associated with the Twin Craters Lava Flow, Zuni-Bandera Volcanic Field, NM: Insights into similar features on Mars

    NASA Astrophysics Data System (ADS)

    Samuels, R.; deWet, A.; Bleacher, J. E.; von Meerscheidt, H. C.; Hamilton, C.; Garry, W. B.

    2013-12-01

    The Zuni-Bandera Volcanic Field lies near the center of the Jemez lineament that extends from central Arizona to northeastern New Mexico. The Jemez lineament is a result of rifting in the Earth's crust and is associated with volcanic activity that spans the last 16 Ma. The youngest volcanic activity associated with the lineament includes basaltic lava that was erupted 3 ka ago to form the McCartys Flow. The Twin Craters flow is moderately older (18.0 ka), but it also well-preserved and provides an ideal location to investigate volcanic processes and landforms. In this study, we combined detailed field observations and mapping with remote sensing to better understand variations in morphology along the transport system of the flow . The Twin Craters flow is characterized as an aā and tube-fed pāhoehoe flow with braided or branching tubes and channels; and associated aā and pāhoehoe break-outs. It is possible that the variations in morphology along the same transport structure might be related to pre-flow slope, which might have also been variable along flow. Shatter ring features are thought to be related to changes in eruption rate, and therefore, local flux through the system. However, over-pressurization of the tube might also be related to changes in local discharge rate associated with the ponding and release of lava within the transport system that may be due to interactions between the lava and obstacles along the flow's path (see Mallonee et al., this meeting). Many of these features are similar to features present in the Tharsis Montes region of Mars and particularly on the southern apron of Ascraeus Mons. The detailed description of the morphology of the Twin Craters Lava Flow and the understanding of the emplacement mechanisms will be crucial in identifying the processes that formed the Ascraeus flows and channels. This will aid in determining if the lava surface textures are directly related to eruption conditions or if they have been significantly

  20. The Pliocene-Quaternary Buffalo Valley volcanic field, Nevada: Post-extension, intraplate magmatism in the north-central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Cousens, Brian; Wetmore, Stacey; Henry, Christopher D.

    2013-12-01

    The Buffalo Valley volcanic field consists of Pliocene through Quaternary lava flows and spatter cones located south of Battle Mountain and adjacent to the Fish Creek Mountains, north-central Nevada. The volcanic rocks are split into two groups by age and geochemistry. The Pliocene sequence (4.02 to 2.75 Ma) consists of olivine- and plagioclase-bearing alkali basaltic lava flows with minor pyroclastic deposits, found primarily along the south flank of Battle Mountain and also at the north end of the Fish Creek Mountains and within the Fish Creek Mountains caldera. The Quaternary series (1.99 to 1.14 Ma) includes nearly a dozen trachybasaltic spatter cones with short lava flows erupted along the northwest flank of the Fish Creek Mountains. Normalized rare earth element and incompatible element plots for both groups are light rare earth and Nb-Ta enriched, resembling alkali basalts from ocean islands, but the Quaternary lavas are more light rare earth element-enriched and cross the Pliocene basalt patterns at Eu. Radiogenic and stable isotope ratios are consistent with an asthenospheric mantle source, and the rare earth element patterns indicate a shift from melting in the spinel to garnet peridotite field with time. Basaltic rocks from other intraplate fields in the Great Basin, including the Lunar Crater and Cima fields, only include lavas that originated at depth in the garnet peridotite field. Buffalo Valley is located at the margin of a proposed lithospheric drip (delamination) and within a zone of lithospheric thinning that extends across northern Nevada, both of which may control where melting in the asthenosphere may occur. The proximity to the edge of Precambrian-Phanerozoic lithosphere boundary may also be a factor in melt generation.

  1. Remote Sensing as a First Step in Geothermal Exploration in the Xilingol Volcanic Field in NE China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Huang, S.; Xiong, Y.

    2013-12-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Geological structures play an important role in the transfer and storage of geothermal energy. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting techniques, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, RS and GIS techniques are utilized to prospect the geothermal energy potential in Xilingol, a Cenozoic volcanic area in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with a single-channel algorithm. Prior to the LST retrieval, the imagery data are preprocessed to eliminate abnormal values by reference to the normalized difference vegetation index (NDVI) and the improved normalized water index (MNDWI) on the ENVI platform developed by ITT Visual Information Solutions. Linear and circular geological structures are then inferred through visual interpretation of the LST maps with references to the existing geological maps in conjunction with the computer automatic interpretation features such as lineament frequency, lineament density, and lineament intersection. Several useful techniques such as principal component analysis (PCA), image classification, vegetation suppression, multi-temporal comparative analysis, and 3D Surface View based on DEM data are

  2. Field relation, geochemistry and origin of the Xinglonggou volcanic rocks in Beipiao area, Liaoning Province (China): Reappraisal on the foundering of lower continental crust of North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Cheng, Su-Hua

    2012-03-01

    Our large scale geological mapping in the Beipiao area, western Liaoning Province, the North China Craton, shows that the exposed "Xinglonggou Formation" is not a monoclinal stratum, but a suit of strongly deformed volcanic rocks intruded by some small plugs. Consequently, two rock groups are categorized for the "Xinglonggou Formation" in the Beipiao area, according to their field relation, petrography, and geochemical characteristics. The group 1 rocks are blackish and fresh, and cut across the deformed group 2 volcanic rocks. Meanwhile, the group 1 rocks exhibit characteristics of higher magnesium number (Mg# ⩾ 60), calcium content (CaO > 5 wt.%), and Sr/Y ratio (>60), but lower potassium (K2O < 2 wt.%) and Rb contents (<40 ppm). Among these rocks, most of them have higher Cs but lower Li content. Geochemically, the group 1 rocks belong to high-SiO2 adakite (HSA). On the contrary, the group 2 is composed of intermediate and acid volcanic rocks, which are brownish or greenish and strongly folded. Compared with the group 1 rocks, they have higher potassium (K2O > 2 wt.%) and Rb contents, but lower Mg# (<60) and calcium content (most samples CaO < 5 wt.%); meanwhile, they have lower Sr/Y ratios (in general <60), and lower Cs but higher Li contents. According to their near zero ɛNd(t) value and radiogenic Pb isotopic compositions, as well as the enrichment of U and Th relative to LREE, neither the group 1 or the group 2 rocks result from the partial melting of the lower crust of North China Craton. The group 1 HSAs are generated by melting of the subducted oceanic crust of the Paleo-Pacific plate; otherwise, the group 2 rocks are derivatives of the magma originated from a slab-derived melt metasomatised mantle.

  3. Field-trip guide to volcanic and volcaniclastic deposits of the lower Jurassic Talkeetna formation, Sheep Mountain, south-central Alaska

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Blodgett, Robert B.

    2006-01-01

    This guide provides information for a one-day field trip in the vicinity of Sheep Mountain, just north of the Glenn Highway in south-central Alaska. The Lower Jurassic Talkeetna Formation, consisting of extrusive volcanic and volcaniclastic sedimentary rocks of the Talkeetna arc complex, is exposed on and near Sheep Mountain. Field-trip stops within short walking distance of the Glenn Highway (approximately two hours’ drive from Anchorage) are described, which will be visited during the Geological Society of America Penrose meeting entitled Crustal Genesis and Evolution: Focus on Arc Lower Crust and Shallow Mantle, held in Valdez, Alaska, in July 2006. Several additional exposures of the Talkeetna Formation on other parts of Sheep Mountain that would need to be accessed with longer and more strenuous walking or by helicopter are also mentioned.

  4. Recording of climate and diagenesis through fossil pigments and sedimentary DNA at Laguna Potrok Aike, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, A.; Ariztegui, D.; Leavitt, P. R.; Bunting, L.; Pasado Science Team

    2015-11-01

    Aquatic sediments record past climatic conditions while providing a wide range of ecological niches for microorganisms. Although marine sedimentary microbial assemblages are often defined by their surrounding geochemical conditions, the influence of environmental features upon microbial development and post-depositional survival remains largely unknown in the lacustrine realm. Due to long-term microbial activity, the composition of environmental DNA can be expected to evolve with sediment depth and over time and therefore should reflect both ancient and extant microbial populations, but this hypothesis has rarely been tested using a multiproxy approach. Here geomicrobiological and phylogenetic analyses of a Patagonian maar lake were used to indicate that the different sedimentary microbial assemblages derive from specific lacustrine regimes during defined climatic periods. Two well defined climatic intervals whose sediments harboured active microbial populations and measurable ATP were sampled for a comparative environmental study based on fossil pigments and 16S rRNA gene sequences. Bacterial and archaeal 16S rRNA gene sequences recovered from the Holocene record revealed a microbial community adapted to subsaline conditions actively producing methane during organic matter degradation. These characteristics were associated with sediments resulting from endorheic lake conditions with high evaporative stress and concomitant high algal productivity. Moreover, archaeal clone libraries established throughout the Holocene record indicate an age-related stratification of these populations, consistent with a gradual use of organic substrates after deposition. In contrast, sulphate-reducing bacteria and lithotrophic Archaea were predominant in sediments dated from the Last Glacial Maximum, in which pelagic clays alternated with fine volcanic material characteristic of a lake level highstand and freshwater conditions, but reduced water column productivity. These patterns

  5. Recording of climate and diagenesis through sedimentary DNA and fossil pigments at Laguna Potrok Aike, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, Aurèle; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda; The Pasado Science Team

    2016-04-01

    Aquatic sediments record past climatic conditions while providing a wide range of ecological niches for microorganisms. In theory, benthic microbial community composition should depend on environmental features and geochemical conditions of surrounding sediments, as well as ontogeny of the subsurface environment as sediment degraded. In principle, DNA in sediments should be composed of ancient and extant microbial elements persisting at different degrees of preservation, although to date few studies have quantified the relative influence of each factor in regulating final composition of total sedimentary DNA assemblage. Here geomicrobiological and phylogenetic analyses of a Patagonian maar lake were used to indicate that the different sedimentary microbial assemblages derive from specific lacustrine regimes during defined climatic periods. Two climatic intervals (Mid-Holocene, 5 ka BP; Last Glacial Maximum, 25 ka BP) whose sediments harbored active microbial populations were sampled for a comparative environmental study based on fossil pigments and 16S rRNA gene sequences. The genetic assemblage recovered from the Holocene record revealed a microbial community displaying metabolic complementarities that allowed prolonged degradation of organic matter to methane. The series of Archaea identified throughout the Holocene record indicated an age-related stratification of these populations brought on by environmental selection during early diagenesis. These characteristics were associated with sediments resulting from endorheic lake conditions and stable pelagic regime, high evaporative stress and concomitant high algal productivity. In contrast, sulphate-reducing bacteria and lithotrophic Archaea were predominant in sediments dated from the Last Glacial Maximum, in which pelagic clays alternated with fine volcanic material characteristic of a lake level highstand and freshwater conditions, but reduced water column productivity. Comparison of sedimentary DNA composition

  6. Closer look at lunar volcanism

    SciTech Connect

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry.

  7. Nature of basalt-deep crust interaction in the petrogenesis of a potassium-rich, silicic-dominated eruptive system, Davis Mountain volcanic field, west Texas

    SciTech Connect

    Ward, R.L.; Walker, J.A. . Dept. of Geology)

    1993-04-01

    The Davis Mountain volcanic field (DMVF) is one of several silicic-dominated eruptive centers that constitute the bulk of the Trans Pecos volcanic province (TPVP). New major-, trace element, and Pb-O isotope data on local granulite-facies xenoliths and the DMVF are used in evaluating the extent of basalt-deep crust interaction to produce voluminous silicic lavas and -ignimbrites. The DMVF (39.3--35.4 Ma) is a high-K, alkali basalt-potassic trachybasalt-shoshonite-latite-trachyte-rhyolite volcanoplutonic series with the evolved members being silica-saturated. DMF silicic rocks are characterized by high concentrations of Rb, Th, U, and K, low-[sup 18]O and have a broad range in Pb isotopes. These characteristics are inconsistent with an origin by partial melting of a Rb-Th-U depleted, unradiogenic Pb granulitic deep crust. However, distinctly different Pb isotope compositions between mafic and silicic rocks preclude an origin by fractional crystallization alone. Multistage-AFC involving a mantle-source, various proportions of OL-CPX-PLAG-KSPAR-MAG-AP-BIO-QTZ-aenigmatite-ZR differentiation, limited (<10%) amounts of deep and upper crustal contamination, and mixing between mafic and silicic magmas can satisfactorily account for the observed chemical and isotopic variation in the DMVF.

  8. Monogenetic volcanic hazards and assessment

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  9. Basaltic Diatreme To Root Zone Volcanic Processes In Tuzo Kimberlite Pipe (Gahcho Kué Kimberlite Field, NWT, Canada)

    NASA Astrophysics Data System (ADS)

    Seghedi, I.; Kurszlaukis, S.; Maicher, D.

    2009-05-01

    Tuzo pipe is infilled by a series of coherent and fragmental kimberlite facies types typical for a diatreme to root zone transition level. Coherent or transitional coherent kimberlite facies dominate at depth, but also occur at shallow levels, either as dikes or as individual or agglutinated coherent kimberlite clasts (CKC). Several fragmental kimberlite varieties fill the central and shallow portions of the pipe. The definition, geometry and extent of the geological units are complex and are controlled by vertical elements. Specific for Tuzo is: (1) high abundance of locally derived xenoliths (granitoids and minor diabase) between and within the kimberlite phases, varying in size from sub-millimeter to several tens of meters, frequent in a belt-like domain between 120-200 m depth in the pipe; (2) the general presence of CKC, represented by round-subround, irregular to amoeboid-shaped clasts with a macrocrystic or aphanitic texture, mainly derived from fragmentation of erupting magma and less commonly from previously solidified kimberlite, as well as recycled pyroclasts. In addition, some CKC are interpreted to be intersections of a complex dike network. This diversity attests formation by various volcanic processes, extending from intrusive to explosive; (3) the presence of bedded polymict wall- rock and kimberlite breccia occurring mostly in deep levels of the pipe below 345 m depth. The gradational contact relationships of these deposits with the surrounding kimberlite rocks and their location suggest that they formed in situ. The emplacement of Tuzo pipe involved repetitive volcanic explosions alternating with periods of relative quiescence causing at least partial consolidation of some facies. The volume deficit in the diatreme-root zone after each eruption was compensated by gravitational collapse of overlying diatreme tephra and pre-fragmented wall-rock xenoliths. Highly explosive phases were alternating with weak explosions or intrusive phases, suggesting

  10. Paleomagnetic and geochemical applications to tectonics and Quaternary geology: Studies at Coso Volcanic Field, California and the Channelled Scabland, Washington

    NASA Astrophysics Data System (ADS)

    Pluhar, Christopher J.

    At the Coso Range, CA we used paleomagnetism to reveal the long-term history and kinematics of deformation resulting from distributed transtension of the Eastern California shear zone (ECSZ). Pliocene lavas and sediments deposited in and around the Wild Horse Mesa record and result from the initiation of deformation along the ECSZ in this area. Geochemical analyses, geochronologic, and stratigraphic constraints provide new information about the initiation and evolution of volcanism in this region. Following emplacement of the volcanics, distributed faulting has accommodated dextral shear of the ECSZ by 12°--22° of rotation of fault-bounded blocks in the Wild Horse Mesa and tilting in the Coso geothermal area. This partitioning of block kinematic style probably results from partitioning of slip of the master faults at depth that control block motion of the shallow crust. A calculation based upon some simple assumptions about block geometry indicates that at least 1.5 km of dextral slip is accommodated across the Wild Horse Mesa. Magnetostratigraphic studies of the Cold Creek bar at Hanford, WA constrain the timing of deposition of cataclysmic flood deposits resulting from jokulhlaups like the Missoula floods and similar processes. Abundant evidence for reversed polarity sediments confirm previous studies suggesting onset of cataclysmic floods prior to the last major magnetic polarity reversal (0.78 Ma). A normal polarity zone bracketed by reversed polarity at eastern Cold Creek bar extends the chronology back to before the Jaramillo subchron (0.99--1.07 Ma) suggesting that the climatic and physiographic elements for cataclysmic floods were in place in the Pacific Northwest by about 1.1 Ma.

  11. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems

    NASA Astrophysics Data System (ADS)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj

    2015-12-01

    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain ~ 14 wt.% of MgO and ~ 4% wt.% of H2O and originated by partial melting (~ 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of ~ 1250 °C and pressure of ~ 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at ~ 2.8 GPa and ~ 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC

  12. Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise `Ruaumoko'

    NASA Astrophysics Data System (ADS)

    Lindsay, Jan; Marzocchi, Warner; Jolly, Gill; Constantinescu, Robert; Selva, Jacopo; Sandri, Laura

    2010-03-01

    The Auckland Volcanic Field (AVF) is a young basaltic field that lies beneath the urban area of Auckland, New Zealand’s largest city. Over the past 250,000 years the AVF has produced at least 49 basaltic centers; the last eruption was only 600 years ago. In recognition of the high risk associated with a possible future eruption in Auckland, the New Zealand government ran Exercise Ruaumoko in March 2008, a test of New Zealand’s nation-wide preparedness for responding to a major disaster resulting from a volcanic eruption in Auckland City. The exercise scenario was developed in secret, and covered the period of precursory activity up until the eruption. During Exercise Ruaumoko we adapted a recently developed statistical code for eruption forecasting, namely BET_EF (Bayesian Event Tree for Eruption Forecasting), to independently track the unrest evolution and to forecast the most likely onset time, location and style of the initial phase of the simulated eruption. The code was set up before the start of the exercise by entering reliable information on the past history of the AVF as well as the monitoring signals expected in the event of magmatic unrest and an impending eruption. The average probabilities calculated by BET_EF during Exercise Ruaumoko corresponded well to the probabilities subjectively (and independently) estimated by the advising scientists (differences of few percentage units), and provided a sound forecast of the timing (before the event, the eruption probability reached 90%) and location of the eruption. This application of BET_EF to a volcanic field that has experienced no historical activity and for which otherwise limited prior information is available shows its versatility and potential usefulness as a tool to aid decision-making for a wide range of volcano types. Our near real-time application of BET_EF during Exercise Ruaumoko highlighted its potential to clarify and possibly optimize decision-making procedures in a future AVF eruption

  13. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  14. Magnitude, geomorphologic response and climate links of lake level oscillations at Laguna Potrok Aike, Patagonian steppe (Argentina)

    NASA Astrophysics Data System (ADS)

    PASADO science Team Kliem, P.; Buylaert, J. P.; Hahn, A.; Mayr, C.; Murray, A. S.; Ohlendorf, C.; Veres, D.; Wastegård, S.; Zolitschka, B.

    2013-07-01

    Laguna Potrok Aike is a large maar lake located in the semiarid steppe of southern Patagonia known for its Lateglacial and Holocene lake level fluctuations. Based on sedimentary, seismic and geomorphological evidences, the lake level curve is updated and extended into the Last Glacial period and the geomorphological development of the lake basin and its catchment area is interpreted.Abrasion and lake level oscillations since at least ˜50 ka caused concentric erosion of the surrounding soft rocks of the Miocene Santa Cruz Formation and expanded the basin diameter by approximately 1 km. A high lake level and overflow conditions of the lake were dated by luminescence methods and tephra correlation to the early Lateglacial as well as to ˜45 ka. The lowest lake level of record occurred during the mid-Holocene. A further lake level drop was probably prevented by groundwater supply. This low lake level eroded a distinct terrace into lacustrine sediments. Collapse of these terraces probably caused mass movement deposits in the profundal zone of the lake. After the mid-Holocene lake level low stand a general and successive transgression occurred until the Little Ice Age maximum; i.e. ca 40 m above the local groundwater table. Frequent lake level oscillations caused deflation of emerged terraces only along the eastern shoreline due to prevailing westerly winds. Preservation of eolian deposits might be linked to relatively moist climate conditions during the past 2.5 ka.Precisely dated lake level reconstructions in the rain-shadow of the Andes document high Last Glacial and low Holocene lake levels that could suggest increased precipitation during the Last Glacial period. As permafrost in semiarid Patagonia is documented and dated to the Last Glacial period we argue that the frozen ground might have increased surficial runoff from the catchment and thus influenced the water balance of the lake. This is important for investigating the glacial to Holocene latitudinal shift

  15. Magnitude, geomorphologic response and climate links of lake level oscillations at Laguna Potrok Aike, Patagonian steppe (Argentina)

    NASA Astrophysics Data System (ADS)

    Kliem, P.; Buylaert, J. P.; Hahn, A.; Mayr, C.; Murray, A. S.; Ohlendorf, C.; Veres, D.; Wastegård, S.; Zolitschka, B.; The Pasado Science Team

    2013-07-01

    Laguna Potrok Aike is a large maar lake located in the semiarid steppe of southern Patagonia known for its Lateglacial and Holocene lake level fluctuations. Based on sedimentary, seismic and geomorphological evidences, the lake level curve is updated and extended into the Last Glacial period and the geomorphological development of the lake basin and its catchment area is interpreted. Abrasion and lake level oscillations since at least ˜50 ka caused concentric erosion of the surrounding soft rocks of the Miocene Santa Cruz Formation and expanded the basin diameter by approximately 1 km. A high lake level and overflow conditions of the lake were dated by luminescence methods and tephra correlation to the early Lateglacial as well as to ˜45 ka. The lowest lake level of record occurred during the mid-Holocene. A further lake level drop was probably prevented by groundwater supply. This low lake level eroded a distinct terrace into lacustrine sediments. Collapse of these terraces probably caused mass movement deposits in the profundal zone of the lake. After the mid-Holocene lake level low stand a general and successive transgression occurred until the Little Ice Age maximum; i.e. ca 40 m above the local groundwater table. Frequent lake level oscillations caused deflation of emerged terraces only along the eastern shoreline due to prevailing westerly winds. Preservation of eolian deposits might be linked to relatively moist climate conditions during the past 2.5 ka. Precisely dated lake level reconstructions in the rain-shadow of the Andes document high Last Glacial and low Holocene lake levels that could suggest increased precipitation during the Last Glacial period. As permafrost in semiarid Patagonia is documented and dated to the Last Glacial period we argue that the frozen ground might have increased surficial runoff from the catchment and thus influenced the water balance of the lake. This is important for investigating the glacial to Holocene latitudinal shift

  16. A Conceptual Model to Link Anomalously High Temperature Gradients in the Cerros del Rio Volcanic Field to Regional Flow in the Espanola Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Fillingham, E. J.; Keller, S. N.; McCullough, K. R.; Watters, J.; Weitering, B.; Wilce, A. M.; Folsom, M.; Kelley, S.; Pellerin, L.

    2015-12-01

    Temperature-depth well data along with electromagnetic (EM) data were collected by students of the Summer of Applied Geophysics Experience (SAGE) 2015 field season in the Espanola Basin, New Mexico. The data from this year, in addition to data acquired since 2013, were used to construct a conceptual east-west cross-section of the Espanola Basin and the adjacent highlands in order to evaluate the regional flow system. Vertical geothermal gradients from several monitoring wells were measured using a thermistor. Anomalously warm geothermal gradients were mapped in the Cerros del Rio volcanic field in the basin just east of the Rio Grande. Temperature gradients are up to 70℃/km, while the background geothermal gradients in the Rio Grande rift zone generally show 28℃-35℃/km. This anomaly extends to the Buckman well field, which supplies water to the city of Santa Fe. Overpumping of this well field has led to subsidence in the past. However, discharge temperature plots indicate that the temperature gradients of the Buckman field may be rebounding as pumping is reduced. Audiomagnetotelluric (AMT) and transient electromagnetic (TEM) data were acquired in the vicinity of three monitoring wells. TEM and AMT methods complement each other with the former having depths of investigation of less than ten to hundreds of meters and AMT having depths of investigation comparable to the wells deeper than 500m. These datasets were used collectively to image the subsurface stratigraphy and, more specifically, the hydrogeology related to shallow aquifers. The EM data collected at these wells showed a trend indicating a shallow aquifer with a shallower resistive layer of approximately 100 ohm-m at 70-100 meters depth. Beneath this resistive layer we resolved a more conductive, clay-rich layer of 10 ohm-m. These resistivity profiles compliment the electrical logs provided by Jet West, which indicate shallower sandstone interbedded with silt on top of more silt-dominant layers. Our

  17. Volcanic Catastrophes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  18. Volcanics oil bearing in Indonesia

    SciTech Connect

    Lukman, K.A.; Nyak, B.R.; Anditya, I.M. )

    1996-01-01

    The volcanic rock is seldom considered as good reservoir rocks. However, in Indonesia there is a volcanic layer called the Jatibarang Formation in Jatibarang Field, West Java, that has proven to be a producer of oil and gas of adequate amount. The lateral development of this rock extent along the whole of the basin, about 400 km over a Tertiary block-faulting system of the North West Java Basin. It is estimated that the volume of the spread is about 2360 km[sup 3]. Beside from the primary volcanic rock, the developing reservoir rock could also resulted from rework of massive volcanics or agglomerate, and other volcanic product resedimented as clastic deposits. The hydrocarbon is sourced from the younger Talang Aker Formation that is in direct contact with the reservoir rock. It migrated through the faults. Present cumulative production has reached 1.2 BBC and 2.7 TCFG, while speculative reserve is estimated at 4.0 BBO and 3 TCFG. Regionally, the volcanic rock of the Jatibarang Formation where the hydrocarbon is found is the result of eruptions along the magmatic trend during Late Cretaceous. In North West Java Basin, the trapping system includes both the structural and stratigraphic traps. Reservoir analysis yields pororsity values of around 16-25% and permeability of around 10 Darcies. It is concluded that there are good opportunities still left for hydrocarbon exploration in volcanic rocks. The study is discussed in detail, supported by data from cores and laboratories.

  19. Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event

    USGS Publications Warehouse

    Lanphere, M.A.; Champion, D.E.; Christiansen, R.L.; Izett, G.A.; Obradovich, J.D.

    2002-01-01

    40Ar/39Ar ages were determined on the three major ash-flow tuffs of the Yellowstone Plateau volcanic field in the region of Yellowstone National Park in order to improve the precision of previously determined ages. Total-fusion and incremental-heating ages of sanidine yielded the following mean ages: Huckleberry Ridge Tuff-2.059 ?? 0.004 Ma; Mesa Falls Tuff-1.285 ?? 0.004 Ma; and Lava Creek Tuff-0.639 ?? 0.002 Ma. The Huckleberry Ridge Tuff has a transitional magnetic direction and has previously been related to the Reunion Normal-Polarity Subchron. Dating of the Reunion event has been reviewed and its ages have been normalized to a common value for mineral standards. The age of the Huckleberry Ridge Tuff is significantly younger than lava flows of the Reunion event on Re??union Island, supporting other evidence for a normal-polarity event younger than the Reunion event.

  20. A 13 ± 3 ka age determination of a tholeiite, Pinacate volcanic field, Mexico, and improved methods for 40Ar/ 39Ar dating of young basaltic rocks

    NASA Astrophysics Data System (ADS)

    Turrin, Brent D.; Gutmann, James T.; Swisher, Carl C., III

    2008-11-01

    Among the youngest lava flows of the Pinacate volcanic field, Sonora, Mexico, is a large outpouring of tholeiite, the Ives flow. This tube-fed pahoehoe flow contrasts sharply with other Pinacate lavas in its great volume, alkali-poor composition and morphologic features, which include novel small structures named "spatter tubes." Despite its K-poor character, young age, and the presence of excess 40Ar, we determined a 40Ar/ 39Ar age on samples of this flow at 13 ± 3 ka. Such an age determination is made possible via careful monitoring of the mass discrimination of the mass spectrometer and by stacking results from multiple incremental-heating experiments into a single, composite isochron. This age is among the youngest ever to be determined with such precision by the 40Ar/ 39Ar method on a K-poor tholeiite.

  1. Magnetic fabric investigation of the oligocene Fish Canyon and Sapinero Mesa tuffs: Examination of effects of topography on ignimbrite emplacement, Southern Rocky Mountain Volcanic Field, Colorado

    NASA Astrophysics Data System (ADS)

    Martin, Michael

    Exposures of two laterally extensive ignimbrites in the northern part of the Southern Rocky Mountain Volcanic Field (SRMVF), Colorado, allow examination of the emplacement mechanisms of these pyroclastic deposits as a function of deposition on irregular preexisting topography using magnetic fabric techniques. The Sapinero Mesa and Fish Canyon tuffs are major components of the SRMVF and were emplaced on highly irregular paleotopography. This study examines how the Sapinero Mesa and Fish Canyon tuffs were emplaced on different topographic features. A total of 34 sites were collected and analyzed for determination of magnetic fabrics, to interpret transport directions, through measurements of anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). Analyses indicate inferred transport directions that locally differ from the assumed regional north-northwest transport direction. The discrepancies between regional and localized flow directions suggest a transport-driven response to local topography attending deposition.

  2. Cape Wanbrow: A stack of Surtseyan-style volcanoes built over millions of years in the Waiareka-Deborah volcanic field, New Zealand

    NASA Astrophysics Data System (ADS)

    Moorhouse, B. L.; White, J. D. L.; Scott, J. M.

    2015-06-01

    Volcanic fields typically include many small, monogenetic, volcanoes formed by single eruptions fed by short-lived magma plumbing systems that solidify after eruption. The Cape Wanbrow coastline of the northeast Otago region in the South Island of New Zealand exposes an Eocene-Oligocene intraplate basaltic field that erupted in Surtseyan style onto a submerged continental shelf, and the stratigraphy of Cape Wanbrow suggests that eruptions produced multiple volcanoes whose edifices overlapped within a small area, but separated by millions of years. The small Cape Wanbrow highland is shown to include the remains of 6 volcanoes that are distinguished by discordant to locally concordant inter-volcano contacts marked by biogenic accumulations or other slow-formed features. The 6 volcanoes contain several lithofacies associations: (a) the dominantly pyroclastic E1 comprising well-bedded tuff and lapilli-tuff, emplaced by traction-dominated unsteady, turbulent high-density currents; (b) E2, massive to diffusely laminated block-rich tuff deposited by grain-dominant cohesionless debris flows; (c) E3, broadly cross-stratified tuff with local lenses of low- to high-angle cross-stratification which was deposited by either subaerial pyroclastic currents or subaqueously by unstable antidune- and chute-and-pool-forming supercritical flows; (d) E4, very-fine- to medium-grained tuff deposited by turbidity currents; (e) E5, bedded bioclast-rich tuff with increasing glaucony content upward, emplaced by debris flows; (f) E6, pillow lava and inter-pillow bioclastic sediment; and (g) E7, hyaloclastite breccia. These lithofacies associations aid interpretation of the eruptive evolution of each separate volcano, which in turn grew and degraded during build-up of the overall volcanic pile. Sedimentary processes played a prominent role in the evolution of the volcanic pile with both syn- and post-eruptive re-mobilization of debris from the growing pile of primary pyroclastic deposits of

  3. High-precision 40Ar/39Ar sanidine geochronology of ignimbrites in the Mogollon-Datil volcanic field, southwestern New Mexico

    USGS Publications Warehouse

    McIntosh, W.C.; Sutter, J.F.; Chapin, C.E.; Kedzie, L.L.

    1990-01-01

    40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1?? precision of??0.25%-0.4% (??0.07-0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1?? precisions averaging ??0.25%. Plateau ages from multiple (n=3-8) samples of individual ignimbrites show 1?? within-unit precision of ??0.1%-0.4% (??0.04-0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1-3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west. ?? 1990 Springer-Verlag.

  4. Origin and potential geothermal significance of China Hat and other late Pleistocene topaz rhyolite lava domes of the Blackfoot Volcanic Field, SE Idaho

    NASA Astrophysics Data System (ADS)

    McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.

    2014-12-01

    The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resour