Science.gov

Sample records for ailao shan shear

  1. New tectono-geochronological constraints on timing of shearing along the Ailao Shan-Red River shear zone: Implications for genesis of Ailao Shan gold mineralization

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Chen, Xiaoyu; Wu, Wenbin; Tang, Yuan; Tran, My-Dung; Nguyen, Quang-Luat; Zhang, Zhaochong; Zhao, Zhidan

    2015-05-01

    Several world class gold deposits are located along the Ailao Shan (ALS) belt in eastern Tibet, China. The genesis of gold mineralization along the belt, however, has been the subject of debates in the last decades, which highlights the importance of dating shearing, magmatism and mineralization along the Ailao Shan-Red River shear zone (ASRR). Through detailed field observations and microscopic analysis, a group of leucocratic intrusions from within and outside the shear zone along the ALS belt are investigated in the present paper. Pre-, syn- and post-shearing intrusions are grouped based on structural and microstructural analysis. LA-ICP-MS and SIMS dating of the intrusions revealed the existence of two age populations, a group of ages older than 30 Ma and the other younger than 28 Ma. The former are distributed both within and outside the shear zone, and the latter, in contrast, occur only within the shear zone. Our new results show that the ductile shearing along the ASRR shear zone initiated since ca. 30 Ma ago. The dating results place major constraints on timing of shearing along the ASRR shear zone and have profound implications on the genesis of gold mineralization along the ALS belt. The present study reveals that ductile shearing along the ASRR shear zone was resulted from extrusion of the Indochina block late during the Indian-Eurasian plate collision. Meanwhile, we conclude that the gold mineralization took place prior to the shearing, but in close relation to an early magmatism (>30 Ma) ascribed to post-collisional extension collapse involving mantle processes, early during the plate collision.

  2. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina

    NASA Astrophysics Data System (ADS)

    Leloup, Philippe Hervé; Lacassin, Robin; Tapponnier, Paul; Schärer, Urs; Zhong, Dalai; Liu, Xiaohan; Zhang, Liangshang; Ji, Shaocheng; Trinh, Phan Trong

    1995-12-01

    The Red River Fault zone (RRF) is the major geological discontinuity that separates South China from Indochina. Today it corresponds to a great right-lateral fault, following for over 900 km the edges of four narrow (< 20 km wide) high-grade gneiss ranges that together form the Ailao Shan-Red River (ASRR) metamorphic belt: the Day Nui Con Voi in Vietnam, and the Ailao, Diancang and Xuelong Shan in Yunnan. The Ailao Shan, the longest of those ranges, is fringed to the south by a strip of low-grade schists that contain ultramafic bodies. The ASRR belt has thus commonly been viewed as a suture. A detailed study of the Ailao and Diancang Shan shows that the gneiss cores of the ranges are composed of strongly foliated and lineated mylonitic gneisses. The foliation is usually steep and the lineation nearly horizontal, both being almost parallel to the local trend of the gneissic cores. Numerous shear criteria, including asymmetric tails on porphyroclasts, C-S or C'-S structures, rolling structures, asymmetric foliation boudinage and asymmetric quartz axis fabrics, indicate that the gneisses have undergone intense, progressive left-lateral shear. P-T studies show that left-lateral strain occurred under amphibolite-facies conditions (3-7 kb and 550-780°C). In both ranges high-temperature shear was coeval with emplacement of leucocratic melts. Such deformed melts yield {U}/{Pb} ages between 22.4 and 26.3 Ma in the Ailao Shan and between 22.4 and 24.2 Ma in the Diancang Shan, implying shear in the Lower Miocene. The mylonites in either range rapidly cooled to ≈ 300°C between 22 and 17 Ma, before the end of left-lateral motion. The similarity of deformation kinematics, P-T conditions, and crystallization ages in the aligned Ailao and Diancang Shan metamorphic cores, indicate that they represent two segments of the same Tertiary shear zone, the Ailao Shan-Red River (ASRR) shear zone. Our results thus confirm the idea that the ASRR belt was the site of major left

  3. The significance of geological and zircon age data derived from the wall rocks of the Ailao Shan-Red River Shear Zone, NW Vietnam

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, Andrzej; Hòa, Trần Trọng; Larionov, Alexander N.

    2013-09-01

    This paper offers new evidence on whether the Ailao Shan-Red River Shear Zone of NW Vietnam is part of a suture zone between two continental blocks (the IndoChina Block and the South China Block) or whether it is itself of intracontinental origin, developed within the South China margin. To help clarify the role that the Ailao Shan-Red River Shear Zone plays in South China tectonic reconstructions, we gathered new whole-rock geochemistry, structural field data, and zircon U-Pb (SHRIMP) ages from granites, rhyodacites, and migmatites that occur within geological units adjacent to both the SW and NE sides of the Red River Fault Zone, a segment of the larger shear zone. The new zircon ages show that both walls of the Red River Fault Zone contain metamorphic and intraplate A-type granitoid rocks of Late Permian-Early Triassic age (263-240 Ma) and are of Indosinian origin. In the SW wall, the Fan Si Pan complex is a Neoproterozoic basement of metagranites and metasediments that was intruded by Late Permian (˜260 Ma), peralkaline, A-type granites and by subalkaline, A-type, biotite granite of Eocene age (˜35 Ma), containing xenoliths of gneissified Permian granitoids. The two intrusive episodes were separated by regional tectonic deformations occurring within a transpressional regime of a NW/W-vergent thrusting with a left-lateral oblique component, that was associated with greenschist to amphibolite facies metamorphism, presumably also of Eocene age (˜50-35 Ma), and that may have been related to the left-lateral movement on the Ailao Shan-Red River Shear Zone. In the NE wall, the Lo Gam complex is a Neoproterozoic basement (˜767 Ma) that was repeatedly subjected to tectonothermal activity throughout the Palaeozoic (at ˜450-420 Ma, ˜350 Ma, ˜265 Ma), ending in the Early Triassic (˜248 Ma). There was no thermal overprint during the Cenozoic. In this wall, a significant part of the Permo-Triassic thermotectonism was ductile shearing that was concentrated along

  4. Cenozoic high-K alkaline magmatism and associated Cu-Mo-Au mineralization in the Jinping-Fan Si Pan region, southeastern Ailao Shan-Red River shear zone, southwestern China-northwestern Vietnam

    NASA Astrophysics Data System (ADS)

    Tran, My Dung; Liu, Junlai; Nguyen, Quang Luat; Chen, Yue; Tang, Yuan; Song, Zhijie; Zhang, Zhaochong; Zhao, Zhidan

    2014-01-01

    The Jinping-Fan Si Pan (JFP) Cenozoic magmatic and Cu-Mo-Au metallogenic belt in the southeastern part of the Ailao Shan shear zone host the Tongchang, Chang‧an, Habo, and Chinh Sang Cu-Mo-Au deposits. These deposits form an integrated epithermal-porphyry regional mineralization system associated with 40-32 Ma high-K alkaline magmatism. The magmatic rocks in the belt have relatively low TiO2 (<0.73 wt%), P2O5 (<0.29 wt%), and FeO* (<4.99 wt%), and high Na2O (2.86-4.75 wt%) and K2O (4.01-7.98 wt%). They also have high contents of incompatible trace elements, and are enriched in LILE (Rb, Ba, K, Sr) and LREE. They have marked Nb, Ta, Ti and P depletion in primitive mantle-normalized spidergrams, and plot close to the EMII mantle field in the Sr-Nd isotopic diagram. These characteristics are similar to those of the Eocene high-K alkaline rocks along the northern Ailao Shan belt, eastern Tibet plateau. The sulfur and lead isotope analyses of sulfide minerals from both the ores and related magmatic rocks confirm the involvement of a magmatic ore fluid. The Cenozoic alkaline intrusions and Cu-Mo-Au mineralization in the JFP were formed prior to the initiation of left-lateral shearing along the Ailao Shan shear zone. The magmas appear to have been derived from enriched mantle, possibly with mixing of materials from the buried Tethyan oceanic lithosphere, and/or crust.

  5. Ductile and Brittle Neogene Deformation of Late Permian Orthogneiss in the Northern Ailao Shan-Red River Shear Zone: View from the Xuelong Shan Block

    NASA Astrophysics Data System (ADS)

    Wintsch, R. P.; Yi, D.; Yi, K.; Wang, Q. F.; Wang, G. H.

    2014-12-01

    ASRRSZ based on data obtained in the southern Diancang Shan block. Permian granitoids were intruded and ductily deformed in the Early Triassic. The left lateral shearing that brought these blocks to the surface was delayed until the Neogene extrusion of the Indochina block.

  6. Late Cenozoic tectonic evolution of the Ailao Shan-Red River fault (SE Tibet): implications for kinematic change during Plateau growth

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Bo; Schoenbohm, Lindsay; Zhang, Jinjiang; Zhou, Renjie; Hou, Jianjun

    2016-04-01

    The India-Eurasia continental collision has created the Tibetan Plateau, a spectacular example of continental plateaus. Along its southeastern margin, surface uplift, river incision, shear-zone exhumation and displacement along active faults have all interacted to shape the landscape. The Ailao Shan-Red River fault, a continental-scale strike-slip fault striking over 1000 km from the Tibetan Plateau to South China Sea, is an excellent recorder for those processes, providing important insights into the evolution of the southeastern plateau margin. However, its late Cenozoic tectonic evolution still remains elusive. This work presents new structural and stratigraphic data from the Miocene basin in the bend area and apatite (U-Th)/He thermochronological data from the shear zone to put constraints on the timing and nature of structural and geomorphic evolution of the Ailao Shan-Red River fault region. Our observations indicate that the major bend in the fault was a releasing bend in the early Miocene, but became a restraining bend after the late Miocene reversal of displacement. The strata preserved in bend area record the nature and timing of exhumation of the shear zone. Apatite (U-Th)/He data show two phases of rapid exhumation in the Miocene. The first rapid exhumation occurred before 16 Ma, the timing of which is supported by the early Miocene sedimentary record and previous geochronologic results. It may have ended before the formation of a low-relief erosion surface. The second episode of rapid exhumation began at ~14-13 Ma, lasting 2-3Myr. During this interval, the Ailao Shan range may have uplift to the modern elevation and the high relief may have developed along the range due to river incision. Metamorphic clasts from the shear zone were deposited in the Red River valley. Regional compilation reveals a coincidence of tectonic events in the Tibetan Plateau and its surroundings in the middle-late Miocene, indicating dramatic kinematic change during the course

  7. Petrology, geochemistry, and metamorphic evolution of meta-sedimentary rocks in the Diancang Shan-Ailao Shan metamorphic complex, Southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Liu, Fulai; Liu, Pinghua; Shi, Jianrong; Cai, Jia

    2016-07-01

    -grained biotite-muscovite-bearing symplectites were formed, which occur at the grain boundaries of garnet and felsic minerals; such assemblage as Bt + Ms + Pl ± Kfs ± Grt + Qz were formed at 553-613 °C and 4.0-5.0 kb. The metamorphic history of the Diancang Shan-Ailao Shan metamorphic complex is thus defined by a clockwise P-T trajectory which includes a nearly isothermal decompression recording the subduction, collision and exhumation events between the Yangtze and Indochina blocks at Oligocene to Early Miocene, prior to the regional strong left-lateral shearing along the Ailao Shan-Red River Fault.

  8. Potassic magma genesis and the Ailao Shan-Red River fault

    NASA Astrophysics Data System (ADS)

    Flower, Martin F. J.; Hoàng, Nguyễn; Lo, Chinh-hua; Chí, Cung Thu'ọ'ng; Cu'ò'ng, Nguyễn Quốc; Liu, Fu-tian; Deng, Jin-fu; Mo, Xuan-xue

    2013-09-01

    Two types of K-rich magma of Eocene to Early Oligocene (ca. 40-30) and Plio-Pleistocene (ca. 5-0.1 Ma) age were emplaced prior to and following left-lateral slip on the Ailao Shan-Red River (ASRR) fault, a regional shear zone extending between southwest China and the Tonkin Gulf (South China Sea) that accommodated 'escape' of the Indochina block. The first type is exposed in the Dali-Lijiang and adjacent regions of western Yunnan and Sichuan and comprises ultramafic potassic to ultrapotassic 'absarokites' and their shoshonite, banakite, and SiO2-rich derivatives which were emplaced immediately prior to activation of the ASRR fault. They are characterized by high Mg.-nos, and low contents of fusible oxides (FeO*, CaO, Al2O3), for equivalent MgO content, and pronounced primitive mantle-normalized high-field strength element (HFSE) depletions. In contrast, 'post-escape' K-rich magmas were erupted in the Puer, Maguan-Pingbian regions of south and southeast Yunnan. Apart from their relative enrichments in potassium they show typical HFSE-rich intra-plate compositional affinity. Geological and geomorphic evidence, and thermochronologic age dating of metamorphisc events, suggest that left-lateral shearing occurred between ca. 30 and 17 Ma; thereby accommodating the southeastward 'escape' of Indochina and (possibly) two episodes of spreading in the South China Sea. The southwestern part of Dali-Lijiang magmatic products was detached and offset by ca. 600 km and are now located in Phan Xi Pang in northern Viet Nam. The same is true for the Permo-Triassic Emeishan flood basalts, whose western exposures were likewise displaced by the same amount and are now represented by the Song Da complex, also in northern Viet Nam. Here, we report geochemical, isotopic, and 40Ar/39Ar age data for samples from both the 'pre-escape' Dali-Lijiang magmas and the 'post-escape' K-rich Puer, Maguan-Pingbian basalts and basanites, with a view to comparing and contrasting their interpolated source

  9. Shear wave splitting analyses in Tian Shan: Geodynamic implications of complex seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Cherie, Solomon G.; Gao, Stephen S.; Liu, Kelly H.; Elsheikh, Ahmed A.; Kong, Fansheng; Reed, Cory A.; Yang, Bin B.

    2016-06-01

    The Tian Shan is a tectonically complex intracontinental orogenic belt situated between the Tarim Basin and the Kazakh Shield. The vast majority of the previous shear wave splitting (SWS) measurements were presented as station averages, which are only valid when the anisotropy structure can be approximated by a single layer of anisotropy with a horizontal axis of symmetry, i.e., a model of simple anisotropy. A variety of anisotropy-forming hypotheses have been proposed based on the station-averaged measurements. In this study, we measure the splitting parameters at 25 stations that recorded high-quality data from a wide back azimuthal range for the purpose of identifying and characterizing complex anisotropy. Among the 25 stations, 15 of them show systematic azimuthal variations in the observed splitting parameters with a 90° periodicity that is consistent with a model of two-layered anisotropy. The fast orientations of the upper layer range from 50° to 90° measured clockwise from the north, which are subparallel to the strike of the orogenic belt, and the splitting times are between 0.9 and 1.9 s. The corresponding values for the lower layer are -45° to -85° and 1.2-2.2 s, respectively. The remaining 10 stations demonstrate azimuthally invariant splitting parameters with strike-parallel fast orientations, and can be represented by a single layer of anisotropy with a horizontal axis of symmetry. We propose that the strike-parallel anisotropy is caused by lithospheric shortening, and anisotropy in the lower layer is associated with WNW-ward flow of asthenospheric material sandwiched between the subducting Tarim lithosphere and the thick Kazakh lithospheric root.

  10. Paleozoic development of the Qilian orogen: Insights from a ductile right-slip shear zone and monazite geochronology in the Central Qilian Shan, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Dong, S.; Liu, W.; Reith, R. C.; Zhang, J.; Wu, C.; Wu, L.; Gong, J.

    2012-12-01

    The Cenozoic Qilian Shan-Nan Shan thrust belt in the northern Tibetan Plateau was constructed in a region that had experienced a complex history involving Precambrian basement rocks, early Paleozoic orogeny, and several Mesozoic-Cenozoic deformational events. The Paleozoic development of the Qilian orogen remains enigmatic, with models invoking single or multiple arcs in the south colliding against the North China craton in the north. The boundary between the Qilian arc complex and North China is expressed in the central Qilian mountains as a discontinuously exposed ductile shear zone (~10 km x 350 km) in Precambrian basement juxtaposed against a low-grade metamorphosed mafic to ultramafic Ordovician mélange and ophiolite complex. This complex is made up of meta-volcanics, meta-sediments, pillow basalts, ultramafic rocks, and gabbros. Detailed mapping (~1:100,000) was conducted in two valleys (around 38°30' N and 98°45' E) in the central Qilian mountains. In order to unravel the nature and history of the Qilian orogen, it is necessary to also understand the role of later deformation in redistributing earlier tectonic features. Cretaceous extension--inferred by the formation of east-trending basins displaying internal extensional growth strata--was followed by Cenozoic contraction related to the India-Asia collision. This results in NW-SE and W-E trending thrust faults and folds within Permian-Cretaceous sedimentary strata. Slices of the Precambrian basement, shear zone, and Ordovician complex are also duplicated, with local thrusting of the basement onto younger sedimentary strata. The unknown magnitude of Cenozoic thrusting leads to uncertainty as to the actual regional extent of these older units and features. This study is ultimately focused on interpreting the role of the ductile shear zone within the Paleozoic tectonic evolution of the central Qilian Shan. High-grade metamorphic rocks in the Central Qilian belt consist of quartzo-feldspathic gneiss, mica

  11. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Liu, Junlai; Leiss, Bernd

    2010-05-01

    Sheared amphibolite rocks from Diancang Shan high-grade metamorphic complex along the Ailao Shan-Red River shear zone, southwestern Yunnan, China, show typical mylonitic microstructures. The mylonites are characterized by porphyroclastic microstructures and the ultramylonites are highly lineated with alternating amphibole- and quartzofeldspathic domains. Microstructural analysis and P/T estimation suggest that the amphibole grains in the mylonitic rocks are deformed and dynamically recrystallized at amphibolite facies. In the mylonitic amphibolites, there are two types of amphibole porphyroclasts, i.e. type I "hard" and type II "soft" porphyroclasts. They have their [001] crystallographic orientations subnormal and sub-parallel to the stretching lineation of the rocks, respectively. The two types of porphyroclasts show distinct deformation microstructures and sub-microstructures formed by various deformation mechanisms, which contribute in different ways to the generation of the fine-grained matrix. Shape preferred orientation analysis, misorientation analysis of the two types of porphyroclasts and new fine grains around them further prove the generation of the fine grains in matrix from the type II porphyroclasts. The type I "hard" porphyroclasts are deformed mainly by mechanical rotation, work hardening and intragranular microfracturing. In contrast, the deformation of the type II "soft" porphyroclasts is mainly attributed to crystalline plasticity, i.e. twinning, dislocation creep and dynamic recrystallization. During the deformation of the type II porphyroclasts, the (100) [001] slip system plays a dominant role during deformation and grain size reduction of amphibole. Twinning along the active (100) slip system, in combination with dislocation creep (gliding and climbing) governs the nucleation of subgrains and formation of dynamically recrystallized fine grains, a process here named Twinning Nucleation Recrystallization.

  12. Population persistence of a Tertiary relict tree Tetracentron sinense on the Ailao Mountains, Yunnan, China.

    PubMed

    Tang, Cindy Q; Peng, Ming-Chun; He, Long-Yuan; Ohsawa, Masahiko; Wang, Chong-Yun; Xie, Tian-Hua; Li, Wen-Shun; Li, Jia-Ping; Zhang, Hong-Yu; Li, Yong; Yang, Xian-Ming; Li, Guo-Song

    2013-09-01

    The persistence of the Tertiary relict tree Tetracentron sinense Oliv. on the eastern slope of the Ailao Mountains, Yunnan, SW China, was here studied in terms of population structure (size, age) and regeneration patterns. T. sinense occurred in unstable habitats by stream banks, on steep slopes, on scree slopes, or on roadsides near streams in narrow valleys, all places subject to frequent natural disturbances, whereas none were found on stable gentle slopes free of major disturbances at similar altitudes. Further, no established saplings of T. sinense were found in forests having high bamboo (Yushania crassicollis Yi) coverage in their understory. The size and age structure of T. sinense were multimodal. The reproduction of the tree was either by means of abundant minute wind-dispersed seeds or by resprouts in unstable habitats. These populations depended on disturbance or gap regeneration to survive. T. sinense, along with other tree life-forms including evergreen broad-leaved species and conifers, dominated in the forest canopy layer, even reaching the emergent layer in places. Results of the study provide insight into the ecological characteristics and survival mechanisms of this East Asian paleoendemic tree species. The study will provide a scientific basis for recommendations for the conservation of this species and for other Tertiary relict plants having similar regeneration dynamics. PMID:23526154

  13. The coexistence of seven sympatric fulvettas in Ailao Mountains, Ejia Town, Yunnan Province

    PubMed Central

    XIA, Ji; WU, Fei; HU, Wan-Zhao; FANG, Jian-Ling; YANG, Xiao-Jun

    2015-01-01

    The coexistence of ecologically similar species sharing sympatric areas is a central issue of community ecology. Niche differentiation is required at least in one dimension to avoid competitive exclusion. From 2012-2014, by adopting the methods of mist-nets and point counts to evaluate spatial niche partitioning and morphological differentiations, we explored the coexistence mechanisms of seven sympatric fulvettas in Ailao Mountains, Ejia town, Yunnan Province, China. The microhabitats of these seven fulvettas were significantly different in elevation, roost site height and vegetation coverage, indicating a spatial niche segregation in different levels. Approximately, 90.30% of the samples were correctly classified by linear discriminant analysis (LDA) with correct rates at 91.20%-100%, except the White-browed fulvetta (Alcippe vinipectus) (65.4%) and the Streak-throated fulvetta (A. cinereiceps) (74.6%). The seven fulvettas were classified into four guilds based on their specific morphological characters, suggesting that the species in each guild use their unique feeding ways to realize resource partitioning in the overlapped areas. These finding indicate that through multi-dimensional spatial niche segregation and divergence in resource utilizing, the inter-specific competition among these seven fulvettas is minimized, whereas, coexistence is promoted. PMID:25730457

  14. The coexistence of seven sympatric fulvettas in Ailao Mountains, Ejia Town, Yunnan Province.

    PubMed

    Xia, Ji; Wu, Fei; Hu, Wan-Zhao; Fang, Jian-Ling; Yang, Xiao-Jun

    2015-01-18

    The coexistence of ecologically similar species sharing sympatric areas is a central issue of community ecology. Niche differentiation is required at least in one dimension to avoid competitive exclusion. From 2012-2014, by adopting the methods of mist-nets and point counts to evaluate spatial niche partitioning and morphological differentiations, we explored the coexistence mechanisms of seven sympatric fulvettas in Ailao Mountains, Ejia town, Yunnan Province, China. The microhabitats of these seven fulvettas were significantly different in elevation, roost site height and vegetation coverage, indicating a spatial niche segregation in different levels. Approximately, 90.30% of the samples were correctly classified by linear discriminant analysis (LDA) with correct rates at 91.20%-100%, except the White-browed fulvetta (Alcippe vinipectus) (65.4%) and the Streak-throated fulvetta (A. cinereiceps) (74.6%). The seven fulvettas were classified into four guilds based on their specific morphological characters, suggesting that the species in each guild use their unique feeding ways to realize resource partitioning in the overlapped areas. These finding indicate that through multi-dimensional spatial niche segregation and divergence in resource utilizing, the inter-specific competition among these seven fulvettas is minimized, whereas, coexistence is promoted. PMID:25730457

  15. Jurassic evolution of the Tien-Shan

    SciTech Connect

    Bebeshev, I.I.

    1994-09-01

    Complex studies led to identification of three stages in Jurassic deposits. The stages reflect development periods of the studied deposits. Each stage is represented by a paleogeographic map that indicates the evolution of ancient landforms in the Tien-Shan region in time and space.

  16. Controls of Lithospheric Mechanical Strength on the Deformation Pattern of Tien Shan

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xiong, X.; Zheng, Y.; Hu, X.; Zhang, Y.

    2015-12-01

    The Tien Shan is an outstanding example of intracontinental mountain belt, which was built rapidly and formed far away from plate boundaries. It exhibits 300~500 km in width and extends ~2000 km EW, located in central Asia. The Tien Shan is a key area for solution of the problems relating to intracontinental geodynamics. During last decades, despite a large amount of results based on various geological, geophysical and geodetic data about the Tien Shan, however, deformation mechanism remains controversial and other several principal problems related to its structure and evolution also have not been completely resolved. As for patterns of continental deformation, they are always controlled by both the forces applied to the lithosphere and by lithospheric resistance to the forces. The latter is often measured by the mechanical strength of lithosphere. The lateral variation of strength of lithosphere has been recognized to be an important factor controlling the spatial construction and temporal evolution of continent. In this study, we investigate the mechanical strength (Te) of lithosphere in the Tien Shan using wavelet coherency between Bouguer anomaly and topography. The patterns of Te variations are closely related to major tectonic boundaries and blocks. Mechanical strength exhibits a weak zone (Te~5-20km) beneath the Tien Shan while its surrounding blocks including Tarim Basin, Junggar Basin and Kazakh platform are characterized by a strong lithosphere (Te>40km). The lateral variations in mechanical strength and velocity field of horizontal movement with GPS demonstrate that strain localization appears at the margins of Tarim Basin, which is also the strong lithospheric domain. It is suggested that the weak lithosphere allows the crustal stress accumulation and the strong lithosphere helps to stress transfer. There is also a good agreement between mechanical strength and shear wave velocity structure in upper mantle. It indicates a strong domain located in the

  17. Phase velocity and azimuthal anisotropy variations beneath the central Tien Shan

    NASA Astrophysics Data System (ADS)

    Lisi, A.; Li, A.

    2009-12-01

    The goal of this study is to construct 3-D shear-wave structure from surface waves beneath the central part of the Tien Shan, the world’s largest and most active intracontinental orogen. We have analyzed fundamental-mode Rayleigh wave data recorded at the CHENGIS and KNET local seismic networks, which consist of 41 broadband seismic stations. Two different methods, the two-plane-wave inversion technique and the cross-correlation of ambient seismic noise, have been adopted to solve for phase velocities. We have applied the first method on fundamental mode Rayleigh wave trains that are extracted from 52 teleseismic events at central frequencies from 7.5 mHz to 50 mHz with a 10 mHz frequency interval. Rayleigh waves at short periods from 10 to 30 s have been determined by stacking two years ambient seismic noise at pairs of seismic stations. Combining the two techniques we are able to generate phase velocity maps at the periods of 10-133 s, which reflect structure from middle crust to about 200 km depth. A clear low velocity zone is imaged beneath the western part of the central Tien Shan range at short periods, indicating a thick and /or slow crust. The slow anomaly region shifts to north at intermediate periods of 50 to 100 s, which are most sensitive to the shallow upper mantle. On the other hand, fast anomaly is observed in the eastern part of the central Tien Shan at the same depth range. At long periods of 100 to 133 s, a slow anomaly is imaged in southwest of the central Tien Shan and a fast anomaly is present beneath the Tarim Basin. We have also estimated the azimuthal anisotropy from Rayleigh wave data and found an ENE-WSW fast direction at 20-50 s and WNW-ESE direction at long periods of 60 to 110 s. We will solve for 3-D shear wave structure from the phase velocity maps and discuss the important features of the results and their implications to the formation and evolution of the Tien Shan.

  18. Tien Shan Geohazards Database: Earthquakes and landslides

    NASA Astrophysics Data System (ADS)

    Havenith, H. B.; Strom, A.; Torgoev, I.; Torgoev, A.; Lamair, L.; Ischuk, A.; Abdrakhmatov, K.

    2015-11-01

    In this paper we present new and review already existing landslide and earthquake data for a large part of the Tien Shan, Central Asia. For the same area, only partial databases for sub-regions have been presented previously. They were compiled and new data were added to fill the gaps between the databases. Major new inputs are products of the Central Asia Seismic Risk Initiative (CASRI): a tentative digital map of active faults (even with indication of characteristic or possible maximum magnitude) and the earthquake catalogue of Central Asia until 2009 that was now updated with USGS data (to May 2014). The new compiled landslide inventory contains existing records of 1600 previously mapped mass movements and more than 1800 new landslide data. Considering presently available seismo-tectonic and landslide data, a target region of 1200 km (E-W) by 600 km (N-S) was defined for the production of more or less continuous geohazards information. This target region includes the entire Kyrgyz Tien Shan, the South-Western Tien Shan in Tajikistan, the Fergana Basin (Kyrgyzstan, Tajikistan and Uzbekistan) as well as the Western part in Uzbekistan, the North-Easternmost part in Kazakhstan and a small part of the Eastern Chinese Tien Shan (for the zones outside Kyrgyzstan and Tajikistan, only limited information was available and compiled). On the basis of the new landslide inventory and the updated earthquake catalogue, the link between landslide and earthquake activity is analysed. First, size-frequency relationships are studied for both types of geohazards, in terms of Gutenberg-Richter Law for the earthquakes and in terms of probability density function for the landslides. For several regions and major earthquake events, case histories are presented to outline further the close connection between earthquake and landslide hazards in the Tien Shan. From this study, we concluded first that a major hazard component is still now insufficiently known for both types of geohazards

  19. GPS survey of the western Tien Shan

    NASA Technical Reports Server (NTRS)

    Molnar, Peter H.

    1994-01-01

    This report summarizes the background, field work, data collection and analysis, and future plans associated with a collaborative GPS experiment in the Tien Shan of the former Soviet Union. This project involves the amalgamation of two, separately funded projects, which were proposed separately by PIs Hamburger and Reilinger (NSF number EAR-9115159 and NASA number NAG5-1941) and Molnar and Hager (NSF number EAR9117889 and NASA number NAG5-1947). In addition, the work is being conducted under the auspices of the US-USSR Agreement on Cooperation in the Field of Environmental Protection, with support from the United States Geological Survey.

  20. GPS survey of the western Tien Shan

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Molnar, Peter H.; Hamburger, Michael W.; Reilinger, Robert E.

    1995-01-01

    There were two major developments in 1994 in our collaborative GPS experiment in the Tien Shan of the Former Soviet Union (FSU). Both were motivated by our expectation that we will ultimately obtain better science at lower cost if we involve our colleagues in the FSU more deeply in (1) the collection and (2) the analysis of data. As an experimental test of the concept of having our local collaborators carry out the field work semi-autonomously, we sent 6 MIT receivers to the Tien Shan for a period of 3 months. To enable our collaborators to have the capability for data analysis, we provided computers for two data analysis centers and organized a two-week training session. This report emphasizes the rationale for deeper involvement of FSU scientists, describes the training sessions, discusses the data collection, and presents the results. We also discuss future plans. More detailed discussion of background, general scientific objectives, discussions with collaborators, and results for the campaigns in 1992 and 1993 have been given in previous reports.

  1. The Bogeda Shan uplifting: Evidence from multiple phases of deformation

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Lin, Wei; Wang, Qingchen

    2015-03-01

    The current topography of Central Asia is considered to have resulted from crustal shortening related to the ongoing India-Asia collision that started in the Early Tertiary period. The Bogeda Shan, a northeastern branch of the Tian Shan located in northwest China, has several summits higher than 5000 m. The northern piedmont of the Bogeda Shan exhibits remarkable deformation features that remain poorly studied. This study documents three phases of tectonic deformation in the Bogeda Shan that are related to the far-field effects of collisions along the southern Eurasian margin. Detailed field observations show that the intensively folded Upper Permian strata are covered by a subhorizontal Lower Jurassic layer, thus indicating a Triassic tectonic event that is probably related to the onset of the uplift in the Bogeda Shan during a Cimmerian orogenic episode (D1). A seismic profile suggests that this deformation episode was followed by the Late Jurassic-Early Cretaceous deformation (D2), which is characterized by wide wavelength folds overlaid by undeformed Cretaceous layers. Cenozoic thrusts were also observed in the northern piedmont of the Bogeda Shan (D3). This study demonstrates that the onset of uplift in the Bogeda Shan began in the Early Mesozoic and separated the Turfan-Hami Basin from the Junggar Basin. A new tectonic evolution model of the Bogeda Shan was reconstructed by these three tectonic phases. This work indicates that the current topography of the Bogeda Shan and its surrounding area was the result of multiple phases of deformation related to successive collisions at the southern Eurasian margin.

  2. Tien Shan Geohazards Database: Landslide susceptibility analysis

    NASA Astrophysics Data System (ADS)

    Havenith, H. B.; Torgoev, A.; Schlögel, R.; Braun, A.; Torgoev, I.; Ischuk, A.

    2015-11-01

    This paper is the second part of a new geohazards analysis applied to a large part of the Tien Shan, Central Asia, focused on landslide susceptibility computations that are based on recently compiled geographic, geological and geomorphological data. The core data are a digital elevation model, an updated earthquake catalogue, an active fault map as well as a new landslide inventory. The most recently added digital data are a new simplified geological map, an annual precipitation map, as well as river and road network maps that were produced for the Kyrgyz and Tajik parts of the Tien Shan. On the basis of these records we determine landslide densities with respect to morphological (M), geological (G), river distance (R), precipitation (P), earthquake (E) and fault (F) distance factors. Correlations were also established between scarp locations and the slope angle, distance to rivers, curvature. These correlations show that scarps tend to be located on steeper slopes, farther from rivers and on more convex terrain than the entire landslides. On the basis of the landslide density values computed for each class of the aforementioned factors, two landslide susceptibility maps are created according to the Landslide Factor analysis: the first one considers correlations between the landslide occurrences and the first four factors (MGRP); the second one is based on the first map (MGRP) combined with the seismo-tectonic influence (+ E + F) on landslide distributions. From the comparison of these two maps with actual landslide distributions we infer that the distances to rivers as well as to faults and past earthquakes most strongly constrain the susceptibility of slopes to landslides. We highlight several zones where the landslide susceptibilities computed for the MGRP + E + F factors fit better the observed concentration of landslides than those computed for the MGRP factors alone. For a few zones, both maps produce high landslide susceptibilities that do not well reflect

  3. Deep crustal deformation of the Longmen Shan, eastern margin of the Tibetan Plateau, from seismic reflection and Finite Element modeling

    NASA Astrophysics Data System (ADS)

    Feng, Shao-ying; Zhang, Pei-zhen; Liu, Bao-jin; Wang, Ming; Zhu, Shou-biao; Ran, Yong-kan; Wang, Wei-tao; Zhang, Zhu-qi; Zheng, Wen-jun; Zheng, De-wen; Zhang, Hui-ping; Tian, Xiao-feng

    2016-02-01

    Rivaling the Himalaya in relief, the Longmen Shan is probably one of the most enigmatic mountain ranges in the world: high mountains reach more than 4000 m relief but without adjacent foreland subsidence and with only slow active convergence. What are geological and geodynamic processes that built the Longmen Shan? Coseismic deformation associated with the 2008 Wenchuan earthquake could hold clues to answer these questions. The primary features associated with the 2008 Wenchuan earthquake rupture have been narrowly distributed coseismic deformation and predominantly vertical displacements that could be interpreted as the result of slips on high-angle listric seismogenic faults. Deep sounding seismic reflection profiling across the seismogenic faults indeed reveals high-angle listric reverse faulting in the brittle upper crust and east-dipping reflectors that we interpret as ductile shearing, in the viscous lower crust. In conjunction with a visco-elastic finite element modeling of coseismic displacements associated with the Wenchuan earthquake, we show that the high-angle listric nature of earthquake faults produces insignificant horizontal shortening across the fault and facilitates upward slips along the fault that both explain the localized coseismic deformation and vertical displacement, as well as the presence of high mountains without adjacent foreland flexure. We suggest that the formation of the Longmen Shan may be better understood in terms of partitioned lithospheric pure-shear thickening in which upward high-angle listric faulting of brittle upper crust is linked to thickening of the more viscous lithospheric mantle through downward ductile shearing of rheologically deformable lower crust.

  4. Lithospheric structure across the central Tien Shan constrained by gravity anomalies and joint inversions of receiver function and Rayleigh wave dispersion

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Shi, Lei; Gao, Jiayi

    2016-07-01

    Shear wave velocity structure across the central Tien Shan orogeny was generated by jointly inverting Rayleigh wave phase and group velocity with teleseismic P-wave receiver functions at 40 broadband seismic stations. The inferred seismic structure was validated by forward modeling of the complete Bouguer anomaly data. The joint inversion result reveals larger crust thicknesses beneath the Kokshaal (∼68-72 km) and Kyrgyz ranges (∼62-64 km), while other units have crustal thicknesses between 48 and 58 km. A fast velocity layer (Vs = 3.6-3.9 km/s) in the upper crust is found in some seismic stations within the Kazakh Shield. Our models show the presence of high velocity and density layers in the lowermost crust throughout the region, consistent with the presence of mafic/ultramafic lithologies. The large crustal thickness is associated with a thickened mafic layer in the lower crust, indicating that the thickened crust may be partly caused by magmatic underplating. The low velocity and density anomaly in the middle crust, and low upper mantle velocity observed in our model beneath the middle Tien Shan reflect the presence of partial melt in the crust due to the intrusion of hot mantle material. The lack of correlation between Moho depth and topography, together with the gravity results, suggests that the topographic compensation in the central Tien Shan is not confined to the crust. This requires significant support from the mantle to account for the relative high elevation of the middle Tien Shan.

  5. A Guide to the Tai-shan Dialect.

    ERIC Educational Resources Information Center

    Hashimoto, Anne Yue

    This document provides a description of the Tai-shan dialect of Chinese. Maps illustrate the area where the dialect is spoken, and introductory remarks concern previous study of the dialect, sources of current information, and relationship to other dialects. The phonological description provides information on syllable structure, initials, finals,…

  6. Climatic and hydrologic changes in the Tien Shan, central Asia

    SciTech Connect

    Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Dozier, J.

    1997-06-01

    The authors analyze climatic hydrologic data from 110 sites collected from the middle of the twentieth century to the present in the Tien Shan, one of the largest mountain systems of central Asia. In spite of a few confounding interregional variations in the temporal changes of surface air temperature, precipitation, runoff, glacier mass, and snow thickness in the Tien Shan, it has been possible to establish statistically significant long-range, with slightly lower values below 2000-m elevation. The precipitation in the Tien Shan increased 1.2 mm yr{sup -1} over the past half-century. The precipitation increase is larger at low altitudes in the northern and western regions than at altitudes above 2000 m. A decrease in snow resources occurred almost everywhere in the Tien Shan; the maximum snow thickness an snow duration have decreased on average 10 cm and 9 days, respectively. The annual runoff is the type of precipitation (liquid or solid). Over the last few decades, periods of glacier decline have coincided with declining river runoff. 45 refs., 8 figs., 2 tabs.

  7. Resistivity structure underneath the Pamir and Southern Tian Shan

    NASA Astrophysics Data System (ADS)

    Sass, P.; Ritter, O.; Ratschbacher, L.; Tympel, J.; Matiukov, V. E.; Rybin, A. K.; Batalev, V. Yu.

    2014-07-01

    We present the crustal resistivity structure of the Pamir and Southern Tian Shan orogenic belts at the northwestern promontory of the India-Asia collision zone. The magnetotelluric (MT) data were recorded along a roughly north-south trending, 350 km long corridor from the Pamir Plateau in southern Tajikistan across the Pamir frontal ranges, the Alai Valley and the southwestern Tian Shan to Osh in the Kyrgyz part of the Fergana Basin. In total, we measured at 178 sites, whereof 26 combine broad band and long period recordings. One of the most intriguing features of the 2-D and 3-D inversion results is a laterally extended zone of high electrical conductivity below the Pamir Plateau, with resistivities below 1 Ωm, starting at a depth of ˜10-15 km. The high conductivity can be explained with the presence of partially molten rocks at middle to lower crustal levels, possibly related to ongoing migmatization and/or middle/lower crustal flow underneath the Southern Pamir. This interpretation is consistent with a low velocity zone found from local earthquake tomography, relatively high vp/vs ratios, elevated surface heat flow, and thermomechanical modelling suggesting that melting temperatures are reached in the felsic middle crust. In the upper crust of the Pamir and Tian Shan, the Palaeozoic-Mesozoic suture zones appear as electrically conductive, whereas the compact metamorphic rocks of the Muskol-Shatput Dome of the Central Pamir are highly resistive. The intra-montane basin of the Alai Valley-sandwiched between the Pamir and Tian Shan-exhibits a generally conductive upper crust that bifurcates into two conductors at depth. One of them connects to the active Main Pamir Thrust, which is absorbing most of today's convergence between the Pamir and the Tian Shan. Several deeper zones of high conductivity in the middle and lower crust of Central and Northern Pamir likely record fluid release due to metamorphism associated with active continental subduction/delamination.

  8. INVESTIGATION OF CRUSTAL MOTION IN THE TIEN SHAN USING INSAR

    SciTech Connect

    Mellors, R J

    2011-02-25

    The northern Tien Shan of Central Asia is an area of active mid-continent deformation. Although far from a plate boundary, this region has experienced 5 earthquakes larger than magnitude 7 in the past century and includes one event that may as be as large as Mw 8.0. Previous studies based on GPS measurements indicate on the order of 23 mm/yr of shortening across the entire Tien Shan and up to 15 mm/year in the northern Tien Shan (Figure 1). The seismic moment release rate appears comparable with the geodetic measured slip, at least to first order, suggesting that geodetic rates can be considered a proxy for accumulation rates of stress for seismic hazard estimation. Interferometric synthetic aperture radar may provide a means to make detailed spatial measurements and hence in identifying block boundaries and assisting in seismic hazard. Therefore, we hoped to define block boundaries by direct measurement and by identifying and resolving earthquake slip. Due to political instability in Kyrgzystan, the existing seismic network has not performed as well as required to precisely determine earthquake hypocenters in remote areas and hence InSAR is highly useful. In this paper we present the result of three earthquake studies and show that InSAR is useful for refining locations of teleseismically located earthquakes. ALOS PALSAR data is used to investigate crustal motion in the Tien Shan mountains of Central Asia. As part of the work, considerable software development was undertaken to process PALSAR data. This software has been made freely available. Two damaging earthquakes have been imaged in the Tien Shan and the locations provided by ALOS InSAR have helped to refine seismological velocity models. A third earthquake south of Kyrgyzstan was also imaged. The use of InSAR data and especially L band is therefore very useful in providing groundtruth for earthquake locations.

  9. Late Quaternary glaciation in the Kyrgyz Tien Shan

    NASA Astrophysics Data System (ADS)

    Koppes, Michéle; Gillespie, Alan R.; Burke, Raymond M.; Thompson, Stephen C.; Stone, John

    2008-04-01

    The Tien Shan of Kyrgyzstan contains multiple moraines and drift from late Quaternary glaciations. The spatial/temporal distribution of the glaciers inferred from the moraines suggests that the main factor controlling glacier advance here was the availability of moisture. The dominant modern climatic signatures in northern Central Asia include orographic thunderstorms in summer, cold and dry Siberian high-pressure cells in winter, and westerly cyclonic storms from the North Atlantic and eastern Mediterranean in spring and fall. Changes in any of these systems during the late Quaternary would have varied precipitation delivery to, and glacier growth in the Kyrgyz Tien Shan. Geomorphic mapping and reconnaissance-level 10Be cosmic-ray exposure dating of moraine sequences in six drainages indicate that there were multiple "maximum" advances of similar extents and equilibrium-line depressions across the range. Glaciers in the north and east of the Kyrgyz Tien Shan last advanced to their maximum positions during marine oxygen isotope stage (MIS) 5 and again during MIS 4, while in the south and west of the range advance occurred during MIS 3. In contrast to maritime Europe and North America, there is no evidence of a major glacial advance during MIS 2. Glacier advances during MIS 2 and since were restricted to the vicinity of modern glaciers, allowing the older glacial record to be preserved well.

  10. Surge-type glaciers in the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kriti; Bolch, Tobias

    2016-04-01

    Surge-type glaciers in High Mountain Asia are mostly observed in Karakoram and Pamir. However, few surge-type glaciers also exist in the Tien Shan, but have not comprehensively studied in detail in the recent literature. We identified surge-type glaciers in the Tien Shan either from available literature or by manual interpretation using available satellite images (such as Corona, Hexagon, Landsat, SPOT, IRS) for the period 1960 to 2014. We identified 39 possible surge-type glaciers, showing typical characteristics like looped moraines. Twenty-two of them rapidly advanced during different periods or a surge was clearly described in the literature. For the remaining possible surge-type glaciers either the advance, in terms of time and length, were not mentioned in detail in the literature, or the glaciers have remained either stable or retreated during the entire period of our study. Most of the surge-type glaciers cluster in the Inner Tien Shan (especially in the Ak-Shiirak rage) and the Central Tien Shan, are in size and are facing North, West or North West. Pronounced surge events were observed for North Inylchek and Samoilowitsch glaciers, both of which are located in the Central Tien Shan. Samoilowitsch Glacier retreated by more than 3 km between 1960 (length ~8.9 km) and 1992 (~5.8 km), advanced by almost 3 km until 2006 and slightly retreated thereafter. The most pronounced advance occurred between 2000 and 2002. DEM differencing (based on SRTM3 data and stereo Hexagon and Cartosat-1 data) revealed a significant thickening in the middle reaches (reservoir area) of the glacier between 1973 and 2000 while the surface significantly lowered in the middle and upper parts of the glacier between 2000 and 2006. Hence, the ice mass was transferred to the lower reaches (receiving area) and caused the advance with a maximum thickening of more than 80 m. The ~30 km long North Inylchek Glacier retreated since 1943 and showed a very rapid advance of ~3.5 km especially in

  11. Phanerozoic evolution of the North Tien Shan microcontinent

    NASA Astrophysics Data System (ADS)

    de Grave, Johan; Glorie, Stijn; Buslov, Mikhail; Batalev, Vladislav; van den Haute, Peter

    2010-05-01

    The North Tien Shan microcontinent is the most prominent tectonic unit forming the basement of the northeastern Kyrgyz Tien Shan orogen. The microcontinent can be traced further north through Kazakhstan, to the Stepnyak terrane, and in fact seems to form a continuous continental fragment, the Stepnyak-North Tien Shan microcontinent (SNT). The SNT is underlain by Precambrian crystalline basement, with a (meta)sedimentary - (meta)volcanic cover. The sequence is extensively intruded by several magmatic arcs and post-collisional plutons. In this study the NTS crystalline basement and intrusives were targeted for multi-method geochronologic investigation to constrain its Phanerozoic evolution. For this purpose we revisit several sample profiles in the northeastern Kyrgyz Tien Shan, in the broad vicinity of the Issyk-Kul basin. Similar rock-types from the bordering accretionary wedges and suture zone of the Kyrgyz-Terskey and the Dzhalair-Naiman terranes are involved in this study as well. Zircon U/Pb, several Ar systems, fission-track thermochronometers and apatite (U-Th-Sm)/He are applied to single rock samples. These methods provide an age array that pinpoints several Phanerozoic thermo-tectonic events that affected the basement rocks in an absolute time-frame. The main regional intrusion phase (magmatic arc) is constrained by zircon U/Pb (SHRIMP) to be Late Ordovician - Early Silurian (447-432 Ma), with smaller post-collisional plutons of Late Permian age (around 290 Ma). Biotite 40Ar/39Ar dating shows rapid Devonian cooling of the rocks, followed by a Permian-Trassic cooling phase (K-feldspar 40Ar/39Ar and titanite fission-track dating). There is clear evidence for protracted Mesozoic reactivation and further exhumation of the basement in the Triassic, Late Jurassic and Late Cretaceous (apatite fission track - AFT, and apatite (U-Th-Sm)/He - AHe, dating and modeling). In distinct areas, Neogene ages (AFT and AHe) constrain the Late Cenozoic cooling and associated

  12. Lithospheric structure across the central Tien Shan constrained by gravity anomalies and joint inversions of receiver function and Rayleigh group velocity data

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Shi, Lei; Gao, Jiayi

    2016-04-01

    Shear wave velocity structure across the central Tien Shan orogeny was generated by jointly inverting Rayleigh wave phase and group velocity with teleseismic P-wave receiver functions at 40 broad band seismic stations of the MANAS project. The inferred seismic structure was validated by forward modeling of the complete Bouguer anomaly data. The joint inversion result reveals larger crust thicknesses beneath the Kokshaal (~68-72 km) and Kyrgyz ranges (~62-64 km), while other units have crustal thicknesses between 48 and 58 km. A fast velocity layer (Vs = 3.6-3.9 km/s) in the upper crust is found in some seismic stations within the Kazakh Shield. Our models show the presence of high velocity and density layers in the lowermost crust throughout the region, consistent with the presence of mafic/ultramafic lithologies. The large crustal thickness is associated with a thickened mafic layer in the lower crust, indicating that the thickened crust may be partly caused by magmatic underplating. The low velocity and density anomaly in the middle crust, and low upper mantle velocity observed in our model beneath the middle Tien Shan reflects the presence of partial melt in the crust due to the intrusion of hot mantle material. The lack of correlation between Moho depth and topography, together with the gravity results, suggests that the topographic compensation in the central Tien Shan is not confined to the crust. This requires significant support from the mantle to account for the relative high elevation of the middle Tien Shan.

  13. The Taili-Yiwulüshan metamorphic core complex corridor: Diachronous exhumation and relationships to the adjacent basins based on new 40Ar/39Ar and (U-Th-Sm)/He mineral ages

    NASA Astrophysics Data System (ADS)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Genser, Johann; Dunkl, István; Heberer, Bianca; Jin, Wei; Zeng, Zuoxun; Li, Weimin; Wen, Quanbo; Li, Jing

    2015-04-01

    The Xingcheng-Taili ductile shear zone (western Liaoning Province in China) formed during latest Jurassic to Early Cretaceous crustal extension of the eastern North China craton, and exhumed low to medium metamorphic grade Archean, Upper Triassic and Upper Jurassic granitic rocks. The Mesozoic Yiwulüshan metamorphic core complex (Yiwulüshan MCC) is dominated by a NNE-SSW elongated dome with a left-lateral shear zone, which is located in the northeastern part of Xingcheng-Taili ductile shear zone, and combine as Taili-Yiwulüshan metamorphic core complex corridor. To the east, it is bounded by the NNE-trending Cretaceous to Eocene Liaohe basin (the northern extension of the Bohai Bay basin), and to the west by the Cretaceous-aged Fuxin-Yixian basin, which could potentially interpreted as supra-detachment basins. Here, we present results from a multi-method thermochronological study and coupled with structural investigations and sections of adjacent supra-detachment basins, which constrain the timing of regional deformation as well as the cooling history and exhumation processes of the low- to middle-grade metamorphic complex in the Taili-Yiwulüshan MCC corridor, in order to understand the mode of lithospheric scale reactivation, extension and thinning of the North China craton. The new40Ar/39Ar muscovite, biotite, K-feldspar and (U-Th)/He apatite ages from granitic rocks help constrain the thermal evolution during its exhumation. The thermochronologic studies have shown at least three stages of exhumation and cooling from late Jurassic to Eocene in Xingcheng-Taili shear zone should be distinguished, e.g., ~ 150-130 Ma, 130-115 Ma and 115-52 Ma, respectively. Diachronous onset and subsequent parallel cooling and exhumation characterize the early thermal history. The Yiwulüshan MCC has a similar exhumation history from 135 to 97 Ma with a similar cooling history. The development of Taili-Yiwulüshan MCC corridor is associated with synkinematic emplacement

  14. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling

    USGS Publications Warehouse

    Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.

    2000-01-01

    We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.

  15. Upper Paleozoic tectonics in the Tien Shan (Central Asian Orogenic Belt): insight from new structural data (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Jourdon, Anthony; Petit, Carole; Rolland, Yann; Loury, Chloé; Bellahsen, Nicolas; Guillot, Stéphane; Ganino, Clément

    2016-04-01

    Due to successive block accretions, the polarity of structures and tectonic evolution of the Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are several conflicting models about the polarity of subduction during the Paleozoic, the number of microplates and oceanic basins and the timing of tectonic events in Kyrgyz and Chinese Tien Shan. In this study, we propose new structural maps and cross-sections of Middle and South Kyrgyz Tien Shan (MTS and STS respectively). These cross-sections highlight an overall dextral strike-slip shear zone in the MTS and a north verging structure related to south-dipping subduction in the STS. These structures are Carboniferous in age and sealed by Mesozoic and Cenozoic deposits. In detail, the STS exhibits two deformation phases. The first one is characterized by coeval top-to-the north thrusting and top-to-the-South normal shearing at the boundaries of large continental unit that underwent High-Pressure (Eclogite facies) metamorphism. We ascribe this phase to the exhumation of underthrusted passive margin units of the MTS. The second one corresponds to a top to the North nappe stacking that we link to the last collisional events between the MTS and the Tarim block. Later on, during the Late Carboniferous, a major deformation stage is characterized by the deformation of the MTS and its thrusting over the NTS. This deformation occurred on a large dextral shear zone between the NTS and the MTS known as Song-Kul Zone or Nikolaiev Line as a "side effect" of the Tarim/MTS collision. Based on these observations, we propose a new interpretation of the tectonic evolution of the CAOB. The resulting model comprises the underthrusting of the MTS-Kazakh platform beneath the Tarim and its exhumation followed by the folding, shortening and thickening of the internal metamorphic units during the last collisional events which partitioned the deformation between the STS and the MTS. Finally, the docking of the large Tarim Craton

  16. Displacement and disease: The Shan exodus and infectious disease implications for Thailand.

    PubMed

    Suwanvanichkij, Voravit

    2008-01-01

    Decades of neglect and abuses by the Burmese government have decimated the health of the peoples of Burma, particularly along her eastern frontiers, overwhelmingly populated by ethnic minorities such as the Shan. Vast areas of traditional Shan homelands have been systematically depopulated by the Burmese military regime as part of its counter-insurgency policy, which also employs widespread abuses of civilians by Burmese soldiers, including rape, torture, and extrajudicial executions. These abuses, coupled with Burmese government economic mismanagement which has further entrenched already pervasive poverty in rural Burma, have spawned a humanitarian catastrophe, forcing hundreds of thousands of ethnic Shan villagers to flee their homes for Thailand. In Thailand, they are denied refugee status and its legal protections, living at constant risk for arrest and deportation. Classified as "economic migrants," many are forced to work in exploitative conditions, including in the Thai sex industry, and Shan migrants often lack access to basic health services in Thailand. Available health data on Shan migrants in Thailand already indicates that this population bears a disproportionately high burden of infectious diseases, particularly HIV, tuberculosis, lymphatic filariasis, and some vaccine-preventable illnesses, undermining progress made by Thailand's public health system in controlling such entities. The ongoing failure to address the root political causes of migration and poor health in eastern Burma, coupled with the many barriers to accessing health programs in Thailand by undocumented migrants, particularly the Shan, virtually guarantees Thailand's inability to sustainably control many infectious disease entities, especially along her borders with Burma. PMID:18341695

  17. Recent glacier changes in the Tien Shan observed by satellite gravity measurements

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Tian, X.; Feng, G.

    2016-08-01

    The glaciers in the Tien Shan are extensive and play an important role in water cycle in central Asia. However, it is difficult to accurately monitor glacier variations in the Tien Shan due to the lack of in situ widespread measurements. In this paper, glacier mass variations in the Tian Shan are obtained and investigated from 10 years of monthly GRACE gravity solutions (January 2003-December 2012) and the WaterGAP Global Hydrology Model (WGHM), including seasonal, secular and interannual variations . Results show that significant seasonal variations of glacier mass are found with the maximum normally in April-June and the minimum around in November-December. The trends in all four regions are positive from 2002 to 2005 and negative from 2005 to 2012, indicating that the Tien Shan glaciers are increasing prior to 2005 and significantly melting after 2005. These changes are consistent with the temperature change in the Tien Shan. In addition, in the past decade the precipitation has decreased and evapotranspiration has increased, which have joint influences on glacier mass changes in different regions of the Tien Shan.

  18. The End Of Chi-Shan Fault:Tectonic of Transtensional Fault

    NASA Astrophysics Data System (ADS)

    Chou, H.; Song, G.

    2011-12-01

    Chishan fault is an active strike-slip fault that located at the Southwestern Taiwan and extend to the offshore area of SouShan in Kaohsiung. The strike and dip of the fault is N80E,50N. It's believed that the Wushan Formation of Chishan fault, which is composed of sandstone, thrusts upon the Northwestern Kutingkeng Formation, which is composed of mudstone. Chishan fault is acting as a reversal fault with sinistral motion. (Tsan and Keng,1968; Hsieh, 1970; Wen-Pu Geng, 1981). This left-lateral strike-slip fault extend to shelf break and stop, with a transtensional basin at the termination. The transtensional basin has stopped extending to open sea, whereas it is spreading toward the inshore area. Therefore, we can know that a young extensional activity is developing at the offshore seabed of Tsoying Naval Port and the activity is relative to the transtension of left-lateral fault. ( Gwo-Shyh Song, 2010). Tectonic of transtensional basin deformed in strike-slip settings overland have been described by many authors, but the field outcrop could be distoryed by Weathering and made the tectonic features incomplete. Hence, this research use multibeam bathymetry and 3.5-kHz sub-bottom profiler data data collected from the offshore extended part of Chishan fault in Kaohsiung to define the transtensional characteristics of Chishan fault. At first, we use the multibeam bathymetry data to make a Geomorphological map of our research area and we can see a triangulate depressed area near shelf break. Then, we use Fledermaus to print 3D diagram for understanding the distribution of the major normal faults(fig.1). Furthermore, we find that there are amount of listric normal fault and the area between the listric faults is curving. After that, we use the 3.5-kHz sub-bottom profiler data to understand the subsurface structure of the normal faults and the curved area between the listric normal fault, which seems to be En e'chelon folds. As the amount of displacement on the wrench

  19. Structural framework of a major intracontinental orogenic termination zone: The easternmost Tien Shan, China

    USGS Publications Warehouse

    Cunningham, D.; Owen, L.A.; Snee, L.W.; Li, J.

    2003-01-01

    The Barkol Tagh and Karlik Tagh ranges of the easternmost Tien Shan are a natural laboratory for studying the fault architecture of an active termination zone of a major intracontinental mountain range. Barkol and Karlik Tagh and lesser ranges to the north are bounded by active thrust faults that locally deform Quaternary sediments. Major thrusts in Karlik Tagh connect along strike to the east with the left-lateral Gobi-Tien Shan Fault System in SW Mongolia. From a Mongolian perspective. Karlik Tagh represents a large restraining bend for this regional strike-slip fault system, and the entire system of thrusts and strike-slip faults in the Karlik Tagh region defines a horsetail splay fault geometry. Regionally, there appears to be a kinematic transition from thrust-dominated deformation in the central Tien Shan to left-lateral transpressional deformation in the easternmost Tien Shan. This transition correlates with a general eastward decrease in mountain belt width and average elevation and a change in the angular relationship between the NNE-directed maximum horizontal stress in the region and the pre-existing basement structural grain, which is northwesterly in the central Tien Shan (orthogonal to SHmax) but more east-west in the eastern Tien Shan (acute angular relationship with SHmax . Ar-Ar ages indicate that major range-bounding thrusts in Barkol and Karlik Tagh are latest Permian-Triassic ductile thrust zones that underwent brittle reactivation in the Late Cenozoic. It is estimated that the modern mountain ranges of the extreme easternmost Tien Shan could have been constructed by only 10-15 km of Late Cenozoic horizontal shortening.

  20. Ozone and nitrogen dioxide above the northern Tien Shan

    NASA Technical Reports Server (NTRS)

    Arefev, Vladimir N.; Volkovitsky, Oleg A.; Kamenogradsky, Nikita E.; Semyonov, Vladimir K.; Sinyakov, Valery P.

    1994-01-01

    The results of systematic perennial measurements of the total ozone (since 1979) and nitrogen dioxide column (since 1983) in the atmosphere in the European-Asian continent center above the mountainmass of the Tien Shan are given. This region is distinguished by a great number of sunny days during a year. The observation station is at the Northern shore of Issyk Kul Lake (42.56 N 77.04 E 1650 m above the sea level). The measurement results are presented as the monthly averaged atmospheric total ozone and NO2 stratospheric column abundances (morning and evening). The peculiarities of seasonal variations of ozone and nitrogen dioxide atmospheric contents, their regular variances with a quasi-biennial cycles and trends have been noticed. Irregular variances of ozone and nitrogen dioxide atmospheric contents, i.e. their positive and negative anomalies in the monthly averaged contents relative to the perennial averaged monthly means, have been analyzed. The synchronous and opposite in phase anomalies in variations of ozone and nitrogen dioxide atmospheric contents were explained by the transport and zonal circulation in the stratosphere (Kamenogradsky et al., 1990).

  1. [Anopheles mosquitoes (Diptera, Culicidae) of the Tien Shan: morphological, cytogenetic, and molecular genetic analysis].

    PubMed

    Gordeev, M I; Zvantsov, A B; Goriacheva, I I; Shaĭkevich, E V; Ezhov, M N; Usenbaev, N T; Shapieva, Zh Zh; Zhakhongirov, Sh M

    2008-01-01

    Morphological, cytogenetic, and molecular genetic studies of the Anopheles fauna in the valley and foothills of the Tien Shan identified 5 species of malaria mosquitoes: An. artemievi Gordeev et al., An. messeae Fall, An. claviger Meigen, An. hyrcanus Pallas, An. pulcherrimus Theobald, and superpictus Grassi. An. claviger, An. hyrcanus, and An. messeae were prevalent in the Northern Tien-Shan. An. artemievi, An. claviger, An. hyrcanus, An. messeae, and An. superpictus were detected in the Western Tien Shan. An. artemievi was first recorded in Kazakhstan. An. artemievi, An. claviger, and An. superpictus were noted in the Inferior Tien Shan. An. messeae was first observed in the Issyk Kul hollow. An. artemievi, An. claviger, and An. superpictus were habitants of the foothills of the South-Western Tien Shan. An. artemievi, An. hyrcanus, An. superpictus, and An. pulcherrimus were in the plain. An. pulcherrimus and An. superpicts mosquitoes are regarded as important vectors in the new malaria foci of the Fergana regions. The role of An. artemievi in the transmission of malaria is to be specified. PMID:18822504

  2. Neogene coupling between Kuqa Basin and Southern Tien Shan Orogen, Northwestern China.

    PubMed

    He, Guang-Yu; Chen, Han-Lin

    2004-08-01

    Based on the sedimentary and subsiding features of Kuqa foreland basin, this paper presents the following characteristics of Neogene coupling relationship between Kuqa Basin and Southern Tien Shan Orogen, Northwestern China: (1) The Southern Tien Shan Orogen underwent Neogene uplifting of 4 km in height and the Kuqa Basin underwent Neogene subsidence of 4-6 km in depth accordingly beginning in 25 Ma; (2) The Southern Tien Shan Orogen moved continuously toward the Kuqa Basin, with largest structural shortening rate of greater than 53.7%, and the north boundary of the Kuqa Basin retreated continuously southward accordingly since the Miocene; (3) There are two subsidence centers with high subsiding rates and large subsiding extent, located in the eastern and western Kuqa Basin respectively, with the subsiding maximizing in the deposition period of Kuqa Formation. PMID:15236483

  3. Hydrological regime of Lake Adygine, Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Falátková, Kristýna; Šobr, Miroslav; Kocum, Jan; Janský, Bohumír

    2014-05-01

    Glacier retreat in high mountain areas around the world is considered one of the major geosciences research topics of last decades. This process may result in formation and further development of glacial lakes that are often unstable and pose a threat to downstream valleys. The studied area is situated at the end of a tributary valley on the northern side of Kyrgyz range, about 40 km south of the capital - Bishkek. Glaciers of Central Tien Shan are considered very sensitive indicators of climate change. The studied lake is part of a system of young lakes situated near the front of a retreating glacier therefore it ranks among potentially dangerous ones. The area is closely observed, terrain research including bathymetric, geophysical, geodetic measurements was carried out during last ten years. The lake level and its dependence on the changing climatic conditions in the area have been monitored in detail at this location since August 2007. Data from two meteorological stations are used to explain lake water level fluctuations, especially during ablation season when the lake is drained by a surface channel. The hydrological regime of the lake is compared with a regime of glacial streams, individual factors that affect it are described and possible trends and uncertainties that arise from it are analysed. The lake is also drained by subsurface channels, and as the water level declines over the cold part of a year, their capacity is studied and compared among years. The main aim of the study is to explain any deviations or changes found in the hydrological regime of the lake and to decide whether their cause could mean a decreased stability of the lake dam. Part of the dam is made up of moraine with buried ice and as the lake is drained by subsurface channels, their capacity can be changed due to moraine subsidence when the ice melts. This may lead either to sudden enlargement of channels' capacity or to their blockage, both of which could cause lake outburst.

  4. Lithospheric low-volume volcanism in the Middle-Amur basin and Tien Shan: Inherited geochemical signatures of terrains originated in closed paleoocean structures

    NASA Astrophysics Data System (ADS)

    Chuvashova, I.; Mikolaichuk, A.; Rasskazov, S.

    2012-04-01

    that were derived from the garnet-bearing mantle (basanites, leucitites, and foidites) and from the crust (basalts, andesitic basalts, and andesites). The Southern Tien Shan is like the western part of the Middle Amur basin by longer volcanic activity (122-46 Ma and 22.0-0.3 Ma, respectively). All liquids from the Southern Tien Shan were produced in the garnet-free shallow mantle. Evolution of a picrobasalt-phonolite series from this single source was provided here only by temperature variations. Similarly, the western part of the Middle Amur basin was also dominated by magmatism originated at the mantle level, although some liquids were produced with increasing role of garnet in the source region. We suggest that long-term low-volume magma supply from a fixed depth was due to control of processes by lithospheric layering, whereas short-term reactivation of both mantle and crustal sources was provided by shear displacement of the lithosphere. The work was supported by the Russian Federal Aim Program "Scientific and scientific-pedagogical personnel of innovative Russia" for 2009-2013, the state contract number P736.

  5. Limnocentropus kritsaneepaibooni new species (Limnocentropodidae: Trichoptera) from Shan State, Myanmar, with faunistic data for the family.

    PubMed

    Laudee, Pongsak; Malicky, Hans

    2016-01-01

    A new species of Limnocentropus, Limnocentropus kritsaneepaibooni n. sp. from Keng Tung Province, Shan State, Myanmar, is described and figured. Three other, previously described species of Limnocentropus are newly recorded for Myanmar, including L. apollon Malicky 1999, L. sammuanensis Malicky & Chantaramongkol 1989, and L. siribhumensis Malicky & Chantaramongkol 1989, resulting in 7 species of the family found in Myanmar. PMID:27470736

  6. Tien Shan, Pamir, and Tibet: History and geodynamics of phanerozoic oceanic basins

    NASA Astrophysics Data System (ADS)

    Burtman, V. S.

    2010-09-01

    Geological and biogeographical data on the paleooceanic basins of the Tien Shan and High Asia are summarized. The oceanic crustal rocks in the Tien Shan, Pamir, and Tibet belong to the Tethian and Turkestan-Paleoasian systems of paleooceanic basins. The tectonic evolution of these systems in the Phanerozoic was not coeval and unidirectional. The sialic blocks of the future Tien Shan, Pamir, and Tibet were incorporated into the Eurasian continent during several stages. In the Late Ordovician and Silurian several microcontinents were preliminarily combined into the Kazakh-Kyrgyz continent as a composite aggregation. The territories of the Tien Shan and Tarim became a part of Eurasia after the closure of the Turkestan, Ural, and Paleotethian oceans in the Late Carboniferous and Early Permian. The territories of the Pamir, Karakorum, Kunlun, and most of Tibet attached to the Eurasian continent in the Triassic. The Lhasa and Kohistan blocks were incorporated into Eurasia in the Cretaceous, whereas Hindustan was docked to Eurasia in the Paleogene.

  7. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    EPA Science Inventory

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  8. Latest Miocene to Quaternary deformation in the southern Chaiwopu Basin, northern Chinese Tian Shan foreland

    NASA Astrophysics Data System (ADS)

    Lu, Honghua; Wang, Zhen; Zhang, Tianqi; Zhao, Junxiang; Zheng, Xiangmin; Li, Youli

    2015-12-01

    Basinward propagation of fold and thrust belts is a crucial geological process accommodating Cenozoic crustal shortening within the India-Eurasia collision zone. Anticlinal growth strata in the southern Chaiwopu Basin (a piggyback basin) of the northern Chinese Tian Shan foreland record basinward encroachment of the Tian Shan along the Junggar Frontal Thrust Fault. A new magnetostratigraphic section constrains the onset of syntectonic growth strata at circa 6.4 Ma and suggests synchronous basinward thrusting and propagation of the Tian Shan. The intense alluviation in the southern Chaiwopu Basin ceased at circa 0.55 Ma due to significant anticlinal growth and its resultant river incision. More recent anticlinal growth and deformation during the late Quaternary are revealed by folded river terraces developing across the anticline. The terrace height profile indicates that terrace T1H has been vertically offset about 0.6 m by thrust faulting since its formation at about 7 Ka. The stratigraphic and geomorphic data presented in this work are helpful to understand the initiation of thrust-related folding, as well as aggradation and subsequent incision, in foreland basins of the Tian Shan in relation to the India-Asia collision.

  9. Earthquake source parameters in the western Tarim basin and the Tien-Shan

    NASA Astrophysics Data System (ADS)

    Huang, G.; Levin, V. L.; Roecker, S. W.; Li, Z.; Wang, H.

    2010-12-01

    Distribution of the continental lithospheric strength is currently debated (e.g., “jelly sandwich” vs. “crème brulee” models). A key argument in this debate is the presence (or absence) of earthquakes in the lower crust and the upper mantle. The Tarim basin is commonly regarded as a relatively rigid block that lies between two actively deformed regions (the Tien-Shan in the north, and the Tibetan plateau in the south). However, earthquake catalogs suggest intense seismicity in some parts of the basin (e.g., the Jiashi earthquake sequence). Using regional moment tensor inversion and data from temporary/permanent seismic networks, we investigate earthquake source parameters along the Tien-Shan orogenic belt and the western Tarim basin. Selection of seismic events was made using earthquake catalogs of the China Earthquake Administration. We search for earthquakes with local magnitude over 4 to ensure reasonable signal-to-noise ratios. Preliminary results show that thrust-faulting focal mechanisms with nearly vertical T-axes dominate along the Tien-Shan, implying uplift and possibly crustal thickening of the Tien-Shan. Within the Tarim basin focal mechanisms show a combination of strike-slip and thrust faulting, suggesting a more complex deformation regime. While most events we investigated are in the upper crust, we found two earthquakes at unusual depths. One, an oblique thrust mechanism with Mw=4.8, is located at 44 km depth beneath the Tarim basin. Active source studies and our own work on receiver function analysis suggest crustal thickness on the order of 50 km in the focal area, placing this earthquake near the bottom of the Tarim-basin crust. Another event, a 37-km deep oblique strike-slip with Mw=4.4, is at the southwestern end of the Tien-Shan, close to the surface trace of the Talas-Fergana fault. This event is also in the lower crust. One nodal plane of the best fitting focal mechanism is nearly parallel to the fault trace, suggesting that

  10. Be-10 derived basin-wide erosion rates of Southern Qilian Shan, NE Tibet

    NASA Astrophysics Data System (ADS)

    Hu, K.; Fang, X.; Granger, D. E.; Zhao, Z.

    2013-12-01

    The actively uplifting Qilian Shan forms the northeastern margin of the Tibetan Plateau. The mountain range is bounded to the northeast by a thrust fault forming a 2 km-high mountain front over the Hexi Corridor basin, and to the southwest by a series of thrusts within an internally-drained elevated plateau that steps downwards into the Qaidam basin. The mountain range forms an important climatic boundary as well, where the East Asian Monsoon gives its way to Northern Hemisphere Westerlies. Understanding the interplay among active faulting, climate, and erosion in this region could be important for revealing the northeastern expansion and uplift of the Tibetan Plateau. Here we present 10Be derived catchment-wide erosion rates for a large area of the southern Qilian Shan. Our preliminary results show remarkably slow erosion rates ranging from~ 10 - 100 mm/ky,much slower than those reported for rivers draining the north Qilian Shan (ranging from 39-833 mm/ky) [Palumbo et al., 2011]. These results may suggest that catchments draining the mountain front experience relatively high precipitation and are eroding quickly, while catchments in the arid, internally-drained interior are isolated from base level fall and are eroding slowly. Moreover, our erosion rates may also suggest that the interior (southern) portions of the Qilian Shan are deforming more slowly than along the frontal thrust. This is consistent with the North Qilian Shan thrust accommodating most of the tectonic shortening in the mountain range, with shortening occurring at a slower rate in the interior. These data may suggest that low erosion rates (at least partially due to aridity) are promoting surface uplift of the Qilian Shan and Qaidam basin along the northeastern edge of the Tibetan Plateau. Additional samples are being processed from a variety of geologic and climatic settings that we hope will further elucidate patterns of erosion in the Qilian Shan region. Palumbo, L., R. Hetzel, M. Tao, and X

  11. Late Cenozoic Exhumation of the Terskey Range, Kyrgyz Tien Shan

    NASA Astrophysics Data System (ADS)

    Sobel, E. R.; Macaulay, E. A.; Mikolaichuk, A.; Kohn, B. P.

    2008-12-01

    The glaciated, granitic Terskey range and the associated foreland basin within the Kyrgyz Tien Shan is an ideal region to examine whether Plio-Pleistocene climate change has led to enhanced erosion. Three ca. 1000m vertical profiles were collected in the hanging wall of the main, north-vergent thrust, spaced 25 km apart along strike. AFT analysis have been conducted from the westernmost-transect; all profiles have been analyzed using apatite (U-Th-Sm)/He analysis. AFT and Helium data from the Barskoon gorge profile define parallel trends on the age-elevation plot with apparent exhumation rates of ca. 0.08 km/Myr. The uppermost AFT sample resided for a long period within the partial annealing zone (PAZ); hence, the onset of rapid exhumation defined by the base of the exhumed PAZ appears to be 31±5 Ma. This is earlier than expected from the known regional geology. An alternative interpretation is that the next lowest sample has also been partially reset, such that the onset of exhumation is later and the initial exhumation is more rapid. Helium data from the Kichikyzulsu and Turgenaksu profiles define linear trends on age-elevation plots with apparent exhumation rates of 0.1-0.25 km/Myr and 0.2 km/Myr, respectively. Much older ages at high elevations along the former profile suggest that the base of the Helium partial retention zone (PRZ) has been sampled; the onset of exhumation is roughly constrained to be between 10 and 20 Ma. The onset of rapid exhumation at the latter profile can only be constrained as prior to 11 Ma. Combining the apparent exhumation rate with the age of the youngest samples from each transect provides an estimate of the amount of exhumation since that sample cooled through the PRZ. For the 3 profiles, this implies 1 to 1.2 km, 0.7 to 1.8 km, and 1.5 km of exhumation, assuming that the exhumation rate remained constant. The observed small magnitude and slow rate of exhumation suggests that there has been only limited advection and hence

  12. Source parameters for 11 earthquakes in the Tien Shan, central Asia, determined by P and SH waveform inversion

    NASA Technical Reports Server (NTRS)

    Nelson, Michael R.; Mccaffrey, Robert; Molnar, Peter

    1987-01-01

    The style and the distribution of faulting occurring today in the Tien Shan region were studied, by digitizing long-period World-Wide Standard Seismograph Network P and SH waveforms of 11 of the largest Tien Shan earthquakes between 1965 and 1982 and then using a least squares inversion routine to constrain their fault plane solutions and depths. The results of the examination indicate that north-south shortening is presently occurring in the Tien Shan, with the formation of basement uplifts flanked by moderately dipping thrust faults. The present-day tectonics of the Tien Shan seem to be analogous to those of the Rocky Mountains in Colorado, Wyoming, and Utah during the Laramide orogeny in Late Cretaceous and Early Tertiary time.

  13. Focused modern denudation of the Longmen Shan margin of the eastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wen, L.; Oskin, M.; Zeng, L.

    2012-04-01

    We use river sediment load data to map the pattern of modern denudation across the Longmen Shan margin of the Tibetan plateau. Suspended sediment load, with corrections of bed load and solute load contributions, is used to calculate watershed-averaged denudation rates. Decadal erosion is spatially heterogeneous, and seasonally modulated by monsoon-flows, which account for 80-90% of the sediment load. Enhanced denudation occurs in a ~ 50 km-wide band on the hanging wall of the Longmen Shan and Huya fault zones, reaching 0.5 - 0.8 mm/yr. These rates are similar to kyr-scale rates deduced from cosmogenic 10Be and to Myr-scale rates from low-temperature thermochronology. The sediment flux-derived erosion rates decrease with increasing distance plateau-ward, to less than 0.05 mm/yr at a distance ~200 km northwest of the foot of the Longmen Shan. The gradient in precipitation across this margin alone cannot explain this one-order-of-magnitude spatial difference in erosion. Rather, the river sediment load data delineates a zone of relatively rapid denudation around active faults that carry the Longmen Shan in their hanging wall. From the similarity of denudation rates measured over Myr, kyr, and decadal time scales, we propose that erosion of the Longmen Shan margin has approached a flux steady state. The erosional efflux is balanced by advection of rock toward the Longmen margin above the ~20° NW-dipping ramp of the margin-bounding fault. Our results suggest that high amounts of landslide material mobilized by earthquakes such as the Mw 7.9 2008 Wenchuan event are gradually removed by rivers, smoothing sediment flux over time. Our results also suggest that caution should be exercised when interpreting young cooling ages as evidence of the initiation of plateau uplift. Advection of an already high plateau into the belt of higher erosion rate at the Longmen Shan could also give rise to an abrupt cooling history.

  14. Diamond from the dabie shan metamorphic rocks and its implication for tectonic setting.

    PubMed

    Shutong, X; Wen, S; Yican, L; Laili, J; Shouyuan, J; Okay, A I; Sengör, A M

    1992-04-01

    Diamond occurs in ultrahigh pressure metamorphic rocks from Dabie Shan, Anhui Province, eastern China. Diamond-bearing rocks include eclogite, gamet-pyroxenite, and jadeitite. Diamond occurs in a mineral assemblage with coesite and jadeite. The diamonds and diamondiferous rocks of Dabie Shan are interpreted to be the products of ultrahigh pressure metamorphism in the undérthrust basement of the Yangtze continental plate during the early Mesozoic, at greater than 4.0 gigapascals and 900 degrees C. This interpretation is based on the distribution of rock units, the stability field of diamond, and isotopic data indicating a crustal origin for the rocks. Most diamonds occur as euhedral inclusions in garnets and are 10 to 60 micrometers across, although some are up to 700 micrometers across. PMID:17802596

  15. Displacement and HIV: Factors Influencing Antiretroviral Therapy Use by Ethnic Shan Migrants in Northern Thailand.

    PubMed

    Murray, Jordan K; DiStefano, Anthony S; Yang, Joshua S; Wood, Michele M

    2016-01-01

    Migrant populations face increased HIV vulnerabilities, including limited access to antiretroviral therapy. Civil conflict in Myanmar has displaced thousands of people from the minority Shan ethnic group into northern Thailand, where they bear a disproportionate HIV burden. To identify barriers and facilitators of antiretroviral therapy use in this population, we conducted a rapid ethnographic assessment and case study with a clinical sample of Shan migrants receiving treatment for HIV in a district hospital in Chiang Mai, Thailand, Thai nurses providing their care, and health care administrators (n = 23). Barriers included fears of arrest and deportation, communication difficulties, perceived social marginalization, limited HIV knowledge, and lack of finances. Facilitating factors included hospital-based migrant registration services and community outreach efforts involving support group mobilization, referral practices, and radio broadcasts. These findings provided a contextualized account to inform policies, community interventions, and nursing practice to increase treatment access for minority migrant groups. PMID:27188762

  16. Late Quaternary slip rate of the frontal thrust of the Qilian Shan , NE Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Champagnac, J.-D.; Molnar, P.; Yuan, D.-Y.; Ge, W.-P.; Zheng, W.-J.

    2009-04-01

    The Qilian Shan, with peak elevations >5500 m, seems to have been built largely during late Miocene time (e.g. Tapponnier et al., 2001) and continues to be seismically active (Hetzel et al., 2004), having produced the very large the Gulang earthquake in 1927 (M=8.0) (e.g., Zheng et al., 2005). Associated deformation is partitioned into thrust faulting on planes dipping south-southwest and north-northeast and large sinistral strike-slip faults oriented WSW-ENE to WNW-ESE, as well as second order dextral faults oriented NNW-SSW. The thickened crust of the Qilian Shan seems to be due to reverse faulting in a region that seems to have grown east-northeastward as the Altyn Tagh fault extended eastward (e.g. Burchfiel et al., 1989). We constrain the slip rate of a frontal thrust of the Qilian Shan over millennial time scale by cosmogenic (10Be) exposure age dating of terraces offset by the reverse fault, combined with structural investigations, satellite imagery, topographic profiling, and exposure dating. We surveyed two terrace levels, and from each we took 6-7 samples in profiles dug to depths of two meters. These allowed us to constrain inheritance (equivalent to ~0-2 ka, for each) and to determine precise ages of abandonment of the terraces: 29.9 ± 7.8 kyrs for the upper terrace and 16.3 ± 4.4 kyrs for the lower one. Topographic profiles 4 km in length, with a determination of probable burial of the footwall by sediments, yield offsets of the surfaces of 96.4 ± 4.4 m and 40.1 ± 2.8 m.The average vertical rate is 2.8 ± 1.3 mm/yr, with a horizontal slip rate of ~2.5 ± 2.0 mm/yr. The vertical and horizontal rates determined by this study contrast with slower rates determined farther north by Hetzel et al. (2004) on a similar thrust fault. Our results are consistent with GPS constraints, which show a NNE shortening direction across the Qilian Shan at a rate of 5.5 ± 1.8 mm/yr (Zhang et al., 2004). Slip on the studied thrust fault over millennial timescale account

  17. Tectonic evolution of Kazakhstan and Tien Shan in Neoproterozoic and Early-Middle Paleozoic

    NASA Astrophysics Data System (ADS)

    Samygin, S. G.; Kheraskova, T. N.; Kurchavov, A. M.

    2015-05-01

    Geological information on Kazakhstan and the Tien Shan obtained up to the present time has been considered and integrated in order to demonstrate the main features of continental massifs, basins with oceanic crust, island arcs, marginal volcanic-plutonic belts, and transform fault zones differing in type and age. We ascertained the character and probable causes of their evolution and transformations resulting in the origination and development of mosaic structural assembly at margin of the Paleoasian ocean that existed from Neoproterozoic. The main stages of the geodynamic history of Paleozoides in Kazakhstan and Tien Shan are characterized, and a model of the probable course of regional tectonic events has been proposed. This model is illustrated by published paleomagnetic data and a series of paleotectonic reconstructions for time intervals 950-900, 850-800, 750-700, 650-630, 570-550, 530-515, 500-470, 460-440, and 390-380 Ma.

  18. [Historical textual research on Shan biandou with discussion on the misnaming of plant title].

    PubMed

    Li, J B

    2016-05-01

    The original plants of Shan biandou, first seen in Jiu huang ben cao (Materia Medica for Relief of Famines), include the plants of Astragalusgenus, such as A. scaberrimus and/or A. complanatus in the Ming and Qing Dynasties. But Cassia mimosoides was named as Shan biandou by Japanese scholars in the 19th century. This mistaken identification and misnaming, still in use today in Chinese and Japanese circles of botany and materia medica, did cause some confusion. The merits and demerits of using the plant names in Chinese characters from the Japanese language by Chinese botanists were analyzed, the disadvantages of which should be well avoided. Because of the vicissitude in the names of plants and Chinese herbs, it is necessary to strengthen the study and develop the significant value of A. complanatus and C. mimosoides in health care so as to promote its contributions to the cause of TCM. PMID:27485866

  19. Late Quaternary deformation rates in the Pamir-Tian Shan collision zone, NW China

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Li, T.; Burbank, D. W.; Chen, J.; Bookhagen, B.; Bufe, A.; Yang, H.

    2014-12-01

    Deformation of the Pamir and Tian Shan orogens initiated during the Neogene as a result of the Indo-Eurasian colision. The arid landscape in the western Tarim Basin, NW China, preserves suites of fluvial terraces crossing many of the Late Neogene active structures, creating fault and fold scarps. We present new deformation rates on five faults and folds, which in combination with previous studies, highlight the spatial and temporal patterns of deformation during the Late Quaternary. Suites of terraces spanning ~130 ka to ~8 ka document the basinward propagation of deformation, with the fastest rates currently located on actively deforming structures at the interface of the Pamir-Tian Shan orogens. During the last ~6 ka, the Pamir deformation front has stepped north, creating the Mingyaole South Thrust, which produced the 1985 M7.4 Wuqia Earthquake. Trenching on several sections of this fault reveal an earthquake reoccurence interval of ~1.0 ky. The Late Quaternary deformation rates on faults and folds along the Pamir-Tian Shan collision zone indicate that the locus of deformation was not concentrated on a single structure, but rather was concurrently distributed across a zone of structures. Despite numerous structures accommodating the shortening and the locus of deformation shifting throughout the Late Quaternary, the total shortening across the Pamir-Tian Shan collision zone since ~0.35 Ma has remained steady and is approximately equal to the current geodetic rate of 6-9 mm/a, as well as broadly similar to preliminary InSAR-derived deformation rates across the region.

  20. Magnetostratigraphy of the Northern Tian Shan foreland, Taxi He section, China

    NASA Astrophysics Data System (ADS)

    Li, Chuanxin; Dupont-Nivet, Guillaume; Guo, Zhaojie

    2010-05-01

    The Tian Shan range formed in the late Cenozoic in response to the northward propagation of deformation related to the India-Eurasia continental collision. Precise timing of the Tian Shan uplift is required to understand possible mechanisms of continental lithosphere deformation and interactions between climate, tectonism and erosion. Here, we provide magnetostratigraphic age control on the northern Chinese Tian Shan foreland successions. A thorough rock magnetic analysis identifies hematite and magnetite bearing alluvial deposits in the upper portion of the sampled stratigraphy as more reliable paleomagnetic recorders than magnetite bearing fluvial and lacustrine deposits that are often maghemitized in the lower part of the record. As a result, a robust correlation to the geomagnetic polarity time scale is obtained from 6 Ma to 2 Ma while a tentative correlation is proposed from 6 to 16 Ma. Sediment accumulation rates increase from 155 to 260 m/Myr at 3.9+/-0.4 Ma. This change coincides with a gradual lithologic transition from fluvial (sandstone dominated) to alluvial (conglomerate dominated). Theis change is so drastic that it more likely corresponds to an approaching erosional source associated to tectonically increased subsidence rather than differential compaction alone. Clear evidences for growth strata starting at an estimated age of ca. 2 Ma provide a minimum age for the folding. These results are compared to previous magneotstratigraphic studies from the same and other section of the northern Tian Shan foreland deposits. This enables critical assessment of the reliability of magnetostratigraphic dating and the significance of sediment accumulation rate variations with respect to facies variations and growth strata. Our results in the Taxi He section provide a sequence of events that is consistent with enhanced tectonic forcing starting at ~4 Ma although a climatic contribution must be considered given the close relationship of these ages with the Pliocene

  1. Magnetostratigraphy of the Kelasu section in the Baicheng depression, Southern Tian Shan, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiliang; Shen, Zhongyue; Sun, Jimin; Wang, Xin; Tian, Zhonghua; Pan, Xiaoqing; Shi, Linquan

    2015-11-01

    In order to better constrain chronology of the Cenozoic sediments in the foreland basin of the Southern Tian Shan, we carried out a magnetostratigraphic study along the Kelasu River, in the Baicheng depression, northwestern China. This is the basis for future studies of the tectonic shortening history and paleoclimatic changes. Stepwise thermal demagnetization was used to isolate the high-temperature characteristic component (ChRM) from 1521 oriented samples collected along two overlapped sections. The ChRM directions are interpreted to be acquired at or close to the time of rock formation. A composite magnetostratigraphic column composed of 86 (45 normal and 41 reversed) polarity chrons can correlate with GPTS (CK95) from ∼54 Ma to ∼7.6 Ma. The basal ages of the Kumugeliemu, Suweiyi, Jidike and the Kangcun formations are ∼54 Ma, ∼46 Ma, ∼34 Ma and ∼9.7 Ma, respectively. The changes of anisotropy of magnetic susceptibility (AMS) parameters (Pj and T) cannot be used to reflect the Cenozoic uplift of the southern Chinese Tian Shan due to the parameters have a significant linear positive correlation with the bulk magnetic susceptibility (Km), suggesting a sedimentary provenance control. Based on the alignments of the AMS, we concluded that the paleo-river channel flowed from north to south, being similar to the present river flowing direction, suggesting that there was still a residue relief of the Tian Shan orogen after the long-term Mesozoic denudation or the reactivation of the Tian Shan may have been initiated as early as ∼54 Ma.

  2. Tectonic interaction between the Pamir and Tien Shan observed by GPS

    NASA Astrophysics Data System (ADS)

    Zubovich, A.; Schöne, T.; Metzger, S.; Mosienko, O.; Mukhamediev, Sh.; Sharshebaev, A.; Zech, C.

    2016-02-01

    The complex tectonic interplay between the Central Asian Southwest Tien Shan and the north advancing Pamir as well as the role of the Pamir Frontal Thrust (PFT) separating these two orogens along the intervening Alai Valley is yet unclear. In this paper we present data of the newly installed Western Alai GPS profile (WAGP), capturing the deformation signal of both mountain ranges. The 20 km long WAGP records a maximum displacement rate of 9.3 ± 0.8 mm yr-1. The lion's share of displacement (6.0 ± 0.8 mm yr-1) is accommodated between the two stations located directly north and south of the PFT in 5 km distance. The WAGP data nicely complement the existing South Tien Shan and the Pamir GPS network data, which we present here in a combined reference frame and use it as input for horizontal block rotation/strain models. The model results show that both the Southwest Tien Shan and the Pamir behave as uniformly strained blocks and rotate counterclockwise (with respect to Eurasia) by 0.93 ± 0.11° Myr-1 and 0.62 ± 0.05° Myr-1, respectively. The Southwest Tien Shan undergoes NNE-SSW shortening of -22.1 ± 1.5 × 10-9 year-1 with an insignificant perpendicular extension. The Pamir is shortening with a rate of -10.2 ± 3.8 × 10-9 year-1 in a NNE-SSW direction, which is nearly 2.5 times less than its lateral extension rate. A band of increased deformation along the PFT is bounded to the north by the northern rim of the Alai Valley and extends up to 30-50 km south into the Pamir.

  3. Temporal and Spatial Changes of Permafrost in the Tien Shan Mountains Since the Little Ice Age.

    NASA Astrophysics Data System (ADS)

    Marchenko, S.; Romanovsky, V.

    2006-12-01

    During the Late Holocene there were numerous periods of warming and cooling in the Tien Shan Mountains, Central Asia. Ground temperatures and permafrost area in the Tien Shan have been subjected to repeated fluctuations during the last millennia brought about by the general planetary changes in climate. The altitudinal oscillations of the mean annual air temperature (MAAT) zero Centigrade isotherm had a range of about 300 m during that time. Air temperature in the Tien Shan Mountains has increased at a higher rate than the global mean during the 20th century. Climate warming in the high-mountains regions could induce the further near-surface permafrost degradation, which may lead to slope instability and permafrost-related hazards. The main objectives of the modeling process were to estimate the permafrost thermal regime and assess the area where permafrost disappeared since the second part of the nineteenth century. To estimate the effect of climate change on permafrost a one-dimensional process-based model was used to simulate the ground thermal regime of the Tien Shan at a resolution of a half-degree latitude-longitude since the Little Ice Age up to present. The results of numerical simulation show that at an altitude of 2500 m a.s.l. the permafrost temporary formed at least three times during the last 500 years. At the lover altitudinal boundary of permafrost distribution the permafrost temperatures now are close to 0°C and at some sites permafrost degradation has already started. Analysis of measured active layer and permafrost temperatures coupled with numerical thermal modeling (permafrost temperature reanalysis) shows that most of the recently thawed permafrost was formed during the Little Ice Age. The modeling of alpine permafrost dynamics shows that the altitudinal lower boundary of permafrost distribution has shifted by about 150-200 m upward since the end of the Little Ice Age (circa 1850). During the same period, the area of permafrost distribution

  4. Mineral chemistry and thermobarometry of peridotite xenoliths from Central Tien Shan basalts

    NASA Astrophysics Data System (ADS)

    Egorova, V.; Batalev, V.; Simonov, V.; Bagdassarov, N.; Litasov, Yu.

    2009-04-01

    Meso-Cenozoic basaltoids were revealed in the Tien Shan on a vast area (>285.000 km2), from the mountainous framing of the Fergana basin in the west to the Dzhungar Alatau spurs in the east. They occur as dikes and stocks among the Paleozoic Tien Shan complexes. Basaltic flows and sills were found among the deposits of the Suluterek Formation localized in the basement of the section of continental sediments filling the Tien Shan neotectonic depressions. In the Toyun basin in China and in the Fergana valley, basaltic flows and sills occur among Cretaceous-Paleogene marine deposits. Meso-Cenozoic effusive bodies are mainly olivine and plagioclase basalts. The trace- and rare-earth-element compositions of rocks show that most of the studied basaltic series in the Tien Shan formed in within-plate magmatic systems related to mantle plume sources. Spinel lherzolite xenoliths were found in basalts from Ortosuu sites located in Kyrgyzstan. New basalt sites with ultramafic xenoliths have high significance for reconstruction of the composition, structure and evolution of the upper mantle of Tien Shan and geodynamic processes in Central Asia. Spinel lherzolite xenoliths are characterized by an anhydrous four-phase mineral assemblage: olivine, clinopyroxene, orthopyroxene, and brown Cr-spinel. Peridotite textures are largely protogranular. Rock forming minerals have high Mg# = 0.87-0.91 in Ol, 0.87-0.91 in Opx, 0.88-0.91 in Cpx, and 0.75-0.77 in Sp. NiO content in olivine reaches 0.4 wt.%. Clinopyroxenes are Cr-diopside and characterized by high Al2O3 (4.6-7.5 wt%), Cr2O3 (0.7 - 1.11 wt%), Na2O (1.4-1.7 wt%) contents and 0.44-0.5 Ca/(Ca+Mg) ratio. Cr/(Cr+Al) ratio in spinel is equal to 0.09-0.18. Temperatures of equilibration for spinel lherzolites range from 920 to 1150C for Opx-Cpx thermometer and from 920 to 1070C for Ca-in-opx thermometer of Brey, Kohler (1990) and 912-1080C for Opx-Cpx thermometer of Wells (1977). Pressures calculated from Cpx barometer of Nimis (1999

  5. The numerical simulation study of the dynamic evolutionary processes in an earthquake cycle on the Longmen Shan Fault

    NASA Astrophysics Data System (ADS)

    Tao, Wei; Shen, Zheng-Kang; Zhang, Yong

    2016-04-01

    The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two

  6. Geomorphic response of an active metamorphic core-complex in a collisional orogen: Example from the Lunggar Shan, Southern Tibet

    NASA Astrophysics Data System (ADS)

    Taylor, M. H.; Kapp, P. A.; Stockli, D. F.

    2008-07-01

    We present structural and neotectonic mapping from the Lunggar Shan rift in southern Tibet. The Lunggar Shan is a N-trending mountain range ~70 km long N-S and up to 40 km wide E-W. The Lunggar Shan is bounded on its east side by a low-angle (<40°) east-dipping detachment fault that juxtaposes mylonitic gneiss and variably deformed granites in its footwall against alluvial fans and Neogene gravels in its hangingwall. Foliations in the mylonitic footwall dip < 40° east and stretching lineations are east plunging. The range front detachment is presently inactive as indicated by undisturbed moraines and Quaternary sediments that overlie it. However, we consider the Lunggar Shan detachment to be an active structure, as inferred by range parallel fault scarps cutting Quaternary alluvium located 4-5 km into the hangingwall basin, with >40 m of throw on individual scarps. An intriguing observation is that an intrabasinal topographic high is actively developing near areas of inferred maximum extension, with lacustrine sediments being uplifted and eroded. This observation indicates that the rift basin initially developed as a typical half-graben system that underwent a transition from deposition, to uplift and erosion perhaps as a result of isostatic rebound of the footwall at depth, warping the overlying hangingwall basin. If correct, the Lunggar Shan may represent a modern analogue to the supradetachment basin model.

  7. Reduced shear power spectrum

    SciTech Connect

    Dodelson, Scott; Shapiro, Charles; White, Martin J.; /UC, Berkeley, Astron. Dept. /UC, Berkeley

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  8. Shear Wave Splitting and Mantle Deformation beneath Eastern Eurasia and Indo-Australia

    NASA Astrophysics Data System (ADS)

    Cherie, S. G.; Gao, S. S.; Liu, K. H.; Reed, C. A.; Kong, F.; Elsheikh, A. A.; Jiang, Y.; Wang, D.; Wu, S.; Leach, D. P.

    2014-12-01

    The Eurasian and Indo-Australian plates comprise a highly complex and tectonically diverse system of lithospheric and asthenospheric deformational regimes. Nearly enveloped by convergent margins, Eurasia is bordered entirely along its eastern and southern boundaries by subduction and, in the only present-day example of its kind, the ongoing Himalayan continental collision. These phenomenal settings have made the region a natural laboratory for studying the deformational mechanics of the Earth's interior on a near-global scale by utilizing the robust shear-wave splitting (SWS) technique. By acquiring and examining data recorded by 531 broadband stations belonging to numerous networks throughout eastern Eurasia and Indo-Australia, we obtained a data set consisting of over 11,200 high-quality XKS (consisting of PKS, SKKS, and SKS phases) shear-wave splitting measurements composed of fast polarization orientations and splitting delay times. The resulting measurements show relatively high spatial density throughout Central Asia (e.g. Tibet and the Tien Shan), whereas regions in southeastern Asia, India and Australia have relatively sparse coverage. Multiple stations located primarily in the Tien Shan, Tibet, and South China demonstrate a clear azimuthal variation in fast orientations, indicating the presence of strong complex anisotropy beneath these regions. Possible mechanisms generating these occurrences of complex anisotropic layering include the collision and underthrusting of India beneath the Eurasian plate along the Himalayan suture, the westward subduction of the Pacific plate along the Mariana arc, northward subduction of Australia along the Sunda Trench, and slab fragment downwelling beneath the intraplate Tien Shan orogenic belt and Tarim Craton.

  9. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  10. Application of Global Positioning Measurements to Continental Collision in the Pamir-Tien Shan Region, Central Asia and GPS Survey of the Western Tien Shan

    NASA Technical Reports Server (NTRS)

    Hamburger, Michael W.; Reilinger, Robert E.; Hager, Bradford H.; Molnar, Peter

    1997-01-01

    In this report, we summarize what we have accomplished with five years of funding from NASA under its DOSE program, and with a comparable level of funding from NSF. We describe the development of a GPS network in the Tien Shan of Kyrgyzstan and Kazakhstan of the former Soviet Union, the analysis of data, and the main results. This discussion presents the state of the current network, which has grown significantly since the termination of our DOSE grants, with continued support both from NSF through its continental dynamics program and from NASA's SENH program. Although grants from NASA's DOSE program did not support this growth not directly, it did so indirectly by building the infrastructure that has enabled further expansion in an area where otherwise there would be only a small GPS presence. We note how the network has grown over time, but the emphasis of this discussion is on the quantity and quality of measurements that we have made.

  11. 2.5d teleseismic waveform tomography with application to the tien shan

    NASA Astrophysics Data System (ADS)

    Baker, Benjamin Ian

    The analysis of passive source seismic data recorded by quasi-linear deployments of broadband stations at teleseismic distances has proven to be an effective means of probing the subsurface of the Earth. However, current methodologies are far from being able to exploit all the interpretable signal in these data sets. In this thesis, I describe a 2.5D, frequency domain, visco-elastic waveform tomography algorithm for imaging with this type of data. To compute synthetic seismograms (the forward problem), the general equations of motion are discretized with p-adaptive finite elements. This approach allows for geometric flexibility and accurate solutions as a function of wavelength. Artificial force distributions manifesting Huygen's principle for the teleseismic events are introduced locally through a Bielak layer. Because of the relatively low frequency content of teleseismic data, regional scale tectonic settings can be parameterized with a modest number of variables and perturbations can be determined directly from a regularized Gauss-Newton system of equations. Waveforms generated by the forward problem compare well with analytic solutions for simple 1D media and with those generated in heterogeneous structures by a finite difference technique. It is demonstrated through examples that the regularized approximate Hessian is particularly effective at focusing backpropagated residuals to their true location. It is observed that full waveform inversion can provide significantly better vertical resolution than arrival time tomography and significantly better lateral resolution than standard surface wave tomography. Used in tandem in a multi-scale approach, surface wave tomography followed by joint surface wave/body wave tomography is shown to be an effective strategy for image reconstruction from a simple starting model. This inversion strategy is then applied to body and surface wave teleseismic waves recorded in the Tien Shan. The work of previous investigators is

  12. How the eastern Qilian Shan Mountain was deformed, revealed by deformed fluvial terraces

    NASA Astrophysics Data System (ADS)

    Hu, X.; Pan, B.; Gao, H.; Hu, Z.; Geng, H.; Cao, B.

    2012-12-01

    The northwest-southeastern treading Qilian Shan Mountain, margining the northeastern Tibetan Plateau, has been uplifting and deforming related to thrust faults bordering the mountain range in the north. By now, the fault thrust rate and how the mountain was uplifted and deformed is poorly documented along the eastern Qilian Shan. In this study, several flights of late Quaternary fluvial terraces along two rivers (Xiying River and Jinta River), sourced from the mountain crest and flowing transecting these thrust faults and folds, are surveyed by differential GPS with the accuracy of lower than 10 centimeters. Meanwhile, the abandonment times of terrace surfaces were dated by OSL dating on the overlying loess above the fluvial deposits. Analysis results of height data show that fluvial terrace surfaces were obviously deformed related to thrusting and folding. At first, we derive an average uplift rate of 0.05~0.2 mm/yr, which is contributed by folding along the low-mountain range since 120 ka B.P. When the uplift contributed by thrust is added, the total rate of uplift would be 0.45-0.60 mm/yr. The second, by the geometry of terrace surface height, the thrust geometry under the surface is deduced. Along the low-mountain range (with elevation from 2000 m to 3000 m), the dip angle of thrust is bended from ~30° to ~50° at the depth of around 15 km, and at the depth of ~20 km, the thrust dip angle is changed to ~26°. Along the Huangcheng-Taerzhuang Fault, which bordering the high-mountain range (with elevation from 3000 m to 5000 m) and the low-mountain range, the dip angle is bended from ~70° at the surface to ~47° below the depth of ~5 km, and at the depth below 23 km, the dip angel of the thrust is >30°. We conclude that in the late Quaternary, the deforming of mountain range along the eastern Qilian Shan is accomplished both by thrusting and folding; the different uplift rate is mainly caused by different thrust angle in the depth along the eastern Qilian Shan

  13. Climate- vs. Earthquake-induced Rock-Glacier Advances in the Tien Shan: Insights from Lichenometry

    NASA Astrophysics Data System (ADS)

    Rosenwinkel, Swenja; Landgraf, Angela; Korup, Oliver; Sorg, Annina

    2014-05-01

    Rock glaciers have been traditionally used as landform proxies of the distribution of sporadic alpine permafrost. In the northern Tien Shan mountains of Kyrgyzstan, most distinct lobes of >200 rock glaciers that we mapped from satellite imagery occur at two major elevation levels. However, a number of particularly low-lying lobes seem difficult to reconcile with palaeoclimatic fluctuations and commensurate changes of permafrost patterns: The minimum elevation of the majority of rock-glacier snouts lies between ~2500 up to ~3700 m a.s.l., but some 10% of rock-glaciers extend down to well below 3000 m a.s.l. We hypothesize that some of the rock glaciers in this area may have formed following strong earthquakes that could have triggered massive supraglacial rock-slope failures, which would have subsequently created sediment-rich rock glaciers from clear-ice glaciers. Our hypothesis is based on the observation that the tectonically active northern Tien Shan of Kyrgyzstan and Kazakhstan was affected by a series of major earthquakes in the late 19th and earliest 20th centuries, e.g. in 1885 (Ms 6.9), 1887 (Ms 7.3), 1889 (Ms 8.3), and 1911 (Ms 8.1). All of these earthquakes had triggered numerous landslides in the northern Tien Shan. It is also likely that similarly strong earthquakes had happened before, but their recurrence intervals are long and more palaeoseismological work is in progress. We test whether lichenometry of rock-glacier surfaces together with morphometric analysis are suitable methods to testing our hypothesis. We focus on assessing the possibility of earthquake-triggered rock-glacier advances, and use lichenometry to resolve age patterns of different rock-glacier lobes. We use a dataset of several thousand lichen diameter measurements encompassing seven different species calibrated by gravestones and dated mass-movement deposits. Data on four single and two merging rock glaciers in four selected valleys in Kyrgyzstan and Kazakhstan support the notion

  14. Deciphering the coupled Paleozoic and Cenozoic tectonic history of the Qilian Shan, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Li, J.

    2014-12-01

    The Cenozoic Qilian Shan--the widest thrust belt on the Tibetan Plateau--exposes a record of early Paleozoic subduction-accretion associated with closure of the Qilian Ocean as the Qaidam microcontinent converged with North China. Despite decades of intense research, there is little consensus regarding the nature of the Qilian orogen (e.g., subduction polarity or number of arcs). For example, are the scattered ophiolite-bearing mélange complexes in the Qilian Shan the result of multiple arcs colliding along several suture zones in the Paleozoic or Cenozoic thrust duplication of a single Paleozoic suture zone? A major problem is that existing hypotheses neglect Cenozoic reorganization of the earlier tectonic framework, and the coupling between Paleozoic and Cenozoic structures has yet to be systematically investigated. To address this issue, we examine the Paleozoic Qilian Shan in the context of Cenozoic deformation. We conducted detailed field mapping (~1:50,000), balanced cross-section construction and restoration, U-Pb-Th zircon geochronology, Th-Pb dating of monazite inclusions in garnet, thermobarometry, and whole-rock geochemistry across the central Qilian Shan and in the Hexi Corridor foreland near Jinchan, where the North China craton abuts directly against the Qilian orogen. Successions of juxtaposed amphibolite facies Proterozoic gneiss (T: 725 ± 53°C, P: 7.9 ± 0.9 kbar), Cambrian oceanic material (U-Pb zircon ages: 530-520 Ma), and Ordovician-Silurian arc-derived granite (U-Pb zircon ages: 475-445 Ma) are exposed in the hanging walls of south-directed Cenozoic thrusts that place this basement over younger strata. A regionally correlative unconformity at the base of Carboniferous-Triassic strata is duplicated by this deformation and is used as marker horizon in our restoration. Initial estimates indicate a minimum post-Triassic shortening strain of ~42-45% across the range. By removing this deformation on mapped faults and adhering to observed field

  15. Timing of initiation of extension in the Tianshan, based on structural, geochemical and geochronological analyses of bimodal volcanism and olistostrome in the Bogda Shan (NW China)

    NASA Astrophysics Data System (ADS)

    Shu, Liangshu; Wang, Bo; Zhu, Wenbin; Guo, Zhaojie; Charvet, Jacques; Zhang, Yuan

    2011-10-01

    This paper describes an olistostrome formation and accompanied bimodal volcanic rocks occurring in the Baiyanggou area, south of Bogda Shan. The main lithotectonic units consist of olistostrome, volcanic rocks and turbidite. The olistostrome is tectonically underlain by Upper Carboniferous limestone and sandstone along a NEE-trending detachment fault. Paleo-growth fault is locally observed. The olistostrome unit includes plenty of blocks of limestone, sandstone, rhyolite and volcaniclastic rocks, and a matrix of graywacke. Limestone blocks are dated as Pennsylvanian-Bashkirian in age by the coral and brachiopod fossils that are extensively recognized in the Upper Carboniferous strata. The volcanic unit consists of pillowed and massive basalt and rhyolite, the latter occur as an 8- to 10-meter-thick layer above the olistostrome unit. The turbidite unit is mainly composed of chert, siliceous mudstone and sandstone, within which the Bouma sequence can be locally recognized. Meter-wide gabbro and diabase dykes intrude these three units. Geochemically, rhyolites are characterized by high ACNK value of >1.1, depletion of Ba, Nb and Sm, and enrichment in Rb, Th and Zr. Basaltic rocks are rich in K2O, they show a LREE-enriched pattern and depletion in Ba, Nb and Zr, and enrichment in Ti, Ce and Hf, similar to continental rift-type tholeiite series. A gabbro porphyrite intruding the olistostrome was dated at 288 ± 3 Ma by a sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb method, and a rhyolite at 297 ± 2 Ma by a laser ablation inductively coupled plasma mass spectrometer (LA-ICPMS) zircon U-Pb method. The Baiyanggou olistostrome and accompanying bimodal volcanic series are linked to an extensional setting that developed in the south of the Bogda Shan. Several lines of evidence, e.g. occurrence of large-scale strike-slip shear zones, large number of mantle-derived magmatic rocks and available geochronological data, demonstrate a significant geodynamic change

  16. Substantial glacier mass loss in the Tien Shan over the past 50 years

    NASA Astrophysics Data System (ADS)

    Farinotti, Daniel; Longuevergne, Laurent; Moholdt, Geir; Duethmann, Doris; Mölg, Thomas; Bolch, Tobias; Vorogushyn, Sergiy; Güntner, Andreas

    2015-09-01

    Populations in Central Asia are heavily dependent on snow and glacier melt for their water supplies. Changes to the glaciers in the main mountain range in this region, the Tien Shan, have been reported over the past decade. However, reconstructions over longer, multi-decadal timescales and the mechanisms underlying these variations--both required for reliable future projections--are not well constrained. Here we use three ensembles of independent approaches based on satellite gravimetry, laser altimetry, and glaciological modelling to estimate the total glacier mass change in the Tien Shan. Results from the three approaches agree well, and allow us to reconstruct a consistent time series of annual mass changes for the past 50 years at the resolution of individual glaciers. We detect marked spatial and temporal variability in mass changes. We estimate the overall decrease in total glacier area and mass from 1961 to 2012 to be 18 +/- 6% and 27 +/- 15%, respectively. These values correspond to a total area loss of 2,960 +/- 1,030 km2, and an average glacier mass-change rate of -5.4 +/- 2.8 Gt yr-1. We suggest that the decline is driven primarily by summer melt and, possibly, linked to the combined effects of general climatic warming and circulation variability over the north Atlantic and north Pacific.

  17. Structural evolution of the Ural-Tian Shan junction: A view from Karatau ridge, South Kazakhstan

    USGS Publications Warehouse

    Alexeiev, D.V.; Cook, H.E.; Buvtyshkin, V.M.; Golub, L.Y.

    2009-01-01

    The deformation history of the Late Palaeozoic Ural-Tian Shan junction is discussed for the example of the Karatau ridge in southern Kazakhstan. Three deformation events are recognized. The Late Carboniferous D1 event is characterized by Laramide-style thrust-and-fold structures on the southern margin of Kazakhstan with shortening in a NE-SW direction. The Latest Permian and Triassic D2 event is controlled by compression in an east-west direction, which reflects collisional deformation in the Urals. The main structures are submeridional folds and north-west-striking sinistral strike-slip faults. The Triassic D3 event with shortening in a north-south direction reflects collision of the Turan microcontinent against the southern margin of Kazakhstan. The main structures are north-west-striking dextral strike-slip faults. Our new data provides important clues for the reconstruction of pre-Cretaceous structures between the Urals and the Tian Shan. ?? 2008 Acad??mie des sciences.

  18. Importance of Reactivation in the Thickening of the Eastern Tibetan Plateau (Longmen Shan, Sichuan, China)

    NASA Astrophysics Data System (ADS)

    de Sigoyer, J.; Robert, A.; Pubellier, M. F.; Deldicque, D.; Li, Y.; Yi, Z.

    2013-12-01

    The modalities of thickening and uplift of the Tibetan plateau have been often debated. Ages of thickening and of uplift all over the plateau seem to vary with the geological inheritance and reactivation of each area. The Longmen Shan, located on the eastern edge of Tibet, presents an important topographic gradient (from 5000 m to 500 m along 50 km) that overhangs a sharp Moho offset of 20km between the thick Tibetan crust (the Songpan Garze unit) (~67 km-thick) and the resistant 45 km-thick South China crust. Paradoxically the convergence rate across the Longmen Shan measured from geodetic data remains very low (3×3 mm/yr), and this has led to an underestimation of the seismic hazard in this area, and difficulties to explain the thickness of the Tibetan crust underneath. We have documented the thickening processes of the eastern Tibetan border in the Longmen Shan area by unravelling its polyphase evolution via Pressure Temperature (PT) estimates. The first phase of thickening of the Songpan Garze unit and the Longmen Shan occurred by the end of Triassic time during the closure of the Paleotethys. Structural, microstructural, metamorphic observations, PT studies (graphitization of carbonaceous material, quantified X-ray images, chlorite-phengite-quartz-water multi-equilibrium and thermodynamic modelling of phases equilibrium) and U-Pb geochronology are used to describe the tectono-metamorphic evolution of the internal part of the Longmen Shan belt along the Xuelongbao crystalline massif. The Xuelongbao granite is dated 765×7 Ma (in situ U/Pb dating on zircon), suggesting it forms part of the Neoproterozoic South China basement. The intense deformation observed in the sedimentary cover above the Xuelongbao massif, with step cleavage, twisted fold axes and CS structures with top to the SE thrusting vergence are associated to the decollement of the sedimentary pile over the basement. Four stages of deformation are described; three of them being related to the

  19. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  20. Paleomagnetic and Fission-track Dating of a Late Cenozoic Red Earth Section in the Liupan Shan and its Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Song, Y.; Li, Y.

    2013-12-01

    The north-trending Liupan Shan is an important tectonic boundary between the Tibetan plateau and the Ordos platform. The Late Cenozoic red earth deposits of the Liupan Shan record its tectonic history and environmental effects. In this paper we report on a new Late Cenozoic red earth section from an intermontane basin in the southern part of the Liupan Shan. Lithofacies analysis, paleomagnetic and fission-track chronologies, and paleocurrent analysis have been employed to identify the tectonic uplift events of the Liupan Shan. Based on the age contraints of mammal fossils, the paleomagnetic polarity zones of the Huating section can be approximately correlated with the standard polarity zones that lie between C3An.2n and C5n.1n of the Geomagnetic Polarity Timescale; the bottom age of this section is approximately 10 Ma. Based on this and the previous studies, we infer that a tectonic event commenced in the southern Liupan Shan in this interval between 8.3 and 8.7 Ma, accompanied by a remarkable increase in sediment accumulation rate. The appearance of a sand layer at 9.5 Ma reflects the initiation of uplift and erosion of the Liupan Shan. Regionally correlating the uplift of the Liupan Shan to entire Tibetan Plateau suggests that the Miocene is with dramatic importance for the construction of the Tibetan Plateau.

  1. Geological and geophysical evidences of late Quaternary activity of the range-front fault along the mid-segment of the Longmen Shan thrust belt

    NASA Astrophysics Data System (ADS)

    Ren, J.; Xu, X.; Sun, X.; Tan, X.; Li, K.; Kang, W.; Liu, B.

    2011-12-01

    The Longmen Shan fault zone consists of three main Longmen Shan faults and the blind fault in the Chengdu Basin. Along the range front of the middle segment of the Longmen Shan, there is the lithological border in published geological maps. The existence and the latest active time of the range-front fault along the mid-segment of the Longmen Shan thrust belts are controversial for a long period. Petroleum seismic reflection and high-resolution shallow seismic reflection profile discovered the existence of the range-front fault and the fault offset the Quaternary strata. Based on detailed field observation, we found that there is an obvious linear feature along the mid-segment of the Longmen Shan front and the range-front fault displaced the late Quaternary fluvial terrace. Trench log indicates that a surface-rupture event occurred before ~1500a along the range-front fault. Differential GPS surveying and dating of fluvial terrace show that the range-front fault during late Quaternary underwent a vertical slip rate of bigger than 0.36mm/a, approximately equivalent to that along the main faults of the longmen Shan thrust belts, which demonstrates that the range-front fault also took an important role in accommodating the deformation of the Longmen Shan thrust zone. This study not only provides the fundamental data for seismic hazard assessment of the Chengdu Plain, but is helpful for the overall understanding of uplift mechanism of east Tibet.

  2. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  3. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  4. Magnetostratigraphy of syntectonic growth strata and implications for the late Cenozoic deformation in the Baicheng Depression, Southern Tian Shan

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiliang; Sun, Jimin; Tian, Zhonghua; Gong, Zhijun

    2016-03-01

    The collision between India and Eurasia in the Cenozoic has caused a series of intracontinental deformation in the foreland basins of Tian Shan, but there are debates about the timing of tectonic deformation and the relationship between tectonic uplift and sediment accumulation in the foreland basins. Based on the magnetostratigraphy of growth strata in the Baicheng Depression, Southern Tian Shan, we suggest that an episode of crustal shortening in the late Cenozoic evidenced by syntectonic growth strata in the Kelasu-Yiqikelike structural belt (KYSB) initiated at ∼5.3 Ma, since then the sedimentation rate accelerated abruptly and coarse molasse deposits accumulated. Combined with the results of growth strata on both flanks of Tian Shan and the fact that the Xiyu Formation on the southern limb of the Kasangtuokai Anticline was involved into the growth strata, we conclude that the period from ∼7-5 Ma to the early Pleistocene was one of the important episodes of intracontinental deformation in the foreland basins of Tian Shan, as a response to the Cenozoic collision between India and Eurasia.

  5. Response of native and exotic bark beetles to high-energy wind event in the Tian Shan Mountains, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Mukhamadiev, N.; Lynch, A.; O'Connor, C.; Sagitov, A.; Panyushkina, I. P.

    2012-12-01

    On May 17, 2011, the spruce forest of Yile-Alatausky and Medeo National Parks in southeast Kazakhstan was surged by a high-energy cyclonic storm. Severe blowdown damaged several thousand hectare of Tian Shan spruce forest (Picea schrenkiana), with over 90% of trees killed in extensive areas. Bark beetle populations are increasing rapidly, particularly Ips hauseri, I. typographis, I. sexdentatus, and Pityogenes perfossus (all Coleoptera: Curculionidae). Little is known about the frequency or extent of either large storm events or bark beetle outbreaks in the Tian Shan Mountains, nor about associations between outbreaks of these species and temperature and precipitation regimes. Local managers are concerned that triggering bark beetle outbreaks during current unusually warm, dry conditions will have devastating consequences for the residual forest and forest outside of the blowdown. We characterize the bark beetle population response to the 2011 event to date, and reconstruct the temporal and spatial dynamics of historical disturbance events in the area using dendrochronology. Additionally temperature and precipitation-sensitive tree-ring width chronologies from the Tian Shan Mountains are analyzed to determine high- and low-frequency variability of climate for the past 200 years. Catastrophic windstorm disturbances may play a crucial role in determining forest structure across the mountains. We hypothesize that the Tian Shan spruce forest could be prone to severe storm winds and subsequent bark beetle outbreaks and never reach an old-growth phase between events.

  6. The techniques of inverse for tectonic stress field in Chao-Shan area using data of sliding faults

    NASA Astrophysics Data System (ADS)

    Wang, Qizhu; Qiang, Zuji

    1992-08-01

    The neotectonic stress field in Chao-Shan area is analyzed with the fault striation analysis method. At least four types of stress states are detected, which are in close connection with their locations relative to the basin. Generally, from the subsidence centres to places far from them, horizontal tectonic stress varies from tensile to compressive.

  7. Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia

    USGS Publications Warehouse

    Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Kreutz, K.J.; Cecil, L.D.

    2004-01-01

    Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100-5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the ??18O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the and and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas. Copyright 2004 by the American Geophysical Union.

  8. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Meng, Wen; Chen, Qunce; Zhao, Zhen; Wu, Manlu; Qin, Xianghui; Zhang, Chongyuan

    2015-08-01

    Using stress data measured in 16 boreholes along the strike of the Longmen Shan fault zone by hydraulic fracturing from 2008 to 2012 after the Wenchuan earthquake and before the Lushan earthquake, we characterize the contemporary stress state in the Longmen Shan thrust belt along the eastern margin of the Tibetan Plateau to understand the implications of in-situ stress for fault activity. The stress regimes are generally conducive to reverse faulting and partly to strike-slip faulting characterized by σH > σh > σv and σH > σv > σh, indicating that the regional stress field is definitely dominated by the maximum horizontal stress. The fracture impression results reveal that the maximum horizontal principal stresses are predominantly NE in the northern segment of the Longmen Shan fault zone and NW in the southern segment, postulating a preliminary understanding of the coupling between the shallow crustal stress field and lower crustal flow. According to Coulomb frictional failure criteria, horizontal principal stresses can be predicted as functions of rock density, ρ, frictional coefficient, μ, depth, H, and water level, HW, in frictional equilibrium. The influence of HW on critical stresses is discussed, and the decrease in the stress values corresponds to an increase in the water level. The depth profiles of the stress magnitudes in different segments are illustrated, indicating that the stress values are relatively higher in the southern and northern segments and lower in the middle segment. The stress state in the southern segment, specifically, near the epicenter of the Lushan earthquake, favors the occurrence of earthquakes. Under the stress state in the northern segment, the Longmen Shan fault might be the optimally oriented failure plane, assuming that the plane is critically stressed. This finding may imply that the northern segment of the Longmen Shan fault is likely to be active when the stress builds up sufficiently to destroy the frictional

  9. Shear flexibility for structures

    NASA Technical Reports Server (NTRS)

    Stangeland, Maynard L. (Inventor)

    1976-01-01

    This device comprises a flexible sheet member having cross convolutions oriented 45.degree. to the shear vector with spherical reliefs at the convolution junctions. The spherical reliefs are essential to the shear flexibility by interrupting the principal stress lines that act along the ridges of the convolutions. The spherical reliefs provide convolutions in both directions in the plane of the cross-convolution ridges.

  10. Shear flexibility for structures

    NASA Technical Reports Server (NTRS)

    Stangeland, Maynard L. (Inventor)

    1977-01-01

    This device comprises a flexible sheet member having cross convolutions oriented 45.degree. to the shear vector with spherical reliefs at the convolution junctions. The spherical reliefs are essential to the shear flexibility by interrupting the principal stress lines that act along the ridges of the convolutions. The spherical reliefs provide convolutions in both directions in the plane of the cross-convolution ridges.

  11. Climatic vs. Seismic Controlled Rockglacier Advances in Northern Tien Shan - Insights from Lichenometry

    NASA Astrophysics Data System (ADS)

    Rosenwinkel, S.; Korup, O.; Landgraf, A.; Dzhumabaeva, A.

    2014-12-01

    Glaciers and permafrost landforms in high mountain areas are of major importance for storing and providing fresh water for the surroundings, especially in arid or semi-arid areas as Central Asia. Rockglaciers have been traditionally used as landform proxies of the distribution of alpine permafrost. In the northern Tien Shan mountains, the most distinct lobes of >200 rockglaciers that we mapped from satellite imagery occur at minimum elevations between 2500 and 3700 m. However, individual and particularly low-lying lobes extend down to well below 3000 m, and seem difficult to reconcile with regional paleoclimatic fluctuations. To support ground based and satellite imagery estimates on rockglacier advances (1 to 10 m/yr) and to gain information on their morphological characteristics, we present results of terrestrial LiDAR measurements on six rockglaciers in four steep mountain valleys in the Kyrgyz and Kazakh Tien Shan. Having the ability to destabilize, and thus provide massive sediment input from hillslopes, we hypothesize that strong earthquakes may also have influenced the formation or advance of some of the region's rockglaciers. This hypothesis is based on the observation that the tectonically active area was affected by a series of major earthquakes in the late 19th and earliest 20th centuries, which have subsequently triggered numerous landslides and rock falls. Using lichenometry, we aim to resolve age patterns on lobes of different rockglaciers located both, in the vicinity and distal from large young historic earthquakes. This method has been used successfully to reconstruct glaciation histories, and paleoseismicity. To gain information about and to compare advance histories of the rockglaciers from the relative ages of their lobes, we compiled a dataset of several thousand lichen diameter measurements of different species (e.g., Rhizocarpon geographicum, Aspicilia tianshanica, Lecanora muralis, and Xanthoria elegans). Results show that lichen age

  12. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models.

    PubMed

    Huang, Haibo; Krafczyk, Manfred; Lu, Xiyun

    2011-10-01

    Numerous schemes have been proposed to incorporate a bulk forcing term into the lattice Boltzmann equation. In this paper we present a simple and straightforward comparative analysis of five popular schemes [Shan and Chen, Phys. Rev. E 47, 1815 (1993); Phys Rev Lett. 81, 1618 (1998); He et al., Phys. Rev. E 57, R13 (1998); Guo et al., Phys. Rev. E 65, 046308 (2002); Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)] in which their differences and similarities are identified. From the analysis we classify the schemes into two groups; the behaviors of the schemes in each group are proven to be identical up to second order. Numerical test simulating the two-dimensional unsteady Taylor-Green vortex flow problem demonstrate that all five schemes are of comparable accuracy for single-phase flow. However, for two-phase flow the situation is different, which is demonstrated by incorporating these schemes into different Shan-Chen-type multiphase models. The forcing scheme in the original Shan-Chen (SC) multiphase model turns out to be inaccurate in terms of the resulting surface tension for different density ratios and relaxation times. In the numerical tests, a typical equation of state and interparticle interactions including next-nearest neighbors were incorporated into the SC model. Our results confirm that the surface-tension values obtained from the original SC lattice Boltzmann method (LBM) simulation depend on the value of the relaxation time τ. For τ<0.7Δt, the surface tension agree well with the analytical solutions. However, when τ>0.7Δt, the surface tension turns out to be systematically larger than the analytical one, exceeding it by more than a factor of 2 for τ=2Δt. In contrast, with the application of the scheme proposed by He et al., the SC LBM produces very accurate surface tensions independent of the value of τ. We also found that the densities of the coexisting liquid and gas can be adjusted to match those at thermodynamic equilibrium if the

  13. Crustal block structure by GPS data using neural network in the Northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Kostuk, A.; Carmenate, D.

    2010-05-01

    For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by

  14. Late Paleozoic tectonomagmatic evolution of the western southern Tian Shan, Tajikistan

    NASA Astrophysics Data System (ADS)

    Worthington, James R.; Kapp, Paul; Minaev, Vladislav; Chapman, James B.; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2015-04-01

    The 2500-km-long Tian Shan orogenic belt constitutes a dominantly Paleozoic amalgmation of Eurasia that has been overprinted by the Mesozoic and Cenozoic Cimmerian and Indo-Eurasian collisions. This southernmost unit of the Central Asian Orogenic System (CAOS) is divided N-S by discontinuous suture zones that reflect its complex assemblage and E-W by the Talas-Fergana dextral (modern kinematics) fault zone. The western southern Tian Shan in Tajikistan/Uzbekistan is poorly studied compared to the rest of the orogen in Kyrgyzstan/China, but a dominant signal of late Paleozoic magmatism synchronous to widespread magmatism documented along strike provides an intriguing opportunity to investigate regional tectonic processes at this time. The late Carboniferous-early Permian Gissar batholith is the southern Tian Shan's southernmost lithotectonic unit. Zircon U-Pb weighted-mean crystallization ages for Gissar granitoids range from ~310-290 Ma, are youngest in the east, and define a primary stage of arc magmatism related to closure of the Turkestan ocean. A ~280 Ma crystallization age was obtained for a Ne syenite, which corresponds to small, 'post-collisional,' alkaline intrusions in 1:200,000 Soviet geologic maps. Zircon ɛHf in Gissar granitoids generally decreases with decreasing zircon U-Pb age from +5'10. Zircon ɛHf in the young Ne syenite is +1-+6. Taken together, these trends indicate a progressive shift from juvenile to intermediate magmatism over 20 Myr, followed by a marked return to juvenile magmatism within 10 Myr. The Garm 'metamorphic' massif is situated within the eastern Gissar batholith and is derived from greater depths than the rest of the batholith, as indicated by its defining features: (i) Discontinuous outcrops of Bt+Grt quartzofeldspathic gneisses/schists; and (ii) Presence of igneous garnet in granitoids. Zircons from the Garm quartzofeldspathic gneisses/schists exhibit pronounced Pb-loss discordia that are consistent with ~amphibolite

  15. Glacial Retreat and Associated Glacial Lake Hazards in the High Tien Shan

    NASA Astrophysics Data System (ADS)

    Smith, T. T.

    2013-12-01

    A number of studies have identified glacial retreat throughout the greater Himalayan region over the past few decades, but the Karakorum region remains an anomaly with large stagnating or advancing glaciers. The glacial behavior in the Tien Shan is still unclear, as few studies have investigated mass balances in the region. This study focuses on the highest peaks of the Tien Shan mountain range, in the region of Jengish Chokusu along the Kyrgyzstan-China-Kazakhstan border. In a first step, a 30-year time series of Landsat imagery (n=27) and ASTER imagery (n=10) was developed to track glacial growth and retreat in the region. Using a combination of spectral and topographic information, glacial outlines are automatically delineated. As several important glaciers in the study region contain medium to high levels of debris cover, our algorithm also improves upon current methods of detecting debris-covered glaciers by using topography, distance weighting methods, river networks, and additional spectral data. Linked to glacial retreat are glacial lake outburst floods (GLOFs) that have become increasingly common in High Mountain Asia over the last few decades. As glaciers retreat, their melt water is often trapped by weakly bonded moraines. These moraines have been known to fail due to overtopping caused by surge waves created by avalanches, rockslides, or glacial calving. A suite of studies throughout High Mountain Asia have used remotely-sensed data to monitor the formation and growth of glacial lakes. In a second step of the work, lake-area changes over the past 15 years were tracked monthly and seasonally using dense Landsat/ASTER coverage (n=30) with an automatic procedure based on spectral and topographic information. Previous work has identified GLOFs as a significant process for infrastructural damage in the southern Tien Shan/northern Pamir, as well as in the better studied Himalaya region. Lake identification and quantification of lake-growth rates is a valuable

  16. Seismogenic destruction of the Kamenka medieval fortress, northern Issyk-Kul region, Tien Shan (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Korjenkov, Andrey M.; Arrowsmith, J. Ramon; Crosby, Christopher; Mamyrov, Ernes; Orlova, Lyubov A.; Povolotskaya, Irina E.; Tabaldiev, Kubatbek

    2006-10-01

    A paleoseismological study of the medieval Kamenka fortress in the northern part of the Issyk-Kul Lake depression, northern Tien Shan in Kyrgyzstan, revealed an oblique slip thrust fault scarp offsetting the fortification walls. This 700 m long scarp is not related to the 1911 Kebin Earthquake (Ms 8.2) fault scarps which are widespread in the region. As analysis of stratigraphy in a paleoseismic trench and archaeological evidence reveal, it can be assigned to a major twelfth century a.d. earthquake which produced up to 4 m of oblique slip thrusting antithetic to that of the nearby dominant faults. The inferred surface rupturing earthquake apparently caused the fortress destruction and was likely the primary reason for its abandonment, not the Mongolian Tatar invasions as previously thought.

  17. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Sorg, A. F.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M.

    2012-12-01

    Climate-driven changes in glacier-fed streamflow regimes have direct implications on freshwater supply, irrigation and hydropower potential. Reliable information about current and future glaciation and runoff is crucial for water allocation and, hence, for social and ecological stability. Although the impacts of climate change on glaciation and runoff have been addressed in previous work undertaken in the Tien Shan (known as the 'water tower of Central Asia'), a coherent, regional perspective of these findings has not been presented until now. In our study, we explore the range of changes in glaciation in different climatic regions of the Tien Shan based on existing data. We show that the majority of Tien Shan glaciers experienced accelerated glacier wasting since the mid-1970s and that glacier shrinkage is most pronounced in peripheral, lower-elevation ranges near the densely populated forelands, where summers are dry and where snow and glacial meltwater is essential for water availability. The annual glacier area shrinkage rates since the middle of the twentieth century are 0.38-0.76% per year in the outer ranges, 0.15-0.40% per year in the inner ranges and 0.05-0.31% per year in the eastern ranges. This regionally non-uniform response to climate change implies that glacier shrinkage is less severe in the continental inner ranges than in the more humid outer ranges. Glaciers in the inner ranges react with larger time lags to climate change, because accumulation and thus mass turnover of the mainly cold glaciers are relatively small. Moreover, shrinkage is especially pronounced on small or fragmented glaciers, which are widely represented in the outer regions. The relative insensitivity of glaciers in the inner ranges is further accentuated by the higher average altitude, as the equilibrium line altitude ranges from 3'500 to 3'600 masl in the outer ranges to 4'400 masl in the inner ranges. For our study, we used glacier change assessments based both on direct data

  18. Denudation rates from mass balance on alluvial fans in the chinese Tian Shan

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Barrier, Laurie; Métivier, François; Jolivet, Marc; Fu, Bihong

    2015-04-01

    Denudation is a key process for mountain ranges evolution as it is an essential parameter to study the mass transfer over the Earth surface, the evolution of reliefs, or the complex relationships between climate, erosion and landscape changes. Several methods have been develop to quantify denudation such as the estimation of paleo-sediment fluxes from mass budget. In fact, markers of erosion within drainage areas are often scarce, temporary and difficult to reach. At the outlet of mountain belts, more continuous and perennial records of deposition can be found in sedimentary basins. Sediment budget is thus a powerful approach, generally used at the scale of sedimentary basins. However, this method can also be applied on smaller sedimentary systems, such as alluvial fans. Yet, it is seldom used on these systems, and consequently, its accuracy is barely questioned. We propose to implement such a method on several alluvial fan systems in the Chinese part of the Tian Shan Range, where estimations of denudation rates have already been proposed. Based on the reconstruction of two generations of alluvial fans, we estimate the volume of sediment exported out of the drainage system of the range for the Middle- Late Pleistocene (300 000 to ~11 000 y) and for the Holocene (~11 000 y to present). From these volumes, we derive denudation rates of ~135 m/My at maximum for these two periods, in good agreement with previous mass balance studies. Despite a strong change in the morphology of the piedmont at the onset of the Holocene, denudation rate seems quite stable within the hinterland mountains. This value is quite low for such a range. Based on a comparison of denudation rates observed in other areas over the world with comparable shortening or precipitation rates, we suggest that the low denudation rate observed in the chinese Tian Shan is related to the limited amount of precipitation.

  19. Rheology of the lithosphere beneath the central and western Tien Shan

    NASA Astrophysics Data System (ADS)

    England, Philip; Molnar, Peter

    2015-05-01

    The distribution of crustal velocity over a 800 by 400 km region of the Tien Shan shows strain rates with principal contractional axes aligned perpendicular to the mountain chain and with negligible velocity gradients in the along-strike direction. This configuration allows us to describe the dynamics by a force balance along profiles perpendicular to the chain. The velocities on each of these profiles fit, with root-mean-square misfits of ˜1 mm/yr, a constant rate of contractional strain. Gravitational potential energy per unit area varies along these profiles by at least 3 and maybe 5 TN m-1; the insensitivity of contractional strain rates to those variations implies a lower bound of ˜1022 Pa s on the effective viscosity of the lithosphere. Seismic tomography shows variations in P and S wave speeds that imply large lateral temperature variations in crust and upper mantle of the region. If the ductile portion of the lithosphere were deforming by the mechanisms of high-temperature creep, such temperature variations would be accompanied by variations in strength of 1 or 2 orders of magnitude. The observed velocity profiles allow variations in lithospheric strength by no more than a factor of 2 to 4, implying that the strength-controlling portion of the lithosphere cannot be strongly sensitive to temperature. Lithospheric strength profiles that incorporate flow laws for low-temperature plasticity of olivine reproduce both the effective viscosity and the insensitivity to lateral temperature variation that are observed in the Tien Shan. Plastic deformation of dry, pyroxene-rich lower crust may also contribute to such a temperature-insensitive strength profile.

  20. Total Vertical Offset for the Beichuan Fault (Longmen Shan, Sichuan, China) Deduced from Metamorphic Minerals

    NASA Astrophysics Data System (ADS)

    Airaghi, L.; de Sigoyer, J.; Vidal, O.; Lanari, P.; Tan, X. B.; Xu, X.; Guillot, S.

    2015-12-01

    The paradox of high topography but low convergence rates in the Longmen Shan mountain belt, at the eastern margin of Tibetan plateau (Sichuan, China) leaded to an underestimation of the seismic hazard prior to the Wenchuan earthquake Mw 7.9 (2008). The rupture affected the crustal Beichuan fault, with both thrusting and dextral slide slip components. This fault is responsible for the exhumation of the basement over Triassic sediments. Several paleoseismological studies have well constrained the Quaternary activity of this fault, and thermochronological data show a rapid exhumation starting from Oligocene. The total offset of the Beichuan fault remains unknown. Samples collected in the hanging wall of the Beichuan fault, yield stable white mica, chlorite, epidote and quartz. Chemical and thermobarometric analyses of metamorphic minerals yield metamorphic peak conditions at 300±50°C and 7-8 kbar. Such P,T conditions suggest burial to 18-20 km depth, and represent the maximum vertical offset of the Beichuan fault. Comparison of results from distant sampled sites along the Beichuan fault reveals the spatial continuity of this offset along the Beichuan fault. The attainment of peak pressure conditions will be dated using in-situ laser ablation 40Ar/39Ar dating of the metamorphic micas. This will help constrain the onset of Beichuan fault activation, which corresponds to the onset of thick skin deformation in the Longmen Shan. [CW1]I deleted all this stuff below because I thought it was too much information for a conference abstract - but you do have space to put it back.

  1. Cosmogenic 10Be constraints on Little Ice Age glacial advances in the eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Li, Yingkui; Harbor, Jon; Liu, Gengnian; Yi, Chaolu; Caffee, Marc W.

    2016-04-01

    Presumed Little Ice Age (LIA) glacial advances, represented by a set of fresh, sharp-crested, boulder covered and compact moraines a few hundred meters downstream from modern glaciers, have been widely recognized in the Central Asian highlands. However, few studies have constrained the formation ages of these moraines. We report 31 10Be exposure ages from presumed LIA moraines in six glacial valleys in the Urumqi River headwater area and the Haxilegen Pass area of the eastern Tian Shan, China. Our results reveal that the maximum LIA glacial extent occurred mainly around 430 ± 100 yr, a cold and wet period as indicated by proxy data from ice cores, tree rings, and lake sediments in Central Asia. We also dated a later glacial advance to 270 ± 55 yr. However, 10Be exposure ages on several presumed LIA moraines in front of small, thin glaciers are widely scattered and much older than the globally recognized timing of the LIA. Historical topographic maps indicate that most glaciers were more extensive in the early 1960s, and two of our 10Be sample sites were located close to the ice front at that time. Boulders transported by these small and thin glaciers may be reworked from deposits originally formed prior to the LIA glacial advances, producing apparently old and widely scattered exposure ages due to varied nuclide inheritance. Other published ages indicated an earlier LIA advance around 790 ± 300 yr in the easternmost Tian Shan, but in our study area the more extensive advance around 430 ± 100 yr likely reworked or covered deposits from this earlier event.

  2. Crustal deformation along the Longmen-Shan fault zone and its implications for seismogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Huang, Runqiu; Pei, Shunping

    2014-01-01

    The Longmen-Shan fault zone, at the eastern margin of the Tibetan Plateau, is one of the most extensively studied areas in the world, yet the deformation model and earthquake-generating mechanism remain subjects of vigorous debate. This paper presents a new three-dimensional (3-D) velocity model determined using a large volume of seismic data and two-dimensional (2-D) magnetotelluric (MT) profiles from previous studies, to investigate the mechanisms of crustal deformation and earthquake generation along the reverse-thrust and strike-slip fault zone. It has been observed that low-velocity, and low-resistivity anomalies related to the Sichuan foreland basin, is in sharp contrast to high-velocity and high-resistivity anomalies in the Songpan-Ganze block in the upper crust. The tomographic model presented here reveals two crustal bodies with low-velocity and high-conductivity anomalies underneath the Longmen-Shan fault zone, separated into three contrasting segments by the two crustal bodies. The two low-velocity and low-resistivity bodies have been interpreted as being associated with extrusion of either fluids or products of partial melting from the lower crust and/or the upper mantle. This suggests strong variations in the rheological strength of the rock along the fault zone. This finding implies that coupling between these presumably fluid-bearing bodies and earthquake generation could be extremely complex and that there is dramatic variation from the southwestern area to the northeastern segment along the fault belt. It is suggested here that this complex and variable deformation system along the fault zone played a principal role in controlling seismic generation and rupturing during the 2008 Wenchuan earthquake (Ms 8.0) and that it will do so again during possible future earthquakes in the region.

  3. The relationship between the age and depth of the oceanic crust in the central South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Yi-Jui; Hsu, Shu-Kun; Chiao, Ling-Yun

    2016-04-01

    South China Sea (SCS) is the largest marginal basin in the western Pacific. The onset of seafloor spreading in the central part of the SCS was suggested at 32 Ma. After a ridge jump around 25 Ma, the southwestern sub-basin started to open. The spreading of the entire basin ended at ~16 Ma, then a phase of post-magmatic seamount formation occurred (eg., Taylor and Hayes, 1983; Briais et al.,1993; Barckhausen et al., 2014). In this study, we want to find the relationship between the age and depth of the oceanic crust in the central SCS. We will also study a fracture zone trending NW-SE near to Manila trench and to understand how did the fracture zone affect the development of the SCS. We have analyzed five reflection seismic profiles collected by R/V Ocean Researcher 1 during the cruise ORI-1115. We have correlated the age of seismic strata in the central SCS by comparing to the seismic phase of profile MCS1115-7 that has crossed the IODP drilling site U1431. To understand the characteristics of the fracture zone, we have also applied the analytic signal and Euler deconvolution methods to the gravity and magnetic anomalies related to the fracture zone. We suggest that the fraction zone was formed in order to accommodate the spreading in the east sub-basin. However, this fracture zone is somewhat curved concave southwestward. According to the collision-extrusion model of Tapponnier et al. (1982), the formation of Indochina is followed with the constitution of Ailao Shan-Red River Shear Zone. We suppose that the formation of the fracture zone in this study is similar to the Ailao Shan-Red River Shear Zone. The fan-shaped crustal fabric is distinct in the younger portions of the oceanic basin. Both Ailao Shan-Red River Shear Zone and the fracture zone in northeastern SCS may share the same rotation pole. Furthermore, we have tried to find a relationship between oceanic crust depth and age in this area. The preliminary result shows that the relationship between depth and

  4. Fighting wind shear

    NASA Astrophysics Data System (ADS)

    A “coherent and sustained program” of improved radar detection of weather, pilot training, and better communication between pilots and air controllers can greatly reduce the risk of wind shear to airplanes landing or taking off, according to a National Research Council (NRC) committee.Wind shear, characterized by winds rapidly changing direction and speed, has caused several serious accidents in recent years; among the most notable is the July 8, 1982, crash of a Pan American World Airlines jetliner at the New Orleans International Airport, which killed 153 persons. Following the accident, Congress directed the Federal Aviation Administration (FAA) to contract with the NRC to study wind shear.

  5. Magnetostratigraphic Record of the Early Evolution of the Southwestern Tian Shan Foreland Basin (Ulugqat Area), Interactions with Pamir Indentation and India-Asia Collision

    NASA Astrophysics Data System (ADS)

    Yang, W.; Wang, S.

    2015-12-01

    The Tian Shan range is an inherited intracontinental structure reactivated by the far-field effects of India-Asia collision. A growing body of thermochronology and magnetostratigraphy datasets shows the range grew through several tectonic pulses since ~25 Ma, however the early Cenozoic history remains poorly constrained. Particularly enigmatic is the time-lag between the Eocene India-Asia collision and the Miocene onset of Tian Shan exhumation. This peculiar period is potentially recorded along the southwestern Tian Shan piedmont. There, recently dated late Eocene marine deposits of the proto-Paratethys epicontinental sea transition to continental foreland basin sediments of unknown age. We provide magnetostratigraphic dating of these continental sediments from the 1700-m-thick Mine section integrated with previously published detrital apatite fission track and U/Pb zircon ages. The most likely correlation to the geomagnetic polarity time scale indicates an age span from 20.8 to 13.3 Ma with a marked accumulation rate increase at 19-18 Ma. This implies the entire Oligocene period is missing between the last marine and first continental sediments, as suggested by previous southwestern Tian Shan results. This differs from the southwestern Tarim basin where Eocene marine deposits are continuously overlain by late Eocene-Oligocene continental sediments. This supports a simple evolution model of the western Tarim basin with Eocene-Oligocene foreland basin activation to the south related to northward thrusting of the Kunlun Shan, followed by early Miocene activation of northern foreland basin related to overthrusting of the south Tian Shan. Our data also support southward propagation of the Tian Shan piedmont from 20-18 Ma that may relate to motion on the Talas Fergana Fault. The coeval activation of a major right-lateral strike-slip system allowing indentation of the Pamir Salient into the Tarim basin, suggest far-field deformation from the India-Asia collision zone

  6. Taxonomic study of Central Asian species of the genus Macropsis Lewis, 1836 (Homoptera: Auchenorrhyncha: Cicadellidae: Macropsinae). I: Redescriptions of willow-dwelling species from West Tien Shan Mountains.

    PubMed

    Tishechkin, Dmitri Yu

    2013-01-01

    Macropsis abdullaevi Dubovskiy, 1966 = M. arslanbobica Dlabola, 1967 syn. nov., M. ibragimovi Dubovskiy, 1966 and M. asiatica Dubovskiy, 1966 from West Tien Shan Mts. (Kyrgyzstan) are redescribed and illustrated based on material from type localities or/and adjacent territories. M. tarbagataica Mityaev, 1971 from Kazakhstan is recorded from West Tien Shan for the first time. Data on host plants and male vibrational calling signals for all species considered are provided. PMID:26171543

  7. Topographic status of the central Longmen Shan region''the role of the 2008 Mw 7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Ren, Zhikun; Zhang, Zhuqi; Dai, Fuchu; Yin, Jinhui; Zhang, Huiping

    2015-04-01

    Landscape evolution in active orogenic regions is inevitably affected by the repeated strong earthquakes triggered by the corresponding active faults. However, the lack of adequate methods for the documentation and monitoring of mountain-building processes has resulted in a shortage of quantitative estimates of orogenic and eroded volumes. A strong earthquake and its associated co-seismic landslides represent a sudden pulse in landscape evolution in tectonically active areas. The 2008 Mw 7.9 Wenchuan earthquake dramatically modified the topography of the Longmen Shan region. Based on topographic data before the earthquake and stereo pairs of post-earthquake remote sensing imagery, we derived pre- and post-earthquake DEMs (digital elevation models) of the three regions along the Longmen Shan Thrust Belt. By comparing the geomorphic features before and after the earthquake, we find that the Wenchuan earthquake smoothed the steep relief and caused a co-seismic uplift of the Longmen Shan region. The medium-relief regions increased; however, the high-relief regions decreased, indicating that the local relief is controlled by repeated strong earthquakes. The changed slope aspect indicates that the formation and modification of the east- and west-facing slopes are controlled by tectonic events in the Longmen Shan region, which might be associated with the regional stress field. However, the unchanged aspects of other slopes might be controlled by long-term erosion rather than tectonic events. The topographic changes, landslide volume and co-seismic uplift indicate that the greatest seismically induced denudation occurred in association with a thrust faulting mechanismand low-angle fault geometry. Our findings reveal that the local relief has been shaped by the localized, seismically induced high rate of denudation within the plateau margins, and that the formation of local relief is also related to tectonic events, especially the events that have occurred on low

  8. Viscous shear dampers

    SciTech Connect

    Zilahi-Szabo, I.

    1980-10-07

    In a viscous shear damper, the seismic mass is chamfered at all its corners. Thus, the clearances between the seismic mass and its casing are gaps with oppositely widening out sections separated by middle sections of smallest widths.

  9. Heterogeneities of the field of short-period shear wave attenuation in the lithosphere of Central Asia and their relationship with seismicity

    NASA Astrophysics Data System (ADS)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2011-03-01

    The characteristics of the short-period shear wave attenuation field in the lithosphere of the Turanian Plate, West Tien Shan, Pamir, and Hindu Kush have been studied. The method based on analysis of the logarithm of the ratio between maximal amplitudes of Sn and Pn waves ( Sn/ Pn parameter) has been applied. More than 400 records of earthquakes, obtained at distances of ˜400-1000 km from the AAK digital station, have been processed. It has been found that relatively weak attenuation is observed in the regions of the West Tien Shan and Pamir. The largest area of strong attenuation is located in the region of the Afghan-Tadjik Depression adjacent to Hindu Kush. A wide band of low Sn/ Pn parameter values, stretched northeastwards, has been distinguished. Along with the analogous band of strong attenuation, distinguished before in the regions of Central Tien Shan and Dzungaria, it is the continuation of the largest Chaman Fault, which stretches 850 km along the boundary of the Indian Plate. Source zones of strong earthquakes with M ≥ 7.0 that occurred in the first half of 20th century correspond to relatively weak attenuation. Areas of high attenuation, where strong seismic events have not occurred for the last 110 years, are outlined. Analogously to other seismoactive regions, it is supposed that these areas are related to preparation of strong earthquakes.

  10. Late Miocene - Pliocene exhumation of the Qinghai Nan Shan (Northeastern Tibetan Plateau) constrained by adjacent Chaka basin magnetostratigraphic architecture

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Yuan, D.; Craddock, W.; Zhang, P.; Zheng, D.; Zheng, W.; Molnar, P.; Lease, R.

    2008-12-01

    Magnetostratigraphy from the Chaka basin in northeastern Tibet suggests that sedimentation began near 10 Ma, and sedimentary facies suggest that the adjacent Qinghai Nan Shan immediately north developed at that time, tens of millions of years after India and Eurasia collided. A fining-upward sequence and provenance analysis indicate a growing transport distance for southeastward flowing paleo-drainages from ~10 Ma to 6.4 Ma. The disappearance of granite gravel at 7.4 Ma, eroded from the southern Qinghai Nan Shan to the north, indicates that the paleo-Qinghai Nan Shan temporarily became isolated from the Chaka basin, potentially by burial or partial burial of the lacustrine sediment. A change in paleocurrent direction, from south-southeastward to southwestward flow, along the mapped section at 6.4 Ma agrees with the reappearance of granite clasts provided by the southern Qinghai Nan Shan. Following this re-exhumation signal within the basin deposits, a coarsening-upward architecture, together with enhanced granite gravel input into the Chaka basin, indicates the decrease in transport distance from 6.4 Ma to ~3.0 Ma, which might represent increased relief and/or horizontal shortening during that period, even until present. Finally, by preliminary comparison of landscape characteristics for four nearby basin sections in northeastern Tibet, we suggest that the temporal variations of conglomerate deposition might reflect slightly different responses to regional climate change due to differences of transport distances and/or in relief. The onsets of conglomerate deposition at 4.2 Ma in Chaka basin, 3.6 Ma in Guide basin, and at 3.6 - 4.5 Ma in Linxia basin precede that at 2.5 Ma in Qaidam basin perhaps due to shorter transportation distances between ranges and the first three basins and higher local relief than those for the much wider Qaidam basin.

  11. [Molecular-genetic analysis of the yeast Komagataea (williopsis) pratensis populations from Caucasian and Tien Shan regions].

    PubMed

    Naumova, E S; Tokareva, N G; Bab'eva, I P; Naumov, G I

    2001-01-01

    The analysis of sixteen Komagataea (Williopsis) pratensis from the Caucasian and Tien Shan soils by the PCR, blot hybridization, and isoenzyme electrophoresis techniques showed that fifteen of them do belong to the species K. pratensis. The isolates from the two geographic areas differed in some physiological characteristics and in the PCR product profiles obtained with the microsatellite primers (CAC)5 and (GACA)4. PMID:11386057

  12. The Kuqa late Cenozoic fold-thrust belt on the southern flank of the Tian Shan Mountains

    NASA Astrophysics Data System (ADS)

    Li, Yue-Jun; Wen, Lei; Zhang, Hong-An; Huang, Tai-Zhu; Li, Hui-Li; Shi, Yuan-Yuan; Meng, Qing-Long; Peng, Geng-Xin; Huang, Shao-Ying; Zhang, Qiang

    2015-10-01

    The Kuqa fold-thrust belt (KFTB), a late Cenozoic fold-thrust belt on the southern flank of the Tian Shan Mountains, consists of several deformation zones trending nearly W-E. The main décollement fault of the KFTB gradually rises southwards. There are three regional main décollement faults in the Triassic dark mudstone, Paleogene gypsum salt (Kumugeliemu Formation), and Neogene gypsum salt (Jidike Formation), respectively, and possibly a fourth in the Jurassic coalbed. Laterally, thin-skinned structures are developed in the main segments of the KFTB, whereas thick-skinned structures are in the root zone. Vertically, the structural deformation above the Cenozoic gypsum-salt layers (Paleogene gypsum salt in the middle segment of the KFTB and Neogene gypsum salt in the eastern segment) is characterized by décollement folding, whereas that below is characterized by thrusting. The KFTB was resulted from the late Cenozoic intra-continental orogeny in the Tian Shan area under the far-field effect of the India-Asia collision. The deformation of KFTB began (folding and thrusting) ca. 23 Ma, when the far-field effect of the India-Asia collision reached the Tian Shan area. The deformation of KFTB accelerated ca. 10, 5-2, and 1-0 Ma. In general, the evolution of the KFTB is forward propagating, and the hinter parts of the KFTB continue to deform, while its front propagates southwards.

  13. Shan women and girls and the sex industry in Southeast Asia; political causes and human rights implications.

    PubMed

    Beyrer, C

    2001-08-01

    The human rights abuses which occur during civil conflicts pose special threats to the health and lives of women. These can include rape, sexual violence, increased vulnerability to trafficking into prostitution, and exposure to HIV infection. The long-standing civil conflict in the Shan States of Burma is investigated as a contributing cause to the trafficking of ethnic Shan women and girls into the Southeast Asian sex industry, and to the subsequent high rates of HIV infection found among these women. The context of chronic human rights abuses in the Shan states is explored, as well as the effects of recent forced population transfers on the part of the Burmese Military Regime. Rights abuses specific to trafficked women may further increase their vulnerability to HIV and other STD. The need for a political resolution to the crisis in Burma is discussed, as are approaches aimed at preventing trafficking, empowering women already in the sex industry, and reducing the risks of HIV and other STD among these women and girls. PMID:11459403

  14. The Kuqa late Cenozoic fold-thrust belt on the southern flank of the Tian Shan Mountains

    NASA Astrophysics Data System (ADS)

    Li, Yue-Jun; Wen, Lei; Zhang, Hong-An; Huang, Tai-Zhu; Li, Hui-Li; Shi, Yuan-Yuan; Meng, Qing-Long; Peng, Geng-Xin; Huang, Shao-Ying; Zhang, Qiang

    2016-07-01

    The Kuqa fold-thrust belt (KFTB), a late Cenozoic fold-thrust belt on the southern flank of the Tian Shan Mountains, consists of several deformation zones trending nearly W-E. The main décollement fault of the KFTB gradually rises southwards. There are three regional main décollement faults in the Triassic dark mudstone, Paleogene gypsum salt (Kumugeliemu Formation), and Neogene gypsum salt (Jidike Formation), respectively, and possibly a fourth in the Jurassic coalbed. Laterally, thin-skinned structures are developed in the main segments of the KFTB, whereas thick-skinned structures are in the root zone. Vertically, the structural deformation above the Cenozoic gypsum-salt layers (Paleogene gypsum salt in the middle segment of the KFTB and Neogene gypsum salt in the eastern segment) is characterized by décollement folding, whereas that below is characterized by thrusting. The KFTB was resulted from the late Cenozoic intra-continental orogeny in the Tian Shan area under the far-field effect of the India-Asia collision. The deformation of KFTB began (folding and thrusting) ca. 23 Ma, when the far-field effect of the India-Asia collision reached the Tian Shan area. The deformation of KFTB accelerated ca. 10, 5-2, and 1-0 Ma. In general, the evolution of the KFTB is forward propagating, and the hinter parts of the KFTB continue to deform, while its front propagates southwards.

  15. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene

    NASA Astrophysics Data System (ADS)

    Qi, Bangshen; Hu, Daogong; Yang, Xiaoxiao; Zhang, Yaoling; Tan, Chengxuan; Zhang, Peng; Feng, Chengjun

    2016-07-01

    Apatite fission track (AFT) data from hinterland of the Qilian Shan at the northeastern margin of the Tibetan Plateau suggest this range has experienced northeastward propagation of surface uplift since early Eocene and that crustal shortening occurred in the Qilian Shan before the late Miocene. Thermochronometry data indicate that the Qilian Shan experienced a three-stage cooling history, including: (1) rapid initial cooling during Cretaceous; (2) a stage of slow cooling during late Cretaceous-early Eocene; and (3) rapid stepwise cooling in a southwestern-northeastern orientation since early Eocene. Cretaceous rapid cooling may be a record of the Lhasa block and Eurasian collision. Early Cretaceous denudation was followed by tectonic and quasi-isothermal quiescence that continued until early Eocene. Early Eocene rapid cooling in the South Qilian Shan may be the first far-field response in the Qilian Shan to the collision and convergence of the Indian and Eurasian continents. From late Eocene to middle Miocene, crustal shortening propagated into the Central Qilian Shan and North Qilian Shan and produced surface uplift of the entire Qilian Shan region before the late Miocene. This study provides a better understanding of the tectonic evolution of the Qilian Shan and when the far-field stress from the India-Eurasia collision into the northeastern Tibetan Plateau began.

  16. Geodynamics of late Paleozoic magmatism in the Tien Shan and its framework

    NASA Astrophysics Data System (ADS)

    Biske, Yu. S.; Konopelko, D. L.; Seltmann, R.

    2013-07-01

    The Devonian-Permian history of magmatic activity in the Tien Shan and its framework has been considered using new isotopic datings. It has been shown that the intensity of magmatism and composition of igneous rocks are controlled by interaction of the local thermal upper mantle state (plumes) and dynamics of the lithosphere on a broader regional scale (plate motion). The Kazakhstan paleocontinent, which partly included the present-day Tien Shan and Kyzylkum, was formed in the Late Ordovician-Early Silurian as a result of amalgamation of ancient continental masses and island arcs. In the Early Devonian, heating of the mantle resulted in the within-plate basaltic volcanism in the southern framework of the Kazakhstan paleocontinent (Turkestan paleoocean) and development of suprasubduction magmatism over an extensive area at its margin. In the Middle-Late Devonian, the margins of the Turkestan paleoocean were passive; the area of within-plate oceanic magmatism shifted eastward, and the active margin was retained at the junction with the Balkhash-Junggar paleoocean. A new period of active magmatism was induced by an overall shortening of the region under the settings of plate convergence. The process started in the Early Carboniferous at the Junggar-Balkhash margin of the Kazakhstan paleocontinent and the southern (Paleotethian) margin of the Karakum-Tajik paleocontinent. In the Late Carboniferous, magmatism developed along the northern boundary of the Turkestan paleoocean, which was closing between them. The disappearance of deepwater oceanic basins by the end of the Carboniferous was accompanied by collisional granitic magmatism, which inherited the paleolocations of subduction zones. Postcollision magmatism fell in the Early Permian with a peak at 280 Ma ago. In contrast to Late Carboniferous granitic rocks, the localization of Early Permian granitoids is more independent of collision sutures. The magmatism of this time comprises: (1) continuation of the

  17. Converging shear rheometer

    NASA Astrophysics Data System (ADS)

    Baek, Hyung M.; Mix, Adam W.; Giacomin, A. Jeffrey

    2014-05-01

    For highly viscous fluids that slip in parallel sliding plate rheometers, we want to use a slightly converging flow to suppress this wall slip. In this work, we first attack the steady shear flow of a highly viscous Newtonian fluid between two gently converging plates with no slip boundaries using the equation of motion in cylindrical coordinates, which yields no analytical solution. Then we treat the same problem using the lubrication approximation in Cartesian coordinates to yield exact, explicit solutions for dimensionless velocity, pressure and shear stress. This work deepens our understanding of a drag flow through a gently converging slit of arbitrary convergence angle. We also employ the corotational Maxwell model to explore the role of viscoelasticity in this converging shear flow. We then compare these analytical solutions to finite element calculations for both Newtonian and corotational Maxwell cases. A worked example for determining the Newtonian viscosity using a converging shear rheometer is also included. With this work, we provide the framework for exploring other constitutive equations or other boundary conditions in future work. Our results can also be used to design the linear bearings used for the parallel sliding plate rheometer (SPR). This work can also be used to evaluate the error in the shear stress that is caused by bearing misalignment and specify the parallelism tolerance for the linear bearings incorporated into a SPR.

  18. Accelerated glacier shrinkage in the Ak-Shyirak massif, Inner Tien Shan, during 2003-2013.

    PubMed

    Petrakov, Dmitry; Shpuntova, Alyona; Aleinikov, Alexandr; Kääb, Andreas; Kutuzov, Stanislav; Lavrentiev, Ivan; Stoffel, Markus; Tutubalina, Olga; Usubaliev, Ryskul

    2016-08-15

    The observed increase in summer temperatures and the related glacier downwasting has led to a noticeable decrease of frozen water resources in Central Asia, with possible future impacts on the economy of all downstream countries in the region. Glaciers in the Ak-Shyirak massif, located in the Inner Tien Shan, are not only affected by climate change, but also impacted by the open pit gold mining of the Kumtor Gold Company. In this study, glacier inventories referring to the years 2003 and 2013 were created for the Ak-Shyirak massif based on satellite imagery. The 193 glaciers had a total area of 351.2±5.6km(2) in 2013. Compared to 2003, the total glacier area decreased by 5.9±3.4%. During 2003-2013, the shrinkage rate of Ak-Shyirak glaciers was twice than that in 1977-2003 and similar to shrinkage rates in Tien Shan frontier ranges. We assessed glacier volume in 2013 using volume-area (VA) scaling and GlabTop modelling approaches. Resulting values for the whole massif differ strongly, the VA scaling derived volume is 30.0-26.4km(3) whereas the GlabTop derived volume accounts for 18.8-13.2km(3). Ice losses obtained from both approaches were compared to geodetically-derived volume change. VA scaling underestimates ice losses between 1943 and 2003 whereas GlabTop reveals a good match for eight glaciers for the period 2003-2012. In comparison to radio-echo soundings from three glaciers, the GlabTop model reveals a systematic underestimation of glacier thickness with a mean deviation of 16%. GlabTop tends to significantly underestimate ice thickness in accumulation areas, but tends to overestimate ice thickness in the lowermost parts of glacier snouts. Direct technogenic impact is responsible for about 7% of area and 5% of mass loss for glaciers in the Ak-Shyirak massif during 2003-2013. Therefore the increase of summer temperature seems to be the main driver of accelerated glacier shrinkage in the area. PMID:27100016

  19. Response of thunderstorm activity in data of neutron monitoring at Tien Shan

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Kryukov, Sergey; Lutsenko, Vadim

    2015-04-01

    We present results of the study of data of the monitoring of high-energy and thermal neutrons at Tien Shan at different stages of thunderstorm activity. The data of the neutron monitoring were used taking into account the barometric effect. The intensity of the neutron component of cosmic rays is recorded in seven energy ranges. The electric field has values of ~ 100 V/m under fair weather conditions. Standard deviation of minute values of the neutron monitor data at the high altitude station does not exceed 0.5-0.6 %. Found that the standard deviation of the data during thunderstorms always exceeds these values. We selected events during the passage of thunderstorm clouds over the high altitude station without lightning discharges or with a small number of them. It was found that the particle rate of the neutron monitor changes in antiphase with the electric field changes. Atmospheric electric field of positive polarity decreases the count rate of the neutron monitor, and negative polarity - increases. Change of the count rate occurs at values of electric field ≥ 10-15 kV/m and reaches 2 %. The neutron monitor at the high-altitude station has the ability to measure the energy of recorded particles through determination of their multiplicity. We experimentally established that the sensitivity of the detected particles to change in Ez increases with decreasing their energy. The upper energy threshold of sensitivity of neutrons to change electric field is ~10 GeV. The physical mechanism of effect is based on lead nucleus capture of soft negative muons with the subsequent generation of neutrons. It is known that 7% of the neutron monitor count rate caused by negative muons. Absence of this effect in thermal neutrons data confirms the conclusion since the main difference of the thermal neutrons detector from the neutron monitor is the absence of the lead. In the active phase of a thunderstorm in the formed thundercloud the picture of distribution of charges is

  20. Association between Social Integration and Health among Internal Migrants in ZhongShan, China

    PubMed Central

    Lin, Yanwei; Zhang, Qi; Chen, Wen; Shi, Jingrong; Han, Siqi; Song, Xiaolei; Xu, Yong; Ling, Li

    2016-01-01

    Internal migrants are the individuals who migrate between regions in one country. The number of internal migrants were estimated at 245 million in China in 2013. Results were inconsistent in the literature about the relationship between their health statuses and social integration. The main difference exists on how to measure the social integration and whether health statuses of internal migrants improve with years of residence. To complement the existing literature, this study measured social integration more comprehensively and estimated the internal migrants’ health statuses with varying years of residence, and explored the associations between the migrants’ social integration and health. We used the data from 2014 Internal Migrant Dynamic Monitoring Survey of Health and Family Planning in ZhongShan, China. Health status was measured from four aspects: self-reported health, subjective well-being, perception of stress, mental health. We measured social integration through four dimensions: economy, social communication, acculturation, and self-identity. The analyses used multiple linear regressions to examine the associations between self-reported health, subjective well-being, and perception of stress, mental health and social integration. The analytical sample included 1,999 households of the internal migrants and 1,997 local registered households, who were permanent residents in ZhongShan. Among the internal migrants, Adults in the labor force, who were aged 25 to 44 years old, accounted for 91.2% of the internal migrant population, while 74.6% of the registered population were in that age group. Median residential time among migrants was 2.8 (1.3–6.2) years, and 20.2% of them were migrating in the same Guangdong province. Except for mental health, other health statuses among migrants had significant differences compared with local registered population, e.g. self-reported health was better, but subjective well-being was worse. However, these health

  1. Association between Social Integration and Health among Internal Migrants in ZhongShan, China.

    PubMed

    Lin, Yanwei; Zhang, Qi; Chen, Wen; Shi, Jingrong; Han, Siqi; Song, Xiaolei; Xu, Yong; Ling, Li

    2016-01-01

    Internal migrants are the individuals who migrate between regions in one country. The number of internal migrants were estimated at 245 million in China in 2013. Results were inconsistent in the literature about the relationship between their health statuses and social integration. The main difference exists on how to measure the social integration and whether health statuses of internal migrants improve with years of residence. To complement the existing literature, this study measured social integration more comprehensively and estimated the internal migrants' health statuses with varying years of residence, and explored the associations between the migrants' social integration and health. We used the data from 2014 Internal Migrant Dynamic Monitoring Survey of Health and Family Planning in ZhongShan, China. Health status was measured from four aspects: self-reported health, subjective well-being, perception of stress, mental health. We measured social integration through four dimensions: economy, social communication, acculturation, and self-identity. The analyses used multiple linear regressions to examine the associations between self-reported health, subjective well-being, and perception of stress, mental health and social integration. The analytical sample included 1,999 households of the internal migrants and 1,997 local registered households, who were permanent residents in ZhongShan. Among the internal migrants, Adults in the labor force, who were aged 25 to 44 years old, accounted for 91.2% of the internal migrant population, while 74.6% of the registered population were in that age group. Median residential time among migrants was 2.8 (1.3-6.2) years, and 20.2% of them were migrating in the same Guangdong province. Except for mental health, other health statuses among migrants had significant differences compared with local registered population, e.g. self-reported health was better, but subjective well-being was worse. However, these health

  2. Reconstruction of glacial lake outburst floods in northern Tien Shan: Implications for hazard assessment

    NASA Astrophysics Data System (ADS)

    Zaginaev, V.; Ballesteros-Cánovas, J. A.; Erokhin, S.; Matov, E.; Petrakov, D.; Stoffel, M.

    2016-09-01

    Glacier lake outburst floods (GLOFs) and related debris flows are among the most significant natural threats in the Tien Shan Mountains of Kyrgyzstan and have even caused the loss of life and damage to infrastructure in its capital Bishkek. An improved understanding of the occurrence of this process is essential so as to be able to design reliable disaster risk reduction strategies, even more so in view of ongoing climate change and scenarios of future evolutions. Here, we apply a dendrogeomorphic approach to reconstruct past debris-flow activity on the Aksay cone (Ala-Archa valley, Kyrgyz range), where outbursting glacier lakes and intense rainfalls have triggered huge debris flows over the past decades. A total of 96 Picea abies (L.) Karst. trees growing on the cone and along the main channel have been selected based on the evidence of past debris-flow damage in their trunks; these trees were then sampled using increment borers. The dating of past events was based on the assessment of growth disturbances (GD) in the tree-ring records and included the detection of injuries, tangential rows of traumatic resin ducts, reaction wood, and abrupt growth changes. In total, 320 GD were identified in the tree-ring samples. In combination with aerial imagery and geomorphic recognition in the field, reactions in trees and their position on the cone have allowed reconstruction of the main spatial patterns of past events on the Aksay cone. Our findings suggest that at least 27 debris flows have occurred on the site between 1877 and 2015 and point to the occurrence of at least 17 events that were not documented prior to this study. We also observe high process activity during the 1950s and 1960s, with major events on the cone in 1950, 1966, and 1968, coinciding with phases of slight glacier advance. The spatial analyses of events also point to two different spatial patterns, suggesting that quite dissimilar magnitudes probably occurred during glacier lake outburst floods and

  3. South Tien Shan orogenic belt: structure, magmatism and gold mineralization (Uzbekistan)

    NASA Astrophysics Data System (ADS)

    Koneev, Rustam; Seltmann, Reimer

    2014-05-01

    The Southern Tien Shan represents one of the key units of the Central Asian orogenic belt in Uzbekistan. Together with the Beltau-Kurama volcano-plutonic arc it formed as a result of subduction of the crust under the Turkistan paleoocean and the Kazakhstan continent, followed by collision and post-collisional strike-slip processes. The Southern Tien Shan is of particular interest due to its gold mineralisation. It hosts the giant Muruntau gold deposit and the large gold deposits of Amantaitau, Daugyztau, Myutenbay (Kyzylkum ore district) and Charmitan, Guzhumsay, Urtalik (Nurata ore district). The Middle Tienshan hosts within the Beltau-Kurama volcano-plutonic arc the Kurama ore district with the giant Kalmakyr Cu-Au porphyry and large epithermal Au-Ag deposits of Kochbulak and Kyzylalma. Yakubchuk et al. (2005) and others stress that the largest ore clusters are confined by the intersections of volcano-plutonic belts and transform faults in result of sinistral strike slip dislocations during the Permo-Carboniferous. Others believe that the ore giants are in addition controlled by hot spots - a mantle plume, superimposed on the crust architecture shaped by the subduction processes. Zircon U-Pb geochronology of main intrusive massifs of Uzbekistan (CERCAMS data) showed that granitoid magmatism is predominantly of postcollisional age, manifested in the accretionary units at 270-290 Ma, whereas subduction magmatism prevails as characteristic in the volcano-plutonic arc at 300-320 Ma. Determination of sulphide mineralization ages using Os-Re method (CERCAMS data), are respectively 283-289 Ma and 298-314 Ma. The studies were performed in the framework of IGCP- 592. References 1. Yakubchuk A.S., Shatov V.V., Kirwin D. et al., (2005) Gold and base metal metallogeny of the Central Asian Orogenic supercollage: Society of Economic Geologists, Inc. Economic Geology, 100th, Anniversary Volume, 1035-1068. 2. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and

  4. Free volume under shear.

    PubMed

    Maiti, Moumita; Vinutha, H A; Sastry, Srikanth; Heussinger, Claus

    2015-10-14

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems - particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior. PMID:26472384

  5. Metal shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P. (Inventor)

    1973-01-01

    A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base.

  6. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  7. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  8. Infrared lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Kwon, O.

    1980-04-01

    Recently IR interferometry has received much attention for its special capabilities of testing IR materials, diamond-turned metal mirrors, deep aspherics, unpolished rough surface optics, and other unconventional optics. A CW CO2 laser is used as a coherent light source at 10.6 microns, and germanium and zinc selenide optics are used for lenses and beam splitters. A pyroelectric vidicon (PEV) detects the modulated interference pattern through a TV monitor and video recorder-player. This paper presents three methods of IR lateral shear interferometry using (1) a germanium plane-parallel plate, (2) a Ronchi ruling, and (3) a double-grating lateral shear interferometer.

  9. Coherence of the Dabie Shan UHPM terrane investigated by Lu-Hf and 40Ar/39Ar dating of eclogites

    NASA Astrophysics Data System (ADS)

    Brouwer, F. M.; Groen, M.; Nebel, O.; Wijbrans, J. R.; Qiu, H.

    2009-12-01

    The Central China Orogenic Belt is the largest known ultrahigh-pressure metamorphic (UHPM) belt. Currently exposed UHP metamorphic rocks reflect subduction of massive swathes of continental crust to depths exceeding 100 km. Subsequent uplift exposed the voluminous sequence more or less intact. Deciphering responsible exhumation processes requires well constrained P-T-time paths. Most workers accept Triassic (~240 and 220-200 Ma) peak UHP metamorphism on the basis of zircon U-Pb ages in Central and Eastern Dabie Shan, while Western Dabie Shan, Qinling, North Qaidam and Altyn Tagh exhibit Ordovician (420-500 Ma) UHPM. However, contrasting reports of Carboniferous and Ordovian UHPM in Eastern Dabie Shan (Jian et al. 2001; Qiu & Wijbrans, 2006, 2008), and Ordovician, Carboniferous and Triassic (U)HPM in Western Dabie Shan (Wu et al. 2009) question this simple East-West gradient. Here, we investigate PTt-paths for localities throughout Dabie Shan to determine how far west the Triassic UHP event is documented, and how far east the Carboniferous and Ordovician events can be traced. Based on this distribution we aim to establish whether the Dabie Shan terrane is an amalgam of blocks that underwent UHPM at different times rather than a single coherent terrane. Eclogite samples are investigated for thermobarometry, Lu-Hf Grt-Cpx geochronology, and 40Ar/39Ar thermochronology. For fresh eclogites Thermocalc was used to establish equilibration conditions of the UHPM assemblage, Grt and Cpx of which were subsequently used for Lu-Hf isotope analysis. In addition, retrogressed eclogites, two fresh eclogites and two orthogneisses were analysed for 40Ar/39Ar isotope distributions in Phg, Bt, Amp and Kfs. Four fresh eclogites, all collected at reported UHP-localities confirm established PT-estimates for peak-metamorphism above the Coe-in reaction at 450-680 °C, with higher T for eastern Dabie. In one sample this is confirmed by the presence of a Coe inclusion in Cpx. Lu-Hf Grt

  10. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  11. Stress drop in the sources of intermediate-magnitude earthquakes in northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Sycheva, N. A.; Bogomolov, L. M.

    2014-05-01

    The paper is devoted to estimating the dynamical parameters of 14 earthquakes with intermediate magnitudes (energy class 11 to 14), which occurred in the Northern Tien Shan. For obtaining the estimates of these parameters, including the stress drop, which could be then applied in crustal stress reconstruction by the technique suggested by Yu.L. Rebetsky (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences), we have improved the algorithms and programs for calculating the spectra of the seismograms. The updated products allow for the site responses and spectral transformations during the propagation of seismic waves through the medium (the effect of finite Q-factor). By applying the new approach to the analysis of seismograms recorded by the seismic KNET network, we calculated the radii of the sources (Brune radius), scalar seismic moment, and stress drop (release) for the studied 14 earthquakes. The analysis revealed a scatter in the source radii and stress drop even among the earthquakes that have almost identical energy classes. The stress drop by different earthquakes ranges from one to 75 bar. We have also determined the focal mechanisms and stress regime of the Earth's crust. It is worth noting that during the considered period, strong seismic events with energy class above 14 were absent within the segment covered by the KNET stations.

  12. Slip rates across the sinistral slip fault system of the Shan Plateau, northern SE Asia

    NASA Astrophysics Data System (ADS)

    Shi, X.; Sieh, K.; Wang, Y.; Liu, J.; Weldon, R. J.; Feng, L.; Chan, C. H.

    2014-12-01

    The sinistral-slip fault system of the Shan Plateau, arcing around the eastern Himalayan syntaxis and extending > 700 km from northwest to southeast, poses a high seismic hazard in northern SE Asia. Knowing slip rates and earthquake recurrence intervals of these faults is key to better quantification of that hazard. However, estimates of slip rates along the fault system remain poorly constrained. Here we report a preliminary estimate of the slip rate across the fault system from available campaign GPS velocities. We projected the horizontal GPS velocity vectors relative to the Sunda block reference frame perpendicular to the general strike (~ 240°) of the sinistral faults. The velocity profile shows a gradient of ~ 9 mm/yr over a distance of ~ 550 km that crosses 8 faults, from the Dayingjiang fault in the northwest to the Mengxing fault in the southeast. This suggests the average slip rate across each fault in the system is ~ 1 mm/yr. The 9 mm/yr of GPS velocity gradient across the fault system, however, is only half of the long-term rates determined from offsets of major rivers, ridges and plutons. These geological determinations suffer, however, from poor dating constraints. The discrepancy between the geodetic and geological analyses highlights the need of reliable constraints on slip rates along each of the faults. We have begun field work aimed at determining the slip rate of one of these, the Jinghong fault.

  13. Alpine tectonics of granites in basement of Ysyk-Köl Basin, northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Leonov, M. G.; Przhiyalgovsky, E. S.; Lavrushina, E. V.; Poleshchuk, A. V.; Rybin, A. K.

    2016-07-01

    The Ysyk-Köl Basin filled with Lower Jurassic-Quaternary sedimentary rocks is the largest intermontane negative structural unit of the northern Tien Shan. The basement of this basin is composed of Precambrian-Paleozoic rocks, largely of Ordovician and Silurian granitoids exposed in mountain ranges of the basin framework and as separate anticlinal domes situated in areas occupied by the Mesozoic-Cenozoic sedimentary cover. The postmagmatic tectonic internalstructure of the Chonkurchak (Chunkurchak), Kyzyl-Choku, Kyzyl-Bulak, and Prishib massifs emplaced in the basement, as well as their relationships to the sedimentary cover, are described in the paper. The study was carried out using the morphostructural method, detailed geological mapping, structural kinematic analysis, and petrographic examination of rocks. The internalstructure of Paleozoic granites in the basement and indications of their 3D tectonic flow are characterized. It is shown that granites underwent 3D deformation after their emplacement in the consolidated crust, and this process had a substantial influence on tectonic processes at the plate and orogenic stages of regional evolution.

  14. Multiphase fluid simulations through porous rock using Shan-Chen type lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Qohar, Ulin Nuha Abdul; Latief, Fourier Dzar Eljabbar; Fauzi, Umar

    2015-09-01

    Fluid flow with multiphase components is one of the daily problems that interesting to learn and widely used in various fields, one of them in rock physics. Euler approach and Lagrange approach, the two models are applied to study the fluid flow, which often known as the microscopic and macroscopic approaches. Lattice Boltzmann Method combines the advantages and appropriate of both approaches, that is used as a more efficient model approach, also known as mesoscopic. The LB method has been used to model the two-phase fluid flow with different viscosities using the Shan-Chen model, this model explain the interaction between two different fluid phases. Validated numerical models compiled using two ways, namely analytical models and physical models. Based on this research, numerical models are designed to meet the analytical model with an error on the lattice at the edge of the lattice. When compared with physical models, numerical models have qualitatively suitability. Based on the results of the validation of numerical models, modeling is done to the image of porous rock which gives the results of multiphase fluid flow profile inside the pore. Moreover, the results obtained indicate that there are effective pores that fluid can not be drained.

  15. Ordovician-Carboniferous tectono-sedimentary evolution of the North Nuratau region, Uzbekistan (Westernmost Tien Shan)

    NASA Astrophysics Data System (ADS)

    McCann, T.; Nurtaev, B.; Kharin, V.; Valdivia-Manchego, M.

    2013-04-01

    The Tien Shan is a c. 2500 km long orogenic belt of which the Nuratau region of eastern Uzbekistan forms the western part. Petrographical and field analysis of the Ordovician-Carboniferous succession in the North Nuratau region provided the basis for a reconstruction of the depositional settings along part of the northern margin of the Alai continent and their evolution during the period of closure of the Turkestan Ocean, which separated the Alai and the Kazakh-Kyrgyz continents. Initial sedimentation (Ordovician) was broadly carbonate dominated, although by Mid-Late Ordovician times siliciclastic input predominated in some areas. These variations, between clastic- and carbonate-dominated regions may have been related to tectonic activity within the Alai continent. Carbonate sedimentation was reestablished in the ?Wenlock, with broad shelf systems forming along the continental margin. Volcanic activity in the Early Devonian records a period of tectonic instability, and this was followed by the reestablishment of the carbonate mosaic, albeit with a greater degree of instability (as indicated by stratigraphic gaps) than in the Silurian. This pattern extended up into the Carboniferous culminating in backarc-related magmatic activity. Final closure of the Turkestan Ocean involved significant folding and thrusting, as well as a major change from compressional to strike-slip movement.

  16. Wormholes supported by phantom energy from Shan-Chen cosmological fluids

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Meng, Xin-He

    2016-03-01

    In the present paper, the exact solutions of spherically symmetrical Einstein field equations describing wormholes supported by phantom energy that violates the null energy condition from Shan-Chen background fluid are obtained. We have considered the important case of the model parameter ψ ≈ 1, which corresponds to the "saturation effect", and this regime corresponds to an effective form of "asymptotic freedom" for the fluids, but occurring at cosmological rather than subnuclear scales. Then we investigate the allowed range for the values of the model parameters g and ω when the spacetime metrics describe wormholes and discuss the possible singularities of the solutions, finding that the obtained spacetimes are geodesically complete. Furthermore, we construct two traversable wormholes through matching our obtained interior solutions to the exterior Schwarzschild solutions and analyze the traversablities of the wormholes. Finally, we consider the case of anisotropic pressure and discover that the transverse pressure also crosses the phantom divide -1 with the growth of the wormhole dimension, and it tends to be the same as the radial pressure with the growth of the wormhole radius.

  17. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet

    NASA Astrophysics Data System (ADS)

    Yasuda, Takatoshi; Furuya, Masato

    2015-11-01

    Here we examine 31 glaciers in the West Kunlun Shan of the northwestern Tibetan Plateau and identify 9 as surge type. The method is based on satellite synthetic aperture radar and Landsat optical images, the former going back to 1992, the latter to 1972. To identify surge-type glaciers, we consider temporal changes in velocity, changes in glacier terminus position, propagation of a surge bulge, presence of looped and/or contoured medial moraines, and extensive crevassing. Other than the nine surge-type glaciers, we identify two that have likely surged, and six that may be surge type. But no glacier surges more than once during the observation period, meaning that the recurrence interval exceeds 42 years. In addition, we examine the evolution of the surface velocities at two surging glaciers with the unprecedented temporal resolution of down to 11 days over ˜7 years. The results show clear seasonal modulations by as much as ˜200% in early winter against those in early summer. This seasonal modulation in surface velocity suggests the presence of surface meltwater that reroutes through the englacial and subglacial drainage systems. Thus, our findings suggest that the hydrological processes originating in the surface meltwater play an important role in maintaining the yearlong active surging phase.

  18. Effects of clay minerals on Triassic sandstone reservoir in Shan Can Ning basin and their significance

    SciTech Connect

    Zhu Guo Hua; Qian Kai

    1989-03-01

    Mesozoic sandstone reservoirs in the Shan Can Ning basin contain various clay minerals with different genesis and occurrences, which give rise to different effects on reservoir characteristics. The results of this study suggest that the effects of illite on permeability, electrical resistivity, and oil and water saturation of the Yan 10 sandstone are much more obvious than those due to kaolinite. Authigenic chlorite film covering the peripheral edges of sand grains restrained the coaxial secondary overgrowths of quartz, feldspar, and other grains. This restraint played an effective role in preserving the pores and texture of the Yanchang reservoir rocks. The authigenic chlorite film contains abundant micropores which can adsorb considerable pore water, which is kept in an irreducible state. Thus, given the same water saturation conditions, the water production of Yanchang reservoir rocks rich in authigenic chlorite is significantly lower than that of the rocks poor in chlorite film. Because the occurrence of the pore-lining clay (film type) reduces the size of pore throats, acidization may show notable effects on this type of sandstone reservoir.

  19. Sheared Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  20. Measuring the reduced shear

    SciTech Connect

    Zhang, Jun

    2011-11-01

    Neglecting the second order corrections in weak lensing measurements can lead to a few percent uncertainties on cosmic shears, and becomes more important for cluster lensing mass reconstructions. Existing methods which claim to measure the reduced shears are not necessarily accurate to the second order when a point spread function (PSF) is present. We show that the method of Zhang (2008) exactly measures the reduced shears at the second order level in the presence of PSF. A simple theorem is provided for further confirming our calculation, and for judging the accuracy of any shear measurement method at the second order based on its properties at the first order. The method of Zhang (2008) is well defined mathematically. It does not require assumptions on the morphologies of galaxies and the PSF. To reach a sub-percent level accuracy, the CCD pixel size is required to be not larger than 1/3 of the Full Width at Half Maximum (FWHM) of the PSF, regardless of whether the PSF has a power-law or exponential profile at large distances. Using a large ensemble (∼>10{sup 7}) of mock galaxies of unrestricted morphologies, we study the shear recovery accuracy under different noise conditions. We find that contaminations to the shear signals from the noise of background photons can be removed in a well defined way because they are not correlated with the source shapes. The residual shear measurement errors due to background noise are consistent with zero at the sub-percent level even when the amplitude of such noise reaches about 1/10 of the source flux within the half-light radius of the source. This limit can in principle be extended further with a larger galaxy ensemble in our simulations. On the other hand, the source Poisson noise remains to be a cause of systematic errors. For a sub-percent level accuracy, our method requires the amplitude of the source Poisson noise to be less than 1/80 ∼ 1/100 of the source flux within the half-light radius of the source

  1. Cenozoic to active deformation in Western Yunnan (Myanmar China border)

    NASA Astrophysics Data System (ADS)

    Socquet, A.; Pubellier, M.

    2003-04-01

    The northward movement of India induces a right-lateral shear band from the Sunda trench to the easternmost Himalaya, where wrenching between India and Sunda plates, interfere with a clockwise flow of material around the Eastern Himalayan Syntaxis. We describe brittle and ductile deformation styles in Western Yunnan and Northern Myanmar, using field data and Landsat 7 imagery for Cenozoic structures as well as GPS and seismicity for active structures to unravel the Neogene to Present evolution. Western Yunnan is crossed by three continental-size ductile shear zones characterized by high mountain belts mainly composed of high-grade metamorphics and mylonitic rocks, and affected by active faulting. The easternmost metamorphic range, the Gaoligong Shan composed of verticalized foliated granites and mylonites is flattened westward and joins the Mogok metamorphic belt in Myanmar. East of the Gaoligong Shan, lie the Chong Shan and the Ailao / Diangcan Shan metamorphic ranges, which presents a vertical shistosity and a left-lateral motion. These three shear zones are separated by sedimentary fold-and-thrust-belts in the East, and , West of the Gaoligong, by Quaternary basins and volcanics. Preliminary results indicate that the Shan Scarp constituted the major strike-slip boundary between Indochina and India during Eocene to Miocene time, and accommodated deformation in right-lateral wrench. At the same time, the Ailao / Diangcan Shan and the Chong Shan zones were sheared left-laterally allowing the displacement toward the SE of Indochina block relative to south China. In the Miocene, ductile deformation migrated north along the Shan Scarp to the Mogok / Ruili metamorphic belt and the Gaoligong belt, dragging the Chong Shan right-laterally and superimposing a late right-lateral ductile deformation on its metamorphic rocks. The present-day relative motion between India and Sundaland, inferred from GPS processing, reaches 35 mm / yr in the Myanmar area. It is classically

  2. CAT LIDAR wind shear studies

    NASA Technical Reports Server (NTRS)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  3. Decadal to millennial deformation in the Pamir - Tian Shan collision zone, NW China and surface expression of active tectonics

    NASA Astrophysics Data System (ADS)

    Bufe, A.; Bookhagen, B.; Burbank, D. W.; Bekaert, D. P.; Hussain, E.

    2013-12-01

    The collision between the Pamir and the Tian Shan is a type example of intracontinental collision. GPS studies show that in Northwest China, at the junction between the Tarim basin, the Pamir and the Tian Shan, 7-9 mm/y of north-south shortening are presently accommodated across the boundary between the two orogens. Here, the deformation has mostly stepped out from the high mountain front into the foreland and has formed a complex array of compressional structures. We compare rates of decadal deformation in the area with 104- to 106-year estimates and investigate the extent to which stream profiles and topography reflect the active tectonics in this setting. A dataset of decadal deformation rates around the Tarim-Tian Shan-Pamir junction in Northwest China is obtained from Interferometric Synthetic Aperture Radar (InSAR) time-series analysis. We use the StaMPS/MTI package to combine small-baseline and persistent-scatterer techniques and obtain results that show no significant residual topographic phase correlation. Our data show that deformation has stepped away from the high mountain front and is concentrated on a few structures in the foreland of the Pamir and Tian Shan. Line-of-sight deformation of up to 2-4 mm/y on the Pamir Frontal Thrust (PFT) and the Kashi detachment anticline are observed. No significant displacement of the Main Pamir Thrust can be detected. Within error, the modern deformation rates agree with previously published millennial to million-year estimates along the PFT. However, decadal deformation rates deviate from million-year shortening and rock-uplift rates of anticlines in the foreland of the Tian Shan. It remains unclear whether the discrepancy arises from a recent change to a new persistent uplift rate, or merely from short timescale fluctuation of uplift rate, for example within an earthquake cycle. In an additional step, we extract stream profiles and normalized steepness index (ksn) values for rivers with drainage areas larger than 9

  4. Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Huang, C.-C.; Lee, Y.-H.; Liu, Huaibao P.; Keefer, D.K.; Jibson, R.W.

    2001-01-01

    The 1999 Chi-Chi, Taiwan, earthquake triggered numerous landslides throughout a large area in the Central Range, to the east, southeast, and south of the fault rupture. Among them are two large rock avalanches, at Tsaoling and at Jih-Feng-Erh-Shan. At Jih-Feng-Erh-Shan, the entire thickness (30-50 m) of the Miocene Changhukeng Shale over an area of 1 km2 slid down its bedding plane for a distance of about 1 km. Initial movement of the landslide was nearly purely translational. We investigate the effect of surface-normal acceleration on the initiation of the Jih-Feng-Erh-Shan landslide using a block slide model. We show that this acceleration, currently not considered by dynamic slope-stability analysis methods, significantly influences the initiation of the landslide.

  5. Shear-thinning Fluid

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  6. Gelation under shear

    SciTech Connect

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C.; Muzny, C.D.

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  7. Towards an improved glacier monitoring program in the Kyrgyz Tien Shan and Pamir Mountains

    NASA Astrophysics Data System (ADS)

    Barandun, Martina; Huss, Matthias; Azisov, Erlan; Gafurov, Abror; Vorogushyn, Sergiy; Usubaliev, Ryskul; Kronenberg, Marlene; Hoelzle, Martin

    2014-05-01

    The monitoring of glacier mass balance in remote regions is important to understand the response of glaciers to climate change. The coverage of monitored glaciers in Central Asia has been very limited for the past 15 years; however the necessity of enhanced understanding regarding glacier dynamics and long term evolution in this particular region is crucial. Moisture availability importantly determines glacier response. Glaciers located in the Northern Tien Shan and Pamir Mountains are likely not to be directly influenced by monsoon such as most monitored Peri-Himalayan glaciers. However, not only scientific reasons make glacier monitoring to be of great relevance, also the link to political and socio-economic constraints on water scarcity carries high importance. First steps towards the establishment of a new glacier monitoring network were performed in 2010/2011 and since then modernization and extension of the monitoring strategies are continuously aspired. Close cooperation of international and local scientists build the basis of the program. Today four glaciers located in the Kyrgyz Tien Shan (Golubin Glacier, Suek Zapadniy Glacier, Glacier No. 354) and the North-Western Pamir (Abramov Glacier) are regularly monitored. The network is planned to be extended in the next years to cover selected glaciers in Uzbekistan and Tajikistan. Further, we intend to develop new approaches to remotely monitor sub-seasonal glacier mass balance at a regional scale. In-situ mass balance measurements are taken at all four glaciers continuously in late summer. Automatic weather stations installed at Abramov Glacier in 2011 and at Golubin Glacier in 2013 deliver daily meteorological data allowing the application of a simple mass balance model driven with local precipitation and temperature data. Model calibration is performed using glaciological measurements and results are validated with snowline observations based on remote imagery. Automatic cameras at Abramov Glacier take

  8. Chronology and tectonic controls of late tertiary deposition in the southwestern Tian Shan foreland, NW China

    USGS Publications Warehouse

    Heermance, R.V.; Chen, J.; Burbank, D.W.; Wang, C.

    2007-01-01

    Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ???13 km of basin strata provide a two- and three-dimensional record of continuous deposition since ???18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5??0.5 Ma at the northernmost part of the foreland, to 8.6??0.1 Ma in the central (medial) part of the foreland and to 1.9??0.2, ???1.04 and 0.7??0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time-transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9??3.3 Ma. Southward progradation occurred at an average rate of ???3 mm year -1 between 15.5 and 2 Ma, before accelerating to ???10 mm year-1. Abrupt changes in sediment-accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ???4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4??0.1 and 1.4??0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross-section through the foreland produces total shortening of 13-21 km and migration of the deformation front at

  9. [The compilation, contents and spread of Qing li Shan jiu Fang (Formulary for Effective Rescuing in the Qingli Reign].

    PubMed

    Han, Yi

    2015-01-01

    Qing li shan jiu fang (Formulary for Effective Rescuing in the Qingli Reign), compiled by Hanlin Academy of Medical Official in 1048 under the decree of the Emperor, is a medical formulary exclusively used to prevent and control poisonous parasite disease. It is composed of formulae provided by a medical scholar of Fuzhou, Lin Shiyuan, together with other formulae collected by the imperial physicians and so on. Unfortunately, it was lost about after the demise of the Southern Song Dynasty. However, in the Southern Song Dynasty, two books, Liang Kejia's Chun xi san shan zhi and Hong Mai's Yi jian zhi bu, do record the progress of its compilation, parts of its contents and the condition of its spread and application. Moreover, they also describe the kinds, the feature, the epidemic, prevention and cure of parasite poison. It is especially good that this book preserves three famous formulae, including Zhi gu du zheng fang (Orthodox Formula for Treating Parasitic Poisons) (called A Cathartic Formula with 8 Ingredients in the Yuan Dynasty), Jie du wan (Antidote Pills) and He qi tang san (Powder of Decoction for Harmonious Qi), which are of medical significance for the understanding of the property of Qing li shan jiu fang. The Song emperors, the central government and local officials all paid high attention to the spread and application of this book. They not only enacted it to the counties, and provinces, but also carved it on stone steles for popularizing the knowledge of preventing parasitic poisons to medical workers and common people. PMID:26268258

  10. Status and habitat preferences for endemic inhabitants of fiddler crab Uca formosensis in Hsiang-Shan wetland, Taiwan.

    PubMed

    Liao, Shao-Wei; Chang, Wen-Liang; Lin, Shih-Wei

    2008-08-01

    This article reports on soil samples collected from Hsiang-Shan wetland, Taiwan. Canonical discriminant analysis (CDA) was applied to identify an existing habitat type's scheme by identifying the physico-chemical properties of sediment in Hsiang-Shan wetland. The three constructed discriminant functions (CDFs) showed a marked contribution by most of the discriminant variables, and the recognition capacities in these three CDFs were 49.5, 32.8 and 17.7%. Our study revealed that the most important latent factors in Hsiang-Shan wetland are soil texture-caused factor, ocean current-caused factor, nutrient-caused factor, and the redox reaction-caused factor. And the most sensitivity parameters in this habitat followed the descending order: OBD, EC, Eh, sand, TN, porosity, STP, silt, VCP and pH. And the inhabited sediment properties for U. formosensis in terms of soil texture are sand, silt, and clay (34.05, 29.72, and 32.35%, respectively): that is clay loam soil. We also found that U. formosensis preferred to inhabit the upper intertidal zone, spending 8.41% of the time submerged. Vegetation coverage on the ground was less than 2.20%, showing that it preferred to live in a bare intertidal habitat. Concerning nest choosing, excavating burrows is more difficult when a high soil penetration force is required, and in this study the soil penetration force for 20 cm was found to be is 45.98 N/cm(2). The results will be helpful in developing a methodology for use by the government in refining its management programs. PMID:17999156

  11. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  12. Thick-Skinned Tectonics In The Northern Tien Shan Foreland, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kober, M.; Kley, J.; Seib, N.; Voigt, T.

    2011-12-01

    The northern front of the Tien Shan mountains in Kazakhstan comprises an array of thrust-related basement uplifts of varying size and orientation. Many of these uplifts are asymmetric anticlines with long, gently dipping backlimbs, rounded hinges and more steeply dipping, short frontlimbs, suggesting they may overlie listric thrust faults. Where exposed, the bounding reverse faults dip steeply at 45-70°. The pre-Cenozoic basement consists of volcanic, (meta-)sedimentary and granitic rocks. It contains a variety of older structures of different orientation such as folds, slaty cleavage or steeply dipping faults and dykes. The relations of the Cenozoic structures with these older basement fabrics are highly variable. Some young faults truncate all earlier structures, just as some Cenozoic folds appear largely independent of the attitudes of underlying stratified basement rocks. Reactivation of dipping bedding planes as thrust faults is not uncommon but always localized and of small scale. The strongest control on the Cenozoic structure is exerted by steep, NW-trending faults which were reactivated as dextrally transpressive faults and induced along-strike segmentation and lateral terminations of some basement ridges. The same faults were locally reactivated as normal faults during a Cenozoic phase of roughly E-W extension that preceded folding and thrusting. Some of the normal faults show evidence of mild reactivation as strike-slip faults during the contractional phase which is still active today. The geometries of the thick-skinned structures reflect the slightly fanning modern shortening direction modulated by pre-existing basement faults and a Cenozoic phase of extension. Instead of an arcuate thrust belt with continuously changing strike, interfingering structures following two discrete, ENE and ESE structural trends are developed. The ESE trend coincides with a prominent set of steep faults present in the Permo-Carboniferous basement. The ENE trend has no

  13. Assessment of HIV testing among young methamphetamine users in Muse, Northern Shan State, Myanmar

    PubMed Central

    2014-01-01

    Background Methamphetamine (MA) use has a strong correlation with risky sexual behaviors, and thus may be triggering the growing HIV epidemic in Myanmar. Although methamphetamine use is a serious public health concern, only a few studies have examined HIV testing among young drug users. This study aimed to examine how predisposing, enabling and need factors affect HIV testing among young MA users. Methods A cross-sectional study was conducted from January to March 2013 in Muse city in the Northern Shan State of Myanmar. Using a respondent-driven sampling method, 776 MA users aged 18-24 years were recruited. The main outcome of interest was whether participants had ever been tested for HIV. Descriptive statistics and multivariate logistic regression were applied in this study. Results Approximately 14.7% of young MA users had ever been tested for HIV. Significant positive predictors of HIV testing included predisposing factors such as being a female MA user, having had higher education, and currently living with one’s spouse/sexual partner. Significant enabling factors included being employed and having ever visited NGO clinics or met NGO workers. Significant need factors were having ever been diagnosed with an STI and having ever wanted to receive help to stop drug use. Conclusions Predisposing, enabling and need factors were significant contributors affecting uptake of HIV testing among young MA users. Integrating HIV testing into STI treatment programs, alongside general expansion of HIV testing services may be effective in increasing HIV testing uptake among young MA users. PMID:25042697

  14. Segmented ruptures during intracontinental earthquakes: Kyrgyz Range, N-Tien Shan

    NASA Astrophysics Data System (ADS)

    Landgraf, Angela; Patyniak, Magda; Dzhumabaeva, Atyrgul; Abdrakhmatov, Kanatbek; Arrowsmith, J. Ramon; Strecker, Manfred R.

    2016-04-01

    In the late 19th and early 20th centuries, the northern Tien Shan of Kyrgyzstan and Kazakhstan was affected by a series of major M 6.9 to ~8 earthquakes. Ruptures affected either range fronts or range interiors. During these events (AD1885 Belovodskoe; AD1887 Verny; AD1889 Chilik; AD1911 Chon-Kemin; and AD1938 Kemino-Chu), neighboring faults ruptured and caused severe damage in the area of the Kyrgyz capital Bishkek and the former Kazakh capital Almaty (previously also called Alma-Ata or Verny), which were located in the epicentral areas. As recurrence intervals along single faults in this region are on the order of hundreds to thousands of years, such a sequence of earthquakes is not known in the remaining historic record. Earlier events may thus be recorded in long-term geomorphic archives. Through a combination of high-resolution offset measurements in the field, cosmogenic nuclide and luminescence dating of Quaternary landforms, stratigraphic analysis, and paleoseismological trenching, we evaluate the Quaternary deformation and analyze the paleoseismic history of neighboring fault systems along the Kyrgyz range mountain front. Our study sites are located close to the Kyrgyz capital Bishkek and include the epicentral area of the M6.9 Belovodskoe event of AD1885, but also the region west of it, which was not affected by this remarkable earthquake sequence. To date, the paleoseismic and historical seismic records for the Kyrgyz range indicate segmented ruptures that hardly exceed magnitude seven. Based on scaling relationships, however, the linked fault systems would be capable of generating M 8-events, similar to the long segmented ruptures observed in the mountain interior farther east during the late nineteenth and early twentieth centuries. The available observations, thus, point to incomplete fault ruptures along the mountain front, rather than earthquakes failing along a full rupture length.

  15. The Impact of Hsueh-Shan Tunnel Construction on the Hydrogeological Environment in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Chia, Y.

    2010-12-01

    The Hsueh-Shan tunnel, the fourth longest tunnel in the world, was suffered many collapses due to huge groundwater ingression and was ultimately opened to the public in June, 2006, after 15-year construction. Since the commencement of construction of tunnel, a long-term monitoring project to measure the groundwater ingression into the tunnel was conducted to ensure the safety of tunnel structure. According to the measured data obtained from the monitoring project, the average total flux of ingressive groundwater is about 450 l/sec. In order to assess the influence of this huge amount of ingressive groundwater on the regional hydrogeology near the tunnel area, a hydrogeological conceptual model was developed. We use MODFLOW-2005 to simulate groundwater flow and use the automated parameter estimation method to calibrate the model. The data on geography, geological structure, and groundwater hydrology are compiled to develop the conceptual model and the measured flux of ingressive groundwater is used to calibrate the model. The regional hydrogeological characteristics, before and after the tunnel excavation, and the water resources are evaluated by this calibrated conceptual model. The result shows that the ingression of groundwater into the tunnel is almost reach the steady state and the total amount of water is mainly contributed by about 2% loss of the total inflow of the Feitsui Reservoir. Besides, the condition of linings in the tunnel plays an important role in the safety of tunnel structure. Therefore, the long-term monitoring project should be continuously conducted to ensure the distribution of water resources and the safety of tunnel structure.

  16. Tien Shan geohazards database: earthquake and landslide size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder

    2015-04-01

    Recently compiled landslide and earthquake data covering a large part of the Tien Shan, Central Asia, are analysed with respect to their size-frequency behaviour. For the same area, only partial databases for sub-regions had been presented previously. They were combined and new data were added to fill the gaps between the databases. The new compiled landslide inventory contains existing records of 1600 previously identified mass movements and more than 1800 new landslide data mapped over a target region of 1200 km (E-W) by 600 km (N-S). On the basis of the new landslide inventory and an updated earthquake catalogue (> 10000 records), the link between landslide and earthquake activity is analysed. Here we focus on the size-frequency relationships developed for both types of geohazards, in terms of Gutenberg-Richter Law for the earthquakes and in terms of probability density function for the landslides. Some similarities can be found in the spatially changing b-value of earthquake events and the power law exponent of the landslide data - lowest values are found in mountain areas where very large mass movements had occurred near major fault zones. The supra-regional landslide inventory will also be compared with sub-regional ones. For one of them, we also possess a multi-temporal landslide inventory and assessed landslide size-frequency relationships for each time period. Those show a decreasing power law exponent with time - due to the coalescence of smaller landslides to form fewer larger ones. However, at (supra-)regional scale, temporal data are very scarce; thus, a major hazard component is still insufficiently known and scaling in time is almost impossible. We may only counteract this problem by dating rockslides and any large mass movement. Finally, we would like to emphasize the role of coupling effects related to various types of geohazards that may also be expressed by similarities between size-frequency relationships.

  17. Sedimentology and magnetostratigraphy of the Tierekesazi Cenozoic section in the foreland region of south West Tian Shan in Western China

    NASA Astrophysics Data System (ADS)

    Chen, Xinwei; Chen, Hanlin; Cheng, Xiaogan; Shen, Zhongyue; Lin, Xiubin

    2015-07-01

    The geology of Tian Shan provides an excellent example for understanding the intracontinental orogeny in the context of Indian-Eurasian convergence. Previous studies leave much space in basinfill deposition process to be assessed in the regions west to the Talas-Fergana fault (TFF). We improve the understanding by conducting new investigations on sedimentology and magnetostratigraphy in the Tierekesazi section of the foreland region of south West Tian Shan. Four lithofacies have been identified, (i) marine lithofacies from the Aertashi to Bashibulake Formations, (ii) lacustrine to fluvial (plain) lithofacies from the Keziluoyi to the middle Pakabulake Formations, (iii) alluvial sand-gravel sheet lithofacies in the upper Pakabulake Formation, and (iv) conglomerate lithofacies from the Atushi to Xiyu Formations. Magnetostratigraphic analysis, accompanied with biostratigraphic correlation, indicates that four lithofacies cover age intervals of ca. 65 Ma to 34 Ma, ca. 22.1 Ma to 12 Ma, 12 Ma to 5.2 Ma, and 5.2 Ma to approximately present (?), with the sediment accumulation rates increasing from ca. 2.4/3.3-3.5 (compacted/decompacted) cm/ka in the lithofacies (i), to 12.3/16-17 cm/ka in the lithofacies (ii), to 16.3/19.5-20.6 cm/ka in the lithofacies (iii), and finally to > 22.8/> 22.8 cm/ka in the lithofacies (iv). These results suggest three episodes of sedimentary events. Combined with previous results, these episodes of sedimentary events are attributed to tectonic activities that are widespread along south Tian Shan. We speculate that the Oligo-Miocene boundary event more directly and likely marks the initial underthrusting of the Tarim block beneath the south Tian Shan. The mid-Miocene and Mio-Pliocene boundary events, although approximately synchronous between the regions east and west to the TFF, have different structural expressions in the two regions. Such difference is proposed to cause the dextral slipping of the TFF, and more fundamentally, likely be driven

  18. Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India-Asia collision

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Dupont-Nivet, Guillaume; Jolivet, Marc; Guo, Zhaojie; Bougeois, Laurie; Bosboom, Roderic; Zhang, Ziya; Zhu, Bei; Heilbronn, Gloria

    2015-03-01

    The Tian Shan range is an inherited intracontinental structure reactivated by the far-field effects of the India-Asia collision. A growing body of thermochronology and magnetostratigraphy datasets shows that the range grew through several tectonic pulses since ~ 25 Ma, however the early Cenozoic history remains poorly constrained. The time-lag between the Eocene India-Asia collision and the Miocene onset of Tian Shan exhumation is particularly enigmatic. This peculiar period is potentially recorded along the southwestern Tian Shan piedmont. There, late Eocene marine deposits of the proto-Paratethys epicontinental sea transition to continental foreland basin sediments of unknown age were recently dated. We provide magnetostratigraphic dating of these continental sediments from the 1700-m-thick Mine section integrated with previously published detrital apatite fission track and U/Pb zircon ages. The most likely correlation to the geomagnetic polarity time scale indicates an age span from 20.8 to 13.3 Ma with a marked increase in accumulation rates at 19-18 Ma. This implies that the entire Oligocene period is missing between the last marine and first continental sediments, as suggested by previous southwestern Tian Shan results. This differs from the southwestern Tarim basin where Eocene marine deposits are continuously overlain by late Eocene-Oligocene continental sediments. This supports a simple evolution model of the western Tarim basin with Eocene-Oligocene foreland basin activation to the south related to northward thrusting of the Kunlun Shan, followed by early Miocene activation of northern foreland basin related to overthrusting of the south Tian Shan. Our data also support southward propagation of the Tian Shan piedmont from 20 to 18 Ma that may relate to motion on the Talas Fergana Fault. The coeval activation of a major right-lateral strike-slip system allowing indentation of the Pamir Salient into the Tarim basin, suggests far-field deformation from the

  19. Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed fluvial terraces

    NASA Astrophysics Data System (ADS)

    Hu, Xiaofei; Pan, Baotian; Kirby, Eric; Gao, Hongshan; Hu, Zhenbo; Cao, Bo; Geng, Haopeng; Li, Qingyang; Zhang, Guoliang

    2015-12-01

    In the eastern Qilian Shan, a flight of fluvial terraces developed along the Jinta River valley are deformed across the Nanying anticline. Four individual fluvial terraces are preserved at different elevations above the river, and higher terrace treads are draped by systematically thicker aeolian loess. Optically stimulated luminescence dating of deposits at the base of the loess provides constraints on the timing of surface abandonment; terraces were abandoned at 69 ± 4 ka B.P. (T4), 57 ± 4 ka B.P. (T3), and between 34 ± 3 ka B.P. (T2), respectively. Differential GPS measurement of the terrace profile across the anticline allows reconstruction of subsurface fault geometry; we model terrace deformation above a listric thrust fault with a tip line at 2.2 ± 0.1 km depth and whose dip shallows systematically to 23 ± 3° at depth of 5.8 ± 1.1 km. Combining terrace ages with this model of fault geometry, we estimate a shortening rate of 0.8 ± 0.2 mm/a across the Nanying fold and a shortening rate of ~0.1 mm/a across the mountain front fault since ~70 ka B.P. This rate suggests that the frontal fault system along the eastern Qilian Shan accomplishes crustal shortening at rates of approximately 0.9 ± 0.3 mm/a during late Pleistocene time.

  20. Late Quaternary tectonic activity and crustal shortening rate of the Bogda mountain area, eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Wu, Chuanyong; Wu, Guodong; Shen, Jun; Dai, Xunye; Chen, Jianbo; Song, Heping

    2016-04-01

    The Bogda mountain range is the highest range among the northern Tian Shan mountains. Based on geologic and geomorphologic field surveys, trench excavation and optically stimulated luminescence (OSL) dating, we targeted the active Fukang fault along the Bogda mountain range and identified the late Quaternary deformation characteristics of this area. We found that the Fukang fault dislocated different geomorphic surfaces of the northern Bogda piedmont. The vertical fault displacement corresponds to the topographic relief of the Bogda over long time scales. Since the late Quaternary, the crustal shortening rate was estimated to be 0.90 ± 0.20 mm/yr, which is less than that of the western segment of the northern Tian Shan. We interpret the Bogda fold and thrust belt to be a thick-skinned structure, since a high angle thrust fault bounds the Bogda mountain range and the foreland basin. The deformation characteristics of this region have been dominated by vertical uplift, and the component of propagation toward the basin has been very limited. This tectonic deformation is evidenced as vertical growth. Although the deformation rate is small, the uplift amplitude is very significant in this region.

  1. Autonomous geodynamics of the Pamir-Tien Shan junction zone from seismology data

    NASA Astrophysics Data System (ADS)

    Lukk, A. A.; Shevchenko, V. I.; Leonova, V. G.

    2015-11-01

    The geodynamics of the Tajik Depression, the junction zone of the Pamirs and Tien Shan, is typically considered in the context of plate tectonic concept, which implies intense subhorizontal compression of the zone resulting from the subduction of the Indian and Eurasian lithospheric plates. This convergence has been reliably confirmed by the GPS measurements. However, the joint analysis of the geological structure, seismicity, and geodimeter measurements conducted during a few years at the Garm geodynamical testing site of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, demonstrates a widening of the Tajik Depression instead of its shortening, as should be expected from the subhorizontal compression predominant in the present-day stress-state of this region. This conclusion, together with the data from the other regions, suggests that, along with the plate tectonic mechanisms, there are also other, local, autonomous drivers that contribute to the tectogenesis of this region. Besides, the probable existence of these autonomous sources within the Tajik Depression directly follows from the seismology data. Among them is the crustal spreading within the depression suggested by the seismotectonic displacements in the focal mechanisms of the earthquakes. These displacements are directed in different azimuths off the axial's most subsided part of the depression at a depth of 20-30 km. Above this region the distribution of seismotectonic deformations (STD) is chaotic. This pattern of deformation is barely accounted for by a simple model of subhorizontal compression of the Earth's crust in the region. In our opinion, these features of the seismotectonic deformation in the crust within the studied part of the Tajik Depression is probably associated with the gain in the volume of the rocks due to the inflow of the additional material, which is supplied from the bottom crust or upper mantle by the deep fluids. This increase in the rock volume

  2. A Central Asian Seismic Bulletin: Utilizing the KNET, Kaznet, and Tien Shan Data Sets

    NASA Astrophysics Data System (ADS)

    Eakins, J. A.; Vernon, F. L.; Pavlis, G.; Roecker, S.; Wallace, T. C.; Martynov, V.

    2001-12-01

    A crucial goal of seismic monitoring for a nuclear weapons treaty is the detection and determination of accurate locations for both man-made and natural seismic events. Global catalogs such as the PDE and REB are often incomplete with large regional variations in coverage. Furthermore, event parameters (location, origin time, and magnitudes) often vary from catalog to catalog. Catalogs based on local analog networks tend to focus only on events located within the political borders of the reporting country and are not always available to all researchers. In order to facilitate research into seismic hazards, crustal and regional tectonic studies, as well as to provide a seismicity baseline for seismic monitoring goals, we are building a complete catalog of events from all available broadband data sources in the region. During the past decade, there has been a marked increase in cooperation with Central Asian research institutes in addition to an increased pool of high quality calibrated broadband instruments available for deployment. The current project involves merging the continuous data sets from the KNET and Kaznet permanent regional networks and from a temporary PASSCAL deployment in the Tien Shan. Data from the GSN and Geoscope stations in the area will also be included. Analysts review the combined data and associate events against global or regional catalogs when possible, or determine locations for events not found in published bulletins. All arrival and origin information as well as waveform data for each event is extracted and is accessible through a relational database. During initial review of the first 20 months when all three networks were operational (9/1997 - 5/1999), 9,965 events were located or associated for the combined data sets. Of these events 5,460 were within 3 degrees of at least one station and 2,789 events were at a distance greater than 25 degrees from the center of the combined network. As a comparison, for KNET alone during the same

  3. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  4. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  5. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    PubMed

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  6. Hydrogeology and simulation of ground-water flow in the Eutaw-McShan Aquifer and in the Tuscaloosa aquifer system in northeastern Mississippi

    USGS Publications Warehouse

    Strom, E.W.; Mallory, M.J.

    1995-01-01

    The Eutaw-McShan aquifer and Tuscaloosa aquifer system in northeastern Mississippi were investi- gated to better understand the hydrogeology and the ground-water flow in and between the aquifers. A numerical model was developed to simulate ground- water flow for prepumping and pumping conditions, and model simulatons projected the possible effects of increased ground-water withdrawals. The five aquifers studied, from youngest to oldest, are the Eutaw-McShan, Gordo, Coker, massive sand, and the Lower Cretaceous aquifers. The finite-difference computer code MODFLOW was used to represent the flow system. The model grid covers 33,440 square miles, primarily in northeastern Mississippi, but includes parts of northwestern Alabama, southwestern Tennessee, and eastern Arkansas. A comparison of the simulated predevelopment and 1992 potentiometric surfaces for the aquifers shows an overall water- level decline. Simulated water levels declined an average of 53 and 44 feet in the confined parts of the Eutaw-McShan and Gordo aquifers, respectively. However, the area near Tupelo had a significant rise in water levels due to decreased pumpage from the Eutaw-McShan and Gordo aquifers compared to the simulated potentiometric surface for 1978.

  7. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    PubMed Central

    Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  8. Inductive shearing of drilling pipe

    DOEpatents

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  9. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  10. Uplift and denudation rates of an actively growing mountain range inferred from in-situ produced cosmogenic 10Be: the Yumu Shan (NE Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Palumbo, L.; Hetzel, R.; Minxing, T.; Li, X.; Guo, J.

    2009-04-01

    Located in the foreland of the Quilian Shan (NE Tibet), the Yumu Shan is an isolated mountain range bounded by an active NW-SE striking thrust fault. Geomorphic and structural features such as fault scarps and wind gaps suggest that the ~70 km long range is actively growing (Hetzel et al., 2004; Tapponnier et al., 1990), hence the tectonic uplift should exceed the rate of denudation. Here we quantify the rate of these two competing processes using in-situ produced cosmogenic 10Be. Catchment-wide denudation rates are derived from 10Be concentrations in stream sediments, whereas rock uplift rates are obtained by combining scarp topographic profiles with dating of geomorphic surfaces deformed by active thrust faults at the Yumu Shan mountain front. Both denudation and rock uplift rates integrate over a similar temporal scale (~10-100 ka) and thus over many earthquake cycles. Our data document that catchment wide-denudation rates vary from ~100 to ~400 mm ka-1 as a function of morphology and lithology, while rock uplift takes place at the rate of ~0.7 mm ka-1. The difference between these values confirms that the Yumu Shan is in a topographic pre-steady state and in accordance with geomorphic and structural features. Tectonic features indicate that over few millions of years the Yumu Shan may rise to a similar height as the main ranges of the Qilian Shan farther south, which have peaks with elevations between ~5 and ~5.5 km. References: Hetzel R., Tao M., Niedermann S., Strecker M.R., Ivy-Ochs S., Kubik P.W., Gao B. (2004). Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet, Terra Nova, 16, 157-162. Tapponnier P., Meyer B., Avouac J.P., Peltzer G., Gaudemer Y., Guo S., Xiang H., Yin K., Chen Z., Cai S., Dai H. (1990). Active thrusting and folding in the Quilian Shan, and decoupling between upper crust and mantle in northeastern Tibet, Earth Planet. Sci. Lett., 97, 382-403.

  11. Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M~7.7 Manas earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.

    2004-01-01

    The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.

  12. Tectonic evolution of Early Paleozoic island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.

    2011-01-01

    The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.

  13. Cenozoic tectono-geomorphological growth of the SW Chinese Tian Shan: Insight from AFT and detrital zircon U-Pb data

    NASA Astrophysics Data System (ADS)

    Jia, Yingying; Fu, Bihong; Jolivet, Marc; Zheng, Shuo

    2015-11-01

    As a unique example of the intracontinental mountain building, the Cenozoic deformation of the Tian Shan has been widely studied. The onset of Cenozoic exhumation of the SW Chinese Tian Shan was constrained at the Oligocene-Miocene boundary. However, the Cenozoic tectono-geomorphological growth process of the SW Chinese Tian Shan and adjacent piedmont basins remains a challenge. In this study, we carried out the geological mapping of satellite images and field investigations together with the apatite fission track (AFT) and detrital zircon U-Pb analyses to get further understanding of the Cenozoic tectonic deformation and geomorphological growth of the SW Chinese Tian Shan. Our results indicate that the exhumation of the hanging wall of Maidan fault or topography growth of the Kokshaal Range commenced in the late Eocene-Oligocene (35-25 Ma). Then, the structural deformation migrated southward to the Muziduke fault and the Atushi Basin Thrust (ABT) at ∼15 Ma. The growth strata of 6-3 Ma on the south flank of Keketamu Anticline imply that tectonic deformation propagates further basinward. Furthermore, the uplift of the Kokshaal Range also strongly affected the evolution of piedmont basins. The results suggest that the Atushi Basin was still likely linked to the Aksai Basin during the early Miocene. They were separated into two independent basins since ca. 13.7-10.5 Ma, as a response to the rapid uplift of the Kokshaal Range. Finally, we infer that the southeastern part of dextral Talas-Fergana fault (TFF) is likely transferred to the NEE-trending thrust faults of the SW Chinese Tian Shan since ∼15 Ma.

  14. Geologic Hazards Associated with Longmen Shan Fault zone, During and After the Mw 8.0, May 12, 2008 Earthquake

    NASA Astrophysics Data System (ADS)

    Xu, X.; Kusky, T.; Li, Z.

    2008-12-01

    A magnitude 8.0 earthquake shook the northeastern margin of the Tibetan plateau, on May 12, 2008 along the Longmen Shan orogenic belt that marks the boundary between the Songpan Ganzi terrane and Yangtze block. The Tibetan plateau is expanding eastwards, and GPS observations show that surface motion directions are northeast relative to the Sizhuan basin where the earthquake occurred. This sense of motion of crustal blocks is the reason why the main faults in Longmen Shan are oblique thrust-dextral strike slip faults. There are three main parallel thrust/ dextral-slip faults in Longmen Shan. All three faults strike northeast and dip to northwest. The May 12 rupture extends 270 km along the fault zone, and the epicenter of the magnitude 8.0 earthquake was located in Wenchuan, 90 km WNW of Chengdu, Sichuan, China. The devastating earthquake killed at least 87,652 people and destroyed all the buildings in epicenter. The victims of the earthquake zone want to rebuild their homes immediately, but they need more suggestions about the geologic hazards to help them withstand future possible earthquakes. So after earthquake, we went to disaster areas from July 5th to 10th to get first-hand field data, which include observations of surface ruptures, landslides, features of X joints on the damaged buildings, parameters of the active faults and landslides. If we only depend on the field data in accessible locations, we can only know the information of the ruptures in these positions, and we can't learn more information about the whole area affected by the earthquake. The earthquake zone shows surface rupture features of both thrust and strike-slip fault activities, indicating oblique slip followed by thrusting during the May 12 earthquake. In my talk, I will show the general regional geological disaster information by processing the pro- and post-earthquake satellite data. Then we combine the raw field data and regional geology as the restrictive conditions to determine the

  15. Seismic properties of the Longmen Shan complex: Implications for the moment magnitude of the great 2008 Wenchuan earthquake in China

    NASA Astrophysics Data System (ADS)

    Sun, Shengsi; Ji, Shaocheng; Wang, Qian; Wang, Hongcai; Long, Changxing; Salisbury, Matthew

    2012-09-01

    The 12 May 2008 Wenchuan earthquake is the largest active tectonic event reported to date in Sichuan (China). We have experimentally calibrated, up to 800 MPa, seismic and elastic properties of 12 representative samples from the Longmen Shan complex in which this great earthquake took place and its coseismic ruptures nucleated and propagated. Most of the samples show little Vp or Vs anisotropy at pressures above the microcrack-closure pressure (Pc = 200-300 MPa), and so the variation of anisotropy with pressure provides important hints for the preferred orientation of microcracks in the nonlinear poroelastic regime below Pc. Geothermal and rheological profiles indicate that the focal depth (~ 19 km) corresponds to the base of the schizosphere, below which the Longmen Shan complex switches from the brittle to ductile behavior. The investigation reveals that the crust of the Longmen Shan range consists of 4 layers from the surface to the Moho: Layer 1: Vp < 4.88 km/s (0-3 km thick, sedimentary rocks such as limestone, sandstone, conglomerate, and mudstone); Layer 2: Vp = 5.95-6.25 km/s (25-28 km thick, felsic rocks); Layer 3: Vp = 6.55 km/s (10 km thick, 67.5% felsic and 32.5% mafic rocks); and Layer 4: Vp = 6.90 km/s (8 km thick, 20.0% felsic and 80.0% mafic rocks). The average Vp/Vs ratio of 1.71 or Poisson's ratio of 0.24 calculated for the whole crust is consistent with the results measured using teleseismic receiver function techniques. This study also offers necessary information for broadband simulations of strong ground motions in the assessment and forecast of earthquake hazards in the region. Furthermore, the study, which yields a moment magnitude of 7.9-8.0 given the variation in the dip of the coseismic ruptures and the uncertainty in the depth to which the coseismic rupture may propagate downwards below the depth of the mainshock hypocenter, presents the first accurate quantification of the 2008 Wenchuan earthquake's size.

  16. APPARATUS FOR SHEARING TUBULAR JACKETS

    DOEpatents

    Simon, J.P.

    1962-09-01

    A machine is designed for removing the jacket from the core of a used rod-like fuel element by shearing the jacket into a spiral ribbon. Three skewed rolls move the fuel element axially and rotatively, and a tool cooperates with one of the rolls to carry out the shearing action. (AEC)

  17. A Piezoelectric Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  18. Results from the 2009 Investigations at the Global Change Observatory "Gottfried Merzbacher" (Tien Shan, Kyrgyz Republic)

    NASA Astrophysics Data System (ADS)

    Häusler, Hermann; Leber, Diethard; Scheibz, Jürgen; Kopecny, Alexander; Wetzel, Hans-Ulrich; Echtler, Helmut; Moldobekov, Bolot

    2010-05-01

    The Global Change Observatory "Gottfried Merzbacher", which was installed near the former confluence of the Southern and Northern Inylchek Glacier, served as a platform for intensive field work in August 2009. "Peremitschka" (meaning "the area between") is a test site in front of the retreating Northern Inylchek Glacier, which regularly is flooded by the increasing glacier-dammed Lake Merzbacher, before it bursts out. Mapping the micro-geomorphology and conducting electrical resistivity tomography (ERT) profiles resulted in a sound interpretation of the surface morphology and of subsurface layers of the Peremitschka plain, which probably is underlain by both, permafrost and dead ice of the retreating Northern Inylchek Glacier. The flat 780 meters long high resolution ERT-profile reveals an undulated multilayer resistivity distribution. The uppermost 3-5 m of the profile show low resistivities ranging from 10 to about 200 ohm.m, indicating fine clastic sediments. In this area the surface of the whole test area is covered by silt and sand, the weathered material from the surrounding hills, which mainly consist of shists and calcareous shists of Upper Silurian to Lower Devonian age (Jamansu-Formation). The second "layer" below this low resistivity zone is characterized by resistivities up to 30.000 ohm.m to the final depth of the profile in approximately 45 m, and probably portraits permafrost overlying dead ice of the retreating Northern Inylchek Glacier. The geophysical measurements enable sound interpretations of the local geomorphology which consequently can be mapped in remote sensing images as flooded plain directly underlain by melting permafrost. Time series analysis of oblique aerial photos and remote sensing images allowed for a detailed reconstruction of the glacier retreat from 1943 to nowadays. It is still under discussion, however, if the Northern Inylchek Glacier surged in the late 1990ies. Compared to other regions in the Tien Shan range the youngest

  19. Archaeoseismological studies and structural position of the medieval earthquakes in the South of the Issyk-Kul depression (Tien Shan)

    NASA Astrophysics Data System (ADS)

    Korzhenkov, A. M.; Kol'chenko, V. A.; Luzhanskii, D. V.; Abdieva, S. V.; Deev, E. V.; Mazeika, J. V.; Rogozhin, E. A.; Rodina, S. N.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.

    2016-03-01

    We carried out archaeoseismological studies in the Southern Issyk-Kul region (Kyrgyz Tien Shan) and obtained radiocarbon datings of the collected samples. These data suggest that the sources of strong earthquakes have occurred in this territory in the 11th and (probably) 16th centuries. These earthquakes had magnitude M ≥ 7 and seismic intensity of at least I ≥ 9. The sources of these earthquakes were associated with the local adyr (piedmont) faults—components of the Pre-Terskei border fault. Our results demonstrate considerable underestimation of the seismic hazard for the South Issyk-Kul region in the latest Seismic Zoning Map of Kyrgyz Republic (2012), which should be taken into account in the construction of the new seismic zoning map for Kyrgyzstan.

  20. Crust Structure across the Longmen Shan Thrust Belt from Seismic Refraction and Wide-angle Reflection Experiment of Sinoprobe02

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Gao, R.; Keller, R. G.; Li, Q.; Guan, Y.; Li, Y.; Li, W.; Lu, Z.; Wang, H.; Xiong, X.; Hou, H.; Dong, J.; Guo, X.; Ye, Z.; Xu, X.; Holloway, S. D.; Chang, J. C.; Kaip, G.; Ingate, S. F.

    2012-12-01

    In this study the seismic refraction and wide-angle reflection experiment has been carried out along a profile (~430 km) across the Songpan-Ganzê block of Eastern Tibet, the Longmen Shan orogenic belt to Sichuan block of the Yangtze craton. Combining with 5 wide-angle refraction seismic profiles of the Global Geoscience Transects (GGT) project carried out in 1986, a velocity model based on traveltime tomography using only the first arrivals of phases Pg and Pn has been obtained and its relative tectonic interpretation has been presented. There are strong deformations of the crust structure in the model from southern part of Songpan-Ganzê block of Eastern Tibet to the northern part of Sichuan block of the Yangtze craton. The thickness of crust varies along the profile as follow: 61~62 km in the area of Songpan-Ganzê block due to the subduction of the Tibetan plateau, 44~47 km beneath Longmen Shan orogenic belt and ~43km in the north part of the Sichuan basin. The thickness of upper crust of the Songpan-Ganzê fold belt changes regularly from the ~20km in the northwest to ~10km in the southeast. However, it is very stable in the Sichuan basin and the thickness is 16~18 km. The total thicknesses of the middle and lower crust beneath the Songpan-Ganzê fold belt change from ~50km in the Eastern Tibetan plateau to ~40km in the Western Yangtze plateau. In the frontal of Sichuan basin the thickness of them decreases to ~30km and is very stable. From the northwest to southeast , the depth of Moho varies from ~62km in the Tibetan plateau, ~60km beneath the Songpan-Ganzê fold belt in the Yangtze plateau, ~45km beneath the Longmen Shan orogenic belt, to ~43km in the Sichuan basin. The discontinuous Moho and existence of double-Moho beneath the Longmen Shan orogenic belt indicate that parts of Moho have been detached from the other parts and escaped downward from their original locations, and it has caused the uplifting and intrusion of magma from the mantle. The velocity

  1. Heavy Metals in Sediment from Bei Shan River: Distribution, Relationship with Soil Characteristics and Multivariate Assessment of Contamination Sources.

    PubMed

    Xun, Yan; Xuegang, Luo

    2015-07-01

    The concentrations and correlation between some heavy metals (Mn, Cd, Cr, Cu, Ni, Zn and Pb) measured in sediments in part of Bei shan River near uranium mill tailings were studied. The mean concentration of Cr (57.7 mg/g) was more than the mean values established for uncultivated areas worldwide (46.3 mg/g). Negative correlations with pH and positive correlations with organic matter have been observed for most of elements analyzed in this study. Correlation analysis showed that all metals except Cr are highly correlated (p ≤ 0.01, p ≤ 0.05). This may indicate the different origin or controlling factors of Cr in analyzed sediments. Cluster analysis highlighted the lithogenic origin of heavy metals (Mn, Cd, Cu, Ni, Zn and Pb) and pointed out the primary input of Cr from anthropogenic sources. PMID:26006719

  2. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.

    2016-05-01

    The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.

  3. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: Implications for the Longmen Shan thrust belt, eastern Tibet

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Jia, Dong; Yin, Hongwei; Chen, Zhuxin; Li, Zhigang; Shen, Li; Wei, Dongtao; Li, Yiquan; Yan, Bin; Wang, Maomao; Fang, Shaozhi; Cui, Jian

    2016-06-01

    To understand the effects of substantial topographic relief on deformation localization in the seismically active mountains, like the Longmen Shan thrust belt in the eastern Tibet, sandbox experiments were performed based on the framework of the critical taper theory. First, a reference experiment revealed that the critical taper angle was 12° for our experimental materials. Subsequently, different proto wedges (subcritical (6° in taper angle), critical (12°), and supercritical (20°)) were introduced to cover the range of natural topographic relief, and we used two setups: setup A considered only across-strike topographic relief, whereas setup B investigated along-strike segmentation of topography, consist of two adjacent proto wedges. In all experiments, thrust wedges grew by in-sequence accretion of thrust sheets. Setup A revealed an alternating mode of slip partitioning on the accreted thrusts, with large-displacement thrust and small-displacement thrust developing in turn. And contrasting wedge evolutions occurred according to whether the proto wedge was subcritical or critical-supercritical. In setup B, the differential deformation along the strike produced transverse structures such as tear fault and lateral ramp during frontal accretion. The observed tear fault and its associated thrust system resemble the seismogenic fault system of the 2008 Mw7.9 Wenchuan earthquake. Our experimental results could also explain first-order deformation features observed in the Longmen Shan. Consequently, we conclude that topographic features, including topographic relief across the range and along-strike segmentation of topography, contribute significantly to the kinematics and deformation localization in such active mountains.

  4. Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Gong, Zhijun; Li, Sheng-Hua; Li, Bo

    2015-08-01

    The Tian Shan Range lies in the actively deforming part of the India-Asia collision zone. In the northern foreland basin of Tian Shan, the strata were intensively deformed by Cenozoic folding and faulting. Slip rate studies along these faults are important for understanding the dynamics of crustal deformation and evaluating the seismic hazards in the region. Two reverse faults (the Manas and Hutubi faults) in the northern foreland basin were investigated. Due to past faulting events along these faults, the terrace treads along the Manas River were ruptured, forming fault scarps several meters in height. Loess deposits were trapped and preserved at the surface ruptures along these scarps. The thickness of the trapped loess is dependent on the size of the ruptures. The minimum and maximum ages of these scarps are constrained by dating the loess preserved at the surface ruptures and the terrace treads, respectively, using the quartz optically stimulated luminescence (OSL) dating technique. Our dating results suggest that the loess trapped at the ruptures was deposited from the early to mid-Holocene at the Hutubi Fault, and from the mid- to late-Holocene at the Manas Fault. The vertical displacements of the faults were evaluated by measuring the topographic profiles across the investigated fault scarps using the differential global position system (DGPS). Our results suggest that, during the late Quaternary in the studied region, the vertical slip rates of the Manas Fault were between ˜ 0.74 mm /yr and ˜ 1.6 mm /yr, while the Hutubi Fault had a much lower vertical slip rate between ˜ 0.34 mm /yr and ˜ 0.40 mm /yr. The tectonic implications of our results are discussed.

  5. Research on the Quaternary fluvial geomorphological surface sequence of the foreland region in southern Longmen Shan, eastern Tibet

    NASA Astrophysics Data System (ADS)

    Jiang, Dawei; Zhang, Shimin; Li, Wei

    2016-09-01

    Research on the complex structure of the Longmen Shan foreland is of great significance for understanding the tectonism of the eastern Tibetan Plateau. Therefore, using field survey of abandoned alluvial fans that developed during the middle Pleistocene and the terraces of the modern Qingyi River, a geomorphological surface sequence for the foreland region was established to study the tectonic surface processes. We know that the deformations of river terraces can serve as foundations for the study of tectonic activity. Because the Qingyi River ran through the foreland region in the south range of Longmen Shan, it is an appropriate research area and was adopted to solve these problems. However, in the humid temperate region, the terraces are strongly eroded and hardly retain continuous morphological surfaces. In addition, no marker horizons are available that can be utilized to restrain the corresponding relationships among terraces at the same level. To solve these problems, high-precision field measurements of the terraces and alluvial fan were made, and a series of long cross sections were acquired to determine the spatial relationships between the geomorphological surfaces; moreover, based on major element tests and grain size analyses, we found that the sediments of the geomorphological surfaces at all levels had favorable corresponding relationships. Using those specific analyses of geomorphological surfaces and sediments, a geomorphological surface sequence was derived for the foreland region. The surface sequence can be employed to study the tectonism of the foreland region over larger spatial and temporal ranges rather than using the limited modern terraces. In addition, after the ages of the geomorphological surfaces at various levels were further tested, the evolution of Qingyi River especially its two migrations since the middle Pleistocene in the foreland was determined.

  6. Smectic Edge Dislocations under Shear

    NASA Astrophysics Data System (ADS)

    Chen, Peilong; Lu, Chun-Yi David

    2011-09-01

    Layer structures around an edge dislocation in a smectic phase under shear are studied with both phase field and order parameter models. It is shown that, contrast to a crystal solid, the conventional picture of the Peach--Koehler force experienced by dislocations when the sample is under a shear stress cannot be readily applied to the smectic phases. Under a uniform shear flow, we obtain the phase field and order parameter solutions around an edge dislocation. The solutions elucidate properties such as the layer distortion range around the dislocation and scaling of inter-dislocation interaction on dislocation separation. Calculations on energy dissipation indicate the extreme shear-thinning behavior that an edge dislocation induces a shear stress independent of the shear rate. Finally in a bulk sample with dislocation forming loops and networks, we argue that the uniform flow component around the dislocation is important to the energy dissipation and we show that its scaling exponent with the shear rate is very close to results from many previous rheology measurements.

  7. Multidirectional direct simple shear apparatus

    SciTech Connect

    DeGroot, D.J.; Germaine, J.T.; Ladd, C.C.

    1993-09-01

    The paper describes a new simple shear testing device, the multidirectional direct simple shear (MDSS) apparatus, for testing soil specimens under conditions that simulate, at the element level, the state of stress acting within the foundation soil of an offshore Arctic gravity structure. The MDSS uses a circular specimen that is consolidated under both a vertical effective stress ({sigma}{sub vc}{prime}) and a horizontal shear stress ({tau}{sub 1}). The specimen is subsequently sheared undrained by applying a second independent horizontal shear stress ({tau}{sub 2}) at an angle {theta} relative to the horizontal consolidation shear stress {tau}{sub 1}. Evaluation of the MDSS first compares conventional K{sub D}-consolidated undrained direct simple shear (CK{sub 0}UDSS) test data ({tau}{sub 1} = 0) on normally consolidated Boston blue clay (BBC) with results obtained in the Geonor DSS device. The MDSS gives lower secant Young`s modulus values and on average 8% lower strengths, but produces remarkably less scatter in the test results than the Geonor DSS. Kinematic proof tests with an elastic material (rubber) confirm that the setup procedure, application of forces, and strain measurement systems in the MDSS work properly and produce repeatable results. Results from a MDSS test program on BBC wherein specimens were first normally consolidated with {sigma}{sub vc}{prime} and {tau}{sub 1} = 0.2{sigma}{sub vc}{prime} and then sheared undrained at {theta} varing in 30{degree} increments from zero (shear in same direction) to 150{degree} show dramatic differences in the response of the soil as a function of {theta}. The peak undrained strength varies almost twofold from 0 = 0 to 120{degree}, while the deformation behavior varies from very brittle at low {theta} angles to becoming ductile at higher angles. 11 refs., 15 figs.

  8. Shear Banding of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Divoux, Thibaut; Fardin, Marc A.; Manneville, Sebastien; Lerouge, Sandra

    2016-01-01

    Even in simple geometries, many complex fluids display nontrivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known for several decades, but in recent years, we have seen an upsurge in studies offering an ever-more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and soft glassy materials and highlight their similarities and disparities.

  9. Fluid-Assisted Shear Failure Within a Ductile Shear Zone

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.; Compton, K.; Holk, G. J.

    2015-12-01

    Exhumed shear zones often contain folded and/or dynamically recrystallized structures such as veins and pseudotachylytes that record contemporaneous brittle and ductile deformation representing mixed bulk rheology. Here, we constrain the conditions that promote the transitions between ductile and brittle deformation by investigating quartz veins with shear offsets in the Saddlebag Lake shear zone in the central Sierra Nevada, California. Mesozoic metasedimentary rocks within the shear zone contain transposed bedding, strong cleavage, dextrally rotated porphyroclasts, and a steep mineral lineation, which together suggest an overall transpressive kinematic regime for the ductile deformation. Foliation sub-parallel veins are one subset of the veins in the shear zone. They have observed horizontal trace lengths of up to around 5 meters, though most are obscured by limited exposure, and displacements range from ~3-30 mm, with 1-5 mm of opening. Foliation sub-parallel veins are folded with the foliation and quartz microstructures and fluid inclusion thermobarometry measurements from vein samples indicate temperatures during vein formation by fracture were between 300-680°C. Quartz δ18O values (+5.9 to +16.5) suggest extended fluid-rock interaction that involved magmatic (δ18O ~ +8 to +10) and meteoric (δ18O down to -1) fluids. Foliation sub-parallel veins are most abundant in relatively massive, quartz-rich rocks where they are boudinaged, indicating they were rigid inclusions after formation. Based on the orientation and spatial distribution of the veins, we infer that they formed under high differential stress with pore pressures sufficiently high for the rocks to be critically stressed for shear failure along mechanically weak foliation planes. These observations suggest high pore pressures and mechanical heterogeneity at a variety of scales are necessary conditions for nucleation of shear fractures within ductile shear zones.

  10. Shear instabilities in granular flows

    NASA Astrophysics Data System (ADS)

    Goldfarb, David J.; Glasser, Benjamin J.; Shinbrot, Troy

    2002-01-01

    Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows.

  11. Shear instabilities in granular flows.

    PubMed

    Goldfarb, David J; Glasser, Benjamin J; Shinbrot, Troy

    2002-01-17

    Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows. PMID:11797003

  12. Proteins in a shear flow

    NASA Astrophysics Data System (ADS)

    Szymczak, P.; Cieplak, Marek

    2007-10-01

    The conformational dynamics of a single protein molecule in a shear flow is investigated using Brownian dynamics simulations. A structure-based coarse grained model of a protein is used. We consider two proteins, ubiquitin and integrin, and find that at moderate shear rates they unfold through a sequence of metastable states—a pattern which is distinct from a smooth unraveling found in homopolymers. Full unfolding occurs only at very large shear rates. Furthermore, the hydrodynamic interactions between the amino acids are shown to hinder the shear flow unfolding. The characteristics of the unfolding process depend on whether a protein is anchored or not, and if it is, on the choice of an anchoring point.

  13. Grafted polymer under shear flow

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Foster, Damien P.; Giri, Debaprasad; Kumar, Sanjay

    2016-04-01

    A self-attracting-self-avoiding walk model of polymer chain on a square lattice has been used to gain an insight into the behaviour of a polymer chain under shear flow in a slit of width L. Using exact enumeration technique, we show that at high temperature, the polymer acquires the extended state continuously increasing with shear stress. However, at low temperature the polymer exhibits two transitions: a transition from the coiled to the globule state and a transition to a stem-flower like state. For a chain of finite length, we obtained the exact monomer density distributions across the layers at different temperatures. The change in density profile with shear stress suggests that the polymer under shear flow can be used as a molecular gate with potential application as a sensor.

  14. A piezoelectric shear stress sensor

    NASA Astrophysics Data System (ADS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-04-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress, suppressing effects of normal stress components, by applying opposite poling vectors to the piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces where it demonstrated high sensitivity to shear stress (91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-33%PT, d31=-1330 pC/N). The sensor also exhibited negligible sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is up to 800 Hz.

  15. Cosmic Shear from Galaxy Spins.

    PubMed

    Lee; Pen

    2000-03-20

    We discuss the origin of galactic angular momentum and the statistics of the present-day spin distribution. It is expected that the galaxy spin axes are correlated with the intermediate principal axis of the gravitational shear tensor. This allows one to reconstruct the shear field and thereby the full gravitational potential from the observed galaxy spin fields. We use the direction of the angular momentum vector without any information of its magnitude, which requires a measurement of the position angle and inclination on the sky of each disk galaxy. We present the maximum likelihood shear inversion procedure, which involves a constrained linear minimization. The theory is tested against numerical simulations. We find the correlation strength of nonlinear structures with the initial shear field and show that accurate large-scale density reconstructions are possible at the expected noise level. PMID:10702119

  16. Late Paleozoic evolution of the South Tien Shan: Insights from P-T estimates and allanite geochronology on retrogressed eclogites (Chatkal range, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Loury, Chloé; Rolland, Yann; Cenki-Tok, Bénédicte; Lanari, Pierre; Guillot, Stéphane

    2016-05-01

    In the South Tien Shan range (Kyrgyzstan), the Late Paleozoic geodynamic evolution remains debated especially to the west of the Talas-Fergana fault (TFF) fault where suture-related high-pressure (HP) rocks are scarce. We provide new petrological and geochronological data on garnet amphibolites from the Chatkal range, to the west of the TFF, northwest of the South Tien Shan suture. These rocks are retrogressed eclogites. We used a micro-mapping approach combined with forward modeling and empirical thermobarometry to decipher the P-T path of these amphibolitized eclogites. The metamorphic peak conditions culminated at 490 ± 50 °C and 18.5 ± 2 kbar and were followed by higher temperature retrogression (∼560 °C at 11-7 kbar). In order to constrain the age of the HP stage, we dated allanite crystals texturally coeval to the HP mineral assemblage. Allanite grains dated in situ with a U-Pb LA-ICPMS methodology yield an age of 301 ± 15 Ma. Compared with previously published data for the east of the TFF, these P-T constraints allow improving the understanding of the Late Paleozoic geodynamic evolution of the South Tien Shan. To the east of TFF, the Turkestan Ocean closed around 320 Ma with the collision of the Tarim Craton with the Kazakh microcontinent. To the west of TFF, the Turkestan Ocean closed around 300 Ma, when the Alai block collided with the Kazakh microcontinent. This later collision involved nappe-stacking and intense subvertical folding in the western South Tien Shan. This complex folding explains the S-shape of the suture to the west of the TFF that cannot be observed in the eastern part. These new data allow us to propose a distinct tectonic evolution of the two sides of the TFF, which suggests that this fault was a major transform fault before being a strike-slip intra-continental fault.

  17. Evidence for a Tang-Song Dynasty great earthquake along the Longmen Shan Thrust Belt prior to the 2008 M w 7.9 Wenchuan earthquake, China

    NASA Astrophysics Data System (ADS)

    Lin, Aiming; Ren, Zhikun; Jia, Dong; Miyairi, Yosuke

    2010-07-01

    The magnitude ( M w) 7.9 Wenchuan earthquake occurred on 12 May 2008 in the Longmen Shan region of China, the transition zone between the Tibetan Plateau and the Sichuan Basin, resulting in widespread damage throughout central and western China. The steep, high-relief eastern margin of the Tibetan Plateau has undergone rapid Cenozoic uplift and denudation accompanied by folding and thrusting, yet no large thrust earthquakes are known prior to the 2008 M w 7.9 Wenchuan earthquake. Field and excavation investigations reveal that a great historical earthquake occurred in the Sichuan region that ruptured a >200-km-long thrust fault within the Longmen Shan Thrust Belt, China, which also triggered the 2008 M w 7.9 Wenchuan earthquake. The average co-seismic slip amount produced by this historical earthquake is estimated to be 2-3 m, comparable with that caused by the 2008 Wenchuan earthquake. Paleoseismic and archaeological evidence and radiocarbon dating results show that the penultimate great earthquake occurred in the Sichuan region during the late Tang-Song Dynasty, between AD 800 and 1000, suggesting a recurrence interval of ~1,000-1,200 years for Wenchuan-magnitude ( M = ~8) earthquakes in the late Holocene within the Longmen Shan Thrust Belt. This finding is in contrast with previous estimates of 2,000-10,000 years for the recurrence interval of large earthquakes within the Longmen Shan Thrust Belt, as obtained from long-term slip rates based on the Global Positioning System and geological data, thereby necessitating substantial modifications to existing seismic-hazard models for the densely populated region at the eastern marginal zone of the Tibetan Plateau.

  18. Permian to Late Triassic evolution of the Longmen Shan Foreland Basin (Western Sichuan): Model results from both the lithospheric extension and flexure

    NASA Astrophysics Data System (ADS)

    He, Lijuan

    2014-10-01

    The lithosphere was extended during the Permian-Middle Triassic in the Yangtze Craton where the Sichuan Basin located, and then bent due to thrusting of the Longmen Shan orogen, leading to formation of the Longmen Shan Foreland Basin (Western Sichuan) during the Late Triassic Indosinian orogeny. The lateral variation of the lithospheric strength resulted by former differential extension would inevitably influence the subsequent evolution of the foreland basin. In order to investigate this, both extensional and flexural models were applied in modeling Permian-Late Triassic basin evolution. A 2D kinematic extensional model was initially developed along a profile crossing the Yangtze Craton to simulate the lithospheric thermal evolution during the Permian-Middle Triassic. Based on the thermal results, the thermal-rheological structure, as well as the effective elastic thickness of the lithosphere (Te), was then determined. Extension model show that the stretching factors decrease gradually from Songpan-Ganzi to the Sichuan Basin, leading to variable thermal-rheological structure and increased Te from west to east. Taking into account of the Te variation, a flexural model was finally constructed to investigate the evolution of the Longmen Shan Foreland Basin during the Late Triassic spanning the time period c. 227-206 Ma. Three episodes were divided according to the corresponding tectonostratigraphic units. By matching the stratigraphic observations, three phase advance distances eastward of the Longmen Shan along the Qingchuan-Maowen Fault turned out to be 18, 22, and 18 km. It implied a slow and similar thrust advance rate of 3.6 (c.227-222 Ma), 2.2 (c.222-212 Ma), and 3 mm/yr (c.212-206 Ma), respectively.

  19. Mesozoic tectonic evolution of the Daba Shan Thrust Belt in the southern Qinling orogen, central China: Constraints from surface geology and reflection seismology

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Dong, Shuwen; Yin, An; Zhang, Yueqiao; Shi, Wei

    2015-08-01

    The Daba Shan Thrust Belt is located along the southern margin of the Qinling orogen that separates the north China block in the north from the south China block in the south. Despite decades of research, the total magnitude of shortening accommodated by continent-continent convergence across the Qinling orogen after Triassic ocean closure between north and south China remains poorly constrained. The lack of knowledge on the shortening magnitude in turn limits our ability to test a wide array of tectonic models for the development of the Qinling orogen and thus the convergence history between north and south China. In order to address this issue, we construct a balanced cross section and develop a new kinematic model for the evolution of the Daba Shan Thrust Belt. This work was accomplished by integrating (1) surface geologic mapping, (2) detailed kinematic analysis of key structures, (3) existing geochronologic and thermochronological data, and (4) a recently obtained lithospheric-scale seismic reflection profile. Restoration of the cross section indicates that the minimum shortening strain increases northward from ~10% in the foreland to >45% in the thrust belt interior. The estimated amount of upper crustal shortening across the Daba Shan Thrust Belt is >130 km, which is sufficient to allow the inferred mafic lower crust of the subducted south China lithosphere to have experienced eclogite phase transition. Thus, our work supports that the development of the Daba Shan Thrust Belt may have been driven by slab pull of the subducted mafic lower crust at the leading edge of the down-plunging south China continental lithosphere.

  20. A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: do earthquakes really occur in the continental mantle?

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Jackson, J. A.; Priestley, K.; Baker, C.

    2000-12-01

    We investigate the depth distribution of earthquakes within the continental lithosphere of southern Iran, the Tien Shan and northern India by using synthetic seismograms to analyse P and SH body waveforms. In the Zagros mountains of southern Iran, earthquakes are apparently restricted to the upper crust (depths of <20km), whereas in the Tien Shan and northern India they occur throughout the thickness of the continental crust, to depths of ~40-45km. We find no convincing evidence for earthquakes in the continental mantle of these regions, in spite of previous suggestions to the contrary, and question whether seismicity in the continental mantle is important in any part of the world. In some regions, such as Iran, the Aegean, Tibet and California, seismicity is virtually restricted to the upper continental crust, whereas in others, including parts of East Africa, the Tien Shan and northern India, the lower crust is also seismically active, although usually less so than the upper crust. Such variations cannot reliably be demonstrated from published catalogue or bulletin locations, even from ones in which depth resolution is generally improved. In contrast to the oceanic mantle lithosphere, in which earthquakes certainly occur, the continental mantle lithosphere is, we suggest, virtually aseismic and may not be significantly stronger than the lower continental crust. These variations in continental seismogenic thickness are broadly correlated with variations in effective elastic thickness, suggesting that the strength of the continental lithosphere resides in the crust, and require some modification to prevalent views of lithosphere rheology.

  1. Yield shear stress and disaggregating shear stress of human blood

    NASA Astrophysics Data System (ADS)

    Jung, Jinmu; Lee, Byoung-Kwon; Shin, Sehyun

    2014-05-01

    This review presents two distinct rheological parameters of blood that have the potential to indicate blood circulation adequacy: yield shear stress (YSS) and disaggregating shear stress (DSS). YSS and DSS reflect the strength of red blood cell (RBC) aggregation in suspension under static and dynamic conditions, respectively. YSS, defined as the critical stress to disperse RBC aggregates under static conditions, was found to be dependent upon hematocrit, fibrinogen, and red cell deformability, but not temperature. DSS, defined as the minimum shear stress to disperse RBC aggregates under dynamic conditions, is dependent upon fibrinogen, red cell deformability, and temperature but not hematocrit. Owing to recent advances in measurement technology, these two parameters can be easily measured, and thus, their clinical significance in blood circulation can be verified.

  2. The aeolian sedimentary system in the northern Qilian Shan and Hexi Corridor (N-China) - geomorphologic, sedimentologic and climatic drivers

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2015-04-01

    The formation of aeolian deposits depends on the influence of climatic factors but also on non-climatic controls, such as local geomorphological setting and tectonic activity. Unravelling the environmental history needs a careful consideration of a set of sections to capture spatial variability and a detailed investigation of depositing processes and chronology. Along the northern margin of the Qilian Shan mountain range 22 OSL-dated loess and aeolian sand sections and additional surface samples reveal the interactions between climatic, geomorphologic and sedimentologic factors. Thin loess covers (~1-2 m) occur in elevations of 2000 to 3800 m asl, which were mainly accumulated during the Holocene. End-member modelling of loess grain size data exhibits three dominant aeolian transport pathways representing local transport from fluvial storages, dust storm contribution and background dust deposition. Their relative contributions show a clear dependence on geomorphological setting, and additionally, synchronous trends throughout the Holocene. Their relative changes allow conclusions about Holocene environmental conditions. Discontinuous archives (aeolian sand, lacustrine, and alluvial deposition) in the lower forelands of the Qilian Shan show a distinct spatial pattern contrasting western and eastern forelands. The comparison of OSL ages exhibits high sediment accumulation (~2 m/ka) in the drier western part during the Late Glacial, while the lack of Holocene ages indicates sediment discharge / deflation. In contrast, moister areas in the eastern foreland yield scattered Holocene ages. This indicates high sediment dynamics, benefiting from fluvial reworking and thus provided sediment availability. Fluvial sediment supply plays an important role in sediment recycling. Meanwhile, western forelands lack efficient sand sources and fluvial reworking agents. The study exemplifies the complex sedimentary systems acting along mountain to foreland transects which often host

  3. Hydraulic jumps with upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2013-11-01

    Hydraulic jumps in flows with background shear are investigated, motivated by applications such as the flow over sills in Knight Inlet and the Pre-Bosphorus Channel. The full solution space and allowable solutions to several two-layer theories for hydraulic jumps with upstream shear are identified. The two-layer theories considered, including a recent theory by Borden et al. (JFM, 2012), are distinguished by how dissipation is partitioned between the layers. It is found that upstream shear with a faster and thinner lower layer causes an increase in bore speed, for a given jump height. Further, these two-layer solutions only exist for a limited range of upstream shear. 2D numerical simulations are conducted, guided by the two-layer theory solution space, and the results are compared to the theories. The simulations show the qualitative types of hydraulic transitions that occur, including undular bores, fully turbulent jumps, and conjugate state-like solutions; the type depends on the jump height and upstream shear for fixed upstream layer depths. Numerical simulations are used to investigate the mixing. Finally, a few 3D numerical simulations were made and are found to be consistent with the 2D results.

  4. Isogeometric analysis of shear bands

    NASA Astrophysics Data System (ADS)

    Berger-Vergiat, Luc; McAuliffe, Colin; Waisman, Haim

    2014-08-01

    Numerical modeling of shear bands present several challenges, primarily due to strain softening, strong nonlinear multiphysics coupling, and steep solution gradients with fine solution features. In general it is not known a priori where a shear band will form or propagate, thus adaptive refinement is sometimes necessary to increase the resolution near the band. In this work we explore the use of isogeometric analysis for shear band problems by constructing and testing several combinations of NURBS elements for a mixed finite element shear band formulation. Owing to the higher order continuity of the NURBS basis, fine solution features such as shear bands can be resolved accurately and efficiently without adaptive refinement. The results are compared to a mixed element formulation with linear functions for displacement and temperature and Pian-Sumihara shape functions for stress. We find that an element based on high order NURBS functions for displacement, temperature and stress, combined with gauss point sampling of the plastic strain leads to attractive results in terms of rate of convergence, accuracy and cpu time. This element is implemented with a -bar strain projection method and is shown to be nearly locking free.

  5. Shear Instabilities in Granular Flows

    NASA Astrophysics Data System (ADS)

    Shinbrot, Troy

    2003-03-01

    Unstable waves have long been studied in fluid shear layers. These waves affect transport in the atmosphere and oceans as well as slipstream stability behind ships, planes, and heat transfer devices. Corresponding instabilities in granular flows have not previously been documented, despite the importance of these flows in geophysical and industrial systems. We report here that breaking waves can form at the interface between two streams of identical grains downstream of a splitter plate. These waves appear abruptly in flow down an inclined plane as either shear rate or angle of incline is changed, and we analyze a granular flow model that qualitatively agrees with our experimental data. The waves appear from the model to be a manifestation of a competition between shear and extensional strains in the flowing granular bed, and we propose a dimensionless group to govern the transition between steady and wavy flows.

  6. Superstrings in Sheared Polymer Blends

    NASA Astrophysics Data System (ADS)

    Migler, Kalman

    2000-03-01

    We report the discovery of a droplet-string-ribbon transition in concentrated polymer blends which occurs when the droplet size of the dispersed component becomes comparable to the gap between the boundary plates. Above a critical shear rate (or gap width), dispersed droplets continuously coalescence and breakup; the upper limit on their size is set by the Taylor length. Below this critical shear rate, droplets coalesce into strings and then ribbons in a four stage kinetic process. The mass ratio of string / droplet can be as large as 10^4. The transition is sharp, occurring over a shear interval of 2droplet-string transition is a manifestation of the weakening of the Rayleigh-Tomatika instability which occurs when the system becomes quasi two-dimensional. Possible applications of this technology are ultra-thin materials of high one-dimensional strength, polymer blend wires, and novel polymeric scaffolds.

  7. Shear Brillouin light scattering microscope.

    PubMed

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-11

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution. PMID:26832263

  8. Squirming through shear thinning fluids

    NASA Astrophysics Data System (ADS)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun

    2015-11-01

    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  9. Simulation of projected water demand and ground-water levels in the Coffee Sand and Eutaw-McShan aquifers in Union County, Mississippi, 2010 through 2050

    USGS Publications Warehouse

    Hutson, Susan S.; Strom, E.W.; Burt, D.E.; Mallory, M.J.

    2000-01-01

    Ground water from the Eutaw-McShan and the Coffee Sand aquifers is the major source of supply for residential, commercial, and industrial purposes in Union County, Mississippi. Unbiased, scientifically sound data and assessments are needed to assist agencies in better understanding and managing available water resources as continuing development and growth places more stress on available resources. The U.S. Geological Survey, in cooperation with the Tennessee Valley Authority, conducted an investigation using water-demand and ground-water models to evaluate the effect of future water demand on groundwater levels. Data collected for the 12 public-supply facilities and the self-supplied commercial and industrial facilities in Union County were used to construct water-demand models. The estimates of water demand to year 2050 were then input to a ground-water model based on the U.S. Geological Survey finite-difference computer code, MODFLOW. Total ground-water withdrawals for Union County in 1998 were estimated as 2.85 million gallons per day (Mgal/d). Of that amount, municipal withdrawals were 2.55 Mgal/d with about 1.50 Mgal/d (59 percent) delivered to residential users. Nonmunicipal withdrawals were 0.296 Mgal/d. About 80 percent (2.27 Mgal/d) of the total ground-water withdrawal is produced from the Eutaw-McShan aquifer and about 13 percent (0.371 Mgal/d) from the Coffee Sand aquifer. Between normal- and high-growth conditions, total water demand could increase from 72 to 131 percent (2.9 Mgal/d in 1998 to 6.7 Mgal/d in year 2050) with municipal demand increasing from 77 to 146 percent (2.6 to 6.4 Mgal/d). Increased pumping to meet the demand for water was simulated to determine the effect on water levels in the Coffee Sand and Eutaw- McShan aquifers. Under baseline-growth conditions, increased water use by year 2050 could result in an additional 65 feet of drawdown in the New Albany area below year 2000 water levels in the Coffee Sand aquifer and about 120 feet of

  10. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  11. Shear relaxations of confined liquids

    SciTech Connect

    Carson, G.A. Jr.

    1992-01-01

    Ultrathin (<40 [angstrom]) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s[sup [minus]1] were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celcius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes ([approximately]80 nm[sup 3]) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long-time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7 nm[sup 3]) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10[sup 4] Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  12. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: A sedimentary archive from the Jiuxi Basin

    NASA Astrophysics Data System (ADS)

    Wang, Weitao; Zhang, Peizhen; Pang, Jianzhang; Garzione, Carmala; Zhang, Huiping; Liu, Caicai; Zheng, Dewen; Zheng, Wenjun; Yu, Jingxing

    2016-04-01

    Sedimentary deposits in Tibetan Basins archive the spatial-temporal patterns of the deformation and surface uplift processes that created the area's high topography during the Cenozoic India-Asia collision. In this study, new stratigraphic investigation of the Caogou section from the Jiuxi Basin in the northeasternmost part of Tibetan Plateau provides chronologic constraints on the deformation and northward growth of the plateau. Magnetostratigraphic analysis results suggest that the age of the studied ~1000 m thick section spans from ~24.2 Ma to 2.8 Ma. Detailed sedimentology and apatite fission track (AFT) analyses reveal that variations in the clast provenance, lithofacies, sediment accumulation rates, and AFT lag times occurred at ~13.5-10.5 Ma. We interpret these changes as in response to the initial uplift of the North Qilian Shan. In addition, paleomagnetic declination results from the section indicate a clockwise rotation of the Jiuxi Basin before ~13.5 Ma, which was followed by a subsequent counterclockwise rotation during 13.5-9 Ma. This reversal in rotation direction may be directly related to left-lateral strike-slip activity along the easternmost segment of the Altyn Tagh Fault. Combined with previous studies, we suggest that movement on the western part of the Altyn Tagh Fault was probably initiated during the Oligocene (>30 Ma) and that fault propagation to its eastern tip occurred during the middle-late Miocene.

  13. Oligocene-Miocene magnetostratigraphy and magnetic anisotropy of the Baxbulak section from the Pamir-Tian Shan convergence zone

    NASA Astrophysics Data System (ADS)

    Tang, Zihua; Dong, Xinxin; Wang, Xu; Ding, Zhongli

    2015-10-01

    As the northernmost part of the Indo-Eurasian collision belt, the Pamir-Tian Shan convergence zone (PTCZ) is a strategic location for understanding intracontinental deformation. Here we present a magnetostratigraphic investigation of a continuous section from the Baxbulak region, to better constrain regional tectonic history. Rock magnetic analyses indicate that hematite and magnetite are the main carriers of characteristic remanent magnetization. The resulting polarity sequence allows a distinct correlation to the geomagnetic polarity time scale, showing that the section spans the interval of 29.1-20.7 Ma. Rock magnetic results further suggest that paramagnetic and antiferromagnetic minerals dominantly contribute to anisotropy of magnetic susceptibility (AMS) of the sequence. Thus, the AMS would indicate the preferred orientations of the mineral grains that are sensitive to tectonic strain. At around 26 Ma, the grouped principal minimum perpendicular to the bedding diverts to a girdle distribution in a N-S direction, demonstrating the overprint of tectonic fabric to previous weakly deformed sedimentary fabric. This would be interpreted as a marked increase in tectonic strain, consistent with various evidence from the Pamir and the neighboring basin that show the Pamir began to migrate northward. Moreover, the coincident changes in distribution of AMS principal axes, in both direction and magnitude, are comparable to the regional counterclockwise rotations observed from paleomagnetic data, likely related to orogenesis.

  14. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats.

    PubMed

    Li, Jianzhong; Xu, Jing; Xu, Weiheng; Qi, Yang; Lu, Yiming; Qiu, Lei; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage. PMID:26274957

  15. Neoproterozoic-Early Paleozoic tectonic evolution of the western part of the Kyrgyz Ridge (Northern Tian Shan) caledonides

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.; Ryazantsev, A. V.; Tretyakov, A. A.; Tolmacheva, T. Yu.; Yakubchuk, A. S.; Kotov, A. B.; Salnikova, E. B.; Kovach, V. P.

    2013-11-01

    The conducted comprehensive study of the western part of Kyrgyz Ridge provided new data on the structure, composition and age of Precambrian and Early Paleozoic stratified and igneous complexes. The main achievements of these studies are: (1) the establishment of a wide age spectrum, embracing the interval from the Neoproterozoic to the end of the Early Ordovician, for the clastic-carbonate units composing the cover of the Northern Tian Shan sialic massif; (2) the reconstruction and dating of Early and Late Cambrian ophiolite complexes formed in suprasubduction settings;(3) the discovery and dating of the Early-Middle Ordovician volcano-sedimentary complex of island-arc affinity; and (4) proof of the wide occurrence of Late Ordovician granitoids, some of which bear Cu-Au-Mo ores. The intricate thrust-and-fold structure of the western part of the Kyrgyz Ridge, formed in several stages from the Middle Cambrian (?) until the end of the Middle Ordovician, was scrutinized; the importance of the Early Ordovician stage was demonstrated. The intrusion of large batholiths in the early Late Ordovician accomplished the caledonide structural evolution. Formation of Neoproterozoic and Early Paleozoic caledonide complexes, which were possibly related to the protracted and entangled evolution of the active continental margin, ceased by the Late Ordovician.

  16. Seasonal deuterium excess in a Tien Shan ice core: Influence of moisture transport and recycling in Central Asia

    USGS Publications Warehouse

    Kreutz, K.J.; Wake, C.P.; Aizen, V.B.; DeWayne, Cecil L.; Synal, H.-A.

    2003-01-01

    Stable water isotope (??18O, ??D) data from a high elevation (5100 masl) ice core recovered from the Tien Shan Mountains, Kyrgyzstan, display a seasonal cycle in deuterium excess (d = ??D - 8*??18O) related to changes in the regional hydrologic cycle during 1994-2000. While there is a strong correlation (r2 = 0.98) between ??18O and ??D in the ice core samples, the regression slope (6.9) and mean d value (23.0) are significantly different than the global meteoric water line values. The resulting time-series ice core d profile contains distinct winter maxima and summer minima, with a yearly d amplitude of ???15-20???. Local-scale processes that may affect d values preserved in the ice core are not consistent with the observed seasonal variability. Data from Central Asian monitoring sites in the Global Network of Isotopes in Precipitation (GNIP) have similar seasonal d changes. We suggest that regional-scale hydrological conditions, including seasonal changes in moisture source, transport, and recycling in the Caspian/Aral Sea region, are responsible for the observed spatial and temporal d variability.

  17. Quantification of Both Normal and Right-Lateral Late Quaternary Activity Along the Kongur Shan Extensional System, Chinese Pamir

    NASA Astrophysics Data System (ADS)

    Chevalier, M. L.; Pan, J.; Liu, D.; Wang, M.; Lu, H.; Li, H.

    2014-12-01

    The Pamir Mountains, located at the western end of the Indo-Asian collision zone, are one of the most tectonically active regions in central Asia. The Kongur Shan extensional system (KES), located in the Chinese Pamir, accommodates EW extension due to the India/Asia collision and has been the focus on numerous Cenozoic studies, whereas there are very few late Quaternary studies. The KES is mostly normal, except towards its NW end, where it becomes right-lateral strike-slip, along the Muji segment. From Muji to Tashkorgan, we investigated 6 sites, where active normal and/or strike-slip faults cut and offset abandoned river channels or alluvial fans and terraces, which allows us to quantify both the normal and strike-slip motions at different locations along the KES. Our preliminary results yield vertical and right-lateral rates of ~1.8 and >3.2 mm/yr along the northern KES (Muji to Bulunkou) during the Holocene, and of ~1.9-2.7 and ~1 mm/yr along the southern KES (near Taheman) since ~30 ka. These preliminary rates, consistent with GPS data and Cenozoic rates, imply that the EW extension rate due to the northward indentation of the Pamir salient as well as due to the clockwise rotation of the rigid Tarim basin, is partly accommodated by the Muji-Tashkorgan pull-apart basin, and is faster in the north than in the south (from ~5 to ~2 mm/yr).

  18. The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, Yung-Chia; Chia, Yeeping

    2012-12-01

    The Hsueh-Shan tunnel is the fifth longest road tunnel in the world. During the excavation, the tunnel encountered several events of groundwater inrush, causing serious delay of the construction. Data on groundwater discharge to the tunnel were gathered from the monitoring system and their spatial and temporal variations were analyzed. The results of the integrated analysis of groundwater discharge and local precipitation indicated that the discharge increased rapidly when the cumulative rainfall exceeded 85 mm. The groundwater level recession rate after a rainfall event was found to be independent of rainfall intensity. A hydrogeological conceptual model was developed to simulate the long-term groundwater discharge to the tunnel. Sensitivity analysis was first conducted to identify sensitive parameters, and then the calibration process was accomplished by the automated parameter estimation method. The calibrated model was then used to evaluate the potential impact of tunnel excavation on the Feitsui reservoir; the average percentage loss of inflow to the Feitsui reservoir from 2006 to 2010 is estimated to be 1.74 %. The developed model can provide a tool for evaluating the regional hydrogeologic setting and the influence of tunnel construction on water resources.

  19. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats

    PubMed Central

    Li, Jianzhong; Xu, Jing; Xu, Weiheng; Qi, Yang; Lu, Yiming; Qiu, Lei; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage. PMID:26274957

  20. Millennium recurrence interval of morphogenic earthquakes on the Qingchuan fault, northeastern segment of the Longmen Shan Thrust Belt, China

    NASA Astrophysics Data System (ADS)

    Lin, Aiming; Yan, Bing; Rao, Gang

    2016-04-01

    The 2008 M w 7.9 Wenchuan produced a ˜285-300-km-long coseismic surface rupture zone, including a 60-km-long segment along the Qingchuan fault, the northeastern segment of the Longmen Shan Thrust Belt (LSTB), Sichuan Basin, central China. Field investigations, trench excavations, and radiocarbon dating results reveal that (i) the Qingchuan fault is currently active as a seismogenic fault, along which four morphogenic earthquakes including the 2008 Wenchuan earthquake occurred in the past ca. 3500 years, suggesting an average millennium recurrence interval of morphogenic earthquakes in the late Holocene; (ii) the most recent event prior to the 2008 Wenchuan earthquake took place in the period between AD 1400 and AD 1100; (iii) the penultimate paleoseismic event occurred in the period around 2000 years BP in the Han Dynasty (206 BC-AD 220); (iv) the third paleoseismic event occurred in the period between 900 and 1800 BC; and (v) at least three seismic faulting events occurred in the early Holocene. The present results are comparable with those inferred in the central and southwestern segments of the LSTB within which the Wenchuan magnitude earthquakes occurred in a millennium recurrence interval, that are in contrast with previous estimates of 2000-10,000 years for the recurrence interval of morphogenic earthquakes within the LSTB and thereby necessitating substantial modifications to existing seismic hazard models for the densely populated region at the Sichuan region.

  1. Shear jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2013-03-01

    For frictionless particles with purely repulsive interactions, there is a critical packing fraction ϕJ below which no jammed states exist. Frictional granular particles in the regime of ϕ <ϕJ act differently under shear: early experiments by Zhang & Behringer at Duke University show jammed states can be created by the application of shear stress. Compared to the states above ϕJ, the shear-jammed states (SJS) are mechanically more fragile, but they can resist shear. Formation of these states requires the anisotropic contact network as a backbone and these new states must be incorporated into a more general jamming picture (Bi et al Nature 2011). If time permits, I will present some new results from recent experiments at SJTU aimed towards understanding the more detailed nature of SJS and the transition from unjammed states to SJS. This work is in collaboration with Bob Behringer at Duke University, Dapeng Bi (now at Syracuse) and Bulbul Chakraborty at Brandeis University. The work at SJTU is in collaboration with Ling Zhang and several undergrads in the physics department.

  2. Shear jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2013-11-01

    For frictionless particles with purely repulsive interactions, there is a critical packing fraction ϕJ below which no jammed states exist. Recent experiments have shown that applying shear to a stress-free initial state can generate states which are either fragile or shear jammed depending on the way the force-network is percolated (Bi et al. Nature 2011). The nature of the jamming transition however is obscured because the existence of friction between the system and the third dimension. A new apparatus at SJTU has been designed to completely eliminate this friction by letting the particles float on the surface of a shallow water layer, which allows a study of the more detailed nature of the shear-jammed states and the transition from an unjammed state to a shear-jammed state. In this study, we also use high-precision force sensors to monitor the dynamical changes near the jamming transition. We further combine numerical simulations with the experiments to diagnose the nature of this jamming transition and its possible dependence on certain particle properties. The work at SJTU is in collaboration with Ling Zhang and Jie Zheng. The numerical simulations are in collaboration with Maobin Hu at Univ. of Sci. & Tech. of China.

  3. Shear history effect of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Shan, Lei; Chen, Kaikai; Zhou, Ming; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2015-10-01

    The rheological properties of magnetorheological (MR) fluids are usually determined by particle structures and polarized particle interactions. However, the particle structures may undergo various evolutions at different shear states and history; this evolution leads to shear stress hysteresis. Therefore, the shear history effect of MR fluids was experimentally investigated in this study. In a shear rate ramp test, the shear stress at low shear rate was higher in the shear rate ramp-down process than in the shear rate ramp-up process. If the next shear test started after a rest time, the start shear stress decayed slowly and approached the original value of the first test when the interval was long enough. The MR fluids also displayed obvious hysteresis loops during the current ramp test. A high shear rate and magnetic field could reduce the shear history effect by accelerating particle structure evolutions, and then hysteresis decreased. This effect was ascribed to the evolution of particle structures during different test modes and durations, and the evolution is governed by interparticle interactions, viscous forces, and the Brownian motions of particles. These results indicated that the accuracy of the force control of MR fluids could be enhanced under high magnetic fields and high shear rates. Thus, these factors should be considered in MR actuator designs.

  4. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  5. The effect of shearing strain-rate on the ultimate shearing resistance of clay

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1975-01-01

    An approach for investigating the shearing resistance of cohesive soils subjected to a high rate of shearing strain is described. A fast step-loading torque apparatus was used to induce a state of pure shear in a hollow cylindrical soil specimen. The relationship between shearing resistance and rate of shear deformation was established for various soil densities expressed in terms of initial void ratio or water content. For rate of shearing deformation studies, the shearing resistance increases initially with shearing velocity, but subsequently reaches a terminal value as the shearing velocity increases. The terminal shearing resistance is also found to increase as the density of the soil increases. The results of this investigation are useful in the rheological study of clay. It is particularly important for mobility problems of soil runways, since the soil resistance is found to be sensitive to the rate of shearing.

  6. Dynamics of Sheared Granular Materials

    NASA Astrophysics Data System (ADS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-11-01

    This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to

  7. Dynamics of Sheared Granular Materials

    NASA Technical Reports Server (NTRS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-01-01

    This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to

  8. Discontinuous Growth of Onion Structure under Shear

    NASA Astrophysics Data System (ADS)

    Fujii, Shuji

    Discontinuous growth process of the Multilamellar vesicle (so called Onion) driven by shear quench was investigated by viscometry and microscopy in detail. Discontinuous Onion growth was observed when the final shear rate corresponded to the intermediate shear rate domain where the shear-thickening and shear-thinning viscosity appeared. In this process, large Onion transformed back into the lamellae and then formed large Onion. Small Onion to lamellae degradation process might be achieved by two modes, first the disruption of the configurational order of densely packed Onions followed by the rupture of Onion as second process. The second process would be characterized by the shear-banding flow pattern composed of the Onion-Lα coexisting state. We suggest that the appearance of the shear-band structure and the Onion reformation developed from the shear-band might be scaled by considering the mechanical energy balance with the bending elastic energy of bilayers.

  9. Shear piezoelectricity in bone at the nanoscale

    NASA Astrophysics Data System (ADS)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2010-10-01

    Recent demonstration of shear piezoelectricity in an isolated collagen fibril, which is the origin of piezoelectricity in bone, necessitates investigation of shear piezoelectric behavior in bone at the nanoscale. Using high resolution lateral piezoresponse force microcopy (PFM), shear piezoelectricity in a cortical bone sample was studied at the nanoscale. Subfibrillar structure of individual collagen fibrils with a periodicity of 60-70 nm were revealed in PFM map, indicating the direct contribution of collagen fibrils to the shear piezoelectricity of bone.

  10. Regional based modeling approach for rainfall-induced debris flows in the continental-climatic Northern Tien Shan (SE Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Küfmann, Carola; Haas, Florian; Baume, Otfried; Becht, Michael

    2013-04-01

    The high mountain systems of Central Asia (Hindukush, Pamir and Tien Shan) are dominated by continental-climatic conditions. Nevertheless, westerly maritime air circulation and convective rainfalls during the summer season result in high rainfall intensities. In combination with a high availability of unconsolidated material rainfall triggered debris flows are prominent and intensive geomorphologic processes in these mountain areas. The presented study aims to figure out a regional based modeling approach for rainfall-induced debris flow processes based on combination of a disposition model for debris flow starting zones with process-flow models. The investigation area has a size of about 700 square kilometers and is situated in the Northern Tien Shan mountains in SE Kazakhstan (investigation areas: valleys of Prochadnaja, Big Almatinka, Little Almatinka and Left Talgar). The area is characterized by mountain forest zone, alpine meadows and high-alpine glaciated areas with the highest peaks at 4500m. In a first step the disposition (point of process triggering) of actual debris flows was analyzed. Due to different triggering mechanisms, the processes were divided into channel-type and slope-type debris flows. Detailed mapping of actual debris flows initiation areas and a GIS-based geostatistical disposition analysis are used to identify the main geofactor-variables and geofactor combinations which enhance the triggering of rainfall-induced debris flows. It can be shown that both, longtime variable geofactors (such as local geomorphology and hydrology) plays a significant role for triggering debris flows, as well as mid- and short time variable geofactors. Especially actual permafrost distribution and degradation plus glacier retreat comes into the focus of interest. This is most notably for rainfall induced slope-type debris flows which primarily are triggered in the discontinuous and continuous permafrost areas eroding younger unconsolidated material from actual

  11. Short-term glacier velocity changes as evidence for efficient erosion at West Kunlun Shan, NW Tibet

    NASA Astrophysics Data System (ADS)

    Furuya, M.; Yasuda, T.

    2011-12-01

    Glacier surface velocity is a combination of plastic internal deformation of the ice and basal slip, the latter of which consists of basal sliding over the bed and deformation of the bed itself. Because plastic ice cannot deform rapidly, short-term surface velocity variations are attributed to basal slip caused by reduction of the effective overburden pressure associated with changes in the hydrologic system. Such rapid signals detected over the past decade across the polar region, including Greenland Ice sheet, have been attracting a great deal of attention, because surface melting in response to global warming could further accelerate the glacier flow and potentially lead to a significant loss of glacier mass. It remains uncertain, however, how much short-term variability exists in other glaciers, particularly those in High Asia, that are equally important contributors to the eustatic sea-level rise. Moreover, short-term glacier velocity changes in tectonically active areas should have an important implication for the interaction between mountain building and surface erosion processes. This is because glacial erosion are directly controlled by basal slip rates and will limit the general height of mountain ranges according to the glacial buzz-saw hypothesis. The West Kunlun Shan (WKS) is the highest region in the world when averaged over 1000 km2, but has received less attention as a potential field for the interaction between tectonics and surface processes. This is probably due to the facts that not only is direct monitoring by fieldwork difficult in this region, but that no significant erosion was expected at such high-altitude cold and arid glaciers. Here, we report analysis of satellite radar imagery that reveals seasonal velocity fluctuations at the largest glacier (Duofeng glacier) in the West Kunlun Shan with deviations from the winter values by more than ~20 m/yr, which provides with a lower limit on basal slip; we processed Phased Array-type L

  12. Rock magnetic properties and paleoenvironmental implications of an 8-Ma Late Cenozoic terrigenous succession from the northern Tian Shan foreland basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Lu, Honghua; Zhang, Weiguo; Li, Youli; Dong, Chenyin; Zhang, Tianqi; Zhou, Zuyi; Zheng, Xiangmin

    2013-12-01

    In the northern Tian Shan foreland basin, northwestern China, the thick Cenozoic terrigenous succession is crucial for paleoclimate-environmental reconstruction of the Asian interior. Here we present a detailed rock magnetic investigation on 245 samples from the ~ 1200-m-thick Neogene Taxi He section with a magnetostratigraphic age span of ca. 8.0 to 2.0 Ma in the northern Tian Shan foreland basin. Our rock magnetic results indicate that the significant variations in composition, concentration and grain size of magnetic minerals occurred at ca. 6.0, 3.7 and 2.7 Ma. The comparable compositions of rare earth elements (REEs) throughout the Neogene Taxi He section suggest no significant modification of the source materials during the interval between ca. 8.0 and 2.0 Ma, and thus sediment provenance is not regarded as responsible for these observed variations in rock magnetic properties. Our further analyses show that the variations in magnetic properties of the Taxi He section are casually linked mainly with lithofacies transition due to range encroachment into foreland basin as well as climate aridification. Identified enhancement of aridification was chronologically constrained at ca. 6.0 and 2.7 Ma. Such climate events are important archives for reconstructing the Late Cenozoic paleoclimatic history of the Asian interior. Further comparison between different paleoclimate records clearly indicates that magnetic parameters such as S- 100mT are potentially effective proxy indices for paleoclimate-environmental reconstruction in the Tian Shan foreland basins and the nearby areas.

  13. Source model of the 2015 Mw 6.4 Pishan earthquake constrained by interferometric synthetic aperture radar and GPS: Insight into blind rupture in the western Kunlun Shan

    NASA Astrophysics Data System (ADS)

    He, Ping; Wang, Qi; Ding, Kaihua; Wang, Min; Qiao, Xuejun; Li, Jie; Wen, Yangmao; Xu, Caijun; Yang, Shaomin; Zou, Rong

    2016-02-01

    The Pishan, Xinjiang, earthquake on 3 July 2015 is the one of largest events (Mw 6-7) that has occurred along the western Kunlun Shan, northwestern edge of the Tibetan Plateau in recent time. It involved blind thrusting at a shallow depth beneath the range front, providing a rare chance to gain insights into the interaction between the Tarim Basin and the Tibetan Plateau. Here we present coseismic ground displacements acquired by high-resolution ALOS-2 SAR imagery and derived from GPS resurveys on several near-field geodetic markers after the event. We observed a maximum displacement exceeding 10 cm in the epicentral region. Analysis of the data based on a finite fault model indicates that coseismic slip occurred on a subsurface plane of 22 km × 8 km in size with a dip of about 27° to the north and a strike of 114°, representing partial break of one ramp fault buried in Paleozoic strata at 8-16 km depths beneath the foothill of the western Kunlun Shan. This blind rupture is characterized largely by a compact thrusting patch with a peak slip of 0.63 m, resulting in a stress drop of 2.3 MPa. The source model yields a geodetic moment of 5.05 × 1018 N · m, corresponding to Mw 6.4. The Pishan earthquake suggests a northward migration of deformation front of the Tibetan Plateau onto the Tarim Basin. Our finding highlights slip along ramp-décollement faults to build up the western Kunlun Shan as the Tarim slab is subducting beneath western Tibet.

  14. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1988-01-01

    The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.

  15. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1989-01-01

    The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.

  16. Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China

    NASA Astrophysics Data System (ADS)

    Huang, Wei-liang; Yang, Xiao-ping; Li, An; Pierce, Ian K. D.; Thompson, Jessica A.; Angster, Stephen J.; Zhang, Ling

    2015-11-01

    How strain is distributed and partitioned on individual faults and folds on the margins of intermontane basins remains poorly understood. The Haermodun (Ha) anticline, located along the northern margin of the intermontane Yanqi Basin on the southeastern flank of the Tian Shan, preserves flights of passively deformed alluvial terraces. These terraces cross the active anticline and can be used to constrain local crustal shortening and uplift rates. Geologic and geomorphic mapping, in conjunction with high-resolution dGPS topographic surveys, reveal that the terrace surfaces are perpendicular to the fold's strike, and display increased rotation with age, implying that the anticline has grown by progressive limb rotation. Combined with the open sinusoidal curve model and excess area method, we calculated uplift and shortening values for each terrace since abandonment. Using the published exposure ages of each terrace, we found the vertical uplift rate gradually decreased from ∼0.43 to ∼0.11 mm/a, whereas the shortening rate remained constant at ∼0.3 mm/a since the anticline began to grow. A fresh fault scarp, 0.4 ± 0.1 m high, is visible along the southern portion of the Ha anticline, and is interpreted to be the most recent evidence of seismic activity. Using an estimated rupture area and the length of the fresh offset created by this earthquake, we estimate that the main thrust underlying the Ha anticline has generated moderate (M < 7) earthquakes in the past. The shortening rates of the Ha anticline from geomorphology agree with current GPS measurements cover-over the fold, and highlight the importance of determining slip rates for individual faults in order to resolve patterns of strain distribution across intermontane belts.

  17. Evaluating fluvial terrace riser degradation using LiDAR-derived topography: An example from the northern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Wei, Zhanyu; Arrowsmith, J. Ramon; He, Honglin

    2015-06-01

    The morphological degradation of fluvial terrace risers provides a constraint to terrace chronology. In this study, we morphologically date the terrace risers along the Kuitun River on the north flank of the Tian Shan, China and subsequently discuss possible relationships between terrace formation and the past regional climate changes and tectonic activity of the Dushanzi fault-related fold. To do this, 159 topographic profile swaths of terrace risers were extracted from LiDAR-derived DEM and were analysed to determine a range of best fitting morphological ages. Through Monte Carlo simulation, a locally applicable sediment transport coefficient (diffusivity) was calibrated as 5.5 ± 1.6 m2/ky given the morphological age of the T1/T2 riser and its independently known age. Taking this calibrated coefficient, we estimate age ranges of 11.6 ± 3.4 ka, 6.5 ± 1.4 ka, 5.3 ± 1.1 ka, and 4.2 ± 1.2 ka for terraces T3, T4, T5, and T6, respectively, under the assumption that the age of the riser is close to the abandonment age of the lower surface. These new terrace ages, combining climate proxy records from the oxygen isotope curve from the Guliya ice cap and paleoearthquake events in the Dushanzi fault related fold, suggest that tectonic activity may be an important factor in the formation of lower terraces within the growing anticlines, while in more extensive areas beyond anticlines, climate changes controlled the main deposition and incision events in the present study area, and thus terrace formation of T1-T3.

  18. Active flexural-slip faulting: A study from the Pamir-Tian Shan convergent zone, NW China

    NASA Astrophysics Data System (ADS)

    Li, Tao; Chen, Jie; Thompson, Jessica A.; Burbank, Douglas W.; Yang, Xiaodong

    2015-06-01

    The flexural-slip fault (FSF), a type of secondary fault generated by bed-parallel slip, occurs commonly and plays an important role in accommodating fold growth. Although the kinematics and mechanics of FSFs are well studied, relatively few field observations or geometric models explore its geomorphic expression. In the Pamir-Tian Shan convergent zone, NW China, suites of well-preserved FSF scarps displace fluvial terraces in the Mingyaole and Wulagen folds. Integrating interpretations of Google Earth images, detailed geologic and geomorphic mapping, and differential GPS measurements of terrace surfaces, we summarize geomorphic features that typify these faults and create kinematic models of active flexural-slip faulting. Our study indicates the following: (i) FSF scarps commonly occur near synclinal hinges, irrespective of whether (a) the dip direction of beds on either side of the hinge is unidirectional or in opposite directions, (b) the hinge is migrating or fixed, or (c) the hinge shape is narrow and angular or wide and curved. (ii) Active FSFs are likely to produce higher scarps on steeper beds, whereas lower or no topographic scarps typify gentler beds. (iii) Tilt angles of the terrace surface displaced above FSFs progressively decrease farther away from the hinge, with abrupt changes in slope coinciding with FSF scarps; the changes in tilt angle and scarp height have a predictable geometric relationship. (iv) Active FSFs can accommodate a significant fraction of total slip and play a significant role in folding deformation. (v) Active FSFs may be used to assess seismic hazards associated with active folds and associated blind thrusts.

  19. Identification and monitoring of potentially dangerous glacial lakes in northern Tien Shan (Kazakhstan/Kyrgyzstan) using geoinformation techniques

    NASA Astrophysics Data System (ADS)

    Bolch, Tobias; Pradhan, Biswajeet; Peters, Juliane; Buchroithner, Manfred

    2010-05-01

    Like in many other parts of the world, the glaciers in northern Tien Shan are receding and the permafrost is thawing and concomitant glacial lakes are developing. Outbursts of these glacial lakes pose severe hazards for the society. Over the last decade, several outbursts in this seismically active region are documented. Multi-temporal space imageries are an ideal means to study and monitor glaciers and glacial lakes over larger areas. Morphometric analyses and modelling approaches allow the estimation of the potential danger of glacial lake outburst floods (GLOFs). In this paper, we present a comprehensive approach to identify glaciers and the potentially dangerous glacial lakes based on multi-temporal space imagery from 1972 (Corona KH-4B), 1973 (Landsat MSS), 1991 (Landsat TM), 1999 (Landsat ETM+), 2000/2001/ (ASTER) 2005, and 2008 (Landsat TM) as well as morphometric analysis and modelling. The identification and monitoring of glacial lakes were carried out automatically using image ratioing and the Normalized Difference Water Index (except for the panchromatic Corona images). The results were evaluated and, if necessary, manually edited. The probability of the growth of a glacial lake was estimated by analysing glacier changes, glacier motion, and slope analysis. A permafrost model based on morphometric parameters, solar radiation and regionalised temperature conditions aided us to asses the effect of probable permafrost thawing. A GIS-based model was applied in order to simulate the possible downstream impact of a lake outburst. The findings of our studies indicate a continuous glacier recession with an increasing number and area of glacial lakes. This possibly leads into a higher risk of a glacial lake outburst. Finally, the lakes are classified according to their outburst probability and their downstream impact.

  20. Can AMS ellipsoid parameters be used to constrain Cenozoic uplift of the Tian Shan Range, Western China?

    NASA Astrophysics Data System (ADS)

    Huang, B.; Piper, J. D.; Zhu, R.

    2006-12-01

    Magnetostratigraphic study on 1006 horizons in Paleogene and Neogene sediments between the upper Kumugeliemu Formation and the base of the Kuche Formation within the Kuche Depression of the Tarim Basin, NW China, identifies 41 pairs of normal and reversed polarity zones and two substantial increases in accumulation rate at ca. 16-17 and 7 Ma. The observed nature of the AMS fabric is comparable to embryonic magnetic fabrics in weakly deformed mudrocks and the height-dependent changes of AMS ellipsoids, Pj-T data and the distribution of k3 (and k2) directions can be related to a general Pj-T path for the development of AMS ellipsoids in weakly deformed rocks with increasing deformation intensity. The dominant prolate shapes and nearly N-S girdle of the k3 directions in rocks accumulated before ca. 15 Ma are in the older and more deeply buried part of the succession presumably exposed to more intense strains than the succession accumulated after ca. 15 Ma. This implies that the rocks in this succession have been subjected to incipient deformation with the succession accumulated before ca. 15 Ma recording the effects of compressive deformation. The changes in rock magnetic susceptibility parameters could therefore be used as proxies for changes in sediment provenance accompanying changes in the regional tectonic regime. The magnetostratigraphic correlation proposed in this study implies that the southern Tian Shan Range was reactivated at ca. 20 Ma with initiation of uplift presumably induced by tectonic stress imparted during the interval ca. 20-15 Ma.

  1. Rock magnetic expression of fluid infiltration in the Yingxiu-Beichuan fault (Longmen Shan thrust belt, China)

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Yang, Xiaosong; Duan, Qingbao; Chen, Jianye; Dekkers, Mark J.

    2016-03-01

    Fluid infiltration within fault zones is an important process in earthquake rupture. Magnetic properties of fault rocks convey essential clues pertaining to physicochemical processes in fault zones. In 2011, two shallow holes (134 and 54 m depth, respectively) were drilled into the Yingxiu-Beichuan fault (Longmen Shan thrust belt, China), which accommodated most of the displacement of the 2008 Mw 7.9 Wenchuan earthquake. Fifty-eight drill core samples, including granitic host rock and various fault rocks, were analyzed rock-magnetically, mineralogically, and geochemically. The magnetic behavior of fault rocks appears to be dominated by paramagnetic clay minerals. Magnetite in trace amounts is identified as the predominant ferrimagnetic fraction in all samples, decreasing from the host rock, via fault breccia to (proto-)cataclasite. Significant mass-losses (10.7-45.6%) are determined for the latter two with the "isocon" method. Volatile contents and alteration products (i.e., chlorite) are enriched toward the fault core relative to the host rocks. These observations suggest that magnetite depletion occurred in these fault rocks—exhumed from the shallow crust—plumbed by fluid-assisted processes. Chlorite, interpreted to result from hydrothermal activity, occurs throughout almost the entire fault core and shows high coefficients of determination (R2 > 0.6) with both low and high-field magnetic susceptibility. Close relationships, with R2 > 0.70, are also observed between both low and high-field magnetic susceptibility and the immobile elements (e.g., TiO2, P2O5, MnO), H2O+, and the calculated mass-losses of fault rocks. Hence, magnetic properties of fault rocks can serve as proxy indicators of fluid infiltration within shallow fault zones.

  2. PM₁₀ concentration in urban atmosphere around the eastern Tien Shan, Central Asia during 2007-2013.

    PubMed

    Wang, Shengjie; Zhang, Mingjun; Minguillón, María Cruz; Zhang, Xiaoyu; Feng, Fang; Qiu, Xue

    2015-05-01

    Based on the daily records from 16 cities around the eastern Tien Shan (Tianshan Mountains), central Asia from 2007 to 2013, the spatial pattern and seasonal/interannual variation of urban particulate matter up to 10 μm in size (PM10) concentrations and influencing factors were analyzed. Annual mean PM10 concentrations (±standard deviation) in most cities on the northern slope mainly range from 55 ± 28 μg/m(3) to 92 ± 75 μg/m(3), and those on the southern slope range between 96 ± 65 and 195 ± 144 μg/m(3). PM10 concentrations are maxima in winter on the northern slope, while they maximize in springtime on the southern slope. There is an increasing trend in annual mean concentrations during the period 2007-2013, which is not statistically significant at the 0.05 level. Urban PM10 concentration in the study region is jointly influenced by anthropogenic emission and regional natural processes, especially dust events and precipitation. The northern slope usually has heavy anthropogenic air pollution (mostly in winter) and relatively rich precipitation especially in summer, and the southern slope always suffers more frequent dust events (mostly in spring) and less precipitation. Modeled back-trajectory indicated that the Taklimakan desert source can greatly increase the PM10 concentration on the southern slope, and the mountain ranges may hinder the transport of dust to the northern slope. PMID:25471722

  3. Cosmogenic Be-10 Constraints of the "Little Ice Age" Glacial Advances in the Eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, G.; Chen, Y.

    2014-12-01

    The Little Ice Age (LIA) glacial advances, represented as a set of "fresh and bouldery" moraines a few hundred meters downstream from modern glaciers, have been widely recognized in Central Asian highlands. However, few studies have been conducted to constrain the formation ages of these moraines. Glaciers provide critical freshwater supply in Central Asia, so understanding the dynamics of glaciers, especially in the past a few hundreds of years, is of great importance. In a NSF funded project reported here, we aim to constrain the formation ages of these putative LIA moraines in the eastern Tian Shan, China, using cosmogenic 10Be surface exposure dating. Our initial results showed 10Be exposure ages ranging from 0.17±0.10 ka to 0.28±0.10 ka, from 0.38±0.03 ka to 0.86±0.08 ka, and from 0.36±0.04 ka to 0.41±0.10 ka for these moraines from the Bayinbuluke Valley in the Nalati Range, the Turgan Valley in the Karlik Range, and the Daxi Valley in the Tianger Range, respectively. We are currently processing 30 samples for the "LIA" moraines in six valleys located in the Heigou Valley of the Bogeda Range, the Haxilegen Pass in the Borohoro Range, and the Urumqi River headwaters in the Tianger Range. Except for one older age of 5.1±0.6 ka, which might be an outlier, our recently measured four ages range from 0.19±0.04 ka to 0.61±0.10 ka. These ages suggest that these fresh moraines were formed during the LIA, but glaciers might advance to their maximum extents slightly differently in different sites. This work demonstrates the importance of absolute dating in reconstructing past glacial fluctuations, and provides quantitative evidence in assessing the impact of glacier change on the ecosystem and society in recent centuries.

  4. Three-dimensional structure of the crust in the central Tien Shan and implications for the geodynamic process of continental mountain building

    NASA Astrophysics Data System (ADS)

    Omuralieva, A.; Nakajima, J.; Hasegawa, A.

    2006-12-01

    Applying a tomographic method to arrival-time data from shallow local earthquakes registered by Kyrgyz seismic NETwork (KNET), the three-dimensional (3D) velocity structure of the crust beneath Central Tien Shan has been studied. Kyrgyzstan occupies western and central parts of the Tien-Shan and northern Pamir which are prominent consequences of India-Asia Collision surrounded by relatively stable Kazakh shield, Tarim Basin and Turan plate. Accurate and precise tomographic imaging helps us to better understand dynamics of the mountain building, interaction of these tectonic blocks associated with simultaneous mountain building and crustal deformation processes in this complicated region. This study is the first attempt to investigate crustal structure of the Central Tien Shan by means of relatively new data set. Study area is enclosed by 42.00-43.50N and 73.50-76.50E owing to dense station distribution and ray coverage. Arrival time data from ~1500 local earthquakes recorded by a broadband network KNET consisting of 10 stations located in the northern part of Kyrgyzstan during 1995-2005 have been used. We selected earthquakes as uniform as possible in the study area. Most of the earthquakes are located in a depth range of 10 and 20 km. The tomography method by Zhao et al. (JGR, 1992) has been used in this study. We set all layers of grid-net up to Moho discontinuity in the upper and lower crust with spacing 5 km and 10 km depths, respectively. The spacing between grid nodes is 0.3 degree (about 30 km) in horizontal direction. The total number of grid nodes is ~400. The 3-D structure of the upper crust reveals thick sediments within each of the major depression in the region bounded by high-V zone that are believed to be basement. The study area is characterized by an alternation of high-V and low-V layers beneath ranges and basins. The tomographic results exhibit considerable amount of crustal heterogeneities, which confirms the tectonic complexities of the study

  5. Controlled shear/tension fixture

    DOEpatents

    Hsueh, Chun-Hway; Liu, Chain-tsuan; George, Easo P.

    2012-07-24

    A test fixture for simultaneously testing two material test samples is provided. The fixture provides substantially equal shear and tensile stresses in each test specimens. By gradually applying a load force to the fixture only one of the two specimens fractures. Upon fracture of the one specimen, the fixture and the load train lose contact and the second specimen is preserved in a state of upset just prior to fracture. Particular advantages of the fixture are (1) to control the tensile to shear load on the specimen for understanding the effect of these stresses on the deformation behavior of advanced materials, (2) to control the location of fracture for accessing localized material properties including the variation of the mechanical properties and residual stresses across the thickness of advanced materials, (3) to yield a fractured specimen for strength measurement and an unfractured specimen for examining the microstructure just prior to fracture.

  6. Layered Systems Under Shear Flow

    NASA Astrophysics Data System (ADS)

    Svenšek, Daniel; Brand, Helmut R.

    We discuss and review a generalization of the usual hydrodynamic description of smectic A liquid crystals motivated by the experimentally observed shear-induced destabilization and reorientation of smectic A like systems. We include both the smectic layering (via the layer displacement u and the layer normal hat{p}) and the director hat{n} of the underlying nematic order in our macroscopic hydrodynamic description and allow both directions to differ in non equilibrium situations. In a homeotropically aligned sample the nematic director couples to an applied simple shear, whereas the smectic layering stays unchanged. This difference leads to a finite (but usually small) angle between hat{n} and hat{p}, which we find to be equivalent to an effective dilatation of the layers. This effective dilatation leads, above a certain threshold, to an undulation instability of the layers with a wave vector parallel to the vorticity direction of the shear flow. We include the couplings of the velocity field with the order parameters for orientational and positional order and show how the order parameters interact with the undulation instability. We explore the influence of the magnitude of various material parameters on the instability. Comparing our results to available experimental results and molecular dynamic simulations, we find good qualitative agreement for the first instability. In addition, we discuss pathways to higher instabilities leading to the formation of onions (multilamellar vesicles) via cylindrical structures and/or the break-up of layers via large amplitude undulations.

  7. Amphiphilic Systems under shear flow

    NASA Astrophysics Data System (ADS)

    Guo, Hongxia

    2008-03-01

    Phase behavior and the related physical and rheological properties of the amphiphilic systems including liquid crystals, diblock copolymers and surfactants are of wide-spread interest, e.g. in industrial processing of layered materials or biological applications of lipid membranes. For example, submitted to an applied shear flow, these lamellae show an interesting coupling of the layer orientation and the flow field. Despite an extensive literature dealing with the shear-induced transition, the underlying causes and mechanisms of the transition remain largely speculative. The experimental similarities between systems of different molecular constituents indicate, that the theoretical description of these reorientations can be constructed, from a common generic basis. Hence one can develop an efficient computer model which is able to reproduce the properties pertinent to real amphiphilic systems, and allows for a large-scale simulation. Here, I employed a simplified continuum amphiphilic computer model to investigate the shear--induced disorder-order, order-order and alignment flipping by large-scale parallelized (none) equilibrium molecular dynamics simulation

  8. Haptic Edge Detection Through Shear

    NASA Astrophysics Data System (ADS)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  9. Shear Strength of Aluminum Oxynitride

    NASA Astrophysics Data System (ADS)

    Dandekar, Dattatraya P.; Vaughan, Brian A. M.; Proud, William G.

    2007-06-01

    Aluminum oxynitride (AlON) is a transparent, polycrystalline cubic spinel. The results of investigations^1-4 on shock response of AlON permit determination of the equation of state, and shear strength retained under shock compression. Whereas the values of the HEL of AlON holds no surprises, the inelastic response of AlON reported in Ref. 1-4 differ significantly and is stress dependent. The results of Ref. 1-2 show that AlON retains a shear strength of 3 to 4 GPa when shocked up to around 20 GPa, but the results of Ref, 3-4 seem to suggest a possible loss of shear strength when shocked to 16 GPa and beyond. Our analysis examines the observed differences in the inelastic response of AlON reported in these four studies . 1. J. U. Cazamias, et. al., in Fundamental Issues and Applications of Shock-Wave and High Strain Rate Phenomena, Eds. Staudhammer, Murr, and Meyers, Elsevier, NY, 173 (2001). 2. B. A. M. Vaughn, et.al., Shock Physics, Cavendish Laboratory, Report SP/1092 (2001) 3. T. Sekine, et.al., J. Appl. Phys. 94, 4803 (2003). 4. T. F. Thornhill, et.al., Shock Compression of Matter-2005, Eds. Furnish, Elert, Russell, White, AIP, NY, 143 (2006).

  10. Haptic Edge Detection Through Shear

    PubMed Central

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-01-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331

  11. Kinematics and shear heat pattern of ductile simple shear zones with `slip boundary condition'

    NASA Astrophysics Data System (ADS)

    Mulchrone, Kieran F.; Mukherjee, Soumyajit

    2016-04-01

    Extrusion by Poiseuille flow and simple shear of hot lower crust has been deciphered from large hot orogens, and partial-slip boundary condition has been encountered in analogue models. Shear heat and velocity profiles are deduced from a simplified form of Navier-Stokes equation for simple shear together with extrusive Poiseuille flow and slip boundary condition for Newtonian viscous rheology. A higher velocity at the upper boundary of the shear zone promotes higher slip velocity at the lower boundary. The other parameters that affect the slip are viscosity and thickness of the shear zone and the resultant pressure gradient that drives extrusion. In the partial-slip case, depending on flow parameters (resultant pressure gradient, density and viscosity) and thickness of the shear zone, the velocity profiles can curve and indicate opposite shear senses. The corresponding shear heat profiles can indicate temperature maximum inside shear zones near either boundaries of the shear zone, or equidistant from them.

  12. Apparatus for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Metz, III, Curtis F.

    1980-01-01

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  13. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  14. Transverse shear stiffness of laminated anisotropic shells

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.

  15. Magnetic shear. II - Hale region 17244

    NASA Technical Reports Server (NTRS)

    Athay, R. G.; Jones, H. P.; Zirin, H.

    1985-01-01

    A B-gamma(delta) sunspot group with growing delta-spots of trailing polarity shows evidence in H-alpha filament structure of a transition from a state of weak magnetic shear to a state of strong shear. The shear develops in the chromosphere and transition region to the corona overlying the photospheric magnetic neutral line separating the delta-spots from the leading polarity at a time when the delta-spots are undergoing rapid growth. Several major flares occur along the sheared portion of the neutral line following the shear development. Other segments of the neutral line far removed from the delta-spots show similar evidence of shear in the H-alpha filament structure and in C IV velocity patterns as well. These 'quiescent' regions of shear are relatively steady or decaying with time and show very little related activity.

  16. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China

    NASA Astrophysics Data System (ADS)

    Han, Bao-Fu; He, Guo-Qi; Wang, Xue-Chao; Guo, Zhao-Jie

    2011-12-01

    The Tian Shan of Central Asia is located in the southwestern part of the Central Asian Orogenic Belt (CAOB, also known as the Central Asian Orogenic System or CAOS). Formation of the South Tian Shan Orogen is a diachronous, scissors-like process during the Paleozoic and its western segment in China-Kyrgyzstan contiguous regions is accepted as the site of the final collision zone between the Tarim craton to the south and the Kazakhstan-Yili terrane to the north in the Late Paleozoic. However, when the final collision occurred is still in hot debate. Particularly, an end-Permian to Triassic collisional model is recently proposed for the western segment of the South Tian Shan Orogen. This even leads to the speculation that the complicated accretion-collision processes in the Northern Xinjiang of western China, which involved the terrane amalgamation in the East and West Junggar and the collision between the Altai and Kazakhstan terranes and between the Yili-Central Tian Shan and Junggar terranes, were finally terminated during the end-Permian to mid-Triassic, rather than the Late Paleozoic as usually accepted. Obviously, the western segment of the South Tian Shan Orogen also presents the key issue associated with the termination time of accretion-collision processes in the Northern Xinjiang. A collisional model that is derived from the knowledge of the Himalayan Orogen is helpful for establishing a sequence of major tectonothermal events in the western segment of the South Tian Shan Orogen and constraining the time of collision between the Tarim craton and the Kazakhstan-Yili terrane. For the western segment of the South Tian Shan Orogen, the end-Permian to Triassic collisional model is mainly based on Triassic zircon U-Pb ages of 234 to 226 Ma from the West Tian Shan eclogite and two suspected Late Permian radiolarian specimens Albaillella excelsa Ishiga, Kito and Imoto (?) from the Baleigong ophiolitic mélange. Actually, the poor preservation of the two radiolarian

  17. Late Holocene activity and historical earthquakes of the Qiongxi thrust fault system in the southern Longmen Shan fold-and-thrust belt, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Maomao; Jia, Dong; Lin, Aiming; Shen, Li; Rao, Gang; Li, Yiquan

    2013-01-01

    The 12 May 2008 Wenchuan earthquake (Mw 7.9) generated a 285-km-long surface rupture zone along the Longmen Shan fold-and-thrust belt (LSFTB) on the eastern margin of Tibetan Plateau. The Wenchuan earthquake did not rupture into the southwestern Longmen Shan, along which there is no evidence for large paleo- or historical earthquakes. Seismic reflection profiles and field investigations reveal that the 50-km-long Qiongxi thrust fault (QTF) of the southern LSFTB is currently active. The QTF consists of three west-dipping ramp segments overlain by fault-bend folds rooted in a regional detachment that transfers shortening from the mountain belt into the Sichuan basin. Trench investigations, coupled with interpretations of seismic reflection profiles and radiocarbon results, show that a recent surface-rupturing earthquake occurred on the QTF during the Late Ming to Qing Dynasty, between AD 1600 and 1800. In addition, seismic reflection profile and topographic analysis indicate the presence of a subtle topographic, produced by kink-band migration folding above a fault bend at about 5 km depth. These findings confirm that the QTF is a significant seismic hazard, and that it should be incorporated into current regional seismic hazard models for the densely populated Sichuan basin.

  18. Paleo-Climate and Glaciological Reconstruction in Central Asia through the Collection and Analysis of Ice Cores and Instrumental Data from the Tien Shan

    SciTech Connect

    Vladimir Aizen; Donald Bren; Karl Kreutz; Cameron Wake

    2001-05-30

    While the majority of ice core investigations have been undertaken in the polar regions, a few ice cores recovered from carefully selected high altitude/mid-to-low latitude glaciers have also provided valuable records of climate variability in these regions. A regional array of high resolution, multi-parameter ice core records developed from temperate and tropical regions of the globe can be used to document regional climate and environmental change in the latitudes which are home to the vase majority of the Earth's human population. In addition, these records can be directly compared with ice core records available from the polar regions and can therefore expand our understanding of inter-hemispheric dynamics of past climate changes. The main objectives of our paleoclimate research in the Tien Shan mountains of middle Asia combine the development of detailed paleoenvironmental records via the physical and chemical analysis of ice cores with the analysis of modern meteorological and hydrological data. The first step in this research was the collection of ice cores from the accumulation zone of the Inylchek Glacier and the collection of meteorological data from a variety of stations throughout the Tien Shan. The research effort described in this report was part of a collaborative effort with the United State Geological Survey's (USGS) Global Environmental Research Program which began studying radionuclide deposition in mid-latitude glaciers in 1995.

  19. Understanding long-term strain accommodation in the Longmen Shan region: Insights from 3D thermo-kinematic modelling of thermochronometry data

    NASA Astrophysics Data System (ADS)

    Tian, Yuntao; Vermeesch, Pieter; Carter, Andy

    2015-04-01

    The Longmen Shan marks the steep eastern margin of the Tibetan Plateau and three parallel NW-dipping fault zones define its structural geometry. From foreland (southeast) to hinterland (northwest), the main faults are the Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maowen fault. The exhumation pattern constrained by 1-dimensional modelling made from a compilation of published and unpublished thermochronometry data shows a strong structural control, with highest amounts of exhumation in the hinterland region, a pattern that is characteristic of out-of-sequence thrusting (Tian et al., 2013, Tectonics, doi:10.1002/tect.20043). 3-dimensional thermo-kinematic modelling of these data suggests that the listric Longmen Shan faults merge into a detachment at a depth of ~20-30 km. The models require a marked decrease in slip-rate along the frontal Yingxiu-Beichuan in the late Miocene, whereas the slip-rate along the hinterland Wenchuan-Maowen fault remained relatively constant. These results reveal the long-term pattern of strain accommodation and have important implications for hazard risk assessment in the region. Further, the out-of-sequence thrusting architecture highlights the importance of upper crustal shortening and extrusion in forming this plateau margin.

  20. Magnetogenesis through Relativistic Velocity Shear

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  1. Turbulence in homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Pumir, Alain

    1996-11-01

    Homogeneous shear flows with an imposed mean velocity U=Syx̂ are studied in a period box of size Lx×Ly×Lz, in the statistically stationary turbulent state. In contrast with unbounded shear flows, the finite size of the system constrains the large-scale dynamics. The Reynolds number, defined by Re≡SL2y/ν varies in the range 2600⩽Re⩽11300. The total kinetic energy and enstrophy in the volume of numerical integration have large peaks, resulting in fluctuations of kinetic energy of order 30%-50%. The mechanism leading to these fluctuations is very reminiscent of the ``streaks'' responsible for the violent bursts observed in turbulent boundary layers. The large scale anisotropy of the flow, characterized by the two-point correlation tensor depends on the aspect ratio of the system. The probability distribution functions (PDF) of the components of the velocity are found to be close to Gaussian. The physics of the Reynolds stress tensor, uv, is very similar to what is found experimentally in wall bounded shear flows. The study of the two-point correlation tensor of the vorticity <ωiωj> suggests that the small scales become isotropic when the Reynolds number increases, as observed in high Reynolds number turbulent boundary layers. However, the skewness of the z component of vorticity is independent of the Reynolds number in this range, suggesting that some small scale anisotropy remains even at very high Reynolds numbers. An analogy is drawn with the problem of turbulent mixing, where a similar anisotropy is observed.

  2. Structure of the crust and mantle down to 700 km depth beneath the East Qaidam basin and Qilian Shan from P and S receiver functions

    NASA Astrophysics Data System (ADS)

    Feng, M.; Kumar, P.; Mechie, J.; Zhao, W.; Kind, R.; Su, H.; Xue, G.; Shi, D.; Qian, H.

    2014-12-01

    For a period of about 1 yr between the summers of 2010 and 2011, 25 broad-band seismographs were deployed in a roughly linear array across the eastern end of the Qaidam basin and the Qilian Shan in the northeastern Tibetan plateau. This region is probably the most suitable place to study the ongoing convergence interaction between the high Tibetan plateau and the main Asian continental plate. Low-frequency P receiver function analysis of the data provides an image of the crust and mantle down to 700 km depth. In addition to the Moho at 45-65 km depth beneath the profile, the 410 and 660 km discontinuities bounding the mantle transition zone can be identified at 400-410 and 650-660 km depths, respectively. A possible increase in temperature in the upper mantle thought to exist beneath the northern part of the high Tibetan plateau is thus confined to this part of the plateau and lower upper-mantle temperatures similar to those beneath southern Tibet occur beneath the Qaidam basin and Qilian Shan. When higher frequencies are included in the P receiver function analysis, a positive Ps converter dipping down to the south from 70-75 km depth at 37.9°N to about 110 km depth at 36°N is imaged. As this feature is only seen in high-frequency images and not in the low-frequency image, it is modelled as the positive Ps conversion from the base of an approximately 5-km-thick anisotropic layer at the top of the Asian mantle lithosphere which is currently subducting. This south-dipping converter continues to the south on the INDEPTH IV profile. S receiver function analysis completes the image of the structure below the Qilian Shan profile with the identification of the lithosphere-asthenosphere boundary (LAB). The LAB of the Asian Plate is identified for a reference slowness of 6.4 s deg-1 at 12-14 s (105-125 km depth) between 38 and 41°N below the northern part of the S receiver function profile. To the south it increases in depth such that it is at about 19 s (170 km depth

  3. Magnetorheological Shear Flow Near Jamming

    NASA Astrophysics Data System (ADS)

    Vågberg, Daniel; Tighe, Brian

    2015-03-01

    Flow in magnetorheological (MR) fluids and systems near jamming both display hallmarks of complex fluid rheology, including yield stresses and shear thinning viscosities. They are also tunable, which means that both phenomena can be used as a switching mechanism in ``smart'' fluids, i.e. fluids where properties can be tuned rapidly and reversibly by changing external parameters. We use numerical simulations to investigate the rheological properties of MR fluids close to the jamming transition as a function of the applied field and volume fraction. We are especially interested in the crossover region where both phenomena are needed to describe the observed dynamics. Funded by the Dutch Organization for Scientific Research (NWO).

  4. Conductor shears as iceberg encroaches

    SciTech Connect

    Not Available

    1984-10-01

    Operators in the Arctic regions must protect wellheads from encroaching icebergs and icepack sheets. Diverting ice masses and excavating large holes below scour depth is expensive. Now an alternate approach allows the conductor to shear, shuts in the well, and provides a method of re-entering the well. The new system has been successfully used by Mobil on two exploratory wells in the Hibernia field off eastern Canada. The wells used 18 3/4-in. wellheads rated at 10,000 psi with 36-in. conductor pipe. The performance of the system is discussed.

  5. Temporal oscillations of the shear stress and scattered light in a shear-banding--shear-thickening micellar solution.

    PubMed

    Azzouzi, H; Decruppe, J P; Lerouge, S; Greffier, O

    2005-08-01

    The results of optical and rheological experiments performed on a viscoelastic solution (cetyltrimethylammonium bromide + sodium salicylate in water) are reported. The flow curve has a horizontal plateau extending between two critical shear rates characteristic of heterogeneous flows formed by two layers of fluid with different viscosities. These two bands which also have different optical anisotropy are clearly seen by direct observation in polarized light. At the end of the plateau, apparent shear thickening is observed in a narrow range of shear rates; in phase oscillations of the shear stress and of the first normal stress difference are recorded in a shearing device operating under controlled strain. The direct observation of the annular gap of a Couette cell in a direction perpendicular to a plane containing the vorticity shows that the turbidity of the whole sample also undergoes time dependent variations with the same period as the shear stress. However no banding is observed during the oscillations and the flow remains homogeneous. PMID:16132153

  6. Nucleation of shear bands in amorphous alloys

    PubMed Central

    Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio

    2014-01-01

    The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599

  7. Shear Mechanics of the TMJ Disc

    PubMed Central

    Juran, C.M.; Dolwick, M.F.; McFetridge, P.S.

    2012-01-01

    The temporomandibular joint (TMJ) is a complex hinge and gliding joint that induces significant shear loads onto the fibrocartilage TMJ disc during jaw motion. The purpose of this study was to assess regional variation in the disc’s shear loading characteristics under physiologically relevant loads and to associate those mechanical findings with common clinical observations of disc fatigue and damage. Porcine TMJ discs were compressed between an axially translating bottom platen and a 2.5-cm-diameter indenter within a hydrated testing chamber. Discs were cyclically sheared at 0.5, 1, or 5 Hz to 1, 3, or 5% shear strain. Within the anterior and intermediate regions of the disc when sheared in the anteroposterior direction, both shear and compressive moduli experienced a significant decrease from instantaneous to steady state, while the posterior region’s compressive modulus decreased approximately 5%, and no significant loss of shear modulus was noted. All regions retained their shear modulus within 0.5% of instantaneous values when shear was applied in the mediolateral direction. The results of the disc’s regional shear mechanics suggest an observable and predictable link with the common clinical observation that the posterior region of the disc is most often the zone in which fatigue occurs, which may lead to disc damage and perforation. PMID:23166043

  8. Does Shear Thickening Occur in Semisolid Metals?

    NASA Astrophysics Data System (ADS)

    Atkinson, Helen V.; Favier, Veronique

    2016-04-01

    In the various forms of semisolid processing such as thixoforming and thixoforging, the entry into the die occurs in a fraction of a second so it is the transient rheological behavior which governs the initial stages of flow. In experiments in the literature, this rheological behavior is probed through applying rapid transitions in shear rate under isothermal conditions. There is contradictory evidence as to whether the behavior during these transitions is shear thinning or shear thickening, although it is clear that once in the die the material is thinning. Here the data in the literature are reanalyzed to obtain a rationalization of the contradictions which has not previously been available. It is argued that if a suspension is initially in a disagglomerated state ( i.e., one which is initially sheared), the instantaneous behavior with a jump-up in shear rate is shear thickening (even if the long-term steady-state behavior is shear thinning) provided the fraction solid is greater than about 0.36 and the final shear rate at the end of the jump is greater than about 100 s-1. If the jump-up in shear rate is made from rest then yield masks the shear thickening.

  9. Shear-Induced Reactive Gelation.

    PubMed

    Brand, Bastian; Morbidelli, Massimo; Soos, Miroslav

    2015-11-24

    In this work, we describe a method for the production of porous polymer materials in the form of particles characterized by narrow pore size distribution using the principle of shear-induced reactive gelation. Poly(styrene-co-divinylbenzene) primary particles with diameter ranging from 80 to 200 nm are used as building blocks, which are assembled into fractal-like clusters when exposed to high shear rates generated in a microchannel. It was found that independent of the primary particle size, it is possible to modulate the internal structure of formed fractal-like aggregates having fractal dimension ranging from 2.4 to 2.7 by varying the residence time in the microchannel. Thermally induced postpolymerization was used to increase the mechanical resilience of such formed clusters. Primary particle interpenetration was observed by SEM and confirmed by light scattering resulting in an increase of fractal dimension. Nitrogen sorption measurements and mercury porosimetry confirmed formation of a porous material with surface area ranging from 20 to 40 m(2)/g characterized by porosity of 70% and narrow pore size distribution with an average diameter around 700 nm without the presence of any micropores. The strong perfusive character of the synthesized material was confirmed by the existence of a plateau of the height equivalent to a theoretical plate measured at high reduced velocities using a chromatographic column packed with the synthesized microclusters. PMID:26488233

  10. Optical Beam-Shear Sensors

    NASA Technical Reports Server (NTRS)

    Martin, Stefan; Szwaykowski, Piotr

    2007-01-01

    A technique for measuring optical beam shear is based on collecting light from the four quadrants of the beam and comparing the optical power collected from each quadrant with that from the other three quadrants. As used here, "shear" signifies lateral displacement of a beam of light from a nominal optical axis. A sensor for implementing this technique consists of a modified focusing lens and a quad-cell photodetector, both centered on the nominal optical axis. The modification of the lens consists in cutting the lens into four sectors (corresponding to the four quadrants) by sawing along two orthogonal diameters, then reassembling the lens following either of two approaches described next. In one approach, the lens is reassembled by gluing the sectors back together. In the simplest variant of this approach, the kerf of the saw matches the spacing of the photodetector cells, so that the focus of each sector crosses the axis of symmetry to fall on the opposite photodetector cell (see figure). In another variant of this approach, the lens sectors are spaced apart to make their individual foci to fall on separate photodetector cells, without crossing the optical axis. In the case of a sufficiently wide beam, the modified lens could be replaced with four independent lenses placed in a square array, each focusing onto an independent photodetector

  11. Shear-Layer Effects on Trailing Vortices

    NASA Technical Reports Server (NTRS)

    Zheng, Z. C.; Baek, K.

    1998-01-01

    Crosswind shear can influence the trailing vortex trajectories significantly, according to both field measurement and numerical simulations. Point vortex models are used in this paper to study the fluid dynamic mechanism in the interactions between trailing vortex pair and shear layers. It has been shown that the shear-layer deformation causes the vortex descent history difference in the two vortices of the vortex pair. When a shear layer is below the vortex pair with the same sign as the left vortex, the right vortex descends less than the left vortex. When the same shear layer is above the vortex pair, the right vortex descends more. The descent altitudes of the two vortices are the same when they go through a constant, non-deformed shear layer. Those trends are in agreement with Navier-Stokes simulations.

  12. Shear wall experiments and design in Japan

    SciTech Connect

    Park, Y.J.; Hofmayer, C.

    1994-12-01

    This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  13. Continuous wave laser for wind shear detection

    NASA Technical Reports Server (NTRS)

    Nelson, Loren

    1991-01-01

    Details of the design and development of a continuous-wave heterodyne carbon dioxide laser which has wind shear detection capabilities are given in viewgraph form. The goal of the development was to investigate the lower cost CW (rather than pulsed) lidar option for look-ahead wind shear detection from aircraft. The device has potential utility for ground based wind shear detection at secondary airports where the high cost of a Terminal Doppler Weather Radar system is not justifiable.

  14. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Yang, W.-H.

    1987-01-01

    The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

  15. Dynamic shear deformation in high purity Fe

    SciTech Connect

    Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P; Lopez, Mike F; Gray, George T

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  16. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  17. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  18. Novel shear mechanism in nanolayered composites

    SciTech Connect

    Mara, Nathan; Bhattacharyya, Dhriti; Hirth, John P; Dickerson, Patricia O; Misra, Amit

    2009-01-01

    Recent studies have shown that two-phase nanocomposite materials with semicoherent interfaces exhibit enhanced strength, deformability, and radiation damage resistance. The remarkable behavior exhibited by these materials has been attributed to the atomistic structure of the bi-metal interface that results in interfaces with low shear strength and hence, strong barriers for slip transmission due to dislocation core spreading along the weak interfaces. In this work, the low interfacial shear strength of Cu/Nb nanoscale multilayers dictates a new mechanism for shear banding and strain softening during micropillar compression. Previous work investigating shear band formation in nanocrystalline materials has shown a connection between insufficient strain hardening and the onset of shear banding in Fe and Fe-10% Cu, but has also shown that hardening does not necessarily offset shear banding in Pd nanomaterials. Therefore, the mechanisms behind shear localization in nanocrystalline materials are not completely understood. Our findings, supported by molecular dynamics simulations, provide insight on the design of nanocomposites with tailored interface structures and geometry to obtain a combination of high strength and deformability. High strength is derived from the ability of the interfaces to trap dislocations through relative ease of interfacial shear, while deformability can be maximized by controlling the effects of loading geometry on shear band formation.

  19. A biaxial method for inplane shear testing. [shear strain in composite materials

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Weller, T.

    1978-01-01

    A biaxial method for performing inplane shear tests of materials using a shear frame is described. Aluminum plate and sandwich specimens were used to characterize the uniformity of shear strain imparted by the biaxial method of loading as opposed to the uniaxial method. The inplane stiffening effect of aluminum honeycomb core was determined. Test results for (+ or - 45) graphite-epoxy laminate are presented. Some theoretical considerations of subjecting an anisotropic material to a uniform shear deformation are discussed.

  20. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district, South Qinling, central China, and implications for regional metallogeny

    NASA Astrophysics Data System (ADS)

    Xie, Guiqing; Mao, Jingwen; Wang, Ruiting; Ren, Tao; Li, Jianbi; Da, Junzhi

    2015-05-01

    The newly discovered porphyry Cu deposits in the South Qinling Belt (SQB) have not been well researched as compared with the large porphyry Mo province in the southern North China Block (S-NCB), and the origin of granitoids associated with porphyry Cu mineralization in the Zha-Shan district, SQB is poorly constrained. Here, we present detailed zircon U-Pb geochronological, whole rock elemental and Sr-Nd isotopic data for important Late Mesozoic granitoid stocks associated with porphyry Cu deposits in the Zha-Shan district; these data are used to constrain the age and the source of magmas that formed these granitoids, and implication of regional metallogeny. The new zircon LA-ICPMS U-Pb ages presented here indicate that the granitoids related to porphyry Cu system at Chigou, Beishagou, Shuangyuangou and Yuanjiagou developed at 148-144 Ma, 144 Ma, 145-144 Ma and 146 Ma, respectively. These rocks are high-K calc-alkaline I-type granitoids, which are enriched in large ion lithophile elements (e.g., Th, U, and Pb) and light rare earth elements, are depleted in Nb, Ta and Ti, characterizing by wide variations in initial εNd(t) (-3.8 to -9.5), and moderate radiogenic Sr isotopes ((87Sr/86Sr)i = 0.7046 to 0.7093). These features indicate that the magmas that formed the granitoids related to porphyry Cu system in the Zha-Shan district formed as a result of variable degrees of mixing between crustal and metasomatic lithospheric mantle. The new zircon LA-ICPMS U-Pb ages in this study, combined with previous published data, suggest that regional-scale Late Jurassic to Early Cretaceous granitoid stocks, and associated porphyry Cu and Mo systems in both the S-NCB and SQB formed almost contemporaneously, with 147-139 Ma porphyry Mo deposits in the S-NCB and 148-145 Ma porphyry Cu deposits in the SQB. The Cu-related intrusions contained a greater contribution of lithospheric mantle component than the Mo-related intrusions in the East Qinling Orogeny.

  1. Paleozoic structure of Middle Tien Shan (Kyrgyzstan Central Asian Orogenic Belt): Insights on the polarity and timing of tectonic motions, subductions, and lateral correlations

    NASA Astrophysics Data System (ADS)

    Jourdon, Anthony; Loury, Chloé; Rolland, Yann; Petit, Carole; Bellahsen, Nicolas

    2015-04-01

    The structure and Palaeozoic tectonic evolution in Kyrgyz and Chinese Tien Shan Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are numerous and conflicting models about the polarity of tectonic motions in the Paleozoic, the number of continental blocks and oceanic basins involved and the timing of tectonic events. In this study we propose new maps and structural cross-sections of Middle and South Kyrgyz Tien Shan (TS). These cross-sections allow us to highlight an overall South-verging structure in the Middle TS, with a thick-skin style involving the crystalline basement. This deformation occurred during the Early Carboniferous, and is sealed by an Upper Carboniferous unconformity. We ascribe this structure to an Upper Plate deformation linked to north-dipping subduction below Middle TS. In contrast, the South TS exhibits a north-verging structure, linked to south-dipping subduction, which is evidenced by an accretionary prism, a volcanic arc, and high-pressure rocks (Loury et al., 2015), and is correlated to similar structures in the Chinese TS (e.g., Charvet et al., 2011). Based on these observations, we propose a new interpretation of the tectonic evolution of the Middle and South TS CAOB. The resulting model comprises a long-lived north-dipping subduction of the Turkestan Ocean below the Middle TS-Karazakh Platform and a short-lived south-dipping subduction of a marginal back-arc basin below the Tarim. Consequently, the South TS is interpreted as a rifted block from the Tarim. Finally, the docking of the large Tarim Craton to the CAOB corresponds to a rapid collision phase (320-300 Ma). This put an end to the long-lived Paleozoic subduction history in the CAOB. Charvet, J., Shu, L., et al., 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54, 166-184. Loury, C. , Rolland, Y., Guillot S., Mikolaichuk, A.V., Lanari, P., Bruguier, O., D.Bosch, 2015. Crustal-scale structure of South Tien Shan

  2. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~ 1975 and 1999 using Hexagon KH-9 imagery

    NASA Astrophysics Data System (ADS)

    Pieczonka, Tino; Bolch, Tobias

    2015-05-01

    The meltwater released by the glaciers in the Central Tien Shan feeds in particular the Tarim River which is the main artery for the oases at the northern margin of the Taklamakan desert. The correct assessment of the contribution of the glaciers' meltwater to the total runoff is hampered by the lack of long-term measurements of glacier mass budgets. Digital terrain models (DTMs) for the different regions in the Central Tien Shan were generated based on ~ 1975 KH-9 Hexagon imagery and compared to the SRTM3 DTM acquired in February 2000. Moreover, glacier area changes for the period ~ 1975-2008 have been measured by means of multi-temporal optical satellite imagery. The geodetic mass budget estimates for a glacierized area of 5000 km2 revealed increasing mass loss east to west and from the inner to the outer ranges. Highest mass loss accompanied by the most pronounced glacier retreat was found for the Ak-Shirak massif with a region-wide mass balance of - 0.51 ± 0.36 m w.e. a- 1 and a rate of area change of - 0.27 ± 0.15% a- 1, whilst moderate mass loss was observed for the Inylchek (0.20 ± 0.44 m w.e. a- 1) and Tomur area (0.33 ± 0.30 m w.e. a- 1) despite partly debris cover. These latter regions also revealed the lowest glacier shrinkage within the entire Central Tien Shan. The total glacier mass loss of 0.35 ± 0.34 m w.e. a- 1 is, however, within the global average whilst the glacier area shrinkage is comparatively low. On average, the investigated glacierized area of ~ 6600 km2 shrank by 0.11 ± 0.15% a- 1 only. We could also identify several surge-type glaciers. The results are consistent with in-situ mass balance measurements for Karabatkak Glacier and previously published results of the Ak-Shirak range proving the suitability of declassified imagery for glacier change investigations. The contribution to the runoff of Aksu River, the largest tributary of the Tarim River, due to glacier imbalance has been determined at ~ 20% for the 1975-2000 period.

  3. Quadruple Lap Shear Processing Evaluation

    NASA Technical Reports Server (NTRS)

    Thornton, Tony N.; McCool, A. (Technical Monitor)

    2000-01-01

    The Thiokol, Science and Engineering Huntsville Operations (SEHO) Laboratory has previously experienced significant levels of variation in testing Quadruple Lap Shear (QLS) specimens. The QLS test is used at Thiokol / Utah for the qualification of Reusable Solid Rocket Motor (RSRM) nozzle flex bearing materials. A test was conducted to verify that process changes instituted by SEHO personnel effectively reduced variability, even with normal processing variables introduced. A test matrix was designed to progress in a series of steps; the first establishing a baseline, then introducing additional solvents or other variables. Variables included normal test plan delay times, pre-bond solvent hand-wipes and contaminants. Each condition tested utilized standard QLS hardware bonded with natural rubber, two separate technicians and three replicates. This paper will report the results and conclusions of this investigation.

  4. Shear deformation in granular materials

    SciTech Connect

    Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D.L.

    1998-12-31

    An investigation into the properties of granular materials is undertaken via numerical simulation. These simulations highlight that frictional contact, a defining characteristic of dry granular materials, and interfacial debonding, an expected deformation mode in plastic bonded explosives, must be properly modeled. Frictional contact and debonding algorithms have been implemented into FLIP, a particle in cell code, and are described. Frictionless and frictional contact are simulated, with attention paid to energy and momentum conservation. Debonding is simulated, with attention paid to the interfacial debonding speed. A first step toward calculations of shear deformation in plastic bonded explosives is made. Simulations are performed on the scale of the grains where experimental data is difficult to obtain. Two characteristics of deformation are found, namely the intermittent binding of grains when rotation and translation are insufficient to accommodate deformation, and the role of the binder as a lubricant in force chains.

  5. The mechanics of continental extension in Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxian; Sun, Zhen; Wang, Zhenfeng; Sun, Zhipeng

    2015-09-01

    Located in the intersection of NE-trended rifted margin of South China Sea (SCS) and NW-oriented Ailao Shan-Red River Shear Zone (RRSZ), Qiongdongnan Basin shows significant differences in geological features from west to east, indicating different mechanics of continental extension. Based on the dense and updated multichannel seismic profiles, we disclose the characteristics of the remnant crystalline crust. Besides, we analyze the basin structures, calculate the stretching factors of upper and whole crust, and compute the syn-rift and post-rift unloaded tectonic subsidence along three selected transects in the west, middle and east of Qiongdongnan Basin. The crust thickness is 22 km on the northern and southern parts of Qiongdongnan Basin and thins gradually towards the central depression with two extremely thinned domains (<4 km), of which one is in Ledong Sag in the west and another is in Baodao and Changchang Sags in the east. Correspondingly, the stretching factors of crust are 1.5-2 on both sides and increase remarkably towards the central depression (β > 2) with two extremely stretched domains (β > 9), of which one is in Ledong Sag in the west and another is in Baodao and Changchang Sags in the east. However, the mechanics of continental extension vary significantly from west to east. The simple shear dominates in the west, the pure shear dominates in the east, and it is intermediate between the two end members of simple shear and pure shear in the middle of Qiongdongnan Basin. The simple shear in the west of Qiongdongnan Basin is probably controlled by the left-lateral movement of RRSZ. The pure shear in the east is probably related to the Cenozoic rifting along the northern continental margin of SCS. The transitional zone in the middle of Qiongdongnan Basin is possibly the combined results of the left-lateral movement of RRSZ and the Cenozoic rifting along the northern continental margin of SCS.

  6. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  7. Turbulence Suppression by ExB Shear in JET Optimized Shear Pulses

    SciTech Connect

    M.A. Beer; R.V. Budny; C.D. Challis; G. Conway; C. Gomezano; et al

    1999-07-01

    We calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. We find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier.

  8. Turbulence suppression by E x B shear in JET optimized shear pulses

    SciTech Connect

    Beer, M.A.; Budny, R.V.; Challis, C.D.; Conway, G.

    2000-01-06

    The authors calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. They find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier.

  9. The Multi-Dimensional Nature of Wind Shear Investigations

    NASA Technical Reports Server (NTRS)

    Cox, W. J.

    1977-01-01

    The impact of air carrier accidents has lead to investigations into the wind shear phenomenon. This report includes such topics as wind shear characterization, aircraft pilot performance in shear conditions, terminology and language development, wind shear forecasting, ground and flight wind shear displays, wind shear data collection and dissemination, and pilot factors associated with wind shear encounters. Some areas which show promise for short term solutions to the wind shear hazards includes: (1) improved gust front warning through ground based sensors; (2) greater pilot awareness of wind shear through improved training; and (3) airborne displays based on groundspeed/airspeed comparisons.

  10. Effect of Friction on Shear Jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2015-03-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.

  11. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  12. Low shear viscosity due to Anderson localization

    SciTech Connect

    Giannakis, Ioannis; Hou Defu; Ren Haicang; Li Jiarong

    2008-01-15

    We study the Anderson localization effect on the shear viscosity in a system with random medium by Kubo formula. We show that this effect can suppress nonperturbatively the shear viscosity and other transport coefficients. The possible relevancy of such a suppression to the near perfect fluid behavior of the quark-gluon plasma created in heavy-ion collisions is discussed.

  13. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  14. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    2015-11-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6. Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to characterize response from different friction systems under shear with information at local scale. We acknowledge support from NSF-DMR1206351, NASA NNX15AD38G and W.M. Keck Foundation.

  15. Study of shear-stiffened elastomers

    NASA Astrophysics Data System (ADS)

    Tian, Tongfei; Li, Weihua; Ding, Jie; Alici, Gursel; Du, Haiping

    2013-06-01

    Shear thickening fluids, which are usually concentrated colloidal suspensions composed of non-aggregating solid particles suspended in fluids, exhibit a marked increase in viscosity beyond a critical shear rate. This increased viscosity is seen as being both 'field-activated', due to the dependence on shearing rate, as well as reversible. Shear thickening fluids have found good applications as protection materials, such as in liquid body armor, vibration absorber or dampers. This research aims to expand the protection material family by developing a novel solid status shear thickening material, called shear-stiffened elastomers. These new shear-stiffened elastomers were fabricated with the mixture of silicone rubber and silicone oil. A total of four SSE samples were fabricated in this study. Their mechanical and rheological properties under both steady-state and dynamic loading conditions were tested with a parallel-plate. The effects of silicone oil composition and angular frequency were summarized. When raising the angular frequency in dynamic shear test, the storage modulus of conventional silicone rubber shows a small increasing trend with the frequency. However, if silicone oil is selected to be mixed with silicone rubber, the storage modulus increases dramatically when the frequency and strain are both beyond the critical values.

  16. Solvable groups and a shear construction

    NASA Astrophysics Data System (ADS)

    Freibert, Marco; Swann, Andrew

    2016-08-01

    The twist construction is a geometric model of T-duality that includes constructions of nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds may be used in a shear construction, which in algebraic form builds certain solvable Lie groups from Abelian ones. We discuss other examples of geometric structures that may be obtained from the shear construction.

  17. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan

    NASA Astrophysics Data System (ADS)

    Seong, Yeong Bae; Owen, Lewis A.; Yi, Chaolu; Finkel, Robert C.; Schoenbohm, Lindsay

    2009-01-01

    Muztag Ata and Kongur Shan massifs represent a significant area of anomalously high topography at the northwestern end of the Tibetan Plateau, rising to > 7500 m above sea-level (asl) from the plateau that has an average elevation of ~ 3500 m asl. These massifs provide an excellent opportunity to test geomorphic concepts, such as the glacial buzz-saw model. Using remote sensing, digital elevation modeling, field mapping and terrestrial cosmogenic nuclide (TCN) methods, the massifs were examined to determine the relative importance of tectonics and geomorphic processes in shaping the regional landscape and to provide a framework for testing geomorphic models. The gneiss domes that underlie the peaks are the result of exhumation along the Kongur detachment fault that has unroofed the massifs at a rate of between 4-6 km/Ma over the last few million years. This has resulted in rapid uplift and active seismicity, which is exemplified by the numerous fresh fault scarps throughout the region and large historic earthquakes. The geomorphic system is dominated by glaciation and the region contains extensive successions of moraines and paraglacial landforms, including fans, terraces and landslides. Glaciers have oscillated considerably throughout the latter part of the Quaternary, and three major glacier stages are recognized (Karasu [oldest], Olimde and Subaxh [youngest] glacial stage) that include at least 10 smaller glacial advance. The style of glaciation has changed over time from expanded ice caps to piedmont glaciers to valley and cirque glaciers. This possibly reflects a change in climate and/or topographic constraints as the massifs grew and became incised. The topography and glaciers in the region vary across the massifs divided by a broadly N-S trending high ridge and watershed. The western portion, situated upwind (the stoss slopes) of the mid-latitude westerlies, that bring moisture to the region, has gentle high topography and small valley glaciers. In contrast

  18. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  19. Revisiting the uplift history of the Qilian Shan in the northeast margin of the Tibetan Plateau: Evidence for sedimentary archive from the Jiuxi basin

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zhang, P.; Liu, C.

    2012-12-01

    Numerous Cenozoic basins have been developed in the northeastern margin of the Tibetan Plateau as a result of intracontinental deformation caused by the India-Eurasia continent collision since ~ 45 - 55 Ma (e.g., Searle et al., 1987; Garzanti and Van Haver, 1988; Rowley, 1996, 1998; Yin et al. 2007, 2008). These basins and infilled deposits encode much information about the climate change (e.g., Guo et al., 2002; Dupont-Nivet et al., 2007) and tectonic processes (Tapponnier et al., 2001; Horton et al., 2002; Kapp et al., 2005; DeCelles et al., 2007; Yin et al. 2008), which are crucial to understand the dynamics of continental deformation and growth history of the Tibetan Plateau. However, the northward growth processes of high topography associated with the Indo-Asian collision remain controversial over the mechanics of intracontinental deformation and purported linkages between climate and tectonics. The Jiuxi Cenozoic basin lies along the Qilian Shan in the outmost part of the Tibetan Plateau- a location where the initial timing of the plateau growth is poorly known. Here, we present the results of a stratigraohic investigation of a ~950 m section of Cenozoic fluvio-lacustran strata in the Jiuxi basin and reveal the relationship between clastic sedimentation and coeval deformation of the northeastern margin of the Tibetan Plateau. Magnteostratigraphic analysis suggest that the section preserves a record extending from initiation basin formation at ~25 Ma to ~3 Ma with a shortly hiatus between 12 Ma to 11 Ma. Sediment accumulation rates increase from relatively slow accumulation during the late Oligocene- early Miocene (~ 2.8 cm/kyr) to rapid accumulation in the Pliocene (~6.7 cm/kyr), apparently occurring in two sustained pulses at ~17 Ma and ~10 Ma, respectively. The Middle Miocene (~17 Ma) increase in accumulation rate is accompanied by a distinct change in sediments colors and lithofacies. Therefore, the increase in accumulation rates starting at ~17 Ma is

  20. Simple shear of deformable square objects

    NASA Astrophysics Data System (ADS)

    Treagus, Susan H.; Lan, Labao

    2003-12-01

    Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.

  1. DYNAMO EFFICIENCY WITH SHEAR IN HELICAL TURBULENCE

    SciTech Connect

    Leprovost, Nicolas; Kim, Eun-jin

    2009-05-10

    To elucidate the influence of shear flow on the generation of magnetic fields through the modification of turbulence property, we consider the case where a large-scale magnetic field is parallel to a large-scale shear flow without direct interaction between the two in the kinematic limit where the magnetic field does not backreact on the velocity. By nonperturbatively incorporating the effect of shear in a helically forced turbulence, we show that turbulence intensity and turbulent transport coefficients (turbulent viscosity, {alpha} and {beta} effect) are enhanced by a weak shear, while strongly suppressed for strong shear. In particular, {beta} is shown to be much more strongly suppressed than {alpha} effect. We discuss its important implications for dynamo efficiency, i.e., on the scaling of the dynamo number with differential rotation.

  2. WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR

    SciTech Connect

    Pires, S.

    2010-11-10

    Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone should not be used to do convergence map reconstruction, even on small scales.

  3. Three dimensional fabric evolution of sheared sand

    SciTech Connect

    Hasan, Alsidqi; Alshibli, Khalid

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

  4. Sheared Ising models in three dimensions

    NASA Astrophysics Data System (ADS)

    Hucht, Alfred; Angst, Sebastian

    2013-03-01

    The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals [A. Hucht and S. Angst, EPL 100, 20003 (2012)]. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures Tc which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent θ = 2 as well as the correlation length exponents ν∥ = 1 and ν⊥ = 1 / 2 . These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior. Supported by CAPES-DAAD through PROBRAL as well as by the German Research Society (DFG) through SFB 616 ``Energy Dissipation at Surfaces.''

  5. Shear layer excitation, experiment versus theory

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.; Stahl, B.

    1984-01-01

    The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds.

  6. Trapped Electron Precession Shear Induced Fluctuation Decorrelation

    SciTech Connect

    T.S. Hahm; P.H. Diamond; E.-J. Kim

    2002-07-29

    We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation.

  7. Determining Shear Stress Distribution in a Laminate

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2010-01-01

    A "simplified shear solution" method approximates the through-thickness shear stress distribution within a composite laminate based on an extension of laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather, it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply-level stresses can be efficiently determined from global load resultants at a given location in a structure and used to evaluate the margin of safety on a ply-by-ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. The method has been incorporated within the HyperSizer commercial structural sizing software to improve its predictive capability for designing composite structures. The HyperSizer structural sizing software is used extensively by NASA to design composite structures. In the case of through-thickness shear loading on panels, HyperSizer previously included a basic, industry-standard, method for approximating the resulting shear stress distribution in sandwich panels. However, no such method was employed for solid laminate panels. The purpose of the innovation is to provide an approximation of the through-thickness shear stresses in a solid laminate given the through-thickness shear loads (Qx and Qy) on the panel. The method was needed for implementation within the HyperSizer structural sizing software so that the approximated ply-level shear stresses could be utilized in a failure theory to assess the adequacy of a panel design. The simplified shear solution method was developed based on extending and generalizing bi-material beam theory to plate-like structures. It is assumed that the through-thickness shear stresses arise due to local bending of the laminate induced by the through-thickness shear load, and by imposing

  8. Macroscopic Fault Structure of the 1911 Mw8.1 Chon Kemin Earthquake (Tien Shan, Kyrgyzstan) from Combined Seismic Imaging, Palaeo-Seismological Investigations and Historial Seismicity

    NASA Astrophysics Data System (ADS)

    Haberland, C. A.; Sonnemann, T.; Landgraf, A.; Ryberg, T.; Kulikova, G.; Krueger, F.; Dzhumabaeva, A.; Abdrakhmatov, K.; Abdybachaev, U.; Orunbaev, S.; Rosenwinkel, S.; Sharshebaev, A.

    2014-12-01

    Earthquakes in low-strain regions and their driving forces are still sparsely studied and understood, and constitute serious first-order research questions. Data acquisition concerning paleo-earthquakes, related hazards, and tectonic activity beyond historical records plays an important role. Such information can be obtained with tools from tectonic geomorphology, geophysics, historic seismicity, and paleo-seismology that should span a variety of time and length scales. The Chon-Kemin Valley in the northern Tien Shan (Kyrgyzstan) is a small, intermontane basin of unknown origin framed by a network of active faults. In the year 1911, the Chon-Kemin earthquake (Mw=8.1) activated fault structures of about 200 km length which also ruptured the surface along the Chon-Kemin Valley and caused numerous landslides and rock avalanches of up to several tens of millions of cubic meters in volume. The Chon-Kemin earthquake was one of a series of strong seismic events that affected the northern Tien Shan between 1885 and 1938. A seismic survey across the Chon-Kemin Valley was conducted to investigate the subsurface velocity structure of the valley and its surrounding faults. Tomographic inversion techniques were applied to first-arrival traveltimes of refracted P waves, and the seismic data were screened for reflection signatures. Additionally, the region was analyzed through paleo-seismological trenching. Tomographic and reflection images identified a shallow basin structure bounded by a set of thrust faults in the south only which - in part - correlate with the surface trace of the rupture. The deformation seems to be distributed in time and space across several sub-parallel fault strands. Synthesis of historical (analog) recordings of this earthquake provide new insights into the source mechanisms and processes.

  9. Comparison of the Shan-Chen and Color-Fluid Models in Lattice Boltzmann Simulation of Two-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Valocchi, A. J.; Kohanpur, A. H.; Freiburg, J. T.

    2015-12-01

    Direct numerical simulation of multiphase flow in porous media is an important tool for understanding pore-scale processes affecting transport and fate of supercritical CO2 in saline reservoirs. The lattice Boltzmann method, based on microscopic models and mesoscopic kinetic equations, is particularly well suited for fluid flow simulations involving interfacial dynamics and complex boundaries. In this study, we compare the Shan-Chen and color-fluid model in lattice Boltzmann simulation of multiphase flow in porous media. The original models were proposed two decades ago, and suffer from significant spurious currents as well as other numerical limitations. Therefore, the latest developments of the two models are employed, which allows consideration of density and viscosity contrasts relevant to geological sequestration in saline reservoirs. Previous studies of the comparison of the two models were mostly done in simple geometries, and demonstrated that the Shan-Chen model suffered from more serious numerical errors than the color-fluid model, although the latter is more computationally demanding. The real impact on multiphase flow in porous media has not been studied in detail. In this investigation, we employ realistic fluid parameters and perform numerical simulations in geometries based on micro-CT images of rock cores. The fluid displacement patterns and the relative permeability obtained by simulations will be used to evaluate the two models. The computational cost of the two models will also be presented for comparison. This work was supported as part of the Center for Geologic Storage of CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  10. Silurian clastic sediments in the North Qilian Shan, NW China: Chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Xiao, W. J.; Windley, B. F.; Wang, Z. Q.; Li, J. L.

    2010-11-01

    The North Qilian Shan is an accretion-collision orogenic belt in the northeastern margin of the Tibetan Plateau that connects the North China plate to the north with the Tethyan orogenic assemblage to the south. Its Early Paleozoic temporal-spatial tectonic evolution has been extensively studied, but the nature and tectonic setting of its Silurian deposition is poorly understood. Our new petrological analysis suggests that the clast composition of fan conglomerates is complex. In the Danbanshan and Zhongdabanshan sections, abundant lenticular conglomerate beds contain mainly subrounded-rounded metamorphic clasts; whereas the Tongziba and Haichaoba sections contain volcanic, chert, limestone, ultramafic and granitoid clasts. However, in the Sunan area, clast types are relatively simple, dominated by basalt and granitoids, and at Tongziba gabbro and basalt clasts are subrounded and angular, indicating two different types of provenance. Ultramafic, limestone and abundant chert clasts in the Haichaoba and Tonghe conglomerates indicate an ophiolitic source, whereas subrounded-rounded quartzite and granitoid gneiss clasts were probably derived from the Central Qilian basement. Geochemical data from the volcanic and granitoid clasts suggest an arc-related source and their zircon U-Pb ages of 515-429 Ma suggest that the arc magmatism did not end in the Mid-Silurian. Sandstone petrology and detrital modes suggest that the Silurian sediments were deposited in a forearc basin. Paleogeographic reconstructions inferred from NNW-NNE paleocurrent data indicate that an island arc was present off the southern margin of the Silurian basin, and that southward subduction of oceanic crust between North China and the Qilian Shan was active or continued in the Silurian.

  11. Metamorphic Study along the Wenchuan Thrust (Longmen Shan, Sichuan, China); a Key to Understand the Two Phases of Thickening of the Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    de Sigoyer, J.

    2015-12-01

    The Longmen Shan mountain belt, represents the eastern margin of Tibetan plateau (Sichuan, China) and culminated over 7000m. Despite very low convergent rate observed across his belt, it is active as attested by the Wenchuan earthquake Mw 7.9 (2008) that rupture and out of sequence thrust in this belt. The formation of this mountain bet results from two orogenic phase, one at the end of Trias (due to the closure of the Paleotethys), and one during Cenozoic time following the Indian Asia collision. This study aims to identify the deformation and metamorphism related to Mesozoic event and those relate to Cenozoic evolution. Structural, microstructural, metamorphic observations, PT estimates (graphitization of carbonaceous material, quantified X-ray images, chlorite-phengite-quartz-water multi-equilibrium and thermodynamic modelling) and U-Pb geochronology are used to describe the tectono-metamorphic evolution of the Xuelongbao area in the internal part of the Longmen Shan belt (eastern border of the Tibetan plateau, Sichuan, China). The Xuelongbao granite is dated at 765±7 Ma (in situ U/Pb dating on zircon), indicating that it forms part of the western Neoproterozoic South China block basement. The deformation in the western sedimentary cover above the Xuelongbao massif is intense, with step cleavage, twisted fold axes and CS structures with top to the SE thrusting vergence. Four stages of deformation are described, three of them are related to the Mesozoic wedge thickening, and the last one is due to the Cenozoic deformation. An inverted metamorphic gradient from 470°C, 8 kbar to 620°C, 13 kbar is identified in the cover above the Xuelongbao basement, suggesting a stack of sedimentary slices during the propagation of the Mesozoic accretionary wedge on the South China block margin. This decollement zone has been exhumed during the Cenozoic D4 exhumation of the Xuelongbao basement along the Wenchuan thrust, where greenschist overprint is observed.

  12. Multisegment rupture in the 11 July 1889 Chilik earthquake (Mw 8.0-8.3), Kazakh Tien Shan, interpreted from remote sensing, field survey, and paleoseismic trenching

    NASA Astrophysics Data System (ADS)

    Abdrakhmatov, K. E.; Walker, R. T.; Campbell, G. E.; Carr, A. S.; Elliott, A.; Hillemann, C.; Hollingsworth, J.; Landgraf, A.; Mackenzie, D.; Mukambayev, A.; Rizza, M.; Sloan, R. A.

    2016-06-01

    The 11 July 1889 Chilik earthquake (Mw 8.0-8.3) forms part of a remarkable sequence of large earthquakes in the late nineteenth and early twentieth centuries in the northern Tien Shan. Despite its importance, the source of the 1889 earthquake remains unknown, though the macroseismic epicenter is sited in the Chilik valley, ~100 km southeast of Almaty, Kazakhstan (~2 million population). Several short fault segments that have been inferred to have ruptured in 1889 are too short on their own to account for the estimated magnitude. In this paper we perform detailed surveying and trenching of the ~30 km long Saty fault, one of the previously inferred sources, and find that it was formed in a single earthquake within the last 700 years, involving surface slip of up to 10 m. The scarp-forming event, likely to be the 1889 earthquake, was the only surface-rupturing event for at least 5000 years and potentially for much longer. From satellite imagery we extend the mapped length of fresh scarps within the 1889 epicentral zone to a total of ~175 km, which we also suggest as candidate ruptures from the 1889 earthquake. The 175 km of rupture involves conjugate oblique left-lateral and right-lateral slip on three separate faults, with step overs of several kilometers between them. All three faults were essentially invisible in the Holocene geomorphology prior to the last slip. The recurrence interval between large earthquakes on any of these faults, and presumably on other faults of the Tien Shan, may be longer than the timescale over which the landscape is reset, providing a challenge for delineating sources of future hazard.

  13. Monitoring shallow resistivity changes prior to the 12 May 2008 M 8.0 Wenchuan earthquake on the Longmen Shan tectonic zone, China

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Xie, Tao; Li, Mei; Wang, Yali; Ren, Yuexia; Gao, Shude; Wang, Lanwei; Zhao, Jialiu

    2016-04-01

    An active source measurement of shallow resistivity using fixed-electrode quasi-Schlumberger arrays has been conducted at Pixian, Jiangyou and Wudu stations on the Longmen Shan tectonic zone in western China, with the hope of detecting earthquake-associated changes. For the duration of the monitoring experiment, a gradual decrease of apparent resistivity of up to 6.7% several years prior to the 12 May 2008 M 8.0 Wenchuan earthquake had been recorded clearly at Pixian station, approximately 35 km from the epicenter. The change of apparent resistivity was monitored with a fixed Schlumberger array of AB/MN spacings of 736 m/226 m in the direction of N57.5°E, giving precisions in measured daily averages of 0.16% or less. A coseismic resistivity drop of up to 5.3% was observed at Jiangyou station, using a Schlumberger array of AB/MN spacings of 710 m/90 m in the direction of N10°E. No fluctuation of resistivity was detected at Wudu station at the time of the Wenchuan mainshock. While the focus of this paper is on monitoring or tracking resistivity variations prior to, during, and after the Wenchuan earthquake, we also aim to compare resistivity records of the Wenchuan earthquake to those of the M 7.8 Tangshan and M 7.2 Songpan earthquakes of 1976. Attempts to explain the observed resistivity variations have been made. The results show that the resistivity variations observed at all three stations are in approximate agreement with resistivity-stress behavior deduced from in situ experiments, focal mechanisms, a simplified dynamical model, static stress analyses, and field investigations from along the Longmen Shan fault zone.

  14. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement

    PubMed Central

    Li, Sinan; Cheng, Yi; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2015-01-01

    Shear wave speed is quantitatively related to tissue viscoelasticity. Previously we reported shear wave tracking at centimetre depths in a turbid optical medium using laser speckle contrast detection. Shear wave progression modulates displacement of optical scatterers and therefore modulates photon phase and changes the laser speckle patterns. Time-resolved charge-coupled device (CCD)-based speckle contrast analysis was used to track shear waves and measure the time-of-flight of shear waves for speed measurement. In this manuscript, we report a new observation of the laser speckle contrast difference signal for dual shear waves. A modulation of CCD speckle contrast difference was observed and simulation reproduces the modulation pattern, suggesting its origin. Both experimental and simulation results show that the dual shear wave approach generates an improved definition of temporal features in the time-of-flight optical signal and an improved signal to noise ratio with a standard deviation less than 50% that of individual shear waves. Results also show that dual shear waves can correct the bias of shear wave speed measurement caused by shear wave reflections from elastic boundaries. PMID:26114021

  15. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.

    PubMed

    Tian, Yu; Zhang, Minliang; Jiang, Jile; Pesika, Noshir; Zeng, Hongbo; Israelachvili, Jacob; Meng, Yonggang; Wen, Shizhu

    2011-01-01

    By shearing electrorheological (ER) fluids between two concentric cylinders, we show a reversible shear thickening of ER fluids above a low critical shear rate (<1 s(-1)) and a high critical electric field strength (>100 V/mm), which can be characterized by a critical apparent viscosity. Shear thickening and electrostatic particle interaction-induced interparticle friction forces are considered to play an important role in the origin of lateral shear resistance of ER fluids, while the applied electric field controls the extent of shear thickening. The electric-field-controlled reversible shear thickening has implications for high-performance electrorheological-magnetorheological fluid design, clutch fluids with high friction forces triggered by applying a local electric field, other field-responsive materials, and intelligent systems. PMID:21405692

  16. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Mechanism for Intermediate Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.

    2005-12-01

    Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and

  17. Inverse magnetic/shear catalysis

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2016-05-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce "inverse magnetic catalysis", signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.

  18. Impact response of shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Ozgen, Oktar; Kallmann, Marcelo; Allen, Benjamin

    2013-11-01

    Dense suspensions of hard particles such as cornstarch in water exhibit shear thickening, in which the energy dissipation rate under shear dramatically increases with increasing shear rate. Recent work has established that in steady-state shear this phenomena is a result of a dynamic jamming of the particles in suspension. Several dynamic phenomena observed in such suspensions have long been assumed to be a consequence of this shear thickening; strong impact resistance, the ability of a person to run on the fluid surface, fingering and hole instabilities under vibration, and oscillations in the speed of sinking of an object in the fluid. However, I will present results of experiments consisting of an indenter impacting a dense suspension which demonstrate that the strong impact resistance cannot be explained by existing models for steady-state shear thickening. I will show these dynamic phenomena can be reproduced by graphical simulations based on a minimal phenomenological model in which the fluid has a stiffness with a dependence on velocity history. These and other recent results suggest a need for new models to understand the dynamic phenomena associated with shear thickening fluids.

  19. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to use particles made of gelatin to reduce the friction coefficient to the order of 0.01. We acknowledge support from NSF Grant DMR1206351, NASA Grant NNX15AD38G and the William M. Keck Foundation.

  20. Hierarchical cosmic shear power spectrum inference

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till

    2016-02-01

    We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.

  1. Electrorheological fluid under elongation, compression, and shearing

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Meng, Y.; Mao, H.; Wen, S.

    2002-03-01

    Electrorheological (ER) fluid based on zeolite and silicone oil under elongation, compression, and shearing was investigated at room temperature. Dc electric fields were applied on the ER fluid when elongation and compression were carried out on a self-constructed test system. The shear yield stress, presenting the macroscopic interactions of particles in the ER fluid along the direction of shearing and perpendicular to the direction of the electric field, was also obtained by a HAAKE RV20 rheometer. The tensile yield stress, presenting the macroscopic interactions of particles in the ER fluid along the direction of the electric field, was achieved as the peak value in the elongating curve with an elongating yield strain of 0.15-0.20. A shear yield angle of about 15°-18.5° reasonably connected tensile yield stress with shear yield stress, agreeing with the shear yield angle tested well by other researchers. The compressing tests showed that the ER fluid has a high compressive modulus under a small compressive strain lower than 0.1. The compressive stress has an exponential relationship with the compressive strain when it is higher than 0.1, and it is much higher than shear yield stress.

  2. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  3. Complex shear modulus of a magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Zhou, G. Y.

    2004-10-01

    In our previous study (Zhou 2003 Smart Mater. Struct. 12 139-46), a technique to extract the field-induced shear modulus through an experiment testing the responded acceleration of a system composed of a magnetorheological elastomer (MRE) and a cuprous mass was introduced. In this paper, we present a different data processing method, based on the Steiglitz-McBride iteration method, to recover the complex shear modulus of an MRE in the frequency domain through the measured force excitation and responded acceleration of the mass in the above-mentioned experiment. The recovered complex shear modulus is analyzed in three ranges of the frequency domain: low-frequency range, moderate-frequency range, and high-frequency range. In the low-frequency range (<250 Hz), the shear modulus is a bell-type curve rising with the applied magnetic field. The average shear modulus over this frequency range is proportional to the applied magnetic field until magnetic saturation is reached. The maximum change of the average shear modulus over this range is found to be above 55% of the zero-field value. The above phenomenon reaffirms that the subquadratic field dependence, which arises from the saturation of the magnetization near the poles of closely spaced pairs of spheres, must be taken into account. In the moderate-frequency range and high-frequency range, the shear modulus is too complex to be analyzed completely by the proposed method. However, some interesting phenomena are also revealed by the proposed method. For instance, the shear modulus increases with frequency at least with the order of a quadratic polynomial, and the shear modulus is not significantly affected by the applied magnetic field.

  4. Fan-structure waves in shear ruptures

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  5. Coherent motion in excited free shear flows

    NASA Technical Reports Server (NTRS)

    Wygnanski, Israel J.; Petersen, Robert A.

    1987-01-01

    The application of the inviscid instability approach to externally excited turbulent free shear flows at high Reynolds numbers is explored. Attention is given to the cases of a small-deficit plane turbulent wake, a plane turbulent jet, an axisymmetric jet, the nonlinear evolution of instabilities in free shear flows, the concept of the 'preferred mode', vortex pairing in turbulent mixing layers, and experimental results for the control of free turbulent shear layers. The special features often attributed to pairing or to the preferred mode are found to be difficult to comprehend; the concept of feedback requires further substantiation in the case of incompressible flow.

  6. Problems pilots face involving wind shear

    NASA Technical Reports Server (NTRS)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  7. German bundle shear - cold test results

    SciTech Connect

    Kunze, P.

    1986-01-01

    In the planned Federal Republic of Germany (FRG) reprocessing plant, the mechanical decladding of the fuel elements will be done with a bundle shear. This shear was designed and built with Thyssen Henschel by adapting the experiences of the Wiederaufarbeitungsanlage Karlsruhe (WAK), the FRG reprocessing pilot plant. The tests included boiling water reactor (BWR) and pressurized water reactor (PWR) dummy elements filled with porcelain as well as steel fuel rod simulators. During the test period with prototype bundle shear, some technical improvements have been found that refer both to operating conditions and to remote handling. In 1987 the acceptance tests will be run.

  8. Method for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Watson, Clyde D.

    1977-01-01

    A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.

  9. Modeling of shear localization in materials

    SciTech Connect

    Lesuer, D.; LeBlanc, M.; Riddle, B.; Jorgensen, B.

    1998-02-11

    The deformation response of a Ti alloy, Ti-6Al-4V, has been studied during shear localization. The study has involved well-controlled laboratory tests involving a double-notch shear sample. The results have been used to provide a comparison between experiment and the predicted response using DYNA2D and two material models (the Johnson-Cook model and an isotropic elastic-plastic-hydrodynamic model). The work will serve as the basis for the development of a new material model which represents the different deformation mechanisms active during shear localization.

  10. A magnetorheological elastomer compressive and shear sensor

    NASA Astrophysics Data System (ADS)

    Ghafoorianfar, Nima; Gordaninejad, Faramarz

    2015-04-01

    A magnetorheological elastomer (MRE)-based wireless sensor is designed, developed and tested, which is capable of sensing compression and shear forces. The MRE wireless sensor system consists of a disk-shape MRE sample with two thin steel electrodes attached to both sides and two wires connected to electrodes. Electrical resistance of MRE sensor samples changes due to piezoresistance behavior of MRE as various axial and shear stresses are applied. Electrical resistance decreases as the applied compressive axial forces increases, on the other hand, the electrical resistance increases as the applied shear force increases. Different MRE sensor configurations are evaluated for design optimization.

  11. Time accurate simulations of compressible shear flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Steinberger, Craig J.; Vidoni, Thomas J.; Madnia, Cyrus K.

    1993-01-01

    The objectives of this research are to employ direct numerical simulation (DNS) to study the phenomenon of mixing (or lack thereof) in compressible free shear flows and to suggest new means of enhancing mixing in such flows. The shear flow configurations under investigation are those of parallel mixing layers and planar jets under both non-reacting and reacting nonpremixed conditions. During the three-years of this research program, several important issues regarding mixing and chemical reactions in compressible shear flows were investigated.

  12. High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions

    PubMed Central

    Sheriff, Jawaad; Bluestein, Danny; Girdhar, Gaurav; Jesty, Jolyon

    2010-01-01

    Individuals with mechanical heart valve implants are plagued by flow-induced thromboembolic complications, which are undoubtedly caused by platelet activation. Flow fields in or around the affected regions involve brief exposure to pathologically high-shear stresses on the order of 100 to 1000 dyne/cm2. Although high shear is known to activate platelets directly, their subsequent behavior is not known. We hypothesize that the post-high-shear activation behavior of platelets is particularly relevant in understanding the increased thrombotic risk associated with blood-recirculating prosthetic cardiovascular devices. Purified platelets were exposed to brief (5–40 s) periods of high-shear stress, and then exposed to longer periods (15–60 min) of low shear. Their activation state was measured using a prothrombinase-based assay. Platelets briefly exposed to an initial high-shear stress (e.g., 60 dyne/cm2 for 40 s) activate a little, but this study shows that they are now sensitized, and when exposed to subsequent low shear stress, they activate at least 20-fold faster than platelets not initially exposed to high shear. The results show that platelets in vitro exposed beyond a threshold of high-shear stress are primed for subsequent activation under normal cardiovascular circulation conditions, and they do not recover from the initial high-shear insult. PMID:20135353

  13. Determination of the Shear Stress Distribution in a Laminate from the Applied Shear Resultant--A Simplified Shear Solution

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2007-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  14. Simplified Shear Solution for Determination of the Shear Stress Distribution in a Composite Panel from the Applied Shear Resultant

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.; Collier, Craig S.

    2008-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate or panel based on laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  15. Magnetized stratified rotating shear waves

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Lehner, T.; Godeferd, F.; Cambon, C.

    2012-02-01

    We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k1=0, axisymmetric disturbances) and a finite one (k1≠0, nonaxisymmetric disturbances). In the former case (k1=0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k1≠0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the stability of the

  16. Magnetized stratified rotating shear waves.

    PubMed

    Salhi, A; Lehner, T; Godeferd, F; Cambon, C

    2012-02-01

    We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k(1) = 0, axisymmetric disturbances) and a finite one (k(1) ≠ 0, nonaxisymmetric disturbances). In the former case (k(1) = 0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k(1) ≠ 0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the

  17. Influence of magnetic shear on impurity transport

    SciTech Connect

    Nordman, H.; Fueloep, T.; Candy, J.; Strand, P.; Weiland, J.

    2007-05-15

    The magnetic shear dependence of impurity transport in tokamaks is studied using a quasilinear fluid model for ion temperature gradient (ITG) and trapped electron (TE) mode driven turbulence in the collisionless limit and the results are compared with nonlinear gyrokinetic results using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys 186, 545 (2003)]. It is shown that the impurity transport is sensitive to the magnetic shear, in particular for weak, negative, and large positive shear where a strong reduction of the effective impurity diffusivity is obtained. The fluid and gyrokinetic results are in qualitative agreement, with the gyrokinetic diffusivities typically a factor 2 larger than the fluid diffusivities. The steady state impurity profiles in source-free plasmas are found to be considerably less peaked than the electron density profiles for moderate shear. Comparisons between anomalous and neoclassical transport predictions are performed for ITER-like profiles [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)].

  18. Turbulent shear stresses in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Laderman, A. J.; Demetriades, A.

    1979-01-01

    Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.

  19. Stress diffusion in models for shear banding

    NASA Astrophysics Data System (ADS)

    Masnada, Elian; Olmsted, Peter

    Understanding shear banding is of utmost importance from both theoretical and experimental point of view and consequently it has been studied for several decades. Despite this study numerous aspects of shear banding remains poorly understood. Because of the intrinsic inhomogeneity in the shear banded state, applicable constitutive models must be include spatial inhomogeneities, leading to a so-called 'diffusive' term in the equation of motion for the slow variables that carry stress. Such terms are also vital in describing the interaction of bulk shear banding flows with walls and incorporation of wall slip. In this work, we consider different sources of 'diffusion' in polymer models in which concentration degrees of freedom are negligible. The simplest models used are consistent with diffusive terms whose origin is intrinsically dissipative, such as due to hydrodynamic interactions. By contrast, models in which elastic effects such as finite chain stiffness contribute to stress diffusion are inconsistent with simple diffusive models, and we propose alternative consistent models

  20. Recent progress in shear punch testing

    SciTech Connect

    Hamilton, M.L.; Toloczko, M.B.; Lucas, G.E.

    1994-09-01

    The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys.

  1. Wind shear related research at Princeton University

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1992-01-01

    The topics addressed are: (1) real-time decision aiding-aircraft guidance for wind shear avoidance; (2) reducing the thrust-manual recovery strategies; and (3) dynamic behaviour of and aircraft encountering a single axis vortex.

  2. Shear joint capability versus bolt clearance

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1992-01-01

    The results of a conservative analysis approach into the determination of shear joint strength capability for typical space-flight hardware as a function of the bolt-hole clearance specified in the design are presented. These joints are comprised of high-strength steel fasteners and abutments constructed of aluminum alloys familiar to the aerospace industry. A general analytical expression was first arrived at which relates bolt-hole clearance to the bolt shear load required to place all joint fasteners into a shear transferring position. Extension of this work allowed the analytical development of joint load capability as a function of the number of fasteners, shear strength of the bolt, bolt-hole clearance, and the desired factor of safety. Analysis results clearly indicate that a typical space-flight hardware joint can withstand significant loading when less than ideal bolt hole clearances are used in the design.

  3. Shear-Joint Capability Versus Bolt Clearance

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1994-01-01

    NASA Technical Memorandum presents theoretical study of relationships between load-bearing capabilities of shear joints that comprise plates clamped together by multiple bolts and clearances between bolts and boltholes in those joints.

  4. Flight in low-level wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.

  5. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  6. Wind shear modeling for aircraft hazard definition

    NASA Technical Reports Server (NTRS)

    Frost, W.; Camp, D. W.; Wang, S. T.

    1978-01-01

    Mathematical models of wind profiles were developed for use in fast time and manned flight simulation studies aimed at defining and eliminating these wind shear hazards. A set of wind profiles and associated wind shear characteristics for stable and neutral boundary layers, thunderstorms, and frontal winds potentially encounterable by aircraft in the terminal area are given. Engineering models of wind shear for direct hazard analysis are presented in mathematical formulae, graphs, tables, and computer lookup routines. The wind profile data utilized to establish the models are described as to location, how obtained, time of observation and number of data points up to 500 m. Recommendations, engineering interpretations and guidelines for use of the data are given and the range of applicability of the wind shear models is described.

  7. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  8. Summary Proceedings of a Wind Shear Workshop

    NASA Technical Reports Server (NTRS)

    Enders, J. H.; Melvin, W. W.; Frost, W.; Camp, D. W.

    1983-01-01

    A number of recent program results and current issues were addressed: the data collection phase of the highly successful Joint Airport Weather Study (JAWS) Project and the NASA-B5f7B Gust Gradient Program, the use of these data for flight crew training through educational programs (e.g., films) and with manned flight training simulators, methods for post-accident determination of wind conditions from flight data recorders, the microburst wind shear phenomenon which was positively measured and described the ring vortex as a possible generating mechanism, the optimum flight procedure for use during an unexpected wind shear encounter, evaluation of the low-level wind shear alert system (LLWSAS), and assessment of the demonstrated and viable application of Doppler radar as an operational wind shear warning and detection system.

  9. Turbulent diffusion with memories and intrinsic shear

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1974-01-01

    The first part of the present theory is devoted to the derivation of a Fokker-Planck equation. The eddies smaller than the hydrodynamic scale of the diffusion cloud form a diffusivity, while the inhomogeneous, bigger eddies give rise to a nonuniform migratory drift. This introduces an eddy-induced shear which reflects on the large-scale diffusion. The eddy-induced shear does not require the presence of a permanent wind shear and is intrinsic to the diffusion. Secondly, a transport theory of diffusivity is developed by the method of repeated-cascade and is based upon a relaxation of a chain of memories with decreasing information. The full range of diffusion consists of inertia, composite, and shear subranges, for which variance and eddy diffusivities are predicted. The coefficients are evaluated. Comparison with experiments in the upper atmosphere and oceans is made.

  10. Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.

  11. Rotationally shearing interferometer employing modified Dove prisms

    NASA Astrophysics Data System (ADS)

    Paez, Gonzalo; Strojnik, Marija; Moreno, Ivan

    2003-12-01

    We describe the rotationally shearing interferometer (RSI) employing modified Dove prisms, designed with a widened aperture to increase throughput and with larger base angles to minimize the wave-front tilt introduced due to manufacturing errors. Experimental results obtained with the RSI ascertain the feasibility of the design. This work demonstrates that the rotationally shearing interferometry may be used to perform some functions of the traditional astronomical instruments.

  12. Shear dispersion in dense granular flows

    DOE PAGESBeta

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  13. Measurement of shear impedances of viscoelastic fluids

    SciTech Connect

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, A.C.

    1996-12-31

    Shear-wave reflection coefficients from a solid/fluid interface are derived for non-Newtonian fluids that can be described by Maxwell, Voigt, and power-law fluid models. Based on model calculations, we have identified the measurable effects on the reflection coefficients due to fluid non-Newtonian behavior. The models are used to interpret the viscosity data obtained by a technique based on shear impedance measurement.

  14. The Radiation Hydrodynamics of Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  15. Two-dimensional magnetic colloids under shear.

    PubMed

    Mohorič, Tomaž; Dobnikar, Jure; Horbach, Jürgen

    2016-04-01

    Complex rheological properties of soft disordered solids, such as colloidal gels or glasses, inspire a range of novel applications. However, the microscopic mechanisms of their response to mechanical loading are not well understood. Here, we elucidate some aspects of these mechanisms by studying a versatile model system, i.e. two-dimensional superparamagnetic colloids in a precessing magnetic field, whose structure can be tuned from a hexagonal crystal to a disordered gel network by varying the external field opening angle θ. We perform Langevin dynamics simulations subjecting these structures to a constant shear rate and observe three qualitatively different types of material response. In hexagonal crystals (θ = 0°), at a sufficiently low shear rate, plastic flow occurs via successive stress drops at which the stress releases due to the formation of dislocation defects. The gel network at θ = 48°, on the contrary, via bond rearrangement and transient shear banding evolves into a homogeneously stretched network at large strains. The latter structure remains metastable after switching off of the shear. At θ = 50°, the external shear makes the system unstable against phase separation and causes a failure of the network structure leading to the formation of hexagonal close packed clusters interconnected by particle chains. At a microcopic level, our simulations provide insight into some of the mechanisms by which strain localization as well as material failure occur in a simple gel-like network. Furthermore, we demonstrate that new stretched network structures can be generated by the application of shear. PMID:26877059

  16. Cosmology with cosmic shear observations: a review.

    PubMed

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations. PMID:26181770

  17. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  18. Analysis of shear banding in twelve materials

    NASA Astrophysics Data System (ADS)

    Batra, R. C.; Kim, C. H.

    The problem of the initiation and growth of shear bands in 12 different materials, namely, OFHC copper, Cartridge brass, Nickel 200, Armco IF (interstitial free) iron, Carpenter electric iron, 1006 steel, 2024-T351 aluminum, 7039 aluminum, low alloy steel, S-7 tool steel, Tungsten alloy, and Depleted Uranium (DU -0.75 Ti) is studied with the objectives of finding out when a shear band initiates, and upon what parameters does the band width depend. The nonlinear coupled partial differential equations governing the overall simple shearing deformations of a thermally softening viscoplastic block are analyzed. It is assumed that the thermomechanical response of these materials can be adequately represented by the Johnson-Cook law, and the only inhomogeneity present in the block is the variation in its thickness. The effect of the defect size on the initiation and subsequent growth of the band is also studied. It is found that, for each one of these 12 materials, the deformation has become nonhomogeneous by the time the maximum shear stress occurs. Also the band width, computed when the shear stress has dropped to 85 percent of its peak value, does not correlate well with the thermal conductivity of the material. The band begins to grow rapidly when the shear stress has dropped to 90 percent of its maximum value.

  19. Shear induced structures in crystallizing cocoa butter

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  20. On shearing fluids with homogeneous densities

    NASA Astrophysics Data System (ADS)

    Srivastava, D. C.; Srivastava, V. C.; Kumar, Rajesh

    2016-06-01

    In this paper, we study shearing spherically symmetric homogeneous density fluids in comoving coordinates. It is found that the expansion of the four-velocity of a perfect fluid is homogeneous, whereas its shear is generated by an arbitrary function of time M( t), related to the mass function of the distribution. This function is found to bear a functional relationship with density. The field equations are reduced to two coupled first order ordinary differential equations for the metric coefficients g_{11} and g_{22}. We have explored a class of solutions assuming that M is a linear function of the density. This class embodies, as a subcase, the complete class of shear-free solutions. We have discussed the off quoted work of Kustaanheimo (Comment Phys Math XIII:12, 1, 1947) and have noted that it deals with shear-free fluids having anisotropic pressure. It is shown that the anisotropy of the fluid is characterized by an arbitrary function of time. We have discussed some issues of historical priorities and credentials related to shear-free solutions. Recent controversial claims by Mitra (Astrophys Space Sci 333:351, 2011 and Gravit Cosmol 18:17, 2012) have also been addressed. We found that the singularity and the shearing motion of the fluid are closely related. Hence, there is a need for fresh look to the solutions obtained earlier in comoving coordinates.

  1. A new look on blood shear thinning

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana

    2015-11-01

    Blood is a shear-thinning fluid. At shear rates γ˙ < 1 s-1 , its drop of viscosity has been related primarily to the breaking-up of networks of ``rouleaux'' formed by stacked red blood cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.

  2. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  3. Shear time dependent viscosity of polystyrene-ethylacrylate based shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Xuan, Shouhu; Jiang, Wanquan; Cao, Saisai; Gong, Xinglong

    2016-04-01

    In this study, the influence of the shear rate and shear time on the transient viscosity of polystyrene-ethylacrylate based shear thickening fluid (STF) is investigated. If the shear rate is stepwise changed, it is found that both the viscosity and critical shear rate are affected by the shear time. Above the critical shear rate, the viscosity of the STF with larger power law exponent (n) increases faster. However, the viscosity tends to decrease when the shear time is long enough. This phenomenon can be responsible for the reversible structure buildup and the break-down process. An effective volume fraction (EVF) mechanism is proposed to analyze the shear time dependent viscosity and it is found that viscosity changes in proportion to EVF. To further clarify the structure evolution, a structural kinetic model is studied because the structural kinetic parameter (λ) could describe the variation in the effective volume fraction. The theoretical results of the structural kinetic model agree well with the experimental results. With this model, the change in viscosity and EVF can be speculated from the variation of λ and then the structure evolution can be better illustrated.

  4. The shear-stress intensity factor for a centrally cracked stiff-flanged shear web

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1976-01-01

    By use of the principle of superposition the stiff-flanged shear web is modeled mathematically by an infinite elastic strip with fixed longitudinal edges. The shear-stress intensity factor for a central longitudinal crack is calculated for various values of the ratio of strip width to crack length, h/a, in the range 0.1-10. The interaction of the crack with the boundaries is illustrated by boundary shear-stress distributions for three values of h/a. Some implications of the results for the design of damage-tolerant shear webs are discussed briefly.

  5. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  6. Geochemistry of lamprophyres at the Daping gold deposit, Yunnan Province, China: Constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Yaohuang; Yao, Shuzhen; Pan, Yuanming

    2014-10-01

    Cenozoic lamprophyre dykes occur widely along the Ailao-Shan-Red-River (ASRR) shear zone related to the Indian-Eurasian collision. Two generations of lamprophyres have been found at the Daping gold deposit in the southern part of the ASRR shear zone and have been investigated by using phlogopite 40Ar/39Ar dating and whole-rock major and trace element as well as Sr and Nd isotope geochemical analyses. The 40Ar/39Ar plateau ages of phlogopite from the two generations of lamprophyres bracket the emplacement of auriferous quartz veins in the Daping deposit between 36.8 ± 0.2 Ma and 29.6 ± 0.2 Ma, consistent with the timing of gold mineralization in other parts of the ASRR shear zone. Geochemical data suggest that these lamprophyres most likely originated from a subduction-modified mantle source consisting of phlogopite-bearing spinel lherzolite, which underwent partial melting with contributions from crust materials. In particular, the second generation lamprophyres are characterized by more primitive geochemical features than the first, suggesting that secular source evolution probably resulted from post-collisional slab break-off mantle convection and remelting from ascending asthenosphere after subducted lithosphere break-off. Widespread and episodic occurrences of lamprophyres and other potassic volcanism in the eastern Tibetan Plateau were probably related to the onset of transtensional tectonics along the ASRR shear zone during Oligocene. A genetic model involving transtensional tectonics has been proposed for lamprophyres and gold mineralization in the ASRR shear zone.

  7. How to create mylonitic shear zones in the presence of shear heating

    NASA Astrophysics Data System (ADS)

    Thielmann, Marcel; Rozel, Antoine; Kaus, Boris; Ricard, Yanick

    2013-04-01

    Lithospheric-scale shear zones are commonly defined as regions inhomogeneous and localized deformation. Strain softening has been demonstrated to be necessary for localization in those shear zones, but there is still debate about the physical cause of this softening. Here, we investigate the interplay between two mechanisms that have been suggested to have a significant impact on lithospheric localization: shear heating and grain size reduction. Shear heating has been suggested to play an important role in i) creating deep focus as well as intermediate-depth earthquakes (Ogawa (1987), Kelemen and Hirth (2007)) and ii) creating lithospheric-scale shear zones, thus creating a weak decoupling interface that enables subsequent subduction initiation (Kaus and Podlatchikov (2006), Crameri and Kaus (2010)). As natural shear zones typically have a significantly reduced grain size, it has been put forward that grain size reduction provides the necessary strain softening to localize deformation. As grain size reduces, the dominant deformation mechanism switches from dislocation to diffusion creep, thus requiring less stress to deform the rock. Usually, the equilibrium grain size is thought to follow a piezometric relationship, thus indicating the stress under which a shear zone deformed. Recent work (Austin and Evans (2007), Rozel et al. (2011)) suggests that the equilibrium grain size is not dependent on stress, but rather on the deformational work. In our study, we employ the grain size evolution law of Rozel et al. and use 1D viscoelastic numerical models of simple shear deformation to investigate the influence of both weakening mechanisms and their interaction for a variety of boundary conditions. We find that grain size reduction in pure olivine does not localize very efficiently, as grain size very rapidly reaches a steady state. Even when a fraction of the deformational work is used by grain size reduction processes, shear heating is found to localize very efficiently

  8. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Higher shearing strength of rivets. 230.28 Section... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may... quality as to justify a higher allowable shearing strength. Inspection and Repair...

  9. Rock magnetic properties of an 8-Ma terrigenous succession from the northern Tian Shan foreland basin, northwestern China and aridification of the Asian inland

    NASA Astrophysics Data System (ADS)

    Lu, H.; Zhang, W.; Li, Y.; Dong, C.; Zhang, T.; Zhou, Z.; Zheng, X.

    2013-12-01

    The Asian inland is characterized by exceptional topographic relief and widespread deserts and semi-deserts. Its environmental evolution during the late Cenozoic is featured by two processes: (1) growth and uplift of the Tibetan Plateau (including the hinterland to the north) and (2) stepwise development of dry climate. Many previous investigations have attempted to reconstruct the process of plateau uplift or constrain the aridification history. The relative role of the Tibetan Plateau uplift and Cenozoic global cooling in the aridification process of the Asian interior, however, remains an issue of debate. More detailed paleoclimatic/tectonic investigations over a broad area should be beneficial to better answer this question. In the northern Tian Shan foreland basin, northwestern China was deposited thick Cenozoic terrigenous succession, which is crucial for paleoenvironmental reconstruction of the Asian interior. Here we present a detailed rock magnetic investigation on 245 samples from the ~1,200-m-thick Neogene Taxi He section with a magnetostratigraphic age span of ca. 8.0 to 2.0 Ma in the northern Tian Shan foreland basin. Our rock magnetic results indicate that the significant variations in composition, concentration and grain size of magnetic minerals occurred at ca. 6.0, 3.7 and 2.7 Ma. The comparable compositions of rare earth elements (REEs) throughout the Neogene Taxi He section suggest no significant modification of the source materials during the interval between ca. 8.0 and 2.0 Ma, and thus sediment provenance is not regarded as responsible for these observed variations in rock magnetic properties. Our further analyses show that the variations in magnetic property of the Neogene Taxi He deposits are casually linked mainly with lithofacies transition due to range encroachment into foreland basin as well as climate aridification. Identified enhancement of aridification was chronologically constrained at ca. 6.0 and 2.7 Ma based on the variations of

  10. Spatial variations in 10Be-derived catchment wide denudation rates and the timing of glaciation in the NW Pamir SW Tien Shan Mountains, Tajikistan

    NASA Astrophysics Data System (ADS)

    Grin, E.; Ehlers, T. A.; Schaller, M.

    2014-12-01

    Mountain topography evolves in response to interactions between climate and tectonic processes. This study investigates the role of glaciation and catchment wide denudation rates in forming the 40.000 km2 large Vakhsh catchment in Tajikistan. The Vakhsh river is located in the Pamir - Tian Shan transition zone. The river drains the North Pamir as well as parts of the Alay Range, which is the western extension of the Tian Shan Mountains. The southward Vakhsh -Trans -Alay thrusting is the expression of ongoing tectonic activity in this area. Today the rate of convergence between the two mountain ranges adds up to at least 15 mm/yr. We analyzed the upstream part of the Vakhsh catchment with in situ-produced cosmogenic 10Be and 26Al in quartz. Modern river samples, terrace depth profiles, and moraine boulder samples were used for quantifying modern and paleo-denudation rates, and timing of the most recent glaciation. A recessional moraine was dated with a total number of 18 boulders and a sequence of five lateral moraines with 41 samples. Results from well-preserved moraines indicate in the North Pamir a maximal glacial extent at around 17 ka (+/- 1.9 ka). The analysis of modern river samples derived from several locations along the main channel of the Vakhsh river reveal denudation rates between 1.8 - 2.6 mm/yr. Spatial variations in denudation were also evaluated using cosmogenic nuclide-derived denudation rates from rivers ranging between Strahler order 4 and 7. Preliminary results for these rates vary between 0.7 and 2.9 mm/yr within the catchments. A correlation between Strahler order and the denudation rate has not been observed. Exposure ages for the lowest, middle, and highest of the 10 terraces are all ~3.2 ka (+/- 0.29 ka) indicating synchronous and rapid terrace formation in the late Holocene. Taken together, these results indicate: a) the most recent maximum extent of glaciation is in this valley is ~17 ka, b) terrace formation significantly post

  11. Geomorphology and Ice Content of Glacier - Rock Glacier &ndash; Moraine Complexes in Ak-Shiirak Range (Inner Tien Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Bolch, Tobias; Kutuzov, Stanislav; Rohrbach, Nico; Fischer, Andrea; Osmonov, Azamat

    2015-04-01

    Meltwater originating from the Tien Shan is of high importance for the runoff to the arid and semi-arid region of Central Asia. Previous studies estimate a glaciers' contribution of about 40% for the Aksu-Tarim Catchment, a transboundary watershed between Kyrgyzstan and China. Large parts of the Ak-Shiirak Range drain into this watershed. Glaciers in Central and Inner Tien Shan are typically polythermal or even cold and surrounded by permafrost. Several glaciers terminate into large moraine complexes which show geomorphological indicators of ice content such as thermo-karst like depressions, and further downvalley signs of creep such as ridges and furrows and a fresh, steep rock front which are typical indicators for permafrost creep ("rock glacier"). Hence, glaciers and permafrost co-exist in this region and their interactions are important to consider, e.g. for the understanding of glacial and periglacial processes. It can also be assumed that the ice stored in these relatively large dead-ice/moraine-complexes is a significant amount of the total ice storage. However, no detailed investigations exist so far. In an initial study, we investigated the structure and ice content of two typical glacier-moraine complexes in the Ak-Shiirak-Range using different ground penetrating radar (GPR) devices. In addition, the geomorphology was mapped using high resolution satellite imagery. The structure of the moraine-rock glacier complex is in general heterogeneous. Several dead ice bodies with different thicknesses and moraine-derived rock glaciers with different stages of activities could be identified. Few parts of these "rock glaciers" contain also massive ice but the largest parts are likely characterised by rock-ice layers of different thickness and ice contents. In one glacier forefield, the thickness of the rock-ice mixture is partly more than 300 m. This is only slightly lower than the maximum thickness of the glacier ice. Our measurements revealed that up to 20% of

  12. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data

    NASA Astrophysics Data System (ADS)

    Shangguan, D. H.; Bolch, T.; Ding, Y. J.; Kröhnert, M.; Pieczonka, T.; Wetzel, H. U.; Liu, S. Y.

    2015-04-01

    Glacier melt is an essential source of freshwater for the arid regions surrounding the Tian Shan. However, the knowledge about glacier volume and mass changes over the last decades is limited. In the present study, glacier area, glacier dynamics and mass changes are investigated for the period ~1975-2007 for Southern Inylchek Glacier (SIG) and Northern Inylchek Glacier (NIG), the largest glacier system in Central Tian Shan separated by the regularly draining Lake Merzbacher. The area of NIG increased by 2.0 ± 0.1 km2 (~1.3%) in the period ~1975-2007. In contrast, SIG has shrunk continuously in all investigated periods since ~1975. Velocities of SIG in the central part of the ablation region reached ~100-120 m a-1 in 2002/2003, which was slightly higher than the average velocity in 2010/2011. The central part of SIG flows mainly towards Lake Merzbacher rather than towards its terminus. The measured velocities at the distal part of the terminus downstream of Lake Merzbacher were below the uncertainty, indicating very low flow with even stagnant parts. Geodetic glacier mass balances have been calculated using multi-temporal digital elevation models from KH-9 Hexagon (representing the year 1975), SRTM3 (1999), ALOS PRISM (2006) and SPOT-5 high-resolution geometrical (HRG) data (2007). In general, a continuous mass loss for both SIG and NIG could be observed between ~1975 and 2007. SIG lost mass at a rate of 0.43 ± 0.10 m w.e. a-1 and NIG at a rate of 0.25 ± 0.10 m w.e. a-1 within the period ~1975-1999. For the period 1999-2007, the highest mass loss of 0.57 ± 0.46 m w.e. a-1 was found for NIG, whilst SIG showed a potential moderate mass loss of 0.28 ± 0.46 m w.e. a-1. Both glaciers showed a small retreat during this period. Between ~1975 and 1999, we identified a thickening at the front of NIG with a maximum surface elevation increase of about 150 m as a consequence of a surge event. In contrast significant thinning (>0.5 m a-1) and comparatively high velocities

  13. Aging of a colloidal glass under a periodic shear.

    PubMed

    Kaloun, Soulaimane; Skouri, Mohammed; Knaebel, Alexandra; Münch, Jean-Pierre; Hébraud, Pascal

    2005-07-01

    The aging dynamics under a periodic shear of a concentrated suspension of saponite particles is measured. It is observed that the dynamics is fastened by the application of a moderate shear amplitude. Nevertheless, this acceleration does not affect the dynamics of the suspension when the shear is ceased. By applying a succession of shear of various amplitudes, we conclude that the dynamics of the suspension at a time t(w) after complete rejuvenation is independent of the shear history between times 0 and t(w) , as soon as the amplitude of the applied shear is smaller than the characteristic shear gamma(c) necessary to completely rejuvenate the suspension. PMID:16089955

  14. Precursors to the shear failure of rock discontinuities

    NASA Astrophysics Data System (ADS)

    Hedayat, Ahmadreza; Pyrak-Nolte, Laura J.; Bobet, Antonio

    2014-08-01

    Active geophysical monitoring of potential failure along mechanical discontinuities in rock requires identification of precursory signatures to failure in geophysical signals. Active ultrasonic monitoring of shear failure along frictional discontinuities was performed to determine the signatures of potential failure. An instrumented direct shear apparatus was used to apply a constant shearing rate to a discontinuity that was held under a constant normal stress. Transmitted and reflected compressional and shear waves were recorded during the shearing process. Ultrasonic precursors were identified as distinct maxima in the amplitude of transmitted shear waves as well as minima in the amplitude of reflected shear waves that occurred well before the peak shear strength of a frictional discontinuity. The precursors are linked to changes in the local shear specific stiffness along the discontinuity, while the discontinuity's macroscopic shear strength continues to increase prior to failure.

  15. Mechanical properties of graphynes under shearing and bending

    NASA Astrophysics Data System (ADS)

    Yi, Lijun; Zhang, Yingyan; Feng, Xiqiao; Chang, Tienchong; Wang, Ji; Du, Jianke; Zhou, Jianxin

    2016-05-01

    Graphynes are the allotrope of graphene. In this work, extensive molecular dynamics simulations are performed on four different graphynes ( α - , β - , γ - , and 6,6,12-graphynes) to explore their mechanical properties (shear modulus, shear strength, and bending rigidity) under shearing and bending. While the shearing properties are anisotropic, the bending rigidity is almost independent of the chirality of graphynes. We also find that the shear modulus and shear fracture strength of graphynes decrease with increasing temperature. The effect of the percentage of the acetylenic linkages on the shear mechanical properties and bending rigidity is investigated. It is shown that the fracture shear strengths and bending rigidities of the four types of graphynes decrease, while the fracture shear strain increases, with increasing percentages of the acetylenic linkages. Significant wrinkling is observed in graphyne under shear strain. The influence of the temperatures and percentages of the acetylenic linkages on the ratio of amplitude-to-wavelength in the wrinkles are examined.

  16. Repeated buckling of composite shear panels

    NASA Technical Reports Server (NTRS)

    Singer, Josef; Weller, Tanchum

    1990-01-01

    Failures in service of aerospace structures and research at the Technion Aircraft Structures Laboratory have revealed that repeatedly buckled stiffened shear panels might be susceptible to premature fatigue failures. Extensive experimental and analytical studies have been performed at Technion on repeated buckling, far in excess of initial buckling, for both metal and composite shear panels with focus on the influence of the surrounding structure. The core of the experimental investigation consisted of repeated buckling and postbuckling tests on Wagner beams in a three-point loading system under realistic test conditions. The effects of varying sizes of stiffeners, of the magnitude of initial buckling loads, of the panel aspect ratio and of the cyclic shearing force, V sub cyc, were studied. The cyclic to critical shear buckling ratios, (V sub cyc/V sub cr) were on the high side, as needed for efficient panel design, yet all within possible flight envelopes. The experiments were supplemented by analytical and numerical analyses. For the metal shear panels the test and numerical results were synthesized into prediction formulas, which relate the life of the metal shear panels to two cyclic load parameters. The composite shear panels studied were hybrid beams with graphite/epoxy webs bonded to aluminum alloy frames. The test results demonstrated that composite panels were less fatigue sensitive than comparable metal ones, and that repeated buckling, even when causing extensive damage, did not reduce the residual strength by more than 20 percent. All the composite panels sustained the specified fatigue life of 250,000 cycles. The effect of local unstiffened holes on the durability of repeatedly buckled shear panels was studied for one series of the metal panels. Tests on 2024 T3 aluminum panels with relatively small unstiffened holes in the center of the panels demonstrated premature fatigue failure, compared to panels without holes. Preliminary tests on two graphite

  17. Extreme model reduction of shear layers

    NASA Astrophysics Data System (ADS)

    Qawasmeh, Bashar Rafee

    The aim of this research is to develop nonlinear low-dimensional models (LDMs) to describe vortex dynamics in shear layers. A modified Proper Orthogonal Decomposition (POD)/Galerkin projection method is developed to obtain models at extremely low dimension for shear layers. The idea is to dynamically scale the shear layer along y direction to factor out the shear layer growth and capture the dynamics by only a couple of modes. The models are developed for two flows, incompressible spatially developing and weakly compressible temporally developing shear layers, respectively. To capture basic dynamics, the low-dimensional models require only two POD modes for each wavenumber/frequency. Thus, a two-mode model is capable of representing single-wavenumber/frequency dynamics such as vortex roll-up, and a four-mode model is capable of representing the nonlinear dynamics involving a fundamental wavenumber/frequency and its subharmonic, such as vortex pairing/merging. Most of the energy is captured by the first mode of each wavenumber/frequency, the second POD mode, however, plays a critical role and needs to be included. In the thesis, we first apply the approach on temporally developing weakly compressible shear layers. In compressible flows, the thermodynamic variables are dynamically important, and must be considered. We choose isentropic Navier-Stokes equations for simplicity, and choose a proper inner product to present both kinetic energy and thermal energy. Two cases of convective Mach numbers are studied for low compressibility and moderate compressibility. Moreover, we study the sensitivity of the compressible four-mode model to several flow parameters: Mach number, the strength of initial perturbations of the fundamental and its subharmonic, and Reynolds number. Secondly we apply the approach on spatially developing incompressible shear layers with periodicity in time. We consider a streamwise parabolic form of the Navier-Stokes equations. When we add arbitrary

  18. Colloidal Aggregate Structure under Shear by USANS

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  19. Internal hydraulic jumps with large upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  20. A Refined Shear Deformation Plate Theory

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng

    2011-04-01

    An improved higher-order shear deformation theory of plates is presented in this paper. The theory is developed from the transverse shear deformation theory presented by Ambartsumian [11]. The present plate theory contains kinematics of higher-order displacement field of plates, a system of higher-order differential equilibrium equations in terms of the three generalized displacements of bending plates, and a system of boundary conditions at each edge of plate boundaries. The present shear deformation theory of plates is validated by applying it to solve torsional plates and simply supported plates. The obtained solutions using the present theory are compared with the solutions of other shear-deformation theories. A good agreement is achieved through these comparisons and the advantages of the present theory are clearly verified. The shear deformation plate theory presented here can be applied to the analysis of laminated composite plates to better predict their dynamic and static behaviors. The proposed theory should also be supplemented to the theory of finite element analysis for developing new shell elements.

  1. The shear fracture toughness, KIIc, of graphite

    DOE PAGESBeta

    Burchell, Timothy D.; Erdman, III, Donald L.

    2015-11-05

    In this study, the critical shear stress intensity factor, KIIc, here-in referred to as the shear fracture toughness, KIIc (MPa m), of two grades of graphite are reported. The range of specimen volumes was selected to elucidate any specimen size effect, but smaller volume specimen tests were largely unsuccessful, shear failure did not occur between the notches as expected. This was probably due to the specimen geometry causing the shear fracture stress to exceed the compressive failure stress. In subsequent testing the specimen geometry was altered to reduce the compressive footprint and the notches (slits) made deeper to reduce themore » specimen's ligament length. Additionally, we added the collection of Acoustic Emission (AE) during testing to assist with the identification of the shear fracture load. The means of KIIc from large specimens for PCEA and NBG-18 are 2.26 MPa m with an SD of 0.37 MPa m and 2.20 MPa m with an SD of 0.53 MPa m, respectively. The value of KIIc for both graphite grades was similar, although the scatter was large. In this work we found the ratio of KIIc/KIc ≈ 1.6. .« less

  2. Sheath fold morphology in simple shear

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.

    2013-08-01

    Sheath folds are highly non-cylindrical structures often associated with shear zones. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We present results for different slip surface orientations and shapes. Cross-sections perpendicular to the shear direction through the sheath fold display closed contours, so called eye-structures. The aspect ratio of the outermost closed contour is strongly dependent on the initial slip surface configuration. The center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness across the sheath fold length, questioning the usefulness of eye-structures as shear sense indicators. The location of the center of the eye structure is largely invariant to the initial configurations of the slip surface as well as to strain. The values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed contour (Ry'z') shows values above and below 1. R' shows dependence on the slip surface shape and orientation but not on the number of involved contours. Using R' measurements to deduce the bulk strain type may be erroneous.

  3. Pressure-shear experiments on granular materials.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Vogler, Tracy John; Alexander, C. Scott

    2011-10-01

    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  4. Dynamic shear jamming in granular suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Majumdar, Sayantan; Jaeger, Heinrich

    2014-11-01

    Jamming by shear allows a frictional granular packing to transition from an unjammed state into a jammed state while keeping the system volume and average packing fraction constant. Shear jamming of dry granular media can occur quasi-statically, but boundaries are crucial to confine the material. We perform experiments in aqueous starch suspension where we apply shear using a rheometer with a large volume (400 ml) cylindrical Couette cell. In our suspensions the packing fraction is sufficiently low that quasi-static deformation does not induce a shear jammed state. Applying a shock-like deformation however, will turn the suspension into a jammed solid. A fully jammed state is reached within tens of microseconds, and can be sustained for at least several seconds. High speed imaging of the initial process reveals a jamming front propagating radially outward through the suspension, while the suspension near the outer boundary remains quiescent. This indicates that granular suspensions can be shear jammed without the need of confining solid boundaries. Instead, confinement is most likely provided by the dynamics in the front region.

  5. Shear-enhanced adhesion of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Rusconi, Roberto; Shen, Yi; Forsyth, Alison; Stone, Howard

    2010-03-01

    Bacterial adhesion is the first step in the development of surface-associated communities known as biofilms, which are the cause of many problems in medical devices and industrial water systems. However the underlying mechanisms of initial bacterial attachment are not fully understood. We have investigated the effects of hydrodynamics on the probability of adsorption and detachment of Pseudomonas aeruginosa strain PA14 on model surfaces under flow, in straight microfluidic channels, and measured the distribution of bacteria residence time as a function of the shear rate. Our main discovery is a counter-intuitive enhanced adhesion as the shear stress is increased over a wide range of shear rates. In order to identify the origin of this phenomenon, we have performed experiments with several mutant strains. Our results show that shear-enhanced adhesion is not regulated by primary surface organelles, and that this process is not specific to a certain type of surface, but rather appears a general feature of the adhesive behavior of P. aeruginosa. These results suggest that shear-induced adhesion could be a very widespread strategy in nature.

  6. Evaluation of shear mounted elastomeric damper

    NASA Technical Reports Server (NTRS)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  7. Fluvial response to large rock-slope failures: Examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand

    NASA Astrophysics Data System (ADS)

    Korup, Oliver; Strom, Alexander L.; Weidinger, Johannes T.

    2006-08-01

    We describe remnants of large (10 7-10 10 m 3) Late Pleistocene to Holocene rockslides and rock avalanches that block(ed) rivers and are preserved in the Himalayas, the Tien Shan, and the New Zealand Southern Alps despite rates of uplift and erosion of up to 10 mm year - 1 . These natural dams control fluvial response on 10 1-10 4 year timescales by (a) storing and releasing sediment during forced alluviation and fluvial re-incision; (b) relocating river channels through diversion or seepage; (c) inhibiting river erosion into bedrock; (d) forming persistent long-profile knickpoints and knickslopes associated with steep high-energy (> 10 3 W m - 2 ) breach and epigenetic bypass gorges and fluvial hanging valleys; and (e) shaping valley-floor morphology. Sediments indicate that rockslide-dammed lakes may persist up to 10 4 years, before being drained or infilled. Several short-lived (10 0-10 2 year) historical rockslide dams in the Indian and Nepal Himalayas and the Southern Alps have had marked volumetric impacts on catchment sediment budgets shortly following failure. Therefore, we caution against the linear extrapolation of sediment delivery from prehistoric rockslide dams through time as a response variable. We find reach-scale changes to channel gradient to be prominent and persistent indicators of fluvial response to large rock-slope failures.

  8. A method to separate temperature and precipitation signals encoded in tree-ring widths for the western Tien Shan Mountains, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, Wenhuo; Gou, Xiaohua; Li, Jinbao; Huo, Yuxia; Fang, Keyan

    2015-10-01

    Separating temperature and precipitation signals encoded in tree rings is a complicated issue. Here, we present a separation method by combining two tree-ring width chronologies of Schrenk's spruce (Picea schrenkiana) from the upper and lower timberlines in the western Tien Shan Mountains, northwest China. Correlation analyses show that both chronologies correlate positively with precipitation. However, temperature correlates positively with the chronology from the upper timberline, while negatively with the chronology from the lower timberline. This suggests that the two chronologies contain similar precipitation information but opposite temperature signals. In light of this, we calculated the average and difference of the two chronologies, and found that each of them has a much stronger correlation with precipitation or temperature alone. Finally, we reconstructed local precipitation and temperature variations over the past 201 years by using the average and difference of the two chronologies. The two reconstructions do not have a significant correlation, but they have significant positive and negative relationships on the high- and low-frequency band, respectively.

  9. Mitigating shear lag in tall buildings

    NASA Astrophysics Data System (ADS)

    Gaur, Himanshu; Goliya, Ravindra K.

    2015-09-01

    As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.

  10. Strength of Footing with Punching Shear Preventers

    PubMed Central

    Lee, Sang-Sup; Moon, Jiho; Park, Keum-Sung; Bae, Kyu-Woong

    2014-01-01

    The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectiveness of PSP were verified through a series of experimental studies. The nonlinear finite element analysis was then performed to demonstrate the failure mechanism of the footing with PSPs in depth and to investigate the key parameters that affect the behavior of the footing with PSPs. Finally, the design recommendations for the footing with PSPs were suggested. PMID:25401141

  11. Shear viscosity in magnetized neutron star crust

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Yakovlev, D. G.

    2015-12-01

    The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.

  12. Undulatory Swimming in Shear-thinning Fluids

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoning; Gagnon, David; Arratia, Paulo

    2012-11-01

    Many fluids in which microorganisms move, feed, and reproduce possess shear-rate dependent viscosity behavior (e.g. shear-thinning). Such fluids include wet soil, clay suspension, mucus, and gels. In this talk, we experimentally investigate the effects of shear-rate dependent viscosity on the swimming behavior of the nematode Caenorhabditis elegans using velocimetry and tracking methods. Here, aqueous solutions of xanthan gum, which is a rod-like stiff polymer, are used with concentrations varying from the semi-dilute to the concentrated regime. The data is compared to swimming in simple, Newtonian fluids. We find that the nematode swims at an approximately constant speed in the semi-dilute regime. Surprisingly, the nematode exhibits 40% increases in swimming speed once immersed in a concentrated solution. The enhancement in swimming speed seems to be related to the dynamics of rod-like polymer networks formed in concentrated solutions. This work was supported by NSF-CAREER (CBET)-0954084.

  13. Magnetic shear. III - Hale region 17255

    NASA Technical Reports Server (NTRS)

    Athay, R. G.; Jones, H. P.; Zirin, H.

    1986-01-01

    Hale active region 17255, which in many respects was the most vigorous active region observed during the first operational period of SMM, appears to lie between two large areas of flow (observed in C IV) converging toward the major axis of the region. In the 6-day period from November 6-12, 1980, the major axis of the region rotates by about 25 deg. Several segments of the magnetic neutral line show C IV flow velocities of opposite sign on either side of the neutral line. Those segments whose orientation is favorable for measuring velocity components parallel to the neutral line show evidence that such flow is present, which is interpreted as evidence for magnetic shear. This, together with other evidence, suggests that magnetic shear is widespread in this region, as in the two previous regions studied. It is concluded that magnetic shear is often associated with flaring activity but is not a sufficient condition for flaring to occur.

  14. Scaling effects in direct shear tests

    USGS Publications Warehouse

    Orlando, A.D.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.

  15. Shear and extensional properties of kefiran.

    PubMed

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-01

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. PMID:27516254

  16. Observations of velocity shear driven plasma turbulence

    NASA Technical Reports Server (NTRS)

    Kintner, P. M., Jr.

    1976-01-01

    Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.

  17. Shear banding in soft glassy materials.

    PubMed

    Fielding, S M

    2014-10-01

    Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic 'glassy' features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). Despite being technically transient, such bands may in practice persist for a very long time and so be mistaken for the true steady state response of the material in experimental practice. After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike. PMID:25303030

  18. Shear banding in soft glassy materials

    NASA Astrophysics Data System (ADS)

    Fielding, S. M.

    2014-10-01

    Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic ‘glassy’ features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). Despite being technically transient, such bands may in practice persist for a very long time and so be mistaken for the true steady state response of the material in experimental practice. After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.

  19. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  20. Shear-flow Effects in Open Traps

    SciTech Connect

    Beklemishev, A. D.

    2008-11-01

    Interaction between shear flows and plasma instabilities and turbulence in open traps can lead to improved confinement both in experiments and in simulations. Shear flows, driven by biasing end-plates and limiters or by off-axis electron heating, in combination with the finite-larmor-radius (FLR) effects are shown to be efficient in confining plasmas even with unstable flute modes. Interpretation of the observed effects as the ''vortex confinement,'' i.e., confinement of the plasma core in the dead-flow zone of the driven vortex, is shown to agree well with simulations.

  1. Shear viscosity coefficient of liquid lanthanides

    SciTech Connect

    Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  2. Shear representations of beam transfer matrices.

    PubMed

    Başkal, S; Kim, Y S

    2001-05-01

    The beam transfer matrix, often called the ABCD matrix, is one of the essential mathematical instruments in optics. It is a unimodular matrix whose determinant is 1. If all the elements are real with three independent parameters, this matrix is a 2 x 2 representation of the group Sp(2). It is shown that a real ABCD matrix can be generated by two shear transformations. It is then noted that, in para-axial lens optics, the lens and translation matrices constitute two shear transformations. It is shown that a system with an arbitrary number of lenses can be reduced to a system consisting of three lenses. PMID:11415030

  3. Shear and Compression Bioreactor for Cartilage Synthesis.

    PubMed

    Shahin, Kifah; Doran, Pauline M

    2015-01-01

    Mechanical forces, including hydrodynamic shear, hydrostatic pressure, compression, tension, and friction, can have stimulatory effects on cartilage synthesis in tissue engineering systems. Bioreactors capable of exerting forces on cells and tissue constructs within a controlled culture environment are needed to provide appropriate mechanical stimuli. In this chapter, we describe the construction, assembly, and operation of a mechanobioreactor providing simultaneous dynamic shear and compressive loading on developing cartilage tissues to mimic the rolling and squeezing action of articular joints. The device is suitable for studying the effects of mechanical treatment on stem cells and chondrocytes seeded into three-dimensional scaffolds. PMID:26445842

  4. Unresolved issues in wind shear encounters

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    Much remains to be learned about the hazards of low altitude wind shear to aviation. New research should be conducted on the nature of the atmospheric environment, on aircraft performance, and on guidance and control aids. In conducting this research, it is important to distinguish between near-term and far-term objectives, between basic and applied research, and between uses of results for aircraft design or for real-time implementation. Advances in on-board electronics can be applied to assuring that aircraft of all classes have near optimal protection against wind shear hazards.

  5. Shear wave velocities in the earth's mantle.

    NASA Technical Reports Server (NTRS)

    Robinson, R.; Kovach, R. L.

    1972-01-01

    Direct measurement of the travel time gradient for S waves together with travel time data are used to derive a shear velocity model for the earth's mantle. In order to satisfy the data it is necessary to discard the usual assumption of lateral homogeneity below shallow depths. A shear velocity differential is proposed for a region between western North America and areas of the Pacific Ocean. Distinctive features of the velocity model for the upper mantle beneath western North America are a low-velocity zone centered at 100 km depth and zones of high velocity gradient beginning at 400, 650, and 900 km.

  6. Enhancing Rotational Diffusion Using Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-05-01

    Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids.

  7. Leukocyte margination at arteriole shear rate

    PubMed Central

    Takeishi, Naoki; Imai, Yohsuke; Nakaaki, Keita; Yamaguchi, Takami; Ishikawa, Takuji

    2014-01-01

    Abstract We numerically investigated margination of leukocytes at arteriole shear rate in straight circular channels with diameters ranging from 10 to 22 μm. Our results demonstrated that passing motion of RBCs effectively induces leukocyte margination not only in small channels but also in large channels. A longer time is needed for margination to occur in a larger channel, but once a leukocyte has marginated, passing motion of RBCs occurs continuously independent of the channel diameter, and leukocyte margination is sustained for a long duration. We also show that leukocytes rarely approach the wall surface to within a microvillus length at arteriole shear rate. PMID:24907300

  8. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  9. High-shear-rate capillary viscometer for inkjet inks

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-01

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2×105 s-1 are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  10. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  11. High-shear-rate capillary viscometer for inkjet inks

    SciTech Connect

    Wang Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  12. Shear rupture under constant normal stiffness boundary conditions

    NASA Astrophysics Data System (ADS)

    Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.

    2014-11-01

    A grain based Distinct Element Method and its embedded Grain Based Method are used to simulate the fracturing processes leading to shear rupture zone creation in a calibrated massive (non-jointed) brittle rock specimen deformed in direct shear under constant normal stiffness boundary conditions. Under these boundary conditions, shear rupture zone creation relative to the shear stress versus applied horizontal displacement (load-displacement) curve occurs pre-peak, before the maximum peak shear strength is reached. This is found to be the result of a normal stress feedback process caused by the imposed shear displacement which couples increases in normal stress, due to rupture zone dilation, with shear stress, producing a complex normal-shear stress-path that reaches and then follows the rock's yield (strength) envelope. While the yield envelope is followed, the shear strength increases further and shear stress oscillations (repeated stress drops followed by re-strengthening periods) in the load-displacement curves occur due to fracture creation as the rupture zone geometry smoothens. Once the maximum peak strength is reached (after a series of shear stress oscillations) the largest stress drops occur as the ultimate or residual shear strength is approached. The simulation results provide insight into the fracturing process during rupture zone creation and improve the understanding of the shear stress versus applied horizontal displacement response, as well as the stick-slip behaviour of shear rupture zones that are being created under constant normal stiffness boundary conditions.

  13. Acute Shear Stress Direction Dictates Adherent Cell Remodeling and Verifies Shear Profile of Spinning Disc Assays

    PubMed Central

    Fuhrmann, Alexander; Engler, Adam J.

    2015-01-01

    Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disc chamber or “spinning disc” in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. PMID:25619322

  14. Laboratory study of fabric development in shearing till: The importance of effective pressure and shearing rate

    NASA Astrophysics Data System (ADS)

    Jacobson, William R.; Hooyer, Thomas S.

    2015-12-01

    Herein we present data on the shearing rate (glacier velocity) and effective pressure (difference between the ice-overburden pressure and pore-water pressure) in the development of magnetic fabric (anisotropy of magnetic susceptibility) using a rotary ring-shear device. A Wisconsin-age basal till was used in the experiments and deformed to its critical state at shear strains as high as 93. We also present data from hysteresis and high temperature susceptibility experiments to identify the magnetic carrier in the basal till. Results showed little change in fabric strength when varying the shearing rate in the speed range of 110-860 m year- 1. Moreover, the effective pressure tests also showed an inconsistency in fabric between 30 and 150 kPa; however, a slight strengthening effect was documented. Thus, the k1 magnetic fabric strength is independent of the shearing rate and effective pressure. This suggests that the fabric strength upon these variables cannot be used as a benchmark for estimating shear deformation to the geological record. The k1 fabric strength in this study; however, remained consistent with respect to other till particle fabric methods (e.g., sand and pebble) in which the same conclusion was drawn; all particles align parallel to the direction of shear and plunge mildly up glacier.

  15. A new method for shear wave speed estimation in shear wave elastography.

    PubMed

    Engel, Aaron J; Bashford, Gregory R

    2015-12-01

    Visualization of mechanical properties of tissue can aid in noninvasive pathology diagnosis. Shear wave elastography (SWE) measures the elastic properties of soft tissues by estimation of local shear wave propagation speed. In this paper, a new robust method for estimation of shear wave speed is introduced which has the potential for simplifying continuous filtering and real-time elasticity processing. Shear waves were generated by external mechanical excitation and imaged at a high frame rate. Three homogeneous phantoms of varying elastic moduli and one inclusion phantom were imaged. Waves propagating in separate directions were filtered and shear wave speed was estimated by inversion of the 1-D first-order wave equation. Final 2-D shear wave speed maps were constructed by weighted averaging of estimates from opposite traveling directions. Shear wave speed results for phantoms with gelatin concentrations of 5%, 7%, and 9% were 1.52 ± 0.10 m/s, 1.86 ± 0.10 m/s, and 2.37 ± 0.15 m/s, respectively, which were consistent with estimates computed from three other conventional methods, as well as compression tests done with a commercial texture analyzer. The method was shown to be able to reconstruct a 2-D speed map of an inclusion phantom with good image quality and variance comparable to conventional methods. Suggestions for further work are given. PMID:26670851

  16. Shear Wave Propagation Across Filled Joints with the Effect of Interfacial Shear Strength

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Liu, T. T.; Li, H. B.; Liu, Y. Q.; Liu, B.; Xia, X.

    2015-07-01

    The thin-layer interface model for filled joints is extended to analyze shear wave propagation across filled rock joints when the interfacial shear strength between the filling material and the rocks is taken into account. During the wave propagation process, the two sides of the filled joint are welded with the adjacent rocks first and slide on each other when the shear stress on the joint is greater than the interfacial shear strength. By back analysis, the relation between the shear stress and the relative tangential deformation of the filled joints is obtained from the present approach, which is shown as a cycle parallelogram. Comparison between the present approach and the existing method based on the zero-thickness interface model indicates that the present approach is efficient to analyze shear wave propagation across rock joints with slippery behavior. The calculation results show that the slippery behavior of joints is related to the interfacial failure. In addition, the interaction between the shear stress wave and the two sides of the filling joint influences not only the wave propagation process but also the dynamic response of the filled joint.

  17. Shear thinning behavior of linear polymer melts under shear flow via nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolei; Chen, Jizhong; An, Lijia

    2014-05-01

    The properties of both untangled and entangled linear polymer melts under shear flow are studied by nonequilibrium molecular dynamics simulations. The results reveal that the dependence of shear viscosity η on shear rate dot{γ }, expressed by η ˜ dot{γ }^{-n}, exhibits three distinct regimes. The first is the well-known Newtonian regime, namely, η independent of shear rate at small shear rates dot{γ }<τ 0^{-1} (where τ0 is the longest polymer relaxation time at equilibrium). In the non-Newtonian regime (dot{γ }>τ 0^{-1}), the shear dependence of viscosity exhibits a crossover at a critical shear rate dot{γ }c dividing this regime into two different regimes, shear thinning regime I (ST-I) and II (ST-II), respectively. In the ST-I regime (τ ^{-1}_0dot{γ }c) a universal power law η ˜ dot{γ }^{-0.37} is found for considered chain lengths. Furthermore, the longer the polymer chain is, the smaller the shear viscosity for a given shear rate in the ST-II regime. The simulation also shows that a characteristic chain length, below which dot{γ }c will be equal to τ 0^{-1}, lies in the interval 30 < N < 50. For all considered chain lengths in the ST-II regime, we also find that the first and second normal stress differences N1 and N2 follow power laws of N1 ˜ dot{γ }^{2/3} and N2 ˜ dot{γ }^{0.82}, respectively; the orientation resistance parameter mG follows the relation mG ˜ dot{γ }^{0.75} and the tumbling frequency ftb follows f_{tb} ˜ dot{γ }^{0.75}. These results imply that the effects of entanglement on the shear dependences of these properties may be negligible in the ST-II regime. These findings may shed some light on the nature of shear thinning in flexible linear polymer melts.

  18. Coupling of dust acoustic and shear mode through velocity shear in a strongly coupled dusty plasma

    SciTech Connect

    Garai, S. Janaki, M. S.; Chakrabarti, N.

    2015-07-15

    In the strongly coupled limit, the generalized hydrodynamic model shows that a dusty plasma, acquiring significant rigidity, is able to support a “shear” like mode. It is being demonstrated here that in presence of velocity shear gradient, this shear like mode gets coupled with the dust acoustic mode which is generated by the compressibility effect of the dust fluid due to the finite temperatures of the dust, electron, and ion fluids. In the local analysis, the dispersion relation shows that velocity shear gradient not only couples the two modes but is also responsible for the instabilities of that coupled mode which is confirmed by nonlocal analysis with numerical techniques.

  19. Zonal flow formation in the presence of ambient mean shear

    SciTech Connect

    Hsu, Pei-Chun; Diamond, P. H.

    2015-02-15

    The effect of mean shear flows on zonal flow formation is considered in the contexts of plasma drift wave turbulence and quasi-geostrophic turbulence models. The generation of zonal flows by modulational instability in the presence of large-scale mean shear flows is studied using the method of characteristics as applied to the wave kinetic equation. It is shown that mean shear flows reduce the modulational instability growth rate by shortening the coherency time of the wave spectrum with the zonal shear. The scalings of zonal flow growth rate and turbulent vorticity flux with mean shear are determined in the strong shear limit.

  20. Integration of the TDWR and LLWAS wind shear detection system

    NASA Technical Reports Server (NTRS)

    Cornman, Larry

    1991-01-01

    Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for integrating ground and airborne wind shear detection systems are briefly examined.

  1. Analysis of shear test method for composite laminates

    NASA Technical Reports Server (NTRS)

    Bergner, H. W., Jr.; Davis, J. G., Jr.; Herakovich, C. T.

    1977-01-01

    An elastic plane stress finite element analysis of the stress distributions in four flat test specimens for in-plane shear response of composite materials subjected to mechanical or thermal loads is presented. The shear test specimens investigated include: slotted coupon, cross beam, losipescu, and rail shear. Results are presented in the form of normalized shear contour plots for all three in-plane stess components. It is shown that the cross beam, losipescu, and rail shear specimens have stress distributions which are more than adequate for determining linear shear behavior of composite materials. Laminate properties, core effects, and fixture configurations are among the factors which were found to influence the stress distributions.

  2. Shear flow induced unfolding of collapsed polymers.

    NASA Astrophysics Data System (ADS)

    Alexander-Katz, Alfredo; Netz, Roland

    2006-03-01

    In the process of clotting in small vessels, platelets form a plug in an injured zone only in the presence of a protein known as the von Willebrand Factor (vWF). The absence or malfunction of the vWF leads to a bleeding disorder, the so-called von Willebrand disease. It is believed that the protein is collapsed (or globular) when released into the blood flow, and that it undergoes a transition at high shear rates that allows it to bind platelets. Using hydrodynamic simulations of a simple model of the vWF in shear flow, we show that a globular polymer undergoes a globule-stretch transition at a critical shear rate. Below this threshold shear rate the polymer remains collapsed and slightly deformed, while above it the chain displays strong elongations in the direction of the flow. Finally, we discuss the relevance of our results in the case of blood flow, and compare them to the physiological values present in the body.

  3. Velocity shear stabilization of centrifugally confined plasma.

    PubMed

    Huang, Y M; Hassam, A B

    2001-12-01

    A magnetized, centrifugally confined plasma is subjected to a 3D MHD stability test. Ordinarily, the system is expected to be grossly unstable to "flute" interchanges of field lines. Numerical simulation shows though that the system is stable on account of velocity shear. This allows consideration of a magnetically confined plasma for thermonuclear fusion that has a particularly simple coil configuration. PMID:11736455

  4. Control of shear flows by artificial excitation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Zaman, K. B. M. Q.

    1987-01-01

    Investigations involving artificial excitation of various shear flows are reviewed. Potential applications of excitation in flow control, e.g., in enhancing mixing, and in delaying transition and separation are discussed. An account is given of the current activities at NASA Lewis Research Center in this regard.

  5. History of wind shear turbulence models

    NASA Technical Reports Server (NTRS)

    Cusimano, Lou

    1987-01-01

    The Office of Flight Operations, Flight Technical Programs Div., at the FAA Headquarters, interfaces with industry, R&D communities and air carriers during the introduction of new types of equipment into operational services. A brief highlight of the need which FAA operations sees for new wind shear and turbulence data sets from the viewpoint of equipment certification and simulation is presented.

  6. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.

    2012-06-20

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.

  7. Granular dynamics under shear with deformable boundaries

    NASA Astrophysics Data System (ADS)

    Geller, Drew; Backhaus, Scott; Ecke, Robert

    2015-03-01

    Granular materials under shear develop complex patterns of stress as the result of granular positional rearrangements under an applied load. We consider the simple planar shear of a quasi two-dimensional granular material consisting of bi-dispersed nylon cylinders confined between deformable boundaries. The aspect ratio of the gap width to total system length is 50, and the ratio of particle diameter to gap width is about 10. This system, designed to model a long earthquake fault with long range elastic coupling through the plates, is an interesting model system for understanding effective granular friction because it essentially self tunes to the jamming condition owing to the hardness of the grains relative to that of the boundary material, a ratio of more than 1000 in elastic moduli. We measure the differential strain displacements of the plates, the inhomogeneous stress distribution in the plates, the positions and angular orientations of the individual grains, and the shear force, all as functions of the applied normal stress. There is significant stick-slip motion in this system that we quantify through our quantitative measurements of both the boundary and the grain motion, resulting in a good characterization of this sheared 2D hard sphere system.

  8. Shear Stress in Magnetorheological FInishing for Glasses

    SciTech Connect

    Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.; Mici, J.; Jacobs, S.D.

    2009-04-28

    We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.

  9. Shear stress in magnetorheological finishing for glasses.

    PubMed

    Miao, Chunlin; Shafrir, Shai N; Lambropoulos, John C; Mici, Joni; Jacobs, Stephen D

    2009-05-01

    We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young's modulus, fracture toughness, and hardness. A modified Preston's equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity. PMID:19412219

  10. Shear bands as bottlenecks in force transmission

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Pucilowski, Sebastian; Tobin, Steven; Kuhn, Matthew R.; Andò, Edward; Viggiani, Gioacchino; Druckrey, Andrew; Alshibli, Khalid

    2015-06-01

    The formation of shear bands is a key attribute of degradation and failure in soil, rocks, and many other forms of amorphous and crystalline materials. Previous studies of dense sand under triaxial compression and two-dimensional analogues from simulations have shown that the ultimate shear band pattern may be detected in the nascent stages of loading, well before the band's known nucleation point (i.e., around peak stress ratio), as reported in the published literature. Here we construct a network flow model of force transmission to identify the bottlenecks in the contact networks of dense granular media: triaxial compression of Caicos ooid and Ottawa sand and a discrete element simulation of simple shear. The bottlenecks localise in the nascent stages of loading —in the location where the persistent shear band ultimately forms. This corroborates recent findings on vortices that suggest localised failure is a progressive process of degradation, initiating early in the loading history at sites spanning the full extent, yet confined to a subregion, of the sample. Bottlenecks are governed by the local and global properties of the sample fabric and the grain kinematics. Grains with large rotations and/or contacts having minimal load-bearing capacities per se do not identify the bottlenecks early in the loading history.

  11. Excitation of vortex meandering in shear flow

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Dörnbrack, Andreas; Schumann, Ulrich

    2015-06-01

    This paper investigates the evolution of a streamwise aligned columnar vortex with vorticity {\\boldsymbol{ ω }} in an axial background shear of magnitude Ω by means of linear stability analysis and numerical simulations. A long wave mode of vorticity normal to the plane spanned by the background shear vector {\\boldsymbol{ Ω }} and the vorticity of the vortex are excited by an instability. The stationary wave modes of the vertical and lateral vorticity are amplified. In order to form a helical vortex, the lateral and vertical vorticity can be phase shifted by half a wavelength. The linear and nonlinear evolutions of the vortex in the shear flow are studied numerically. Linearized simulations confirm the results of the stability analysis. The nonlinear simulations reveal further evolution of the helix in the shear flow. The linearly excited mode persists in co-existence with evolving smaller scale instabilities until the flow becomes fully turbulent at the time of O(100 {{Ω }-1}). Turbulent mixing dampens the amplifying mode. The described phenomenon of vortex meandering may serve as an alternative explanation for the excitation of wind turbine wake meandering in the atmospheric boundary layer.

  12. Infrared low-level wind shear work

    NASA Technical Reports Server (NTRS)

    Adamson, Pat

    1988-01-01

    Results of field experiments for the detection of clear air disturbance and low level wind shear utilizing an infrared airborne system are given in vugraph form. The hits, misses and nuisance alarms scores are given. Information is given on the infrared spatial resolution technique. The popular index of aircraft hazard (F= WX over g - VN over AS) is developed for a remote temperature sensor.

  13. Integrated Shear Stress/Temperature Micromachined Sensors

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark; Cattafesta, Louis N., III; Nishida, Toshikazu

    2002-01-01

    During this project we were able to design and initiate the fabrication of an integrated Micro ElectroMechanical Systems (MEMS)-based shear stress/temperature sensor for flow control applications. A brief summary of the completed activities during this project is presented.

  14. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  15. Unsteady behavior of a reattaching shear layer

    NASA Technical Reports Server (NTRS)

    Driver, D. M.; Seegmiller, H. L.; Marvin, J.

    1983-01-01

    A detailed investigation of the unsteadiness in a reattaching, turbulent shear layer is reported. Laser-Doppler velocimeter measurements were conditionally sampled on the basis of instantaneous flow direction near reattachment. Conditions of abnormally short reattachment and abnormally long reattachment were considered. Ensemble-averaging of measurements made during these conditions was used to obtain mean velocities and Rreynolds stresses. In the mean flow, conditional streamlines show a global change in flow pattern which correlates with wall-flow direction. This motion can loosely be described as a 'flapping' of the shear layer. Tuft probes show that the flow direction reversals occur quite randomly and are shortlived. Streses shown also vary with the change in flow pattern. Yet, the global'flapping' motion does not appear to contribute significantly to the stress in the flow. A second type of unsteady motion was identified. Spectral analysis of both wall static pressure and streamwise velocity shows that most of the energy in the flow resides in frequencies that are significantly lower than that of the turbulence. The dominant frequency is at a Strouhal number equal to 0.2, which is the characteristic frequency of roll-up and pairing of vortical structure seen in free shear layers. It is conjectured that the 'flapping' is a disorder of the roll-up and pairing process occurring in the shear layer.

  16. Shear flow promotes amyloid-{beta} fibrilization.

    PubMed

    Dunstan, Dave E; Hamilton-Brown, Paul; Asimakis, Peter; Ducker, William; Bertolini, Joseph

    2009-12-01

    The rate of formation of amyloid fibrils in an aqueous solution of amyloid-beta (Abeta) is greatly increased when the solution is sheared. When Abeta solution is stirred with a magnetic stirrer bar at 37 degrees C, a rapid increase in thioflavin T fluorescence is observed. Atomic Force Microscopy (AFM) images show the formation of aggregates, the growth of fibrils and the intertwining of the fibrils with time. Circular dichroism (CD) spectroscopy of samples taken after stirring shows a transition from random coil to alpha-helix to beta-sheet secondary structure over 20 h at 37 degrees C. The fluorescence, AFM and CD measurements are all consistent with the formation of amyloid fibrils. Quiescent, non-stirred solutions incubated at 37 degrees C showed no evidence of amyloid formation over a period of 3 days. Couette flow was found to accelerate the formation of amyloid fibrils demonstrating that the primary effect of stirring is not mixing but shearing. Only very small shear forces are applied to individual molecules in our experiments. Simple calculation suggests that the force is too small to support a hypothesis that shearing promotes partial unfolding of the protein as is observed. PMID:19850675

  17. The critical shear load of rectangular plates

    NASA Technical Reports Server (NTRS)

    Seydel, Edgar

    1933-01-01

    This report gives formulas for analyzing the critical shear load of a simply supported square, isotropic (simple flat plate), or orthogonal anisotropic plate (a plate in which the rigidity in two directions perpendicular to each other is different, i.e. plywood or corrugated sheet), these formulas, although arrived at by approximation method, seem to agree fairly well with experimental results.

  18. Shear deformation in thick auxetic plates

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2013-08-01

    This paper aims to understand the effect of auxeticity on shear deformation in thick plates. Three models for the shear correction factor of plates as a function of Poisson’s ratio were proposed: an analytical model, a cubic fit model and a modified model. Of these three, the cubic fit model exhibits the best accuracy over the entire range of Poisson’s ratio from -1 to 0.5. The extent of shear deformation is herein investigated using the example of uniformly loaded circular plates. It was found that the maximum deformation of such plates based on Mindlin theory approximates to those according to Kirchhoff theory when the Poisson’s ratio of the plate material is highly negative. When the Poisson’s ratio of the plate material is -1 and the edge of the plate is simply supported, the calculation of the maximum deflection by Mindlin theory simplifies into that by Kirchhoff theory. These results suggest that auxeticity reduces shear deformation in thick plates, permitting the use of classical plate theory for thick plates only if the plate material is highly auxetic.

  19. BOUNDARY SHEAR STRESS ALONG VEGETATED STREAMBANKS

    EPA Science Inventory

    This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The resu...

  20. Laboratory model of flight through wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1985-01-01

    The simulation of an aircraft flying through a downdraft or microburst is presented. The simulation was performed under the conditions of constant takeoff thrust. The resulting wind shear conditions were filmed and examined for possible pilot corrective action in the future.

  1. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  2. Shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The shear strength of polycrystalline Ag, Cu, Ni, and Fe contacts on clean (0001) sapphire has been studied in ultrahigh vacuum. Both clean metal surfaces and surfaces exposed to O2, Cl2, and C2H4 were used. The results indicate that there are two sources of strength of Al2O3-metal contacts: an intrinsic one that depends on the particular clean metal in contact with Al2O3 and an additional one due to intermediate films. The shear strength of the clean metal contacts correlated directly with the free energy of oxide formation for the lowest metal oxide, in accord with the hypothesis that a chemical bond is formed between metal cations and oxygen anions in the sapphire surface. Contacts formed by metals exposed to chlorine exhibited uniformly low shear strength indicative of van der Waals bonding between chlorinated metal surfaces and sapphire. Contacts formed by metals exposed to oxygen exhibited enhanced shear strength, in accord with the hypothesis that an intermediate oxide layer increases interfacial strength.

  3. Shear wave mapping of skeletal muscle using shear wave wavefront reconstruction based on ultrasound color flow imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-07-01

    We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.

  4. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.

    1999-01-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction

  5. Direct Shear of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Knowledge of the strength of individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominate slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000° to 1300°C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 x 10‑6 to 6.7 x 10‑4 s‑1. At high-temperature (≥1200°C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100

  6. Effects of shear load on frictional healing

    NASA Astrophysics Data System (ADS)

    Ryan, K. L.; Marone, C.

    2014-12-01

    During the seismic cycle of repeated earthquake failure, faults regain strength in a process known as frictional healing. Laboratory studies have played a central role in illuminating the processes of frictional healing and fault re-strengthening. These studies have also provided the foundation for laboratory-derived friction constitutive laws, which have been used extensively to model earthquake dynamics. We conducted laboratory experiments to assess the affect of shear load on frictional healing. Frictional healing is quantified during slide-hold-slide (SHS) tests, which serve as a simple laboratory analog for the seismic cycle in which earthquakes (slide) are followed by interseismic quiescence (hold). We studied bare surfaces of Westerly granite and layers of Westerly granite gouge (thickness of 3 mm) at normal stresses from 4-25 MPa, relative humidity of 40-60%, and loading and unloading velocities of 10-300 μm/s. During the hold period of SHS tests, shear stress on the sample was partially removed to investigate the effects of shear load on frictional healing and to isolate time- and slip-dependent effects on fault healing. Preliminary results are consistent with existing works and indicate that frictional healing increases with the logarithm of hold time and decreases with normalized shear stress τ/τf during the hold. During SHS tests with hold periods of 100 seconds, healing values ranged from (0.013-0.014) for τ/τf = 1 to (0.059-0.063) for τ/τf = 0, where τ is the shear stress during the hold period and τf is the shear stress during steady frictional sliding. Experiments on bare rock surfaces and with natural and synthetic fault gouge materials are in progress. Conventional SHS tests (i.e. τ/τf = 1) are adequately described by the rate and state friction laws. However, previous experiments in granular quartz suggest that zero-stress SHS tests are not well characterized by either the Dieterich or Ruina state evolution laws. We are investigating

  7. Predicting km-scale shear zone formation

    NASA Astrophysics Data System (ADS)

    Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey

    2015-04-01

    Because km-scale shear zones play a first-order role in lithospheric kinematics, accurate conceptual and numerical models of orogenic development require predicting when and where they form. Although a strain-based algorithm in the upper crust for weakening due to faulting appears to succeed (e.g., Koons et al., 2010, doi:10.1029/2009TC002463), a comparable general rule for the viscous crust remains unestablished. Here we consider two aspects of the geological argument for a similar algorithm in the viscous regime, namely (1) whether predicting km-scale shear zone development based on a single parameter (such as strain or shear heating) is reasonable; and (2) whether lithologic variability inherent in most orogenic systems precludes a simple predictive rule. A review of tectonically significant shear zones worldwide and more detailed investigations in the Central Gneiss belt of the Ontario segment of the Grenville Province reveals that most km-scale shear zones occur at lithological boundaries and involve mass transfer, but have fairly little else in common. As examples, the relatively flat-lying Twelve Mile Bay shear zone in the western Central Gneiss belt bounds the Parry Sound domain and is likely the product of both localized anatexis and later retrograde hydration with attendant metamorphism. Moderately dipping shear zones in granitoids of the Grenville Front Tectonic Zone apparently resulted from cooperation among several complementary microstructural processes, such as grain size reduction, enhanced diffusion, and a small degree of metamorphic reaction. Localization into shear zones requires the operation of some spatially restricted processes such as stress concentration, metamorphism/fluid access, textural evolution, and thermal perturbation. All of these could be due in part to strain, but not necessarily linearly related to strain. Stress concentrations, such as those that form at rheological boundaries, may be sufficient to nucleate high strain

  8. Management of distal humeral coronal shear fractures

    PubMed Central

    Yari, Shahram S; Bowers, Nathan L; Craig, Miguel A; Reichel, Lee M

    2015-01-01

    Coronal shear fractures of the distal humerus are rare, complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface following distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach (direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails. PMID:25984515

  9. Spurious Shear in Weak Lensing with LSST

    SciTech Connect

    Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.

    2012-09-19

    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.

  10. Edge Sheared Flows and Blob Dynamics

    NASA Astrophysics Data System (ADS)

    Myra, J. R.

    2012-10-01

    The dynamics of blob-filaments [S. I. Krasheninnikov, et al. J. Plasma Phys. 74, 679 (2008); D. A. D'Ippolito, et al., Phys. Plasmas 18, 060501 (2011)] in the strongly radially inhomogeneous edge and scrape-off-layer (SOL) region of a tokamak plasma is considered, with emphasis on sheared flow generation and interaction. The work is motivated by the potential importance of edge sheared flows for turbulence regulation, (e.g. the L-H transition), and the influence of flows on the character of emitted blob-filament structures which ultimately contact plasma-facing components. To study the dynamics of blobs and sheared flows, we employ both numerical simulations and experimental data analysis. The simulations use the fluid-based 2D curvature-interchange model embedded in the SOLT (SOL turbulence) code [D. A. Russell, et al, Phys. Plasmas 16, 122304 (2009)]. A blob-tracking algorithm has also been developed and applied to NSTX and Alcator C-Mod data. The algorithm is based on 2D time-resolved images from the gas puff imaging (GPI) diagnostic [S. J. Zweben, et al. Phys. Plasmas 9, 1981 (2002)]. The algorithm is able to track the blob motion and changes in blob structure, such as elliptical deformations, that can be affected by sheared flows. Results of seeded blob simulations are compared with the experimental data to determine the role of plasma parameters on the blob tracks and to evaluate the exchange of momentum between the blobs and flows. Seeded blob simulations are shown to reproduce many qualitative and quantitative features of the data including size, scale and direction of perpendicular (approximately poloidal) flows and the inferred Reynolds forces, poloidal reversal of blob tracks, and blob trapping and/or ejection. Simulation and experimental data comparisons permit the inference of dynamical mechanisms associated with blob motion and sheared flow generation in these shots, and their relation to previous theoretical work.

  11. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  12. Conjugate-shear folding: A model for the relationships between foliations, folds and shear zones

    NASA Astrophysics Data System (ADS)

    Aerden, Domingo G. A. M.; Sayab, Mohammad; Bouybaouene, Mohamed L.

    2010-08-01

    Microstructural mapping of whole thin sections cut from two samples of micaschist containing cm-scale folds plus garnet porphyroblasts has provided new insight in the relationships between folding, shearing and foliation development. The garnets exhibit coherent inclusion-trail patterns that place important constraints on the kinematic development of both samples, which are shown to be representative of coaxial versus non-coaxial deformation in rocks containing a pre-existing schistosity. A comparison of crenulations-cleavages geometries in both samples and a review of the geometry of natural and experimental multilayer folds leads to the conclusion that folding involves conjugate shearing at different scales. At microscopic scales, crenulation cleavages nucleate as conjugate-kink or shear instabilities and develop further as a function of the macroscopic partitioning of deformation. In fold-hinge domains, bulk-coaxial deformation results in equal development of conjugate crenulations that progressively coalescence into symmetrical crenulation patterns so that, macroscopically, parallelism is achieved between foliation, fold-axial planes and long axes of strain ellipses. Fold-limb domains represent a system of conjugate-shear zones where single sets of crenulation instabilities with synthetic shearing component preferentially develop producing oblique relationships between the aforementioned elements. Cleavage fanning is inferred as a direct consequence of this conjugate-shear origin of folds. The model implies that crenulation cleavages and S-C fabrics in shear zones form by analogous processes, in both cases involving a component of shearing along foliation planes. The development of conjugate sets of foliation planes surrounding porphyroblasts during early, relatively coaxial stages of deformation explains continued "gyrostatic" behaviour during more advanced non-coaxial stages, as indicated by consistently oriented inclusion trails in the studied samples.

  13. Structural Evidence for Fluid-Assisted Shear Failure within a Ductile Shear Zone

    NASA Astrophysics Data System (ADS)

    Compton, K.; Kirkpatrick, J. D.

    2014-12-01

    Recent observations of seismic slip occurring below the seismogenic zone of large fault zones have emphasized the significance of coeval ductile and brittle processes at high temperatures. We present observations of a shear zone contained within the Saddlebag Lake pendant of the eastern Sierra Nevada, CA, where Triassic and Jurassic metavolcanics and metasediments are highly strained in a high-temperature shear zone. Transposed bedding and cleavage that define a flattening fabric, dextrally rotated porphyroclasts, and a steep, pervasive lineation together suggest an overall transpressive kinematic regime for the ductile deformation. The high-strain rocks exhibit multiple episodes of vein formation, indicating a prolonged migration of hydrothermal fluids throughout the system. Crosscutting relationships and mineral assemblages define discrete sets of differently oriented veins. The veins form by fracture, but many veins are folded and boudinaged, showing synkinematic brittle and ductile deformation. We document foliation-parallel quartz veins that show shear displacement from the geometry of pull-apart structures and offsets of earlier veins. Synkinematic equilibrium mineral assemblages within the host rock and dynamic recrystallization of the quartz veins show they formed at temperatures around 400 to 500°C. The shear fractures have horizontal trace lengths of up to a few meters and displacements range from 2-3 mm to ~3 cm, with 1-5 mm of opening. Assuming the observed offset in the fractures occurred in a single event, these measurements are consistent with stress drops of 1 to 10 MPa. We interpret these observations to show that the veins formed as a result of high pore fluid pressure that caused shear failure at low effective stresses. Because foliated rocks are mechanically anisotropic, the foliation provided planes of weakness for failure with a preferred orientation. Evidence for shear failure occurring within crystal-plastic shear zones at high temperatures

  14. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    PubMed

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations. PMID:24827245

  15. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    PubMed

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements. PMID:23862796

  16. 300-km-long co-seismic surface rupture produced by the 2008 Mw 7.9 Wenchuan earthquake along the active Longmen Shan Thrust Belt, China

    NASA Astrophysics Data System (ADS)

    Lin, A.; Rao, G.; Yan, B.

    2012-12-01

    The magnitude (Mw) 7.9 (Ms 8.1) Wenchuan earthquake occurred on 12 May 2008 and ruptured active faults of the Longmen Shan Thrust Belt (LSTB), which marks the boundary between the eastern margin of the Tibetan Plateau and the Sichuan Basin. Although many studies of the 2008 Mw 7.9 Wenchuan earthquake have described the ground deformation features, rupture mechanism, and structural features of the seismogenic fault zone associated with this event, debate remains concerning the total length of the co-seismic surface rupture zone and whether the earthquake ruptured the Qingchuan Fault in the northeastern segment of the Longmen Shan Thrust Belt (LSTB), China. Based on our initial fieldwork carried out 2 days after the 2008 Wenchuan earthquake, we reported that the earthquake produced a ~285-km-long surface rupture zone along the LSTB, at the eastern margin of the Tibetan Plateau, dominated by thrust slip and right-lateral displacement along the central and northeastern segments of the zone, and by left-lateral displacement along the southeastern segment (Lin et al., 2009, 2010). However, other field-based studies have reported that the total length of the co-seismic surface rupture zone is 200-240 km and that the Qingchuan Fault was not ruptured by the Wenchuan earthquake (e.g., Liu-Zeng et al., 2009; Xu et al., 2009; Yin, 2010; Zhang et al., 2010). The length of surface rupture produced by large, individual earthquakes is a key parameter in assessing the seismic moment, the rupture mechanism, the degree of seismic hazard, and the activity of a seismogenic fault, including the recurrence interval of large earthquakes and the long-term slip rate. Therefore, additional work is needed to constrain the length of the co-seismic surface rupture and the location of rupture termination at the northeastern segment of the LSTB, in order to accurately assess the nature of the seismic hazard in the densely populated Sichuan region of China. In this study, we present new field

  17. Flexible Micropost Arrays for Shear Stress Measurement

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  18. Interfacial Shear Strength Evaluation of Jute/Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Yamamoto, Tatsuro; Nakai, Asami

    In order to evaluate the interfacial shear strength between fiber bundle and matrix of jute/poly(lactic acid) (PLA), a fiber bundle pull-out test method is proposed. Shear stress distribution was calculated based on the parabolic shear-lag analysis. Fiber bundle pull-out tests were conducted to evaluate the effects of molding condition on the interfacial shear strength. The interfacial shear strength increased with increasing molding temperature up to 185°C. Then gradual decrease in the interfacial shear strength with molding temperature was observed. Similar tendency was also observed in the effect of molding time, whereas the interfacial shear strength decreased with increasing molding pressure. Comparing the result of the tensile tests in the previous study, interfacial shear strength has corelations with tensile strength.

  19. 3. INTERIOR VIEW LOOKING SOUTH SHOWING PUNCH AND SHEAR MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW LOOKING SOUTH SHOWING PUNCH AND SHEAR MACHINE (manufactured by Cleveland Punch and Shear Works Company, USA) - Cambria & Indiana Railroad, Blacksmith Shop, .25 miles northwest of Colver, Colver, Cambria County, PA

  20. Disentangling the role of structure and friction in shear jamming

    NASA Astrophysics Data System (ADS)

    Vinutha, H. A.; Sastry, Srikanth

    2016-06-01

    Amorphous sphere packings have been intensely investigated to understand mechanical and flow behaviour of dense granular matter and to explore universal aspects of the jamming transition, from fluid to structurally arrested states. Considerable recent research has focused on anisotropic packings of frictional grains generated by shear deformation leading to shear jamming, occurring below the jamming density for isotropic packings of frictionless grains. Here, with the aim of disentangling the role of shear-deformation-induced structures and friction in generating shear jamming, we computationally study sheared assemblies of frictionless spheres, over a wide range of densities. We demonstrate that shear deformation alone leads to the emergence of geometric features characteristic of jammed packings, with the increase of shear strain. We also show that such emergent geometry, together with friction, leads to mechanically stable, shear-jammed, packings above a threshold density that lies well below the isotropic jamming point.

  1. 49 CFR 178.338-12 - Shear section.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... breakage groove adjacent to, and outboard of, the valve. The shear section or breakage groove must yield or... protection specified in § 178.338-10 is not a substitute for a shear section or breakage groove....

  2. Turbulent Transport in Tokamak Plasmas with Rotational Shear

    SciTech Connect

    Barnes, M.; Highcock, E. G.; Cowley, S. C.; Roach, C. M.

    2011-04-29

    Nonlinear gyrokinetic simulations are conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal ExB shear value for plasma confinement. Local maxima in the momentum fluxes are observed, implying the possibility of bifurcations in the ExB shear. The critical temperature gradient for the onset of turbulence increases with flow shear at low flow shears; at higher flow shears, the dependence of heat flux on temperature gradient becomes less stiff. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.

  3. Hinge-migrated fold-scarp model based on an analysis of bed geometry: A study from the Mingyaole anticline, southern foreland of Chinese Tian Shan

    NASA Astrophysics Data System (ADS)

    Li, Tao; Chen, Jie; Thompson, Jessica A.; Burbank, Douglas W.; Yang, Huili

    2015-09-01

    Fold scarps, a type of geomorphic scarp formed by folding mechanisms of hinge migration or limb rotation, serve to delineate both fault-bend characteristics and folding histories, which can, in turn, illuminate tectonic processes and seismic hazards associated with thrust systems. Because the subsurface geometry of folds is commonly difficult to determine, existing fold-scarp models, which rely on both the fold type and its causative fault geometries, remain uncertain with respect to the kinematic evolution of a given fold. In this paper, we develop a model to illustrate that, irrespective of specific fold type and subsurface geometries, fold-scarp growth in the mechanism of hinge migration can be successfully reconstructed based on analyses of bed geometry. This model reveals that the underlying bed dips and the ratio of hinge migration distance/hinge width control the fold-scarp shape and slope. During initial growth (ratio < 1), the scarp slope increases gradually with migration of the hinge. When the hinge totally exits from its original position (ratio > 1), the slope reaches a maximum, which solely depends on underlying bed dips. The scarp height, however, is independent of the hinge width and can be used to quantify folding magnitude. Application of our model to fold scarps in the Mingyaole anticline in the southern foreland of Chinese Tian Shan indicates that the modeled fold-scarp geometry can roughly match with field observations. The Mingyaole shortening rate is estimated to be ≥5.0 mm/a since ~15 ka, such that this single fold has accommodated about half of the regional convergence during the Holocene.

  4. Recycling of sediments from the last 300 kyr in the modern sediment flux during transfer across the north Tian Shan alluvial piedmont.

    NASA Astrophysics Data System (ADS)

    Malatesta, Luca C.; Avouac, Jean-Philippe; Brown, Nathan; Rhodes, Edward; Prancevic, Jeffrey P.; Pan, Jiawei; Chevalier, Marie-Luce; Saint-Carlier, Dimitri; Zhang, Wenjing; Berger, Quentin

    2016-04-01

    Climatic changes can force a fast-paced increase or decrease in erosion rates and sediment production (relative to geological times) and can modify the transport rate and mixing of these sediments from source to sink. To decipher the tectonic and climatic history recorded in sedimentary sequences we need to constrain the sensitivity of sediment fluxes to climatic variations. We set here to investigate quantitatively how climatic forcing at a glacial cycle scale affects the evolution of a mountain piedmont with field work, and in which way this cyclic forcing controls the flux and nature of sediments into the basin with a sediment mixing model. We choose the depositional fold-and-thrust belt in the northern piedmont of the Northeast Tian Shan (Xinjiang, China) as a case study for its well-constrained tectonics and climate. The piedmont experienced several important cycles of incision and aggradation in the Pleistocene. New OSL dating of terrace abandonment and fan aggradation suggests a broad correlation between glacial cycles and incision-aggradation on the alluvial piedmont. As a consequence, a significant fraction of sediments produced in that period is temporarily deposited in the piedmont before a later incision phase can deliver it to the basin, illustrating a stepwise progression of coarse material towards the basin to the beat of climate cycles. We build a sediment mixing model informed by field dating and propose that the modern sediment flux entering the basin contains recycled material as old as 300 ka that can significantly skew geochemical or provenance studies if ignored.

  5. Trace element characteristics of clinozoisite pseudomorphs after lawsonite in talc-garnet-chloritoid schists from the Makbal UHP Complex, northern Kyrgyz Tian-Shan

    NASA Astrophysics Data System (ADS)

    Orozbaev, Rustam; Hirajima, Takao; Bakirov, Apas; Takasu, Akira; Maki, Kenshi; Yoshida, Kenta; Sakiev, Kadyrbek; Bakirov, Azamat; Hirata, Takafumi; Tagiri, Michio; Togonbaeva, Asel

    2015-06-01

    Polyphase mineral aggregates (PMAs) composed of clinozoisite + kyanite + quartz ± chlorite ± paragonite ± phengite have been found within garnet and in the matrix of talc-garnet-chloritoid schists from the Makbal ultrahigh-pressure complex in the northern Kyrgyz Tian-Shan. These mineral textures are interpreted as pseudomorphs after lawsonite, and we reconstructed the compositions of PMAs of clinozoisite + kyanite + quartz, consistent with lawsonite. Petrological study demonstrated that lawsonite was stable during the prograde to the UHP peak stage (P = 28-33 kbar and T = 530-580 °C) and decomposed to the PMAs during isothermal decompression around P = 16-20 kbar and T = 510-580 °C. Trace element characteristics of the clinozoisite grains in the PMAs (former lawsonite) show a flat rare earth element (REE) chondrite-normalized pattern, comparable with the typical reported REE pattern of lawsonite, although the abundance of REE varied from sample to sample. Thus, the REE content of clinozoisite in the PMAs included in garnet was likely inherited from the former lawsonite as the decomposition reaction took place isolated from the matrix. Discrete clinozoisite grains in the matrix have high light REE enrichment over heavy REE in the chondrite-normalized pattern, consistent with the typical epidote pattern. Our results indicate that the talc-garnet-chloritoid schists in the Makbal complex were buried to great depth (> 100 km) with a low geothermal gradient (< 6 °C/km) during the Early Paleozoic (480-509 Ma). Lawsonite decomposition and clinozoisite-forming reactions accompany fluid release during the isothermal decompression stage, implying that the fluids can be generated not only during subduction, but also during exhumation of ultrahigh-pressure rocks in cold subduction settings.

  6. Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core

    NASA Astrophysics Data System (ADS)

    Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.

    2016-04-01

    High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).

  7. Holocene River Dynamics, Climate Change and Floodwater Farming in the Watersheds of the Pamir and Tien Shan Mountains of Inner Asia

    NASA Astrophysics Data System (ADS)

    Macklin, M. G.; Panyushkina, I. P.; Toonen, W. H. J.

    2014-12-01

    The Ili, Syr Dayra and Amu Dayra rivers of Inner Asia are emerging as critical areas for the development of irrigation-based agriculture in the ancient world. Following research by Russian archaeologists in the 1970s it is evident that these watersheds had flourishing riverine civilizations comparable to those in Mesopotamia and the Indus Valley. But unlike these areas where the relationship between Holocene river dynamics, climate change and floodwater farming is increasingly underpinned by radiometric dating, the alluvial archaeology of Inner Asia is significantly under researched. To address this, a major multi-disciplinary research program was begun in 2011 centred on the Talgar catchment, a south-bank tributary of the Ili river, southeast Kazakhstan. Building on archaeological excavations and surveys conducted over the past 20 years, we have undertaken one of the most detailed investigations of Holocene people-river environment interactions in Inner Asia. River development has been reconstructed over the last 20,000 years and human settlement histories from the Eneolithic to the Medieval period documented. Periods of Holocene river aggradation and high water levels in Lake Balkhash and Aral Sea correspond with cooler and wetter neoglacial episodes while river entrenchment and floodplain soil development are associated with warmer and drier conditions. Floodwater farming in the Talgar river reached its acme in the late Iron Age (400-200 cal. BC) with more than 60 settlement sites and 550 burial mounds. This corresponds to a period of reduced flood flows, river stability and glacier retreat in the Tien Shan headwaters. A new hydroclimatic-based model for the spatial and temporal dynamics of floodwater farming in the Ili, Syr Dayra and Amu Dayra watersheds is proposed, which explains the large scale expansion (down-river) and contraction (up-river) of settlements since the first use of irrigation in the Neolithic through to the late Medieval period.

  8. Sediment from the Last Two Glacial Periods Amalgamated and Re-Entrained in the Alluvial Piedmont of the North Tian Shan

    NASA Astrophysics Data System (ADS)

    Malatesta, L. C.; Avouac, J. P.; Brown, N.; Rhodes, E. J.; Prancevic, J.; Pan, J.; Chevalier, M. L.; Saint-Carlier, D.; Zhang, W.

    2015-12-01

    The history of the planet is recorded in its sedimentary basins where the product of mountain erosion is stored, reflecting climatic and tectonic forcing. Were the sediments and the signal they carry to be immediately deposited in a basin, paleo-reconstructions would be straightforward as the age and nature of a deposit would be a testimony of the source and transfer conditions. The sometime intricate path of clastic material along the sediment routing system complicates greatly the situation. We set here to investigate quantitatively the effect of an alluvial piedmont on the sediment flux that crosses it en route to a basin. We focus on the northern piedmont of the Tian Shan (Xinjiang, China). The piedmont is actively deformed by a fold-and-thrust system and experienced several cycles of incision and aggradation in the Pleistocene. We present new OSL dating of terrace and fan material. These data suggest that the most prominent terraces match three glacial maxima 100 kyr apart; thereby the landscape would primarily react to eccentricity cycles. As a consequence, a significant fraction of sediments produced in that period is temporarily deposited in the piedmont before a later incision phase can deliver it to the basin. The OSL ages of alluvial fan strata exposed and recently eroded by the incising river hint at two aggradation phases during the last two glacial periods. Furthermore lose sediment dated at 300 ka is found to be available along the transport route of the sediments and likely entrained during incision phases. We expect the modern sediment flux entering the basin to contain a significant amount of recycled material as old as 180 ka and a non-negligible amount of recycled material as old as 300 ka that can significantly skew geochemical or provenance studies if ignored.

  9. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China

    SciTech Connect

    Hendrix, M.S.; Graham, S.A.; Sobel, E.R.

    1992-01-01

    Detailed stratigraphic, sedimentologic, paleocurrent, and subsidence analyses were conducted on Mesozoic nonmarine sedimentary sections of the south Junggar, north Tarim, and Turpan basins, Xinjang Uygur Autonomous Region, northwest China. These three basins have been foreland basins throughout the Mesozoic and Cenozoic eras, as demonstrated by asymmetrically distributed basinwide sediment accumulations, foreland-style subsidence profiles, and a variety of outcrop and subsurface facies data. Mesozoic paleocurrent indicators measured in the south Junggar and north Tarim basins, as well as Mesozoic sandstone compositions from both basins, indicate that the intervening Tian Shan has existed as a positive physiographic feature partitioning the two basins throughout Mesozoic and Cenozoic time. Paleocurrent, facies, and subsurface isopach data suggest that the Turpan basin was established as a discrete feature by the Early Jurassic period. The timing and style of depositional systems within the north Tarim Mesozoic depocenter, the south Junggar Mesozoic depocenter, and the central Turpan basin are remarkably similar. Upper Triassic strata of each basin consist of alluvial conglomerate and associated braided-fluvial sandstone and siltstone which fine upward into lower through Middle Jurassic, locally organic-rich, meandering-fluvial, and lacustrine strata. Upper Jurassic braided-fluvial red beds in each basin are overlain by a distinct pulse of uppermost Jurassic alluvial conglomerate. Lower Cretaceous exposures consist of fine-grained red beds in north Tarim and Turpan and interbedded red and gray shale with local silty carbonates in south Junggar. Upper Cretaceous strata of the north Tarim and south Junggar basins are composed of alluvial conglomerate with associated braided-fluvial sandstone and siltstone. 94 refs., 17 figs.

  10. Estimating the terrestrial N processes in subtropical mountainous forestry catchment through INCA-N: A case study in FuShan catchment, Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Meng-Chang; Huang, -Chuan, Jr.; Chang, Chung-Te; Shih, Yu-Ting; Lin, Teng-Chiu

    2016-04-01

    The riverine DIN is a crucial indicator for eutrophication in river network. The riverine DIN export in Taiwan is featured by the extremely high yield, ~3800 kg-N km-2yr-1, nearly 20-fold than the global average, showing the interesting terrestrial N process yet rarely documented. In this study we collected the DIN samples in rainwater, soil water, and stream water in a mountainous forest watershed, FuShan experimental forest watershed 1 (WS1) which is a natural broadleaf forest without human activities. Based on the intensive observations, we applied the INCA-N to simulate the riverine DIN response and thus estimate the terrestrial N processes in a global synthesis. The result showed that both discharge and DIN yield were simulated well with the average Nash-Sutcliffe efficiency coefficient of 0.83 and 0.76 , respectively. Among all N processes, N uptake, mineralization, nitrification, denitrfication, and immobilization are significantly positive correlated with soil moisture (R2>0.99), which indicates that soil moisture greatly influences N cycle processes. The average rate of mineralization and nitrification in wet years are consistent with documented values, whereas the rates in dry years are lower than the observations. Despite the high nitrification rate, the secondary forest may uptake abundant N indicating the plant uptake, which responds for removing considerable nitrate, is a controlling factor in forest ecosystem. Our simulated denitrification rate falls between the documented rates of temperate forest and agricultural area, and that may be affected by the high N-deposition in Taiwan. Simulated in-stream denitrification rate is less than 10% of the rate in soil, and is a little lower than that in temperate forest. This preliminary simulation provides an insightful guide to establish the monitoring programme and improve the understanding of N cycle in subtropical.

  11. Assessing the applicability of assimilating MODIS data products into crop growth models: a case study in Yucheng, ShanDong Province, China

    NASA Astrophysics Data System (ADS)

    Tian, Zhan; Wang, Junbang; Gao, Zhiqiang

    2005-09-01

    Monitoring crop growth status and yields using remote sensing data have been a challenges both in estimating the growing parameters and quantifying the seasonal changes. Traditionally, NOAA AVHRR data was applied to estimate and predict crop yields with statistical correlation methods. However, its spatial resolution of 8-km is not satisfying in monitoring crop growth on the site level. The launch of TERRA with moderate resolution imaging spectroradiometer (MODIS) instruments onboard began a new era in remote sensing of the Earth system which is providing a series of products of unparalleled quality and sophistication for the observation and biophysical monitoring of the terrestrial environment. Crop growth models simulate biophysical processes in the soil-crop-atmospheric system provide a continuous description of crop growth and development. Combining a growth model with the input parameters derived from remote sensing data provides spatial integrity as well as a real-time "calibration" of model parameters. A field study was conducted to evaluate the applicability of the 8-day MODIS leaf area index (LAI) data product in operational assessment of wheat growth condition and yields in the region of Yucheng, ShanDong Province, in China. The MODIS LAI product were used to compared with the DSSAT LAI--the output of crop simulation model (DSSAT) and the observed LAI. The MODIS LAI corresponded comparatively well with the DSSAT LAI in the early stage which have been tested well with the observed LAI, however in the later wheat growing stage, there are still some difference between the MODIS LAI and observed LAI. Limitations of this study and its conclusions are also discussed.

  12. The Intensification of Sheared Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Nguyen, Leon Trungduong

    Environmental vertical wind shear has been shown to have a generally detrimental impact on tropical cyclone (TC) intensity change. However, many cases of rapidly intensifying (RI) sheared TCs have been observed, and TCs in moderate (5-10 m s-1) shear often have the largest intensity forecast errors. Thus, advancing the understanding of TC-shear interactions is vital to improving TC intensity forecasts, which have not seen much improvement over the past few decades. This dissertation employs both observational and high-resolution numerical modeling approaches to investigate how some TCs are able to resist shear and intensify. The rapid intensification of Hurricane Irene (1999) was studied using observations, while the short-term RI of Tropical Storm Gabrielle (2001) was simulated using the Weather Research and Forecast (WRF) model run at 1-km horizontal resolution. Both storms exhibited a downshear-left vortex tilt and a marked azimuthal wavenumber-1 convective asymmetry. However, the azimuthally averaged diabatic heating also increased, suggesting that TC intensity may be more sensitive to the azimuthally averaged component of diabatic heating rather than the asymmetric component. Furthermore, this increase occurred within the radius of maximum winds (RMW), a region theorized to favor rapid spinup of the vortex. A key difference between the Irene and Gabrielle cases was that the latter underwent a downshear reformation. The circulation associated with an intense mesovortex and other localized cyclonic vorticity anomalies comprised a developing "inner vortex" on the downshear-left (downtilt) periphery of the broader parent vortex. This inner vortex was nearly upright within a parent vortex that was tilted significantly with height. The inner vortex became the dominant vortex of the system, advecting and absorbing the broad, tilted parent vortex. A method was developed for diagnosing vortex tilt in the simulation. The reduction of TC vortex tilt from 65 km to 20 km

  13. A microcomputer-based data acquisition and control system for the direct shear, ring shear, triaxial shear, and consolidation tests

    USGS Publications Warehouse

    Powers, Philip S.

    1983-01-01

    This report is intended to provide internal documentation for the U.S. Geological Survey laboratory's automatic data acquisition system. The operating procedures for each type of test are designed to independently lead a first-time user through the various stages of using the computer to control the test. Continuing advances in computer technology and the availability of desktop microcomputers with a wide variety of peripheral equipment at a reasonable cost can create an efficient automated geotechnical testing environment. A geotechnical testing environment is shown in figure 1. Using an automatic data acquisition system, laboratory test data from a variety of sensors can be collected, and manually or automatically recorded on a magnetic device at the same apparent time. The responses of a test can be displayed graphically on a CRT in a matter of seconds, giving the investigator an opportunity to evaluate the test data, and to make timely, informed decisions on such matters as whether to continue testing, abandon a test, or modify procedures. Data can be retrieved and results reported in tabular form, or graphic plots, suitable for publication. Thermistors, thermocouples, load cells, pressure transducers, and linear variable differential transformers are typical sensors which are incorporated in automated systems. The geotechnical tests which are most practical to automate are the long-term tests which often require readings to be recorded outside normal work hours and on weekends. Automation applications include incremental load consolidation tests, constant-rate-of-strain consolidation tests, direct shear tests, ring shear tests, and triaxial shear tests.

  14. ISIS: An Instrument for Measuring Erosion Shear Stress In Situ

    NASA Astrophysics Data System (ADS)

    Williamson, Helen; Ockenden, Mary

    1996-01-01

    An instrument for measuring shear stress for erosion in situ(ISIS) has been developed to measure the erosion shear stress of muddy sediments on intertidal mud flats. Erosion shear stress is defined in this paper as the minimum applied bed shear stress required to initiate erosion and remove sediment from the bed surface. An applied shear stress is generated by the flow through and around a specially shaped bell head, which draws water radially across the bed into the centre of the bell head. The applied shear stress is a function of the distance from the bell head to the bed surface and the discharge through the system. The design of ISIS was assisted by the use of a computational numerical flow modelling package. The operating conditions giving the most even shear stress across the whole test section were discharges of 0·01-0·6 ls -1, and bell-to-bed distance of 4-8 mm giving a shear stress of 0·02-5 Nm -2. The ISIS system was calibrated using hot film shear stress probes. The calibration data gave a 92% fit to the calibration function for shear stress. Laboratory measurements with ISIS of the erosion shear stress of mud beds consolidated for c. 1·5 days, showed surface shear stresses of 0·11-0·24 Nm -2. These were very similar to values of surface erosion shear stress measured for the same mud in an annular flume. The ISIS system was used to measure surface erosion shear stresses on the mud flats at Portishead and Blue Anchor Bay in the Severn Estuary, U.K. Surface erosion shear stresses at Portishead were generally in the range 0·2-0·5 Nm -2. The surface erosion shear stresses measured at Blue Anchor Bay, which included mud and sand, ranged between 0·1-1·9 Nm -2.

  15. Dynamic pore-pressure fluctuations in rapidly shearing granular materials

    USGS Publications Warehouse

    Iverson, R.M.; LaHusen, R.G.

    1989-01-01

    Results from two types of experiments show that intergranular pore pressures fluctuated dynamically during rapid, steady shear deformation of water-saturated granular materials. During some fluctuations, the pore water locally supported all normal and shear stresses, while grain-contact stresses transiently fell to zero. Fluctuations also propagated outward from the shear zone; this process modifies grain-contact stresses in adjacent areas and potentially instigates shear-zone growth.

  16. Aligning self-assembled gelators by drying under shear.

    PubMed

    Draper, Emily R; Mykhaylyk, Oleksandr O; Adams, Dave J

    2016-05-25

    We show how drying under shear can be used to prepare aligned fibres and worm-like micelles from low molecular weight gelators. Shearing followed by drying leads to the dealignment before the water can be removed; continuous shear whilst drying is required to maintain the alignment. Combining a slow pH change with continuous shear allows alignment of the gelling fibres, which can then be dried. PMID:27146964

  17. Turbulent transport across shear layers in magnetically confined plasmas

    SciTech Connect

    Nold, B.; Ramisch, M.; Manz, P.; Birkenmeier, G.; Ribeiro, T. T.; Müller, H. W.; Scott, B. D.; Fuchert, G.; Stroth, U.

    2014-10-15

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.

  18. Progress on Intelligent Guidance and Control for Wind Shear Encounter

    NASA Technical Reports Server (NTRS)

    Stratton, D. Alexander

    1990-01-01

    Low altitude wind shear poses a serious threat to air safety. Avoiding severe wind shear challenges the ability of flight crews, as it involves assessing risk from uncertain evidence. A computerized intelligent cockpit aid can increase flight crew awareness of wind shear, improving avoidance decisions. The primary functions of a cockpit advisory expert system for wind shear avoidance are discussed. Also introduced are computational techniques being implemented to enable these primary functions.

  19. The stability of Rossby waves in a stratified shear fluid

    NASA Astrophysics Data System (ADS)

    Tan, Benkui

    1990-11-01

    An investigation is undertaken of the stability of linear Rossby waves in a stratified shear fluid by means of a qualitative theory employing ordinary differential equations. It is noted that, while the basic current has no detectable shear, the Rossby waves are always stable. If the basic current possesses only horizontal shear, the unstable criterion for waves takes one form, but it takes entirely another in the case where the basic current possesses only vertical shear.

  20. Shear-Sensitive Liquid Crystal Coating Method: Surface-Inclination Effects on Shear Vector Measurements

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Wilder, Michael C.; Nixon, David (Technical Monitor)

    1998-01-01

    The shear-sensitive liquid crystal coating (SSLCC) method is an image-based technique for both visualizing dynamic surface-flow phenomena, such as transition and separation, and for measuring the continuous shear-stress vector distribution acting on an aerodynamic surface. Under proper lighting and viewing conditions (discussed below), the coating changes color in response to an applied aerodynamic shear. This color-change response is continuous and reversible, with a response time of milliseconds, and is a function of both the shear magnitude and the shear vector orientation relative to the observer. The liquid crystal phase of matter is a weakly-ordered, viscous, non-Newtonian fluid state that exists between the nonuniform liquid phase and the ordered solid phase of certain organic compounds. Cholesteric liquid crystal compounds possess a helical molecular arrangement that selectively scatters white light, incident along the helical axis, as a three-dimensional spectrum. This property is linked to the helical pitch length, which is within the range of wavelengths in the visible spectrum. The pitch length, and hence the wavelength of the scattered light, is influenced by shear stress normal to the helical axis. This unique optical property produces a measurable color change in response to an applied shearing force. The full-surface shear stress vector measurement method, developed at NASA-Ames, is schematically illustrated. As with the visualization method, the coated test surface is illuminated from the normal direction with white light and the camera is positioned at an above-plane view angle of approximately 30 deg. Experiments have been initiated at NASA Ames to begin the process of quantifying surface-inclination (surface-curvature) effects on shear vector measurement accuracy. In preliminary experiments, surface-inclination angles theta(sub x), theta(sub y) of 0, +/-5, +/-10, and +/-15 deg were employed. In this arrangement, white-light illumination was

  1. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing...

  2. Wind shear training applications for 91/135

    NASA Technical Reports Server (NTRS)

    Arbon, ED

    1991-01-01

    The requirement for wind shear training of all pilots has been demonstrated too often by the accident statistics of past years. Documents were developed to train airline crews on specific aircraft and to teach recognition of the meteorological conditions that are conducive to wind shear and microburst formation. A Wind Shear Training Aid program is discussed.

  3. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2012-10-01 2012-10-01 false Higher shearing strength of rivets. 230.28...

  4. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2010-10-01 2010-10-01 false Higher shearing strength of rivets. 230.28...

  5. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2012-10-01 2012-10-01 false Maximum shearing strength of rivets....

  6. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2013-10-01 2013-10-01 false Higher shearing strength of rivets. 230.28...

  7. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2013-10-01 2013-10-01 false Maximum shearing strength of rivets....

  8. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2014-10-01 2014-10-01 false Higher shearing strength of rivets. 230.28...

  9. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2014-10-01 2014-10-01 false Maximum shearing strength of rivets....

  10. Non-homogeneous flow profiles in sheared bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  11. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum shearing strength of rivets....

  12. Wrinkling of reinforced plates subjected to shear stresses

    NASA Technical Reports Server (NTRS)

    Seydel, Edgar

    1931-01-01

    An analysis is made here of the problem of long plates with transverse stiffeners subject to shear. A typical example would be a long Wagner beam. The shear stress is calculated at which the web wrinkles and shear stress becomes a maximum. The equation is solved for both a condition of free support and rigidity of support on the edges.

  13. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  14. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  15. Shear Stress Sensing with Elastic Microfence Structures

    NASA Technical Reports Server (NTRS)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; Jiang, Xiaoning; Wohl, Christopher J.

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  16. Shear modulus of structured electrorheological fluid mixtures.

    PubMed

    Shitara, Kyohei; Sakaue, Takahiro

    2016-05-01

    Some immiscible blends under a strong electric field often exhibit periodic structures, bridging the gap between two electrodes. Upon shear, the structures tilt, and exhibit an elastic response which is mostly governed by the electric energy. Assuming a two-dimensional stripe structure, we calculate the Maxwell stress, and derive an expression for the shear modulus, demonstrating how it depends on the external electric field, the composition, and the dielectric properties of the blend. We also suggest the notion of effective interfacial tension, which renormalizes the effect of the electric field. This leads to a simple derivation of the scaling law for the selection of the wavelength of the structure formed under an electric field. PMID:27300947

  17. Hyperscaling violation and the shear diffusion constant

    NASA Astrophysics Data System (ADS)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2016-09-01

    We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating exponents z , θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d - z - θ > - 1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d - z - θ = - 1, we find logarithmic behaviour. This relation is equivalent to z = 2 +deff where deff =di - θ is the effective boundary spatial dimension (and di = d - 1 the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.

  18. Shear modulus of structured electrorheological fluid mixtures

    NASA Astrophysics Data System (ADS)

    Shitara, Kyohei; Sakaue, Takahiro

    2016-05-01

    Some immiscible blends under a strong electric field often exhibit periodic structures, bridging the gap between two electrodes. Upon shear, the structures tilt, and exhibit an elastic response which is mostly governed by the electric energy. Assuming a two-dimensional stripe structure, we calculate the Maxwell stress, and derive an expression for the shear modulus, demonstrating how it depends on the external electric field, the composition, and the dielectric properties of the blend. We also suggest the notion of effective interfacial tension, which renormalizes the effect of the electric field. This leads to a simple derivation of the scaling law for the selection of the wavelength of the structure formed under an electric field.

  19. Fiber optic plantar pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih

    2011-04-01

    A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.

  20. Viscosity of Sheared Helical filament Suspensions

    NASA Astrophysics Data System (ADS)

    Sartucci, Matthew; Urbach, Jeff; Blair, Dan; Schwenger, Walter

    The viscosity of suspensions can be dramatically affected by high aspect ratio particles. Understanding these systems provides insight into key biological functions and can be manipulated for many technological applications. In this talk, the viscosity as a function of shear rate of suspensions of helical filaments is compared to that of suspensions of straight rod-like filaments. Our goal is to determine the impact of filament geometry on low volume fraction colloidal suspensions in order to identify strategies for altering viscosity with minimal volume fraction. In this research, the detached flagella of the bacteria Salmonella Typhimurium are used as a model system of helical filaments and compared to mutated straight flagella of the Salmonella. We compare rheological measurements of the suspension viscosity in response to shear flow and use a combination of the rheology and fluorescence microscopy to identify the microstructural changes responsible for the observed rheological response.