Science.gov

Sample records for aileron control stiffness

  1. Aileron controls for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Puthoff, R. L.

    1984-01-01

    Horizontal axis wind turbines which utilize partial or full variable blade pitch to regulate rotor speed were examined. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. Aileron control rotors were tested on the Mod-O wind turbine to determine their power regulation and shutdown characteristics. Test results for a 20 and 38 percent chord aileron control rotor are presented. Test is shown that aileron control is a viable method for safety for safely controlling rotor speed, following a loss of general load.

  2. Aileron controls for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Putoff, R. L.

    1984-01-01

    Horizontal axis wind turbines which utilize partial or full variable blade pitch to regulate rotor speed were examined. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. Aileron control rotors were tested on the Mod-O wind turbine to determine their power regulation and shutdown characteristics. Test results for a 20 and 38% chord aileron control rotor are presented. Test is shown that aileron control is a viable method for safety for safely controlling rotor speed, following a loss of general load.

  3. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  4. Summary of NASA/DOE Aileron-Control Development Program for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1986-01-01

    The development of aileron-control for wind turbines is discussed. Selected wind tunnel test results and full-scale rotor test results are presented for various types of ailerons. Finally, the current status of aileron-control development is discussed. Aileron-control was considered as a method of rotor control for use on wind turbines based on its potential to reduce rotor weight and cost. Following an initial feasibility study, a 20 percent chord aileron-control rotor was fabricated and tested on the NASA/DOE Mod-0 experimental wind turbine. Results from these tests indicated that the 20 percent chord ailerons regulated power and provided overspeed protection, but only over a very limited windspeed range. The next aileron-control rotor to be tested on the Mod-0 had 38 percent chord ailerons and test results showed these ailerons provided overspeed protection and power regulation over the Mod-0's entire operational windspeed range.

  5. Shutdown characteristics of the Mod-O wind turbine with aileron controls

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Corrigan, R. D.

    1984-01-01

    Horizontal-axis wind turbines utilize partial or full variable blade pitch to regulate rotor speed. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. The NASA Lewis Research Center has been experimentally testing aileron control rotors on the Mod-U wind turbine to determine their power regulation and shutdown characteristics. Experimental and analytical shutdown test results are presented for a 38 percent chord aileron-control rotor. These results indicated that the 38 percent chord ailerons provided overspeed protection over the entire Mod-O operational windspeed range, and had a no-load equilibrium tip speed ratio of 1.9. Thus, the 38 percent chord ailerons had much improved aerodynamic braking capability when compared with the first aileron-control rotor having 20 percent chord ailerons.

  6. Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Snyder, M. H.; Calhoun, J. T.

    1980-01-01

    The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kw machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft. lb) at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of a failsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure.

  7. Wind-tunnel research comparing lateral control devices, particularly at high angles of attack VI : skewed ailerons on rectangular wings

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Harris, Thomas A

    1934-01-01

    This report covers the sixth of a series of investigations in which various lateral control devices are compared with particular reference to their effectiveness at high angles of attack. The present report deals with flap-type ailerons hinged about axes having an angle with respect to the leading and trailing edges of the wing. Tests were made on four different skewed ailerons, including two different angles of skew and two sizes of ailerons. At the high angles of attack, all the skewed ailerons tested were slightly inferior with respect to rolling and yawing moments to straight ailerons having the same span and average chord. Computations indicate that the skewed ailerons are also inferior with respect to hinge moments.

  8. Aeroelastic stability of wind turbine blade/aileron systems

    NASA Technical Reports Server (NTRS)

    Strain, J. C.; Mirandy, L.

    1995-01-01

    Aeroelastic stability analyses have been performed for the MOD-5A blade/aileron system. Various configurations having different aileron torsional stiffness, mass unbalance, and control system damping have been investigated. The analysis was conducted using a code recently developed by the General Electric Company - AILSTAB. The code extracts eigenvalues for a three degree of freedom system, consisting of: (1) a blade flapwise mode; (2) a blade torsional mode; and (3) an aileron torsional mode. Mode shapes are supplied as input and the aileron can be specified over an arbitrary length of the blade span. Quasi-steady aerodynamic strip theory is used to compute aerodynamic derivatives of the wing-aileron combination as a function of spanwise position. Equations of motion are summarized herein. The program provides rotating blade stability boundaries for torsional divergence, classical flutter (bending/torsion) and wing/aileron flutter. It has been checked out against fixed-wing results published by Theodorsen and Garrick. The MOD-5A system is stable with respect to divergence and classical flutter for all practical rotor speeds. Aileron torsional stiffness must exceed a minimum critical value to prevent aileron flutter. The nominal control system stiffness greatly exceeds this minimum during normal operation. The basic system, however, is unstable for the case of a free (or floating) aileron. The instability can be removed either by the addition of torsional damping or mass-balancing the ailerons. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  9. Flight Investigation of the Effectiveness of an Automatic Aileron Trim Control Device for Personal Airplanes

    NASA Technical Reports Server (NTRS)

    Phillips, William H; Kuehnel, Helmut A; Whitten, James B

    1957-01-01

    A flight investigation to determine the effectiveness of an automatic aileron trim control device installed in a personal airplane to augment the apparent spiral stability has been conducted. The device utilizes a rate-gyro sensing element in order to switch an on-off type of control that operates the ailerons at a fixed rate through control centering springs. An analytical study using phase-plane and analog-computer methods has been carried out to determine a desirable method of operation for the automatic trim control.

  10. Flight-Tests Measurements of Aileron Control Surface Behaviour at Supercritical Mach Numbers

    DTIC Science & Technology

    1947-04-01

    location, percent chord 75«0 Type of aileron No aorodynmnic balance, piano hinge on urper surface, power-boost control system, approximately statically...fir.. 1) to compute the moment coeffislcnts rbout the 7𔃿-percent- chord line. These data are orcacntcd In figure 6 and show that for zero...this difference in cehr.viour. ff r i Flii’.üt-test Ecas^rcientE of tho chord ^lse location of the shock at the supercritical lisch numbers at

  11. Wind-tunnel research comparing lateral control devices, particularly at high angles of attack IX : tapered wings with ordinary ailerons

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wenzinger, Carl J

    1933-01-01

    Tests were made with ordinary flap-type ailerons on two wings with different amounts of taper, one medium and the other extreme. On each wing both medium sized tapered ailerons and short wide tapered ailerons were tested.

  12. Effect of Aspect Ratio on the Low-Speed Lateral Control Characteristics of Untapered Low-Aspect-Ratio Wings Equipped with Flap and with Retractable Ailerons

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Naeseth, Rodger L; Hagerman, John R; O'Hare, William M

    1952-01-01

    A low-speed wind-tunnel investigation was made to determine the lateral control characteristics of a series of untapered low-aspect-ratio wings. Sealed flap ailerons of various spans and spanwise locations were investigated on unswept wings of aspect ratios 1.13, 1.13, 4.13, and 6.13; and various projections of 0.60-semispan retractable ailerons were investigated on the unsweptback wings of aspect ratios 1.13, 2.13, and 4.13 and on a 45 degree sweptback wing. The retractable ailerons investigated on the unswept wings spanned the outboard stations of each wing; whereas the plain and stepped retractable ailerons investigated on the sweptback wing were located at various spanwise stations. Design charts based on experimental results are presented for estimating the flap aileron effectiveness for low-aspect-ratio, untapered, unswept.

  13. 14 CFR 23.455 - Ailerons.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ailerons and Special... displacement of the aileron control at V A. Suitable allowance may be made for control system deflections. (ii) Sufficient deflection at V C, where V C is more than V A, to produce a rate of roll not less than obtained...

  14. Wind turbine rotor aileron

    DOEpatents

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  15. Advanced wind turbine with lift-destroying aileron for shutdown

    DOEpatents

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  16. Stiffness Control of Surgical Continuum Manipulators

    PubMed Central

    Mahvash, Mohsen; Dupont, Pierre E.

    2013-01-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466

  17. Stiffness Control of Surgical Continuum Manipulators.

    PubMed

    Mahvash, Mohsen; Dupont, Pierre E

    2011-04-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot's coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions.

  18. A Comparison of Two Flight-Test Procedures for the Determination of Aileron Control Capabilities of an Airplane

    DTIC Science & Technology

    1945-07-01

    roceduraa conelet of perform~ng ru&der- fixed aileron rolls from ~traight unbanked flight and from steady turning fllght; For the airplaneE considered in...aileron rolls . .initiated from straight unbanked flight, Tho resultg of these tebts are usually presented In a curve. of .maxlmum pb/2V as a function...between flight determinationsof maximum pb/2V in rudder-fixedaileron roll~ from straight, unbanked flight and from steady~ turning flight. Clean

  19. Advanced wind turbine with lift cancelling aileron for shutdown

    DOEpatents

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  20. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  1. A Flight Investigation of the Lateral Control Characteristics of Short Wide Ailerons and Various Spoilers with Different Amounts of Wing Dihedral

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Soule, Hartley A; Gough, Melvin N

    1935-01-01

    This report presents the results of flight tests made to determine the lateral control characteristics of short wide ailerons and spoilers, as a consequence of the promise shown in wind-tunnel tests by these devices as means of obtaining lateral control, particularly at angles of attack above the stall. Several forms of spoilers, front-hinge, rear-hinge, plain retractable, and saw-tooth retractable were tested alone and in combination with the ailerons. The tests were made with several different amounts of wing dihedral so that the effect of the yawing moments of the different lateral control combinations, which varied from large negative to large positive values, could be evaluated. In conjunction with the tests, observations were made to throw some light on the feasibility of operating the airplane with two controls instead of the present three.

  2. Effect of Compressibility on Pressure Distribution over an Airfoil with a Slotted Frise Aileron

    NASA Technical Reports Server (NTRS)

    Luoma, Avro A

    1944-01-01

    Pressure distribution measurements were made over an airfoil with slotted Frise aileron up to 0.76 Mach at various angles of attack and aileron defections. Section characteristics were determined from these pressure data. Results indicated loss of aileron rolling power for deflections ranging from -12 Degrees to -19 Degrees. High stick forces for non-differential deflections incurred at high speed, which were due to overbalancing tendency of up-moving aileron, may precipitate serious control difficulties. Detailed results are presented graphically.

  3. Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons

    NASA Technical Reports Server (NTRS)

    Deppe, P. R.; Chalk, C. R.; Shafer, M. F.

    1996-01-01

    As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.

  4. 14 CFR 23.455 - Ailerons.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... displacement of the aileron control at V A. Suitable allowance may be made for control system deflections. (ii) Sufficient deflection at V C, where V C is more than V A, to produce a rate of roll not less than obtained in paragraph (a)(2)(i) of this section. (iii) Sufficient deflection at V D to produce a rate of roll not...

  5. 14 CFR 23.455 - Ailerons.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... displacement of the aileron control at V A. Suitable allowance may be made for control system deflections. (ii) Sufficient deflection at V C, where V C is more than V A, to produce a rate of roll not less than obtained in paragraph (a)(2)(i) of this section. (iii) Sufficient deflection at V D to produce a rate of roll not...

  6. 14 CFR 23.455 - Ailerons.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... displacement of the aileron control at V A. Suitable allowance may be made for control system deflections. (ii) Sufficient deflection at V C, where V C is more than V A, to produce a rate of roll not less than obtained in paragraph (a)(2)(i) of this section. (iii) Sufficient deflection at V D to produce a rate of roll not...

  7. 14 CFR 23.455 - Ailerons.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... displacement of the aileron control at V A. Suitable allowance may be made for control system deflections. (ii) Sufficient deflection at V C, where V C is more than V A, to produce a rate of roll not less than obtained in paragraph (a)(2)(i) of this section. (iii) Sufficient deflection at V D to produce a rate of roll not...

  8. Aileron roll hysteresis effects on entry of space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Powell, R. W.

    1977-01-01

    Six-degree-of-freedom simulations of the space shuttle orbiter entry with control hysteresis were conducted on the NASA Langley Research Center interactive simulator known as the automatic reentry flight dynamics simulator. These simulations revealed that the vehicle can tolerate control hysteresis producing a + or - 50 percent change in the nominal aileron roll characteristics and an offset in the nominal characteristics equivalent to a + or - 5 deg aileron deflection with little increase in the reaction control system's fuel consumption.

  9. Numerical design of an adaptive aileron

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Concilio, Antonio; Magnifico, Marco; Pecora, Rosario

    2016-04-01

    The study herein described is aimed at investigating the feasibility of an innovative full-scale camber morphing aileron device. In the framework of the "Adaptive Aileron" project, an international cooperation between Italy and Canada, this goal was carried out with the integration of different morphing concepts in a wing-tip prototype. As widely demonstrated in recent European projects such as Clean Sky JTI and SARISTU, wing trailing edge morphing may lead to significant drag reduction (up to 6%) in off-design flight points by adapting chord-wise camber variations in cruise to compensate A/C weight reduction following fuel consumption. Those researches focused on the flap region as the most immediate solution to implement structural adaptations. However, there is also a growing interest in extending morphing functionalities to the aileron region preserving its main functionality in controlling aircraft directional stability. In fact, the external region of the wing seems to be the most effective in producing "lift over drag" improvements by morphing. Thus, the objective of the presented research is to achieve a certain drag reduction in off-design flight points by adapting wing shape and lift distribution following static deflections. In perspective, the developed device could also be used as a load alleviation system to reduce gust effects, augmenting its frequency bandwidth. In this paper, the preliminary design of the adaptive aileron is first presented, assessed on the base of the external aerodynamic loads. The primary structure is made of 5 segmented ribs, distributed along 4 bays, each splitted into three consecutive parts, connected with spanwise stringers. The aileron shape modification is then implemented by means of an actuation system, based on a classical quick-return mechanism, opportunely suited for the presented application. Finite element analyses were assessed for properly sizing the load-bearing structure and actuation systems and for

  10. Parametric Stiffness Control of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Moon, F. C.; Rand, R. H.

    1985-01-01

    An unconventional method for control of flexible space structures using feedback control of certain elements of the stiffness matrix is discussed. The advantage of using this method of configuration control is that it can be accomplished in practical structures by changing the initial stress state in the structure. The initial stress state can be controlled hydraulically or by cables. The method leads, however, to nonlinear control equations. In particular, a long slender truss structure under cable induced initial compression is examined. both analytical and numerical analyses are presented. Nonlinear analysis using center manifold theory and normal form theory is used to determine criteria on the nonlinear control gains for stable or unstable operation. The analysis is made possible by the use of the exact computer algebra system MACSYMA.

  11. Application of Balancing Tabs to Ailerons

    NASA Technical Reports Server (NTRS)

    Sears, Richard I.

    1942-01-01

    Analysis was made to determine characteristics required of a balancing-tab system for ailerons in order to reduce aileron stick forces to any desired magnitude. Series of calculations based on section data were made to determine balancing-tab systems of various chord tabs and ailerons that will give, for a particular airplane, zero rate of aileron hinge moment with aileron deflection and yet will produce same maximum rate of roll as a plain unbalanced 15-percent chord aileron of same span. Effects of rolling velocity and of forces in tab link on aileron hinge moments have been included.

  12. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.

  13. Vibration control via stiffness switching of magnetostrictive transducers

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-04-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magneto-strictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magneto-strictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magneto-strictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magneto-strictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magneto-strictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  14. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  15. Torque-stiffness-controlled dynamic walking with central pattern generators.

    PubMed

    Huang, Yan; Vanderborght, Bram; Van Ham, Ronald; Wang, Qining

    2014-12-01

    Walking behavior is modulated by controlling joint torques in most existing passivity-based bipeds. Controlled Passive Walking with adaptable stiffness exhibits controllable natural motions and energy efficient gaits. In this paper, we propose torque-stiffness-controlled dynamic bipedal walking, which extends the concept of Controlled Passive Walking by introducing structured control parameters and a bio-inspired control method with central pattern generators. The proposed walking paradigm is beneficial in clarifying the respective effects of the external actuation and the internal natural dynamics. We present a seven-link biped model to validate the presented walking. Effects of joint torque and joint stiffness on gait selection, walking performance and walking pattern transitions are studied in simulations. The work in this paper develops a new solution of motion control of bipedal robots with adaptable stiffness and provides insights of efficient and sophisticated walking gaits of humans.

  16. A novel stiffness control method for series elastic actuator

    NASA Astrophysics Data System (ADS)

    Lin, Guangmo; Zhao, Xingang; Han, Jianda

    2017-01-01

    Compliance plays an important role in human-robot cooperation. However, fixed compliance, or fixed stiffness, is difficult to meet the growing needs of human machine collaboration. As a result, the robot actuator is demanded to be able to adjust its stiffness. This paper presents a stiffness control scheme for a single DOF series elastic actuator (SEA) with a linear spring mounted in series in the mechanism. In this proposed method, the output angle of the spring is measured and used to calculate the input angle of the spring, thus the equivalent stiffness of the robot actuator revealed to the human operator can be rendered in accordance to the desired stiffness. Since the techniques used in this method only involve the position information of the system, there is no need to install an expensive force/torque sensor on the actuator. Further, the force/torque produced by the actuator can be estimated by simply multiplying the deformation angle of the spring and its constant stiffness coefficient. The analysis of the stiffness controller is provided. Then a simulation that emulates a human operates the SEA while the stiffness controller is running is carried out and the results also validate the proposed method.

  17. Voluntary control of static endpoint stiffness during force regulation tasks.

    PubMed

    Perreault, Eric J; Kirsch, Robert F; Crago, Patrick E

    2002-06-01

    The goals of this study were to determine the degree to which subjects could voluntarily modulate static endpoint stiffness orientation and to quantify the effects of simultaneously generated voluntary endpoint forces on this ability. Static endpoint stiffness, which characterizes the relationship between externally imposed displacements of the hand and the elastic forces generated in response, was estimated in real time during the application of planar, stochastic perturbations of endpoint position. This estimation was accomplished using a real-time parametric identification algorithm on measured force and position data. Subjects were provided with real-time visual feedback of endpoint stiffness, and their ability to modulate the orientation of maximum static stiffness was measured for different endpoint force magnitudes and directions. We found that individuals can voluntarily change stiffness orientation but that the magnitude of these changes is small, the range of available stiffness orientations decreases as endpoint force exertion increases, and endpoint force direction significantly constrains direction and magnitude of the stiffness orientations that can be achieved. Given these findings it appears unlikely that static endpoint stiffness orientation is controlled independently of force by voluntary neural mechanisms during postural tasks.

  18. The Reduction of Aileron Operating Force by Differential Linkage

    NASA Technical Reports Server (NTRS)

    Jones, Robert T; Nerken, Albert I

    1936-01-01

    It is shown that the control force of ordinary ailerons may be reduced to zero over a range of deflections and at a given flight condition by the use of an appropriate differential movement. Approximations to the ideal motion obtainable with a simple linkage are discussed and a chart that enables the selection of an appropriate crank arrangement is presented. Various aspects of the practical application of the system are discussed and it is concluded that a small fixed tab, deflected to trim both ailerons upward, would be advantageous.

  19. Aerodynamic Tests of a Full-scale TBF-1 Aileron Installation in the Langley 16-foot High-Speed Tunnel

    NASA Technical Reports Server (NTRS)

    Becker, John V; Korycinski, Peter F

    1944-01-01

    The failure of wing panels on a number of TBF-1 and TBM-1 airplanes in flight has prompted several investigations of the possible causes of failure. This report describes tests in the Langley 16-foot high-speed tunnel to determine whether these failures could be attributed to changes in the aerodynamic characteristics of the ailerons at high speeds. The tests were made of a 12-foot-span section including the tip and aileron of the right wing of a TBF-1 airplane. Hinge moments, control-link stresses due to aerodynamic buffeting, and fabric-deflection photographs were obtained at true airspeeds ranging from 110 to 365 miles per hour. The aileron hinge-moment coefficients were found to vary only slightly with airspeed in spite of the large fabric deflections that developed as the speed was increased. An analysis of these results indicated that the resultant hinge moment of the ailerons as installed in the airplane would tend to restore the ailerons to their neutral position for all the high-speed flight conditions covered in the tests. Serious aerodynamic buffeting occurred at up aileron angles of -10 degrees or greater because of stalling of the sharp projecting lip of the Frise aileron. The peak stresses set up in the aileron control linkages in the buffeting condition were as high as three times the mean stress. During the hinge-moment investigation, flutter of the test installation occurred at airspeeds of about 150 miles per hour. This flutter condition was investigated in some detail and slow-motion pictures were made of the motion of the wing tip and aileron. The flutter was found to involve simultaneous normal bending and chordwise oscillation of the wing and flapping of the aileron. The aileron motion appeared to be coupled with this flutter condition and was investigated in some detail and slow-motion pictures were made of the motion of the wing tip and aileron. The flutter was found to involve simultaneous normal bending and chordwise oscillation of the

  20. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun

    2017-01-01

    In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.

  1. Controlled Unusual Stiffness of Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul

    2016-02-01

    Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young’s modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson’s ratio of the constituent material changes the ratio while Young’s modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications.

  2. Dynamically tuned magnetostrictive spring with electrically controlled stiffness

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-03-01

    This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod’s diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring’s stiffness is investigated by measuring the Terfenol-D rod’s strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring’s rise time is \\lt 1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic {{Δ }}E effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input.

  3. Effect of aileron displacement on wing characteristics

    NASA Technical Reports Server (NTRS)

    Heald, R H

    1933-01-01

    The effect of aileron displacement on wing characteristics has been investigated for the Clark Y and the U.S.A. 27 wing sections equipped with rectangular ailerons. The airfoils, rectangular in plan, and having a 10 inch chord and 60 inch span, were mounted on a model fuselage.

  4. Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion.

    PubMed

    Sun, Yi-xin; Ren, Ke-feng; Wang, Jin-lei; Chang, Guo-xun; Ji, Jian

    2013-06-12

    Stimuli-responsive thin films attract considerable attention in different fields. Herein, an electrochemical redox multilayers with tunable stiffness is constructed through the layer-by-layer self-assembly method. The redox ferrocene modified poly(ethylenimine) play an essential role to induce multilayers' swelling/shrinking under an electrochemical stimulus, resulting reversible change of elastic modulus of the multilayers. The adhesion of fibroblast cells can be thus controlled from well spreading to round shape. Such soft multilayers with electrochemically controlled stiffness could have potentials for cell-based applications.

  5. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe

    PubMed Central

    Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha

    2016-01-01

    When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes. PMID:27257814

  6. Wind-tunnel investigation of tapered wings with ordinary ailerons and partial-span split flaps

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1937-01-01

    Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel to determine the aerodynamic properties of tapered wings having partial-span flaps for high lift and ordinary ailerons for lateral control. Each of two Clark-y wings, tapered 5:1 and 5:3, was equipped with partial-span split flaps of two lengths and with ordinary ailerons extending from the outboard ends of the flap to the wing tips. Measurements of wing forces and moments and of aileron hinge moments were made for the two conditions of flaps neutral and deflected.

  7. Wind-tunnel investigation of the aerodynamic balancing of upper-surface ailerons and split flaps

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1937-01-01

    This report presents the results of wind tunnel tests to determine the effectiveness of various methods of reducing the high control forces of unbalanced upper-surface ailerons and of unbalanced split flaps.

  8. Novel Control Effectors for Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  9. Nanostructured conducting polymers for stiffness controlled cell adhesion

    NASA Astrophysics Data System (ADS)

    Moyen, Eric; Hama, Adel; Ismailova, Esma; Assaud, Loic; Malliaras, George; Hanbücken, Margrit; Owens, Roisin M.

    2016-02-01

    We propose a facile and reproducible method, based on ultra thin porous alumina membranes, to produce cm2 ordered arrays of nano-pores and nano-pillars on any kind of substrates. In particular our method enables the fabrication of conducting polymers nano-structures, such as poly[3,4-ethylenedioxythiophene]:poly[styrene sulfonate] (PEDOT:PSS). Here, we demonstrate the potential interest of those templates with controlled cell adhesion studies. The triggering of the eventual fate of the cell (proliferation, death, differentiation or migration) is mediated through chemical cues from the adsorbed proteins and physical cues such as surface energy, stiffness and topography. Interestingly, as well as through material properties, stiffness modifications can be induced by nano-topography, the ability of nano-pillars to bend defining an effective stiffness. By controlling the diameter, length, depth and material of the nano-structures, one can possibly tune the effective stiffness of a (nano) structured substrate. First results indicate a possible change in the fate of living cells on such nano-patterned devices, whether they are made of conducting polymer (soft material) or silicon (hard material).

  10. Magnetic bearing stiffness control using frequency band filtering

    NASA Technical Reports Server (NTRS)

    Chen, H. Ming

    1989-01-01

    Active magnetic bearings can be implemented with frequency band-reject filtering that decreases the bearing stiffness and damping at a small bandwidth around a chosen frequency. The control scheme was used for reducing a rotor dynamic force, such as an imbalance force, transmitted to the bearing stator. The scheme creates additional system vibration modes at the same frequency. It also shows that the amount of force reduction is limited by the stability requirement of these modes.

  11. A theoretical investigation of the rolling oscillations of an airplane with ailerons free

    NASA Technical Reports Server (NTRS)

    Cohen, Doris

    1944-01-01

    An analysis is made of the stability of an airplane with ailerons free, with particular attention to the motions when the ailerons have a tendency to float against the wind. The present analysis supersedes the aileron investigation contained in NACA Technical Report no. 709. The equations of motion are first written to include yawing and sideslipping, and it is demonstrated that the principal effects of freeing the ailerons can be determined without regard to these motions. If the ailerons tend to float against the wind and have a high degree of aerodynamic balance, rolling oscillations, in addition to the normal lateral oscillations, are likely to occur. On the basis of the equations including only the rolling motion and the aileron deflection, formulas derived for the stability and damping of the rolling oscillations in terms of the hinge-moment derivatives are also presented showing the oscillatory regions and stability boundaries for a fictitious airplane of conventional proportion. The effects of friction in the control system are investigated and discussed.

  12. Reflection plane tests of a wind turbine blade tip section with ailerons

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Nyland, T. W.; Birchenough, A. G.; Jordan, F. L.; Campbell, N. K.

    1985-01-01

    Tests were conducted in the NASA Langley 30 by 60 foot Wind Tunnel on a full scale 7.31 m (24 ft) long tip section of a wind turbine rotor blade. The blade tip section was built with ailerons on the trailing edge. The ailerons, which spanned a length of 6.1 m (20 ft), were designed so that two types could be evaluated: the plain and the balanced. The ailerons were hinged on the suction surface at the 0.62 X chord station behind the leading edge. The purpose of the tests was to measure the aerodynamic characteristics of the blade section for: an angle of attack range from 0 deg to 90 deg aileron deflections from 0 deg to -90 deg, and Reynolds numbers of 0.79 and 1.5 x 10 to the 6th power. These data were then used to determine which aileron configuration had the most desirable rotor control and aerodynamic braking characteristics. Tests were also run to determine the effects of vortex generators, leading edge roughness, and the gaps between the aileron sections on the lift, drag, and chordwise force coefficients of the blade tip section.

  13. Force and pressure tests of the GA(W)-1 airfoil with a 20% aileron and pressure tests with a 30% Fowler flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Seetharam, H. C.; Fiscko, K. A.

    1977-01-01

    Wind tunnel force and pressure tests were conducted for the GA(W)-1 airfoil equipped with a 20% aileron, and pressure tests were conducted with a 30% Fowler flap. All tests were conducted at a Reynolds number of 2.2 and a Mach number of 0.13. The aileron provides control effectiveness similar to ailerons applied to more conventional airfoils. Effects of aileron gaps from 0% to 2% chord were evaluated, as well as hinge moment characteristics. The aft camber of the GA(W)-1 section results in a substantial up-aileron moment, but the hinge moments associated with aileron deflection are similar to other configurations. Fowler flap pressure distributions indicate that unseparated flow is achieved for flap settings up to 40 deg., over a limited angle of attack range. Theoretical pressure distributions compare favorably with experiments for low flap deflections, but show substantial errors at large deflections.

  14. A Stepsize Control Strategy for Stiff Systems of Ordinary Differential Equations

    DTIC Science & Technology

    1994-02-01

    34 stepsize. A comparison of the new strategy with the standard strategy & with two PI controllers introduced earlier is made using the stiff test set. 14...and with two PI controllers introduced earle i made usig the stiff ten set. L• In solving stiff system of ordinary differential equations using BDF...Gustafsson [81 -3- dveloped a PI controller (referred to herein as PI controller Hi) for implicit methods. We also discuss this controller in V3. In

  15. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    NASA Astrophysics Data System (ADS)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  16. Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness

    DOEpatents

    Borenstein, Johann; Granosik, Grzegorz

    2005-03-22

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.

  17. Experimental characterization of an adaptive aileron: lab tests and FE correlation

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Amoroso, Francesco; Pecora, Rosario

    2016-04-01

    Like any other technology, morphing has to demonstrate system level performance benefits prior to implementation onto a real aircraft. The current status of morphing structures research efforts (as the ones, sponsored by the European Union) involves the design of several subsystems which have to be individually tested in order to consolidate their general performance in view of the final integration into a flyable device. This requires a fundamental understanding of the interaction between aerodynamic, structure and control systems. Important worldwide research collaborations were born in order to exchange acquired experience and better investigate innovative technologies devoted to morphing structures. The "Adaptive Aileron" project represents a joint cooperation between Canadian and Italian research centers and leading industries. In this framework, an overview of the design, manufacturing and testing of a variable camber aileron for a regional aircraft is presented. The key enabling technology for the presented morphing aileron is the actuation structural system, integrating a suitable motor and a load-bearing architecture. The paper describes the lab test campaign of the developed device. The implementation of a distributed actuation system fulfills the actual tendency of the aeronautical research to move toward the use of electrical power to supply non-propulsive systems. The aileron design features are validated by targeted experimental tests, demonstrating both its adaptive capability and robustness under operative loads and its dynamic behavior for further aeroelastic analyses. The experimental results show a satisfactory correlation with the numerical expectations thus validating the followed design approach.

  18. Wind-Tunnel Investigation of the Effects of Profile Modification and Tabs on the Characteristics of Ailerons on a Low-Drag Airfoil

    NASA Technical Reports Server (NTRS)

    Crane, Robert M; Holtzclaw, Ralph W

    1944-01-01

    An investigation has been made to determine the effect of control-surface profile modifications on the aerodynamic characteristics of an NACA low-drag airfoil equipped with a 0.20-chord and a 0.15-chord aileron. Tab characteristics have been obtained for 0.20-aileron chord tabs on two of the 0.20-chord ailerons. Basic data are presented from which the effect of tabs can be calculated for specific cases. The data are sufficient for the solution of problems of fixed tabs with a differential linkage, as well as simple and spring-linked balancing tabs.

  19. Stiffness Control of a Continuum Manipulator in Contact with a Soft Environment.

    PubMed

    Mahvash, Mohsen; Dupont, Pierre E

    2010-12-03

    Stiffness control of a continuum robot can prevent excessive contact forces during robot navigation inside delicate, uncertain and confined environments. Furthermore, it enables the selection of tip stiffnesses that match varying task requirements. This paper introduces a computationally-efficient approach to continuum-robot stiffness control that is based on writing the forward kinematic model as the product of two transformations. The first transformation calculates the non-contact kinematics of the robot and can be formulated based on the specific type of continuum robot under consideration. The second transformation calculates the tip deflection due to applied forces and is efficiently computed using the special Cosserat rod model. To implement a desired tip stiffness, the two transformations are used to solve for the actuator positions that deform the manipulator so as to generate the required tip force at the measured tip position. The efficacy of the proposed controller is demonstrated experimentally on a concentric-tube continuum robot.

  20. A Motion Control Method of Multi-joint Robots Utilizing Stiffness Adaptation for Energy Saving

    NASA Astrophysics Data System (ADS)

    Uemura, Mitsunori; Kawamura, Sadao

    This paper investigates a new motion control method of multi-joint robots utilizing stiffness adjustment of mechanical elastic elements for the purpose of energy saving. This control method is designed to realize a condition similar to resonance of linear systems by the stiffness adjustment, even though the controlled systems have nonlinear dynamics and multi degree-of-freedom. The control method has two control objectives. One is to realize trajectory tracking control. The other is to reduce actuator torque as much as possible by the stiffness adjustment. This controller does not require exact parameter values of the controlled systems. Some fundamental parts of stability analysis and an energy saving effect are discussed mathematically. Some simulation results demonstrate the effectiveness of the proposed control method.

  1. Comparative wind tunnel test at high Reynolds numbers of NACA 64 621 airfoils with two aileron configurations

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.

    1995-01-01

    An experimental program to measure the aerodynamic characteristics of the NACA 64-621 airfoil when equipped with plain ailerons of 0.38 chord and 0.30 chord and with 0.38 chord balanced aileron has been conducted in the pressurized O.S.U. 6 x 12 ft High Reynolds Number Wind Tunnel. Surface pressures were measured and integrated to yield lift and pressure drag coefficients for angles of attack from -3 to +42 deg and for selected aileron deflections from 0 to -90 deg at nominal Mach and Reynolds numbers of 0.25 and 5 x 10(exp 6). When resolved into thrust coefficient for wind turbine aerodynamic control applications, the data indicated the anticipated decrease in thrust coefficient with negative aileron deflection at low angles of attack; however, as angle of attack increased, thrust coefficients eventually became positive. All aileron configurations, even at -90 deg deflections showed this trend. Hinge moments for each configuration complete the data set.

  2. Comparative wind tunnel tests at high Reynolds numbers of NACA 64 621 airfoils with two aileron configurations

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.

    1984-01-01

    An experimental program to measure the aerodynamic characteristics of the NACA 64-621 airfoil when equipped with plain ailerons of 0.38 chord and 0.30 chord and with 0.38 chord balanced aileron has been conducted in a pressurized 6 x 12-inch High Reynolds Number Wind Tunnel. Surface pressures were measured and integrated to yield lift and pressure drag coefficients for angles of attack from -3 deg to +42 deg, and for selected aileron deflections from 0 to -90 deg at nominal Mach and Reynolds numbers of 0.25 and 5 x l0 exp 6, respectively. When resolved into thrust coefficient for wind turbine aerodynamic control applications, the data indicated the anticipated decrease in thrust coefficient with negative aileron deflection at low angles of attack; however, as angle of attack increased, thrust coefficients eventually became positive. All aileron configurations, even at -90 deg deflections, showed this trend. Hinge moments for each configuration complete the data set.

  3. Design and Testing of a Dynamically-Tuned Magnetostrictive Spring with Electrically-Controlled Stiffness

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-01-01

    This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi-active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.

  4. Experimental Investigation of a Circulation Control Aileron.

    DTIC Science & Technology

    1979-07-01

    DISTRIBUTION UNLIMITED SX1VIATION AND SURFACE EFFECTS DEPARTMENT 0jr i DTNSRDC/ASED-79/08 JA 3 U4 CID July 1979 80 31..’. UNCLASSIFIED SECURITY...ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS David W. Taylor Naval Ship R&D Center Program Element Aviation and Surface Effects ...Block 20 continued) -ICaileron was at least three times as effective as a pure reaction jet for the same amount of bleed air. Adverse yaw was large

  5. Sonic fatigue testing of an advanced composite aileron

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1982-01-01

    The sonic fatigue test program to verify the design of the composite inboard aileron for the L-1011 airplane is described. The composite aileron is fabricated from graphite/epoxy minisandwich covers which are attached to graphite/epoxy front spar and ribs, and to an aluminum rear spar with fasteners. The program covers the development of random fatigue data by means of coupon testing and modal studies on a representative section of the composite aileron, culminating in the accelerated sonic fatigue proof test. The composite aileron sustained nonlinear panel vibration during the proof test without failure. Viscous damping coefficients as low as 0.4% were measured on the panels. The effects of moisture conditioning and elevated temperature on the random fatigue life of both undamaged and impact damaged coupons were investigated. The combination of impact damage, moisture, and a 180 F temperature could reduce the random fatigue life by 50%.

  6. Advanced composite aileron for L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design and evaluation of alternate concepts for the major subcomponents of the advanced composite aileron (ACA) was completed. From this array of subcomponents, aileron assemblies were formulated and evaluated. Based on these analyses a multirib assembly with graphite tape/syntactic core covers, a graphite tape front spar, and a graphite fabric rib was selected for development. A weight savings of 29.1 percent (40.8 pounds per aileron) is predicted. Engineering cost analyses indicate that the production cost of the ACA will be 7.3 percent less than the current aluminum aileron. Fabrication, machining, and testing of the material evaluation specimens for the resin screening program was completed. The test results lead to the selection of Narmco 5208 resin for the ACA. Other activities completed include: the detailed design of the ACA, construction of a three dimensional finite element model for structural analysis, and formulation of detail plans for material verification and process development.

  7. Measurement of the UH-60A Hub Large Rotor Test Apparatus Control System Stiffness

    NASA Technical Reports Server (NTRS)

    Kufeld, Robert M.

    2014-01-01

    This purpose of this report is to provides details of the measurement of the control system stiffness of the UH-60A rotor hub mounted on the Large Rotor Test Apparatus (UH-60A/LRTA). The UH-60A/LRTA was used in the 40- by 80-Foot Wind Tunnel to complete the full-scale wind tunnel test portion of the NASA / ARMY UH-60A Airloads Program. This report describes the LRTA control system and highlights the differences between the LRTA and UH-60A aircraft. The test hardware, test setup, and test procedures are also described. Sample results are shown, including the azimuthal variation of the measured control system stiffness for three different loadings and two different dynamic actuator settings. Finally, the azimuthal stiffness is converted to fixed system values using multi-blade transformations for input to comprehensive rotorcraft prediction codes.

  8. An MRF-based device for the torque stiffness control of all movable vertical tails

    NASA Astrophysics Data System (ADS)

    Ameduri, Salvatore; Concilio, Antonio; Gianvito, Antonio; Lemme, Manuel

    2005-05-01

    Aerodynamic control surfaces efficiency is among the major parameters defining the performance of generic aircraft and is strongly affected by geometric and stiffness characteristics. A target of the '3AS' European Project is to estimate the eventual benefits coming from the adaptive control of the torque rigidity of the vertical tail of the EuRAM wind tunnel model. The specific role of CIRA inside the Project is the design of a device based on the "Smart Structures and Materials" concept, able to produce required stiffness variations. Numerical and experimental investigations pointed out that wide excursions of the tail torque rigidity may assure higher efficiency, for several flight regimes. Stiffness variations may be obtained through both classical mechanic-hydraulic and smart systems. In this case, the attainable weight and reliability level may be the significant parameters to drive the choice. For this reason, CIRA focused its efforts also on the design of devices without heavy mechanical parts. The device described in this work is schematically constituted by linear springs linked in a suitably way to the tail shaft. Required stiffness variations are achieved by selectively locking one or more springs, through a hydraulic system, MRF-based. An optimisation process was performed to find the spring features maximising the achievable stiffness range. Then, the hydraulic MRF design was dealt with. Finally, basing on numerical predictions, a prototype was manufactured and an experimental campaign was performed to estimate the device static and dynamic behaviour.

  9. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the

  10. The Distribution of Lift Over Wing Tips and Ailerons

    NASA Technical Reports Server (NTRS)

    Bacon, David L

    1924-01-01

    This investigation was carried out in the 5-foot wind tunnel of the Langley Memorial Aeronautical Laboratory for the purpose of obtaining more complete information on the distribution of lift between the ends of wing spars, the stresses in ailerons, and the general subject of airflow near the tip of a wing. It includes one series of tests on four models without ailerons, having square, elliptical, and raked tips respectively, and a second series of positively and negatively raked wings with ailerons adjusted to different settings. The results show that negatively raked tips give a more uniform distribution of air pressure than any of the other three arrangements, because the tip vortex does not disturb the flow at the trailing edge. Aileron loads are found to be less severe on wings with negative application to the calculation of aileron and wing stresses and also to facilitate the proper distribution of load in sand testing. Contour charts show in great detail the complex distribution lift over the wing.

  11. Stiffness-Controlled Thermoresponsive Hydrogels for Cell Harvesting with Sustained Mechanical Memory.

    PubMed

    Fan, Xingliang; Zhu, Lu; Wang, Ke; Wang, Bingjie; Wu, Yaozu; Xie, Wei; Huang, Chengyu; Chan, Barbara Pui; Du, Yanan

    2017-03-01

    Most mechanobiological investigations focused on in situ mechanical regulation of cells on stiffness-controlled substrates with few downstream applications, as it is still challenging to harvest and expand mechanically primed cells by enzymatic digestion (e.g., trypsin) without interrupting cellular mechanical memory between passages. This study develops thermoresponsive hydrogels with controllable stiffness to generate mechanically primed cells with intact mechanical memory for augmented wound healing. No significant cellular property alteration of the fibroblasts primed on thermoresponsive hydrogels with varied stiffness has been observed through thermoresponsive harvesting. When reseeding the harvested cells for further evaluation, softer hydrogels are proven to better sustain the mechanical priming effects compared to rigid tissue culture plate, which indicates that both the stiffness-controlled substrate and thermoresponsive harvesting are required to sustain cellular mechanical memory between passages. Moreover, epigenetics analysis reveals that thermoresponsive harvesting could reduce the rearrangement and loss of chromatin proteins compared to that of trypsinization. In vivo wound healing using mechanically primed fibroblasts shows featured epithelium and sebaceous glands, which indicates augmented skin recovery compared with trypsinized fibroblasts. Thus, the thermoresponsive hydrogel-based cell harvesting system offers a powerful tool to investigate mechanobiology between cell passages and produces abundant cells with tailored mechanical priming properties for cell-based applications.

  12. Wind-Tunnel Tests to Determine Aileron Characteristics of the McDonnell XFD-1 Airplane, TED No. NACA 23102

    NASA Technical Reports Server (NTRS)

    Yates, Campbell C.; Schneiter, Leslie E.

    1946-01-01

    Tests were performed on a partial span of the wing of a McDonnell XFD-1 airplane to determine a combination of sealed internal balance and spring-tab stiffness for the aileron that would give satisfactory stick-force characteristics for the airplane. Two sealed internal balances were tested in combination with spring tabs of various stiffnesses. One of the combinations was tested at several speeds to determine the variation of stick force with speed. Estimates, based on the results of the tests, indicate that for this airplane any reduction of stick force by use of the spring tab reduces the helix angle pb/2V below the required value of 0.09. The estimates show that, of the configurations tested, the most satisfactory combination for obtaining a stick force of 30 pounds at 300 miles per hour indicated airspeed is a 0.48-chord internal balance in combination with a spring-tab stiffness of 500 pounds per inch. With this combination, a wing-tip helix angle of 0.078 is estimated. Stick-force curves for all configurations show a rapid increase in stick force above approximately 20 deg. total aileron deflection.

  13. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    NASA Astrophysics Data System (ADS)

    Murray, Gabriel; Gandhi, Farhan

    2010-04-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer.

  14. Design of a randomised acupuncture trial on functional neck/shoulder stiffness with two placebo controls

    PubMed Central

    2014-01-01

    Background Functional neck/shoulder stiffness is one of the most well-known indications for acupuncture treatment in Japan. There is little evidence for the effectiveness of acupuncture treatment for functional neck/shoulder stiffness. Research using two different placebos may allow an efficient method to tease apart the components of real acupuncture from various kinds of ‘non-specific’ effects such as ritual with touch or ritual alone. Herein, we describe a protocol of an ongoing, single-centre, randomised, placebo-controlled trial which aims to assess whether, in functional neck/shoulder stiffness, acupuncture treatment with skin piercing has a specific effect over two types of placebo: skin-touching plus ritual or ritual alone. Methods Six acupuncturists and 400 patients with functional neck/shoulder stiffness are randomly assigned to four treatment groups: genuine acupuncture penetrating the skin, skin-touch placebo or no-touch placebo needles in a double-blind manner (practitioner-patient blinding) or no-treatment control group. Each acupuncturist applies a needle to each of four acupoints (Bladder10, Small Intestine14, Gallbladder21 and Bladder42) in the neck/shoulder to 50 patients. Before, immediately after and 24 hours after the treatment, patients are asked about the intensity of their neck/shoulder stiffness. After the treatment, practitioners and patients are asked to guess whether the treatment is “penetrating”, “skin-touch” or “no-touch” or to record “cannot identify the treatment”. Discussion In addition to intention-to-treat analysis, we will conduct subgroup analysis based on practitioners’ or patients’ guesses to discuss the efficacy and effectiveness of treatments with skin piercing and various placebo controls. The results of practitioner and patient blinding will be discussed. We believe this study will further distinguish the role of different components of acupuncture. Trial registration Current Controlled Trial

  15. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.

    PubMed

    He, Xin; Du, Yu-Fan; Lan, Ning

    2013-07-01

    The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.

  16. Regulation of astrocyte activity via control over stiffness of cellulose acetate electrospun nanofiber.

    PubMed

    Min, Seul Ki; Jung, Sang Myung; Ju, Jung Hyeon; Kwon, Yeo Seon; Yoon, Gwang Heum; Shin, Hwa Sung

    2015-10-01

    Astrocytes are involved in neuron protection following central nervous system (CNS) injury; accordingly, engineered astrocytes have been investigated for their usefulness in cell therapy for CNS injury. Nanofibers have attracted a great deal of attention in neural tissue engineering, but their mechanical properties greatly influence physiology. Cellulose acetate (CA) has been studied for use in scaffolds owing to its biocompatibility, biodegradability, and good thermal stability. In this study, stiffness of CA nanofibers controlled by heat treatment was shown to regulate astrocyte activity. Adhesion and viability increased in culture as substrate became stiffer but showed saturation at greater than 2 MPa of tensile strength. Astrocytes became more active in terms of increasing intermediate filament glial fibrillary acidic protein (GFAP). The results of this study demonstrate the effects of stiffness alone on cellular behaviors in a three-dimensional culture and highlight the efficacy of heat-treated CA for astrocyte culture in that the simple treatment enables control of astrocyte activity.

  17. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption

    PubMed Central

    Inouye, Joshua M.; Valero-Cuevas, Francisco J.

    2016-01-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies—correlated muscle activations—to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption—when available—can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the

  18. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.

    PubMed

    Inouye, Joshua M; Valero-Cuevas, Francisco J

    2016-02-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms

  19. Wind tunnel tests of the GA(W)-2 airfoil with 20% aileron, 25% slotted flap, 30% Fowler flap and 10% slot-lip spoiler

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1977-01-01

    Two dimensional wind tunnel tests were conducted for the GA(W)-2 airfoil section with: 20% aileron, 25% slotted flap; 30% Fowler flap, and 10% slot-lip spoiler. All tests were conducted at a Reynolds number of 2,200,000 and a Mach Number of 0.13. In addition to force measurements, tuft studies were conducted for the slotted and Fowler flap configurations. Aileron and spoiler hinge moments were obtained by integration of surface pressure measurements. Tests results show that a value of 3.82 was obtained with 30% Fowler flap. Aileron control effectiveness and hinge moments were similar to other airfoils. The slot-lip spoiler provided powerful, positive roll control at all flap settings.

  20. Wind tunnel force and pressure tests of a 21% thick general aviation airfoil with 20% aileron, 25% slotted flap and 10% slot-lip spoiler

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Fiscko, K. A.

    1979-01-01

    Force and surface pressure distributions were measured for the 21% LS(1)-0421 modified airfoil fitted with 20% aileron, 25% slotted flap and 10% slot lip spoiler. All tests were conducted at a Reynolds number of 2.2 x 10 to the 6th power and a Mach number of 0.13. The lift, drag, pitching moments, control surface normal force and hinge moments, and surface pressure distributions are included in the results. Incremental performance of flap and aileron are discussed and compared to the GA(W)-2 airfoil. Spoiler control which shows a slight reversal tendency at high alpha, is examined.

  1. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain.

    PubMed

    Simmons, Chelsey S; Ribeiro, Alexandre J S; Pruitt, Beth L

    2013-02-21

    Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes.

  2. Arterial stiffness in periodontitis patients and controls. A case–control and pilot intervention study.

    PubMed

    Houcken, W; Teeuw, W J; Bizzarro, S; Alvarez Rodriguez, E; Mulders, T A; van den Born, B-Jh; Loos, B G

    2016-01-01

    Increased arterial stiffness (AS) is an important indicator for atherosclerotic cardiovascular disease (ACVD). Epidemiologically, periodontitis and ACVD are associated. Therefore, we aimed to investigate AS in periodontitis patients and controls. In addition, we explored the effect of periodontal therapy on AS in a sub-group of cases. Pulse-wave velocity (PWV), a non-invasive chair-side function test for AS, was measured in periodontitis patients (n=57; mean age 46.6 years) and compared with a reference group (n=48; mean age 45.5 years). In addition, 45 cases (mean age 46.9 years) were 6 months followed after periodontal treatment, to explore a possible effect on arterial function. Periodontitis patients showed a significantly increased PWV compared with the reference group (8.01±0.20 vs. 7.36±0.22 m s(-1) respectively; P=0.029) and this remained significant after adjustments for ACVD risk factors (P=0.019). After periodontal therapy, no significant reduction in PWV was seen (8.00±1.8 to 7.82±1.6 m s(-1); P=0.13), but systolic blood pressure (SBP) was significantly reduced (119.8±14.6 to 116.9±15.1 mm Hg; P=0.040). It can be concluded that periodontitis is associated with increased AS. This confirms with a new parameter the association of periodontitis with ACVD. Although periodontal treatment did not lower AS significantly, a modest reduction of SBP after 6 months was observed.

  3. Qualitative Results from a Flight Investigation to Determine Aileron Effectiveness of Two Rocket-Propelled 1/20-Scale Models of the MX -76 Missile

    NASA Technical Reports Server (NTRS)

    Stevens, Joseph E.

    1955-01-01

    Free-flight tests of two rocket-propelled l/20-scale models of the Bell MX-776 missile have been conducted to obtain measurements of the aileron deflection required to counteract the induced rolling moments caused by combined angles of attack and sideslip and thus to determine whether the ailerons provided were capable of controlling the model at the attitudes produced by the test conditions. Inability to obtain reasonably steady-state conditions and superimposed high-frequency oscillations in the data precluded any detailed analysis of the results obtained from the tests. For these reasons, the data presented are limited largely to qualitative results.

  4. Introducing a new semi-active engine mount using force controlled variable stiffness

    NASA Astrophysics Data System (ADS)

    Azadi, Mojtaba; Behzadipour, Saeed; Faulkner, Gary

    2013-05-01

    This work introduces a new concept in designing semi-active engine mounts. Engine mounts are under continuous development to provide better and more cost-effective engine vibration control. Passive engine mounts do not provide satisfactory solution. Available semi-active and active mounts provide better solutions but they are more complex and expensive. The variable stiffness engine mount (VSEM) is a semi-active engine mount with a simple ON-OFF control strategy. However, unlike available semi-active engine mounts that work based on damping change, the VSEM works based on the static stiffness change by using a new fast response force controlled variable spring. The VSEM is an improved version of the vibration mount introduced by the authors in their previous work. The results showed significant performance improvements over a passive rubber mount. The VSEM also provides better vibration control than a hydromount at idle speed. Low hysteresis and the ability to be modelled by a linear model in low-frequency are the advantages of the VSEM over the vibration isolator introduced earlier and available hydromounts. These specifications facilitate the use of VSEM in the automotive industry, however, further evaluation and developments are needed for this purpose.

  5. An Investigation of Wing and Aileron Loads Due to Deflected Inboard and Outboard Ailerons on a 4-Percent-Thick 30 deg Sweptback Wing at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Whitcomb, Charles F.; Critzos, Chris C.; Brown, Philippa F.

    1961-01-01

    An investigation has been conducted in the Langley 16-foot transonic tunnel to determine the changes in wing loading characteristics due to deflections of a plain faired flap-type inboard aileron, a plain faired flap-type outboard aileron, and a slab-sided thickened trailing edge outboard aileron. The test wing was 4 percent thick and had 30 sweep of the quarter chord, an aspect ratio of 3.0, a taper ratio of 0.2, and NACA 65A004 airfoil sections. The loading characteristics of the deflected ailerons were also investigated. The model was a sting-mounted wing-body combination, and pressure measurements over one wing panel (exposed area) and the ailerons were obtained for angles of attack from 0 to 20 at deflections up to +/- 15 deg for Mach numbers between 0.80 and 1.03. The test Reynolds number based on the wing mean aerodynamic chord was about 7.4 x 10(exp 6). The results of the investigation indicated that positive deflection of the plain faired flap-type inboard aileron caused significant added loading over the wing sections outboard of the aileron at all Mach numbers for model angles of attack from 0 deg or 4 deg up to 12 deg. Positive deflection of the two outboard ailerons (plain faired and slab sided with thickened trailing edge) caused significant added loading over the wing sections inboard of the ailerons for different model angle-of-attack ranges at the several test Mach numbers. The loading shapes over the ailerons were irregular and would be difficult to predict from theoretical considerations in the transonic speed range. The longitudinal and lateral center-of-pressure locations for the ailerons varied only slightly with increasing angle of attack and/or Mach number. Generally, the negative slopes of the variations of aileron hinge-moment coefficient with aileron deflection for all three ailerons varied similarly with Mach number at the test angles of attack.

  6. Producibility aspects of advanced composites for an L-1011 Aileron

    NASA Technical Reports Server (NTRS)

    Van Hamersveld, J.; Fogg, L. D.

    1976-01-01

    The design of advanced composite aileron suitable for long-term service on transport aircraft includes Kevlar 49 fabric skins on honeycomb sandwich covers, hybrid graphite/Kevlar 49 ribs and spars, and graphite/epoxy fittings. Weight and cost savings of 28 and 20 percent, respectively, are predicted by comparison with the production metallic aileron. The structural integrity of the design has been substantiated by analysis and static tests of subcomponents. The producibility considerations played a key role in the selection of design concepts with potential for low-cost production. Simplicity in fabrication is a major factor in achieving low cost using advanced tooling and manufacturing methods such as net molding to size, draping, forming broadgoods, and cocuring components. A broadgoods dispensing machine capable of handling unidirectional and bidirectional prepreg materials in widths ranging from 12 to 42 inches is used for rapid layup of component kits and covers. Existing large autoclaves, platen presses, and shop facilities are fully exploited.

  7. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control.

    PubMed

    Leib, Raz; Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-10-12

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior.

  8. The influence of artificially increased hip and trunk stiffness on balance control in man.

    PubMed

    Grüneberg, C; Bloem, B R; Honegger, F; Allum, J H J

    2004-08-01

    Lightweight corsets were used to produce mid-body stiffening, rendering the hip and trunk joints practically inflexible. To examine the effect of this artificially increased stiffness on balance control, we perturbed the upright stance of young subjects (20-34 years of age) while they wore one of two types of corset or no corset at all. One type, the "half-corset", only increased hip stiffness, and the other, the "full-corset", increased stiffness of the hips and trunk. The perturbations consisted of combined roll and pitch rotations of the support surface (7.5 deg, 60 deg/s) in one of six different directions. Outcome measures were biomechanical responses of the legs, trunk, arms and head, and electromyographic (EMG) responses from leg, trunk, and upper arm muscles. With the full-corset, a decrease in forward stabilising trunk pitch rotation compared to the no-corset condition occurred for backward pitch tilts of the support surface. In contrast, the half-corset condition yielded increased forward trunk motion. Trunk backward pitch motion after forwards support-surface perturbations was the same for all corset conditions. Ankle torques and lower leg angle changes in the pitch direction were decreased for both corset conditions for forward pitch tilts of the support-surface but unaltered for backward tilts. Changes in trunk roll motion with increased stiffness were profound. After onset of a roll support-surface perturbation, the trunk rolled in the opposite direction to the support-surface tilt for the no-corset and half-corset conditions, but in the same direction as the tilt for the full-corset condition. Initial head roll angular accelerations (at 100 ms) were larger for the full-corset condition but in the same direction (opposite platform tilt) for all conditions. Arm roll movements were initially in the same direction as trunk movements, and were followed by large compensatory arm movements only for the full-corset condition. Leg muscle (soleus, peroneus

  9. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control

    PubMed Central

    Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-01-01

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. PMID:27733607

  10. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this

  11. Advanced composite aileron for L-1011 transport aircraft: Design and analysis

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Fogg, L. D.; Dunning, E. G.

    1981-01-01

    Detail design of the composite aileron has been completed. The aileron design is a multi-rib configuration with single piece upper and lower covers mechanically fastened to the substructure. Covers, front, spar and ribs are fabricated with graphite/epoxy tape or fabric composite material. The design has a weight savings of 23 percent compared to the aluminum aileron. The composite aileron has 50 percent fewer fasteners and parts than the metal aileron and is predicted to be cost competitive. Structural integrity of the composite aileron was verified by structural analysis and an extensive test program. Static, failsafe, and vibration analyses have been conducted on the composite aileron using finite element models and specialized computer programs for composite material laminates. The fundamental behavior of the composite materials used in the aileron was determined by coupon tests for a variety of environmental conditions. Critical details of the design were interrogated by static and fatigue tests on full-scale subcomponents and subassemblies of the aileron.

  12. Wind tunnel investigation of the aerodynamic characteristics of symmetrically deflected ailerons of the F-8C airplane. [conducted in the Langley 8-foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Gera, J.

    1977-01-01

    A .042-scale model of the F-8C airplane was investigated in a transonic wind tunnel at high subsonic Mach numbers and a range of angles of attack between-3 and 20 degrees. The effect of symmetrically deflected ailerons on the longitudinal aerodynamic characteristics was measured. Some data were also obtained on the lateral control effectiveness of asymmetrically deflected horizontal tail surfaces.

  13. Stiff railguns

    NASA Astrophysics Data System (ADS)

    Weldon, W. F.; Bacon, J. L.; Weeks, D. A.; Zowarka, R. C., Jr.

    1991-01-01

    Stiff guns have been operated with both plasma and solid armatures. A performance gain was seen in the plasma railgun as stiffness was increased. A stiff gun will help to maintain the bore shape and preserve the integrity of the seam between rail and insulator under the extreme asymmetric loads sustained during high-pressure operation. The hydraulically preloaded moly and ceramic gun has been fired six times at pressures as high as 87 ksi, and the bore still holds roughing vacuum up to two hours after the test. The elimination of seam leakage helps control bore erosion associated with plasma reconstitution from the rail and plasma perturbation that might result in loss-initiating instabilities. Reduced rail deflection allows solid and transitioning armatures to track the bore surface. An analysis of the strain energy associated with the deflection of the railgun structure is presented, and this mechanism is found to be a small fraction of the energy associated with armature loss and the rail resistive loss.

  14. Failure Analysis of T-38 Aircraft Burst Hydraulic Aileron Return Line

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Figert, J. D.; Paton, R. M.; Nguyen, S. D.; Flint, A.

    2012-01-01

    During maintenance troubleshooting for fluctuating hydraulic pressures, a technician found that a right hand aileron return line, on the flight hydraulic side, was ruptured (Fig. 1, 2). This tubing is part of the Hydraulic Flight Control Aileron Return Reducer to Aileron Manifold and is suspected to be original to the T-38 Talon trainer aircraft. Ailerons are small hinged sections on the outboard portion of a wing used to generate rolling motion thereby banking the aircraft. The ailerons work by changing the effective shape of the airfoil of the outer portion of the wing [1]. The drawing, Northrop P/N 3-43033-55 (6/1960), specifies that the line is made from 0.375 inch OD, aluminum 5052-0 tubing with a 0.049 inch wall thickness. WW-T-787 requires the tube shall be seamless and uniform in quality and temper [2]. The test pressure for this line is 3000 psi, and the operational pressure for this line is estimated to be between 45 psi and 1500 psi based on dynamic loading during flight. Examination of the fracture surface found evidence of arrest bands originating on the inner diameter (Fig 3). Ductile dimples are observed on the tube fractures (Fig. 4). The etched cross-section revealed thinning and work-hardening in the burst region (Fig. 5). The wall thickness just outside the work-hardened fracture region measured 0.035". Barlow's Formula: P = 2St/D, where P is burst pressure, S is allowable stress, t is wall thickness and D is the outer diameter of tube. Using the ultimate tensile strength of 28 ksi and a measured wall thickness of 0.035 inches at burst, P = 5.2 ksi (burst pressure). Using the yield of 13 ksi (YS) for aluminum 5052-0, plastic deformation will happen at P = 2.4 ksi suggesting plastic deformation occurred at a proof pressure of 3.0 ksi. Conclusion: The burst resulted from high stress, low-cycle fatigue. Evidence of arrest bands originating on the inner diameter. Fracture is predominately shear dimples, characteristic of high load ductile fractures

  15. Active control of sound transmission through stiff lightweight composite fuselage constructions

    NASA Technical Reports Server (NTRS)

    Thomas, D. R.; Nelson, P. A.; Pinnington, R. J.; Elliott, S. J.

    1992-01-01

    Work was performed on the active control of sound transmission in composite structures. First, a model was outlined of a vibrating plate with arbitrary boundary conditions. Second, the far field was minimized to radiate acoustic power using secondary force inputs. Third, a model of a simple case of freely mounted stiff lightweight panels was used. Fourth, experimental results for aluminum honeycomb composite panels is presented. Fifth, experimental results are presented for the combination of a clamped steel plate and an aluminum honeycomb panel with secondary forces acting between the partitions. Finally, experimental results for the combination of a clamped steel plate with four secondary aluminum honeycomb panels is presented. All materials are shown in viewgraph format.

  16. Can a soft robotic probe use stiffness control like a human finger to improve efficacy of haptic perception?

    PubMed

    Sornkarn, Nantachai; Nanayakkara, Thrishantha

    2016-10-19

    When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co- contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.

  17. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    NASA Technical Reports Server (NTRS)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  18. Evidence for a role of antagonistic cocontraction in controlling trunk stiffness during lifting.

    PubMed

    van Dieën, Jaap H; Kingma, Idsart; van der Bug, Petra; van der Bug, J C E

    2003-12-01

    Activity of the abdominal muscles during symmetric lifting has been a consistent finding in many studies. It has been hypothesized that this antagonistic coactivation increases trunk stiffness to provide stability to the spine. To test this, we investigated whether abdominal activity in lifting is increased in response to destabilizing conditions. Ten healthy male subjects lifted 35 l containers containing 15 l of water (unstable condition), or ice (stable condition). 3D-kinematics, ground reaction forces, and EMG of selected trunk muscles were recorded. Euler angles of the thorax relative to the pelvis were determined. Inverse dynamics was used to calculate moments about L5S1. Averaged normalized abdominal EMG activity was calculated to express coactivation and an EMG-driven trunk muscle model was used to estimate the flexor moment produced by these muscles and to estimate the L5S1 compression force. Abdominal coactivation was significantly higher when lifting the unstable load. This coincided with significant increases in estimated moments produced by the antagonist muscles and in estimated compression forces on the L5S1 disc, except at the instant of the peak moment about L5S1. The lifting style was not affected by load instability as evidenced by the absence of effects on moments about L5S1 and angles of the thorax relative to the pelvis. The data support the interpretation of abdominal cocontraction during lifting as subserving spinal stability. An alternative function of the increased trunk stiffness due to cocontraction might be to achieve more precise control over the trajectory of lifted weight in order to avoid sloshing of the water mass in the box and the consequent perturbations.

  19. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  20. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli

    PubMed Central

    Hyzy, Sharon L.; Doroudi, Maryam; Williams, Joseph K.; Gall, Ken; Boyan, Barbara D.; Schwartz, Zvi

    2017-01-01

    Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffness <10 MPa. Like chondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process. PMID:28095466

  1. Pilot-in-the-Loop Analysis of Aileron Operation and Flight Simulator Experiments

    NASA Astrophysics Data System (ADS)

    Fujinaga, Jin; Tokutake, Hiroshi; Miura, Yumiko

    Lateral-directional piloted simulation experiments were conducted in order to analyze pilot responses when the pilot controls an aircraft with only the ailerons after rudder failure. The experiments were carried out using a fixed-base flight simulator and four pilots. Six aircraft configurations, made by changing the stability derivatives, were tested, and pilot models were identified using the least-squares method. An analysis of the closed-loop shows that the closed-loop gain and stabilities correlate with the tracking error of the compensation task. Additionally, from the results of analysis, an evaluation function using pilot-in-the-loop with a fixed pilot model was developed. This function was able to predict the compensational error analytically from the airplane dynamics.

  2. Lateral control required for satisfactory flying qualities based on flight tests of numerous airplanes

    NASA Technical Reports Server (NTRS)

    Gilruth, R R; Turner, W N

    1941-01-01

    Report presents the results of an analysis made of the aileron control characteristics of numerous airplanes tested in flight by the National Advisory Committee for Aeronautics. By the use of previously developed theory, the observed values of pb/2v for the various wing-aileron arrangements were examined to determine the effective section characteristics of the various aileron types.

  3. Effect of a tart cherry juice supplement on arterial stiffness and inflammation in healthy adults: a randomised controlled trial.

    PubMed

    Lynn, Anthony; Mathew, Shilpa; Moore, Chris T; Russell, Jean; Robinson, Emma; Soumpasi, Vithleem; Barker, Margo E

    2014-06-01

    Tart cherries are a particularly rich source of anthocyanins. Evidence indicates that dietary intake of anthocyanins is inversely associated with arterial stiffness. We conducted an open-label randomised placebo controlled study to determine whether a tart cherry juice concentrate (Cherry Active) reduced arterial stiffness, inflammation and risk markers for cardiovascular disease in 47 healthy adults (30-50 years). Participants consumed 30 ml of cherry concentrate diluted to a volume of 250 ml with water or the same volume of an energy matched control drink daily for six weeks. Measurements were taken at baseline and at the end of the intervention. There was no effect of the intervention on arterial stiffness (P = 0.218), c-reactive protein (P = 0.220), systolic blood pressure (P = 0.163), diastolic blood pressure (P = 0.121), total cholesterol (P = 0.342) and high density lipoprotein cholesterol (P = 0.127). At the end of the intervention, plasma antioxidant capacity (measured as the ferric reducing ability of plasma (FRAP)) was significantly higher in the intervention group than the control group (P = 0.012). We conclude that a tart cherry juice concentrate rich in anthocyanins has no effect on arterial stiffness, c-reactive protein and risk markers for cardiovascular disease, but evokes a minor increase in antioxidant status in healthy adults.

  4. Effect of Changes in Aileron Rigging on the Stick Forces of a High-Speed Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Murray, Harry E.; Warren, S Anne

    1944-01-01

    The effects of changes in aileron rigging between 2 deg up and 2 deg down on the stick forces were determined from wind-tunnel data for a finite-span wing model. These effects were investigated for ailerons deflecting equally in both directions and linearly with stick deflection. Data were analyzed for a Frise, a sealed internally balanced, and a beveled-trailing-edge aileron. The results of the analysis showed that only ailerons having linear hinge-moment characteristics are unaffected by changes in rigging and indicated that ailerons having decidedly nonlinear hinge-moment-coefficient curves, particularly for deflections near 0 deg, are very sensitive to changes in rigging.

  5. Wind Tunnel Tests of Ailerons at Various Speeds I : Ailerons of 0.20 Airfoil Chord and True Contour with 0.35 Aileron-chord Extreme Blunt Nose Balance on the NACA 66,2-216 Airfoil

    NASA Technical Reports Server (NTRS)

    Letko, W; Denaci, H. G.; Freed, C

    1943-01-01

    Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.

  6. Advanced composite aileron for L-1011 transport aircraft, task 1

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Fogg, L. D.; Stone, R. L.; Dunning, E. G.

    1978-01-01

    Structural design and maintainability criteria were established and used as a guideline for evaluating a variety of configurations and materials for each of the major subcomponents. From this array of subcomponent designs, several aileron assemblies were formulated and analyzed. The selected design is a multirib configuration with sheet skin covers mechanically fastened to channel section ribs and spars. Qualitative analysis of currently available composite material systems led to the selection of three candidate materials on which comparative structural tests were conducted to measure the effects of environment and impact damage on mechanical property retention. In addition, each system was evaluated for producibility characteristics. From these tests, Thornel 300/5208 unidirectional tape was selected for the front spar and covers, and Thornel 300 fabric/5208 was chosen for the ribs.

  7. Abdominal aortic stiffness as a marker of atherosclerosis in childhood-onset asthma: a case–control study

    PubMed Central

    Ülger, Zülal; Gülen, Figen; Özyürek, Ruhi Arif

    2015-01-01

    Summary Background Asthma is one of the chronic inflammatory diseases. It is known that chronic inflammation accelerates atherosclerosis. Abdominal aortic stiffness parameters can be used to detect the early development of atherosclerosis. Aim In this study, we aimed to evaluate abdominal aortic stiffness parameters in childhood-onset asthma compared with a control group. Methods In this cross-sectional, case–control study, we evaluated 50 patients with childhood-onset asthma, and 57 healthy children as controls. Patients with a diagnosis of asthma of at least three years’ duration were included in the study. Children with hypertension, hyperlipidaemia, diabetes, a history of smoking contact, or systemic disease were excluded. The study and control groups were evaluated with transthoracic echocardiography, and abdominal aorta diameters were measured. Using the measured data, abdominal aortic stiffness parameters (aortic distensibility: DIS, aortic strain: S, pressure strain elastic modulus: Ep, and pressure strain normalised by diastolic pressure: Ep*) were calculated. Statistical evaluation was done with the Student’s t-test, chisquared test and Pearson’s correlation test. Results The study group consisted of 50 children (24 female, 26 male) with asthma. According to the GINA guidelines, 26 of the patients had mild intermittant asthma, six had mild persistent asthma and 18 had intermediate persistent asthma. None of the patients had severe asthma. In 37 of the asthma patients, spIgE was positive and these patients were accepted as having atopic asthma; 27 of these patients received immunotherapy. We did not detect any differences between the study and control groups in terms of gender, age and body mass index. No differences were evident between the groups with regard to systolic and diastolic blood pressure, heart rate, blood cholesterol levels and respiratory function test parameters. There was no difference between the asthma and control groups in the

  8. Flight service evaluation of advanced composite ailerons on the L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1984-01-01

    A flight service evaluation of composite inboard ailerons on the L-1011 is discussed. This is the second annual report of the maintenance evaluation program, and covers the period from July 1983 when the first yearly inspections were completed, through July 1984. Four shipsets of graphite/epoxy composite ailerons were installed on L-1011 aircraft for this maintenance evaluation program. These include two Delta aircraft and two TWA aircraft. A fifth shipset of composite ailerons were installed in 1980 on Lockheed's flight test L-1011. A visual inspection was also conducted on these components. No visible damage was observed on any of the composite ailerons, and no maintenance action has occurred on any of the composite parts except for repainting of areas with paint loss. Flight hours on the airline components at the time of inspection ranged from 6318 to 6989 hours, after approximately 2 years of service.

  9. The role of oxysterols in control of endothelial stiffness[S

    PubMed Central

    Shentu, Tzu Pin; Singh, Dev K.; Oh, Myung-Jin; Sun, Shan; Sadaat, Laleh; Makino, Ayako; Mazzone, Theodore; Subbaiah, Papasani V.; Cho, Michael; Levitan, Irena

    2012-01-01

    Endothelial dysfunction is a key step in atherosclerosis development. Our recent studies suggested that oxLDL-induced increase in endothelial stiffness plays a major role in dyslipidemia-induced endothelial dysfunction. In this study, we identify oxysterols, as the major component of oxLDL, responsible for the increase in endothelial stiffness. Using Atomic Force Microscopy to measure endothelial elastic modulus, we show that endothelial stiffness increases with progressive oxidation of LDL and that the two lipid fractions that contribute to endothelial stiffening are oxysterols and oxidized phosphatidylcholines, with oxysterols having the dominant effect. Furthermore, endothelial elastic modulus increases as a linear function of oxysterol content of oxLDL. Specific oxysterols, however, have differential effects on endothelial stiffness with 7-ketocholesterol and 7α-hydroxycholesterol, the two major oxysterols in oxLDL, having the strongest effects. 27-hydroxycholesterol, found in atherosclerotic lesions, also induces endothelial stiffening. For all oxysterols, endothelial stiffening is reversible by enriching the cells with cholesterol. oxLDL-induced stiffening is accompanied by incorporation of oxysterols into endothelial cells. We find significant accumulation of three oxysterols, 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, in mouse aortas of dyslipidemic ApoE−/− mice at the early stage of atherosclerosis. Remarkably, these are the same oxysterols we have identified to induce endothelial stiffening. PMID:22496390

  10. Effect of aileron deflections on the aerodynamic characteristics of a semispan model of a subsonic energy-efficient transport

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1985-01-01

    An investigation was conducted in the Langley 8 Foot Transonic Pressure Tunnel to determine the effect of aileron deflections on the aerodynamic characteristics of a subsonic energy efficient transport (EET) model. The semispan model had an aspect ratio 10 supercritical wing and was configured with a conventionally located set of ailerons (i.e., a high speed aileron located inboard and a low speed aileron located outboard). Data for the model were taken over a Mach number range from 0.30 to 0.90 and an angle of attack range from approximately -2 deg to 10 deg. The Reynolds number was 2.5 million per foot for Mach number = 0.30 and 4 million per foot for the other Mach numbers. Model force and moment data, aileron effectiveness parameters, aileron hinge moment data, otherwise pressure distributions, and spanwise load data are presented.

  11. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    NASA Technical Reports Server (NTRS)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  12. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.

  13. Stiffness-based tuning of an adaptive impedance controller for robot-assisted rehabilitation of upper limbs.

    PubMed

    Maldonado, Berenice; Mendoza, Marco; Bonilla, Isela; Reyna-Gutiérrez, Iván

    2015-08-01

    In this paper, the tuning procedure of an adaptive impedance control approach, for upper limb rehabilitation therapies assisted by robots, is presented. The main feature of the proposed approach is a custom tuning of the impedance parameters for the controller, based on the stiffness estimation of users (patients), thus achieving a suitable robot-assisted rehabilitation system according with the different conditions of user's mobility. A set of simulation results are presented, in order to verify the suitable performance of the proposed approach in human-robot interaction tasks.

  14. Simulator results of an F-14A airplane utilizing an aileron-rudder interconnect during carrier approaches and landings

    NASA Technical Reports Server (NTRS)

    Kelly, W. W.; Brown, P. W.

    1980-01-01

    A piloted simulator study was conducted to evaluate an aileron rudder interconnect (ARI) control system for the F-14A airplane in the landing configuration. Effects on pilot performance and handling characteristics were investigated. Two ARI configurations were tested and compared to the standard F-14 fleet control system. A nonlinear aerodynamic model of the F-14 was used in conjunction with a six degree of freedom motion base simulator. The evaluation task, which utilized three subject pilots, consistent of a night carrier approach and landing. Both ARI configurations produced improved pilot performance and pilot ratings when compared to the standard control system. Sideslip due to adverse yaw as considerably reduced by the ARI systems and heading control was more stable and precise. Lateral deviation from centerline was reduced during the approach and lateral touchdown dispersion on the carrier deck was reduced with the ARI control systems.

  15. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part IV - Aileron Characteristics TED No. NACA DE308. Part 4; Aileron Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Goodson, Kenneth W.; Myers, Boyd C., II

    1947-01-01

    Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The aileron characteristics of the complete model are presented in the present report with a very limited analysis of the results.

  16. Effects of sodium and potassium supplementation on blood pressure and arterial stiffness: a fully controlled dietary intervention study.

    PubMed

    Gijsbers, L; Dower, J I; Mensink, M; Siebelink, E; Bakker, S J L; Geleijnse, J M

    2015-10-01

    We performed a randomised, placebo-controlled, crossover study to examine the effects of sodium and potassium supplementation on blood pressure (BP) and arterial stiffness in untreated (pre)hypertensive individuals. During the study, subjects were on a fully controlled diet that was relatively low in sodium and potassium. After a 1-week run-in period, subjects received capsules with supplemental sodium (3 g d(-1), equals 7.6 g d(-1) of salt), supplemental potassium (3 g d(-1)) or placebo, for 4 weeks each, in random order. Fasting office BP, 24-h ambulatory BP and measures of arterial stiffness were assessed at baseline and every 4 weeks. Of 37 randomized subjects, 36 completed the study. They had a mean pre-treatment BP of 145/81 mm Hg and 69% had systolic BP ⩾140 mm Hg. Sodium excretion was increased by 98 mmol per 24 h and potassium excretion by 63 mmol per 24 h during active interventions, compared with placebo. During sodium supplementation, office BP was significantly increased by 7.5/3.3 mm Hg, 24-h BP by 7.5/2.7 mm Hg and central BP by 8.5/3.6 mm Hg. During potassium supplementation, 24-h BP was significantly reduced by 3.9/1.6 mm Hg and central pulse pressure by 2.9 mm Hg. Pulse wave velocity and augmentation index were not significantly affected by sodium or potassium supplementation. In conclusion, increasing the intake of sodium caused a substantial increase in BP in subjects with untreated elevated BP. Increased potassium intake, on top of a relatively low-sodium diet, had a beneficial effect on BP. Arterial stiffness did not materially change during 4-week interventions with sodium or potassium.

  17. Dynamic control of muscle stiffness and H reflex modulation during hopping and jumping in man.

    PubMed Central

    Dyhre-Poulsen, P; Simonsen, E B; Voigt, M

    1991-01-01

    1. The objective of the study was to evaluate the functional effects of reflexes on muscle mechanics during natural voluntary movements. The excitability of the H (Hoffmann) reflex was used as a measure of the excitability of the central component of the stretch reflex. 2. We recorded EMG, ground reaction forces and the H reflex in the soleus muscle in humans while landing from a downward jump, during drop jumping and during hopping. The movements were also recorded by high-speed cinematography. 3. The EMG pattern was adapted to the motor task. When landing the EMG in the soleus muscle and in the anterior tibial muscle showed preinnervation and alternating activity after touch down. When hopping there was little preinnervation in the soleus muscle, and the activity was initiated about 45 ms after touch down by a peak and continued unbroken until lift off. In the drop jumps the EMG pattern depended on the jumping style used by the subject. 4. The H reflex in the soleus muscle was strongly modulated in a manner appropriate to the requirements of the motor task. During landing from a downward jump the H reflex was low at touch down whereas while hopping it was high at touch down. During drop jumping it was variable and influenced by the jumping technique. 5. Muscle stiffness in the ankle joint was negative after touch down when landing, but always positive when hopping. 6. It is suggested that during landing the alternating EMG pattern after touch down was programmed and little influenced by reflexes. During hopping reflexes could contribute to the initial peak and the EMG during lift off. 7. The programmed EMG activity and the suppression of the H reflex while landing probably contribute to the development of the negative stiffness and change the muscles from a spring to a damping unit. PMID:1890636

  18. Center of gravity motions and ankle joint stiffness control in upright undisturbed stance modeled through a fractional Brownian motion framework.

    PubMed

    Rougier, P; Caron, O

    2000-12-01

    The authors modeled the center of gravity vertical projection (CG(v)) and the difference, CP - CG(v), which, combined, constitute the center of pressure (CP) trajectory, as fractional Brownian motion in order to investigate their relative contributions and their spatiotemporal articulation. The results demonstrated that CG(v) and CP - CG(v) motions are both endowed in complementary fashion with strong stochastic and part-deterministic behaviors. In addition, if the temporal coordinates remain similar for all 3 trajectories by definition, the switch between the successive control mechanisms appears for shorter displacements for CP - CG(v) and CG(v) than for CP trajectories. Results deduced from both input (CG(v)) and muscular stiffness (CP - CG(v)) thus provide insight into the way the central nervous system regulates stance control and in particular how CG and CP - CG are controlled.

  19. Effect of stiffness and movement speed on selected dynamic torque characteristics of hydraulic-actuation joystick controls for heavy vehicles.

    PubMed

    Oliver, Michele; Rogers, Robert; Rickards, Jeremy; Tingley, Maureen; Biden, Edmund

    2006-02-22

    The purpose of this work was to quantify the effects of joystick stiffness and movement speed on the dynamic torque characteristics of hydraulic-actuation joystick controls, as found in off-road vehicles, as one of the initial steps towards the development of a joystick design protocol. Using a previously developed mathematical model in which a hydraulic-actuation joystick is assumed to rotate about two axes where the rotation origin is a universal joint, the dynamic torque characteristics incurred by an operator were predicted. Utilizing a laboratory mock-up of an excavator cab environment, three actuation torque characteristics (peak torque, angular impulse and deceleration at the hard endpoint) were quantified for nine unskilled joystick operators during the use of a commonly used North American hydraulic-actuation joystick. The six different experimental conditions included combinations of three joystick stiffnesses and two movement speeds. The highest instantaneous input torque over the course of the joystick movement (not including the hard endpoint) was evaluated using the peak torque value. Angular impulse provided an indication of the sustained exposure to force. The third indicator, deceleration at the hard endpoint, was included to provide a description of impact loading on the hand as the joystick came to a sudden stop. The most important result of this work is that the dynamic torque characteristics incurred during hydraulic-actuation joystick use are substantial. While the peak torque values were not very different between the fast and slow motion conditions, the high decelerations even for slow movements observed at maximum excursion of the joystick indicate that the dynamics do matter. On the basis of deceleration at the hard endpoint and peak torque, the joystick movements that require the highest values for a combination of torque variables are the side-to-side ones. This suggests that less stiff balance and return springs should be considered for

  20. Improvement in pain intensity, spine stiffness, and mobility during a controlled individualized physiotherapy program in ankylosing spondylitis.

    PubMed

    Gyurcsik, Zsuzsanna Némethné; András, Anita; Bodnár, Nóra; Szekanecz, Zoltán; Szántó, Sándor

    2012-12-01

    Physical therapy in ankylosing spondylitis (AS) is important for maintaining or improving mobility, fitness, functioning, and global health. It also plays a role in the prevention and management of structural deformities. In this study we assessed the functional status of AS patients in relation to disease duration and activity. Furthermore, in volunteering patients we analyzed the efficacy of a controlled, individualized physiotherapeutic program. Altogether, clinical data of 75 AS patients were retrospectively analyzed. Anthropometrical data, duration since diagnosis and disease activity, pain intensity, tender points, sacroiliac joint involvement determined by X-ray, functional condition, and physical activity level were recorded. Subjective, functional, and physical tests were performed. Out of the 75 patients, 10 volunteered to undergo a complex physical exercise program twice a week for 3 months. The program included 1.5 h of general posture reeducation, manual mobilization of the spine, and pelvic-, upper-, and lower-extremity exercises, stretching with joint prevention strategies and functional exercises. In AS, pain intensity recorded on a 10-cm visual analog scale (VAS), BASFI, BASDAI, modified Schober index, chest expansion and occiput-to-wall distance values showed significant correlation with disease activity. The 3-month physical therapy improved several subjective and functional parameters, and markedly reduced pain intensity and spine stiffness. A complex, individualized physical therapy program may be useful and should be introduced to AS patients in order to maintain and increase spine mobility, preserve functional capacity, decrease the pain and stiffness.

  1. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk

    NASA Astrophysics Data System (ADS)

    Keten, Sinan; Xu, Zhiping; Ihle, Britni; Buehler, Markus J.

    2010-04-01

    Silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials known. The exceptional strength of silkworm and spider silks, exceeding that of steel, arises from β-sheet nanocrystals that universally consist of highly conserved poly-(Gly-Ala) and poly-Ala domains. This is counterintuitive because the key molecular interactions in β-sheet nanocrystals are hydrogen bonds, one of the weakest chemical bonds known. Here we report a series of large-scale molecular dynamics simulations, revealing that β-sheet nanocrystals confined to a few nanometres achieve higher stiffness, strength and mechanical toughness than larger nanocrystals. We illustrate that through nanoconfinement, a combination of uniform shear deformation that makes most efficient use of hydrogen bonds and the emergence of dissipative molecular stick-slip deformation leads to significantly enhanced mechanical properties. Our findings explain how size effects can be exploited to create bioinspired materials with superior mechanical properties in spite of relying on mechanically inferior, weak hydrogen bonds.

  2. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases

    PubMed Central

    Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.

    2015-01-01

    ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963

  3. The effectiveness of vane-aileron excitation in the experimental determination of flutter speed by parameter identification

    NASA Technical Reports Server (NTRS)

    Nissim, Eli

    1990-01-01

    The effectiveness of aerodynamic excitation is evaluated analytically in conjunction with the experimental determination of flutter dynamic pressure by parameter identification. Existing control surfaces were used, with an additional vane located at the wingtip. The equations leading to the identification of the equations of motion were reformulated to accommodate excitation forces of aerodynamic origin. The aerodynamic coefficients of the excitation forces do not need to be known since they are determined by the identification procedure. The 12 degree-of-freedom numerical example treated in this work revealed the best wingtip vane locations, and demonstrated the effectiveness of the aileron-vane excitation system. Results from simulated data gathered at much lower dynamic pressures (approximately half the value of flutter dynamic pressure) predicted flutter dynamic pressures with 2-percent errors.

  4. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  5. Nonstationary flow about a wing-aileron-tab combination including aerodynamic balance

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Garrick, I E

    1942-01-01

    This paper presents a continuation of the work published in Technical Report no. 496. The results of that paper have been extended to include the effect of aerodynamic balance and the effect of a tab added to the aileron. The aerodynamic coefficients are presented in a form convenient for application to the flutter problem.

  6. Comparison of decentralized velocity feedback control for thin homogeneous and stiff sandwich panels using electrodynamic proof-mass actuators

    NASA Astrophysics Data System (ADS)

    Rohlfing, J.; Gardonio, P.; Thompson, D. J.

    2011-02-01

    Theoretical and experimental work is presented to compare the effect of decentralised velocity feedback control on thin homogeneous and sandwich panels. The decentralised control system consists of five control units, which are composed of a proof-mass electrodynamic actuator with an accelerometer underneath its footprint and an analogue controller. The stability of the feedback loops is analysed by considering the sensor-actuator open-loop frequency response function of each control unit and the eigenvalues of the fully populated matrix of open-loop frequency response functions between the five sensors and five actuators. The control performance is then analysed in terms of the time-averaged total kinetic energy and total sound power radiated by the two panels. The results show that for a stiff sandwich panel higher stable feedback gains can be implemented than on a thin homogeneous panel of comparable weight per unit area. Moreover the implementation of decentralised velocity feedback can offset some of the undesirable sound transmission properties of lightweight sandwich structures by efficiently reducing structural vibration and sound power radiation in the mid audio frequency range.

  7. Testing biomimetic structures in bioinspired robots: how vertebrae control the stiffness of the body and the behavior of fish-like swimmers.

    PubMed

    Long, John H; Krenitsky, Nicole M; Roberts, Sonia F; Hirokawa, Jonathan; de Leeuw, Josh; Porter, Marianne E

    2011-07-01

    Our goal is to describe a specific case of a general process gaining traction amongst biologists: testing biological hypotheses with biomimetic structures that operate in bioinspired robots. As an example, we present MARMT (mobile autonomous robot for mechanical testing), a surface-swimmer that undulates a submerged biomimetic tail to power cruising and accelerations. Our goal was to test the hypothesis that stiffness of the body controls swimming behavior and that both stiffness and behavior can be altered by changes in the morphology of the vertebral column. To test this hypothesis, we built biomimetic vertebral columns (BVC) outfitted with variable numbers of rigid ring centra; as the number of centra increased the axial length of the intervertebral joints decreased. Each kind of BVC was tested in dynamic bending to measure the structure's apparent stiffness as the storage and loss moduli. In addition, each kind of BVC was used as the axial skeleton in a tail that propelled MARMT. We varied MARMT's tail-beat frequency, lateral amplitude of the tail, and swimming behavior. MARMT's locomotor performance was measured using an on-board accelerometer and external video. As the number of vertebrae in the BVC of fixed length increased, so, too, did the BVC's storage modulus, the BVC's loss modulus, MARMT's mean speed during cruising, and MARMT's peak acceleration during a startle response. These results support the hypothesis that stiffness of the body controls swimming behavior and that both stiffness and behavior can be altered by changes in the morphology of the vertebral column.

  8. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  9. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  10. Analysis of Effect of Rolling Pull-Outs on Wing and Aileron Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A.; Aiken, William S.

    1946-01-01

    An analysis was made to determine the effect of rolling pull-out maneuvers on the wing and aileron loads of a typical fighter airplane, the P-47B. The results obtained indicate that higher loads are imposed upon wings and ailerons because of the rolling pull-out maneuver, than would be obtained by application of the loading requirements to which the airplane was designed. An increase of 102 lb or 15 percent of wing weight would be required if the wing were designed for rolling pull-out maneuver. It was also determined that the requirements by which the aileron was originally designed were inadequate.

  11. Characteristics of a Sealed Internally Balanced Aileron from Tests of a 1/4-Scale Partial-Span Model of the Republic XF-12 Airplane in the Langley 19-Foot Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Graham, Robert R.; Martina, Albert P.; Salmi, Reino J.

    1946-01-01

    This paper presents the results of the aileron investigation and includes rolling-moment, yawing-moment, and aileron hinge-moment coefficients and pressure coefficients across the aileron-balance seal through a range of angle of attack, tab deflection, and aileron deflection with flaps neutral and deflected 20 degrees and 55 degrees. Some of the effects of wing roughness and balance seal leakage on the aileron and tab characteristics are also presented.

  12. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness

    PubMed Central

    Fabiilli, Mario L.; Wilson, Christopher G.; Padilla, Frédéric; Martín-Saavedra, Francisco M.; Fowlkes, J. Brian; Franceschi, Renny T.

    2013-01-01

    Wound healing is regulated by temporally and spatially restricted patterns of growth factor signaling, but there are few delivery vehicles capable of the “on-demand” release necessary for recapitulating these patterns. Recently we described a perfluorocarbon double emulsion that selectively releases a protein payload upon exposure to ultrasound through a process known as acoustic droplet vaporization (ADV). In this study, we describe a delivery system composed of fibrin hydrogels doped with growth factor-loaded double emulsion for applications in tissue regeneration. Release of immunoreactive basic fibroblast growth factor (bFGF) from the composites increased up to 5-fold following ADV and delayed release was achieved by delaying exposure to ultrasound. Releasates of ultrasound-treated materials significantly increased the proliferation of endothelial cells compared to sham controls, indicating that the released bFGF was bioactive. ADV also triggered changes in the ultrastructure and mechanical properties of the fibrin as bubble formation and consolidation of the fibrin in ultrasound-treated composites were accompanied by up to a 22-fold increase in shear stiffness. ADV did not reduce the viability of cells suspended in composite scaffolds. These results demonstrate that an acoustic droplet–hydrogel composite could have broad utility in promoting wound healing through on-demand control of growth factor release and/or scaffold architecture. PMID:23535233

  13. An Investigation of 0.15-Chord Ailerons on a Low-Drag Tapered Wing at High Speeds

    DTIC Science & Technology

    1944-09-01

    Administration, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only. NASA TR Server website | MY 21 w 3 1176...tunnel wall (fig. 3 ). The wing spar and aileron shaft extended through the tunnel wall. A single support strut was attached at the 0.75-chord point...adjacent to the inboard end of the aileron (figs. 3 and 3 ). The wing surfaces were smooth except during the tests for which the description

  14. Reynolds Number Effects on the Performance of Ailerons and Spoilers (Invited)

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    2001-01-01

    The influence of Reynolds number on the performance of outboard spoilers and ailerons was investigated on a generic subsonic transport configuration in the National Transonic Facility over a chord Reynolds number range from 3 to 30 million and a Mach number range from 0.70 to 0.94. Spoiler deflection angles of 0, 10, and 20 degrees and aileron deflection angles of -10, 0, and 10 degrees were tested. Aeroelastic effects were minimized by testing at constant normalized dynamic pressure conditions over intermediate Reynolds number ranges. Results indicated that the increment in rolling moment due to spoiler deflection generally becomes more negative as the Reynolds number increases from 3 x 10(exp 6) to 22 x 10 (exp 6) with only small changes between Reynolds numbers of 22 x 10(exp 6) and 30 x 10(exp 6). The change in the increment in rolling moment coefficient with Reynolds number for the aileron deflected configuration is generally small with a general trend of increasing magnitude with increasing Reynolds number.

  15. Wind-tunnel of three lateral-control devices in combination with a full-span slotted flap on an NACA 23012 airfoil

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Bamber, Millard J

    1938-01-01

    A large-chord NACA 23012 airfoil was tested. The airfoil extended completely across the test section, and two-dimensional flow was approximated. The model was fitted with a full-span slotted flap having a chord 25.66 percent of the airfoil chord. The ailerons investigated extended over the entire span and each had a chord 10 percent of the airfoil chord. The types of ailerons tested were: retractable ailerons, slot-lip ailerons using the lip of the slot for ailerons, and plain ailerons on the trailing edge of the slotted flap. The data are presented in the form of curves of section lift, drag, and pitching-moment coefficients for the airfoil with flap deflected but with ailerons neutral, and of rolling-moment, yawing-moment, and hinge-moment coefficients calculated for a rectangular wing of aspect ratio 6 with a semi-span aileron and a full-span flap. For the ailerons investigated the data indicate that, from considerations of rolling and yawing moments produced and of stick forces desired, the retractable aileron is the most satisfactory means of lateral control for use with a full-span slotted flap.

  16. A general method for the layout of ailerons and elevators of gliders and motorplanes

    NASA Technical Reports Server (NTRS)

    Hiller, M. H.

    1979-01-01

    A method is described which allows the layout of the spatial driving mechanism of the aileron for a glider or a motorplane to be performed in a systematic manner. In particular, a prescribed input-output behavior of the mechanism can be realized by variation of individual parameters of the spatial four-bar mechanisms which constitute the entire driving mechanism. By means of a sensitivity analysis, a systematic choice of parameters is possible. At the same time the forces acting in the mechanism can be limited by imposing maximum values of the forces as secondary conditions during the variation process.

  17. Limitations of Lifting-Line Theory for Estimation of Aileron Hinge-Moment Characteristics

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S.; Gillis, Clarence L.

    1943-01-01

    Hinge-moment parameters for several typical ailerons were calculated from section data with the aspect-ratio correction as usually determined from lifting-line theory. The calculations showed that the agreement between experimental and calculated results was unsatisfactory. An additional aspect-ratio correction, calculated by the method of lifting-surface theory, was applied to the slope of the curve of hinge-moment coefficient against angle of attack at small angles of attack. This so-called streamline-curvature correction brought the calculated and experimental results into satisfactory agreement.

  18. An Aileron Flutter Experiment and Analysis Using Semi-Span Model for the Small Supersonic Experimental Aircraft

    NASA Astrophysics Data System (ADS)

    Saitoh, Kenichi; Tamayama, Masato; Kikuchi, Takao; Machida, Shigeru; Nakamichi, Jiro

    This paper reports a wind-tunnel experiment and analysis that have been conducted under the National Experimental Airplane for Supersonic Transports (NEXST-1) project of JAXA. In order to perform the flight experiment, the design of the vehicle was examined from the stand point of aeroelasticity. The aileron buzz as well as flutter was of much concern for its aileron system on the main wing. Therefore, both wind-tunnel test and analysis were carried out by using a semi-span model with fuselage. Although the buzz was not observed in the test, damping responses of the aileron rotation mode were obtained. Critical damping was observed in supersonic flow, that meant a buzz could occur in ``region C'' of Lambourne's classification. Linear unsteady aerodynamic analysis is applicable to this type of buzz and the characteristics of the buzz of the model is discussed.

  19. Turbulence model evaluation for the prediction of flows over a supercritical airfoil with deflected aileron at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Londenberg, W. K.

    1993-01-01

    Navier-Stokes solutions about a supercritical airfoil with aileron deflection have been computed using the CFL3D code coupled with the Baldwin-Lomax, Johnson-King, Baldwin-Barth, and Spalart-Allmaras turbulence models. Computations were made at a Mach number of 0.716 and chord Reynolds numbers of 5, 15, and 25 million. The airfoil was analyzed with both 0 deg and 2 deg (TED) aileron deflections. Comparisons over a range of angles-of-attack showed that solutions obtained using the Baldwin-Barth turbulence model presented the best agreement with experimental pressures and sectional lift coefficients. However, Reynolds number trends in sectional lift coefficient and in aileron effectiveness were not predicted consistently.

  20. Description of an experimental (hydrogen peroxide) rocket system and its use in measuring aileron and rudder effectiveness of a light airplane

    NASA Technical Reports Server (NTRS)

    Obryan, T. C.; Goode, M. W.; Gregory, F. D.; Mayo, M. H.

    1980-01-01

    A hydrogen peroxide fueled rocket system, which is to be used as a research tool in flight studies of stall and spin maneuvers, was installed on a light, four place general aviation airplane. The pilot controlled rocket system produces moments about either the roll or the yaw body axis to augment or oppose the aerodynamic forces and inertial moments acting on the airplane during various flight maneuvers, including the spin. These controlled moments of a known magnitude can be used in various ways to help analyze and interpret the importance of the various factors which influence airplane maneuvers. The rocket system and its installation in the airplane are described, and the results of flight rests used to measure rudder and aileron effectiveness at airspeeds above the stall are presented. These tests also serve to demonstrate the operational readiness of the rocket system for future research operations.

  1. The Carotid Intima-Media Thickness and Arterial Stiffness of Pediatric Mucopolysaccharidosis Patients Are Increased Compared to Both Pediatric and Adult Controls

    PubMed Central

    Wang, Raymond Y.; Rudser, Kyle D.; Dengel, Donald R.; Braunlin, Elizabeth A.; Steinberger, Julia; Jacobs, David R.; Sinaiko, Alan R.; Kelly, Aaron S.

    2017-01-01

    Treatments for mucopolysaccharidoses (MPSs) have increased longevity, but cardiovascular disease causes mortality in a significant percentage of survivors. Markers must be developed to predict MPS cardiac risk and monitor efficacy of investigational therapies.MPS patients underwent carotid artery ultrasonography from which carotid intima-media thickness (cIMT) and three measures of arterial stiffness were calculated: carotid artery distensibility (cCSD), compliance (cCSC), and incremental elastic modulus (cIEM). MPS carotid measurements were compared to corresponding data from pediatric and adult healthy cohorts. 33 MPS patients (17 MPS I, 9 MPS II, 4 MPS IIIA, and 3 MPS VI; mean age 12.5 ± 4.7 years), 560 pediatric controls (age 13.1 ± 4.0 years), and 554 adult controls (age 39.2 ± 2.2 years) were studied. Age and sex-adjusted aggregate MPS cIMT (0.56 ± 0.05 mm) was significantly greater than both pediatric (+0.12 mm; 95% CI +0.10 to +0.14 mm) and adult (+0.10 mm; 95% CI +0.06 to +0.14 mm) control cohorts; similar findings were observed for all MPS subtypes. Mean MPS cIMT approximated the 80th percentile of the adult cohort cIMT. MPS patients also demonstrated significantly increased adjusted arterial stiffness measurements, evidenced by reduced cCSD, cCSC, and increased cIEM, compared to pediatric and adult control cohorts. Regardless of treatment, MPS patients demonstrate increased cIMT and arterial stiffness compared to healthy pediatric and adult controls. These data suggest that relatively young MPS patients demonstrate a “structural vascular age” of at least 40 years old. PMID:28294991

  2. Aeroservoelastic tailoring for lateral control enhancement

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Nam, Changho

    1990-01-01

    The application of an automated optimization approach to the integrated structural and control design of an aircraft wing and its control surface is illustrated. The performance index or cost function for optimization is the aileron hinge moment required to sustain a specified terminal roll rate at a chosen design speed at which aeroelastic effects are significant. The design variables used for aileron hinge-moment minimization are the aileron flap-to-chord ratio; the location of the aileron with respect to the roll axis; and the orientations of three advanced composite plies comprising 60 percent of the wing structure. The effects of aileron location and advanced composite ply orientation on the terminal roll rate and aileron hinge moment are examined. Optimization is seen to involve a compromise between a laminated structure/aileron combination that is effective in creating large rolling moments and one that minimizes the damping-in-roll. These two requirements are in conflict; the optimization driver must locate a compromise design point by moving the control surface and changing its size while also creating a suitable structural design.

  3. Angiotensin Receptor Blockades Effect on Peripheral Muscular and Central Aortic Arterial Stiffness: A Meta-Analysis of Randomized Controlled Trials and Systematic Review

    PubMed Central

    Yen, Chih-Hsuan; Lai, Yau-Huei; Hung, Chung-Lieh; Lee, Ping-Ying; Kuo, Jen-Yuan; Yeh, Hung-I; Hou, Charles Jia-Yin; Chien, Kuo-Liong

    2014-01-01

    Background Previous clinical trials have demonstrated the impact of blocking upstream renin-angiotensin-axis with angiotensin converting enzyme inhibitors (ACEIs) on arterial stiffness as evaluated by pulse-wave velocity (PWV). We ran a meta-analysis to evaluate the anti-stiffness effect of powerful downstream angiotensin receptor blockades (ARBs) on peripheral and central arterial stiffness (brachial to ankle, ba-PWV; carotid to femoral, cf-PWV, respectively), using a systematic review to assess the clinical arterial stiffness issues. Methods For our study, we searched the PubMed and Cochrane Library databases from inception to June 2013, targeting randomized controlled trials. ARBs along with other antihypertensive agents, ACEIs, calcium channel blockers (CCBs), beta-blockers and diuretics were evaluated to ascertain their comparable effect on ba-PWV and cf-PWV, respectively. A meta-analysis was conducted utilizing the fixed or random effect of the weighted mean change difference between the ARB and comparator groups, depending on the I2 statistic heterogeneity measurement. Results In 2 trials treating patients with ARBs (n = 30), the ARBs insignificantly reduced levels of ba-PWV (pooled mean change difference -188, 95% CI -687, 311, p = 0.24 with significant heterogeneity) as compared to other hypertensive agents (ACEIs and CCBs, n = 77). Interestingly, ARBs (n = 20) had a superior capacity to reduce levels of ba-PWV than CCBs (n = 20) in single study results (mean change difference -400, 95% CI -477, -322, p < 0.05). In 7 trials which included a total of 653 patients, treatment with ARBs (n = 308) also insignificantly reduced cf-PWV (pool mean change difference -0.197, 95% CI -0.54, 0.14, p = 0.218) as compared to other anti-hypertensive agents. Conclusions Our data suggested that ARBs had a similar effect as other anti-hypertensive agents in reducing ba-PWV and cf-PWV. Upon systematic review, the renin-angiotensin-axis system mechanism seems more significant

  4. Stiff person syndrome.

    PubMed

    Ciccoto, Giuseppe; Blaya, Maike; Kelley, Roger E

    2013-02-01

    Recognizing stiff person syndrome is clinically important. It is uncommon, characterized by body stiffness associated with painful muscle spasms, and varies in location and severity. It is subdivided into stiff trunk versus stiff limb presentation, and as a progressive encephalomyelitis. Stiff person-type syndrome also reflects a paraneoplastic picture. Most patients demonstrate exaggerated lumbar lordosis. Roughly 60% of patients have antiglutamic acid decarboxylase antibodies in the blood and the cerebrospinal fluid. The differential diagnosis includes many severe conditions. There are reports of response to muscle relaxants, immunosuppressants, intravenous gamma globulin, plasma exchange, a number of anticonvulsants, and botulinum toxin.

  5. Acupuncture at Houxi (SI 3) acupoint for acute neck pain caused by stiff neck: study protocol for a pilot randomised controlled trial

    PubMed Central

    Sun, Zhong-ren; Yue, Jin-huan; Tian, Hong-zhao; Zhang, Qin-hong

    2014-01-01

    Introduction The use of acupuncture has been suggested for the treatment of acute neck pain caused by stiff neck in China. However, current evidence is insufficient to draw any conclusions about its efficacy. Therefore this pilot study was designed to evaluate the feasibility and efficacy of acupuncture at the Houxi (SI3) acupoint for treatment of acute neck pain. Methods/analysis This pilot study will be a two-parallel-group, assessor-blinded, randomised controlled trial. Thirty-six stiff neck participants with acute neck pain will be recruited and randomly divided into two groups in a 1:1 ratio. Participants in the control group will receive massage on the local neck region (5 min each session, three times a day for 3 days). In addition to massage, patients in the treatment group will receive acupuncture (one session a day for 3 days). Measures will be taken at 0, 3 and 15 days. The primary outcome is the Northwick Park Neck Pain Questionnaire (NPQ). The secondary outcome is the Short Form of the McGill Pain Questionnaire (SF-MPQ). Ethics/dissemination The protocol for this pilot randomised clinical trial has undergone ethics scrutiny and been approved by the ethics review boards of the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (Permission number: HZYLL201303502). The findings of this study will provide important clinical evidence on the feasibility and efficacy of acupuncture treatment for stiff neck patients with acute neck pain. In addition, it will explore the feasibility of further acupuncture research. Trial registration number ChiCTR-TRC-13003911. PMID:25537784

  6. Integrated aeroservoelastic synthesis for roll control

    NASA Technical Reports Server (NTRS)

    Nam, Chang-Ho; Weisshaar, Terrence A.

    1990-01-01

    The objective of this study is to illustrate an integrated, parallel design procedure for optimal structural, aerodynamic, and aileron synthesis of an aircraft wing. The effects of combining weight minimization with structural tailoring (ply orientation and thickness) of a lifting surface, together with the wing geometry (sweep angle and taper ratio), and the aileron geometry (spanwise location and chordwise size) upon the lateral control effectiveness are discussed. Several optimization studies for the minimization of aileron hinge moment and wing weight, subject to a specified constant aircraft roll rate at a design airspeed (roll effectiveness), are performed.

  7. Control of dynamic foot-ground interactions in male and female soccer athletes: females exhibit reduced dexterity and higher limb stiffness during landing.

    PubMed

    Lyle, Mark A; Valero-Cuevas, Francisco J; Gregor, Robert J; Powers, Christopher M

    2014-01-22

    Controlling dynamic interactions between the lower limb and ground is important for skilled locomotion and may influence injury risk in athletes. It is well known that female athletes sustain anterior cruciate ligament (ACL) tears at higher rates than male athletes, and exhibit lower extremity biomechanics thought to increase injury risk during sport maneuvers. The purpose of this study was to examine whether lower extremity dexterity (LED)--the ability to dynamically control endpoint force magnitude and direction as quantified by compressing an unstable spring with the lower limb at submaximal forces--is a potential contributing factor to the "at-risk" movement behavior exhibited by female athletes. We tested this hypothesis by comparing LED-test performance and single-limb drop jump biomechanics between 14 female and 14 male high school soccer players. We found that female athletes exhibited reduced LED-test performance (p=0.001) and higher limb stiffness during landing (p=0.008) calculated on average within 51 ms of foot contact. Females also exhibited higher coactivation at the ankle (p=0.001) and knee (p=0.02) before landing. No sex differences in sagittal plane joint angles and center of mass velocity at foot contact were observed. Collectively, our results raise the possibility that the higher leg stiffness observed in females during landing is an anticipatory behavior due in part to reduced lower extremity dexterity. The reduced lower extremity dexterity and compensatory stiffening strategy may contribute to the heightened risk of ACL injury in this population.

  8. A flight investigation of the reduction of aileron operating force by means of fixed tabs and differential linkage, with notes on linkage design

    NASA Technical Reports Server (NTRS)

    Soule, H A; Hootman, James A

    1938-01-01

    Flight tests were made to demonstrate the particularity of employing fixed tabs in conjunction with a suitably designed differential linkage to reduce the force required to operate ailerons. The tests showed the system to be practicable with tabs of the inset type. The relative ineffectiveness of attached tabs for changing the aileron floating angle rendered them unsuitable. Experience gained in the investigation has indicated that the use of the system is limited to maximum deflections of one aileron relative to the other of less than 30 degrees and that the differential linkage should always be designed on the basis of the highest probable floating angle.

  9. Wind-Tunnel Investigations of the Characteristics of Blunt-Nose Ailerons on a Tapered Wing

    DTIC Science & Technology

    1943-02-01

    v\\—i^- -Medium radius i^ nuru ib I i s N M >», ^ M n ^H *-! I - - _ _ 1—i ^r i H J rk N s, j r ’S y-s K \\ I V *\\i [\\. ts, n Nl ( . a . (deg...fc i ~" « n vo 0 \\ f,~ —• .-- ̂ 3 Si -04 5 X i Z -08 1 Nose i^ radii 1 unrerpuiartfa ^ Small ) t~~~. fi~..r„ *T \\ 1 C-/^ >- ———o...15 20 S5 Aileron deflection, Sa,deg (b) Sf~50’. Figure ££.- Concluded. 3 NACA ./ff J£ i- St Z .04 % 8 o $-.04 -.08 l 12 -tS -.20 II

  10. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    NASA Technical Reports Server (NTRS)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  11. Materials with negative stiffness

    NASA Astrophysics Data System (ADS)

    Jaglinski, Tim

    Negative stiffness, or a reversal in the usual assumed direction between causal forces and ensuing deformations, has been proposed as a pathway to materials which exceed theoretical performance bounds. Negative stiffness, as a concept, represents a relaxation of tacitly assumed material behavior, but it violates no natural laws. Negative stiffness, normally unstable without constraint, is permissible for stability under special conditions, for example a rigid boundary constraint so long as the material satisfies strong ellipticity in the parlance of elasticity. Hence, negative stiffness is not observed in materials or structures which are not constrained. If negative stiffness is allowed for inclusions of material, which are surrounded by a stabilizing positive stiffness matrix, composite theory predicts large increases in the mechanical damping and composite stiffness. The work herein explores several material systems which possess negative stiffness, and seeks to characterize the composite mechanical properties of these systems. Two metal matrix composite systems, namely Sn-VO2 and Sn-BaTIO3, were investigated. Here, negative stiffness arises from the ferroelastic phase transformations in the ceramic inclusions; stability is imparted by the tin matrix. Polycrystalline In-Tl and BaTIO 3 were also studied. Here, the entire material volume is phase transforming. Constraint is imparted on a small volume fraction of crystallites by the surrounding material. Various manifestations of negative stiffness were observed. Thermally broad damping peaks which depended upon thermal cycling were observed in the Sn-VO2 composites. Furthermore, mechanical instabilities were seen in composites intentionally designed to be unstable. Negative stiffness was indicated in the In-Tl alloy by magnification of damping peaks over those observed in single crystals, increases in damping peaks with increased cooling rates, occurrence of damping peaks before the appearance of martensite and

  12. Tmod1 and CP49 Synergize to Control the Fiber Cell Geometry, Transparency, and Mechanical Stiffness of the Mouse Lens

    PubMed Central

    Gokhin, David S.; Nowak, Roberta B.; Kim, Nancy E.; Arnett, Ernest E.; Chen, Albert C.; Sah, Robert L.; Clark, John I.; Fowler, Velia M.

    2012-01-01

    The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α2β2-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by pointed-end capping by tropomodulin 1 (Tmod1) and structurally disrupted in the absence of Tmod1. The beaded filament cytoskeleton consists of the intermediate filament proteins CP49 and filensin, which require CP49 for assembly and contribute to lens transparency and biomechanics. To assess the simultaneous physiological contributions of these cytoskeletal networks and uncover potential functional synergy between them, we subjected lenses from mice lacking Tmod1, CP49, or both to a battery of structural and physiological assays to analyze fiber cell disorder, light scattering, and compressive biomechanical properties. Findings show that deletion of Tmod1 and/or CP49 increases lens fiber cell disorder and light scattering while impairing compressive load-bearing, with the double mutant exhibiting a distinct phenotype compared to either single mutant. Moreover, Tmod1 is in a protein complex with CP49 and filensin, indicating that the spectrin-actin network and beaded filament cytoskeleton are biochemically linked. These experiments reveal that the spectrin-actin membrane skeleton and beaded filament cytoskeleton establish a novel functional synergy critical for regulating lens fiber cell geometry, transparency, and mechanical stiffness. PMID:23144950

  13. Control of dynamic foot-ground interactions in male and female soccer athletes: Females exhibit reduced dexterity and higher limb stiffness during landing

    PubMed Central

    Lyle, Mark A.; Valero-Cuevas, Francisco J.; Gregor, Robert J.; Powers, Christopher M.

    2014-01-01

    Controlling dynamic interactions between the lower limb and ground is important for skilled locomotion and may influence injury risk in athletes. It is well known that female athletes sustain anterior cruciate ligament (ACL) tears at higher rates than male athletes, and exhibit lower extremity biomechanics thought to increase injury risk during sport maneuvers. The purpose of this study was to examine whether lower extremity dexterity (LED) – the ability to dynamically control endpoint force magnitude and direction as quantified by compressing an unstable spring with the lower limb at submaximal forces – is a potential contributing factor to the “at-risk” movement behavior exhibited by female athletes. We tested this hypothesis by comparing LED-test performance and single-limb drop jump biomechanics between 14 female and 14 male high school soccer players. We found that female athletes exhibited reduced LED-test performance (p=0.001) and higher limb stiffness during landing (p=0.008) calculated on average within 51 ms of foot contact. Females also exhibited higher coactivation at the ankle (p=0.001) and knee (p=0.02) before landing. No sex differences in sagittal plane joint angles and center of mass velocity at foot contact were observed. Collectively, our results raise the possibility that the higher leg stiffness observed in females during landing is an anticipatory behavior due in part to reduced lower extremity dexterity. The reduced lower extremity dexterity and compensatory stiffening strategy may contribute to the heightened risk of ACL injury in this population. PMID:24275440

  14. Method for calculating lift distributions for unswept wings with flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Westrick, Gertrude C

    1952-01-01

    A method is presented which allows the use of nonlinear section lift data in the calculation of the spanwise lift distribution of unswept wings with flaps or ailerons. This method is based upon lifting line theory and is an extension to the method described in NACA rep. 865. The mathematical treatment of the discontinuity in absolute angle of attack at the end of the flap or aileron involves the use of a correction factor which accounts for the inability of a limited trigonometric series to represent adequately the spanwise lift distribution. A treatment of the apparent discontinuity in maximum section lift coefficient is also described. Simplified computing forms containing detailed examples are given for both symmetrical and asymmetrical lift distributions. A few comparisons of calculated characteristics with those obtained experimentally are also presented.

  15. Effect of variation of chord and span of ailerons on hinge moments at several angles of pitch

    NASA Technical Reports Server (NTRS)

    Monish, B H

    1932-01-01

    This report presents the results of an investigation of the hinge moments of ailerons of various chords and spans on two airfoils having the Clark Y and USA-27 wing sections, supplementing the investigations described in NACA-TR-298 and NACA-TR-343, of the rolling and yawing moments due to similar ailerons on these two airfoil sections. The measurements were made at various angles of pitch, but at zero angle of roll and yaw, the wing chord being set at an angle of +4 degrees to the fuselage axis. In the case of the Clark Y airfoil the measurements have been extended to a pitch angle of 40 degrees, using ailerons of span equal to 67 per cent of the wing semispan and chord equal to 20 and 30 per cent of the wing chord. The investigation was conducted on models of 60-inch span and 10-inch chord, having square tips, no taper in plan form or thickness, zero dihedral, and zero sweepback.

  16. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pilot systems, must be considered. (c) Limit pilot forces and torques. The limit pilot forces and torques are as follows: Control Maximum forces or torques Minimum forces or torques Aileron: Stick 100...

  17. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pilot systems, must be considered. (c) Limit pilot forces and torques. The limit pilot forces and torques are as follows: Control Maximum forces or torques Minimum forces or torques Aileron: Stick 100...

  18. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pilot systems, must be considered. (c) Limit pilot forces and torques. The limit pilot forces and torques are as follows: Control Maximum forces or torques Minimum forces or torques Aileron: Stick 100...

  19. Posttraumatic stiff elbow

    PubMed Central

    Mittal, Ravi

    2017-01-01

    Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness. PMID:28216745

  20. Objective measures of joint stiffness.

    PubMed

    Roberson, L; Giurintano, D J

    1995-01-01

    Objective measures of joint stiffness allow for the evaluation of the effectiveness of treatment modalities. Without this, the effectiveness of therapy is not quantifiable. Presently, joint stiffness can be quantified by either passive range of motion (PROM) measurement or torque range of motion (TqROM) measurement. PROM measurement does not control the force applied, nor does it require that the other joints in the kinematic chain be held fixed. Also, it demonstrates poor interrater reliability. An idealized device melding existing technologies of constant passive motion devices and computerized workstations is proposed to allow for easier measurement of TqROM angles for analysis data for the determination of the effectiveness of treatment modalities.

  1. Physical inactivity and arterial stiffness in COPD

    PubMed Central

    Sievi, Noriane A; Franzen, Daniel; Kohler, Malcolm; Clarenbach, Christian F

    2015-01-01

    Background Arterial stiffness is an important predictor of cardiovascular risk besides classic cardiovascular risk factors. Previous studies showed that arterial stiffness is increased in patients with COPD compared to healthy controls and exercise training may reduce arterial stiffness. Since physical inactivity is frequently observed in patients with COPD and exercise training may improve arterial stiffness, we hypothesized that low daily physical activity may be associated with increased arterial stiffness. Methods In 123 patients with COPD (72% men; mean [standard deviation] age: 62 [7.5] years; median [quartile] forced expiratory volume in 1 second 35 [27/65] %predicted), arterial stiffness was assessed by augmentation index (AI). Daily physical activity level (PAL) was measured by an activity monitor (SenseWear Pro™) >1 week. The association between AI and PAL was investigated by univariate and multivariate regression analysis, taking into account disease-specific characteristics and comorbidities. Results Patients suffered from moderate (35%), severe (32%), and very severe (33%) COPD, and 22% were active smokers. Median (quartile) PAL was 1.4 (1.3/1.5) and mean (standard deviation) AI 26% (9.2%). PAL showed a negative association with AI (B=−9.32, P=0.017) independent of age, sex, blood pressure, and airflow limitation. Conclusion In COPD patients, a higher PAL seems to favorably influence arterial stiffness and therefore may reduce cardiovascular risk. Clinical Trial Registration http://www.ClinicalTrials.gov, NCT01527773 PMID:26392763

  2. Hypertension and arterial stiffness in heart transplantation patients

    PubMed Central

    de Souza-Neto, João David; de Oliveira, Ítalo Martins; Lima-Rocha, Hermano Alexandre; Oliveira-Lima, José Wellington; Bacal, Fernando

    2016-01-01

    OBJECTIVES: Post-transplantation hypertension is prevalent and is associated with increased cardiovascular morbidity and subsequent graft dysfunction. The present study aimed to identify the factors associated with arterial stiffness as measured by the ambulatory arterial stiffness index. METHODS: The current study used a prospective, observational, analytical design to evaluate a group of adult heart transplantation patients. Arterial stiffness was obtained by monitoring ambulatory blood pressure and using the ambulatory arterial stiffness index as the surrogate outcome. Multivariate logistic regression analyses were performed to control confounding. RESULTS: In a group of 85 adult heart transplantation patients, hypertension was independently associated with arterial stiffness (OR 4.98, CI 95% 1.06-23.4) as well as systolic and diastolic blood pressure averages and nighttime descent. CONCLUSIONS: Measurement of ambulatory arterial stiffness index is a new, non-invasive method that is easy to perform, may contribute to better defining arterial stiffness prognosis and is associated with hypertension. PMID:27652829

  3. Improved noninvasive prediction of liver fibrosis by liver stiffness measurement in patients with nonalcoholic fatty liver disease accounting for controlled attenuation parameter values.

    PubMed

    Petta, Salvatore; Wong, Vincent Wai-Sun; Cammà, Calogero; Hiriart, Jean-Baptiste; Wong, Grace Lai-Hung; Marra, Fabio; Vergniol, Julien; Chan, Anthony Wing-Hung; Di Marco, Vito; Merrouche, Wassil; Chan, Henry Lik-Yuen; Barbara, Marco; Le-Bail, Brigitte; Arena, Umberto; Craxì, Antonio; de Ledinghen, Victor

    2017-04-01

    Liver stiffness measurement (LSM) frequently overestimates the severity of liver fibrosis in nonalcoholic fatty liver disease (NAFLD). Controlled attenuation parameter (CAP) is a new parameter provided by the same machine used for LSM and associated with both steatosis and body mass index, the two factors mostly affecting LSM performance in NAFLD. We aimed to determine whether prediction of liver fibrosis by LSM in NAFLD patients is affected by CAP values. Patients (n = 324) were assessed by clinical and histological (Kleiner score) features. LSM and CAP were performed using the M probe. CAP values were grouped by tertiles (lower 132-298, middle 299-338, higher 339-400 dB/m). Among patients with F0-F2 fibrosis, mean LSM values, expressed in kilopascals, increased according to CAP tertiles (6.8 versus 8.6 versus 9.4, P = 0.001), and along this line the area under the curve of LSM for the diagnosis of F3-F4 fibrosis was progressively reduced from lower to middle and further to higher CAP tertiles (0.915, 0.848-0.982; 0.830, 0.753-0.908; 0.806, 0.723-0.890). As a consequence, in subjects with F0-F2 fibrosis, the rates of false-positive LSM results for F3-F4 fibrosis increased according to CAP tertiles (7.2% in lower versus 16.6% in middle versus 18.1% in higher). Consistent with this, a decisional flowchart for predicting fibrosis was suggested by combining both LSM and CAP values.

  4. Evaluation of strength muscle recovery with isokinetic, squat jump and stiffness tests in athletes with ACL reconstruction: a case control study.

    PubMed

    Jacopetti, Marco; Pasquini, Andrea; Costantino, Cosimo

    2016-05-06

    BackgroundThe anterior cruciate ligament (ACL) rupture accounting for about 50% of all knee ligament injuries. The rehabilitation program requires a long time to rebuild muscle strength and to reestablish joint mobility and neuromuscular control. The purpose of the study is to evaluate the muscle strength recovery in athletes with ACL reconstruction. MethodsWe enrolled soccer atlethes, with isolated anterior cruciate ligament rupture treated with bone-patellar tendon-bone autograft artroscopic reconstruction. Each patients were evaluated comparing operated and controlateral limb by isokinetic test and triaxial accelerometer test. Isokinetic movements tested were knee flexion-extension with concentric-concentric contraction. Accelerometer test were Squat Jump Test (SJT)  and Stiffness Test (ST). Results17 subjects were selected, there was no significant difference in isokinetic quadriceps and hamstrings results in strength and endurance values. Parameters of ST were comparable between the operated and unoperated side. In SJT a significant statistical difference was in height of jump (p=0,02) no statistical difference was evidenced in the other measures.ConclusionCurrently complete recovery of symmetric explosive strength seems to be an important parameter for evaluating the performance after ACL reconstruction and the symmetry in test results jump could be associated with an adequate return to sports. In our study the explosive strenght is lower in the limb operated than the healthy one. Explosive strength recovery with pliometric training should be included in the post-surgical rehabilitation protocol and its measurement should be performed to assess the full recovery before the restart of sport activities.

  5. Stiff person syndrome.

    PubMed

    Hadavi, Shahrzad; Noyce, Alastair J; Leslie, R David; Giovannoni, Gavin

    2011-10-01

    Stiff person syndrome (SPS) is a rare disorder, characterised by fluctuating rigidity and stiffness of the axial and proximal lower limb muscles, with superimposed painful spasms and continuous motor unit activity on electromyography. Although rare in general neurology practice, once observed it is unforgettable. The general neurologist may see only one or two cases during his or her career and as such it remains underdiagnosed. Left untreated, SPS symptoms can progress to cause significant disability. Patients have a poor quality of life and an excess rate of comorbidity and mortality. The severity of symptoms and lack of public awareness of the condition create anxiety and uncertainty for people with the disease. This review aims to raise awareness of SPS and to improve the likelihood of its earlier diagnosis and treatment.

  6. Summary of stability and control characteristics of the XB-70 airplane

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1973-01-01

    The stability and control characteristics of the XB-70 airplane were evaluated for Mach numbers up to 3.0 and altitudes up to 21,300 meters (70,000 feet). The airplane's inherent longitudinal characteristics proved to be generally satisfactory. In the lateral-directional modes, the airplane was characterized by light wheel forces, low static directional stability beyond approximately 2 deg of sideslip, adverse yaw response to aileron inputs throughout the entire Mach number range, and negative effective dihedral with wingtips full down. At subsonic Mach numbers, with the flight augmentation control system off, the light wheel forces and adverse yaw response to aileron inputs caused the pilots to minimize use of the ailerons. At supersonic Mach numbers, with the augmentation system off, the adverse yaw due to aileron and the negative effective dihedral were conducive to pilot-induced oscillations.

  7. Torso flexion modulates stiffness and reflex response.

    PubMed

    Granata, K P; Rogers, E

    2007-08-01

    Neuromuscular factors that contribute to spinal stability include trunk stiffness from passive and active tissues as well as active feedback from reflex response in the paraspinal muscles. Trunk flexion postures are a recognized risk factor for occupational low-back pain and may influence these stabilizing control factors. Sixteen healthy adult subjects participated in an experiment to record trunk stiffness and paraspinal muscle reflex gain during voluntary isometric trunk extension exertions. The protocol was designed to achieve trunk flexion without concomitant influences of external gravitational moment, i.e., decouple the effects of trunk flexion posture from trunk moment. Systems identification analyses identified reflex gain by quantifying the relation between applied force disturbances and time-dependent EMG response in the lumbar paraspinal muscles. Trunk stiffness was characterized from a second order model describing the dynamic relation between the force disturbances versus the kinematic response of the torso. Trunk stiffness increased significantly with flexion angle and exertion level. This was attributed to passive tissue contributions to stiffness. Reflex gain declined significantly with trunk flexion angle but increased with exertion level. These trends were attributed to correlated changes in baseline EMG recruitment in the lumbar paraspinal muscles. Female subjects demonstrated greater reflex gain than males and the decline in reflex gain with flexion angle was greater in females than in males. Results reveal that torso flexion influences neuromuscular factors that control spinal stability and suggest that posture may contribute to the risk of instability injury.

  8. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing

    PubMed Central

    Bartnikowski, Nicole; Claes, Lutz E; Koval, Lidia; Glatt, Vaida; Bindl, Ronny; Steck, Roland; Ignatius, Anita; Schuetz, Michael A; Epari, Devakara R

    2017-01-01

    Background and purpose Constant fixator stiffness for the duration of healing may not provide suitable mechanical conditions for all stages of bone repair. We therefore investigated the influence of stiffening fixation on callus stiffness and morphology in a rat diaphyseal osteotomy model to determine whether healing time was shortened and callus stiffness increased through modulation of fixation from flexible to stiff. Material and methods An external unilateral fixator was applied to the osteotomized femur and stiffened by decreasing the offset of the inner fixator bar at 3, 7, 14, and 21 days after operation. After 5 weeks, the rats were killed and healing was evaluated with mechanical, histological, and microcomputed tomography methods. Constant fixation stiffness control groups with either stiff or flexible fixation were included for comparison. Results The callus stiffness of the stiff group and all 4 experimental groups was greater than in the flexible group. The callus of the flexible group was larger but contained a higher proportion of unmineralized tissue and cartilage. The stiff and modulated groups (3, 7, 14, and 21 days) all showed bony bridging at 5 weeks, as well as signs of callus remodeling. Stiffening fixation at 7 and 14 days after osteotomy produced the highest degree of callus bridging. Bone mineral density in the fracture gap was highest in animals in which the fixation was stiffened after 14 days. Interpretation The predicted benefit of a large robust callus formed through early flexible fixation could not be shown, but the benefits of stabilizing a flexible construct to achieve timely healing were demonstrated at all time points. PMID:27841708

  9. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.

    PubMed

    Bartnikowski, Nicole; Claes, Lutz E; Koval, Lidia; Glatt, Vaida; Bindl, Ronny; Steck, Roland; Ignatius, Anita; Schuetz, Michael A; Epari, Devakara R

    2016-11-14

    Background and purpose - Constant fixator stiffness for the duration of healing may not provide suitable mechanical conditions for all stages of bone repair. We therefore investigated the influence of stiffening fixation on callus stiffness and morphology in a rat diaphyseal osteotomy model to determine whether healing time was shortened and callus stiffness increased through modulation of fixation from flexible to stiff. Material and methods - An external unilateral fixator was applied to the osteotomized femur and stiffened by decreasing the offset of the inner fixator bar at 3, 7, 14, and 21 days after operation. After 5 weeks, the rats were killed and healing was evaluated with mechanical, histological, and microcomputed tomography methods. Constant fixation stiffness control groups with either stiff or flexible fixation were included for comparison. Results - The callus stiffness of the stiff group and all 4 experimental groups was greater than in the flexible group. The callus of the flexible group was larger but contained a higher proportion of unmineralized tissue and cartilage. The stiff and modulated groups (3, 7, 14, and 21 days) all showed bony bridging at 5 weeks, as well as signs of callus remodeling. Stiffening fixation at 7 and 14 days after osteotomy produced the highest degree of callus bridging. Bone mineral density in the fracture gap was highest in animals in which the fixation was stiffened after 14 days. Interpretation - The predicted benefit of a large robust callus formed through early flexible fixation could not be shown, but the benefits of stabilizing a flexible construct to achieve timely healing were demonstrated at all time points.

  10. Effect of joystick stiffness, movement speed and movement direction on joystick and upper limb kinematics when using hydraulic-actuation joystick controls in heavy vehicles.

    PubMed

    Oliver, M; Tingley, M; Rogers, R; Rickards, J; Biden, E

    2007-06-01

    Despite the widespread use of hydraulic-actuation joysticks in mobile North American construction, mining and forestry vehicles, the biomechanical effects that joysticks have on their human operators has not been studied extensively. Using nine unskilled joystick operators and a laboratory mock-up with a commonly used North American heavy off-road equipment hydraulic-actuation joystick and operator seat, the purpose of this work was to quantify and compare the effects of three hydraulic-actuation joystick stiffnesses and two movement speeds on upper limb and joystick kinematics as one of the initial steps towards the development of a hydraulic-actuation joystick design protocol. In addition to providing a detailed description of the kinematics of a constrained occupational task, coupled with the corresponding effects of the task on operator upper limb kinematics, results from principal component analysis and ANOVA procedures revealed a number of differences in joystick and upper limb angle ranges and movement curve shapes resulting from the various joystick stiffness-speed combinations tested. For the most part, these joystick motion alterations were caused by small, insignificant changes in one or more upper limb joint angles. The two exceptions occurred for forward movements of the joystick; the fast speed - light stiffness condition movement pattern shape change was caused primarily by an alteration of the elbow flexion-extension movement pattern. Similarly, the fast speed - normal stiffness condition movement curve shape perturbation - was caused principally by a combination of significant movement curve shape alterations to elbow flexion-extension, external-internal shoulder rotation and flexion-extension of the shoulder. The finding that joystick stiffness and speed alterations affect joystick and upper limb kinematics minimally indicates that the joystick design approach of modelling the joystick and operator upper limb as a closed linkage system should be

  11. Association between bone stiffness and nutritional biomarkers combined with weight-bearing exercise, physical activity, and sedentary time in preadolescent children. A case-control study.

    PubMed

    Herrmann, Diana; Pohlabeln, Hermann; Gianfagna, Francesco; Konstabel, Kenn; Lissner, Lauren; Mårild, Staffan; Molnar, Dénes; Moreno, Luis A; Siani, Alfonso; Sioen, Isabelle; Veidebaum, Toomas; Ahrens, Wolfgang

    2015-09-01

    Physical activity (PA) and micronutrients such as calcium (Ca), vitamin D (25OHD), and phosphate (PO) are important determinants of skeletal development. This case-control study examined the association of these nutritional biomarkers and different PA behaviours, such as habitual PA, weight-bearing exercise (WBE) and sedentary time (SED) with bone stiffness (SI) in 1819 2-9-year-old children from the IDEFICS study (2007-2008). SI was measured on the calcaneus using quantitative ultrasound. Serum and urine Ca and PO and serum 25OHD were determined. Children's sports activities were reported by parents using a standardised questionnaire. A subsample of 1089 children had accelerometer-based PA data (counts per minute, cpm). Moderate-to-vigorous PA (MVPA) and SED were estimated. Children with poor SI (below the 15th age-/sex-/height-specific percentile) were defined as cases (N=603). Randomly selected controls (N=1216) were matched by age, sex, and country. Odds ratios (OR) for poor SI were calculated by conditional logistic regression for all biomarkers and PA behaviour variables separately and combined (expressed as tertiles and dichotomised variables, respectively). ORs were adjusted for fat-free mass, dairy product consumption, and daylight duration. We observed increased ORs for no sports (OR=1.39, p<0.05), PA levels below 524 cpm (OR=1.85, p<0.05) and MVPA below 4.2% a day (OR=1.69, p<0.05) compared to WBE, high PA levels (<688 cpm) and high MVPA (6.7%), respectively. SED was not associated with SI. ORs were moderately elevated for low serum Ca and 25OHD. However, biomarkers were not statistically significantly associated with SI and did not modify the association between PA behaviours and SI. Although nutritional biomarkers appear to play a minor role compared to the osteogenic effect of PA and WBE, it is noteworthy that the highest risk for poor SI was observed for no sports or low MVPA combined with lower serum Ca (<2.5 mmol/l) or lower 25OHD (<43.0 nmol/l).

  12. A compilation of the pressures measured on a wing and aileron with various amounts of sweep in the Langley 8-foot high-speed tunnel

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T

    1948-01-01

    A compilation is made in tabular form of all the pressures measured on a thin high-aspect-ratio wing and aileron with no sweep and with 30 degree and 45 degree of sweepback and sweepforward at high subsonic Mach numbers in the Langley 8-foot high-speed tunnel.

  13. Nonparticipatory Stiffness in the Male Perioral Complex

    PubMed Central

    Chu, Shin-Ying; Lee, Jaehoon

    2008-01-01

    Purpose The objective of this study was to extend previous published findings in the authors’ laboratory using a new automated technology to quantitatively characterize nonparticipatory perioral stiffness in healthy male adults. Method Quantitative measures of perioral stiffness were sampled during a nonparticipatory task using a computer-controlled linear motor servo programmed to impose a series of tensile displacements over a span of approximately 24 mm at the oral angle in 20 healthy young male adults. Perioral electromyograms were simultaneously sampled to confirm nonparticipation or passive muscle state. Perioral stiffness, derived as a quotient from resultant force (ΔF) and oral span (ΔX), was modeled with regression techniques, and subsequently compared to previously reported perioral stiffness data for female adults. Results Multilevel regression analysis revealed a significant quadratic relation between the perioral stiffness and interangle span; however, no significant difference was found between adult males and females. Conclusion These normative measures will have application to future studies designed to objectively assess the effects of pathology (i.e., progressive neuromotor disease, traumatic brain insult) and intervention (pharmacologic, neurosurgical, and reconstructive surgery of the face [i.e., cleft lip, trauma, missile injuries]) on facial animation and speech kinematics. PMID:19717655

  14. Effect of Spinach, a High Dietary Nitrate Source, on Arterial Stiffness and Related Hemodynamic Measures: A Randomized, Controlled Trial in Healthy Adults

    PubMed Central

    Jovanovski, Elena; Bosco, Laura; Khan, Kashif; Au-Yeung, Fei; Ho, Hoang; Zurbau, Andreea; Jenkins, Alexandra L.

    2015-01-01

    Diets rich in fruits and vegetables reduce risk of adverse cardiovascular events. However, the constituents responsible for this effect have not been well established. Lately, the attention has been brought to vegetables with high nitrate content with evidence that this might represent a source of vasoprotective nitric oxide. We hypothesized that short-term consumption of spinach, a vegetable having high dietary nitrate content, can affect the arterial waveform indicative of arterial stiffness, as well as central and peripheral blood pressure (BP). Using a placebo-controlled, crossover design, 27 healthy participants were randomly assigned to receive either a high-nitrate (spinach; 845 mg nitrate/day) or low-nitrate soup (asparagus; 0.6 mg nitrate/day) for 7 days with a 1-week washout period. On days 1 and 7, profiles of augmentation index, central, and brachial BP were obtained over 180 min post-consumption in 4 fasted visits. A postprandial reduction in augmentation index was observed at 180 min on high-nitrate compared to low-nitrate intervention (-6.54 ± 9.7% vs. -0.82 ± 8.0%, p = 0.01) on Day 1, and from baseline on Day 7 (-6.93 ± 8.7%, p < 0.001; high vs. low: -2.28 ± 12.5%, p = 0.35), suggesting that the nitrate intervention is not associated with the development of tolerance for at least 7 days of continued supplementation. High vs. low-nitrate intervention also reduced central systolic (-3.39 ± 5.6 mmHg, p = 0.004) and diastolic BP (-2.60 ± 5.8 mmHg, p = 0.028) and brachial systolic BP (-3.48 ± 7.4 mmHg, p = 0.022) at 180 min following 7-day supplementation only. These findings suggest that dietary nitrate from spinach may contribute to beneficial hemodynamic effects of vegetable-rich diets and highlights the potential of developing a targeted dietary approach in the management of elevated BP. PMID:26251834

  15. Pressure Distributions for the GA(W)-2 Airfoil with 20% Aileron, 25% Slotted Flap and 30% Fowler Flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Fiscko, K. A.

    1978-01-01

    Surface pressure distributions were measured for the 13% thick GA(W)-2 airfoil section fitted with 20% aileron, 25% slotted flap and 30% Fowler flap. All tests were conducted at a Reynolds number of 2.2 x 10 to the 6th power and a Mach number of 0.13. Pressure distribution and force and moment coefficient measurements are compared with theoretical results for a number of cases. Agreement between theory and experiment is generally good for low angles of attack and small flap deflections. For high angles and large flap deflections where regions of separation are present, the theory is inadequate. Theoretical drag predictions are poor for all flap-extended cases.

  16. Arterial stiffness in diabetes mellitus.

    PubMed

    Prenner, Stuart B; Chirinos, Julio A

    2015-02-01

    Arterial stiffness is an age-related process that is a shared consequence of numerous diseases including diabetes mellitus (DM), and is an independent predictor of mortality both in this population and in the general population. While much has been published about arterial stiffness in patients with DM, a thorough review of the current literature is lacking. Using a systematic literature search strategy, we aimed to summarize our current understanding related to arterial stiffness in DM. We review key studies demonstrating that, among patients with established DM, arterial stiffness is closely related to the progression of complications of DM, including nephropathy, retinopathy, and neuropathy. It is also becoming clear that arterial stiffness can be increased even in pre-diabetic populations with impaired glucose tolerance, and in those with the metabolic syndrome (METS), well before the onset of overt DM. Some data suggests that arterial stiffness can predict the onset of DM. However, future work is needed to further clarify whether large artery stiffness and the pulsatile hemodynamic changes that accompany it are involved in the pathogenesis of DM, and whether interventions targeting arterial stiffness are associated with improved clinical outcomes in DM. We also review of the potential mechanisms of arterial stiffness in DM, with particular emphasis on the role of advanced glycation endproducts (AGEs) and nitric oxide dysregulation, and address potential future directions for research.

  17. Frequency-Dependent Fracture Specific Stiffness

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Folz, M. A.; Acosta-Colon, A.

    2003-12-01

    Monitoring the hydraulic properties of fractures remotely through their seismic signatures is an important goal for field hydrology. Empirical studies have shown that the hydraulic properties of a fracture are implicitly related to the fracture specific stiffness through the amount and distribution of contact area and apertures that arise from two rough surfaces in contact. Complicating this simple picture are seismic measurements that indicate frequency-dependent stiffness, i.e., a scale-dependent fracture stiffness where the scale is set by the wavelength. Thus relating the hydraulic properties of fractures to seismic measurements becomes a scale dependent problem. We have performed laboratory experiments to examine the phenomenon of frequency dependent fracture specific stiffness to aid in the assessment of the hydraulic properties of a fracture using seismic techniques. To this end, we have developed a photolithographic technique with which we can construct synthetic fractures of known fracture geometry with feature sizes controlled over several orders of magnitude. The synthetic fracture (and the control non-fractured samples) are made from acrylic cylinders that measure 15.0 cm in diameter by 7.7 cm in height. The diameter of the samples enables us to sample the acoustic properties of the fracture using acoustic lens over regions that range in scale from 10 mm to 60 mm. A confinement cell controls the normal stress on the fracture. Seismic measurements were made with broadband compressional-mode piezoelectric transducers enabling one-order of magnitude in frequency. We found that when the wavelength is smaller than the asperity size, a linear dependence of fracture specific stiffness on frequency occurs. In this geometric ray regime the asymptotic value of the transmission function provides a direct measure of the contact area of the fracture. On the other hand, when the asperity spacing is less than an eighth of a wavelength, the fracture behaves as a

  18. Effective leg stiffness in running.

    PubMed

    Blum, Yvonne; Lipfert, Susanne W; Seyfarth, Andre

    2009-10-16

    Leg stiffness is a common parameter used to characterize leg function during bouncing gaits, like running and hopping. In the literature, different methods to approximate leg stiffness based on kinetic and kinematic parameters are described. A challenging point in estimating leg stiffness is the definition of leg compression during contact. In this paper four methods (methods A-D) based on ground reaction forces (GRF) and one method (method E) relying on temporal parameters are described. Leg stiffness calculated by these five methods is compared with running patterns, predicted by the spring mass model. The best and simplest approximation of leg stiffness is method E. It requires only easily accessible parameters (contact time, flight time, resting leg length, body mass and the leg's touch down angle). Method D is of similar quality but additionally requires the time-dependent progression of the GRF. The other three methods show clear differences from the model predictions by over- or underestimating leg stiffness, especially at slow speeds. Leg stiffness is derived from a conceptual model of legged locomotion and does not exist without this model. Therefore, it is important to prove which experimental method is suited best for approximating the stiffness in a specific task. This will help to interpret the predictions of the conceptual model in comparison with experimental data.

  19. Jerking stiff-man syndrome.

    PubMed Central

    Alberca, R; Romero, M; Chaparro, J

    1982-01-01

    A female patient had permanent axial muscular rigidity similar to the "stiff-man syndrome", together with axial myoclonus triggered by stretch reflexes and by supramaximal stimulation of the supraorbital nerve. The disorder responded to treatment with diazepam and baclofen. This disorder bore a marked similarity to the so-called "jerking stiff-man syndrome". PMID:7161612

  20. Regulation of electrospun scaffold stiffness via coaxial core diameter.

    PubMed

    Drexler, J W; Powell, H M

    2011-03-01

    Scaffold mechanics influence cellular behavior, including migration, phenotype and viability. Scaffold stiffness is commonly modulated through cross-linking, polymer density, or bioactive coatings on stiff substrates. These approaches provide useful information about cellular response to substrate stiffness; however, they are not ideal as the processing can change substrate morphology, density or chemistry. Coaxial electrospinning was investigated as a fabrication method to produce scaffolds with tunable stiffness and strength without changing architecture or surface chemistry. Core solution concentration, solvent and feed rate were utilized to control core diameter with higher solution concentration and feed rate positively correlating with increased fiber diameter and stiffness. Coaxial scaffolds electrospun with an 8 wt./vol.% polycaprolactone (PCL)-HFP solution at 1 ml h(-1) formed scaffolds with an average core diameter of 1.1±0.2 μm and stiffness of 0.027±3.3×10(-3) N mm(-1). In contrast, fibers which were 2.6±0.1 μm in core diameter yielded scaffolds with a stiffness of 0.065±4.7×10(-3) N mm(-1). Strength and stiffness positively correlated with core diameter with no significant difference in total fiber diameter and interfiber distance observed in as-spun scaffolds. These data indicate that coaxial core diameter can be utilized to tailor mechanical properties of three-dimensional scaffolds and would provide an ideal scaffold for assessing the effect of scaffold mechanics on cell behavior.

  1. A Reply to Stiff and Boster.

    ERIC Educational Resources Information Center

    Petty, Richard E.; And Others

    1987-01-01

    Addresses the major errors and misconceptions perpetuated by Stiff and Boster's response to criticism of Stiff's 1986 article. Focuses on the major conceptual and methodological issues of Stiff's model. (NKA)

  2. Wind-Tunnel Investigation of a Rectangular NACA 2212 Airfoil with Semispan Ailerons and with Nonperforated, Balanced Double Split Flaps for Use as Aerodynamic Brakes

    NASA Technical Reports Server (NTRS)

    Ivey, Margaret F

    1945-01-01

    Flat-plate flaps with no wing cutouts and flaps having Clark Y sections with corresponding cutouts made in wing were tested for various flap deflections, chord-wise locations, and gaps between flaps and airfoil contour. The drag was slightly lower for wing with airfoil section flaps. Satisfactory aileron effectiveness was obtained with flap gap of 20% wing chord and flap-nose location of 80 percent wing chord behind leading edge. Airflow was smooth and buffeting negligible.

  3. Cockpit control system conceptual design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.

  4. Adjustable stiffness of individual piezoelectric nanofibers by electron beam polarization

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Anton; Yao, Nan; Shi, Yong

    2011-11-01

    We present a method to adjust the stiffness of individual piezoelectric nanofiber by electron beam induced polarization under an in situ scanning electron microscopy. The lead zirconate titanate (PZT) nanofibers were fabricated by an electrospinning process. The Young's modulus was calculated from the resonant frequency excited by an oscillating electric field applied through a nanomanipulator. The stiffness can be adjusted up to 75% by induced polarization under the exposure of an electron beam to control the domain boundaries in single PZT nanofibers. Splitting effect of the resonant frequencies was observed due to anisotropic stiffness in polarized PZT nanofibers.

  5. Stiffness of compressed fiber mats

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Mäkinen, J. P.; Hirvonen, H.; Timonen, J.

    2000-11-01

    We investigate, using an analytical and a numerical model, the in-plane stiffness of fiber mats. A mat is modeled by randomly depositing thin linear-elastic fibers on top of each other under the influence of an external pressure. The external pressure has the effect of bending the fibers over each other. The fibers are assumed rigidly bonded at contacts. For a low external pressure the stiffness of the mat deviates from that of its two-dimensional projection only by a geometrical factor, and the effective Poisson contraction is close to zero. For higher pressures, stiffness is governed by two competing effects and a maximum appears in the stiffness. The effective Poisson ratio is clearly negative in this range. An approximative analytical description is developed for the stiffness of mats formed under low external pressure. The stiffness is given as a function of only a few parameters: the degree of bonding, the dimensions of the fibers, the elastic constants of the fiber material, and the density of fibers.

  6. Wing/store flutter with nonlinear pylon stiffness

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Reed, W. H., III

    1980-01-01

    Recent wind tunnel tests and analytical studies show that a store mounted on a pylon with 'soft' pitch stiffness provides substantial increase in flutter speed of fighter aircraft and reduces dependency of flutter on mass and inertia of the store. This concept, termed the decoupler pylon, utilizes a low-frequency control system to maintain pitch alignment of the store during maneuvers and changing flight conditions. Under rapidly changing transient loads, however, the alignment control system may allow the store to momentarily bottom against a relatively stiff backup structure in which case the pylon stiffness acts as a hardening nonlinear spring. Such structural nonlinearities are known to affect not only the flutter speed but also the basic behavior of the instability. This paper examines the influence of pylon stiffness nonlinearities on the flutter characteristics of wing-mounted external stores.

  7. Wing/store flutter with nonlinear pylon stiffness

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Reed, W. H., III

    1980-01-01

    Recent wind tunnel tests and analytical studies show that a store mounted on a pylon with soft pitch stiffness provides substantial increase in flutter speed of fighter aircraft and reduces dependency of flutter on mass and inertia of the store. This concept, termed the decoupler pylon, utilizes a low frequency control system to maintain pitch alignment of the store during maneuvers and changing flight conditions. Under rapidly changing transient loads, however, the alignment control system may allow the store to momentarily bottom against a relatively stiff backup structure in which case the pylon stiffness acts as a hardening nonlinear spring. Such structural nonlinearities are known to affect not only the flutter speed but also the basic behavior of the instability. The influence of pylon stiffness nonlinearities or the flutter characteristics of wing mounted external stores is examined.

  8. Effects of control inputs on the estimation of stability and control parameters of a light airplane

    NASA Technical Reports Server (NTRS)

    Cannaday, R. L.; Suit, W. T.

    1977-01-01

    The maximum likelihood parameter estimation technique was used to determine the values of stability and control derivatives from flight test data for a low-wing, single-engine, light airplane. Several input forms were used during the tests to investigate the consistency of parameter estimates as it relates to inputs. These consistencies were compared by using the ensemble variance and estimated Cramer-Rao lower bound. In addition, the relationship between inputs and parameter correlations was investigated. Results from the stabilator inputs are inconclusive but the sequence of rudder input followed by aileron input or aileron followed by rudder gave more consistent estimates than did rudder or ailerons individually. Also, square-wave inputs appeared to provide slightly improved consistency in the parameter estimates when compared to sine-wave inputs.

  9. Fabrication of Janus hydrogels with stiffness gradient using drop coalescence

    NASA Astrophysics Data System (ADS)

    Lee, Donghee; Golden, Kale; Ryu, Sangjin

    2016-11-01

    The stiffness of the extracellular matrix (ECM) regulates cellular behaviors, and polyacrylamide (PAAM) gels with stiffness gradient have been used to simulate inhomogeneous ECM and to study the effects of the ECM stiffness on cells. Such hydrogel substrates with stiffness gradient can be fabricated with relatively complicated methods using microfluidics and moving masks. In our study, we develop a simpler method for fabricating Janus hydrogel which has a gradient of stiffness. Two prepolymer solutions were prepared for soft and stiff gel compositions, respectively, and one drop of each solution was placed on a hydrophobic patterned glass. Then, these two drops were gently squeezed by another glass being slowly lowered until coalescence, and gel polymerization was initiated after a certain time period for mixing. The motion of the drops was guided by the hydrophobic pattern. AFM nano-indentation showed that the fabricated Janus PAAM gels have a stiffness gradient which could be controlled by increasing mixing time. This study was supported by Bioengineering for Human Health Grant from UNL and UNMC.

  10. Influence of Compression and Stiffness Apparel on Vertical Jump Performance.

    PubMed

    Wannop, John W; Worobets, Jay T; Madden, Ryan; Stefanyshyn, Darren J

    2016-04-01

    Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint stiffness independently from one another affects vertical jumping performance. Ten male athletes performed countermovement vertical jumps in 8 concept apparel conditions and 1 control condition (loose fitting shorts). The 8 apparel conditions, 4 that specifically altered the amount of compression exerted on the thigh and 4 that altered the hip joint stiffness by means of elastic thermoplastic polyurethane bands, were tested on 2 separate testing sessions (one testing the compression apparel and the other testing the stiffness apparel). Maximum jump height was measured, while kinematic data of the hip, knee, and ankle joint were recorded with a high-speed camera (480 Hz). Both compression and stiffness apparel can have a positive influence on vertical jumping performance. The increase in jump height for the optimal compression was due to increased hip joint range of motion and a trend of increasing the jump time. Optimal stiffness also increased jump height and had the trend of decreasing the hip joint range of motion and hip joint angular velocity. The exact mechanisms by which apparel interventions alter performance is not clear, but it may be due to alterations to the force-length and force-velocity relationships of muscle.

  11. The Effect of Blunt-Trailing-Edge Modifications on the High-Speed Stability and Control Characteristics of a Swept-Wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; Matteson, Frederick H.; Van Dyke, Rudolph D., Jr.

    1954-01-01

    An investigation was conducted on a 35 deg swept-wing fighter airplane to determine the effects of several blunt-trailing-edge modifications to the wing and tail on the high-speed stability and control characteristics and tracking performance. The results indicated significant improvement in the pitch-up characteristics for the blunt-aileron configuration at Mach numbers around 0.90. As a result of increased effectiveness of the blunt-trailing-edge aileron, the roll-off, customarily experienced with the unmodified airplane in wings-level flight between Mach numbers of about 0.9 and 1.0 was eliminated, The results also indicated that the increased effectiveness of the blunt aileron more than offset the large associated aileron hinge moment, resulting in significant improvement in the rolling performance at Mach numbers between 0.85 and 1.0. It appeared from these results that the tracking performance with the blunt-aileron configuration in the pitch-up and buffeting flight region at high Mach numbers was considerably improved over that of the unmodified airplane; however, the tracking errors of 8 to 15 mils were definitely unsatisfactory. A drag increment of about O.OOl5 due to the blunt ailerons was noted at Mach numbers to about 0.85. The drag increment was 0 at Mach numbers above 0.90.

  12. Aeroservoelastic tailoring for lateral control enhancement

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Changho, Nam

    1989-01-01

    The need for effective aileron power for aircraft lateral control and turning maneuvers dates back to the Wright Brothers and their wing warping concept for active stabilization of their aircraft. Early researchers in Great Britain, Japan, Germany and the United States explored ways to increase the effectiveness of control aileron to generate a roll moment. The basic problem of aileron effectiveness and the interrelationship between structural distortion and the loads applied by the control surface is illustrated. A rigid wing/aileron surface will develop the capability to generate increased roll rates as airspeed increases. A flexible surface will become less effective as airspeed increases because of the twisting distortion created by the aft-mounted control surface. This tendency is further worsened by bending distortion of an aft swept wing. This study focuses its attention on the ability of a combined effort between structural redesign of a wing and sizing and placement of a control surface to create specified roll performance with a minimum hinge moment. This design optimization problem indicates the advantages of simultaneous consideration of structural design and control design.

  13. ARTHROSCOPIC TREATMENT OF ELBOW STIFFNESS

    PubMed Central

    Vieira, Luis Alfredo Gómez; Dal Molin, Fabio Farina; Visco, Adalberto; Fernandes, Luis Filipe Daneu; dos Santos, Murilo Cunha Rafael; Cardozo Filho, Nivaldo Souza; Gómez Cordero, Nicolas Gerardo

    2015-01-01

    To present the arthroscopic surgical technique and the evaluation of the results from this technique for treating elbow stiffness. Methods: Between April 2007 and January 2010, ten elbows of ten patients with elbow stiffness underwent arthroscopic treatment to release the range of motion. The minimum follow-up was 11 months, with an average of 27 months. All the patients were male and their average age was 32.8 years (ranging from 22 to 48 years). After the arthroscopic treatment, they were followed up weekly in the first month and every three months thereafter. The clinical evaluation was made using the criteria of the University of California at Los Angeles (UCLA). Results: All the patients were satisfied with the results from the arthroscopic treatment. The average UCLA score was 33.8 points. Conclusion: Arthroscopic treatment for elbow stiffness is a minimally invasive surgical technique that was shown to be efficient for treating this complication. PMID:27027027

  14. Arterial Stiffness: Recommendations and Standardization

    PubMed Central

    Townsend, Raymond R.

    2017-01-01

    The use of arterial stiffness measurements in longitudinal cohorts of normal populations, hypertensive patients, diabetic patients, healthy elderly, and patients on hemodialysis have confirmed the value of this important measure of arterial health, and established its complementary role to measures of blood pressure. Its contribution to understanding cardiovascular and mortality risk beyond blood pressure measurements has moved measures of arterial stiffness into the ranks of factors such as elevated cholesterol, diabetes, and left ventricular hypertrophy in considering cardiovascular risk. The recent international collaboration's publication of reference ranges for normal people and those with hypertension, along with the American Heart Association's recent scientific statement on standardizing arterial stiffness measurements are important aspects to consider in future studies employing these valuable methods, particularly as interventions that not only lower blood pressure but improve arterial function are tested in the clinical arena. PMID:28275588

  15. Monitoring stiffness contrast in elastography

    NASA Astrophysics Data System (ADS)

    Kiss, Miklos; Bharat, Shyam; Varghese, Tomy; Techavipoo, Udomchai; Liu, Wu

    2005-03-01

    Elastography is an imaging modality used to image tissue strains resulting from external quasi-static compression of tissue. Therefore, elastograms can be used to study variations in the stiffness of thermally coagulated regions of tissue. In this study, the variations in stiffness contrast of lesions formed by radio frequency (RF) ablation of canine liver tissue have been investigated. RF ablation was performed on in vitro canine liver tissue over a range of temperatures from 70 - 100 degrees C, and over a range of ablation times from 1 -- 8 minutes. Elastography was then performed on these samples and on normal tissue. It was expected that stiffness contrast would increase with increasing lesion temperature and ablation duration, on the basis that higher temperature and greater ablation durations lead to increased protein denaturation. This increase was seen with ablation duration, but is not obvious with ablation temperature. These and other results will be discussed.

  16. Lase Ultrasonic Web Stiffness tester

    SciTech Connect

    Tim Patterson, Ph.D., IPST at Ga Tech

    2009-01-12

    The objective is to provide a sensor that uses non-contact, laser ultrasonics to measure the stiffness of paper during the manufacturing process. This will allow the manufacturer to adjust the production process in real time, increase filler content, modify fiber refining and as result produce a quality product using less energy. The sensor operates by moving back and forth across the paper web, at pre-selected locations firing a laser at the sheet, measuring the out-of-plane velocity of the sheet then using that measurement to calculate sheet stiffness.

  17. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Koshy, Sandeep T.; Branco da Cunha, Cristiana; Shin, Jae-Won; Verbeke, Catia S.; Allison, Kimberly H.; Mooney, David J.

    2014-10-01

    In vitro models of normal mammary epithelium have correlated increased extracellular matrix (ECM) stiffness with malignant phenotypes. However, the role of increased stiffness in this transformation remains unclear because of difficulties in controlling ECM stiffness, composition and architecture independently. Here we demonstrate that interpenetrating networks of reconstituted basement membrane matrix and alginate can be used to modulate ECM stiffness independently of composition and architecture. We find that, in normal mammary epithelial cells, increasing ECM stiffness alone induces malignant phenotypes but that the effect is completely abrogated when accompanied by an increase in basement-membrane ligands. We also find that the combination of stiffness and composition is sensed through β4 integrin, Rac1, and the PI3K pathway, and suggest a mechanism in which an increase in ECM stiffness, without an increase in basement membrane ligands, prevents normal α6β4 integrin clustering into hemidesmosomes.

  18. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial.

    PubMed

    Jeong, Han Saem; Kim, Sohyeon; Hong, Soon Jun; Choi, Seung Cheol; Choi, Ji-Hyun; Kim, Jong-Ho; Park, Chi-Yeon; Cho, Jae Young; Lee, Tae-Bum; Kwon, Ji-Wung; Joo, Hyung Joon; Park, Jae Hyoung; Yu, Cheol Woong; Lim, Do-Sun

    2016-04-01

    Administration of black raspberry (Rubus occidentalis) is known to improve vascular endothelial function in patients at a high risk for cardiovascular (CV) disease. We investigated short-term effects of black raspberry on circulating endothelial progenitor cells (EPCs) and arterial stiffness in patients with metabolic syndrome. Patients with metabolic syndrome (n = 51) were prospectively randomized into the black raspberry group (n = 26, 750 mg/day) and placebo group (n = 25) during the 12-week follow-up. Central blood pressure, augmentation index, and EPCs, such as CD34/KDR(+), CD34/CD117(+), and CD34/CD133(+), were measured at baseline and at 12-week follow-up. Radial augmentation indexes were significantly decreased in the black raspberry group compared to the placebo group (-5% ± 10% vs. 3% ± 14%, P < .05). CD34/CD133(+) cells at 12-week follow-up were significantly higher in the black raspberry group compared to the placebo group (19 ± 109/μL vs. -28 ± 57/μL, P < .05). Decreases from the baseline in interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were significantly greater in the black raspberry group compared to the placebo group (-0.5 ± 1.4 pg/mL vs. -0.1 ± 1.1 pg/mL, P < .05 and -5.4 ± 4.5 pg/mL vs. -0.8 ± 4.0 pg/mL, P < .05, respectively). Increases from the baseline in adiponectin levels (2.9 ± 2.1 μg/mL vs. -0.2 ± 2.5 μg/mL, P < .05) were significant in the black raspberry group. The use of black raspberry significantly lowered the augmentation index and increased circulating EPCs, thereby improving CV risks in patients with metabolic syndrome during the 12-week follow-up.

  19. Epidemiology of the arterial stiffness.

    PubMed

    Breithaupt-Grögler, K; Belz, G G

    1999-06-01

    Aortic stiffening is as much an important risk factor in cardiovascular morbidity and mortality, as it serves as reliable surrogate marker for clinical endpoints like myocardial and cerebrovascular incidents. Elevated aortic stiffness induces high systolic blood pressure, augmented pulse pressure with increased ventricular afterload, reduced subendocardial blood flow and augmented pulsatile stress in the peripheral arteries. Factors with relevant impact on the epidemiology of arterial stiffness are widely spread. 3 major groups of parameters influencing the stiffness of the aorta and the large arteries have been studied and described up to now: (i) physiological properties like age, gender, body height, pressure, hormonal state, genetic factors; (ii) environmental factors like nutrition (fish-, salt-, garlic consumption), smoking, performance of sports and aerobic capacity; (iii) diseases like hypertension, hypercholesterolemia, diabetes, coronary heart disease, cerebrovascular disease, renal failure, Marfan-syndrome, growth hormone deficiency. Close association between several of these factors impedes analyzing them independently from each other. Age and blood pressure were found to be the most prominent predictors of arterial stiffness in normal as well as in disease populations. Physiological and environmental factors can modulate these effects of aging, diseases generally seem to amplify them.

  20. Arterial Stiffness and Cardiovascular Therapy

    PubMed Central

    Janić, Miodrag; Lunder, Mojca; Šabovič, Mišo

    2014-01-01

    The world population is aging and the number of old people is continuously increasing. Arterial structure and function change with age, progressively leading to arterial stiffening. Arterial stiffness is best characterized by measurement of pulse wave velocity (PWV), which is its surrogate marker. It has been shown that PWV could improve cardiovascular event prediction in models that included standard risk factors. Consequently, it might therefore enable better identification of populations at high-risk of cardiovascular morbidity and mortality. The present review is focused on a survey of different pharmacological therapeutic options for decreasing arterial stiffness. The influence of several groups of drugs is described: antihypertensive drugs (angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers, beta-blockers, diuretics, and nitrates), statins, peroral antidiabetics, advanced glycation end-products (AGE) cross-link breakers, anti-inflammatory drugs, endothelin-A receptor antagonists, and vasopeptidase inhibitors. All of these have shown some effect in decreasing arterial stiffness. Nevertheless, further studies are needed which should address the influence of arterial stiffness diminishment on major adverse cardiovascular and cerebrovascular events (MACCE). PMID:25170513

  1. Leg stiffness of sprinters using running-specific prostheses.

    PubMed

    McGowan, Craig P; Grabowski, Alena M; McDermott, William J; Herr, Hugh M; Kram, Rodger

    2012-08-07

    Running-specific prostheses (RSF) are designed to replicate the spring-like nature of biological legs (bioL) during running. However, it is not clear how these devices affect whole leg stiffness characteristics or running dynamics over a range of speeds. We used a simple spring-mass model to examine running mechanics across a range of speeds, in unilateral and bilateral transtibial amputees and performance-matched controls. We found significant differences between the affected leg (AL) of unilateral amputees and both ALs of bilateral amputees compared with the bioL of non-amputees for nearly every variable measured. Leg stiffness remained constant or increased with speed in bioL, but decreased with speed in legs with RSPs. The decrease in leg stiffness in legs with RSPs was mainly owing to a combination of lower peak ground reaction forces and increased leg compression with increasing speeds. Leg stiffness is an important parameter affecting contact time and the force exerted on the ground. It is likely that the fixed stiffness of the prosthesis coupled with differences in the limb posture required to run with the prosthesis limits the ability to modulate whole leg stiffness and the ability to apply high vertical ground reaction forces during sprinting.

  2. Relationship between two proprioceptive measures and stiffness at the ankle.

    PubMed

    Docherty, Carrie L; Arnold, Brent L; Zinder, Steven M; Granata, Kevin; Gansneder, Bruce M

    2004-06-01

    Previous research has investigated the role of proprioception and stiffness in the control of joint stability. However, to date, no research has been done on the relationship between proprioception and stiffness. Therefore, the purpose of this study was to determine the relationship between force sense, joint reposition sense, and stiffness at the ankle. A heterogeneous sample was obtained for this study; 20 of the 40 participants had a history of ankle sprains, and 13 of the 20 had been diagnosed by a physician (two mild ankle sprains, seven moderate sprains, four severe sprains). All subjects were asymptomatic and active at the time of the study. Active joint reposition sense was measured using a custom-built ankle goniometer, force sense was measured unilaterally and contralaterally with a load cell, and ankle muscle stiffness was measured via transient oscillation using a custom-built inversion-eversion cradle. We found no significant correlations between stiffness and joint reposition sense, with values of r ranging from 0.01 to 0.21. Significant correlations were found between stiffness and force sense. Specifically, contralateral force sense reproduction was significantly correlated to stiffness in the injured or "involved" ankle (r's ranging from 0.47 to 0.65; P< or =0.008). Whether the decreased ability to appropriately sense force (increased error) sends information to the central nervous system to increase muscle stiffness in response to an unexpected loss of stability, or whether these two phenomena function independently and both change concurrently as a result of injury to the system requires further investigation.

  3. Comparison of Wind-Tunnel and Flight Measurements of Stability and Control Characteristics of a Douglas A-26 Airplane

    NASA Technical Reports Server (NTRS)

    Kayten, Gerald G; Koven, William

    1945-01-01

    Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26 airplane. Agreement regarding static longitudinal stability as indicated by the elevator-fixed neutral points and by the variation of elevator deflection in both straight and turning flight was found to be good except at speeds approaching the stall. At these low speeds the airplane possessed noticeably improved stability, which was attributed to pronounced stalling at the root of the production wing. The pronounced root stalling did not occur on the smooth, well-faired model wing. Elevator tab effectiveness determined from model tests agreed well with flight-test tab effectiveness, but control-force variations with speed and acceleration were not in good agreement. The use of model hinge-moment data obtained at zero sideslip appeared to be satisfactory for the determination of aileron forces in sideslip. Fairly good correlation in aileron effectiveness and control forces was obtained; fabric distortion may have been responsible to some extent for higher flight values of aileron force at high speeds. Estimation of sideslip developed in an abrupt aileron roll was fair, but determination of the rudder deflection required to maintain zero sideslip in a rapid aileron roll was not entirely satisfactory.

  4. Effect of Improving Dietary Quality on Arterial Stiffness in Subjects with Type 1 and Type 2 Diabetes: A 12 Months Randomised Controlled Trial

    PubMed Central

    Petersen, Kristina S.; Clifton, Peter M.; Lister, Natalie; Keogh, Jennifer B.

    2016-01-01

    People with diabetes have accelerated arterial stiffening. The aim of this study was to determine the effect of increasing fruit, vegetable and dairy intake for 12 months on carotid femoral pulse wave velocity (cfPWV), augmentation index (AIx), and central blood pressure (cBP), compared to a usual diet control, in people with type 1 and type 2 diabetes. In a 12 months randomised controlled trial, cfPWV, AIx and cBP were measured every 3 months. The intervention group received dietary counselling to increase consumption of fruit (+1 serving/day; 150 g/day), vegetables (+2 servings/day; 150 g/day) and dairy (+1 serving/day; 200–250 g/day) at baseline, 1, 3, 6 and 9 months. The control group continued on their usual diet. One hundred and nine participants were randomised and 92 (intervention n = 45; control n = 47) completed. At 3 months, fruit (184 g/day; p = 0.001) and dairy (83 g/day; p = 0.037) intake increased in the intervention group compared with the control group but this increase was not maintained at 12 months. After adjustment for baseline measurements there was no time by treatment effect for central systolic or diastolic BP, AIx or cfPWV. A time effect existed for AIx which modestly increased over time. Peripheral diastolic BP and central pulse pressure were improved in the intervention group compared with the control group at 12 months. In the cohort with type 1 and type 2 diabetes, improving dietary quality by increasing consumption of fruit, vegetables and dairy did not improve cBP, AIx or cfPWV, compared with a control group continuing on their usual diet, after 12 months. PMID:27338467

  5. Muscle Stiffness and Spinal Stretch Reflex Sensitivity in the Triceps Surae

    PubMed Central

    Blackburn, J. Troy; Padua, Darin A; Guskiewicz, Kevin M

    2008-01-01

    stretch reflex sensitivity. It appears unlikely that differences in musculotendinous stiffness influenced spinal stretch reflex sensitivity when initiated from a moderate level of pretension. Consequently, differences in musculotendinous stiffness did not appear to influence dynamic joint stability with respect to reflexive neuromuscular control. PMID:18335010

  6. Comparison of pressure distributions on model and full-scale NACA 64-621 airfoils with ailerons for wind turbine application

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Kuniega, R. J.; Nyland, T. W.

    1988-01-01

    The aerodynamic similarity between a small (4-inch chord) wind tunnel model and a full-scale wind turbine blade (24-foot tip section with a 36-inch chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-inch High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-foot Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the 3-D effects of blade twist and downwash in the blade tip section. The results of the two different experimental methods correlated well for angles of attack from minus 4 to 36 degrees and aileron reflections from 0 to 90 degrees.

  7. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: A review.

    PubMed

    Li, Yanlei; Hanssen, Henner; Cordes, Mareike; Rossmeissl, Anja; Endes, Simon; Schmidt-Trucksäss, Arno

    2015-01-01

    Exercise training has different effects on arterial stiffness according to training modalities. The optimal exercise modality for improvement of arterial function in normotensive and hypertensive individuals has not been well established. In this review, we aim to evaluate the effects of aerobic, resistance and combined aerobic and resistance training on arterial stiffness in individuals with and without hypertension. We systematically searched the Pubmed and Web of Science database from 1985 until December 2013 for relevant randomised controlled trials (RCTs). The data were extracted by one investigator and checked by a second investigator. The training effects on arterial stiffness were estimated using weighted mean differences of the relative changes (%) with 95% confidence intervals (CIs). We finally reviewed the results from 17 RCTs. The available evidence indicates that aerobic exercise tends to have a beneficial effect on arterial stiffness in normotensive and hypertensive patients, but does not affect arterial stiffness in patients with isolated systolic hypertension. Resistance exercise has differing effects on arterial stiffness depending on type and intensity. Vigorous resistance training is associated with an increase in arterial stiffness. There seem to be no unfavourable effects on arterial stiffness if the training is of low intensity, in a slow eccentric manner or with lower limb in healthy individuals. Combined training has neutral or even a beneficial effect on arterial stiffness. In conclusion, our review shows that exercise training has varying effects on arterial stiffness depending on the exercise modalities.

  8. Chronic permanent hypoxemia predisposes to mild elevation of liver stiffness

    PubMed Central

    Tahiri, Mohamed; Drighil, Abdenasser; Jalal, Yasmine; Ghellab, Dounia; Hliwa, Wafaa; Fouad, Haddad; Badre, Wafaa; Bellabah, Ahmad; Habbal, Rachida; Alaoui, Rhimou

    2014-01-01

    AIM: To evaluate the impact of long term permanent hypoxemia noticed in patients with non operated congenital cyanogenic cyanotic cardiopathy on liver stiffness. METHODS: We included ten adult patients with non operated inoperate cyanotic cardiopathy and ten matched patients for age and gender admitted to the gastroenterology department for proctologic diseases; Clinical and laboratory data were collected [age, gender, body mass index, oxygen saturation, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), glycemia and cholesterol]. Measurement of hepatic stiffness by transient elastography was carried out in all patients using the Fibroscan device. All patients underwent an echocardiography to eliminate congestive heart failure. RESULTS: Among the patients with cyanotic cardiopathy, median liver stiffness 5.9 ± 1.3 kPa was greater than control group (4.7 ± 0.4 kPa) (P = 0.008). Median levels of GOT, GPT, gamma-glutamyltransferase, glycemia and cholesterol were comparable in cardiopathy and control group. In regression analysis including age, gender, body mass index, oxygen saturation, GOT, GPT, glycemia, cholesterol showed that only oxygen saturation was related to liver stiffness (r = -0.63 P = 0.002). CONCLUSION: Chronic permanent hypoxemia can induce mild increase of liver stiffness, but further studies are needed to explore the histological aspects of liver injury induced by chronic permanent hypoxemia. PMID:25132776

  9. Performance Assessment of a New Variable Stiffness Probing System for Micro-CMMs.

    PubMed

    Alblalaihid, Khalid; Kinnell, Peter; Lawes, Simon; Desgaches, Dorian; Leach, Richard

    2016-04-08

    When designing micro-scale tactile probes, a design trade-off must be made between the stiffness and flexibility of the probing element. The probe must be flexible enough to ensure sensitive parts are not damaged during contact, but it must be stiff enough to overcome attractive surface forces, ensure it is not excessively fragile, easily damaged or sensitive to inertial loads. To address the need for a probing element that is both flexible and stiff, a novel micro-scale tactile probe has been designed and tested that makes use of an active suspension structure. The suspension structure is used to modulate the probe stiffness as required to ensure optimal stiffness conditions for each phase of the measurement process. In this paper, a novel control system is presented that monitors and controls stiffness, allowing two probe stiffness values ("stiff" and "flexible") to be defined and switched between. During switching, the stylus tip undergoes a displacement of approximately 18 µm, however, the control system is able ensure a consistent flexible mode tip deflection to within 12 nm in the vertical axis. The overall uncertainty for three-dimensional displacement measurements using the probing system is estimated to be 58 nm, which demonstrates the potential of this innovative variable stiffness micro-scale probe system.

  10. Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.

    2006-01-01

    An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.

  11. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  12. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  13. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  14. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and... controls must be designed so that they operate in accordance with the following movement and actuation: (a) Aerodynamic controls: Motion and effect (1) Primary controls: Aileron Right (clockwise) for right wing...

  15. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  16. β3 integrin–mediated spreading induced by matrix-bound BMP-2 controls Smad signaling in a stiffness-independent manner

    PubMed Central

    Fourel, Laure; Valat, Anne; Faurobert, Eva; Guillot, Raphael; Bourrin-Reynard, Ingrid; Ren, Kefeng; Lafanechère, Laurence; Planus, Emmanuelle; Albiges-Rizo, Corinne

    2016-01-01

    Understanding how cells integrate multiple signaling pathways to achieve specific cell differentiation is a challenging question in cell biology. We have explored the physiological presentation of BMP-2 by using a biomaterial that harbors tunable mechanical properties to promote localized BMP-2 signaling. We show that matrix-bound BMP-2 is sufficient to induce β3 integrin–dependent C2C12 cell spreading by overriding the soft signal of the biomaterial and impacting actin organization and adhesion site dynamics. In turn, αvβ3 integrin is required to mediate BMP-2–induced Smad signaling through a Cdc42–Src–FAK–ILK pathway. β3 integrin regulates a multistep process to control first BMP-2 receptor activity and second the inhibitory role of GSK3 on Smad signaling. Overall, our results show that BMP receptors and β3 integrin work together to control Smad signaling and tensional homeostasis, thereby coupling cell adhesion and fate commitment, two fundamental aspects of developmental biology and regenerative medicine. PMID:26953352

  17. On the development of planar actuators for variable stiffness devices

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-04-01

    This contribution describes the development, the potential and the limitations of planar actuators for controlling bending devices with variable stiffness. Such structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. To realize a proper stiffness control, it is necessary to develop reliable actuators with high actuation capabilities based on smart materials. Several actuator designs driven by electroactive polymers (EAPs) are presented and discussed regarding to their applicability in such structures. To investigate the actuators, variable-flexural stiffness devices based on the control of its area moment of inertia were developed. The devices consist of a multi-layer stack of thin, individual plates. Stiffness variation is caused by planar actuators which control the sliding behavior between the layers by form closure structures. Previous investigations have shown that actuators with high actuation potential are needed to ensure reliable connections between the layers. For that reason, two kinds of EAPs Danfoss PolyPower and VHB 4905 by 3M, have been studied as driving unit. These EAP-driven actuators will be compared based on experimental measurements and finite element analyses.

  18. Stiffness Feedback for Myoelectric Forearm Prostheses Using Vibrotactile Stimulation.

    PubMed

    Witteveen, Heidi J B; Luft, Frauke; Rietman, Johan S; Veltink, Peter H

    2014-01-01

    The ability to distinguish object stiffness is a very important aspect in object handling, but completely lacking in current myoelectric prostheses. In human hands both tactile and proprioceptive sensory information are required for stiffness determination. Therefore, it was investigated whether it is possible to distinguish object stiffness with vibrotactile feedback of hand opening and grasping force. Three configurations consisting of an array of coin motors and a single miniature vibrotactile transducer were investigated. Ten healthy subjects and seven subjects with upper limb loss due to amputation or congenital defects performed virtual grasping tasks, in which they controlled hand opening and grasping force. They were asked to determine the stiffness of a grasped virtual object from four options. With hand opening feedback alone or in combination with grasping force feedback, correct stiffness determination was achieved in around 60% of the cases and significantly higher than the 25% achieved without feedback or grasping force feedback alone. Despite the equal performance results, the combination of hand opening and grasping force feedback was preferred by the subjects over the hand opening feedback alone. No differences between feedback configurations and between subjects with upper limb loss and healthy subjects were found.

  19. Effect of Hybridization on Stiffness Properties of Woven Textile Composites

    NASA Astrophysics Data System (ADS)

    Bejan, Liliana; Taranu, Nicolae; Sîrbu, Adriana

    2013-04-01

    The present study focuses on stiffness properties of woven textile reinforced polymeric composites with respect to hybridization, and geometry of reinforcement. The analyzed composites represent combinations of different fibre materials (E-glass, Kevlar 49, carbon HM) in a predetermined fabric geometry (a plane weave embedded in thermosetting polymeric resin) serving controlled properties and required performance. The effects of hybridization on the stiffness properties of woven textile composites have been studied with respect to the fibres materials, the unbalancing degree of fabrics, and the variation of compactness and undulation of yarns. Some undesirable effects in fabric geometry can be overcome by the combined effects of hybridization and compactness.

  20. Variable Stiffness Spar Wind-Tunnel Model Development and Testing

    NASA Technical Reports Server (NTRS)

    Florance, James R.; Heeg, Jennifer; Spain, Charles V.; Ivanco, Thomas G.; Wieseman, Carol D.; Lively, Peter S.

    2004-01-01

    The concept of exploiting wing flexibility to improve aerodynamic performance was investigated in the wind tunnel by employing multiple control surfaces and by varying wing structural stiffness via a Variable Stiffness Spar (VSS) mechanism. High design loads compromised the VSS effectiveness because the aerodynamic wind-tunnel model was much stiffer than desired in order to meet the strength requirements. Results from tests of the model include stiffness and modal data, model deformation data, aerodynamic loads, static control surface derivatives, and fuselage standoff pressure data. Effects of the VSS on the stiffness and modal characteristics, lift curve slope, and control surface effectiveness are discussed. The VSS had the most effect on the rolling moment generated by the leading-edge outboard flap at subsonic speeds. The effects of the VSS for the other control surfaces and speed regimes were less. The difficulties encountered and the ability of the VSS to alter the aeroelastic characteristics of the wing emphasize the need for the development of improved design and construction methods for static aeroelastic models. The data collected and presented is valuable in terms of understanding static aeroelastic wind-tunnel model development.

  1. Leg and Joint Stiffness in Children with Spastic Diplegic Cerebral Palsy during Level Walking

    PubMed Central

    Wang, Ting-Ming; Huang, Hsing-Po; Li, Jia-Da; Hong, Shih-Wun; Lo, Wei-Ching; Lu, Tung-Wu

    2015-01-01

    Individual joint deviations are often identified in the analysis of cerebral palsy (CP) gait. However, knowledge is limited as to how these deviations affect the control of the locomotor system as a whole when striving to meet the demands of walking. The current study aimed to bridge the gap by describing the control of the locomotor system in children with diplegic CP in terms of their leg stiffness, both skeletal and muscular components, and associated joint stiffness during gait. Twelve children with spastic diplegia CP and 12 healthy controls walked at a self-selected pace in a gait laboratory while their kinematic and forceplate data were measured and analyzed during loading response, mid-stance, terminal stance and pre-swing. For calculating the leg stiffness, each of the lower limbs was modeled as a non-linear spring, connecting the hip joint center and the corresponding center of pressure, with varying stiffness that was calculated as the slope (gradient) of the axial force vs. the deformation curve. The leg stiffness was further decomposed into skeletal and muscular components considering the alignment of the lower limb. The ankle, knee and hip of the limb were modeled as revolute joints with torsional springs whose stiffness was calculated as the slope of the moment vs. the angle curve of the joint. Independent t-tests were performed for between-group comparisons of all the variables. The CP group significantly decreased the leg stiffness but increased the joint stiffness during stance phase, except during terminal stance where the leg stiffness was increased. They appeared to rely more on muscular contributions to achieve the required leg stiffness, increasing the muscular demands in maintaining the body posture against collapse. Leg stiffness plays a critical role in modulating the kinematics and kinetics of the locomotor system during gait in the diplegic CP. PMID:26629700

  2. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    SciTech Connect

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  3. Validation of MIL-F-9490D. General Specification for Flight Control System for Piloted Military Aircraft. Volume III. C-5A Heavy Logistics Transport Validation

    DTIC Science & Technology

    1977-04-01

    3.2.3.2.3) Aileron Override Bungee Installation 246 1 (3.2.3.2.4) C-5A Aft Body and Empennage Control Access 248 2 (3.2.3.2.4) C-5A Aileron Control Access...input linkages werz designed to a 600 pound limit axial load valve chip shearing force requiroment. Over- ride bungees limit the loads which can be...flight control system necessitated the use of override bungee springs in most of the input systoms. A jar L% the C-5A can be overridden or relieved

  4. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women.

    PubMed

    Matsubara, Tomoko; Miyaki, Asako; Akazawa, Nobuhiko; Choi, Youngju; Ra, Song-Gyu; Tanahashi, Koichiro; Kumagai, Hiroshi; Oikawa, Satoshi; Maeda, Seiji

    2014-02-01

    The Klotho gene is a suppressor of the aging phenomena, and the secretion as well as the circulation of Klotho proteins decrease with aging. Although habitual exercise has antiaging effects (e.g., a decrease in arterial stiffness), the relationship between Klotho and habitual exercise remains unclear. In the present study, we investigated the effect of habitual exercise on Klotho, with a particular focus on arterial stiffness. First, we examined the correlation between plasma Klotho concentration and arterial stiffness (carotid artery compliance and β-stiffness index) or aerobic exercise capacity [oxygen uptake at ventilatory threshold (VT)] in 69 healthy, postmenopausal women (50-76 years old) by conducting a cross-sectional study. Second, we tested the effects of aerobic exercise training on plasma Klotho concentrations and arterial stiffness. A total of 19 healthy, postmenopausal women (50-76 years old) were divided into two groups: control group and exercise group. The exercise group completed 12 wk of moderate aerobic exercise training. In the cross-sectional study, plasma Klotho concentrations positively correlated with carotid artery compliance and VT and negatively correlated with the β-stiffness index. In the interventional study, aerobic exercise training increased plasma Klotho concentrations and carotid artery compliance and decreased the β-stiffness index. Moreover, the changes in plasma Klotho concentration and arterial stiffness were found to be correlated. These results suggest a possible role for secreted Klotho in the exercise-induced modulation of arterial stiffness.

  5. Constant and variable stiffness and damping of the leg joints in human hopping.

    PubMed

    Rapoport, Svetlana; Mizrahi, Joseph; Kimmel, Eitan; Verbitsky, Oleg; Isakov, Eli

    2003-08-01

    The present study deals with the stiffness and damping profiles of the leg joints during the ground-contact phase of hopping. A two-dimensional (sagittal plane) jumping model, consisting of four linked rigid segments and including the paired feet, shanks, thighs, and the head-arms-trunk segment, was developed. The segments were interconnected by damped torsional springs, representing the action of the muscles, tendons and ligaments across the joint and of the other joint tissues. A regressive function was used to express stiffness and damping, and included second-order dependence on angle and first-order dependence on angular velocity. By eliminating redundancies in the numerical solution using multicollinearity diagnostic algorithms, the model results revealed that the correct and sufficient nonlinearity for the joint stiffness is of the first order. Damping was found negligible. The stiffness profiles obtained were bell-shaped with a maximum near midstance and nonzero edge values. In predicting the joint moments, the obtained variable joint stiffnesses provided a closer agreement compared to a constant stiffness model. The maximal stiffness was found to be in linear correlation with the initial stiffness in each joint, providing support to the of muscles' preactivation strategy during the flight phase of hopping. All stiffnesses increased with increasing hopping frequency. The model presented provides an effective tool for future designing of artificial legs and robots and for the development of more accurate control strategies.

  6. Elevation of serum urokinase plasminogen activator receptor and liver stiffness in postoperative biliary atresia

    PubMed Central

    Udomsinprasert, Wanvisa; Honsawek, Sittisak; Jirathanathornnukul, Napaphat; Chongsrisawat, Voranush; Poovorawan, Yong

    2016-01-01

    AIM To investigate serum urokinase-type plasminogen activator receptor (uPAR) and liver stiffness in biliary atresia (BA) and examine the correlation of circulating uPAR, liver stiffness, and clinical outcomes in postoperative BA children. METHODS Eighty-five postKasai BA children and 24 control subjects were registered. Circulating uPAR was measured using enzyme-linked immunosorbent essay. Liver stiffness was analyzed using transient elastography. RESULTS BA children had significantly greater circulating uPAR and liver stiffness scores than control subjects (P < 0.001). Circulating uPAR and liver stiffness were substantially higher in jaundiced BA children than non-jaundiced BA children (P < 0.001). In addition, circulating uPAR was positively associated with serum aspartate aminotransferase (r = 0.507, P < 0.001), alanine aminotransferase (r = 0.364, P < 0.001), total bilirubin (r = 0.559, P < 0.001), alkaline phosphatase (r = 0.325, P < 0.001), and liver stiffness scores (r = 0.508, P < 0.001). CONCLUSION Circulating uPAR and liver stiffness values were greater in BA children than healthy controls. The increased circulating uPAR was associated with liver dysfunction in BA. As a consequence, serum uPAR and liver stiffness may be used as noninvasive biomarkers indicating the progression of liver fibrosis in postKasai BA. PMID:27957246

  7. Experimental stiffness of tapered bore seals

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1985-01-01

    The stiffness of tapered-bore ring seals was measured with air as the sealed fluid. Static stiffness agreed fairly well with results of a previous analysis. Cross-coupled stiffness due to shaft rotation was much less than predicted. It is suggested that part of the disparity may be due to simplifying assumptions in the analysis; however, these do not appear to account for the entire difference observed.

  8. Gradual stiffness versus magnetic imaging-guided variable stiffness colonoscopes: A randomized noninferiority trial

    PubMed Central

    Wiig, Håvard; Hasund, Audun; Matre, Jon; Holme, Øyvind; Noraberg, Geir; Løberg, Magnus; Kalager, Mette; Adami, Hans-Olov; Bretthauer, Michael

    2016-01-01

    Background Colonoscopes with gradual stiffness have recently been developed to enhance cecal intubation. Objective We aimed to determine if the performance of gradual stiffness colonoscopes is noninferior to that of magnetic endoscopic imaging (MEI)-guided variable stiffness colonoscopes. Methods Consecutive patients were randomized to screening colonoscopy with Fujifilm gradual stiffness or Olympus MEI-guided variable stiffness colonoscopes. The primary endpoint was cecal intubation rate (noninferiority limit 5%). Secondary endpoints included cecal intubation time. We estimated absolute risk differences with 95% confidence intervals (CIs). Results We enrolled 475 patients: 222 randomized to the gradual stiffness instrument, and 253 to the MEI-guided variable stiffness instrument. Cecal intubation rate was 91.7% in the gradual stiffness group versus 95.6% in the variable stiffness group. The adjusted absolute risk for cecal intubation failure was 4.3% higher in the gradual stiffness group than in the variable stiffness group (upper CI border 8.1%). Median cecal intubation time was 13 minutes in the gradual stiffness group and 10 minutes in the variable stiffness group (p < 0.001). Conclusions The study is inconclusive with regard to noninferiority because the 95% CI for the difference in cecal intubation rate between the groups crosses the noninferiority margin. (ClinicalTrials.gov identifier: NCT01895504).

  9. Analysis and Design of Variable Stiffness Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tatting, Brian F.; Guerdal, Zafer

    1998-01-01

    involve the nonlinear phenomenon of long tubes under bending. Though this scenario is not as applicable to fuselage structures as the previous problems, the mechanisms that produce the nonlinear effect are ideally suited to be controlled by the variable stiffness concept. This is due to the fact that the dominating influence for long cylinders under bending is the ovalization of the cross-section, which is governed mainly by the stiffness parameters of the cylindrical shell. Possible improvement of the critical buckling moments for these structures is investigated using either a circumferential or axial stiffness variation. For the circumferential case involving infinite length cylinders, it is found that slight improvements can be observed by designing structures that resist the cross-sectional deformation yet do not detract from the buckling resistance at the critical location. The results also indicate that buckling behavior is extremely dependent on cylinder length. This effect is most easily seen in the solution of finite length cylinders under bending that contain an axial stiffness variation. For these structures, the only mechanism that exhibits improved response are those that effectively shorten the length of the cylinder, thus reducing the cross-sectional deformation due to the forced restraint at the ends. It was found that the use of curvilinear fibers was not able to achieve this effect in sufficient degree to resist the deformation, but that ring stiffeners produced the desired response admirably. Thus, it is shown that the variable stiffness concept is most effective at improving the bending response of long cylinders through the use of a circumferential stiffness variation.

  10. Crumpling of a Stiff Tethered Membrane

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Timonen, J.; Karttunen, Mikko

    2004-12-01

    A first-principles numerical model for crumpling of a stiff tethered membrane is introduced. This model displays wrinkles, ridge formation, ridge collapse, and initiation of stiffness divergence. The amplitude and wavelength of the wrinkles and the scaling exponent of the stiffness divergence are consistent with both theory and experiment. Close to the stiffness divergence further buckling is hindered by the nonzero thickness of the membrane, and its elastic behavior becomes similar to that of dry granular media. No change in the distribution of contact forces can be observed at the crossover, implying that the network of ridges is then simultaneously a granular force-chain network.

  11. Resting Heart Rate and Aortic Stiffness in Normotensive Adults

    PubMed Central

    Logan, Jeongok G.

    2016-01-01

    Background and Objectives Large-artery stiffness is an independent predictor of cardiovascular disease (CVD), and carotid-femoral pulse wave velocity (cfPWV) is considered the gold standard measure of arterial stiffness. A resting heart rate is an easily measured vital sign that is also associated with CVD morbidity and mortality. Previous studies have reported the significant relationship of a resting heart rate with arterial stiffness as measured by cfPWV only in hypertensive subjects; their relationship in nonhypertensive subjects remains unknown. The present study, therefore, examined their relationship in normotensive subjects. Subjects and Methods In 102 healthy Korean Americans between ages 20 and 60 years, their resting heart rate was measured by an automated blood pressure measuring device after a 10 minute rest in the supine position. Arterial stiffness was measured by cfPWV using the SphygmoCor device. Results The mean resting heart rate of participants (mean age, 39.64 years; 59% women) was 61.91 bpm (standard deviation [SD], 9.62 bpm) and mean the cfPWV was 6.99 (SD, 1.14) m/s. A multiple regression analysis showed that a resting heart rate is a significant predictor of cfPWV after controlling for age, body mass index, and mean arterial pressure. For one bpm increase of resting heart rate, cfPWV increased approximately 0.02 m/s. Conclusion Our results suggest that a higher resting heart rate is independently associated with increased arterial stiffness as measured by cfPWV in normotensive adults. Arterial stiffness may explain the prognostic role of an individual's heart rate in cardiovascular morbidity and mortality. PMID:27826343

  12. Arterial Stiffness in Nonhypertensive Type 2 Diabetes Patients in Ghana

    PubMed Central

    Antwi, Daniel A.; Gyan, Ben

    2016-01-01

    Background. Increased arterial stiffness is an independent cardiovascular risk factor in diabetes patients and general population. However, the contribution of diabetes to arterial stiffness is often masked by coexistent obesity and hypertension. In this study, we assessed arterial stiffness in nonhypertensive, nonobese type 2 diabetes (T2DM) patients in Ghana. Methods. In case-control design, 166 nonhypertensive, nonobese participants, comprising 96 T2DM patients and 70 nondiabetes controls, were recruited. Peripheral and central blood pressure (BP) indices were measured, and arterial stiffness was assessed as aortic pulse wave velocity (PWVao), augmentation index (AIx), cardioankle vascular index (CAVI), and heart-ankle pulse wave velocity (haPWV). Results. With similar peripheral and central BP indices, T2DM patients had higher PWVao (8.3 ± 1 versus 7.8 ± 1.3, p = 0.044) and CAVI (7.9 ± 1.2 versus 6.9 ± 0.7, p = 0.021) than nondiabetic control. AIx and haPWV were similar between T2DM and nondiabetic controls. Multiple regression models showed that, in the entire study participants, the major determinants of PWVao were diabetes status, age, gender, systolic BP, and previous smoking status (β = 0.22, 0.36, 0.48, 0.21, and 0.25, resp.; all p < 0.05); the determinants of CAVI were diabetes status, age, BMI, heart rate, HbA1c, total cholesterol, HDL cholesterol, and previous smoking status (β = 0.21, 0.38, 0.2, 0.18, 0.24. 0.2, −0.19, and 0.2, resp.; all p < 0.05). Conclusion. Our findings suggest that nonhypertensive, nonobese T2DM patients have increased arterial stiffness without appreciable increase in peripheral and central pressure indices. PMID:27774104

  13. The effects of cycling shoe stiffness on forefoot pressure.

    PubMed

    Jarboe, Nathan Edward; Quesada, Peter M

    2003-10-01

    Plantar pressure data were recorded in two different shoe types to determine the effect of cycling shoe stiffness on peak plantar forefoot pressure in cyclists. Two pairs of shoes of the same size and manufacturer, identical except for outsole material and stiffness, were tested. Shoe stiffness measurements were collected under controlled conditions and in two different configurations using a dynamic hydraulic tensile testing machine. Measurements of plantar pressure were done using Pedar capacitive-based sensor insoles while subjects pedaled in a seated position at a controlled power output. Power output was set at a constant value of 400 W across all subjects by a magnetic resistance trainer unit. The pressure distribution in carbon-fiber-composite shoes during cycling was compared to cycling shoes made with plastic soles. Carbon fiber shoes presented stiffness values 42% and 550% higher than plastic shoes in longitudinal bending and three-point bending, respectively. The shoes made with carbon fiber produced peak plantar pressures 18% higher than those of plastic design (121 kPa vs. 103 kPa, p = .005). Competitive or professional cyclists suffering from metatarsalgia or ischemia should be especially careful when using carbon fiber cycling shoes because the shoes increase peak plantar pressure, which may aggravate these foot conditions.

  14. Measurement of Flying Qualities of a Dehavilland Mosquito F-8 Airplane (AAF No. 43-334960) I: Lateral and Directional Stability and Control Characteristics

    NASA Technical Reports Server (NTRS)

    Gray, W.E.; Talmage, D.B.; Crane, H.L.

    1945-01-01

    The data presented have no bearing on performance characteristics of airplane, which were considered exceptionally good in previous tests. Some of the undesirable features of lateral and directional stability and control characteristics of the F-8 are listed. Directional stability, with rudder fixed, did not sufficiently restrict aileron yaw; rudder control was inadequate during take-off and landing, and was insufficient to fly airplane with one engine; in clean condition, power of ailerons was slightly below minimum value specified; it was difficult to trim airplane in rough air.

  15. Nonparticipatory Stiffness in the Male Perioral Complex

    ERIC Educational Resources Information Center

    Chu, Shin-Ying; Barlow, Steven M.; Lee, Jaehoon

    2009-01-01

    Purpose: The objective of this study was to extend previous published findings in the authors' laboratory using a new automated technology to quantitatively characterize nonparticipatory perioral stiffness in healthy male adults. Method: Quantitative measures of perioral stiffness were sampled during a nonparticipatory task using a…

  16. Stiff person syndrome: a case report.

    PubMed

    Kelly, Patricia A; Kuberski, Carolyn

    2014-08-01

    The case report features a patient who had a diagnosis of a common type of breast cancer with an uncommon neurologic syndrome. She had extreme pain and progressive stiffness with cognitive and functional decline. This article includes the pathogenesis and treatment options for a rare, but treatable, autoimmune disorder of malignancy called stiff person syndrome.

  17. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena Marie

    2017-01-19

    Inspired by the spring-like action of biological legs, running-specific prostheses are designed to enable athletes with lower-limb amputations to run. Yet, manufacturer recommendations for prosthetic stiffness and height may not optimize running performance. Therefore, we investigated the effects of using different prosthetic configurations on the metabolic cost and biomechanics of running. Five athletes with bilateral transtibial amputations each performed fifteen trials on a force-measuring treadmill at 2.5 or 3.0 m/s. Athletes ran using each of three different prosthetic models (Freedom Catapult FX6, Össur Flex-Run, and Ottobock 1E90 Sprinter) with five combinations of stiffness categories (manufacturer recommended and ± 1) and heights (International Paralympic Committee's maximum competition height and ± 2 cm) while we measured metabolic rates and ground reaction forces. Overall, prosthetic stiffness (fixed effect (β)=0.036; p=0.008) but not height (p≥0.089) affected the net metabolic cost of transport; less stiff prostheses reduced metabolic cost. While controlling for prosthetic stiffness (kN/m), using the Flex-Run (β=-0.139; p=0.044) and 1E90 Sprinter prostheses (β=-0.176; p=0.009) reduced net metabolic costs by 4.3% to 4.9% compared to using the Catapult prostheses, respectively. The metabolic cost of running improved when athletes used prosthetic configurations that decreased peak horizontal braking ground reaction forces (β=2.786; p=0.001), stride frequencies (β=0.911; p<0.001), and leg stiffness values (β=0.053; p=0.009). Remarkably, athletes did not maintain overall leg stiffness across prosthetic stiffness conditions. Rather, the in-series prosthetic stiffness governed overall leg stiffness. The metabolic cost of running in athletes with bilateral transtibial amputations is influenced by prosthetic model and stiffness, but not height.

  18. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    SciTech Connect

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  19. Running in the real world: adjusting leg stiffness for different surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Louie, M.; Farley, C. T.

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

  20. Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG

    NASA Astrophysics Data System (ADS)

    Sun, Jinji; Wang, Chun'e.; Le, Yun

    2016-08-01

    To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB.

  1. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  2. Topology optimization under stochastic stiffness

    NASA Astrophysics Data System (ADS)

    Asadpoure, Alireza

    Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations

  3. PolyMUMPs MEMS device to measure mechanical stiffness of single cells in aqueous media

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Forbrigger, C.; Hubbard, T.

    2015-02-01

    A method of experimentally determining the mechanical stiffness of single cells by using differential displacement measurements in a two stage spring system is presented. The spring system consists of a known MEMS reference spring and an unknown cellular stiffness: the ratio of displacements is related to the ratio of stiffness. A polyMUMPs implementation for aqueous media is presented and displacement measurements made from optical microphotographs using a FFT based displacement method with a repeatability of ~20 nm. The approach was first validated on a MEMS two stage spring system of known stiffness. The measured stiffness ratios of control structures (i) MEMS spring systems and (ii) polystyrene microspheres were found to agree with theoretical values. Mechanical tests were then performed on Saccharomyces cerevisiae (Baker’s yeast) in aqueous media. Cells were placed (using a micropipette) inside MEMS measuring structures and compressed between two jaws using an electrostatic actuator and displacements measured. Tested cells showed stiffness values between 5.4 and 8.4 N m-1 with an uncertainty of 11%. In addition, non-viable cells were tested by exposing viable cells to methanol. The resultant mean cell stiffness dropped by factor of 3 × and an explicit discrimination between viable and non-viable cells based on mechanical stiffness was seen.

  4. Model-Based Estimation of Knee Stiffness

    PubMed Central

    Pfeifer, Serge; Vallery, Heike; Hardegger, Michael; Riener, Robert; Perreault, Eric J.

    2013-01-01

    During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step towards our ultimate goal of quantifying knee stiffness during gait. PMID:22801482

  5. Stiff substrates enhance cultured neuronal network activity.

    PubMed

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  6. Aortic Stiffness, Cerebrovascular Dysfunction, and Memory

    PubMed Central

    Cooper, Leroy L.; Mitchell, Gary F.

    2016-01-01

    Background Aortic stiffness is associated with cardiovascular and cerebrovascular events and cognitive decline. This mini-review focuses on relations of aortic stiffness with microvascular dysfunction and discusses the contribution of abnormal pulsatile hemodynamics to cerebrovascular damage and cognitive decline. We also provide a rationale for considering aortic stiffness as a putative and important contributor to memory impairment in older individuals. Summary Aging is associated with stiffening of the aorta but not the muscular arteries, which reduces wave reflection and increases the transmission of pulsatility into the periphery. Aortic stiffening thereby impairs a protective mechanism that shields the peripheral microcirculation from excessive pulsatility within downstream target organs. Beyond midlife, aortic stiffness increases rapidly and exposes the cerebral microcirculation to abnormal pulsatile mechanical forces that are associated with microvascular damage and remodeling in the brain. Aortic stiffening and high-flow pulsatility are associated with alterations in the microvasculature of the brain; however, a mechanistic link between aortic stiffness and memory has not been established. We showed that in a community-based sample of older individuals, cerebrovascular resistance and white matter hyperintensities - markers of cerebrovascular remodeling and damage - mediated the relation between higher aortic stiffness and lower performance on memory function tests. These data suggest that microvascular and white matter damage associated with excessive aortic stiffness contribute to impaired memory function with advancing age. Key Messages Increasing evidence suggests that vascular etiologies - including aortic stiffness and microvascular damage - contribute to memory impairment and the pathogenesis of dementia, including Alzheimer's disease. Interventions that reduce aortic stiffness may delay memory decline among older individuals. PMID:27752478

  7. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    PubMed Central

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (<0.6 deg; 140 ms) at the same time as the resulting torque response was recorded. The results show that increasing sway reduces ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0

  8. Characteristics of high-stiffness superconducting bearing

    SciTech Connect

    Okano, M.; Tamada, N.; Fuchino, S.; Ishii, I.

    1996-07-01

    Magnetic bearings using a high-Tc superconductor have been studied. Generally the bearing makes use of the pinning effects to get the levitation force. The stiffness of the bearing, however, is extremely low as compared with industrial-scale conventional one. To improve the bearing stiffness the authors propose a disc-type repulsive superconducting thrust bearing with a slit for the restraint of the flux. Both theoretical and experimental evaluation on the load performance was carried out, and it is clarified that the proposed superconducting bearing has higher stiffness.

  9. Liver stiffness is associated with monocyte activation in HIV-infected Ugandans without viral hepatitis.

    PubMed

    Redd, Andrew D; Wendel, Sarah K; Grabowski, Mary K; Ocama, Ponsiano; Kiggundu, Valerian; Bbosa, Francis; Boaz, Iga; Balagopal, Ashwin; Reynolds, Steven J; Gray, Ronald H; Serwadda, David; Kirk, Gregory D; Quinn, Thomas C; Stabinski, Lara

    2013-07-01

    A high prevalence of liver stiffness, as determined by elevated transient elastography liver stiffness measurement, was previously found in a cohort of HIV-infected Ugandans in the absence of chronic viral hepatitis. Given the role of immune activation and microbial translocation in models of liver disease, a shared immune mechanism was hypothesized in the same cohort without other overt causes of liver disease. This study examined whether HIV-related liver stiffness was associated with markers of immune activation or microbial translocation (MT). A retrospective case-control study of subjects with evidence of liver stiffness as defined by a transient elastography stiffness measurement ≥9.3 kPa (cases=133) and normal controls (n=133) from Rakai, Uganda was performed. Cases were matched to controls by age, gender, HIV, hepatitis B virus (HBV), and highly active antiretroviral therapy (HAART) status. Lipopolysaccharide (LPS), endotoxin IgM antibody, soluble CD14 (sCD14), C-reactive protein (CRP), and D-dimer levels were measured. Conditional logistic regression was used to estimate adjusted matched odds ratios (adjMOR) and 95% confidence intervals. Higher sCD14 levels were associated with a 19% increased odds of liver stiffness (adjMOR=1.19, p=0.002). In HIV-infected individuals, higher sCD14 levels were associated with a 54% increased odds of having liver stiffness (adjMOR=1.54, p<0.001); however, the opposite was observed in HIV-negative individuals (adjMOR=0.57, p=0.001). No other biomarker was significantly associated with liver stiffness, and only one subject was found to have detectable LPS. Liver stiffness in HIV-infected Ugandans is associated with increased sCD14 indicative of monocyte activation in the absence of viral hepatitis or microbial translocation, and suggests that HIV may be directly involved in liver disease.

  10. Cockpit control system

    NASA Technical Reports Server (NTRS)

    Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa

    1993-01-01

    The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.

  11. An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper

    NASA Astrophysics Data System (ADS)

    Weber, F.; Boston, C.; Maślanka, M.

    2011-01-01

    This paper presents a new adaptive tuned mass damper (TMD) whose stiffness and damping can be tuned in real-time to changing frequencies of a target structure. The adaptive TMD consists of a tuned mass, a tuned passive spring and a magnetorheological (MR) damper. The MR damper is used to emulate controlled friction-viscous damping and controlled stiffness. The controlled positive or negative stiffness emulated by the MR damper works in parallel to the stiffness of the passive TMD spring. The resulting overall TMD stiffness can therefore be varied around the passive spring stiffness using the MR damper. Both the emulated stiffness and friction-viscous damping in the MR damper are controlled such that the resulting overall TMD stiffness and damping are adjusted according to Den Hartog's formulae. Simulations demonstrate that the adaptive TMD with a controlled MR damper provides the same reduction of steady state vibration amplitudes in the target structure as a passive TMD if the target structure vibrates at the nominal frequency. However, if the target structure vibrates at different frequencies, e.g. due to changed service loads, the adaptive TMD with a controlled MR damper outperforms the passive TMD by up to several 100% depending on the frequency change.

  12. Macroscopic Stiffness of Breast Tumors Predicts Metastasis

    PubMed Central

    Fenner, Joseph; Stacer, Amanda C.; Winterroth, Frank; Johnson, Timothy D.; Luker, Kathryn E.; Luker, Gary D.

    2014-01-01

    Mechanical properties of tumors differ substantially from normal cells and tissues. Changes in stiffness or elasticity regulate pro-metastatic behaviors of cancer cells, but effects have been documented predominantly in isolated cells or in vitro cell culture systems. To directly link relative stiffness of tumors to cancer progression, we combined a mouse model of metastatic breast cancer with ex vivo measurements of bulk moduli of freshly excised, intact tumors. We found a high, inverse correlation between bulk modulus of resected tumors and subsequent local recurrence and metastasis. More compliant tumors were associated with more frequent, larger local recurrences and more extensive metastases than mice with relatively stiff tumors. We found that collagen content of resected tumors correlated with bulk modulus values. These data establish that relative differences in tumor stiffness correspond with tumor progression and metastasis, supporting further testing and development of tumor compliance as a prognostic biomarker in breast cancer. PMID:24981707

  13. Exercise, Vascular Stiffness, and Tissue Transglutaminase

    PubMed Central

    Steppan, Jochen; Sikka, Gautam; Jandu, Simran; Barodka, Viachaslau; Halushka, Marc K.; Flavahan, Nicholas A.; Belkin, Alexey M.; Nyhan, Daniel; Butlin, Mark; Avolio, Alberto; Berkowitz, Dan E.; Santhanam, Lakshmi

    2014-01-01

    Background Vascular aging is closely associated with increased vascular stiffness. It has recently been demonstrated that decreased nitric oxide (NO)‐induced S‐nitrosylation of tissue transglutaminase (TG2) contributes to age‐related vascular stiffness. In the current study, we tested the hypothesis that exercise restores NO signaling and attenuates vascular stiffness by decreasing TG2 activity and cross‐linking in an aging rat model. Methods and Results Rats were subjected to 12 weeks of moderate aerobic exercise. Aging was associated with diminished phosphorylated endothelial nitric oxide synthase and phosphorylated vasodilator‐stimulated phosphoprotein abundance, suggesting reduced NO signaling. TG2 cross‐linking activity was significantly increased in old animals, whereas TG2 abundance remained unchanged. These alterations were attenuated in the exercise cohort. Simultaneous measurement of blood pressure and pulse wave velocity (PWV) demonstrated increased aortic stiffness in old rats, compared to young, at all values of mean arterial pressure (MAP). The PWV‐MAP correlation in the old sedentary and old exercise cohorts was similar. Tensile testing of the vessels showed increased stiffness of the aorta in the old phenotype with a modest restoration of mechanical properties toward the young phenotype with exercise. Conclusions Increased vascular stiffness during aging is associated with decreased TG2 S‐nitrosylation, increased TG2 cross‐linking activity, and increased vascular stiffness likely the result of decreased NO bioavailability. In this study, a brief period of moderate aerobic exercise enhanced NO signaling, attenuated TG cross‐linking activity, and reduced ex vivo tensile properties, but failed to reverse functional vascular stiffness in vivo, as measured by PWV. PMID:24721796

  14. Arterial Stiffness in Patients Taking Second-generation Antipsychotics

    PubMed Central

    Fındıklı, Ebru; Gökçe, Mustafa; Nacitarhan, Vedat; Camkurt, Mehmet Akif; Fındıklı, Hüseyin Avni; Kardaş, Selçuk; Şahin, Merve Coşgun; Karaaslan, Mehmet Fatih

    2016-01-01

    Objective That treatment with second-generation antipsychotics (SGAs) causes metabolic side effects and atherosclerosis in patients with schizophrenia and bipolar disorder (BD) is well-known. Increased arterial stiffness is an important marker of arteriosclerosis and has been identified as an independent risk factor for cardiovascular diseases. We measured pulse wave velocity (PWV) as a marker of arteriosclerosis in patients with schizophrenia and BD who use SGAs. Methods Patients and controls were collected from our psychiatry outpatient clinics or family medicine. Mental illness was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition. Mean age, gender, systolic and diastolic blood pressure, body mass index, Framingham risk score (FRS), etc. were determined. Simultaneous electrocardiography and pulse wave were recorded with an electromyography device. The photo-plethysmographic method was used to record the pulse wave. Inclusion criteria included use of SGAs for at least the last six months. Patients with diseases that are known to cause stiffness and the use of typical antipsychotics were excluded. Results Ninety-six subject (56 patients, 40 controls) were included in our study. There were 49 females, 47 males. Patients had schizophrenia (n=17) and BD (n=39). Their treatments were quetiapine (n=15), risperidone (n=13), olanzapine (n=15), and aripiprazole (n=13). Although differences in mean age, gender, and FRS in the patient and control groups were not statistically significant (p=1), PWV was greater in patients in the antipsychotic group (p=0.048). Conclusion This study supported the liability to stiffness in patients with schizophrenia and BD. Using SGAs may contribute to arterial stiffness in these patients. PMID:27776389

  15. OroSTIFF: Face-referenced measurement of perioral stiffness in health and disease

    PubMed Central

    Chu, Shin-Ying; Kieweg, Douglas; Lee, Jaehoon

    2010-01-01

    A new device and automated measurement technology known as OroSTIFF is described to characterize non-participatory perioral stiffness in healthy adults for eventual application to patients with orofacial movement disorders associated with neuromotor disease, traumatic injury, or congenital clefts of the upper lip. Previous studies of perioral biomechanics required head stabilization for extended periods of time during measurement which precluded sampling patients with involuntary body/head movements (dyskinesias), or pediatric subjects. The OroSTIFF device is face-referenced and avoids the complications associated with head-restraint. Supporting data of non-participatory perioral tissue stiffness using OroSTIFF are included from 10 male and 10 female healthy subjects. The OroSTIFF device incorporates a pneumatic glass air cylinder actuator instrumented for pressure, and an integrated subminiature displacement sensor to encode lip aperture. Perioral electromyograms were simultaneously sampled to confirm passive muscle state for the superior and inferior divisions of the orbicularis oris muscles. Perioral stiffness, derived as a quotient from resultant force (ΔF) and interangle span (ΔX), was modeled with multilevel regression techniques. Real-time calculation of the perioral stiffness function demonstrated a significant quadratic relation between imposed interangle stretch and resultant force. This stiffness growth function also differed significantly between males and females. This study demonstrates the OroSTIFF ‘proof-of-concept’ for cost-effective non-invasive stimulus generation and derivation of perioral stiffness in a group of healthy unrestrained adults, and a case study to illustrate the dose-dependent effects of Levodopa on perioral stiffness in an individual with advanced Parkinson’s disease who exhibited marked dyskinesia and rigidity. PMID:20185131

  16. Stiffness transition in anisotropic fiber nets

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Sunil Kumar, P. B.; Karttunen, Mikko

    2012-08-01

    We demonstrate the existence of a percolationlike stiffness transition in fiber networks with a bidisperse orientation distribution and with fiber densities clearly above the geometrical and the ordinary stiffness transition. The fibers are oriented parallel and perpendicular to a strain direction and they have a large fiber aspect ratio. The stiffness K of the fiber nets can be described by a scaling relation, K∝ταg[(ɛ-ɛc)/τ-β], where τ is the fraction of fibers parallel to strain. g is a scaling function that is roughly described by a power law g(x)∝xγ for stiffness above the transition and by a constant below the transition. The transition point is characterized by qualitative changes in the distribution of the elastic deformation energy of the fibers, the deformation mode of the fibers, the effective Poisson ratio of the nets, the distribution of elastic energy on fibers and cross links, and the ratio of elastic and viscous dissipation energy. This transition opens the possibility of extreme stiffness variations with minimal mesh manipulations in the vicinity of the transition (i.e., a stiffness gate). It is possible that this transition affects the mechanical behavior of the cytoskeleton in cells.

  17. Stiffness of Railway Soil-Steel Structures

    NASA Astrophysics Data System (ADS)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  18. Stiffness characteristics of airfoils under pulse loading

    NASA Astrophysics Data System (ADS)

    Turner, Kevin Eugene

    The turbomachinery industry continually struggles with the adverse effects of contact rubs between airfoils and casings. The key parameter controlling the severity of a given rub event is the contact load produced when the airfoil tips incur into the casing. These highly non-linear and transient forces are difficult to calculate and their effects on the static and rotating components are not well understood. To help provide this insight, experimental and analytical capabilities have been established and exercised through an alliance between GE Aviation and The Ohio State University Gas Turbine Laboratory. One of the early findings of the program is the influence of blade flexibility on the physics of rub events. The core focus of the work presented in this dissertation is to quantify the influence of airfoil flexibility through a novel modeling approach that is based on the relationship between applied force duration and maximum tip deflection. This relationship is initially established using a series of forward, non-linear and transient analyses in which simulated impulse rub loads are applied. This procedure, although effective, is highly inefficient and costly to conduct by requiring numerous explicit simulations. To alleviate this issue, a simplified model, named the pulse magnification model, is developed that only requires a modal analysis and a static analyses to fully describe how the airfoil stiffness changes with respect to load duration. Results from the pulse magnification model are compared to results from the full transient simulation method and to experimental results, providing sound verification for the use of the modeling approach. Furthermore, a unique and highly efficient method to model airfoil geometries was developed and is outlined in this dissertation. This method produces quality Finite Element airfoil definitions directly from a fully parameterized mathematical model. The effectiveness of this approach is demonstrated by comparing modal

  19. Effect of long-term isometric training on core/torso stiffness.

    PubMed

    Lee, Benjamin C Y; McGill, Stuart M

    2015-06-01

    Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  20. Summary of Lateral-Control Research

    DTIC Science & Technology

    1947-01-01

    Murray, Harry E.? and Erwin, Mary A.: Hinge Moments of Sealed- Internal-Balance Arrangements for Control Surfaces. I-Theo- retical Investigation. NSCA ...Ailerons for a Wing with a Full-Span Flap Consist- ing of an Inboard Fowler and an Outboard Retractable Split Flap. NSCA ACR, March 1941. SUMMARY OF...dimensional ................. NSCA conventional (approx. 14 per- m ._ ...... .20 ................ .13 1. 91 cent thick). Semispan wing

  1. Dense brushes of stiff polymers or filaments in fluid flow

    NASA Astrophysics Data System (ADS)

    Römer, F.; Fedosov, D. A.

    2015-03-01

    Dense filamentous brush-like structures are present in many biological interfacial systems (e.g., glycocalyx layer in blood vessels) to control their surface properties. Such structures can regulate the softness of a surface and modify fluid flow. In this letter, we propose a theoretical model which predicts quantitatively flow-induced deformation of a dense brush of stiff polymers or filaments, whose persistence length is larger or comparable to their contour length. The model is validated by detailed mesoscopic simulations and characterizes different contributions to brush deformation including hydrodynamic friction due to flow and steric excluded-volume interactions between grafted filaments. This theoretical model can be used to describe the effect of a stiff-polymer brush on fluid flow and to aid in the quantification of experiments.

  2. Conceptual study of the damping of large space structures using large-stroke adaptive stiffness cables

    NASA Technical Reports Server (NTRS)

    Thorwald, Gregory; Mikulas, Martin M., Jr.

    1992-01-01

    The concept of a large-stroke adaptive stiffness cable-device for damping control of space structures with large mass is introduced. The cable is used to provide damping in several examples, and its performance is shown through numerical simulation results. Displacement and velocity information of how the structure moves is used to determine when to modify the cable's stiffness in order to provide a damping force.

  3. Big bang nucleosynthesis with a stiff fluid

    SciTech Connect

    Dutta, Sourish; Scherrer, Robert J.

    2010-10-15

    Models that lead to a cosmological stiff fluid component, with a density {rho}{sub S} that scales as a{sup -6}, where a is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking {rho}{sub S10} and {rho}{sub R10} to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at T=10 MeV, we find that the change in the primordial helium abundance is well-fit by {Delta}Y{sub p}=0.00024({rho}{sub S10}/{rho}{sub R10}). The changes in the helium-4 abundance produced by additional radiation or by a stiff fluid are identical when these two components have equal density at a 'pivot temperature', T{sub *}, where we find T{sub *}=0.55 MeV. Current estimates of the primordial {sup 4}He abundance give the constraint on a stiff fluid energy density of {rho}{sub S10}/{rho}{sub R10}<30.

  4. Waves in geomaterials exhibiting negative stiffness behaviour

    NASA Astrophysics Data System (ADS)

    Esin, Maxim; Dyskin, Arcady; Pasternak, Elena

    2016-04-01

    Negative stiffness denotes the type of material behaviour when the force applied to the body decreases the body's deformation increases. Some geomaterials, for instance, rocks, demonstrate behaviour of this type at certain loads: during the compression tests the loading curves exhibit descending branch (post-peak softening). One of the possible mechanisms of the negative stiffness appearance in geomaterials is rotation of non-spherical grains. It is important to emphasize that in this case the descending branch may be reversible given that the testing machine is stiff enough (in general case it means an importance of boundary conditions). Existence of geomaterials with a negative modulus associated with rotations may have significant importance. In particular, important is understanding of the wave propagation in such materials. We study the stability of geomaterials with negative stiffness inclusions and wave propagation in it using two approaches: Cosserat continuum and discrete mass-spring models. In both cases we consider the rotational degrees of freedom in addition to the conventional translational ones. We show that despite non positiveness of the energy the materials with negative stiffness elements can be stable if certain conditions are met. In the case of Cosserat continuum the Cosserat shear modulus (the modulus relating the non-symmetrical part of shear stress and internal rotations) is allowed to assume negative values as long as its value does not exceed the value of the standard (positive) shear modulus. In the case of discrete mass-spring systems (with translational and rotational springs) the concentration of negative stiffness springs and the absolute values of negative spring stiffness are limited. The critical concentration when the system loses stability and the amplitude of the oscillations tends to infinity is equal to 1/2 and 3/5 for two- and three-dimensional cases respectively.

  5. Medial Tibiofemoral-Joint Stiffness in Males and Females Across the Lifespan.

    PubMed

    Aronson, Patricia; Rijke, Arie; Hertel, Jay; Ingersoll, Christopher D

    2014-02-12

    Context : Analyzing ligament stiffness between males and females at 3 maturational stages across the lifespan may provide insight into whether changes in ligament behavior with aging may contribute to joint laxity. Objective : To compare the stiffness of the medial structures of the tibiofemoral joint and the medial collateral ligament to determine if there are differences at 3 distinct ages and between the sexes. Design : Cross-sectional study. Setting : Laboratory. Patients or Other Participants : A total of 108 healthy and physically active volunteers with no previous knee surgery, no knee injury, and no use of exogenous hormones in the past 6 months participated. They were divided into 6 groups based on sex and age (8-10, 18-40, 50-75 years). Main Outcome Measure(s) : Ligament stiffness of the tibiofemoral joint was measured with an arthrometer in 0° and 20° of tibiofemoral-joint flexion. The slope values of the force-strain line that represents stiffness of the medial tibiofemoral joint at 0° and the medial collateral ligament at 20° of flexion were obtained. Results : When height and mass were controlled, we found a main effect (P < .001) for age group: the 8- to 10-year olds were less stiff than both the 18- to 40- and the 50- to 75-year-old groups. No effects of sex or tibiofemoral-joint position on stiffness measures were noted when height and mass were included as covariates. Conclusions : Prepubescent medial tibiofemoral-joint stiffness was less than postpubescent knee stiffness. Medial tibiofemoral-joint stiffness was related to height and mass after puberty in men and women.

  6. Medial Tibiofemoral-Joint Stiffness in Males and Females Across the Lifespan

    PubMed Central

    Aronson, Patricia; Rijke, Arie; Hertel, Jay; Ingersoll, Christopher D.

    2014-01-01

    Context: Analyzing ligament stiffness between males and females at 3 maturational stages across the lifespan may provide insight into whether changes in ligament behavior with aging may contribute to joint laxity. Objective: To compare the stiffness of the medial structures of the tibiofemoral joint and the medial collateral ligament to determine if there are differences at 3 distinct ages and between the sexes. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: A total of 108 healthy and physically active volunteers with no previous knee surgery, no acute knee injury, and no use of exogenous hormones in the past 6 months participated. They were divided into 6 groups based on sex and age (8–10, 18–40, 50–75 years). Main Outcome Measure(s): Ligament stiffness of the tibiofemoral joint was measured with an arthrometer in 0° and 20° of tibiofemoral-joint flexion. The slope values of the force-strain line that represents stiffness of the medial tibiofemoral joint at 0° and the medial collateral ligament at 20° of flexion were obtained. Results: When height and mass were controlled, we found a main effect (P < .001) for age group: the 8- to 10-year olds were less stiff than both the 18- to 40- and the 50- to 75-year-old groups. No effects of sex or tibiofemoral-joint position on stiffness measures were noted when height and mass were included as covariates. Conclusions: Prepubescent medial tibiofemoral-joint stiffness was less than postpubescent knee stiffness. Medial tibiofemoral-joint stiffness was related to height and mass after puberty in men and women. PMID:24955624

  7. Post-traumatic knee stiffness: surgical techniques.

    PubMed

    Pujol, N; Boisrenoult, P; Beaufils, P

    2015-02-01

    Post-traumatic knee stiffness and loss of range of motion is a common complication of injuries to the knee area. The causes of post-traumatic knee stiffness can be divided into flexion contractures, extension contractures, and combined contractures. Post-traumatic stiffness can be due to the presence of dense intra-articular adhesions and/or fibrotic transformation of peri-articular structures. Various open and arthroscopic surgical treatments are possible. A precise diagnosis and understanding of the pathology is mandatory prior to any surgical treatment. Failure is imminent if all pathologies are not addressed correctly. From a general point of view, a flexion contracture is due to posterior adhesions and/or anterior impingement. On the other hand, extension contractures are due to anterior adhesions and/or posterior impingement. This overview will describe the different modern surgical techniques for treating post-traumatic knee stiffness. Any bony impingements must be treated before soft tissue release is performed. Intra-articular stiff knees with a loss of flexion can be treated by an anterior arthroscopic arthrolysis. Extra-articular pathology causing a flexion contracture can be treated by open or endoscopic quadriceps release. Extension contractures can be treated by arthroscopic or open posterior arthrolysis. Postoperative care (analgesia, rehabilitation) is essential to maintaining the range of motion obtained intra-operatively.

  8. [Stiff-person syndrome and related autoantibodies].

    PubMed

    Tomioka, Ryo; Tanaka, Keiko

    2013-04-01

    Central nervous system hyperexcitability disorders, known as stiff-man/person syndrome (SPS), are thought to be related to the regulatory disturbance of inhibitory synaptic transmission of motor neurons in the brainstem and spinal cord. SPS is characterized by stiffness and spasms of the axis and limbs and is divided into two clinical subgroups: classic SPS, which affects the lumbar, trunk, and proximal limb muscles, and SPS-plus syndrome. The latter comprises (1) the stiff-limb subtype, in which symptom is limited to the lower limbs; (2) jerking stiff-man syndrome, characterized by chronically progressive stiffness and myoclonus; and (3) acute-onset and progressive encephalomyelitis with rigidity and myoclonus. Almost 80% of patients with classic SPS harbor autoantibodies against glutamic acid decarboxylase 65 (GAD65). In approximately 30-40% of patients, SPS accompanies type I diabetes, and anti-GAD65 antibodies are detected frequently in type I diabetes. However, the antibody-recognizing epitopes might be different between SPS and diabetes. Other autoantibodies against glycine receptor α1 (12% of patients with SPS) and GABA(A)-receptor associated protein (70% of patients with SPS) have been reported. In paraneoplastic SPS, anti-amphiphysin antibodies have been shown in patients with breast cancer or small cell lung cancer. One case of mediastinal tumor with anti-gephyrin antibodies has also been reported. However, the roles of these autoantibodies in the pathomechanisms of SPS have not yet been elucidated.

  9. Analytically optimal parameters of dynamic vibration absorber with negative stiffness

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu

    2017-02-01

    In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.

  10. Effects of safflower seed extract on arterial stiffness.

    PubMed

    Suzuki, Katsuya; Tsubaki, Shigekazu; Fujita, Masami; Koyama, Naoto; Takahashi, Michio; Takazawa, Kenji

    2010-11-03

    Safflower seed extract (SSE) contains characteristic polyphenols and serotonin derivatives (N-( p-coumaroyl) serotonin and N-feruloylserotonin), which are reported to inhibit oxidation of low-density lipoprotein (LDL), formation of atherosclerotic plaques, and improve arterial stiffness as assessed by pulse wave analysis in animal models. The effects of long-term supplementation with SSE on arterial stiffness in human subjects were evaluated. This doubleblind, placebo-controlled study was conducted in 77 males (35-65 years) and 15 postmenopausal females (55-65 years) with high-normal blood pressure or mild hypertension who were not undergoing treatment. Subjects received SSE (70 mg/day as serotonin derivatives) or placebo for 12 weeks, and pulse wave measurements, ie, second derivative of photoplethysmogram (SDPTG), augmentation index, and brachial-ankle pulse wave velocity (baPWV) were conducted at baseline, and at weeks 4, 8, and 12. Vascular age estimated by SDPTG aging index improved in the SSE-supplemented group when compared with the placebo group at four (P = 0.0368) and 12 weeks (P = 0.0927). The trend of augmentation index reduction (P = 0.072 versus baseline) was observed in the SSE-supplemented group, but reduction of baPWV by SSE supplementation was not observed. The SSE-supplemented group also showed a trend towards a lower malondialdehyde-modified-LDL autoantibody titer at 12 weeks from baseline. These results suggest long-term ingestion of SSE in humans could help to improve arterial stiffness.

  11. Dynamic stiffness model of spherical parallel robots

    NASA Astrophysics Data System (ADS)

    Cammarata, Alessandro; Caliò, Ivo; D`Urso, Domenico; Greco, Annalisa; Lacagnina, Michele; Fichera, Gabriele

    2016-12-01

    A novel approach to study the elastodynamics of Spherical Parallel Robots is described through an exact dynamic model. Timoshenko arches are used to simulate flexible curved links while the base and mobile platforms are modelled as rigid bodies. Spatial joints are inherently included into the model without Lagrangian multipliers. At first, the equivalent dynamic stiffness matrix of each leg, made up of curved links joined by spatial joints, is derived; then these matrices are assembled to obtain the Global Dynamic Stiffness Matrix of the robot at a given pose. Actuator stiffness is also included into the model to verify its influence on vibrations and modes. The latter are found by applying the Wittrick-Williams algorithm. Finally, numerical simulations and direct comparison to commercial FE results are used to validate the proposed model.

  12. Electrochemical stiffness in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  13. Contact stiffness and damping identification for hardware-in-the-loop contact simulator with measurement delay compensation

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Sun, Qiao

    2016-06-01

    The hardware-in-the-loop (HIL) contact simulator is to simulate the contact process of two flying objects in space. The contact stiffness and damping are important parameters used for the process monitoring, compliant contact control and force compensation control. In this study, a contact stiffness and damping identification approach is proposed for the HIL contact simulation with the force measurement delay. The actual relative position of two flying objects can be accurately measured. However, the force measurement delay needs to be compensated because it will lead to incorrect stiffness and damping identification. Here, the phase lead compensation is used to reconstruct the actual contact force from the delayed force measurement. From the force and position data, the contact stiffness and damping are identified in real time using the recursive least squares (RLS) method. The simulations and experiments are used to verify that the proposed stiffness and damping identification approach is effective.

  14. A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction

    NASA Astrophysics Data System (ADS)

    Yang, J.; Sun, S. S.; Du, H.; Li, W. H.; Alici, G.; Deng, H. X.

    2014-10-01

    Magneto-rheological elastomers (MREs) have attracted notable credits in the development of smart isolators and absorbers due to their controllable stiffness and damping properties. For the purpose of mitigating unwanted structural and/or machinery vibrations, the traditional MRE-based isolators have been generally proven effective because the MR effect can increase the stiffness when the magnetic field is strengthened. This study presents a novel MRE isolator that experienced reduced stiffness when the applied current was increased. This innovative work was accomplished by applying a hybrid magnet (electromagnet and permanent magnets) onto a multilayered MRE structure. To characterise this negative changing stiffness concept, a multilayered MRE isolator with a hybrid magnet was first designed, fabricated and then tested to measure its properties. An obvious reduction of the effective stiffness and natural frequency of the proposed MRE isolator occurred when the current was continuously adjusted. This device could also work as a conventional MRE isolator as its effective stiffness and natural frequency also increased when a negative current was applied. Further testing was carried out on a one-degree-of-freedom system to assess how effectively this device could isolate vibration. In this experiment, two cases were considered; in each case, the vibration of the primary system was obviously attenuated under ON-OFF control logic, thus demonstrating the feasibility of this novel design as an alternative adaptive vibration isolator.

  15. An analysis on muscle tone and stiffness during sling exercise on static prone position

    PubMed Central

    Kim, Jeong-Ja

    2016-01-01

    [Purpose] The purpose of this study was to examine changes in the muscle tone and stiffness of the lumbar region while individuals adopted the static prone position using sling suspension. [Subjects and Methods] The subjects were 30 healthy women in their 20s. The muscle tone and stiffness of the upper and lower lumbar regions of the sling suspension group and a control group were measured using myotonmetory as they maintained the static prone positon. [Results] The sling suspension group showed statistically significant declines in the muscle tone and stiffness of the upper lumbar region 5–10 min after adopting the initial prone position. They also showed statistically significant declines in the muscle tone and stiffness of the lower lumbar region immediately after being suspended in the slings and a statistically significant decline in the muscle tone of the lower lumbar region 5–10 min after adopting the initial prone position during which the sling suspension was applied. In contrast, the muscle tone and stiffness of the lumbar region of the control group increased while maintaining the static prone position. [Conclusion] The static prone position performed on a treatment table using sling suspension can be an effective intervention for reducing the muscle tone and stiffness of the lumbar region. PMID:28174469

  16. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Cazzolato, Benjamin; Robertson, William S. P.; Zander, Anthony

    2015-12-01

    In laboratories and high-tech manufacturing applications, passive vibration isolators are often used to isolate vibration sensitive equipment from ground-borne vibrations. However, in traditional passive isolation devices, where the payload weight is supported by elastic structures with finite stiffness, a design trade-off between the load capacity and the vibration isolation performance is unavoidable. Low stiffness springs are often required to achieve vibration isolation, whilst high stiffness is desired for supporting payload weight. In this paper, a novel design of a six degree of freedom (six-dof) vibration isolator is presented, as well as the control algorithms necessary for stabilising the passively unstable maglev system. The system applies magnetic levitation as the payload support mechanism, which realises inherent quasi-zero stiffness levitation in the vertical direction, and zero stiffness in the other five dofs. While providing near zero stiffness in multiple dofs, the design is also able to generate static magnetic forces to support the payload weight. This negates the trade-off between load capacity and vibration isolation that often exists in traditional isolator designs. The paper firstly presents the novel design concept of the isolator and associated theories, followed by the mechanical and control system designs. Experimental results are then presented to demonstrate the vibration isolation performance of the proposed system in all six directions.

  17. Elucidating the role of matrix stiffness in 3D cell migration and remodeling.

    PubMed

    Ehrbar, M; Sala, A; Lienemann, P; Ranga, A; Mosiewicz, K; Bittermann, A; Rizzi, S C; Weber, F E; Lutolf, M P

    2011-01-19

    Reductionist in vitro model systems which mimic specific extracellular matrix functions in a highly controlled manner, termed artificial extracellular matrices (aECM), have increasingly been used to elucidate the role of cell-ECM interactions in regulating cell fate. To better understand the interplay of biophysical and biochemical effectors in controlling three-dimensional cell migration, a poly(ethylene glycol)-based aECM platform was used in this study to explore the influence of matrix cross-linking density, represented here by stiffness, on cell migration in vitro and in vivo. In vitro, the migration behavior of single preosteoblastic cells within hydrogels of varying stiffness and susceptibilities to degradation by matrix metalloproteases was assessed by time-lapse microscopy. Migration behavior was seen to be strongly dependent on matrix stiffness, with two regimes identified: a nonproteolytic migration mode dominating at relatively low matrix stiffness and proteolytic migration at higher stiffness. Subsequent in vivo experiments revealed a similar stiffness dependence of matrix remodeling, albeit less sensitive to the matrix metalloprotease sensitivity. Therefore, our aECM model system is well suited to unveil the role of biophysical and biochemical determinants of physiologically relevant cell migration phenomena.

  18. Performance variation due to stiffness in a tuna-inspired flexible foil model.

    PubMed

    Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V

    2017-01-17

    Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.

  19. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    PubMed Central

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287

  20. Elastic-Stiffness Coefficients of Titanium Diboride

    PubMed Central

    Ledbetter, Hassel; Tanaka, Takaho

    2009-01-01

    Using resonance ultrasound spectroscopy, we measured the monocrystal elastic-stiffness coefficients, the Voigt Cij, of TiB2. With hexagonal symmetry, TiB2 exhibits five independent Cij: C11, C33, C44, C12, C13. Using Voigt-Reuss-Hill averaging, we converted these monocrystal values to quasiisotropic (polycrystal) elastic stiffnesses. Briefly, we comment on effects of voids. From the Cij, we calculated the Debye characteristic temperature, the Grüneisen parameter, and various sound velocities. Our study resolves the enormous differences between two previous reports of TiB2’s Cij. PMID:27504232

  1. The Development of a New Lateral-Control Arrangement

    NASA Technical Reports Server (NTRS)

    Baker, Paul S.

    1941-01-01

    Development work on an arrangement using ailerons and spoilers for lateral control was carried out by the Vought-Sikorsky Aircraft Division of the United Aircraft Corporation on a small commercial airplane in flight and on an airfoil in a wind tunnel. Spoiler hinge moments were reduced by aerodynamic balance. The arrangement was then built into an experimental airplane and further improvements were adopted as the result of flight and tunnel tests. The use of ailerons for lateral control with flaps up, spoilers with flaps full down, and gradual transition as the flaps are lowered was found to provide lateral control under the flight conditions for which they were best suited. The ailerons were of short span, permitting the use of long-span flaps, and were drooped to a relatively large angle when the flaps were deflected. A high maximum lift coefficient was thus attained. With large control deflections in the intermediate flap-angle range and spoiler effectiveness near neutral improved by "ventilating" the spoiler, the lateral control was satisfactory for the experimental airplane and was a definite improvement over that of a conventional control arrangement.

  2. Multi-layer beam with variable stiffness based on electroactive polymers

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Sorber, Jörg; Gerlach, Gerald

    2012-04-01

    The contribution describes a new kind of multi-layer beam with a variable stiffness based on electroactive polymers (EAP). These structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. Dielectric Elastomer foils from Danfoss PolyPower are used to control the beam's stiffness. The basic idea is to change the area moment of inertia of bending beams. These beams are built up as multi-layer stacks of thin metal or PMMA plates. Its internal structure can be changed by the use of the electroactive polymers for controlling the area moment of inertia. So it is possible to strongly change the stiffness of bending beams up to two orders of magnitude. Thereby, the magnitude of varying the stiffness can be scaled by the number of layers and the number and type of electroactive polymer elements used within the bending beam. The mechanisms for controlling the area moment of inertia are described in detail. Modeling of the mechanical structure including the EAP uses a pseudo rigid-body model, a strain energy model as well as a finite element analysis. The theoretical calculations are verified by experiments. The prototype described here consists of two structural layers. First results show the feasibility of the proposed structure for mechanical components with stiffness control.

  3. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  4. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  5. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  6. Monitoring the Bending Stiffness of DNA

    NASA Astrophysics Data System (ADS)

    Yuan, Chongli; Lou, Xiongwen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden

    2007-03-01

    In eukaryotic cells, the accessibility of genomic sequences provides an inherent regulation mechanism for gene expression through variations in bending stiffness encoded by the nucleic acid sequence. Cyclization of dsDNA is the prevailing method for determining DNA bending stiffness. Recent cyclization data for short dsDNA raises several fundamental questions about the soundness of the cyclization method, particularly in cases where the probability of highly bent DNA conformations is low. We herein evaluate the role of T4 DNA ligase in the cyclization reaction by inserting an environmental sensitive base analogue, 2-amino purine, to the DNA molecule. By monitoring the 2-AP fluorescence under standard cyclization conditions, it is found that in addition to trapping highly-bent cyclic DNA conformations, T4 DNA ligase enhances the apparent base pair flip out rate, thus exaggerating the measured flexibility. This result is further confirmed using fluorescence anisotropy experiments. We show that fluorescence resonance energy transfer (FRET) measurements on suitably labeled dsDNA provides an alternative approach for quantifying the bending stiffness of short fragments. DNA bending stiffness results obtained using FRET are compared with literature values.

  7. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  8. 49 CFR 213.359 - Track stiffness.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.359 Track stiffness. (a) Track shall have a sufficient vertical strength to withstand the maximum vehicle loads generated at maximum permissible train speeds, cant deficiencies and surface defects. For...

  9. Improved Stiff ODE Solvers for Combustion CFD

    NASA Astrophysics Data System (ADS)

    Imren, A.; Haworth, D. C.

    2016-11-01

    Increasingly large chemical mechanisms are needed to predict autoignition, heat release and pollutant emissions in computational fluid dynamics (CFD) simulations of in-cylinder processes in compression-ignition engines and other applications. Calculation of chemical source terms usually dominates the computational effort, and several strategies have been proposed to reduce the high computational cost associated with realistic chemistry in CFD. Central to most strategies is a stiff ordinary differential equation (ODE) solver to compute the change in composition due to chemical reactions over a computational time step. Most work to date on stiff ODE solvers for computational combustion has focused on backward differential formula (BDF) methods, and has not explicitly considered the implications of how the stiff ODE solver couples with the CFD algorithm. In this work, a fresh look at stiff ODE solvers is taken that includes how the solver is integrated into a turbulent combustion CFD code, and the advantages of extrapolation-based solvers in this regard are demonstrated. Benefits in CPU time and accuracy are demonstrated for homogeneous systems and compression-ignition engines, for chemical mechanisms that range in size from fewer than 50 to more than 7,000 species.

  10. Stiff directed lines in random media.

    PubMed

    Boltz, Horst-Holger; Kierfeld, Jan

    2013-07-01

    We investigate the localization of stiff directed lines with bending energy by a short-range random potential. We apply perturbative arguments, Flory scaling arguments, a variational replica calculation, and functional renormalization to show that a stiff directed line in 1+d dimensions undergoes a localization transition with increasing disorder for d>2/3. We demonstrate that this transition is accessible by numerical transfer matrix calculations in 1+1 dimensions and analyze the properties of the disorder-dominated phase in detail. On the basis of the two-replica problem, we propose a relation between the localization of stiff directed lines in 1+d dimensions and of directed lines under tension in 1+3d dimensions, which is strongly supported by identical free-energy distributions. This shows that pair interactions in the replicated Hamiltonian determine the nature of directed line localization transitions with consequences for the critical behavior of the Kardar-Parisi-Zhang equation. We support the proposed relation to directed lines via multifractal analysis, revealing an analogous Anderson transition-like scenario and a matching correlation length exponent. Furthermore, we quantify how the persistence length of the stiff directed line is reduced by disorder.

  11. [Anaesthetic management of Stiff Man syndrome].

    PubMed

    Marín, T; Hernando, D; Kinast, N; Churruca, I; Sabate, S

    2015-04-01

    Stiff Man syndrome or stiff-person syndrome is a rare autoimmune disorder. It is characterized by increased axial muscular tone and limb musculature, and painful spasms triggered by stimulus. The case is presented of a 44-year-old man with stiff-person syndrome undergoing an injection of botulinum toxin in the urethral sphincter under sedation. Before induction, all the surgical team were ready in order to minimise the anaesthetic time. The patient was monitored by continuous ECG, SpO2 and non-invasive blood pressure. He was induced with fractional dose of propofol 150 mg, fentanyl 50 μg and midazolam 1mg. Despite careful titration, the patient had an O2 saturation level of 90%,which was resolved by manual ventilation. There was no muscle rigidity or spasm during the operation. Post-operative recovery was uneventful and the patient was discharged 2 days later. A review of other cases is presented. The anaesthetic concern in patients with stiff-person syndrome is the interaction between the anaesthetic agents, the preoperative medication, and the GABA system. For a safe anaesthetic management, total intravenous anaesthesia is recommended instead of inhalation anaesthetics, as well as the close monitoring of the respiratory function and the application of the electrical nerve stimulator when neuromuscular blockers are used.

  12. Nonlinear model of space manipulator joint considering time-variant stiffness and backlash

    NASA Astrophysics Data System (ADS)

    Yang, Tianfu; Yan, Shaoze; Han, Zengyao

    2015-04-01

    Modeling of space manipulator joints has been studied for years but accurate positioning control is still unsatisfactory. One of the primary reasons is that, in the past researches, effects of the high-ratio reducers in the joints have usually been neglected. In this paper, a nonlinear dynamic model of the manipulator joint with planetary gear train transmission is developed by considering time-variant joint stiffness, backlash and reduction ratio. Based on the gear parameters and meshing phase relationship, the stiffness of the joint model is presented, in which the time-variant stiffness of 2K-H planetary gear train and the backlash are taken into consideration. The backlash effect is modeled as an alternate engagement mechanism, and the transmitted torque is defined as a dead zone function. This model is simulated on a two-link space manipulator system. The results show that the time-variant stiffness effect can be simplified as a constant value in most cases when other shafting parts are flexible, while if the total stiffness is approximate to the nonlinear stiffness, the positioning accuracy is reduced if neglecting the time-variant part. On the other hand, the backlash is the main source of positioning error and impact. Minimizing backlash is the most effective way to improve positioning accuracy and avoid the impact in the gearing system.

  13. Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes.

    PubMed

    Kuroda, Mito; Wada, Hiroki; Kimura, Yasuhisa; Ueda, Kazumitsu; Kioka, Noriyuki

    2017-03-01

    Extracellular matrix (ECM) stiffness regulates the lineage commitment of mesenchymal stem cells (MSCs). Although cells sense ECM stiffness through focal adhesions, how cells sense ECM stiffness and regulate ECM stiffness-dependent differentiation remains largely unclear. In this study, we show that the cytoskeletal focal adhesion protein vinculin plays a critical role in the ECM stiffness-dependent adipocyte differentiation of MSCs. ST2 mouse MSCs differentiate into adipocytes and osteoblasts in an ECM stiffness-dependent manner. We find that a rigid ECM increases the amount of cytoskeleton-associated vinculin and promotes the nuclear localization and activity of the transcriptional coactivator paralogs Yes-associated protein (YAP, also known as YAP1) and transcriptional coactivator with a PDZ-binding motif (TAZ, also known as WWTR1) (hereafter YAP/TAZ). Vinculin is necessary for enhanced nuclear localization and activity of YAP/TAZ on the rigid ECM but it does not affect the phosphorylation of the YAP/TAZ kinase LATS1. Furthermore, vinculin depletion promotes differentiation into adipocytes on rigid ECM, while it inhibits differentiation into osteoblasts. Finally, TAZ knockdown was less effective at promoting adipocyte differentiation in vinculin-depleted cells than in control cells. These results suggest that vinculin promotes the nuclear localization of transcription factor TAZ to inhibit the adipocyte differentiation on rigid ECM.

  14. Jumping Mechanism for Asteroid Rover with the Use of Resonance and Electrical Stiffness Switching

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoshiki; Mizuguchi, Kou; Kobayashi, Nobuyuki

    It is not easy for asteroid rover with wheels to move on the surface of asteroids because such an astral body has two special features. One feature is that there is no air and it induces vacuum metalizing of metal slide components. The other feature is that their quite small gravity induces bad controllability of rover with wheels which requires enough frictional force between ground and wheels. Therefore, it is preferable for rover to use jumping mechanism without metal slide component and with low energy consumption. In this paper, a jumping mechanism is proposed and the mechanism uses a energy which is stored by resonance of flexible part. However, simply giving resonance results in low height of jumping. Therefore, electrical stiffness switching system is implemented to realize a effective jumping. Electrical stiffness switching is realized by piezoelectric element and external capacitor which is connected to them. Two method of stiffness switching are introduced. One is stiffness hardening and the other is stiffness softening which solve the problem of stiffness hardening. To validate the proposed mechanisms, numerical analyses are carried out and feasibilities of application for asteroid rover are studied.

  15. Measuring the Characteristic Topography of Brain Stiffness with Magnetic Resonance Elastography

    PubMed Central

    Murphy, Matthew C.; Huston, John; Jack, Clifford R.; Glaser, Kevin J.; Senjem, Matthew L.; Chen, Jun; Manduca, Armando; Felmlee, Joel P.; Ehman, Richard L.

    2013-01-01

    Purpose To develop a reliable magnetic resonance elastography (MRE)-based method for measuring regional brain stiffness. Methods First, simulation studies were used to demonstrate how stiffness measurements can be biased by changes in brain morphometry, such as those due to atrophy. Adaptive postprocessing methods were created that significantly reduce the spatial extent of edge artifacts and eliminate atrophy-related bias. Second, a pipeline for regional brain stiffness measurement was developed and evaluated for test-retest reliability in 10 healthy control subjects. Results This technique indicates high test-retest repeatability with a typical coefficient of variation of less than 1% for global brain stiffness and less than 2% for the lobes of the brain and the cerebellum. Furthermore, this study reveals that the brain possesses a characteristic topography of mechanical properties, and also that lobar stiffness measurements tend to correlate with one another within an individual. Conclusion The methods presented in this work are resistant to noise- and edge-related biases that are common in the field of brain MRE, demonstrate high test-retest reliability, and provide independent regional stiffness measurements. This pipeline will allow future investigations to measure changes to the brain’s mechanical properties and how they relate to the characteristic topographies that are typical of many neurologic diseases. PMID:24312570

  16. Modeling and preliminary testing socket-residual limb interface stiffness of above-elbow prostheses.

    PubMed

    Sensinger, Jonathon W; Weir, Richard F ff

    2008-04-01

    The interface between the socket and residual limb can have a significant effect on the performance of a prosthesis. Specifically, knowledge of the rotational stiffness of the socket-residual limb (S-RL) interface is extremely useful in designing new prostheses and evaluating new control paradigms, as well as in comparing existing and new socket technologies. No previous studies, however, have examined the rotational stiffness of S-RL interfaces. To address this problem, a math model is compared to a more complex finite element analysis, to see if the math model sufficiently captures the main effects of S-RL interface rotational stiffness. Both of these models are then compared to preliminary empirical testing, in which a series of X-rays, called fluoroscopy, is taken to obtain the movement of the bone relative to the socket. Force data are simultaneously recorded, and the combination of force and movement data are used to calculate the empirical rotational stiffness of elbow S-RL interface. The empirical rotational stiffness values are then compared to the models, to see if values of Young's modulus obtained in other studies at localized points may be used to determine the global rotational stiffness of the S-RL interface. Findings include agreement between the models and empirical results and the ability of persons to significantly modulate the rotational stiffness of their S-RL interface a little less than one order of magnitude. The floor and ceiling of this range depend significantly on socket length and co-contraction levels, but not on residual limb diameter or bone diameter. Measured trans-humeral S-RL interface rotational stiffness values ranged from 24-140 Nm/rad for the four subjects tested in this study.

  17. Novel method to evaluate angular stiffness of prosthetic feet from linear compression tests.

    PubMed

    Adamczyk, Peter G; Roland, Michelle; Hahn, Michael E

    2013-10-01

    Lower limb amputee gait during stance phase is related to the angular stiffness of the prosthetic foot, which describes the dependence of ankle torque on angular progression of the shank. However, there is little data on angular stiffness of prosthetic feet, and no method to directly measure it has been described. The objective of this study was to derive and evaluate a method to estimate the angular stiffness of prosthetic feet using a simple linear compression test. Linear vertical compression tests were performed on nine configurations of an experimental multicomponent foot (with known component stiffness properties and geometry), which allowed for parametric adjustment of hindfoot and forefoot stiffness properties and geometries. Each configuration was loaded under displacement control at distinct pylon test angles. Angular stiffness was calculated as a function of the pylon angle, normal force, and center of pressure (COP) rate of change with respect to linear displacement. Population root mean square error (RMSE) between the measured and predicted angular stiffness values for each configuration of the multicomponent foot was calculated to be 4.1 N-m/deg, dominated by a bias of the estimated values above the predicted values of 3.8 ± 1.6 N-m/deg. The best-fit line to estimated values was approximately parallel to the prediction, with R2 = 0.95. This method should be accessible for a variety of laboratories to estimate angular stiffness of experimental and commercially available prosthetic feet with minimal equipment.

  18. Arterial stiffness is not increased in patients with short duration rheumatoid arthritis and ankylosing spondylitis.

    PubMed

    Dzieża-Grudnik, Anna; Sulicka, Joanna; Strach, Magdalena; Siga, Olga; Klimek, Ewa; Korkosz, Mariusz; Grodzicki, Tomasz

    2017-04-01

    Patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) have increased cardiovascular (CV) morbidity and mortality. Arterial stiffness is an independent predictor of CV events. The aim of the study was to assess arterial stiffness and inflammatory markers in patients with short duration chronic arthritis. We assessed carotid-femoral pulse wave velocity (PWV), augmentation index (AIx), traditional CV risk factors and inflammatory and endothelial markers in 71 chronic arthritis patients (RA and AS) and in 29 healthy controls. We did not find differences in PWV (for RA, AS and controls, respectively: 10 [8.8-10.9] versus 10.7 [9.1-11.8] versus 9.2 [8.3-11.4] m/s; p = .14) and AIx (for RA, AS and controls, respectively: 24.3 ± 11.5 versus 5.7 ± 12.4 versus 10 ± 12.8%; p = .22). Both groups of arthritis patients had active disease with significantly elevated inflammatory markers compared to controls. There were no correlations between endothelial and inflammatory markers and parameters of arterial stiffness in arthritis patients. When analyzing arthritis patients according to median of PVW, there were no significant differences in inflammatory and endothelial markers. We found that in patients with short duration active RA and AS arterial stiffness was not increased and furthermore, there was no association between markers of systemic inflammation and arterial stiffness.

  19. ON THE STIFFNESS OF DEMINERALIZED DENTIN MATRICES

    PubMed Central

    Ryou, Heonjune; Turco, Gianluca; Breschi, Lorenzo; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Resin bonding to dentin requires the use of self-etching primers or acid etching to decalcify the surface and expose a layer of collagen fibrils of the dentin matrix. Acid-etching reduces the stiffness of demineralized dentin from approximately 19 GPa to 1 MPa, requiring that it floats in water to prevent it from collapsing during bonding procedures. Several publications show that crosslinking agents like gluteraladehyde, carbodiimide or grape seed extract can stiffen collagen and improve resin-dentin bond strength. Objective The objective was to assess a new approach for evaluating the changes in stiffness of decalcified dentin by polar solvents and a collagen cross-linker. Methods Fully demineralized dentin beams and sections of etched coronal dentin were subjected to indentation loading using a cylindrical flat indenter in water, and after treatment with ethanol or ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The stiffness was measured as a function of strain and as a function of loading rate from 1 to 50 µm/sec. Results At a strain of 0.25% the elastic modulus of the fully demineralized dentin was approximately 0.20 MPa. It increased to over 0.90 MPa at strains of 1%. Exposure to ethanol caused an increase in elastic modulus of up to four times. Increasing the loading rate from 1 to 50 µm/sec caused an increase in the apparent modulus of up to three times in both water and ethanol. EDC treatment caused increases in the stiffness in fully demineralized samples and in acid-etched demineralized dentin surfaces in situ. Significance Changes in the mechanical behavior of demineralized collagen matrices can be measured effectively under hydration via indentation with cylindrical flat indenters. This approach can be used for quantifying the effects of bonding treatments on the properties of decalcified dentin after acid etching, as well as to follow the loss of stiffness over time due to enzymatic degradation. PMID:26747822

  20. Stiffness of lipid monolayers with phase coexistence.

    PubMed

    Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia

    2013-08-27

    The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.

  1. WILLIAMS SYNDROME PREDISPOSES TO VASCULAR STIFFNESS MODIFIED BY ANTI-HYPERTENSIVE USE AND COPY NUMBER CHANGES IN NCF1

    PubMed Central

    Kozel, Beth A.; Danback, Joshua; Waxler, Jessica; Knutsen, Russell H.; Fuentes, Lisa de las; Reusz, Gyorgy S.; Kis, Eva; Bhatt, Ami; Pober, Barbara R

    2014-01-01

    Williams syndrome, is caused by the deletion of 26-28 genes, including elastin, on human chromosome 7. Elastin insufficiency leads to the cardiovascular hallmarks of this condition, namely focal stenosis and hypertension. Extrapolation from the Eln+/− mouse suggests that affected persons may also have stiff vasculature, a risk factor for stroke, myocardial infarction and cardiac death. NCF1, one of the variably deleted Williams genes, is a component of the NAD(P)H oxidase complex and is involved in the generation of oxidative stress, making it an interesting candidate modifier for vascular stiffness. Using a case-control design, vascular stiffness was evaluated by pulse wave velocity in 77 Williams cases and matched controls. Cases had stiffer conducting vessels than controls (p<0.001), with increased stiffness observed in even the youngest Williams children. Pulse wave velocity increased with age at comparable rates in cases and controls and, although the degree of vascular stiffness varied, it was seen in both hypertensive and normotensive Williams participants. Use of anti-hypertension medication and extension of the Williams deletion to include NCF1 were associated with protection from vascular stiffness. These findings demonstrate that vascular stiffness is a primary vascular phenotype in Williams syndrome and that treatment with anti-hypertensives and/or agents inhibiting oxidative stress may be important in managing patients with this condition, potentially even those who are not overtly hypertensive. PMID:24126171

  2. Adaptive stiffness estimation for compliant robotic manipulation using stochastic disturbance models

    NASA Astrophysics Data System (ADS)

    Coutinho, Fernanda; Cortesão, Rui

    2011-08-01

    To achieve haptic telepresence and proper contact behaviour, the control action of a robotic manipulator must be designed with respect to contact parameters. Unfortunately, it is hard to know these parameters exactly in unknown or partly known environments. In this case, contact instability and poor dynamic accuracy can arise due to the presence of modelling errors in the control design. To overcome these problems, online estimation of the relevant contact parameters can be performed, with corresponding adaptation of control laws. This article presents an algorithm for online stiffness estimation for compliant robotic manipulation based on the extended state-space representation of the system and force signals. No position or velocity measurements are required. The algorithm, supported by theoretical analysis, uses offline data concerning several stiffness mismatch scenarios and, through a least square error analysis, computes an estimate of the stiffness value. Simulation results are presented, with fast and accurate estimation even in the presence of noise, highlighting the merits of the method.

  3. Effects of plyometric training on passive stiffness of gastrocnemii and the musculo-articular complex of the ankle joint.

    PubMed

    Fouré, A; Nordez, A; Guette, M; Cornu, C

    2009-12-01

    This study aimed to determine simultaneously the effects of plyometric training on the passive stiffness of the ankle joint musculo-articular complex, the gastrocnemii muscle-tendon complex (MTC) and the Achilles tendon in order to assess possible local adaptations of elastic properties. Seventeen subjects were divided into a trained (TG) group and a control (CG) group. They were tested before and after 8 weeks of a plyometric training period. The ankle joint range of motion (RoM), the global musculo-articular passive stiffness of the ankle joint, the maximal passive stiffness of gastrocnemii and the stiffness of the Achilles tendon during isometric plantar flexion were determined. A significant increase in the jump performances of TG relative to CG was found (squat jumps: +17.6%, P=0.008; reactive jumps: +19.8%, P=0.001). No significant effect of plyometric training was observed in the ankle joint RoM, musculo-articular passive stiffness of the ankle joint or Achilles tendon stiffness (P>0.05). In contrast, the maximal passive stiffness of gastrocnemii of TG increased after plyometric training relative to CG (+33.3%, P=0.001). Thus, a specific adaptation of the gastrocnemii MTC occurred after plyometric training, without affecting the global passive musculo-articular stiffness of the ankle joint.

  4. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis

    PubMed Central

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-01-01

    AIM To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. METHODS Liver stiffness was measured in sixty-eight rabbits with CCl4-induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points to assess liver function and degree of fibrosis. Thirty-one rabbits with complete data that underwent splenectomy at different stages of liver fibrosis were then included for dynamic monitoring of changes in liver stiffness by ElastPQ and liver function according to blood tests. RESULTS LSM by ElastPQ was significantly correlated with histologic fibrosis stage (r = 0.85, P < 0.001). The optimal cutoff values by ElastPQ were 11.27, 14.89, and 18.21 kPa for predicting minimal fibrosis, moderate fibrosis, and cirrhosis, respectively. Longitudinal monitoring of the changes in liver stiffness by ElastPQ showed that early splenectomy (especially F1) may delay liver fibrosis progression. CONCLUSION ElastPQ is an available, convenient, objective and non-invasive technique for assessing liver stiffness in rabbits with CCl4-induced liver fibrosis. In addition, liver stiffness measurements using ElastPQ can dynamically monitor the changes in liver stiffness in rabbit models, and in patients, after splenectomy. PMID:28028365

  5. A review on in situ stiffness adjustment methods in MEMS

    NASA Astrophysics Data System (ADS)

    de Laat, M. L. C.; Pérez Garza, H. H.; Herder, J. L.; Ghatkesar, M. K.

    2016-06-01

    In situ stiffness adjustment in microelectromechanical systems is used in a variety of applications such as radio-frequency mechanical filters, energy harvesters, atomic force microscopy, vibration detection sensors. In this review we provide designers with an overview of existing stiffness adjustment methods, their working principle, and possible adjustment range. The concepts are categorized according to their physical working principle. It is concluded that the electrostatic adjustment principle is the most applied method, and narrow to wide ranges in stiffness can be achieved. But in order to obtain a wide range in stiffness change, large, complex devices were designed. Mechanical stiffness adjustment is found to be a space-effective way of obtaining wide changes in stiffness, but these methods are often discrete and require large tuning voltages. Stiffness adjustment through stressing effects or change in Young’s modulus was used only for narrow ranges. The change in second moment of inertia was used for stiffness adjustment in the intermediate range.

  6. The passive stiffness of the wrist and forearm

    PubMed Central

    Charles, Steven K.; Zollo, Loredana; Guglielmelli, Eugenio; Hogan, Neville; Krebs, Hermano I.

    2012-01-01

    Because wrist rotation dynamics are dominated by stiffness (Charles SK, Hogan N. J Biomech 44: 614–621, 2011), understanding how humans plan and execute coordinated wrist rotations requires knowledge of the stiffness characteristics of the wrist joint. In the past, the passive stiffness of the wrist joint has been measured in 1 degree of freedom (DOF). Although these 1-DOF measurements inform us of the dynamics the neuromuscular system must overcome to rotate the wrist in pure flexion-extension (FE) or pure radial-ulnar deviation (RUD), the wrist rarely rotates in pure FE or RUD. Instead, understanding natural wrist rotations requires knowledge of wrist stiffness in combinations of FE and RUD. The purpose of this report is to present measurements of passive wrist stiffness throughout the space spanned by FE and RUD. Using a rehabilitation robot designed for the wrist and forearm, we measured the passive stiffness of the wrist joint in 10 subjects in FE, RUD, and combinations. For comparison, we measured the passive stiffness of the forearm (in pronation-supination), as well. Our measurements in pure FE and RUD agreed well with previous 1-DOF measurements. We have linearized the 2-DOF stiffness measurements and present them in the form of stiffness ellipses and as stiffness matrices useful for modeling wrist rotation dynamics. We found that passive wrist stiffness was anisotropic, with greater stiffness in RUD than in FE. We also found that passive wrist stiffness did not align with the anatomical axes of the wrist; the major and minor axes of the stiffness ellipse were rotated with respect to the FE and RUD axes by ∼20°. The direction of least stiffness was between ulnar flexion and radial extension, a direction used in many natural movements (known as the “dart-thrower's motion”), suggesting that the nervous system may take advantage of the direction of least stiffness for common wrist rotations. PMID:22649208

  7. Increased arterial stiffness in South Dakota American Indian children.

    PubMed

    Litz, Andrew M; Van Guilder, Gary P

    2016-02-01

    Arterial stiffness has been observed in white American obese children, yet there are no data in American Indian youth, who are affected disproportionately by the cardiovascular consequences of childhood obesity and its accompanying risk factors. The purpose of this study was to determine the association of childhood overweight-obesity and cardiometabolic risk factors with arterial stiffness in South Dakota white American and American Indian children. Thirty-six (28 white American and 8 American Indian) children (age, 13 ± 1 years; grades 6-8) from a rural South Dakota elementary and middle school were studied: 18 had a healthy weight (body mass index (BMI), 19.5 ± 1.9 kg/m(2)) and 18 were overweight-obese (BMI, 26.8 ± 3.5 kg/m(2)). Arterial stiffness was assessed using applanation tonometry via pulse wave analysis to determine carotid-radial pulse wave velocity (crPWV) and aortic augmentation index (AIx). There were no differences (P = 0.94) in crPWV between healthy weight (7.1 ± 1.4 m/s) and overweight-obese (7.3 ± 1.0 m/s) children, even after controlling for risk factors. However, crPWV was markedly elevated (P = 0.002) in overweight-obese American Indian children (7.7 ± 1.1 m/s) compared with white American children (6.8 ± 0.5 m/s), and these differences remained after controlling for blood pressure and more severe obesity in the American Indians. An obesity-matched subgroup analysis indicated that crPWV (7.7 ± 1.1 vs 6.8 ± 0.4 m/s) remained significantly greater in the American Indians (P = 0.03). There were no between-group differences in aortic AIx. These findings indicate an adverse influence of American Indian ethnicity on arterial stiffening in children with elevated adiposity. Arterial stiffness in American Indian children may accelerate early adulthood vascular disease.

  8. Chain stiffness of elastin-like polypeptides

    PubMed Central

    Fluegel, Sabine; Fischer, Karl; McDaniel, Jonathan R.; Chilkoti, Ashutosh; Schmidt, Manfred

    2010-01-01

    The hydrodynamic radii of a series of genetically engineered monodisperse elastin like polypeptides (ELP) was determined by dynamic light scattering in aqueous solution as function of molar mass. Utilizing the known theoretical expression for the hydrodynamic radius of wormlike chains, the Kuhn statistical segment length was determined to be lk = 2.1 nm, assuming that the length of the peptide repeat unit was b = 0.365 nm, a value derived for a coiled conformation of ELP. The resulting chain stiffness is significantly larger than previously reported by force-distance curve analysis (lk < 0.4 nm). The possible occurrence of superstructures, such as hairpins or helices, would reduce the contour length of the ELP, further increasing lk. Accordingly, the value lk = 2.1 nm reported here represents a lower limit of the chain stiffness for ELP. PMID:20961120

  9. [Stiff person syndrome--case report].

    PubMed

    Tomczykiewicz, Kazimierz; Pastuszak, Zanna; Staszewski, Jacek; Stepień, Adam

    2014-01-01

    Stiff person syndrome (SPS) is the rare disease and cause great inefficient. It is characterized by progressive stiffness muscles of trunk and the limbs on which the cramps of muscles overlap. In the electrophysiological investigation of the patients the involuntary discharge of motor unit potentials find and also simultaneous contraction agonistic and antagonistic muscles. SPS is presented with insulin-dependent diabetes mellitus often or is the symptom of the paraneoplastic syndrome. It is commonly associated with high anti-glutamic acid decarboxylaze (GAD) antibody titters in the serum of the blood of patients. Establishing the diagnosis can cause difficulties. We observed the patient in the last period about the atypical course the disease. The diagnosis was confirmed occurrences of the high titters of antibodies anti-GAD, the discharge of motor unit potential in paraspinal muscles in the rest and good response the treatment with diazepamem.

  10. Light weight high-stiffness stage platen

    DOEpatents

    Spence, Paul A.

    2001-01-01

    An improved light weight, stiff stage platen for photolithography is provided. The high stiffness of the stage platen is exemplified by a relatively high first resonant vibrational mode as determined, for instance, by finite element modal analysis. The stage platen can be employed to support a chuck that is designed to secure a mask or wafer. The stage platen includes a frame that has interior walls that define an interior region and that has exterior walls wherein the outer surfaces of at least two adjacent walls are reflective mirror surfaces; and a matrix of ribs within the interior region that is connected to the interior walls wherein the stage platen exhibits a first vibrational mode at a frequency of greater than about 1000 Hz.

  11. Electron profile stiffness and critical gradient studies

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P.; White, A. E.; Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.; Holland, C.; McKee, G. R.

    2012-08-15

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

  12. A new hybrid gyroscope with electrostatic negative stiffness tuning.

    PubMed

    Yang, Bo; Guan, Yumei; Wang, Shourong; Zou, Qi; Chu, Xian; Xue, Haiyan

    2013-05-30

    A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG) which combines the traditional Dynamically Tuned Gyroscope (DTG) with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.

  13. Stiff modes in spinvalve simulations with OOMMF

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Spyridon; Tsiantos, Vassilis; Ovaliadis, Kyriakos; Kechrakos, Dimitris; Donahue, Michael

    2016-04-01

    Micromagnetic simulations are an important tool for the investigation of magnetic materials. Micromagnetic software uses various techniques to solve differential equations, partial or ordinary, involved in the dynamic simulations. Euler, Runge-Kutta, Adams, and BDF (Backward Differentiation Formulae) are some of the methods used for this purpose. In this paper, spinvalve simulations are investigated. Evidence is presented showing that these systems have stiff modes, and that implicit methods such as BDF are more effective than explicit methods in such cases.

  14. Nonaffine rubber elasticity for stiff polymer networks.

    PubMed

    Heussinger, Claus; Schaefer, Boris; Frey, Erwin

    2007-09-01

    We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.

  15. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.

    PubMed

    Berger, J B; Wadley, H N G; McMeeking, R M

    2017-02-20

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  16. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    NASA Astrophysics Data System (ADS)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin–Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin–Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  17. Material Stiffness Effects on Neurite Alignment to Photopolymerized Micropatterns

    PubMed Central

    2015-01-01

    The ability to direct neurite growth into a close proximity of stimulating elements of a neural prosthesis, such as a retinal or cochlear implant (CI), may enhance device performance and overcome current spatial signal resolution barriers. In this work, spiral ganglion neurons (SGNs), which are the target neurons to be stimulated by CIs, were cultured on photopolymerized micropatterns with varied matrix stiffnesses to determine the effect of rigidity on neurite alignment to physical cues. Micropatterns were generated on methacrylate thin film surfaces in a simple, rapid photopolymerization step by photomasking the prepolymer formulation with parallel line–space gratings. Two methacrylate series, a nonpolar HMA-co-HDDMA series and a polar PEGDMA-co-EGDMA series, with significantly different surface wetting properties were evaluated. Equivalent pattern periodicity was maintained across each methacrylate series based on photomask band spacing, and the feature amplitude was tuned to a depth of 2 μm amplitude for all compositions using the temporal control afforded by the UV curing methodology. The surface morphology was characterized by scanning electron microscopy and white light interferometry. All micropatterned films adsorb similar amounts of laminin from solution, and no significant difference in SGN survival was observed when the substrate compositions were compared. SGN neurite alignment significantly increases with increasing material modulus for both methacrylate series. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). The ability to understand neurite response to engineered physical cues and mechanical properties such as matrix stiffness will allow the development of advanced biomaterials that direct de novo neurite growth to address the spatial signal resolution limitations of current neural prosthetics. PMID:25211120

  18. Adaptive 6-DoF Haptic Contact Stiffness Using the Gauss Map.

    PubMed

    Xu, Hongyi; Barbic, Jernej

    2016-04-25

    The penalty method is a popular approach to resolving contact in haptic rendering. In simulations involving complex distributed contact, there are, however, many simultaneous individual contacts. These contacts have normals pointing in several directions, many of which may be parallel, causing the stiffness effectively to add up in a temporally highly-varying and unpredictable way. Consequently, penalty-based simulation suffers from stability problems. Previous methods tackled this problem using implicit integration, or simply by scaling the stiffness down globally by the number of contacts. Although this provides some control over the net stiffness, it leads to large penetrations, as small contacts are effectively ignored when compared to larger contacts. We propose an adaptive stiffness method that employs the Gauss map of the normal distribution to ensure a spatially uniform and controllable stiffness in all the contact directions. Combined with virtual coupling saturation, the penetration can be kept shallow all the while haptic simulation remains stable, even for large-scale complex geometry with complex distributed 6-DoF contact scenarios. Our method is fast and can be applied to any penalty-based formulation between rigid objects. While used primarily for rigid objects, we also apply our method to reduced deformable objects. We demonstrate the effectiveness of our approach on several challenging 6-DoF haptic rendering scenarios, such as car engine and landing gear virtual assembly.

  19. Massage induces an immediate, albeit short-term, reduction in muscle stiffness.

    PubMed

    Eriksson Crommert, M; Lacourpaille, L; Heales, L J; Tucker, K; Hug, F

    2015-10-01

    Using ultrasound shear wave elastography, the aims of this study were: (a) to evaluate the effect of massage on stiffness of the medial gastrocnemius (MG) muscle and (b) to determine whether this effect (if any) persists over a short period of rest. A 7-min massage protocol was performed unilaterally on MG in 18 healthy volunteers. Measurements of muscle shear elastic modulus (stiffness) were performed bilaterally (control and massaged leg) in a moderately stretched position at three time points: before massage (baseline), directly after massage (follow-up 1), and following 3 min of rest (follow-up 2). Directly after massage, participants rated pain experienced during the massage. MG shear elastic modulus of the massaged leg decreased significantly at follow-up 1 (-5.2 ± 8.8%, P = 0.019, d = -0.66). There was no difference between follow-up 2 and baseline for the massaged leg (P = 0.83) indicating that muscle stiffness returned to baseline values. Shear elastic modulus was not different between time points in the control leg. There was no association between perceived pain during the massage and stiffness reduction (r = 0.035; P = 0.89). This is the first study to provide evidence that massage reduces muscle stiffness. However, this effect is short lived and returns to baseline values quickly after cessation of the massage.

  20. Wind tunnel research comparing lateral control devices, particularly at high angles of attack X : various control devices on a wing with a fixed auxiliary airfoil

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Noyes, Richard W

    1933-01-01

    Results are given of a series of systemic tests comparing lateral control devices with particular reference to their effectiveness at high angles of attack. These tests were made with two sizes of ordinary ailerons and different sizes of spoilers on a Clark Y wing model having a narrow auxiliary airfoil fixed ahead and above the leading edge, the chords of the main and auxiliary airfoils being parallel. In addition, the auxiliary airfoil itself was given angular deflection. The purpose was to provide rolling moments for lateral control. The tests were made in a 7 by 10 foot wind tunnel. They included both force and rotation tests to show the effect of the devices on the lift and drag characteristics of the wing and on the lateral stability characteristics, as well as lateral control. They showed that none of the aileron arrangements tried would give rolling control of an assumed satisfactory value at all angles of attack up to the stall. However, they would give satisfactory values, but at the expense of abnormally high deflections and very heavy hinge moments. The most effective combination of ailerons and spoilers gave satisfactory values of rolling moment at angles of attack below the stall, and the values did not fall off as rapidly above the stall as with ailerons alone. With an arrangement of this type having the proper relative proportions and linkage, it should be possible to obtain reasonably satisfactory yawing moments and control forces. Deflecting one-half of the auxiliary airfoil downward for the purpose of control gave strong favorable yawing moments at all angles of attack, but gave very small rolling moments at the low angles of attack.

  1. Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic Stiffness with Aging

    PubMed Central

    Qiu, Hongyu; Zhu, Yi; Sun, Zhe; Trzeciakowski, Jerome P.; Gansner, Meredith; Depre, Christophe; Resuello, Ranillo R.G.; Natividad, Filipinas F.; Hunter, William C.; Genin, Guy M.; Elson, Elliot L.; Vatner, Dorothy E.; Meininger, Gerald A.; Vatner, Stephen F.

    2010-01-01

    Rationale Increased aortic stiffness, an important feature of many vascular diseases, e.g., aging, hypertension, atherosclerosis and aortic aneurysms, is assumed due to changes in extracellular matrix (ECM). Objective We tested the hypothesis that the mechanisms also involve intrinsic stiffening of vascular smooth muscle cells (VSMCs). Methods and Results Stiffness was measured in vitro both by atomic force microscopy (AFM) and in a reconstituted tissue model, using VSMCs from aorta of young versus old male monkeys (Macaca fascicularis, n=7/group), where aortic stiffness increases by 200 % in vivo. The apparent elastic modulus was increased (P<0.05) in old VSMCs (41.7±0.5 kPa) versus young (12.8±0.3 kPa), but not after disassembly of the actin cytoskeleton with cytochalasin D. Stiffness of the VSMCs in the reconstituted tissue model was also higher (P<0.05) in old (23.3±3.0 kPa) than in young (13.7±2.4 kPa). Conclusions These data support the novel concept, not appreciated previously, that increased vascular stiffness with aging is due not only to changes in ECM, but also to intrinsic changes in VSMCs. PMID:20634486

  2. Flight investigation of the effect of control centering springs on the apparent spiral stability of a personal-owner airplane

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Hunter, Paul A; Hewes, Donald E; Whitten, James B

    1952-01-01

    Report presents the results of a flight investigation conducted on a typical high-wing personal-owner airplane to determine the effect of control centering springs on apparent spiral stability. Apparent spiral stability is the term used to describe the spiraling tendencies of an airplane in uncontrolled flight as affected both by the true spiral stability of the perfectly trimmed airplane and by out-of-trim control settings. Centering springs were used in both the aileron and rudder control systems to provide both a positive centering action and a means of trimming the airplane. The springs were preloaded so that when they were moved through neutral they produced a nonlinear force gradient sufficient to overcome the friction in the control surface at the proper setting for trim. The ailerons and rudder control surfaces did not have trim tabs that could be adjusted in flight.

  3. Cosmology with a stiff matter era

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2015-11-01

    We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and

  4. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells.

    PubMed

    Barcus, Craig E; Keely, Patricia J; Eliceiri, Kevin W; Schuler, Linda A

    2016-07-26

    Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.

  5. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells

    PubMed Central

    Barcus, Craig E.; Keely, Patricia J.; Eliceiri, Kevin W.; Schuler, Linda A.

    2016-01-01

    Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas. PMID:27344177

  6. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  7. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  8. Output feedback non-linear decoupled control synthesis and observer design for manoeuvring aircraft

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1980-01-01

    A study of the applicability of nonlinear decoupling theory to the design of control systems using output feedback for maneuvering aircraft is presented. The response variables chosen for decoupled control were angular velocity components along roll, pitch, and yaw axes, angle of attack (p), and angle of sideslip, using aileron, rudder, and elevator controls. An observer design for a class of nonlinear systems was presented and this method was used to estimate angle of attack and sideslip; an approximate observer was obtained by neglecting derivatives of p and aileron deflection angles and it was used in a simulation study. A simulation study showed that precise rapid combined lateral and longitudinal maneuvers can be performed; it was also demonstrated that a bank-angle-command outer loop could be designed for precise bank angles changes and simultaneous large lift maneuvers.

  9. Nonlinear effects on the stiffness of bolted joints

    SciTech Connect

    Lehnhoff, T.F.; Wistehuff, W.E.

    1996-02-01

    Axisymmetric finite element modeling of bolted joints was performed to show the effects of the magnitude and position of the external load, member thickness, and member material on the bolt and member stiffnesses. The member stiffness of the bolted joint was found to decrease 10 to 42 percent for the 20-mm to 8-mm bolts, respectively, as the magnitude of the external load was increased. Member stiffness appears to be independent of the radial location of the external load and increases as the member thickness decreases. Member stiffness decreased by a factor of 2.5 to 3 with a change in the member material from steel to aluminum. The cast iron members had a decrease in member stiffness of a factor of 1.7 to 1.9. The aluminum over cast iron combination had a member stiffness between the aluminum and cast iron alone. Bolt stiffnesses varied by less than two percent for changes in the magnitude of the external load for all bolt sizes and member materials, except for the 8-mm bolt where stiffness increased by approximately 11 percent. Changes in radial position of the external load had no effect on the bolt stiffness. A 3 to 13-percent decrease in the bolt stiffness was found when changing from steel to aluminum members. A 2 to 3-percent bolt stiffness decrease resulted when the member material was changed from steel to cast iron and similarly from steel to the aluminum over cast iron combination.

  10. Nanocharacterization of the negative stiffness of ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Alipour Skandani, A.; Ctvrtlik, R.; Al-Haik, M.

    2014-08-01

    Phase changing materials such as ferroelectric materials could exhibit negative stiffness under certain thermomechanical environments. This negative stiffness is embodied by a deflection along the opposite direction of the applied load. So far negative stiffness materials were investigated with the specific morphology of embedded inclusions in stiff matrices then the resulting composite is studied to measure the behavior of each constituent indirectly. In this study, a modified nonisothermal nanoindentation method is developed to measure the negative stiffness of triglycine sulfate single crystal directly. This in-situ method is intended to first demonstrate the feasibility of detecting the negative stiffness via nanoindentation and nanocreep of a ferroelectric material at its Curie point and then to quantify the negative stiffness without the need for embedding the crystal within a stiffer matrix.

  11. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1995-01-01

    During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.

  12. Blood pressure and arterial stiffness in obese children and adolescents.

    PubMed

    Hvidt, Kristian Nebelin

    2015-03-01

    Obesity, elevated blood pressure (BP) and arterial stiffness are risk factors for cardiovascular disease. A strong relationship exists between obesity and elevated BP in both children and adults. Obesity and elevated BP in childhood track into adult life increasing the risk of cardiovascular disease in adulthood. Ambulatory BP is the most precise measure to evaluate the BP burden, whereas carotid-femoral pulse wave velocity (cfPWV) is regarded as the gold standard for evaluating arterial (i.e. aortic) stiffness. These measures might contribute to a better understanding of obesity's adverse impact on the cardiovascular system, and ultimately a better prevention and treatment of childhood obesity. The overall aim of the present PhD thesis is to investigate arterial stiffness and 24-hour BP in obese children and adolescents, and evaluate whether these measures are influenced by weight reduction. The present PhD thesis is based on four scientific papers.  In a cross-sectional design, 104 severe obese children and adolescents with an age of 10-18 years were recruited when newly referred to the Children's Obesity Clinic, Holbæk University Hospital, and compared to 50 normal weighted age and gender matched control individuals. Ambulatory BP was measured, and cfPWV was investigated in two ways in respect to the distance measure of aorta; the previously recommended length - the so called subtracted distance, and the currently recommended length - the direct distance. In a longitudinal design, the obese patients were re-investigated after one-year of lifestyle intervention at the Children's Obesity Clinic in purpose of reducing the degree of obesity. In the cross-sectional design, the obese group had higher measures of obesity, while matched for age, gender and height, when compared to the control group. In the longitudinal design, 74% of the 72 followed up obese patients experienced a significant weight reduction. CfPWV was dependent on the method used to measure the

  13. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zhao, Wen; Li, Xiaowei; Liu, Xiaoyan; Zhang, Ning; Wen, Xuejun

    2014-07-01

    Substrate mechanical properties, in addition to biochemical signals, have been shown to modulate cell phenotype. In this study, we inspected the effects of substrate stiffness on human mesenchymal stem cells (hMSCs) derived from adult human bone marrow differentiation into adipogenic and osteogenic cells. A chemically modified extracellular matrix derived and highly biocompatible hydrogel, based on thiol functionalized hyaluronic acid (HA-SH) and thiol functionalized recombinant human gelatin (Gtn-SH), which can be crosslinked by poly (ethylene glycol) tetra-acrylate (PEGTA), was used as a model system. The stiffness of the hydrogel was controlled by adjusting the crosslinking density. Human bone marrow MSCs were cultured on the hydrogels with different stiffness under adipogenic and osteogenic conditions. Oil Red O staining and F-actin staining were applied to assess the change of cell morphologies under adipogenic and osteogenic differentiation, respectively. Gene expression of cells was determined with reverse transcription polymerase chain reaction (RT-PCR) as a function of hydrogel stiffness. Results support the hypothesis that adipogenic and osteogenic differentiation of hMSCs are inclined to occur on substrate with stiffness similar to their in vivo microenvironments.

  14. Role of reflex dynamics in spinal stability: intrinsic muscle stiffness alone is insufficient for stability.

    PubMed

    Moorhouse, Kevin M; Granata, Kevin P

    2007-01-01

    Spinal stability is related to both the intrinsic stiffness of active muscle as well as neuromuscular reflex response. However, existing analyses of spinal stability ignore the role of the reflex response, focusing solely on the intrinsic muscle stiffness associated with voluntary activation patterns in the torso musculature. The goal of this study was to empirically characterize the role of reflex components of spinal stability during voluntary trunk extension exertions. Pseudorandom position perturbations of the torso and associated driving forces were recorded in 11 healthy adults. Nonlinear systems-identification analyses of the measured data provided an estimate of total systems dynamics that explained 81% of the movement variability. Proportional intrinsic response was less than zero in more than 60% of the trials, e.g. mean value of P(INT) during the 20% maximum voluntary exertion trunk extension exertions -415+/-354N/m. The negative value indicated that the intrinsic muscle stiffness was not sufficient to stabilize the spine without reflex response. Reflexes accounted for 42% of the total stabilizing trunk stiffness. Both intrinsic and reflex components of stiffness increased significantly with trunk extension effort. Results reveal that reflex dynamics are a necessary component in the stabilizing control of spinal stability.

  15. Role of Reflex Dynamics in Spinal Stability: Intrinsic Muscle Stiffness Alone is Insufficient for Stability

    PubMed Central

    Moorhouse, Kevin M.; Granata, Kevin P.

    2006-01-01

    Spinal stability is related to both the intrinsic stiffness of active muscle as well as neuromuscular reflex response. However, existing analyses of spinal stability ignore the role of the reflex response, focusing solely on the intrinsic muscle stiffness associated with voluntary activation patterns in the torso musculature. The goal of this study was to empirically characterize the role of reflex components of spinal stability during voluntary trunk extension exertions. Pseudorandom position perturbations of the torso and associated driving forces were recorded in 11 healthy adults. Nonlinear systems-identification analyses of the measured data provided an estimate of total systems dynamics that explained 81% of the movement variability. Proportional intrinsic response was less than zero in more than 60% of the trials, e.g. mean value of PINT during the 20% maximum voluntary exertion trunk extension exertions 415±354 N/m. The negative value indicated that the intrinsic muscle stiffness was not sufficient to stabilize the spine without reflex response. Reflexes accounted for 42% of the total stabilizing trunk stiffness. Both intrinsic and reflex components of stiffness increased significantly with trunk extension effort. Results reveal that reflex dynamics are a necessary component in the stabilizing control of spinal stability. PMID:16782106

  16. Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-01-01

    An n-layer Scissor-Like Structured (SLS) vibration isolation platform is studied in this paper, focusing on the analysis and design of nonlinear stiffness, friction forces and damping characteristics for an advantageous vibration isolation performance. The system nonlinear stiffness and damping characteristics are theoretically investigated by considering the influence incurred by different structural parameters, friction forces and link inertia. Since stiffness and damping properties are both asymmetrical nonlinear functions, and Coulomb friction is piecewise nonlinear function, Perturbation Method (PM) and Average Method (AM) are applied together to achieve better solutions. The vibration isolation performance of the SLS platform is compared with known quasi-zero-stiffness vibration isolators in the literature, and a typical application case study as a vehicle seat suspension is also conducted, subjected to different load masses, and base excitations. The results show that much better vibration isolation performance and loading capacity can be easily achieved with the SLS platform by designing structural parameters, and the scissor-like structure provides a very powerful, practical and passive solution to design and realization of beneficial nonlinear stiffness and damping characteristics in vibration control.

  17. Collagen Substrate Stiffness Anisotropy Affects Cellular Elongation, Nuclear Shape, and Stem Cell Fate toward Anisotropic Tissue Lineage.

    PubMed

    Islam, Anowarul; Younesi, Mousa; Mbimba, Thomas; Akkus, Ozan

    2016-09-01

    Rigidity of substrates plays an important role in stem cell fate. Studies are commonly carried out on isotropically stiff substrate or substrates with unidirectional stiffness gradients. However, many native tissues are anisotropically stiff and it is unknown whether controlled presentation of stiff and compliant material axes on the same substrate governs cytoskeletal and nuclear morphology, as well as stem cell differentiation. In this study, electrocompacted collagen sheets are stretched to varying degrees to tune the stiffness anisotropy (SA) in the range of 1 to 8, resulting in stiff and compliant material axes orthogonal to each other. The cytoskeletal aspect ratio increased with increasing SA by about fourfold. Such elongation was absent on cellulose acetate replicas of aligned collagen surfaces indicating that the elongation was not driven by surface topography. Mesenchymal stem cells (MSCs) seeded on varying anisotropy sheets displayed a dose-dependent upregulation of tendon-related markers such as Mohawk and Scleraxis. After 21 d of culture, highly anisotropic sheets induced greater levels of production of type-I, type-III collagen, and thrombospondin-4. Therefore, SA has direct effects on MSC differentiation. These findings may also have ramifications of stem cell fate on other anisotropically stiff tissues, such as skeletal/cardiac muscles, ligaments, and bone.

  18. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  19. Cryotherapy induces an increase in muscle stiffness.

    PubMed

    Point, Maxime; Guilhem, Gaël; Hug, François; Nordez, Antoine; Frey, Alain; Lacourpaille, Lilian

    2017-03-06

    Although cold application (i.e., cryotherapy) may be useful to treat sports injuries and to prevent muscle damage, it is unclear whether it has adverse effects on muscle mechanical properties. This study aimed to determine the effect of air-pulsed cryotherapy on muscle stiffness estimated using ultrasound shear wave elastography. Myoelectrical activity, ankle passive torque, shear modulus (an index of stiffness) and muscle temperature of the gastrocnemius medialis were measured before, during an air-pulsed cryotherapy (-30°) treatment of 4 sets of 4 minutes with 1 min recovery in between, and during a 40-min post-cryotherapy period. Muscle temperature significantly decreased after the second set of treatment (10 min: 32.3 ± 2.5°C; P < 0.001), peaked at 29 min (27.9 ± 2.2°C; P < 0.001) and remained below baseline values at 60 minutes (29.5 ± 2.0°C; P < 0.001). Shear modulus increased by +11.5 ± 11.8% after the second set (10 min; P = 0.011), peaked at 30 min (+34.7 ± 42.6%; P < 0.001) and remained elevated until the end of the post-treatment period (+25.4 ± 17.1%; P < 0.001). These findings provide evidence that cryotherapy induces an increase in muscle stiffness. This acute change in muscle mechanical properties may lower the amount of stretch that the muscle tissue is able to sustain without subsequent injury. This should be considered when using cryotherapy in athletic practice. This article is protected by copyright. All rights reserved.

  20. HIV infection and arterial stiffness among older-adults taking antiretroviral therapy in rural Uganda

    PubMed Central

    Siedner, Mark J.; Kim, June-Ho; Nakku, Ruth Sentongo; Hemphill, Linda; Triant, Virginia A.; Haberer, Jessica E.; Martin, Jeffrey N.; Boum, Yap; Kwon, Douglas S.; Tsai, Alexander C.; Hunt, Peter W.; Okello, Samson; Bangsberg, David R.

    2015-01-01

    HIV infection is associated with arterial stiffness, but no studies have assessed this relationship in sub-Saharan Africa. We enrolled 205 participants over 40 years old in Uganda: 105 on antiretroviral therapy for a median of 7 years, and a random sample of 100 age and gender-matched HIV-uninfected controls from the clinic catchment area. The prevalence of arterial stiffness (ABI>1.2) was 33%, 18%, 19% and 2% in HIV+ men, HIV- men, HIV+ women, and HIV- women. In multivariable models adjusted for cardiovascular risk factors, HIV+ individuals had over double the prevalence of arterial stiffness (APR 2.86, 95%CI 1.41–5.79, P=0.003). PMID:26636926

  1. Myo1g is an active player in maintaining cell stiffness in B-lymphocytes.

    PubMed

    López-Ortega, O; Ovalle-García, E; Ortega-Blake, I; Antillón, A; Chávez-Munguía, B; Patiño-López, G; Fragoso-Soriano, R; Santos-Argumedo, L

    2016-05-01

    B-lymphocytes are migrating cells that specialize in antigen presentation, antibody secretion, and endocytosis; these processes implicate the modulation of plasma membrane elasticity. Cell stiffness is a force generated by the interaction between the actin-cytoskeleton and the plasma membrane, which requires the participation of several proteins. These proteins include class I myosins, which are now considered to play a role in controlling membrane-cytoskeleton interactions. In this study, we identified the motor protein Myosin 1g (Myo1g) as a mediator of this phenomenon. The absence of Myo1g decreased the cell stiffness, affecting cell adhesion, cell spreading, phagocytosis, and endocytosis in B-lymphocytes. The results described here reveal a novel molecular mechanism by which Myo1g mediates and regulates cell stiffness in B-lymphocytes. © 2016 Wiley Periodicals, Inc.

  2. Rotor/bearing system dynamic stiffness measurements

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    Sweep perturbation testing as used in Modal Analysis when applied to a rotating machine has to take into consideration the machine dynamic state of equilibrium at its operational rotative speed. This stands in contrasts to a static equilibrium of nonrotating structures. The rotational energy has a significant influence on rotor dynamic characteristics. The best perturbing input for rotating machines is a forward or reverse rotating, circular force applied directly to the shaft. Determination of Dynamic Stiffness Characteristics of the rotor bearing system by nonsynchronous perturbation of a symmetric rotating shaft supported in one relatively rigid and one oil lubricated bearing.

  3. Deterministic Folding in Stiff Elastic Membranes

    NASA Astrophysics Data System (ADS)

    Tallinen, T.; Åström, J. A.; Timonen, J.

    2008-09-01

    Crumpled membranes have been found to be characterized by complex patterns of spatially seemingly random facets separated by narrow ridges of high elastic energy. We demonstrate by numerical simulations that compression of stiff elastic membranes with small randomness in their initial configurations leads to either random ridge configurations (high entropy) or nearly deterministic folds (low elastic energy). For folding with symmetric ridge configurations to appear in part of the crumpling processes, the crumpling rate must be slow enough. Folding stops when the thickness of the folded structure becomes important, and crumpling continues thereafter as a random process.

  4. POST-TRAUMATIC STIFFNESS OF THE ELBOW

    PubMed Central

    Filh, Geraldo Motta; Galvão, Marcus Vinicius

    2015-01-01

    Elbow stiffness is a common problem after joint trauma, causing functional impairment of the upper limb. The severity of the dysfunction depends on the nature of the initial trauma and the treatment used. Appropriate clinical evaluation and complementary examinations are essential for therapeutic planning. Several surgical techniques are now available and the recommendation must be made in accordance with patient characteristics, degree of joint limitation and the surgeon's skill. Joint incongruence and degeneration have negative effects on the prognosis, but heterotrophic ossification alone has been correlated with a favorable surgical prognosis. PMID:27022563

  5. Discontinuous Galerkin for Stiff Hyperbolic Systems

    SciTech Connect

    Lowrie, R.B.; Morel, J.E.

    1999-06-27

    A Discontinuous Galerkin (DG) method is applied to hyperbolic systems that contain stiff relaxation terms. We demonstrate that when the relaxation time is under-resolved, DG is accurate in the sense that the method accurately represents the system's Chapman-Enskog (or ''diffusion'') approximation. Moreover, we demonstrate that a high-resolution, finite-volume method using the same time-integration method as DG is very inaccurate in the diffusion limit. Results for DG are presented for the hyperbolic heat equation, the Broadwell model of gas kinetics, and coupled radiation-hydrodynamics.

  6. Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers.

    PubMed

    Carpi, Federico; Frediani, Gabriele; Gerboni, Carlo; Gemignani, Jessica; De Rossi, Danilo

    2014-02-01

    Patients affected by motor disorders of the hand and having residual voluntary movements of fingers or wrist can benefit from self-rehabilitation exercises performed with so-called dynamic hand splints. These systems consist of orthoses equipped with elastic cords or springs, which either provide a sustained stretch or resist voluntary movements of fingers or wrist. These simple systems are limited by the impossibility of modulating the mechanical stiffness. This limitation does not allow for customizations and real-time control of the training exercise, which would improve the rehabilitation efficacy. To overcome this limitation, 'active' orthoses equipped with devices that allow for electrical control of the mechanical stiffness are needed. Here, we report on a solution that relies on compact and light-weight electroactive elastic transducers that replace the passive elastic components. We developed a variable-stiffness transducer made of dielectric elastomers, as the most performing types of electromechanically active polymers. The transducer was manufactured with a silicone film and tested with a purposely-developed stiffness control strategy that allowed for electrical modulations of the force-elongation response. Results showed that the proposed new technology is a promising and viable solution to develop electrically controllable dynamic hand orthoses for hand rehabilitation.

  7. Evaluation of the stiffnesses of the Achilles tendon and soleus from the apparent stiffness of the triceps surae.

    PubMed

    París-García, Federico; Barroso, Alberto; Doblaré, Manuel; Cañas, José; París, Federico

    2015-01-01

    The triceps surae plays an important role in the performance of many sports. Although the apparent average mechanical properties of the triceps surae may be a satisfactory parameter for estimating the training level of an athlete, a knowledge of the mechanical properties of the individual constituents of the triceps surae (in particular the Achilles tendon and soleus) permits a more detailed and in-depth control of the effects of training from more physically based parameters. The objective of this work is therefore the estimation of the individual viscoelastic properties (stiffness and viscosity) of soleus and Achilles tendon from the apparent properties of the triceps surae obtained by free vibration techniques. Different procedures have been developed and discussed, showing a high degree of robustness in the predictions. The results obtained for a non-oriented set of subjects present a high level of variability, depending on the training conditions and anthropometric features, although the corresponding average values compare well with data previously reported in the literature, particularly those associated with the tendon stiffness.

  8. The relationship between lower-body stiffness and dynamic performance.

    PubMed

    Pruyn, Elizabeth C; Watsford, Mark; Murphy, Aron

    2014-10-01

    Greater levels of lower-body stiffness have been associated with improved outcomes for a number of physical performance variables involving rapid stretch-shorten cycles. The aim of this study was to investigate the relationship between several measures of lower-body stiffness and physical performance variables typically evident during team sports in female athletes. Eighteen female athletes were assessed for quasi-static stiffness (myometry) for several isolated muscles in lying and standing positions. The muscles included the medial gastrocnemius (MedGast), lateral gastrocnemius, soleus, and Achilles tendon. Dynamic stiffness during unilateral hopping was also assessed. Participants were separated into relatively stiff and compliant groups for each variable. A number of significant differences in performance were evident between stiff and compliant subjects. When considering the quasi-static stiffness of the MedGast in lying and standing positions, relatively stiff participants recorded significantly superior results during agility, bounding, sprinting, and jumping activities. Stiffness as assessed by hopping did not discriminate between performance ability in any test. Relationships highlighted by MedGast results were supported by further significant differences in eccentric utilisation ratio and drop jump results between stiff and compliant groups for the lateral gastrocnemius and soleus in lying and standing positions. Higher levels of lower-body stiffness appear to be advantageous for females when performing rapid and (or) repeated stretch-shorten cycle movements, including sprinting, bounding, and jumping. Further, the stiffness of the MedGast is of particular importance during the performance of these activities. It is important for practitioners working with athletes in sports that rely upon these activities for success to consider stiffness assessment and modification.

  9. Uteroplacental insufficiency and lactational environment separately influence arterial stiffness and vascular function in adult male rats.

    PubMed

    Tare, Marianne; Parkington, Helena C; Bubb, Kristen J; Wlodek, Mary E

    2012-08-01

    Early life environmental influences can have lifelong consequences for health, including the risk of cardiovascular disease. Uteroplacental insufficiency causes fetal undernutrition and impairs fetal growth. Previously we have shown that uteroplacental insufficiency is associated with impaired maternal mammary development, compromising postnatal growth leading to hypertension in male rat offspring. In this study we investigated the roles of prenatal and postnatal nutritional environments on endothelial and smooth muscle reactivity and passive wall stiffness of resistance arteries of male rat offspring. Fetal growth restriction was induced by maternal bilateral uterine vessel ligation (restricted) on day 18 of pregnancy. Control offspring were from mothers that had sham surgery (control) and another group from mothers with their litter size reduced (reduced; litter size reduced to 5 at birth, equivalent to the restricted group). On postnatal day 1, offspring (control, restricted, and reduced) were cross-fostered onto control or restricted mothers. At 6 months, mesenteric and femoral arteries were studied using wire and pressure myography. In restricted-on-restricted rats, wall stiffness was increased, and sensitivity to phenylephrine and relaxation evoked by endothelium-derived hyperpolarizing factor and sodium nitroprusside were impaired in mesenteric arteries. In femoral arteries, relaxation to sodium nitroprusside was reduced, whereas wall stiffness was unaltered. Cross-fostering restricted offspring onto control mothers alleviated deficits in vascular stiffness and reactivity. Control or reduced offspring who suckled a restricted mother had marked vascular stiffening. In conclusion, prenatal and early postnatal environments separately influence vascular function and stiffness. Furthermore, the early postnatal lactational environment is a determinant of later cardiovascular function.

  10. Aging affects passive stiffness and spindle function of the rat soleus muscle.

    PubMed

    Rosant, Cédric; Nagel, Marie-Danielle; Pérot, Chantal

    2007-04-01

    Aging affects many motor functions, notably the spinal stretch reflexes and muscle spindle sensitivity. Spindle activation also depends on the elastic properties of the structures linked to the proprioceptive receptors. We have calculated a spindle efficacy index, SEI, for old rats. This index relates the spindle sensitivity, deduced from electroneurograms recording (ENG), to the passive stiffness of the muscle. Spindle sensitivity and passive incremental stiffness were calculated during ramp and hold stretches imposed on pseudo-isolated soleus muscles of control rats (aged 4 months, n=12) and old rats (aged 24 months, n=16). SEI were calculated for the dynamic and static phases of ramp (1-80 mm/s) and for hold (0.5-2mm) stretches imposed at two reference lengths: length threshold for spindle afferents discharges, L(n) (neurogram length) and slack length, L(s). The passive incremental stiffness was calculated from the peak and steady values of passive tension, measured under the stretch conditions used for the ENG recordings, and taking into account the muscle cross-sectional area. The pseudo-isolated soleus muscles were also stretched to establish the stress-strain relationship and to calculate muscle stiffness constant. The contralateral muscle was used to count muscle spindles and spindle fibers (ATPase staining) and immunostained to identify MyHC isoforms. L(n) and L(s) lengths were not significantly different in the control group, while L(n) was significantly greater than L(s) in old muscles. Under dynamic conditions, the SEI of old muscles was the same as in controls at L(s), but it was significantly lower than in controls at L(n) due to increased passive incremental stiffness under the stretch conditions used to analyze the ENG. Under static conditions, the SEI of old muscles was significantly lower than control values at all the stretch amplitudes and threshold lengths tested, due to increased passive incremental stiffness and decreased spindle sensitivity

  11. Mapping stiffness perception in the brain with an fMRI-compatible particle-jamming haptic interface.

    PubMed

    Menon, Samir; Stanley, Andrew A; Zhu, Jack; Okamura, Allison M; Khatib, Oussama

    2014-01-01

    We demonstrate reliable neural responses to changes in haptic stiffness perception using a functional magnetic resonance imaging (fMRI) compatible particle-jamming haptic interface. Our haptic interface consists of a silicone tactile surface whose stiffness we can control by modulating air-pressure in a sub-surface pouch of coarsely ground particles. The particles jam together as the pressure decreases, which stiffens the surface. During fMRI acquisition, subjects performed a constant probing task, which involved continuous contact between the index fingertip and the interface and rhythmic increases and decreases in fingertip force (1.6 Hz) to probe stiffness. Without notifying subjects, we randomly switched the interface's stiffness (switch time, 300-500 ms) from soft (200 N/m) to hard (1400 N/m). Our experiment design's constant motor activity and cutaneous tactile sensation helped disassociate neural activation for both from stiffness perception, which helped localized it to a narrow region in somatosensory cortex near the supra-marginal gyrus. Testing different models of neural activation, we found that assuming indepedent stiffness-change responses at both soft-hard and hard-soft transitions provides the best explanation for observed fMRI measurements (three subjects; nine four-minute scan runs each). Furthermore, we found that neural activation related to stiffness-change and absolute stiffness can be localized to adjacent but disparate anatomical locations. We also show that classical finger-tapping experiments activate a swath of cortex and are not suitable for localizing stiffness perception. Our results demonstrate that decorrelating motor and sensory neural activation is essential for characterizing somatosensory cortex, and establish particle-jamming haptics as an attractive low-cost method for fMRI experiments.

  12. Elastic metamaterial beam with remotely tunable stiffness

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  13. Multifunctional Stiff Carbon Foam Derived from Bread.

    PubMed

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  14. Elastic metamaterial beam with remotely tunable stiffness

    SciTech Connect

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-07

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  15. Myocardial Stiffness in Patients with Heart Failure and a Preserved Ejection Fraction: Contributions of Collagen and Titin

    PubMed Central

    Zile, Michael R.; Baicu, Catalin F.; Ikonomidis, John; Stroud, Robert E.; Nietert, Paul J.; Bradshaw, Amy D.; Slater, Rebecca; Palmer, Bradley M.; Van Buren, Peter; Meyer, Markus; Redfield, Margaret; Bull, David; Granzier, Henk; LeWinter, Martin M.

    2015-01-01

    Background The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes are dependent on changes in extracellular matrix fibrillar collagen and/or cardiomyocyte titin. Methods and Results Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intra-operative left ventricular (LV) epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes), hypertension (HTN) without(-) HFpEF (n=31), and HTN with(+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. Compared with controls, patients with HTN(-)HFpEF had no change in LV end diastolic pressure (LVEDP), myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (CRP, sST2, TIMP-1). Compared with both control and HTN(-)HFpEF, patients with HTN(+)HFpEF had increased LVEDP, left atrial volume, NT-proBNP, total, collagen-dependent and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. Conclusions Hypertension in the absence of HFpEF, did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF is dependent on changes in both collagen and titin homeostasis. PMID:25637629

  16. Increased osteopontin and liver stiffness measurement by transient elastography in biliary atresia

    PubMed Central

    Honsawek, Sittisak; Chayanupatkul, Maneerat; Chongsrisawat, Voranush; Vejchapipat, Paisarn; Poovorawan, Yong

    2010-01-01

    AIM: To analyze plasma osteopontin levels and liver stiffness using transient elastography in postoperative biliary atresia (BA) children compared with healthy controls. METHODS: Thirty children with postoperative BA and 10 normal controls were enrolled. The patients were categorized into two groups according to their jaundice status. Plasma levels of osteopontin were determined using commercially available enzyme-linked immunosorbent assay. Liver stiffness was measured by using transient elastography (Fibroscan). Ten validated Fibroscan measurements were performed in each patient and control with the result expressed in kilopascals (kPa). RESULTS: Plasma osteopontin was significantly elevated in BA children compared with that of healthy controls (47.0 ± 56.4 ng/mL vs 15.1 ± 15.0 ng/mL, P = 0.01). The liver stiffness measurement was markedly elevated in the patients with BA compared with that of controls (26.9 ± 24.6 kPa vs 3.9 ± 0.7 kPa, P = 0.001). Subgroup analysis showed that the BA patients with jaundice had more pronounced plasma osteopontin levels than those without jaundice (87.1 ± 61.6 ng/mL vs 11.9 ± 6.1 ng/mL, P = 0.001). Furthermore, the mean liver stiffness was significantly greater in the jaundiced BA patients compared with non-jaundiced patients (47.7 ± 21.8 kPa vs 8.7 ± 3.0 kPa, P = 0.001). Additionally, plasma osteopontin was positively related to serum total bilirubin (r = 0.64, P < 0.001). There was also a correlation between plasma osteopontin and liver stiffness values (r = 0.60, P < 0.001). CONCLUSION: High plasma osteopontin positively correlated with degree of hepatic fibrosis and could be used as a biochemical parameter reflecting disease severity in postoperative BA children. PMID:21086566

  17. Muscular contributions to dynamic dorsoventral lumbar spine stiffness

    PubMed Central

    Colloca, Christopher J.; Harrison, Deed E.; Moore, Robert J.; Gunzburg, Robert

    2006-01-01

    Spinal musculature plays a major role in spine stability, but its importance to spinal stiffness is poorly understood. We studied the effects of graded trunk muscle stimulation on the in vivo dynamic dorsoventral (DV) lumbar spine stiffness of 15 adolescent Merino sheep. Constant voltage supramaximal electrical stimulation was administered to the L3–L4 interspinous space of the multifidus muscles using four stimulation frequencies (2.5, 5, 10, and 20 Hz). Dynamic stiffness was quantified at rest and during muscle stimulation using a computer-controlled testing apparatus that applied variable frequency (0.46–19.7 Hz) oscillatory DV forces (13-N preload to 48-N peak) to the L3 spinous process of the prone-lying sheep. Five mechanical excitation trials were randomly performed, including four muscle stimulation trials and an unstimulated or resting trial. The secant stiffness (ky = DV force/L3 displacement, kN/m) and loss angle (phase angle, deg) were determined at 44 discrete mechanical excitation frequencies. Results indicated that the dynamic stiffness varied 3.7-fold over the range of mechanical excitation frequencies examined (minimum resting ky = 3.86 ± 0.38 N/mm at 4.0 Hz; maximum ky = 14.1 ± 9.95 N/mm at 19.7 Hz). Twenty hertz muscle stimulation resulted in a sustained supramaximal contraction that significantly (P < 0.05) increased ky up to twofold compared to rest (mechanical excitation at 3.6 Hz). Compared to rest, ky during the 20 Hz muscle stimulation was significantly increased for 34 of 44 mechanical excitation frequencies (mean increase = 55.1%, P < 0.05), but was most marked between 2.55 and 4.91 Hz (mean increase = 87.5%, P < 0.05). For lower frequency, sub-maximal muscle stimulation, there was a graded change in ky, which was significantly increased for 32/44 mechanical excitation frequencies (mean increase = 40.4%, 10 Hz stimulus), 23/44 mechanical excitation frequencies (mean increase = 10.5%, 5 Hz stimulus

  18. Lateral and Directional Stability and Control Characteristics of a C-54D Airplane

    NASA Technical Reports Server (NTRS)

    Talmage, Donald B; Reeder, John P

    1949-01-01

    Data are presented showing compliance of C-54D with Army and Navy lateral and directional stability and control specifications. The airplane met requirements except for the rolling effectiveness pb/2V, the aileron forces in rolling, and the rudder forces in the asymmetric power conditions which were marginal. Also, the results of special tests concerning asymmetric power, asymmetric loading, and pitch due to yaw requested by the Airplane Handling Qualities Subcommittee of the Air Transport Association are presented.

  19. Face-Referenced Measurement of Perioral Stiffness and Speech Kinematics in Parkinson's Disease

    PubMed Central

    Barlow, Steven M.; Lee, Jaehoon

    2015-01-01

    Purpose Perioral biomechanics, labial kinematics, and associated electromyographic signals were sampled and characterized in individuals with Parkinson's disease (PD) as a function of medication state. Method Passive perioral stiffness was sampled using the OroSTIFF system in 10 individuals with PD in a medication ON and a medication OFF state and compared to 10 matched controls. Perioral stiffness, derived as the quotient of resultant force and interoral angle span, was modeled with regression techniques. Labial movement amplitudes and integrated electromyograms from select lip muscles were evaluated during syllable production using a 4-D computerized motion capture system. Results Multilevel regression modeling showed greater perioral stiffness in patients with PD, consistent with the clinical correlate of rigidity. In the medication-OFF state, individuals with PD manifested greater integrated electromyogram levels for the orbicularis oris inferior compared to controls, which increased further after consumption of levodopa. Conclusions This study illustrates the application of biomechanical, electrophysiological, and kinematic methods to better understand the pathophysiology of speech motor control in PD. PMID:25629806

  20. Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE

    NASA Astrophysics Data System (ADS)

    Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.

    2016-11-01

    Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.

  1. Development and validation of an improved mechanical thorax for simulating cardiopulmonary resuscitation with adjustable chest stiffness and simulated blood flow.

    PubMed

    Eichhorn, Stefan; Spindler, Johannes; Polski, Marcin; Mendoza, Alejandro; Schreiber, Ulrich; Heller, Michael; Deutsch, Marcus Andre; Braun, Christian; Lange, Rüdiger; Krane, Markus

    2017-02-24

    Investigations of compressive frequency, duty cycle, or waveform during CPR are typically rooted in animal research or computer simulations. Our goal was to generate a mechanical model incorporating alternate stiffness settings and an integrated blood flow system, enabling defined, reproducible comparisons of CPR efficacy. Based on thoracic stiffness data measured in human cadavers, such a model was constructed using valve-controlled pneumatic pistons and an artificial heart. This model offers two realistic levels of chest elasticity, with a blood flow apparatus that reflects compressive depth and waveform changes. We conducted CPR at opposing levels of physiologic stiffness, using a LUCAS device, a motor-driven plunger, and a group of volunteers. In high-stiffness mode, blood flow generated by volunteers was significantly less after just 2min of CPR, whereas flow generated by LUCAS device was superior by comparison. Optimal blood flow was obtained via motor-driven plunger, with trapezoidal waveform.

  2. Multiple anesthetics for a patient with stiff-person syndrome.

    PubMed

    Cassavaugh, Jessica M; Oravitz, Todd M

    2016-06-01

    Stiff-person syndrome is a progressive disease of muscle rigidity and spasticity due to a deficiency in the production of γ-aminobutyric acid. Because of the rarity of the condition, little is known about effects of anesthesia on patients with stiff-person syndrome. This report describes the clinical course for a single patient with stiff-person syndrome who received general anesthesia on 3 separate occasions. Her anesthetics included use of both neuromuscular blockade and volatile agents. Unlike several previous reports regarding anesthesia and stiff-person syndrome, the postoperative period for this patient did not require prolonged intubation or result in any residual weakness.

  3. Reciprocal relationship between plasma ghrelin level and arterial stiffness in hypertensive subjects.

    PubMed

    Zhao, Yin-Tao; Yang, Hai-Bo; Li, Ling; Gao, Ke; Li, Peng-Fei; Xie, Wei-Wei

    2013-11-01

    Arterial stiffness, considered an independent predictor of cardiovascular morbidity and mortality, is closely associated with hypertension. Futhermore, the role of ghrelin in the development of hypertension has been widely recognized. The purpose of the present study was to explore the potential relationship between circulating ghrelin and arterial stiffness in hypertensive subjects. A total of 192 patients with primary hypertension and 107 normotensive (NT) control subjects were enrolled in the present cross-sectional study. Plasma ghrelin was determined by ELISA. Arterial stiffness was assessed by brachial-ankle pulse wave velocity (baPWV) and the augmentation index (AIx). Both baPWV and AIx values were markedly higher in the hypertensive compared with NT group (P < 0.01). In contrast, plasma ghrelin concentrations were significantly lower in hypertensive patients compared with NT subjects (P < 0.01). Plasma ghrelin concentrations were negatively correlated with age (odds ratio (OR) -1.836; P < 0.001), smoking (OR -1.347; P = 0.042), baPWV (OR -1.762; P < 0.001) and AIx (OR -1.516; P = 0.005), but positively associated with fasting plasma glucose (OR 1.293; P = 0.047) and HbA1c (OR 1.413; P = 0.025). The inverse correlation between circulating ghrelin and the extent of arterial stiffness suggests that ghrelin is an independent determinant of arterial stiffness, even after adjustment for confounding cardiovascular risk factors, and it actively participates in the pathophysiology of arterial stiffness in hypertensive subjects.

  4. A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model

    NASA Astrophysics Data System (ADS)

    Klatt, Timothy; Haberman, Michael R.

    2013-07-01

    A persistent challenge in the design of composite materials is the ability to fabricate materials that simultaneously display high stiffness and high loss factors for the creation of structural elements capable of passively suppressing vibro-acoustic energy. Relevant recent research has shown that it is possible to produce composite materials whose macroscopic mechanical stiffness and loss properties surpass those of conventional composites through the addition of trace amounts of materials displaying negative stiffness (NS) induced by phase transformation [R. S. Lakes et al., Nature 410, 565-567 (2001)]. The present work investigates the ability to elicit NS behavior without employing physical phenomena such as inherent nonlinear material behavior (e.g., phase change or plastic deformation) or dynamic effects, but rather the controlled buckling of small-scale structural elements, metamaterials, embedded in a continuous viscoelastic matrix. To illustrate the effect of these buckled elements, a nonlinear hierarchical multiscale material model is derived, which estimates the macroscopic stiffness and loss of a composite material containing pre-strained microscale structured inclusions. The multiscale model consists of two scale transition models, the first being an energy-based nonlinear finite element (FE) method to determine the tangent modulus of the metamaterial unit cell, and the other a classical analytical micromechanical model to determine the effective stiffness and loss tensors of a heterogeneous material for small perturbations from the local strain state of the unit cells. The FE method enables the estimation of an effective nonlinear anisotropic stiffness tensor of a buckled microstructure that produces NS and is sufficiently general to consider geometries different from those given in this work.

  5. Optoelectronic tweezers for the measurement of the relative stiffness of erythrocytes

    NASA Astrophysics Data System (ADS)

    Neale, Steven L.; Mody, Nimesh; Selman, Colin; Cooper, Jonathan M.

    2012-10-01

    In this paper we describe the first use of Optoelectronic Tweezers (OET), an optically controlled micromanipulation method, to measure the relative stiffness of erythrocytes in mice. Cell stiffness is an important measure of cell health and in the case of erythrocytes, the most elastic cells in the body, an increase in cell stiffness can indicate pathologies such as type II diabetes mellitus or hypertension (high blood pressure). OET uses a photoconductive device to convert an optical pattern into and electrical pattern. The electrical fields will create a dipole within any polarisable particles in the device, such as cells, and non-uniformities of the field can be used to place unequal forces onto each side of the dipole thus moving the particle. In areas of the device where there are no field gradients, areas of constant illumination, the force on each side of the dipole will be equal, keeping the cell stationary, but as there are opposing forces on each side of the cell it will be stretched. The force each cell will experience will differ slightly so the stretching will depend on the cells polarisability as well as its stiffness. Because of this a relative stiffness rather than absolute stiffness is measured. We show that with standard conditions (20Vpp, 1.5MHz, 10mSm-1 medium conductivity) the cell's diameter changes by around 10% for healthy mouse erythrocytes and we show that due to the low light intensities required for OET, relative to conventional optical tweezers, multiple cells can be measured simultaneously.

  6. Usefulness of liver stiffness measurement during acute cellular rejection in liver transplantation.

    PubMed

    Crespo, Gonzalo; Castro-Narro, Graciela; García-Juárez, Ignacio; Benítez, Carlos; Ruiz, Pablo; Sastre, Lydia; Colmenero, Jordi; Miquel, Rosa; Sánchez-Fueyo, Alberto; Forns, Xavier; Navasa, Miquel

    2016-03-01

    Liver stiffness measurement (LSM) is a useful method to estimate liver fibrosis and portal hypertension. The inflammatory process that takes place in post-liver transplant acute cellular rejection (ACR) may also increase liver stiffness. We aimed to explore the association between liver stiffness and the severity of ACR, as well as to assess the relationship between liver stiffness and response to rejection treatment in a prospective study that included 27 liver recipients with biopsy-proven ACR, 30 stable recipients with normal liver tests, and 30 hepatitis C virus (HCV)-infected LT recipients with histologically diagnosed HCV recurrence. Patients with rejection were stratified into 2 groups (mild and moderate/severe) according to the severity of rejection evaluated with the Banff score. Routine biomarkers and LSM with FibroScan were performed at the time of liver biopsy (baseline) and at 7, 30, and 90 days in patients with rejection and at baseline in control patients. Median baseline liver stiffness was 5.9 kPa in the mild rejection group, 11 kPa in the moderate/severe group (P = 0.001), 4.2 kPa in stable recipients (P = 0.02 versus mild rejection), and 13.6 kPa in patients with recurrent HCV (P = 0.17 versus moderate/severe rejection). The area under the receiver operator characteristic curve of LSM to discriminate mild versus moderate/severe ACR was 0.924, and a LSM value of 8.5 kPa yielded a positive predictive value of 100% to diagnose moderate/severe rejection. Liver stiffness improved in 7%, 21%, and 64% of patients with moderate/severe rejection at 7, 30, and 90 days. In conclusion, according to the results of this exploratory study, LSM is associated with the severity of ACR in liver transplantation and thus may be of help in its assessment.

  7. Arterial stiffness: pathophysiology and clinical impact.

    PubMed

    London, Gérard M; Marchais, Sylvain J; Guerin, Alain P; Pannier, Bruno

    2004-01-01

    The ill effects of hypertension are usually attributed to a reduction in the caliber or the number of arterioles, resulting in an increase in total peripheral resistance (TPR). This definition does not take into account the fact that BP is a cyclic phenomenon with systolic and diastolic BP being the limits of these oscillations. The appropriate term to define the arterial factor(s) opposing LV ejection is aortic input impedance which depends on TPR, arterial distensibility (D), and wave reflections (WR). D defines the capacitive properties of arterial stiffness, whose role is to dampen pressure and flow oscillations and to transform pulsatile flow and pressure in arteries into a steady flow and pressure in peripheral tissues. Stiffness is the reciprocal value of D. These parameters are BP dependent, and arteries become stiffer at high pressure. In to D which provides information about the of artery as a hollow structure, the elastic incremental modulus (Einc) characterizes the properties of the arterial wall biomaterials, independently of vessel geometry. As an alternative, arterial D can be evaluated by measuring the pulse wave velocity (PWV) which increases with the stiffening of arteries. Arterial stiffening increases left ventricular (LV) afterload and alters the coronary perfusion. With increased PWV, the WR impacts on the aorta during systole, increasing systolic pressures and myocardial oxygen consumption, and decreasing diastolic BP and coronary flow. The arterial stiffness is altered primarily in association with increased collagen content and alterations of extracellular matrix (arteriosclerosis) as classically observed during aging or in arterial hypertension. The arterial stiffening estimated by changes in aortic PWV and intensity of WR are independent predictors of survival in end stage renal disease (ESRD) and general population. Improvement of arterial stiffening could be obtained by antihypertensive treatmen as observed with the calcium

  8. An experimental study on the aerodynamic feasibility of a roll-controllable sounding rocket

    NASA Astrophysics Data System (ADS)

    Shirouzu, M.; Soga, K.; Shibato, Y.

    1986-02-01

    The aerodynamic feasibility of a roll-controllable two-stage sounding rocket is investigated experimentally. The rocket has ailerons on front-fins to generate the rolling moment for the control and free-rolling tail-fins to prevent the induced rolling moment on the tail-fins from transmitting to the fuselage. Wind tunnel tests were made at free-stream Mach numbers ranging from 0.5 to 2.5 and alpha = 0 deg, 4 deg, and 8 deg varying the deflection angle of the ailerons for the models with fixed tail-fins, with free-rolling tail-fins and without tail-fins. Aerodynamic characteristics were measured by using a six-component balance. The effectiveness of the free-rolling tail-fins for the elimination of the influence of the induced rolling moment is confirmed. It is concluded that the characteristics of the rolling moment generated by the ailerons are desirable for the control, and the rotation of the tail-fins would not raise mechanical and other aerodynamic problems.

  9. Tachocline dynamics: convective overshoot at stiff interfaces

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin; Lecoanet, Daniel; Oishi, Jeffrey S.; Burns, Keaton; Vasil, Geoffrey M.

    2016-05-01

    The solar tachocline lies at the base of the solar convection zone. At this internal interface, motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important. In this preliminary work, we find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline.

  10. Salt-induced aggregation of stiff polyelectrolytes.

    PubMed

    Fazli, Hossein; Mohammadinejad, Sarah; Golestanian, Ramin

    2009-10-21

    Molecular dynamics simulation techniques are used to study the process of aggregation of highly charged stiff polyelectrolytes due to the presence of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one polyelectrolyte meeting others at right angles, and the kinetic pathway to bundle formation is found to be similar to that of flocculation dynamics of colloids as described by Smoluchowski. The aggregation process is found to favor the formation of finite bundles of 10-11 filaments at long times. Comparing the distribution of the cluster sizes with the Smoluchowski formula suggests that the energy barrier for the aggregation process is negligible. Also, the formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration.

  11. Proximal aortic stiffness is increased in systemic lupus erythematosus activity in children and adolescents.

    PubMed

    El Gamal, Yehia Mohamad; Elmasry, Ola Abd Elaziz; El Hadidi, Iman Saleh; Soliman, Ola Kamel

    2013-01-01

    Patients with systemic lupus erythematosus (SLE) are prone to premature atherosclerosis and are at risk for the development of cardiovascular disease. Increased arterial stiffness is emerging as a marker of subclinical atherosclerosis. Purpose. To measure proximal aortic stiffness in children and adolescents with SLE. Methods. We studied 16 patients with SLE in activity (mean age 15 ± 2.42 years; 16 females), 14 patients with SLE not in activity (mean age 15.7 ± 1.89 years; 4 males, 10 females), and 16 age- and sex-comparable healthy children and adolescents (15.5 ± 1.71 years; 4 males, 12 females). Disease activity was determined by the SLE disease activity index (SLEDAI). All subjects underwent echocardiography for assessment of proximal aortic pulse wave velocity (PWV) [Ao distance/Ao wave transit time in the aortic arch]. Venous blood samples were collected for ESR. Results. Patients in activity had significantly higher PWV values than controls (P < 0.05), while no significant difference was found between patients not in activity and controls. Conclusions. SLE patients with disease activity demonstrate increased PWV and arterial stiffness of the proximal aorta, while patients without disease activity do not. This suggests that inflammation secondary to SLE activity, and not subclinical atherosclerosis, is the major underlying cause for increased arterial stiffness in this age group.

  12. Altered diastolic function and aortic stiffness in Alzheimer’s disease

    PubMed Central

    Çalık, Ali Nazmi; Özcan, Kazım Serhan; Yüksel, Gülbün; Güngör, Barısş; Aruğarslan, Emre; Varlibas, Figen; Ekmekci, Ahmet; Osmonov, Damirbek; Tatlısu, Mustafa Adem; Karaca, Mehmet; Bolca, Osman; Erdinler, İzzet

    2014-01-01

    Background Alzheimer’s disease (AD) is closely linked to cardiovascular risk factors. Methods Echocardiographic studies were performed, including left ventricular diastolic functions, left and right atrial conduction times, and arterial stiffness parameters, namely stiffness index, pressure-strain elastic modulus, and distensibility, on 29 patients with AD and 24 age-matched individuals with normal cognitive function. Results The peak mitral flow velocity of the early rapid filling wave (E) was lower, and the peak velocity of the late filling wave caused by atrial contraction (A), deceleration time of peak E velocity, and isovolumetric relaxation time were higher in the AD group. The early myocardial peak (Ea) velocity was significantly lower in AD patients, whereas the late diastolic (Aa) velocity and E/Ea ratio were similar between the two groups. In Alzheimer patients, stiffness index and pressure-strain elastic modulus were higher, and distensibility was significantly lower in the AD group compared to the control. Interatrial electromechanical delay was significantly longer in the AD group. Conclusion Our findings suggest that patients with AD are more likely to have diastolic dysfunction, higher atrial conduction times, and increased arterial stiffness compared to the controls of same sex and similar age. PMID:25075180

  13. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration.

    PubMed

    Schaefer, Antje; Hordijk, Peter L

    2015-07-01

    The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessels. Each step of this leukocyte transendothelial migration (TEM) process is regulated by distinct endothelial adhesion receptors such as the intercellular adhesion molecule 1 (ICAM1). Adherent leukocytes exert force on these receptors, which sense mechanical cues and transform them into localized mechanosignaling in endothelial cells. In turn, the function of the mechanoreceptors is controlled by the stiffness of the endothelial cells and of the underlying substrate representing a positive-feedback loop. In this Commentary, we focus on the mechanotransduction in leukocytes and endothelial cells, which is induced in response to variations in substrate stiffness. Recent studies have described the first key proteins involved in these mechanosensitive events, allowing us to identify common regulatory mechanisms in both cell types. Finally, we discuss how endothelial cell stiffness controls the individual steps in the leukocyte TEM process. We identify endothelial cell stiffness as an important component, in addition to locally presented chemokines and adhesion receptors, which guides leukocytes to sites that permit TEM.

  14. Three-dimensional stiffness of the carpal arch.

    PubMed

    Gabra, Joseph N; Li, Zong-Ming

    2016-01-04

    The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n=8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4±4.6N/mm that was significantly larger than the other principal components of 3.1±0.9 and 2.6±0.5N/mm (p<0.001). The principal direction of the maximum stiffness was pronated within the cross section of the carpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist׳s three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function.

  15. Three-Dimensional Stiffness of the Carpal Arch

    PubMed Central

    Gabra, Joseph N.; Li, Zong-Ming

    2015-01-01

    The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n = 8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4 ± 4.6 N/mm that was significantly larger than the other principal components of 3.1 ± 0.9 and 2.6 ± 0.5 N/mm (p < 0.001). The principal direction of the maximum stiffness was pronated within the cross section of the carpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist's three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function. PMID:26617368

  16. Effect of Lysyl Oxidase Inhibition on Angiotensin II-Induced Arterial Hypertension, Remodeling, and Stiffness

    PubMed Central

    Eberson, Lance S.; Sanchez, Pablo A.; Majeed, Beenish A.; Tawinwung, Supannikar; Secomb, Timothy W.; Larson, Douglas F.

    2015-01-01

    It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, β -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young’s modulus. The increase in effective Young’s modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN. PMID:25875748

  17. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  18. Stiff-knee gait in cerebral palsy: how do patients adapt to uneven ground?

    PubMed

    Böhm, Harald; Hösl, Matthias; Schwameder, Hermann; Döderlein, Leonhard

    2014-04-01

    Patients with cerebral palsy frequently experience foot dragging and tripping during walking due to reduced toe clearance mostly caused by a lack of adequate knee flexion in swing (stiff-knee gait). The aim of this study was to investigate adaptive mechanism to an uneven surface in stiff-knee walkers with cerebral palsy. Sixteen patients with bilateral cerebral palsy, GMFCS I-II and stiff-knee gait, mean age 14.1 (SD=6.2) years, were compared to 13 healthy controls with mean age 13.5 (SD=4.8) years. Gait analysis including EMG was performed under even and uneven surface conditions. Similar strategies to improve leg clearance were found in patients as well as in controls. Both adapted with significantly reduced speed and cadence, increased outward foot rotation, knee and hip flexion as well as anterior pelvic tilt. Therefore cerebral palsy and stiff-knee gait did not affect the adaptation capacity on the uneven surface. On the uneven surface an average increase in knee flexion of 7° (SD=3°) and 12° (SD=5°) was observed in controls and patients with cerebral palsy, respectively. Although rectus femoris activity was increased in patients with cerebral palsy, they were able to increase their knee flexion during swing. The results of this study suggest that walking on uneven surface has the potential to improve knee flexion in stiff-knee walkers. Therefore training on uneven surface could be used as a conservative treatment regime alone, in combination with Botulinum neurotoxin or in the rehabilitation of surgery.

  19. Exploring bird aerodynamics using radio-controlled models.

    PubMed

    Hoey, Robert G

    2010-12-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.

  20. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  1. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  2. Measurement of the passive stiffness of ankle joint in 3 DOF using stewart platform type ankle foot device.

    PubMed

    Nomura, Kenta; Yonezawa, Teru; Mizoguchi, Hiroshi; Takemura, Hiroshi

    2016-08-01

    This paper presents a method to measure the passive stiffness of an ankle joint in three degrees of freedom (DOF) under two motion speeds (1 Hz and 5 degree/s) using a developed Stewart platform-type device. The developed device can reproduce input motions of the foot in 6 DOF by controlling six pneumatic linear motion actuators. We used the device to measure the passive stiffness of an ankle joint undergoing three kinds of motion, namely dorsi-plantar flexion, inversion-eversion, and adduction-abduction. The measured values of the passive stiffness of the ankle joint in dorsiflexion that we obtained agreed well with that obtained in a previous study, indicating that the developed device is useful for measuring the passive stiffness of ankle joint. In addition, the developed device can be used to measure the stiffness in inversion-eversion and adduction-abduction motions as well, parameters that have never been measured. The results we obtained demonstrated certain interesting features as we varied both the direction and pace of motion (e.g., there were significant differences in the stiffness not only between adduction and abduction during the faster pace, but also between these and the other motions).

  3. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    PubMed

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA.NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  4. Application of winglets and/or wing tip extensions with active load control on the Boeing 747

    NASA Technical Reports Server (NTRS)

    Allison, R. L.; Perkin, B. R.; Schoenman, R. L.

    1978-01-01

    The application of wing tip modifications and active control technology to the Boeing 747 airplane for the purpose of improving fuel efficiency is considered. Wing tip extensions, wing tip winglets, and the use of the outboard ailerons for active wing load alleviation are described. Modest performance improvements are indicated. A costs versus benefits approach is taken to decide which, if any, of the concepts warrant further development and flight test leading to possible incorporation into production airplanes.

  5. Design, Development and Implementation of an Active Control System for Load Alleviation for a Commercial Transport Airplane,

    DTIC Science & Technology

    1980-02-01

    moment ar. torsion at an outboard wing station obtained from roller coaster maneuvers at 37q (tAS. Also shown are the analytically predicted increments... vertical accelerometers in each wing tip and the fuselage and are input to the computers. The computers perform the control law compu- tations and other...and VERTICAL ACCELEROMETER (TRIPLE) COMPUTER (DUAL/DUAL) AILERON SERIES SERVO (DUAL) (M.E.S.C.) (LEFT AND RIGHT TIPS) 0 SENSOR (TRIPLE) 00 Figure 6

  6. Characterization of the bending stiffness of large space structure joints

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1989-01-01

    A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.

  7. An experimental nonlinear low dynamic stiffness device for shock isolation

    NASA Astrophysics Data System (ADS)

    Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin

    2015-07-01

    The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.

  8. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  9. Innovative Control Effectors (ICE)

    DTIC Science & Technology

    1996-01-01

    S0.06- 0.05 Max A/B 1. ..... C 0.04 201-TV Control Power Available t Mil Power It 0.03- 201 Control Power Available [= !,-===:CPR Max /VB 0.01. CPR Mil...3 ’" t ~~~vl 1 ’ N’ -1018 1-\\ 101-4 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 Yaw Power Figure 6-12 All Five Control Suites Can Achieve Level 1...SPLI" T LEADING EDGE FLAP • fELEVON WEAPONS BAY j-PITCH FLAP VECTORING NOZZLE F-22 LEADING EDGE FLAP F-22 AILERON POWER DRIVE ACTUATOR F-22 FLAPERON

  10. The Focal Adhesion: A Regulated Component of Aortic Stiffness

    PubMed Central

    Saphirstein, Robert J.; Gao, Yuan Z.; Jensen, Mikkel H.; Gallant, Cynthia M.; Vetterkind, Susanne; Moore, Jeffrey R.; Morgan, Kathleen G.

    2013-01-01

    Increased aortic stiffness is an acknowledged predictor and cause of cardiovascular disease. The sources and mechanisms of vascular stiffness are not well understood, although the extracellular matrix (ECM) has been assumed to be a major component. We tested here the hypothesis that the focal adhesions (FAs) connecting the cortical cytoskeleton of vascular smooth muscle cells (VSMCs) to the matrix in the aortic wall are a component of aortic stiffness and that this component is dynamically regulated. First, we examined a model system in which magnetic tweezers could be used to monitor cellular cortical stiffness, serum-starved A7r5 aortic smooth muscle cells. Lysophosphatidic acid (LPA), an activator of myosin that increases cell contractility, increased cortical stiffness. A small molecule inhibitor of Src-dependent FA recycling, PP2, was found to significantly inhibit LPA-induced increases in cortical stiffness, as well as tension-induced increases in FA size. To directly test the applicability of these results to force and stiffness development at the level of vascular tissue, we monitored mouse aorta ring stiffness with small sinusoidal length oscillations during agonist-induced contraction. The alpha-agonist phenylephrine, which also increases myosin activation and contractility, increased tissue stress and stiffness in a PP2- and FAK inhibitor 14-attenuated manner. Subsequent phosphotyrosine screening and follow-up with phosphosite-specific antibodies confirmed that the effects of PP2 and FAK inhibitor 14 in vascular tissue involve FA proteins, including FAK, CAS, and paxillin. Thus, in the present study we identify, for the first time, the FA of the VSMC, in particular the FAK-Src signaling complex, as a significant subcellular regulator of aortic stiffness and stress. PMID:23626821

  11. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test

    PubMed Central

    Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman

    2015-01-01

    Objective Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Design Non-experimental, cross-sectional, case–control design. Setting An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. Patients A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Interventions Not applicable. Main measures Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Results Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Conclusions Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects. PMID:25437824

  12. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.

    PubMed

    Cassereau, Luke; Miroshnikova, Yekaterina A; Ou, Guanqing; Lakins, Johnathon; Weaver, Valerie M

    2015-01-10

    Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype.

  13. Long-term pioglitazone therapy improves arterial stiffness in patients with type 2 diabetes mellitus.

    PubMed

    Harashima, Keiichiro; Hayashi, Junichi; Miwa, Takashi; Tsunoda, Tooru

    2009-06-01

    Pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, not only improves insulin resistance and glycemic control, but may also have additional beneficial vascular effects in patients with type 2 diabetes mellitus. We investigated whether pioglitazone had an influence on arterial stiffness, which is an independent predictor of cardiovascular events, in 204 patients with type 2 diabetes mellitus. A prospective, nonrandomized, open-label trial was performed that involved 41 patients treated with pioglitazone, 46 patients receiving sulfonylureas, 67 patients on insulin, and 50 patients on diet/exercise only. The follow-up period was 56 +/- 3 months. Arterial stiffness was evaluated by using the arterial stiffness index (ASI), which was based on analysis of the pulse wave amplitude pattern obtained during automated blood pressure measurement in the upper limb. The 4 groups had a similar baseline ASI, which was greater than the reference range in each group. Although antidiabetic therapies improved hemoglobin A(1c) and low-density lipoprotein cholesterol, ASI only decreased significantly in the pioglitazone group. Thus, pioglitazone improved abnormal arterial stiffness in patients with type 2 diabetes mellitus via a mechanism beyond the metabolic improvement. These findings may have important clinical implications in the use of pioglitazone in patients with type 2 diabetes mellitus.

  14. Is arterial stiffness predicted by continuous metabolic syndrome score in obese children?

    PubMed

    Prochotska, Katarina; Kovacs, Laszlo; Vitariusova, Eva; Feber, Janusz

    2016-01-01

    The aim of the article was to evaluate arterial stiffness, an early marker of increased cardiovascular risk, in relation to obesity. The continuous metabolic syndrome (cMetS) score was calculated as sum of Z score of mean arterial pressure, body mass index, serum glucose, triglyceride, and high-density lipoprotein cholesterol in 144 obese patients and 66 nonobese controls. Ambulatory arterial stiffness index (AASI) was calculated as 1 minus regression slope of diastolic on systolic blood pressure from ambulatory blood pressure measurements. The mean AASI increased progressively with severity of obesity. The receiver operator curve analysis of body mass index and AASI showed area under the curve of 0.64 ± 0.06; cMetS area under the curve was 0.72 ± 0.05 suggesting a better predictive power of the cMetS for an increased AASI (>0.3). Patients with obesity have significantly higher arterial stiffness. A composite score such as cMetS seems to be better predictor of an increased stiffness than individual risk factors.

  15. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates.

    PubMed

    Kerativitayanan, Punyavee; Gaharwar, Akhilesh K

    2015-10-01

    Poly(glycerol sebacate) (PGS) has been proposed for tissue engineering applications owing to its tough elastomeric mechanical properties, biocompatibility and controllable degradation. However, PGS shows limited bioactivity and thus constraining its utilization for musculoskeletal tissue engineering. To address this issue, we developed bioactive, highly elastomeric, and mechanically stiff nanocomposites by covalently reinforcing PGS network with two-dimensional (2D) nanosilicates. Nanosilicates are ultrathin nanomaterials and can induce osteogenic differentiation of human stem cells in the absence of any osteogenic factors such as dexamethasone or bone morphogenetic proteins-2 (BMP2). The addition of nanosilicate to PGS matrix significantly enhances the mechanical stiffness without affecting the elastomeric properties. Moreover, nanocomposites with higher amount of nanosilicates have higher in vitro stability as determined by degradation kinetics. The increase in mechanical stiffness and in vitro stability is mainly attributed to enhanced interactions between nanosilicates and PGS. We evaluated the in vitro bioactivity of nanocomposite using preosteoblast cells. The addition of nanosilicates significantly enhances the cell adhesion, support cell proliferation, upregulate alkaline phosphates and mineralized matrix production. Overall, the combination of high mechanically stiffness and elastomericity, tailorable degradation profile, and the ability to promote osteogenic differentiation of PGS-nanosilicate can be used for regeneration of bone.

  16. A new pre-loaded beam geometric stiffness matrix with full rigid body capabilities

    NASA Technical Reports Server (NTRS)

    Bosela, P. A.; Fertis, D. G.; Shaker, F. J.

    1992-01-01

    Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. The authors have previously shown that the grounding phenomenon is caused by a lack of rigid body rotational capability, and is typical in beam geometric stiffness matrices formulated by others, including those which contain higher order effects. The cause of the problem was identified as the force imbalance inherent in the formulations. In this paper, the authors develop a beam geometric stiffness matrix for a directed force problem, and show that the resultant global stiffness matrix contains complete rigid body mode capabilities, and performs very well in the diagonalization methodology customarily used in dynamic analysis.

  17. Assessment of Arterial Stiffness Using the Cardio-Ankle Vascular Index

    PubMed Central

    Miyoshi, Toru; Ito, Hiroshi

    2016-01-01

    Background Arterial stiffness is an independent predictor of outcomes for patients with cardiovascular disease. Although measurement of pulse wave velocity is a widely accepted, noninvasive approach for the assessment of arterial stiffness, its accuracy is affected by changes in blood pressure. Summary The cardio-ankle vascular index (CAVI) is an index of the overall stiffness of the artery from the origin of the aorta to the ankle and is theoretically independent of blood pressure at the time of measurement. CAVI increases linearly with age and is elevated even in mild arteriosclerotic disease. It can identify differences in the degree of arteriosclerosis among patients with severe arteriosclerotic disease and better reflects the severity of disease of the coronary artery than does brachial-ankle pulse wave velocity. Patients with higher CAVI values show a poor prognosis compared with those with lower CAVI values. Furthermore, CAVI can be lowered by controlling diabetes mellitus and hypertension. Key Messages The primary aims of assessing arterial stiffness using CAVI are to assist in the early detection of arteriosclerosis, allowing timely treatment and lifestyle modification, and to quantitatively evaluate the progression of disease and the effectiveness of treatment. Whether CAVI-guided therapy can improve prognosis in high-risk patients needs to be further examined to confirm the clinical usefulness of this measure. PMID:27493899

  18. Acute effects of aerobic exercise intensity on arterial stiffness after glucose ingestion in young men.

    PubMed

    Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu

    2016-10-18

    Arterial stiffness increases after glucose ingestion. Acute low- and moderate-intensity aerobic exercise decreases arterial stiffness. However, the acute effects of 30 min of cycling at low- and moderate-intensity [25% (LE trial) and 65% (ME trial) peak oxygen uptake, respectively] on arterial stiffness at 30, 60 and 120 min of a postexercise glucose ingestion. Ten healthy young men (age, 22·4 ± 0·5 years) performed LE and ME trials on separate days in a randomized controlled crossover fashion. Carotid-femoral (aortic) pulse wave velocity (PWV), femoral-ankle (leg) PWV, carotid augmentation index (AIx) and carotid blood pressure (BP) (applanation tonometry), brachial and ankle BP (oscillometric device), heart rate (HR) (electrocardiography), blood glucose (UV-hexokinase method) and blood insulin (CLEIA method) levels were measured at before (baseline) and at 30, 60 and 120 min after the 75-g OGTT. Leg PWV, ankle pulse pressure and BG levels significantly increased from baseline after the 75-g OGTT in the LE trial (P<0·05), but not in the ME trial. Insulin levels and HR significantly increased from baseline after the 75-g OGTT in both trials (P<0·05). Aortic PWV, carotid AIx, brachial BP and carotid BP did not change from baseline after the 75-g OGTT in both trials. The present findings indicate that aerobic exercise at moderate intensity before glucose ingestion suppresses increases leg arterial stiffness after glucose ingestion.

  19. Interlimb symmetry of dynamic knee joint stiffness and co-contraction is maintained in early stage knee osteoarthritis.

    PubMed

    Collins, A T; Richardson, R T; Higginson, J S

    2014-08-01

    Individuals with knee OA often exhibit greater co-contraction of antagonistic muscle groups surrounding the affected joint which may lead to increases in dynamic joint stiffness. These detrimental changes in the symptomatic limb may also exist in the contralateral limb, thus contributing to its risk of developing knee osteoarthritis. The purpose of this study is to investigate the interlimb symmetry of dynamic knee joint stiffness and muscular co-contraction in knee osteoarthritis. Muscular co-contraction and dynamic knee joint stiffness were assessed in 17 subjects with mild to moderate unilateral medial compartment knee osteoarthritis and 17 healthy control subjects while walking at a controlled speed (1.0m/s). Paired and independent t-tests determined whether significant differences exist between groups (p<0.05). There were no significant differences in dynamic joint stiffness or co-contraction between the OA symptomatic and OA contralateral group (p=0.247, p=0.874, respectively) or between the OA contralateral and healthy group (p=0.635, p=0.078, respectively). There was no significant difference in stiffness between the OA symptomatic and healthy group (p=0.600); however, there was a slight trend toward enhanced co-contraction in the symptomatic knees compared to the healthy group (p=0.051). Subjects with mild to moderate knee osteoarthritis maintain symmetric control strategies during gait.

  20. Dynamic Condensation of Mass and Stiffness Matrices

    NASA Astrophysics Data System (ADS)

    Zhang, N.

    1995-12-01

    Details are given of a procedure for condensing the mass and stiffness matrices of a structure for dynamic analysis. The condensed model is based on choosing ncnatural frequencies and the corresponding modes of original model. The model is constructed so that (1) it has ncnatural frequencies equal to those of the original model, (2) the modes φ ifcless than i,j = 1, 2, . . . , ncare the same as those for the master co-ordinates in the corresponding modes of the original and (3) the responses of the condensed system at the co-ordinates Xcdue to forces at these co-ordinates, at one particular chosen frequency, are the same as those of the original system. The natural frequencies, the corresponding modes and the dynamic responses used for the condensation can be obtained from finite element analysis of the original structure. The method has been applied to the modelling of two common structures to examine its applicability. Comparisons between the performance of the condensed models obtained by means of the dynamic condensation method and that of the models obtained by the Guyan method have been conducted. The results of the example show that the condensed models determined by the dynamic condensation method retain the natural frequencies and modal shapes and perform better in describing the dynamic responses of the structures than do the corresponding models obtained by the Guyan method.

  1. Stiffness Modulation of Rayed Fins by Curvature

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Yu, Ning; Venkadesan, Madhusudhan; Bandi, Mahesh; Mandre, Shreyas

    2016-11-01

    Fishes with rayed fins comprise over 99% of all extant fish species. Multifunctional use of fins, from propulsion to station holding, requires substantial modulation of stiffness. We propose that fishes stiffen the fin by curving it transverse to its length. This effect is similar to stiffening a dollar bill by curling it because of curvature-induced coupling of out-of-plane bending with in-plane stretching. Unlike a piece of paper, rayed fins are a composite of rays and membranes. We model this as parallel elastic beams (rays) with springy interconnections (membranes). Our analysis shows that the key parameters stiffening the fin are the ray anisotropy to bending, the misalignment of principal bending directions of adjacent rays, and the membrane elasticity. The composite fin stiffens when the principal bending directions of adjacent rays are misaligned due to fin curvature, which necessarily causes the membrane to stretch. Unlike a homogenous thin sheet, composite rayed structures are able to mimic curvature-induced stiffening by using misaligned rays even if the fin appears geometrically flat. Preliminary radiographic evidence from the rays of fish fins supports such a mechanism. Funding by Human Frontier Science Program.

  2. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    NASA Technical Reports Server (NTRS)

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  3. Passive stiffness of coupled wrist and forearm rotations.

    PubMed

    Drake, Will B; Charles, Steven K

    2014-09-01

    Coordinated movement requires that the neuromuscular system account and compensate for movement dynamics. One particularly complex aspect of movement dynamics is the interaction that occurs between degrees of freedom (DOF), which may be caused by inertia, damping, and/or stiffness. During wrist rotations, the two DOF of the wrist (flexion-extension and radial-ulnar deviation, FE and RUD) are coupled through interaction torques arising from passive joint stiffness. One important unanswered question is whether the DOF of the forearm (pronation-supination, PS) is coupled to the two DOF of the wrist. Answering this question, and understanding the dynamics of wrist and forearm rotations in general, requires knowledge of the stiffness encountered during rotations involving all three DOF (PS, FE, and RUD). Here we present the first-ever measurement of the passive stiffness encountered during simultaneous wrist and forearm rotations. Using a wrist and forearm robot, we measured coupled wrist and forearm stiffness in 10 subjects and present it as a 3-by-3 stiffness matrix. This measurement of passive wrist and forearm stiffness will enable future studies investigating the dynamics of wrist and forearm rotations, exposing the dynamics for which the neuromuscular system must plan and compensate during movements involving the wrist and forearm.

  4. Mechanically Stiff Nanocomposite Hydrogels at Ultralow Nanoparticle Content.

    PubMed

    Jaiswal, Manish K; Xavier, Janet R; Carrow, James K; Desai, Prachi; Alge, Daniel; Gaharwar, Akhilesh K

    2016-01-26

    Although hydrogels are able to mimic native tissue microenvironments, their utility for biomedical applications is severely hampered due to limited mechanical stiffness and low toughness. Despite recent progress in designing stiff and tough hydrogels, it is still challenging to achieve a cell-friendly, high modulus construct. Here, we report a highly efficient method to reinforce collagen-based hydrogels using extremely low concentrations of a nanoparticulate-reinforcing agent that acts as a cross-link epicenter. Extraordinarily, the addition of these nanoparticles at a 10 000-fold lower concentration relative to polymer resulted in a more than 10-fold increase in mechanical stiffness and a 20-fold increase in toughness. We attribute the high stiffness of the nanocomposite network to the chemical functionality of the nanoparticles, which enabled the cross-linking of multiple polymeric chains to the nanoparticle surface. The mechanical stiffness of the nanoengineered hydrogel can be tailored between 0.2 and 200 kPa simply by manipulating the size of the nanoparticles (4, 8, and 12 nm), as well as the concentrations of the nanoparticles and polymer. Moreover, cells can be easily encapsulated within the nanoparticulate-reinforced hydrogel network, showing high viability. In addition, encapsulated cells were able to sense and respond to matrix stiffness. Overall, these results demonstrate a facile approach to modulate the mechanical stiffness of collagen-based hydrogels and may have broad utility for various biomedical applications, including use as tissue-engineered scaffolds and cell/protein delivery vehicles.

  5. Rho-kinase mediated cytoskeletal stiffness in skinned smooth muscle

    PubMed Central

    Lan, Bo; Wang, Lu; Zhang, Jenny; Pascoe, Chris D.; Norris, Brandon A.; Liu, Jeffrey C.-Y.; Solomon, Dennis; Paré, Peter D.; Deng, Linhong

    2013-01-01

    The structurally dynamic cytoskeleton is important in many cell functions. Large gaps still exist in our knowledge regarding what regulates cytoskeletal dynamics and what underlies the structural plasticity. Because Rho-kinase is an upstream regulator of signaling events leading to phosphorylation of many cytoskeletal proteins in many cell types, we have chosen this kinase as the focus of the present study. In detergent skinned tracheal smooth muscle preparations, we quantified the proteins eluted from the muscle cells over time and monitored the muscle's ability to respond to acetylcholine (ACh) stimulation to produce force and stiffness. In a partially skinned preparation not able to generate active force but could still stiffen upon ACh stimulation, we found that the ACh-induced stiffness was independent of calcium and myosin light chain phosphorylation. This indicates that the myosin light chain-dependent actively cycling crossbridges are not likely the source of the stiffness. The results also indicate that Rho-kinase is central to the ACh-induced stiffness, because inhibition of the kinase by H1152 (1 μM) abolished the stiffening. Furthermore, the rate of relaxation of calcium-induced stiffness in the skinned preparation was faster than that of ACh-induced stiffness, with or without calcium, suggesting that different signaling pathways lead to different means of maintenance of stiffness in the skinned preparation. PMID:24072407

  6. Management of the Stiff Finger: Evidence and Outcomes

    PubMed Central

    Yang, Guang; McGlinn, Evan P.; Chung, Kevin C.

    2014-01-01

    SYNOPSIS The term “stiff finger” refers to a reduction in the range of motion in the finger, and it is a condition that has many different causes and involves a number of different structures. Almost all injuries of the fingers and some diseases can cause finger stiffness. Hand surgeons often face difficulty treating stiff fingers that are affected by irreversible soft tissues fibrosis. Stiff fingers can be divided into flexion and extension deformities. They can also be sub-classified into four categories according to the involved tissues extending from the skin to the joint capsule. Prevention of stiff fingers by judicious mobilization of the joints is prudent to avoid more complicated treatment after established stiffness occurs. Static progressive and dynamic splints have been considered as effective non-operative interventions to treat stiff fingers. Most authors believe force of joint distraction and time duration of stretching are two important factors to consider while applying a splint or cast. We also introduce the concepts of capsulotomy and collateral ligament release and other soft tissue release of the MCP and PIP joint in this article. Future outcomes research is vital to assessing the effectiveness of these surgical procedures and guiding postoperative treatment recommendations. PMID:24996467

  7. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    PubMed Central

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  8. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.

    PubMed

    Lucas, Kelsey N; Thornycroft, Patrick J M; Gemmell, Brad J; Colin, Sean P; Costello, John H; Lauder, George V

    2015-10-08

    Simple mechanical models emulating fish have been used recently to enable targeted study of individual factors contributing to swimming locomotion without the confounding complexity of the whole fish body. Yet, unlike these uniform models, the fish body is notable for its non-uniform material properties. In particular, flexural stiffness decreases along the fish's anterior-posterior axis. To identify the role of non-uniform bending stiffness during fish-like propulsion, we studied four foil model configurations made by adhering layers of plastic sheets to produce discrete regions of high (5.5 × 10(-5) Nm(2)) and low (1.9 × 10(-5) Nm(2)) flexural stiffness of biologically-relevant magnitudes. This resulted in two uniform control foils and two foils with anterior regions of high stiffness and posterior regions of low stiffness. With a mechanical flapping foil controller, we measured forces and torques in three directions and quantified swimming performance under both heaving (no pitch) and constant 0° angle of attack programs. Foils self-propelled at Reynolds number 21 000-115 000 and Strouhal number ∼0.20-0.25, values characteristic of fish locomotion. Although previous models have emphasized uniform distributions and heaving motions, the combination of non-uniform stiffness distributions and 0° angle of attack pitching program was better able to reproduce the kinematics of freely-swimming fish. This combination was likewise crucial in maximizing swimming performance and resulted in high self-propelled speeds at low costs of transport and large thrust coefficients at relatively high efficiency. Because these metrics were not all maximized together, selection of the 'best' stiffness distribution will depend on actuation constraints and performance goals. These improved models enable more detailed, accurate analyses of fish-like swimming.

  9. Add-on therapy with doxazosin in patients with hypertension influences arterial stiffness and albuterol-mediated arterial vasodilation

    PubMed Central

    Wykretowicz, Andrzej; Guzik, Przemyslaw; Krauze, Tomasz; Adamska, Karolina; Milewska, Agata; Wysocki, Henryk

    2007-01-01

    What is already known about this subject Hypertension is associated with increased arterial stiffness and impaired endothelial function. Arterial vasodilation depends on endothelial function and can be regulated by β2-adrenergic stimulation. Doxazosin is a known and potent antihypertensive agent. However, its effects on arterial stiffness and vasodilation have not been fully established. What this study adds Sixteen-week add-on antihypertensive therapy with 4 mg of doxazosin extended release daily: Reduces arterial stiffness. Improves albuterol-mediated, i.e. endothelium-dependent, arterial vasodilation. Does not influence nitroglycerin-mediated, i.e. endothelium-independent, arterial vasodilation. Aims Doxazosin is an antihypertensive agent with largely unknown effects on arterial stiffness and vasodilation. The aim of this study was to determine the effect of the addition of doxazosin extended-release (ER) to the standard management of hypertension in patients with inadequately controlled blood pressure (BP) on arterial stiffness and arterial vasodilation. Methods Twenty patients with inadequately controlled hypertension were treated with 4 mg doxazosin ER daily for 16 weeks as an adjunct to their existing antihypertensive regimen. Results Doxazosin ER add-on therapy was associated with significantly reduced systolic (P < 0.0001) and diastolic (P = 0.0003) BP, improved arterial stiffness (determined by digital volume pulse analysis (P = 0.048) and albuterol-mediated arterial vasodilation (P = 0.030). Conclusions Add-on therapy with 4 mg of doxazosin ER daily reduces BP and arterial stiffness and improves arterial vasodilation in response to adrenergic stimulation. PMID:17635498

  10. Large Artery Stiffness Assessment Using SphygmoCor Technology

    PubMed Central

    Butlin, Mark; Qasem, Ahmad

    2017-01-01

    Large artery stiffness assessment has been an integral part of the SphygmoCor technology since 1998. Aortic stiffness is approximated with non-invasive measurement of carotid-femoral pulse wave velocity, with improvements made with time to make the assessment procedure quicker and more user independent. Also standard in the devices is the ability to reliably calculate the central aortic waveform shape from a peripheral pressure waveform from either the brachial or radial artery. This waveform contains much information beyond peak and trough (systolic and diastolic pressure). Relative waveform features such as the augmentation index, wave reflection magnitude, reflection time index, and subendocardial viability ratio are parameters that are influenced by the stiffness of systemic arteries. This article briefly describes these parameters related to large artery stiffness and provides reference to validation and repeatability studies relative to the clinical use of the SphygmoCor devices. It is beyond the scope to review here the 424 original research articles that have employed SphygmoCor devices in measuring arterial stiffness. Instead, the method of measurement across the devices is described, including tonometry, volumetric displacement through cuff placement around limbs, and ambulatory monitoring. Key population and subpopulation studies are cited where the average stiffness parameter progression with age and gender, as measured by SphygmoCor devices, is quantified in the healthy and general population. Finally, with reference to guidelines from working groups on arterial stiffness and hypertension, the clinical utility of large artery stiffness measurement is discussed in the context of the arterial stiffness parameters provided by the SphygmoCor systems. PMID:28229053

  11. Effects of warm-up on hamstring muscles stiffness: Cycling vs foam rolling.

    PubMed

    Morales-Artacho, A J; Lacourpaille, L; Guilhem, G

    2017-01-26

    This study investigated the effects of active and/or passive warm-up tasks on the hamstring muscles stiffness through elastography and passive torque measurements. On separate occasions, fourteen males randomly completed four warm-up protocols comprising Control, Cycling, Foam rolling, or Cycling plus Foam rolling (Mixed). The stiffness of the hamstring muscles was assessed through shear wave elastography, along with the passive torque-angle relationship and maximal range of motion (ROM) before, 5, and 30 minutes after each experimental condition. At 5 minutes, Cycling and Mixed decreased shear modulus (-10.3% ± 5.9% and -7.7% ± 8.4%, respectively; P≤.0003, effect size [ES]≥0.24) and passive torque (-7.17% ± 8.6% and -6.2% ± 7.5%, respectively; P≤.051, ES≥0.28), and increased ROM (+2.9% ± 2.9% and +3.2% ± 3.5%, respectively; P≤.001, ES≥0.30); 30 minutes following Mixed, shear modulus (P=.001, ES=0.21) and passive torque (P≤.068, ES≥0.2) were still slightly decreased, while ROM increased (P=.046, ES=0.24). Foam rolling induced "small" immediate short-term decreases in shear modulus (-5.4% ± 5.7% at 5 minutes; P=.05, ES=0.21), without meaningful changes in passive torque or ROM at any time point (P≥.12, ES≤0.23). These results suggest that the combined warm-up elicited no acute superior effects on muscle stiffness compared with cycling, providing evidence for the key role of active warm-up to reduce muscle stiffness. The time between warm-up and competition should be considered when optimizing the effects on muscle stiffness.

  12. Computer-based assessment of left ventricular wall stiffness in patients with ischemic dilated cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Su, Y.; Teo, S. K.; Tan, R. S.; Lim, C. W.; Zhong, L.

    2013-02-01

    Ischemic dilated cardiomyopathy (IDCM) is a degenerative disease of the myocardial tissue accompanied by left ventricular (LV) structural changes such as interstitial fibrosis. This can induce increased passive stiffness of the LV wall. However, quantification of LV passive wall stiffness in vivo is extremely difficult, particularly in ventricles with complex geometry. Therefore, we sought to (i) develop a computer-based assessment of LV passive wall stiffness from cardiac magnetic resonance (CMR) imaging in terms of a nominal stiffness index (E*); and (ii) investigate whether E* can offer an insight into cardiac mechanics in IDCM. CMR scans were performed in 5 normal subjects and 5 patients with IDCM. For each data sample, an in-house software was used to generate a 1-to-1 corresponding mesh pair of the LV from the ED and ES phases. The E* values are then computed as a function of local ventricular wall strain. We found that E* in the IDCM group (40.66 - 215.12) was at least one order of magnitude larger than the normal control group (1.00 - 6.14). In addition, the IDCM group revealed much higher inhomogeneity of E* values manifested by a greater spread of E* values throughout the LV. In conclusion, there is a substantial elevated ventricular stiffness index in IDCM. This would suggest that E* could be used as discriminator for early detection of disease state. The computational performance per data sample took approximately 25 seconds, which demonstrates its clinical potential as a real-time cardiac assessment tool.

  13. Clinical interaction between diabetes duration and aortic stiffness in type 2 diabetes mellitus.

    PubMed

    Agnoletti, D; Mansour, A S; Zhang, Y; Protogerou, A D; Ouerdane, S; Blacher, J; Safar, M E

    2017-03-01

    Diabetes complications increase with disease duration. No study was performed on the relationship between aortic stiffness and diabetes duration, taking into account the respective influence of such factors on macro- and microcirculation. In total, 618 subjects with type 2 diabetes (259 men) attending the Department of Internal Medicine of Tizi Ouzou Hospital (Algeria) were studied in collaboration with Hotel-Dieu Hospital (Paris, France). Brachial blood pressure (BP), anthropometric, clinical and biological data were evaluated. Aortic stiffness was estimated by carotid-femoral pulse wave velocity (PWV). From lower to higher tertile of diabetes duration, age, BP and PWV (10.1±2.7 to 12.3±2.8 m s(-1)) increased, while diabetes control and renal function worsened (all P<0.01). Diabetes duration was independently associated with PWV (R(2)=0.035, P<0.0001), even after adjustment for age, BP, heart rate, cardiovascular events and metabolic syndrome. Diabetes duration was significantly correlated to the prevalence of microalbuminuria (OR (95% CL) 1.3 (1.06-1.63), P=0.01), independently of age, sex, BP and renal function. Increased aortic stiffness was independently associated with the prevalence of cardiovascular events (P<0.001), reaching its maximal value above the first 2 years of diabetes duration. In conclusion, diabetes duration is an independent determinant of aortic stiffness in subjects with type 2 diabetes, representing about 4% of PWV variability. Diabetes duration is associated with microvascular complications independently of renal function, and with macrovascular complications through the presence of increased aortic stiffness.

  14. Power optimization and effective stiffness for a vibration energy harvester with displacement constraints

    NASA Astrophysics Data System (ADS)

    Truong, Binh Duc; Phu Le, Cuong; Halvorsen, Einar

    2016-12-01

    This paper presents experiments on how to approach the physical limits on power from vibration energy harvesting under displacement-constrained operation. A MEMS electrostatic vibration energy harvester with voltage-control of the system stiffness is used for this purpose. The power saturation problem, when the proof-mass displacement reaches a maximum amplitude for sufficient acceleration amplitude, is shifted to higher accelerations by use of load optimization. In addition, we demonstrate the effect of varying the electromechanical coupling k 2. Measurement results show that harvested power can also be made to follow the optimal power of the velocity-damped generator for a range of accelerations, which implies displacement constraints. Compared to the saturated power, the power increases 1.5 times with the optimal load for electromechanical coupling at k 2  =  8.7%. This is improved 2.3 times for a higher coupling of {{k}2}=17.9 % . The obtained system effectiveness exceeds 60%. This work shows a first demonstration of reaching optimal power in the intermediate acceleration-range between the two extremes of maximum efficiency and maximum power transfer. The experimental results follow the theoretical results for a device with both load and stiffness tuning surprisingly well, despite only optimizing the load here. We compared a linearized lumped-model of the device with the same augmented by end-stop nonlinearities. The comparison shows that an effective stiffness due to end-stop impacts in the latter model closely matches the optimal stiffness for the former model, and therefore can explain why the experimental output power is close to optimal despite the lack of deliberate stiffness tuning.

  15. Effect of Reduced Stiffness Dance Flooring on Lower Extremity Joint Angular Trajectories During a Ballet Jump.

    PubMed

    Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer

    2015-09-01

    We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.

  16. Cardiac Fibroblast-Dependent Extracellular Matrix Accumulation Is Associated with Diastolic Stiffness in Type 2 Diabetes

    PubMed Central

    Hutchinson, Kirk R.; Lord, C. Kevin; West, T. Aaron; Stewart, James A.

    2013-01-01

    Cardiovascular complications are a leading cause of death in patients with type 2 diabetes mellitus (T2DM). Diastolic dysfunction is one of the earliest manifestations of diabetes-induced changes in left ventricular (LV) function, and results from a reduced rate of relaxation and increased stiffness. The mechanisms responsible for increased stiffness are not completely understood. Chronic hyperglycemia, advanced glycation endproducts (AGEs), and increased levels of proinflammatory and profibrotic cytokines are molecular pathways known to be involved in regulating extracellular matrix (ECM) synthesis and accumulation resulting in increased LV diastolic stiffness. Experiments were conducted using a genetically-induced mouse model of T2DM generated by a point mutation in the leptin receptor resulting in nonfunctional leptin receptors (db/db murine model). This study correlated changes in LV ECM and stiffness with alterations in basal activation of signaling cascades and expression of profibrotic markers within primary cultures of cardiac fibroblasts from diabetic (db/db) mice with nondiabetic (db/wt) littermates as controls. Primary cultures of cardiac fibrobroblasts were maintained in 25 mM glucose (hyperglycemic-HG; diabetic db/db) media or 5 mM glucose (normoglycemic-NG, nondiabetic db/wt) media. The cells then underwent a 24-hour exposure to their opposite (NG; diabetic db/db) media or 5 mM glucose (HG, nondiabetic db/wt) media. Protein analysis demonstrated significantly increased expression of type I collagen, TIMP-2, TGF-β, PAI-1 and RAGE in diabetic db/db cells as compared to nondiabetic db/wt, independent of glucose media concentration. This pattern of protein expression was associated with increased LV collagen accumulation, myocardial stiffness and LV diastolic dysfunction. Isolated diabetic db/db fibroblasts were phenotypically distinct from nondiabetic db/wt fibroblasts and exhibited a profibrotic phenotype in normoglycemic conditions. PMID:23991045

  17. Robust time-domain identification of mass stiffness, and damping matrices

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Mook, D. Joseph

    1990-01-01

    Accurate estimates of the mass, stiffness, and damping characteristics of a structure is necessary for determining the control laws best suited for active control methodologies. There are several modal identification techniques available for determining the frequencies, damping ratios, and mode shapes of a structure. However, modal identification methods in both the frequency and time domains have difficulties for certain circumstances. Frequency domain techniques which utilize the steady-state response from various harmonic inputs often encounter difficulties when the frequencies are closely distributed, the structure exhibits a high degree of damping, or the steady-state condition is hard to establish. Time domain techniques have produced successful results, but lack robustness with respect to measurement noise. In this paper, two identification techniques and an estimation method are combined to form a time-domain technique to accurately identify the mass, stiffness, and damping matrices from noisy measurements.

  18. Parametric signal amplification to create a stiff optical bar

    NASA Astrophysics Data System (ADS)

    Somiya, K.; Kataoka, Y.; Kato, J.; Saito, N.; Yano, K.

    2016-02-01

    An optical cavity consisting of optically trapped mirrors makes a resonant bar that can be stiffer than diamond. A limitation of the stiffness arises in the length of the optical bar as a consequence of the finite light speed. High laser power and light mass mirrors are essential for realization of a long and stiff optical bar that can be useful for example in the gravitational-wave detector aiming at the observation of a signal from neutron-star collisions, supernovae, etc. In this letter, we introduce a parametric signal amplification scheme that realizes the long and stiff optical bar with a non-linear crystal inside the signal-recycling cavity.

  19. Dynamic stiffness method for space frames under distributed harmonic loads

    NASA Astrophysics Data System (ADS)

    Dumir, P. C.; Saha, D. C.; Sengupta, S.

    1992-10-01

    An exact dynamic equivalent load vector for space frames subjected to harmonic distributed loads has been derived using the dynamic stiffness approach. The Taylor's series expansion of the dynamic equivalent load vector has revealed that the static consistent equivalent load vector used in a 12 degree of freedom two-noded finite element for a space frame is just the first term of the series. The dynamic stiffness approach using the exact dynamic equivalent load vector requires discretization of a member subjected to distributed loads into only one element. The results of the dynamic stiffness method are compared with those of the finite element method for illustrative problems.

  20. A novel energy-efficient rotational variable stiffness actuator.

    PubMed

    Rao, Shodhan; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping constant the internal stored energy of the actuator. The principle of the actuator is an extension of the principle of translational energy-efficient actuator vsaUT. A prototype based on the principle has been designed, in which ball-bearings and linear slide guides have been used in order to reduce losses due to friction.

  1. A prototype of a novel energy efficient variable stiffness actuator.

    PubMed

    Visser, L C; Carloni, R; Klijnstra, F; Stramigioli, S

    2010-01-01

    In this work, we present a proof of concept of a novel variable stiffness actuator. The actuator design is based on the conceptual design proposed in earlier work, and is such that the apparent output stiffness of the actuator can be changed independently of the output position and without any energy cost. Experimental results show that the behavior of the prototype is in accordance with the theoretical results of the conceptual design, and thus show that energy efficient variable stiffness actuators can be realized.

  2. Hormones and arterial stiffness in patients with chronic kidney disease.

    PubMed

    Gungor, Ozkan; Kircelli, Fatih; Voroneanu, Luminita; Covic, Adrian; Ok, Ercan

    2013-01-01

    Cardiovascular disease constitutes the major cause of mortality in patients with chronic kidney disease. Arterial stiffness is an important contributor to the occurrence and progression of cardiovascular disease. Various risk factors, including altered hormone levels, have been suggested to be associated with arterial stiffness. Based on the background that chronic kidney disease predisposes individuals to a wide range of hormonal changes, we herein review the available data on the association between arterial stiffness and hormones in patients with chronic kidney disease and summarize the data for the general population.

  3. Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories

    PubMed Central

    Ambike, Satyajit; Zhou, Tao; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2015-01-01

    This study used the framework of the referent configuration hypothesis and slow changes in the external conditions during vertical oscillation of a hand-held object to infer the characteristics of hypothetical control variables. The study had two main objectives: (1) to show that hypothetical control variables, namely, referent coordinates and apparent stiffness of vertical hand position and grip force can be measured in an experiment; and (2) to establish relation(s) between these control variables that yield the classic grip-force-load-force coupling. Healthy subjects gripped a handle and performed vertical oscillations between visual targets at one of five metronome-prescribed frequencies. A Hapticmaster robot was used to induce slow changes in the vertical force applied to the handle, while the size of the handle was changed slowly leading to changes in the grip aperture. The subjects were instructed not to react to possible changes in the external forces. A linear, second-order model was used to reconstruct the referent coordinate and apparent stiffness values for each phase of the vertical oscillation cycle using across-cycle regressions. The reconstructed time profiles of the referent coordinates and apparent stiffness showed consistent trends across subjects and movement frequencies. To validate the method, these values were used to predict the vertical force and the grip force applied to the handle for movement cycles that were not utilized in the reconstruction process. Analysis of the coupling between the four variables, two referent coordinates and two apparent stiffness values, revealed a single strong constraint reflecting the coupling between the grip force and vertical force. We view these data as providing experimental support for the idea of controlling natural, multi-muscle actions with shifts in a low-dimensional set of referent coordinates. PMID:25896800

  4. Variable stiffness actuated prosthetic knee to restore knee buckling during stance: a modeling study.

    PubMed

    Wentink, E C; Koopman, H F J M; Stramigioli, S; Rietman, J S; Veltink, P H

    2013-06-01

    Most modern intelligent knee prosthesis use dampers to modulate dynamic behavior and prevent excessive knee flexion, but they dissipate energy and do not assist in knee extension. Energy efficient variable stiffness control (VSA) can reduce the energy consumption yet effectively modulate the dynamic behavior and use stored energy during flexion to assist in subsequent extension. A principle design of energy efficient VSA in a prosthetic knee is proposed and analyzed for the specific case of rejection of a disturbed stance phase. The concept is based on the principle that the output stiffness of a spring can be changed without changing the energy stored in the elastic elements of the spring. The usability of this concept to control a prosthetic knee is evaluated using a model. Part of the stance phase of the human leg was modeled by a double pendulum. Specifically the rejection of a common disturbance of transfemoral prosthetic gait, an unlocked knee at heel strike, was evaluated. The ranges of spring stiffnesses were determined such that the angular characteristics of a normal stance phase were preserved, but disturbances could also be rejected. The simulations predicted that energy efficient VSA can be useful for the control of prosthetic knees.

  5. Operator-Based Preconditioning of Stiff Hyperbolic Systems

    SciTech Connect

    Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.

    2009-02-09

    We introduce an operator-based scheme for preconditioning stiff components encoun- tered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a char- acteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study.

  6. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis

    PubMed Central

    Saneyasu, Takaoki; Akhtar, Riaz

    2016-01-01

    Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM) influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis. PMID:27800489

  7. Effects of bonding stiffness on thermal stresses in sandwich panels

    NASA Astrophysics Data System (ADS)

    Hussein, R.; Fazio, P.; Ha, K.

    1992-10-01

    Sandwich panels made of thin skins and a lightweight core expand and/or bow when subjected to temperature changes. The significance of induced thermal stresses in the panels depends on material properties. The effects of bonding layers on these stresses were not investigated in available works on the structural analysis of sandwich panels. This paper presents elasticity solutions for thermal stresses in sandwich panels with interlayer slip. The effects of finite bonding stiffnesses on the structural behavior of the panels are investigated. The numerical results show that the bonding stiffness, up to a certain level, has a strong effect on panel structural response. The answer to what constitutes perfect bonding is best answered in terms of the ratio of the core stiffness to the bonding stiffness. A heat chamber is designed and used to test sandwich specimens under different temperature changes. The experimental values for normal stresses in the skins are in good agreement with the present theory.

  8. Membrane acoustic metamaterial absorbers with magnetic negative stiffness.

    PubMed

    Zhao, Junjuan; Li, Xianhui; Wang, Yueyue; Wang, Wenjiang; Zhang, Bin; Gai, Xiaoling

    2017-02-01

    A membrane absorber usually requires a large back cavity to achieve low-frequency sound absorption. This paper describes the design of a membrane acoustic metamaterial absorber in which magnetic negative stiffness is employed to reduce the size of the back cavity. As a baseline for the present research, analysis of a typical membrane sound absorber based on an equivalent circuit model is presented first. Then, a theoretical model is established by introducing negative stiffness into a standard absorber. It is demonstrated that a small cavity with negative stiffness can achieve the acoustic impedance of a large cavity and that the absorption peak is shifted to lower frequencies. Experimental results from an impedance tube test are also presented to validate this idea and show that negative stiffness can be employed to design compact low-frequency membrane absorbers.

  9. Arterial Stiffness and Renal Replacement Therapy: A Controversial Topic

    PubMed Central

    Fischer, Edmundo Cabrera; Zócalo, Yanina; Galli, Cintia; Bia, Daniel

    2015-01-01

    The increase of arterial stiffness has been to have a significant impact on predicting mortality in end-stage renal disease patients. Pulse wave velocity (PWV) is a noninvasive, reliable parameter of regional arterial stiffness that integrates the vascular geometry and arterial wall intrinsic elasticity and is capable of predicting cardiovascular mortality in this patient population. Nevertheless, reports on PWV in dialyzed patients are contradictory and sometimes inconsistent: some reports claim the arterial wall stiffness increases (i.e., PWV increase), others claim that it is reduced, and some even state that it augments in the aorta while it simultaneously decreases in the brachial artery pathway. The purpose of this study was to analyze the literature in which longitudinal or transversal studies were performed in hemodialysis and/or peritoneal dialysis patients, in order to characterize arterial stiffness and the responsiveness to renal replacement therapy. PMID:26064684

  10. Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2001-01-01

    This report documents two new implementations of equivalent linearization for solving geometrically nonlinear random vibration problems of complicated structures. The implementations are given the acronym ELSTEP, for "Equivalent Linearization using a STiffness Evaluation Procedure." Both implementations of ELSTEP are fundamentally the same in that they use a novel nonlinear stiffness evaluation procedure to numerically compute otherwise inaccessible nonlinear stiffness terms from commercial finite element programs. The commercial finite element program MSC/NASTRAN (NASTRAN) was chosen as the core of ELSTEP. The FORTRAN implementation calculates the nonlinear stiffness terms and performs the equivalent linearization analysis outside of NASTRAN. The Direct Matrix Abstraction Program (DMAP) implementation performs these operations within NASTRAN. Both provide nearly identical results. Within each implementation, two error minimization approaches for the equivalent linearization procedure are available - force and strain energy error minimization. Sample results for a simply supported rectangular plate are included to illustrate the analysis procedure.

  11. Stiffness Corrections for the Vibration Frequency of a Stretched Wire

    ERIC Educational Resources Information Center

    Hornung, H. G.; Durie, M. J.

    1977-01-01

    Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)

  12. Hyperekplexia and stiff-baby syndrome: an identical neurological disorder?

    PubMed

    Cioni, G; Biagioni, E; Bottai, P; Castellacci, A M; Paolicelli, P B

    1993-03-01

    Hyperekplexia (startle disease) is an unusual, familial, neurological disorder characterized by abnormally enhanced startle response, followed in most cases by momentary generalized muscular stiffness. These attacks may cause the patients to fall rigidly, while remaining fully conscious. Startle symptomatology has generally an onset in infancy and is often accompanied, during the first years of life, by rigidity, sleep myoclonus, motor delay, regurgitation and apneic spells, which may cause sudden death. Stiff-baby syndrome is a familial disorder characterized by marked rigidity, with neonatal onset and gradual reduction during infancy, regurgitations, motor delay and attacks of stiffness. We report 4 new cases of hyperekplexia from two different families and another infant with stiff-baby syndrome discussing clinical, electrophysiological and genetic aspects of both neurological disorders in relation to other reported cases. We suggest a continuum between these familial syndromes, which are often misinterpreted as epilepsy or other disorders.

  13. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial.

    PubMed

    Knapen, Marjo H J; Braam, Lavienja A J L M; Drummen, Nadja E; Bekers, Otto; Hoeks, Arnold P G; Vermeer, Cees

    2015-05-01

    Observational data suggest a link between menaquinone (MK, vitamin K2) intake and cardiovascular (CV) health. However, MK intervention trials with vascular endpoints are lacking. We investigated long-term effects of MK-7 (180 µg MenaQ7/day) supplementation on arterial stiffness in a double-blind, placebo-controlled trial. Healthy postmenopausal women (n=244) received either placebo (n=124) or MK-7 (n=120) for three years. Indices of local carotid stiffness (intima-media thickness IMT, Diameter end-diastole and Distension) were measured by echotracking. Regional aortic stiffness (carotid-femoral and carotid-radial Pulse Wave Velocity, cfPWV and crPWV, respectively) was measured using mechanotransducers. Circulating desphospho-uncarboxylated matrix Gla-protein (dp-ucMGP) as well as acute phase markers Interleukin-6 (IL-6), high-sensitive C-reactive protein (hsCRP), tumour necrosis factor-α (TNF-α) and markers for endothelial dysfunction Vascular Cell Adhesion Molecule (VCAM), E-selectin, and Advanced Glycation Endproducts (AGEs) were measured. At baseline dp-ucMGP was associated with IMT, Diameter, cfPWV and with the mean z-scores of acute phase markers (APMscore) and of markers for endothelial dysfunction (EDFscore). After three year MK-7 supplementation cfPWV and the Stiffness Index βsignificantly decreased in the total group, whereas distension, compliance, distensibility, Young's Modulus, and the local carotid PWV (cPWV) improved in women having a baseline Stiffness Index β above the median of 10.8. MK-7 decreased dp-ucMGP by 50 % compared to placebo, but did not influence the markers for acute phase and endothelial dysfunction. In conclusion, long-term use of MK-7 supplements improves arterial stiffness in healthy postmenopausal women, especially in women having a high arterial stiffness.

  14. Gear mesh stiffness and load sharing in planetary gearing

    NASA Technical Reports Server (NTRS)

    Kasuba, R.; August, R.

    1984-01-01

    An interactive computerized analysis was developed for determining load sharing among planetary gears. The load sharing is established as a function of transmitted torque, degree of sun gear fixity, component flexibility, gear tooth quality, and phasing of individual planet gears. A nonlinear variable gear tooth mesh stiffness model was used to simulate the sun/plant and planet/ring gear meshes. The determined load sharing and gear mesh stiffness parameters then can be used for the subsequent assessment of dynamic load factors.

  15. Therapeutic modification of arterial stiffness: An update and comprehensive review

    PubMed Central

    Wu, Ching-Fen; Liu, Pang-Yen; Wu, Tsung-Jui; Hung, Yuan; Yang, Shih-Ping; Lin, Gen-Min

    2015-01-01

    Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovascular risk. Additionally to life style modifications, long-term ω-3 fatty acids (fish oil) supplementation in diet may improve arterial stiffness in the population with hypertension or metabolic syndrome. Pharmacological treatment such as renin-angiotensin-aldosterone system antagonists, metformin, and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors were useful in individuals with hypertension and diabetes. In obese population with obstructive sleep apnea, weight reduction, aerobic exercise, and continuous positive airway pressure treatment may also improve arterial stiffness. In the populations with chronic inflammatory disease such as rheumatoid arthritis, a use of antibodies against tumor necrosis factor-alpha could work effectively. Other therapeutic options such as renal sympathetic nerve denervation for patients with resistant hypertension are investigated in many ongoing clinical trials. Therefore our comprehensive review provides knowledge in detail regarding many aspects of pathogenesis, measurement, and management of arterial stiffness in several populations, which would be helpful for physicians to make clinical decision. PMID:26635922

  16. Non-crossbridge stiffness in active muscle fibres.

    PubMed

    Colombini, Barbara; Nocella, Marta; Bagni, Maria Angela

    2016-01-01

    Stretching of an activated skeletal muscle induces a transient tension increase followed by a period during which the tension remains elevated well above the isometric level at an almost constant value. This excess of tension in response to stretching has been called 'static tension' and attributed to an increase in fibre stiffness above the resting value, named 'static stiffness'. This observation was originally made, by our group, in frog intact muscle fibres and has been confirmed more recently, by us, in mammalian intact fibres. Following stimulation, fibre stiffness starts to increase during the latent period well before crossbridge force generation and it is present throughout the whole contraction in both single twitches and tetani. Static stiffness is dependent on sarcomere length in a different way from crossbridge force and is independent of stretching amplitude and velocity. Static stiffness follows a time course which is distinct from that of active force and very similar to the myoplasmic calcium concentration time course. We therefore hypothesize that static stiffness is due to a calcium-dependent stiffening of a non-crossbridge sarcomere structure, such as the titin filament. According to this hypothesis, titin, in addition to its well-recognized role in determining the muscle passive tension, could have a role during muscle activity.

  17. A Comparison of Stiff ODE Solvers for Astrochemical Kinetics Problems

    NASA Astrophysics Data System (ADS)

    Nejad, Lida A. M.

    2005-09-01

    The time dependent chemical rate equations arising from astrochemical kinetics problems are described by a system of stiff ordinary differential equations (ODEs). In this paper, using three astrochemical models of varying physical and computational complexity, and hence different degrees of stiffness, we present a comprehensive performance survey of a set of well-established ODE solver packages from the ODEPACK collection, namely LSODE, LSODES, VODE and VODPK. For completeness, we include results from the GEAR package in one of the test models. The results demonstrate that significant performance improvements can be obtained over GEAR which is still being used by many astrochemists by default. We show that a simple appropriate ordering of the species set results in a substantial improvement in the performance of the tested ODE solvers. The sparsity of the associated Jacobian matrix can be exploited and results using the sparse direct solver routine LSODES show an extensive reduction in CPU time without any loss in accuracy. We compare the performance and the computed abundances of one model with a 175 species set and a reduced set of 88 species, keeping all physical and chemical parameters identical with both sets.We found that the calculated abundances using two different size models agree quite well. However, with no extra computational effort and more reliable results, it is possible for the computation to be many times faster with the larger species set than the reduced set, depending on the use of solvers, the ordering and the chosen options. It is also shown that though a particular solver with certain chosen parameters may have severe difficulty or even fail to complete a run over the required integration time, another solver can easily complete the run with a wider range of control parameters and options. As a result of the superior performance of LSODES for the solution of astrochemical kinetics systems, we have tailor-made a sparse version of the VODE

  18. Heart Rate Dependency of Large Artery Stiffness.

    PubMed

    Tan, Isabella; Spronck, Bart; Kiat, Hosen; Barin, Edward; Reesink, Koen D; Delhaas, Tammo; Avolio, Alberto P; Butlin, Mark

    2016-07-01

    Carotid-femoral pulse wave velocity (cfPWV) quantifies large artery stiffness, it is used in hemodynamic research and is considered a useful cardiovascular clinical marker. cfPWV is blood pressure (BP) dependent. Intrinsic heart rate (HR) dependency of cfPWV is unknown because increasing HR is commonly accompanied by increasing BP. This study aims to quantify cfPWV dependency on acute, sympathovagal-independent changes in HR, independent of BP. Individuals (n=52, age 40-93 years, 11 female) with in situ cardiac pacemakers or cardioverter defibrillators were paced at 60, 70, 80, 90, and 100 bpm. BP and cfPWV were measured at each HR. Both cfPWV (mean [95% CI], 0.31 [0.26-0.37] m/s per 10 bpm; P<0.001) and central aortic diastolic pressure (3.78 [3.40-4.17] mm Hg/10 bpm; P<0.001) increased with HR. The HR effect on cfPWV was isolated by correcting the BP effects by 3 different methods: (1) statistically, by a linear mixed model; (2) mathematically, using an exponential relationship between BP and cross-sectional lumen area; and (3) using measured BP dependency of cfPWV derived from changes in BP induced by orthostatic changes (seated and supine) in a subset of subjects (n=17). The BP-independent effects of HR on cfPWV were quantified as 0.20 [0.11-0.28] m/s per 10 bpm (P<0.001, method 1), 0.16 [0.11-0.22] m/s per 10 bpm (P<0.001, method 2), and 0.16 [0.11-0.21] m/s per 10 bpm (P<0.001, method 3). With a mean HR dependency in the range of 0.16 to 0.20 m/s per 10 bpm, cfPWV may be considered to have minimal physiologically relevant changes for small changes in HR, but larger differences in HR must be considered as contributing to significant differences in cfPWV.

  19. Shape memory polymer hexachiral auxetic structures with tunable stiffness

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Scarpa, Fabrizio; Walters, Peter; Mukai, Toshiharu

    2014-04-01

    Planar auxetic structures have the potential to impact on a wide range of applications from deployable and morphing structures to space-filling composite and medical treatments. The ability to fabricate auxetics from smart materials greatly enhances this facility by building in controllable actuation and deployment. A smart auxetic device can be compressed and fixed into a storage state. When deployment is required the device can be appropriately stimulated and the stored elastic energy is released, resulting in a marked structural expansion. Instead of using a conventional external actuator to drive deployment the material is made to undergo phase transition where one stimulus (e.g. heat) initiates a mechanical response. Here we show how smart material auxetics can be realized using a thermally responsive shape memory polymer composites. We show how a shape memory polymer auxetic hexachiral structure can be tailored to provide a tunable stiffness response in its fully deployed state by varying the angle of inter-hub connections, and yet is still able to undergo thermally stimulated deployment.

  20. Pulmonary Arterial Stiffness: Toward a New Paradigm in Pulmonary Arterial Hypertension Pathophysiology and Assessment.

    PubMed

    Schäfer, Michal; Myers, Cynthia; Brown, R Dale; Frid, Maria G; Tan, Wei; Hunter, Kendall; Stenmark, Kurt R

    2016-01-01

    Stiffening of the pulmonary arterial bed with the subsequent increased load on the right ventricle is a paramount feature of pulmonary hypertension (PH). The pathophysiology of vascular stiffening is a complex and self-reinforcing function of extracellular matrix remodeling, driven by recruitment of circulating inflammatory cells and their interactions with resident vascular cells, and mechanotransduction of altered hemodynamic forces throughout the ventricular-vascular axis. New approaches to understanding the cell and molecular determinants of the pathophysiology combine novel biopolymer substrates, controlled flow conditions, and defined cell types to recapitulate the biomechanical environment in vitro. Simultaneously, advances are occurring to assess novel parameters of stiffness in vivo. In this comprehensive state-of-art review, we describe clinical hemodynamic markers, together with the newest translational echocardiographic and cardiac magnetic resonance imaging methods, to assess vascular stiffness and ventricular-vascular coupling. Finally, fluid-tissue interactions appear to offer a novel route of investigating the mechanotransduction processes and disease progression.

  1. Electrostatic stiffness correction for quadrature error in decoupled dual-mass MEMS gyroscope

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Cao, Huiliang; Ni, Yunfang

    2014-07-01

    This paper proposes an electrostatic stiffness correction method for the quadrature error (QUER) in a decoupled dual-mass gyroscope structure. The QUER is caused by the imperfections during the structure manufacturing process, and the two masses usually have different QUERs. The harm contribution to the Coriolis signal is analyzed and quantified. The generating forms of QUER motion in both masses are analyzed, the correction electrodes' working principle is introduced, and a single mass individual correction method is proposed. The QUER stiffness correction system is designed based on a PI controller, and the experiments are arranged to verify the theoretical analysis. The bias stability decreases from 2.06 to 0.64 deg/h after the QUER correction, and the parameters of scale factor such as nonlinearly, asymmetry, and repeatability, reduce from 143, 557, and 210 ppm to 84, 242, and 175 ppm, respectively.

  2. Drop casting of stiffness gradients for chip integration into stretchable substrates

    NASA Astrophysics Data System (ADS)

    Naserifar, Naser; LeDuc, Philip R.; Fedder, Gary K.

    2017-04-01

    Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems.

  3. Laser ultrasonics in copy paper: Bending stiffness dependence on temperature and moisture content

    NASA Astrophysics Data System (ADS)

    Cornwell, Matthew A.; Berthelot, Yves H.

    2002-12-01

    The A0 Lamb mode in copy paper is generated and detected by using laser ultrasonics. The frequency dependence of the group velocity of the A0 mode is found from the wavelet transform of the measured signal. A best fit of the dispersion curve against predictions based on orthotropic plate theory yields an estimate of the bending stiffness of the sample. The sample is enclosed in an environmental chamber so that the effects of temperature and humidity can be controlled. Results indicate that the bending stiffness decreases with increasing temperature at an approximate rate of 4×10-6 N m/°C, and that it decreases with increasing percent moisture content (PMC) at an approximate rate of 2×10-5 (N m)/PMC.

  4. Assessment of Placental Stiffness Using Acoustic Radiation Force Impulse Elastography in Pregnant Women with Fetal Anomalies

    PubMed Central

    Göya, Cemil; Tunç, Senem; Teke, Memik; Hattapoğlu, Salih

    2016-01-01

    Objective We aimed to evaluate placental stiffness measured by acoustic radiation force impulse (ARFI) elastography in pregnant women in the second trimester with a normal fetus versus those with structural anomalies and non-structural findings. Materials and Methods Forty pregnant women carrying a fetus with structural anomalies diagnosed sonographically at 18–28 weeks of gestation comprised the study group. The control group consisted of 34 healthy pregnant women with a sonographically normal fetus at a similar gestational age. Placental shear wave velocity (SWV) was measured by ARFI elastography and compared between the two groups. Structural anomalies and non-structural findings were scored based on sonographic markers. Placental stiffness measurements were compared among fetus anomaly categories. Doppler parameters of umbilical and uterine arteries were compared with placental SWV measurements. Results All placental SWV measurements, including minimum SWV, maximum SWV, and mean SWV were significantly higher in the study group than the control group ([0.86 ± 0.2, 0.74 ± 0.1; p < 0.001], [1.89 ± 0.7, 1.59 ± 0.5; p = 0.04], and [1.26 ± 0.4, 1.09 ± 0.2; p = 0.01]), respectively. Conclusion Placental stiffness evaluated by ARFI elastography during the second trimester in pregnant women with fetuses with congenital structural anomalies is higher than that of pregnant women with normal fetuses. PMID:26957906

  5. Habitual cocoa intake reduces arterial stiffness in postmenopausal women regardless of intake frequency: a randomized parallel-group study

    PubMed Central

    Okamoto, Takanobu; Kobayashi, Ryota; Natsume, Midori; Nakazato, Koichi

    2016-01-01

    Arterial stiffness is substantially higher in postmenopausal than in premenopausal women. Daily cocoa intake has been shown to reduce central arterial stiffness in health adults, regardless of age; however, the effect of cocoa-intake frequency on arterial stiffness in postmenopausal women remains unclear. Therefore, the purpose of this study was to investigate the effects of cocoa-intake frequency on arterial stiffness in postmenopausal women. A total of 26 postmenopausal women (mean age ± standard deviation 64±12 years) were randomly assigned to two groups with different cocoa-intake frequencies: one group ingested 17 g of cocoa once daily except on Sundays (every-day group, n=13), and the other ingested 17 g of cocoa twice daily every other day (every-other-day group, n=13). These intake regimens were maintained in both groups for 12 weeks. Carotid–femoral pulse-wave velocity and femoral–ankle pulse-wave velocity were measured in both groups at baseline and again at the end of the 12-week study period. Compared to baseline, both pulse-wave velocities had significantly decreased after the 12-week study period in both groups (P<0.05). However, no significant difference in degree of change was observed between the two groups. Although this study did not include a sedentary control group, these results suggest that regardless of frequency, habitual cocoa intake reduces central and peripheral arterial stiffness in postmenopausal women. PMID:27881914

  6. A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model

    PubMed Central

    Müller, Christian W.; Pfeifer, Ronny; Meier, Karen; Decker, Sebastian; Reifenrath, Janin; Gösling, Thomas; Wesling, Volker; Krettek, Christian; Hurschler, Christof; Krämer, Manuel

    2015-01-01

    Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery. PMID:26167493

  7. Effect of chain stiffness and temperature on the dynamics and microstructure of crystallizable bead-spring polymer melts

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong T.; Hoy, Robert S.

    2016-11-01

    We contrast the dynamics in model unentangled polymer melts of chains of three different stiffnesses: flexible, intermediate, and rodlike. Flexible and rodlike chains, which readily solidify into close-packed crystals (respectively, with randomly oriented and nematically aligned chains), display simple melt dynamics with Arrhenius temperature dependence and a discontinuous change upon solidification. Intermediate-stiffness chains, however, are fragile glass-formers displaying Vogel-Fulcher dynamical arrest, despite the fact that they also possess a nematic-close-packed crystalline ground state. To connect this difference in dynamics to the differing microstructure of the melts, we examine how various measures of structure, including cluster-level metrics recently introduced in studies of colloidal systems, vary with chain stiffness and temperature. No clear static-structural cause of the dynamical arrest is found. However, we find that the intermediate-stiffness chains display qualitatively different dynamical heterogeneity. Specifically, their stringlike motion (cooperative rearrangement) is correlated along chain backbones in a way not found for either flexible or rodlike chains. This activated "crawling" motion is clearly associated with the dynamical arrest observed in these systems, and illustrates one way in which factors controlling the crystallization versus glass formation competition in polymers can depend nonmonotonically on chain stiffness.

  8. Aerobic training-induced improvements in arterial stiffness are not sustained in older adults with multiple cardiovascular risk factors

    PubMed Central

    Madden, K M; Lockhart, C; Cuff, D; Potter, T F; Meneilly, G S

    2013-01-01

    There is a well-established relationship between increased arterial stiffness and cardiovascular mortality. We examined whether a long-term aerobic exercise intervention (6 months) would increase arterial compliance in older adults with hypertension complicated by Type 2 diabetes (T2DM) and hyperlipidemia. A total of 52 older adults (mean age 69.3±0.6 years, 30 males and 22 females) with diet/oral hypoglycemic-controlled T2DM, hypertension and hypercholesterolemia were recruited. Subjects were randomly assigned to one of two groups: an aerobic group (6 months vigorous aerobic exercise, AT group) and a non-aerobic group (6 months of no aerobic exercise, NA group). Arterial stiffness was measured as pulse-wave velocity (PWV) using the Complior device. Aerobic training decreased arterial stiffness as measured by both radial (P=0.001, 2-way analysis of variance with repeated measures) and femoral (P=0.002) PWV. This was due to a decrease in arterial stiffness in the AT group after 3 months of training, which was not maintained after 6-month training for either radial (P=0.707) or femoral (P=0.680) PWV. Our findings indicate that in older adults with multiple cardiovascular risk factors, short-term improvements in arterial stiffness became attenuated over the long term. PMID:22951625

  9. Habitual cocoa intake reduces arterial stiffness in postmenopausal women regardless of intake frequency: a randomized parallel-group study.

    PubMed

    Okamoto, Takanobu; Kobayashi, Ryota; Natsume, Midori; Nakazato, Koichi

    2016-01-01

    Arterial stiffness is substantially higher in postmenopausal than in premenopausal women. Daily cocoa intake has been shown to reduce central arterial stiffness in health adults, regardless of age; however, the effect of cocoa-intake frequency on arterial stiffness in postmenopausal women remains unclear. Therefore, the purpose of this study was to investigate the effects of cocoa-intake frequency on arterial stiffness in postmenopausal women. A total of 26 postmenopausal women (mean age ± standard deviation 64±12 years) were randomly assigned to two groups with different cocoa-intake frequencies: one group ingested 17 g of cocoa once daily except on Sundays (every-day group, n=13), and the other ingested 17 g of cocoa twice daily every other day (every-other-day group, n=13). These intake regimens were maintained in both groups for 12 weeks. Carotid-femoral pulse-wave velocity and femoral-ankle pulse-wave velocity were measured in both groups at baseline and again at the end of the 12-week study period. Compared to baseline, both pulse-wave velocities had significantly decreased after the 12-week study period in both groups (P<0.05). However, no significant difference in degree of change was observed between the two groups. Although this study did not include a sedentary control group, these results suggest that regardless of frequency, habitual cocoa intake reduces central and peripheral arterial stiffness in postmenopausal women.

  10. Effect of continuous positive airway pressure on arterial stiffness in patients with obstructive sleep apnea and hypertension: a meta-analysis.

    PubMed

    Lin, Xin; Chen, Gongping; Qi, Jiachao; Chen, Xiaofang; Zhao, Jiangming; Lin, Qichang

    2016-12-01

    Arterial stiffness has been recognized as a predictor of cardiovascular and all-cause mortality in hypertensive patients. However, the impact of continuous positive airway pressure (CPAP) on arterial stiffness in patients with OSA and hypertension remains inconclusive. We performed a meta-analysis to determine whether effective CPAP therapy could decrease arterial stiffness. Two reviewers independently searched PubMed, Embase, Web of Science and Cochrane Library prior to March 5, 2015. Information on characteristics of subjects, study design and pre- and post-CPAP treatment of arterial stiffness was extracted for analysis. Standardized mean difference (SMD) was used to analyze the summary estimates for CPAP therapy. Three articles with 186 patients were included in this meta-analysis, including two observational studies and one randomized controlled study. The meta-analysis showed that CPAP was associated with a statistically significant decrease in arterial stiffness in patients with OSA and hypertension (SMD = -0.65, 95 % confidence interval (CI) = -1.14 to -0.16, z = 2.60, p = 0.009). Our meta-analysis suggested that CPAP among OSA and hypertensive patients was significantly associated with a decrease in arterial stiffness. Further prospective large-scale multicenter RCTs are needed to explore the precise impact of CPAP therapy on arterial stiffness in patients with OSA and hypertension.

  11. Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat

    NASA Astrophysics Data System (ADS)

    Danh, Le Thanh; Ahn, Kyoung Kwan

    2014-02-01

    In this paper, an active pneumatic vibration isolation system using negative stiffness structures (NSS) for a vehicle seat in low excitation frequencies is proposed, which is named as an active system with NSS. Here, the negative stiffness structures (NSS) are used to minimize the vibratory attraction of a vehicle seat. Owing to the time-varying and nonlinear behavior of the proposed system, it is not easy to build an accurate dynamic for model-based controller design. Thus, an adaptive intelligent backstepping controller (AIBC) is designed to manage the system operation for high-isolation effectiveness. In addition, an auxiliary control effort is also introduced to eliminate the effect of the unpredictable perturbations. Moreover, a radial basis function neural network (RBFNN) model is utilized to estimate the optimal gain of the auxiliary control effort. Final control input and the adaptive law for updating coefficients of the approximate series can be obtained step by step using a suitable Lyapunov function. Afterward, the isolation performance of the proposed system is assessed experimentally. In addition, the effectiveness of the designed controller for the proposed system is also compared with that of the traditional backstepping controller (BC). The experimental results show that the isolation effectiveness of the proposed system is better than that of the active system without NSS. Furthermore, the undesirable chattering phenomenon in control effort is quite reduced by the estimation mechanism. Finally, some concluding remarks are given at the end of the paper.

  12. Magnetic Resonance Elastography Demonstrates Increased Brain Stiffness in Normal Pressure Hydrocephalus

    PubMed Central

    N, Fattahi; A, Arani; A, Perry; F, Meyer; A, Manduca; K, Glaser; ML, Senjem; RL, Ehman; J, Huston

    2015-01-01

    Introduction Normal pressure hydrocephalus (NPH) is a reversible neurologic disorder characterized by a triad of cognitive impairment, gait abnormality and urinary incontinence that is commonly treated with ventriculoperitoneal shunt placement. However, there are multiple overlapping symptoms which often make it difficult to differentiate NPH from other types of dementia and improved diagnostic techniques would help patient management. MR elastography (MRE) is a novel diagnostic tool that could potentially identify patients with NPH. The purpose of this study was to assess brain stiffness changes in NPH patients compared with age- and sex-matched cognitively normal individuals. Methods MRE was performed on 10 NPH patients and 21 age- and sex-matched volunteers with no known neurologic disorders. Image acquisition was conducted on a 3T MRI scanner. Shear waves with 60Hz vibration frequency were transmitted into the brain by a pillow-like passive driver. A novel postprocessing technique resistant to noise and edge artifacts was implemented to determine regional brain stiffness. The Wilcoxon rank sum test and linear regression were used for statistical analysis. Results A significant increase in stiffness was observed in the cerebrum (p = 0.001), occipital lobe (p = 0.0002), parietal lobe (p= 0.001), and the temporal lobe (p = 0.02) in the NPH group compared with normal controls. However, no significant difference was noted in other regions of the brain including the frontal lobe (p = 0.07), deep gray and white matter (p = 0.43), or the cerebellum (p = 0.20). Conclusion This study demonstrates increased brain stiffness in NPH patients compared to age- and sex-matched normal controls which motivates future studies investigating the use of MRE for NPH diagnosis and efficacy of shunt therapy. PMID:26542235

  13. Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension

    PubMed Central

    Kheyfets, Vitaly O.; Schroeder, Joyce D.; Dunning, Jamie; Shandas, Robin; Buckner, J. Kern; Browning, James; Hertzberg, Jean; Hunter, Kendall S.; Fenster, Brett E.

    2016-01-01

    Abstract Pulmonary hypertension (PH) is associated with proximal pulmonary arterial remodeling characterized by increased vessel diameter, wall thickening, and stiffness. In vivo assessment of wall shear stress (WSS) may provide insights into the relationships between pulmonary hemodynamics and vascular remodeling. We investigated the relationship between main pulmonary artery (MPA) WSS and pulmonary hemodynamics as well as markers of stiffness. As part of a prospective study, 17 PH patients and 5 controls underwent same-day four-dimensional flow cardiac magnetic resonance imaging (4-D CMR) and right heart catheterization. Streamwise velocity profiles were generated in the cross-sectional MPA in 45° increments from velocity vector fields determined by 4-D CMR. WSS was calculated as the product of hematocrit-dependent viscosity and shear rate generated from the spatial gradient of the velocity profiles. In-plane average MPA WSS was significantly decreased in the PH cohort compared with that in controls (0.18 ± 0.07 vs. 0.32 ± 0.08 N/m2; P = 0.01). In-plane MPA WSS showed strong inverse correlations with multiple hemodynamic indices, including pulmonary resistance (ρ = −0.74, P < 0.001), mean pulmonary pressure (ρ = −0.64, P = 0.006), and elastance (ρ = −0.70, P < 0.001). In addition, MPA WSS had significant associations with markers of stiffness, including capacitance (ρ = 0.67, P < 0.001), distensibility (ρ = 0.52, P = 0.013), and elastic modulus (ρ = −0.54, P = 0.01). In conclusion, MPA WSS is decreased in PH and is significantly associated with invasive hemodynamic indices and markers of stiffness. 4-D CMR–based assessment of WSS may represent a novel methodology to study blood-vessel wall interactions in PH. PMID:27076906

  14. An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Ragsdale, W. A.

    1992-01-01

    A lateral control wheel steering law with improved performance was developed for the Transport Systems Research Vehicle (TSRV) simulation and used in the Microwave Landing System research project. The control law converted rotational hand controller inputs into roll rate commands, manipulated ailerons, spoilers, and the rudder to achieve the desired roll rates. The system included automatic turn coordination, track angle hold, and autopilot/autoland modes. The resulting control law produced faster roll rates (15 degrees/sec), quicker response to command reversals, and safer bank angle limits, while using a more concise program code.

  15. Regulation of muscle stiffness during periodic length changes in the isolated abdomen of the hermit crab.

    PubMed

    Chapple, W D

    1997-09-01

    Reflex activation of the ventral superficial muscles (VSM) in the abdomen of the hermit crab, Pagurus pollicarus, was studied using sinusoidal and stochastic longitudinal vibration of the muscle while recording the length and force of the muscle and the spike times of three exciter motoneurons. In the absence of vibration, the interspike interval histograms of the two larger motoneurons were bimodal; cutting sensory nerves containing most of the mechanoreceptor input removed the short interval peak in the histogram, indicating that the receptors are important in maintaining tonic firing. Vibration of the muscle evoked a reflex increase in motoneuron frequency that habituated after an initial peak but remained above control levels for the duration of stimulation. Motoneuron frequency increased with root mean square (rms) stimulus amplitude. Average stiffness during stimulation was about two times the stiffness of passive muscle. The reflex did not alter muscle dynamics. Estimated transfer functions were calculated from the fast Fourier transform of length and force signals. Coherence was >0.9 for the frequency range of 3-35 Hz. Stiffness magnitude gradually increased over this range in both reflex activated and passive muscle; phase was between 10 and 20 degrees. Reflex stiffness decreased with increasing stimulus amplitudes, but at larger amplitudes, this decrease was much less pronounced; in this range stiffness was regulated by the reflex. The sinusoidal frequency at which reflex bursts were elicited was approximately 6 Hz, consistent with previous measurements using ramp stretch. During reflex excitation, there was an increase in amplitude of the short interval peak in the interspike interval histogram; this was reduced when the majority of afferent pathways was removed. A phase histogram of motoneuron firing during sinusoidal vibration had a peak at approximately 110 ms, also suggesting that an important component of the reflex is via direct projections from

  16. Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples

    NASA Astrophysics Data System (ADS)

    Lyyra, T.; Arokoski, J. P. A.; Oksala, N.; Vihko, A.; Hyttinen, M.; Jurvelin, J. S.; Kiviranta, I.

    1999-02-01

    In order to evaluate the ability of the arthroscopic indentation instrument, originally developed for the measurement of cartilage stiffness during arthroscopy, to detect cartilage degeneration, we compared changes in the stiffness with the structural and constitutional alterations induced by enzymes on the tissue in vitro. The culturing of osteochondral plugs on Petri dishes was initiated in Minimum Essential Medium with Earle's salts and the baseline stiffness was measured. Then, the experimental specimens were digested using trypsin for 24 h, chondroitinase ABC or purified collagenase (type VII) for 24 h or 48 h ( n = 8-15 per group). The control specimens were incubated in the medium. After the enzyme digestion, the end-point stiffness was measured and the specimens for the microscopic analyses were processed. The proteoglycan (PG) distribution was analysed using quantitative microspectrophotometry and the quantitative evaluation of the collagen network was made using a computer-based polarized light microscopy analysis. Decrease of cartilage stiffness was found after 24 h trypsin (36%) and 48 h chondroitinase ABC (24%) digestion corresponding to a decrease of up to 80% and up to 30% in the PG content respectively. Decrease of the superficial zone collagen content or arrangement (78%, ) after 48 h collagenase digestion also induced a decrease (30%, ) in cartilage stiffness. We conclude that our instrument is capable of

  17. Substrate Stiffness Regulates Filopodial Activities in Lung Cancer Cells

    PubMed Central

    Liou, Yu-Ren; Torng, Wen; Kao, Yu-Chiu; Sung, Kung-Bin; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and should shed light

  18. Identification of intrinsic and reflexive contributions to low-back stiffness: medium-term reliability and construct validity.

    PubMed

    Larivière, Christian; Ludvig, Daniel; Kearney, Robert; Mecheri, Hakim; Caron, Jean-Maxime; Preuss, Richard

    2015-01-21

    This study aimed at testing the reliability and construct validity of a trunk perturbation protocol (TPP) that estimates the intrinsic and reflexive contributions to low-back stiffness. The TPP consists of a series of pseudorandom position-controlled trunk perturbations in an apparatus measuring forces and displacements at the harness surrounding the thorax. Intrinsic and reflexive contributions to low-back stiffness were estimated using a system identification procedure, leading to 12 parameters. Study 1 methods (reliability): 30 subjects performed five 75-s trials, on each of two separate days (eight weeks apart). Reliability was assessed using the generalizability theory, which allowed computing indexes of dependability (ϕ, analogous to intraclass correlation coefficient) and standard errors of measurement (SEM). Study 2 methods (validity): 20 healthy subjects performed three 75-s trials for each of five experimental conditions assumed to provide different lumbar stiffness; testing the construct validity of the TPP using four conditions with different lumbar belt designs and one control condition without. Study 1 results (reliability): Learning was seen between the first and following trials. Consequently, reliability analyses were performed without the first trial. Simulations showed that averaging the scores of three trials can lead to acceptable reliability results for some TPP parameters. Study 2 results (validity): All lumbar belt designs increased low-back intrinsic stiffness, while only some of them decreased reflex stiffness, which support the construct validity of the TPP. Overall, these findings support the use of the TPP to test the effect of rehabilitation or between-groups differences with regards to trunk stiffness.

  19. Influence of Postprandial Hyperglycemic Conditions on Arterial Stiffness in Patients With Type 2 Diabetes

    PubMed Central

    Gordin, Daniel; Saraheimo, Markku; Tuomikangas, Jaana; Soro-Paavonen, Aino; Forsblom, Carol; Paavonen, Karri; Steckel-Hamann, Birgit; Vandenhende, Francois; Nicolaou, Loizos; Pavo, Imre; Koivisto, Veikko

    2016-01-01

    Context: Patients with type 2 diabetes (T2D) are at an increased risk of cardiovascular disease. Objective: The objective of the study was to determine whether postprandial hyperglycemia affects arterial function in T2D. Design: A single-center, open-label study of three groups of men were studied: 1) T2D patients with albuminuria (n = 22), 2) T2D patients without albuminuria (n = 24), and 3) nondiabetic controls (n = 25). Patients were randomized to a two-period crossover study schedule, ingesting breakfast, with or without insulin lispro (to induce low or high postprandial glycemia). Main Outcome Measures: Arterial stiffness was assessed by calculating pulse wave velocity (PWV) and augmentation index using applanation tonometry, and endothelial dysfunction was assessed using peripheral arterial tonometry, 30 minutes before breakfast and up to 240 minutes after breakfast. Results: At baseline, arterial stiffness was increased in patients. When adjusted for age and body mass index, in a combined group of patients with and without albuminuria, brachial PWV was higher during low (P = .032) and high (P = .038) postprandial glycemia vs controls. These differences were driven by the albuminuria group vs controls during low (P = .014) and high (P = .018) postprandial glycemia. No differences were observed in aortic PWV, augmentation index, or peripheral arterial tonometry ratio between patients and controls. Endothelin-1 and IL-6 were higher, and superoxide dismutase was lower, during postprandial hyperglycemia in T2D patients vs controls. Conclusions: In patients with T2D and albuminuria, brachial PWV was higher under postprandial hyperglycemic conditions, relative to controls. These data suggest that hyperglycemia induces an increase in stiffness of intermediate-sized arteries. We found no changes in other parts of the arterial bed. PMID:26731258

  20. Crosstalk between oxidative and nitrosative stress and arterial stiffness.

    PubMed

    Mozos, Ioana; Luca, Constantin Tudor

    2017-02-01

    Arterial stiffness, the expression of reduced arterial elasticity, is an effective predictor of cardiovascular disorders. Oxidative stress is an imbalance between exposure to toxic reactive oxygen species (ROS) and antioxidant systems. The increase in reactive nitrogen species (RNS) is termed nitrosative stress. We review the main mechanisms and products linking arterial stiffness with oxidative and nitrosative stress in several disorders, focusing on recent experimental and clinical data, and the mechanisms explaining benefits of antioxidant therapy. Oxidative and nitrosative stress play important roles in arterial stiffness elevation in several disorders, including diabetes mellitus, hypertension, metabolic syndrome, obesity, peripheral arterial disease, chronic obstructive pulmonary disease, systemic lupus erythematosus, thalassemia, Kawasaki disease and malignant disorders. Oxidative and nitrosative stress are responsible for endothelial dysfunction due to uncoupling of the nitric oxide synthase, oxidative damage to lipids, proteins and DNA in vascular endothelial cells, associated with inflammation, arteriosclerosis and atherosclerosis. Regular physical exercise, caloric restriction, red wine, statins, sartans, metformin, oestradiol, curcumin and combinations of antioxidant vitamins are therapeutic strategies that may decrease arterial stiffness and oxidative stress thus reducing the risk of cardiovascular events. ROS and RNS represent potential therapeutic targets for preventing progression of arterial stiffness.

  1. Quantification of plaque stiffness by Brillouin microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Antonacci, Giuseppe; Pedrigi, Ryan; Krams, Rob; Török, Peter

    2016-03-01

    Spontaneous Brillouin scattering is an inelastic scattering process arising from inherent thermal density fluctuations, or acoustic phonons, propagating in a medium. Over the last few years, Brillouin spectroscopy has shown great potential to become a reliable non-invasive diagnostic tool due to its unique capability of retrieving viscoelastic properties of materials such as strain and stiffness. The detection of the weak scattered light, in addition to the resolution of the Brillouin peaks (typically shifted by few GHz from the central peak) represent one of the greatest challenges in Brillouin. The recent development of high sensitivity CCD cameras has brought Brillouin spectroscopy from a point sampling technique to a new imaging modality. Furthermore, the application of Virtually Imaged Phased Array (VIPA) etalons has dramatically reduced insertion loss simultaneously allowing fast (<1s) collection of the entire spectrum. Hitherto Brillouin microscopy has been shown the ability to provide unique stiffness maps of biological samples, such as the human lens, in a non-destructive manner. In this work, we present results obtained using our Brillouin microscope to map the stiffness variations in the walls of blood vessels in particular when atherosclerotic plaques are formed. The stiffness of the membrane that covers the plaques is critical in developing acute myocardial infarction yet it is not currently possible to credibly assess its stiffness due to lack of suitable methods.

  2. Evaluating pulp stiffness from fibre bundles by ultrasound

    NASA Astrophysics Data System (ADS)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  3. Stiffness characterisation of microcantilevers based on conducting polymers

    NASA Astrophysics Data System (ADS)

    Alici, Gursel; Higgins, Michael J.

    2008-12-01

    The object of this paper is to characterise the stiffness of microfabricated cantilevers consisting of two electroactive polymer (polypyrrole (PPy)) layers, and two gold layers with a negligible thickness and a layer of porous polyvinylidene fluoride (PVDF), which serves as a backing layer and electrolyte storage tank. This composite cantilever structure is used as polymer actuators or famously known as artificial muscles when tailored appropriately. The polymer microactuators considered in this study, which were fabricated using a laser ablation technique, could operate both in aqueous and non-aqueous media. The stiffness characterization of the microactuators is critical to assess their suitability to numerous applications including the micromanipulation of living cells, bio-analytical nanosystems, datastorage, labon- chip, microvalve, microswitch, microshutter, cantilever light modulators, micro-optical instrumentation, artificial muscles for micro and macro robotic sytems and similar. The stiffness measurement method followed in this study is a static deflection measurement method, using an atomic force microscope (AFM). The stiffness constants of the microactuators while they were in passive (no electrochemical activation) and active (electrochemically activated) states were measured separately, and their statistical comparison was provided. The possible error sources for the stiffness measurement method are elaborated.

  4. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    PubMed

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  5. An experimental study on the stiffness of size-isolated microbubbles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Cherry C.; Wu, Shih-Ying; Finan, John D.; Morrison, Barclay, III; Konofagou, Elisa E.

    2012-11-01

    In order to fully assess contrast-enhanced acoustic bioeffects in diagnostic and therapeutic ultrasound, the mechanical properties of microbubbles need to be taken into account. In the present study, direct measurements of the microbubble stiffness were performed using atomic force microscopy by applying nanoscale compressions (up to 25 nN/s) on size-isolated, phospholipid-coated microbubbles (diameters between 4-6 and 6-8 μm). The stiffness was found to lie between 4 and 22 mN/m and to decrease exponentially with microbubble size within the diameter range investigated. No cantilever spring constant effect was noted on the measured stiffness. The Young's modulus of the size-isolated microbubbles used in our study ranged between 0.4 and 2 MPa. Microstructures on the surface of the microbubbles were found to influence the overall microbubble elasticity. Our results indicated that more detailed theoretical models are needed to account for the size-dependent microbubble mechanical properties in order to accurately predict their acoustic behavior. The findings provided useful insights to control cavitation-induced drug and gene delivery and could be used as part of the framework in studies on the shear stresses induced on the blood vessel walls by the oscillating microbubbles.

  6. Effects of varying machine stiffness and contact area in UltraForm Finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis E.; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic, subaperture, computer numerically controlled, grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to measure the stiffness variations in the system and how it can affect material removal rates. The stiffness of the entire system is evaluated using a triaxial load cell to measure forces and a capacitance sensor to measure deviations in height. Because the wheel is conformal and elastic, the shapes of contact areas are also of interest. For the scope of this work, the shape of the contact area is estimated via removal spot. The measured forces and removal spot area are directly related to material removal rate through Preston's equation. Using our current testing apparatus, we will demonstrate stiffness measurements and contact areas for a single UFF belt during different states of its lifecycle and assess the material removal function from spot diagrams as a function of wear. This investigation will ultimately allow us to make better estimates of Preston's coefficient and develop spot-morphing models in an effort to more accurately predict instantaneous material removal functions throughout the lifetime of a belt.

  7. Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2015-10-01

    Inspired by the physics behind the rapid plant movements and the rich topologies in origami folding, this research creates a unique class of multi-functional adaptive structure through exploring the innovation of fluidic origami. The idea is to connect multiple Miura folded sheets along their crease lines into a space-filling structure, and fill the tubular cells in-between with working fluids. The pressure and fluid flow in these cells can be strategically controlled much like in plants for nastic movements. The relationship between the internal fluid volume and the overall structure deformation is primarily determined by the kinematics of folding. This relationship can be exploited so that fluidic origami can achieve actuation/morphing by actively changing the internal fluid volume, and stiffness tuning by constraining the fluid volume. In order to characterize the working principles and performance potentials of these two adaptive functions, this research develops an equivalent truss frame model on a fluidic origami unit cell to analyze its fundamental elastic characteristics. Eigen-stiffness analysis based on this model reveals the primary modes of deformation and their relationships with initial folding configurations. Performances of the adaptive functions are correlated to the crease pattern design. In parallel to analytical studies, the feasibility of the morphing and stiffness tuning is also examined experimentally via a 3D printed multi-material prototype demonstrator. The research reported in this paper could lead to the synthesis of adaptive fluidic origami cellular metastructures or metamaterial systems for various engineering applications.

  8. Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors.

    PubMed

    Verstraeten, Valerie L R M; Ji, Julie Y; Cummings, Kiersten S; Lee, Richard T; Lammerding, Jan

    2008-06-01

    Hutchinson-Gilford progeria syndrome (HGPS), reportedly a model for normal aging, is a genetic disorder in children marked by dramatic signs suggestive for premature aging. It is usually caused by de novo mutations in the nuclear envelope protein lamin A. Lamins are essential to maintaining nuclear integrity, and loss of lamin A/C results in increased cellular sensitivity to mechanical strain and defective mechanotransduction signaling. Since increased mechanical sensitivity in vascular cells could contribute to loss of smooth muscle cells and the development of arteriosclerosis--the leading cause of death in HGPS patients--we investigated the effect of mechanical stress on cells from HGPS patients. We found that skin fibroblasts from HGPS patients developed progressively stiffer nuclei with increasing passage number. Importantly, fibroblasts from HGPS patients had decreased viability and increased apoptosis under repetitive mechanical strain, as well as attenuated wound healing, and these defects preceded changes in nuclear stiffness. Treating fibroblasts with farnesyltransferase inhibitors restored nuclear stiffness in HGPS cells and accelerated the wound healing response in HGPS and healthy control cells by increasing the directional persistence of migrating cells. However, farnesyltransferase inhibitors did not improve cellular sensitivity to mechanical strain. These data suggest that increased mechanical sensitivity in HGPS cells is unrelated to changes in nuclear stiffness and that increased biomechanical sensitivity could provide a potential mechanism for the progressive loss of vascular smooth muscle cells under physiological strain in HGPS patients.

  9. LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells

    PubMed Central

    Salker, Madhuri S.; Schierbaum, Nicolas; Alowayed, Nour; Singh, Yogesh; Mack, Andreas F.; Stournaras, Christos; Schäffer, Tilman E.; Lang, Florian

    2016-01-01

    LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage. PMID:27404958

  10. Ten weeks of treadmill running decreases stiffness and increases collagen turnover in tendons of old mice.

    PubMed

    Wood, Lauren K; Brooks, Susan V

    2016-02-01

    Increased tendon stiffness in response to mechanical loading is well established in young animals. Given that tendons stiffen with aging, we aimed to determine the effect of increased loading on tendons of old animals. We subjected 28-month-old mice to 10 weeks of uphill treadmill running; sedentary 8- and 28-month-old mice served as controls. Following training, plantaris tendon stiffness and modulus were reduced by approximately half, such that the values were not different from those of tendons from adult sedentary animals. The decrease in plantaris tendon stiffness was accompanied by a similar reduction in the levels of advanced glycation end-product protein adducts in tibialis anterior tendons of trained compared with sedentary old mice. In Achilles tendons, elevated mRNA levels for collagen type 1, matrix-metalloproteinase-8, and lysyl oxidase following training suggest that collagen turnover was likely also increased. The dramatic mechanical and structural changes induced by training occurred independent of changes in cell density or tendon morphology. Finally, Achilles tendon calcification was significantly reduced following exercise. These results demonstrate that, in response to exercise, tendons from old animals are capable of replacing damaged and dysfunctional components of extracellular matrix with tissue that is mechanically and structurally comparable to adult tissue.

  11. Variable stiffness and recruitment using nylon actuators arranged in a pennate configuration

    NASA Astrophysics Data System (ADS)

    Kianzad, Soheil; Pandit, Milind; Lewis, Johnathan D.; Berlingeri, Alexander R.; Haebler, Karl J.; Madden, John D. W.

    2015-04-01

    In muscle variable impedance and ability to recruit fibers as needed helps enable actions such as walking and catching. A new biomimetic structure of nylon actuator is presented that imitates the human pennate muscle in structure, ability to vary stiffness and the ability to increase force by recruiting additional fibers. The actuator consists of 16 silver coated nylon coiled fibers attached to a central tendon at an angle of 20°. Each nylon coil produces 20 MPa of stress at constant length and nearly 20% strain at fixed load. Fibers are individually switched ON and OFF using transistors so that each element can be recruited, and the stiffness varied. The amount of input power is controlled with pulse width modulation (PWM) techniques. It is observed that the spring constant of the pennate structure varies from that of its passive state, 503 N/m and a resonance frequency of 1.4 Hz, to 1480 N/m with resonance frequency of 3.1 Hz in the active state where all the fibers are switched on under a 25 N load. Stiffness can be varied by a factor of 9.

  12. Form-Finding Model Shows How Cytoskeleton Network Stiffness Is Realized

    PubMed Central

    Gong, Jinghai; Zhang, Daxu; Tseng, Yiider; Li, Baolong; Wirtz, Denis; Schafer, Benjamin William

    2013-01-01

    In eukaryotic cells the actin-cytoskeletal network provides stiffness and the driving force that contributes to changes in cell shape and cell motility, but the elastic behavior of this network is not well understood. In this paper a two dimensional form-finding model is proposed to investigate the elasticity of the actin filament network. Utilizing an initially random array of actin filaments and actin-cross-linking proteins the form-finding model iterates until the random array is brought into a stable equilibrium configuration. With some care given to actin filament density and length, distance between host sites for cross-linkers, and overall domain size the resulting configurations from the form-finding model are found to be topologically similar to cytoskeletal networks in real cells. The resulting network may then be mechanically exercised to explore how the actin filaments deform and align under load and the sensitivity of the network’s stiffness to actin filament density, length, etc. Results of the model are consistent with the experimental literature, e.g. actin filaments tend to re-orient in the direction of stretching; and the filament relative density, filament length, and actin-cross-linking protein’s relative density, control the actin-network stiffness. The model provides a ready means of extension to more complicated domains and a three-dimensional form-finding model is under development as well as models studying the formation of actin bundles. PMID:24146992

  13. [Anesthetic management of a patient with stiff-person syndrome undergoing thymectomy].

    PubMed

    Tadokoro, Takahiro; Yamashita, Soichiro; Ishigaki, Maiko; Takahashi, Shinji; Tanaka, Makoto

    2012-02-01

    Stiff-person syndrome is an uncommon disease characterized by muscular rigidity and painful spasms in the axial and limb muscles. We report a 58-year-old woman with stiff-person syndrome undergoing thymectomy under general anesthesia. Before surgery, her medications were 25 mg of diazepam, 2 mg of clonazepam, and 15 mg of gabapentin per day. After epidural catheterization for the postoperative analgesia, general anesthesia was induced and maintained with continuous remifentanil infusion and propofol with target controlled infusion. With train-of-four ratio (TOFR) monitoring by stimulating the ulnar nerve, her trachea was intubated after 0.6mg x kg(-1) of rocuronium intravenous administration. Since then, additional rocuronium was not given for 4 hours. After surgery, she was fully awake and TOFR recovered to 100%, but tidal volume was too low to remove the tracheal tube, and mechanical ventilation was continued in ICU. On the next day, the tracheal tube was removed, and she was discharged from ICU. Because anesthetics may delay the recovery of respiratory function in a patient with stiff-person syndrome, careful assessment of respiratory function is needed at the emergence from general anesthesia.

  14. Taurine supplementation attenuates delayed increase in exercise-induced arterial stiffness.

    PubMed

    Ra, Song-Gyu; Choi, Youngju; Akazawa, Nobuhiko; Ohmori, Hajime; Maeda, Seiji

    2016-06-01

    There is a delayed increase in arterial stiffness after eccentric exercise that is possibly mediated by the concurrent delayed increase in circulating oxidative stress. Taurine has anti-oxidant action, and taurine supplementation may be able to attenuate the increase in oxidative stress after exercise. The purpose of the present study was to investigate whether taurine supplementation attenuates the delayed increase in arterial stiffness after eccentric exercise. In the present double-blind, randomized, and placebo-controlled trial, we divided 29 young, healthy men into 2 groups. Subjects received either 2.0 g of placebo (n = 14) or taurine (n = 15) 3 times per day for 14 days prior to the exercise, on the day of exercise, and the following 3 days. The exercise consisted of 2 sets of 20 maximal-effort eccentric repetitions with the nondominant arm only. On the morning of exercise and for 4 days thereafter, we measured serum malondialdehyde (MDA) and carotid-femoral pulse wave velocity (cfPWV) as indices of oxidative stress and arterial stiffness, respectively. On the third and fourth days after exercise, both MDA and cfPWV significantly increased in the placebo group. However, these elevations were significantly attenuated in the taurine group. The increase in MDA was associated with an increase in cfPWV from before exercise to 4 days after exercise (r = 0.597, p < 0.05) in the placebo group, but not in the taurine group. Our results suggest that delayed increase in arterial stiffness after eccentric exercise was probably affected by the exercise-induced oxidative stress and was attenuated by the taurine supplementation.

  15. Increased Pulse Wave Velocity Reflecting Arterial Stiffness in Patients with Colorectal Adenomas

    PubMed Central

    Lim, Yun Jeong; Kwack, Won Gun; Lee, Youg-Sup; Hahm, Ki Baik; Kim, Young-Kwon

    2010-01-01

    The obese patients with diabetes or cardiovascular risk factors are associated with increased risk of colorectal cancer as well as adenomas under the shared pathogenesis related to atherosclerosis. Here we determined the association between increased arterial stiffness and colorectal adenomas incorporating parameters including age, gender, waist circumference, body mass index, lipid profiles, fasting glucose, and blood pressure. Subjects who simultaneously underwent colonoscopies and pulse wave velocity (PWV) determinations between July 2005 and September 2006 were analyzed, based on which the subjects were classified into two groups as patients group with colorectal adenomas (n = 49) and control group (n = 200) with normal, non-polypoid benign lesions or hyperplastic polyps. Uni- and multi-variate analyses were performed to calculate the odd ratio for colon adenomas. Based on uni-variate analysis, age, waist circumference, body mass index, heart-femoral PWV (hfPWV), and brachial-ankle PWV were significantly associated with adenomas (p<0.05) and multiple logistic regression analysis showed that the heart-femoral PWV, waist circumference, and the levels of LDL-C were significant risk factor for colorectal adenoma. However, arterial stiffness did not affect the progression of colon adenoma. The finding that hfPWV, reflecting aortic stiffness, was increased in patients with colorectal adenomas lead to conclusion that patients who have prominently increased arterial stiffness can be recommended to undergo colonoscopic examinations and at the same time we also recommend counseling about the risk for atherosclerosis in those who have colorectal adenomas. PMID:21103036

  16. Hepatic fibrosis and factors associated with liver stiffness in HIV mono-infected individuals

    PubMed Central

    Ferenci, Tamás; Makara, Mihály; Horváth, Gábor; Szlávik, János; Rupnik, Zsófia; Kormos, Luca; Gerlei, Zsuzsanna; Sulyok, Zita; Vályi-Nagy, István

    2017-01-01

    Background Liver disease has become an important cause of morbidity and mortality even in those HIV-infected individuals who are devoid of hepatitis virus co-infection. The aim of this study was to evaluate the degree of hepatic fibrosis and the role of associated factors using liver stiffness measurement in HIV mono-infected patients without significant alcohol intake. Methods We performed a cross-sectional study of 101 HIV mono-infected patients recruited prospectively from March 1, 2014 to October 30, 2014 at the Center for HIV, St István and St László Hospital, Budapest, Hungary. To determine hepatic fibrosis, liver stiffness was measured with transient elastography. Demographic, immunologic and other clinical parameters were collected to establish a multivariate model. Bayesian Model Averaging (BMA) was performed to identify predictors of liver stiffness. Results Liver stiffness ranged from 3.0–34.3 kPa, with a median value of 5.1 kPa (IQR 1.7). BMA provided a very high support for age (Posterior Effect Probability-PEP: 84.5%), moderate for BMI (PEP: 49.3%), CD4/8 ratio (PEP: 44.2%) and lipodystrophy (PEP: 44.0%). For all remaining variables, the model rather provides evidence against their effect. These results overall suggest that age and BMI have a positive association with LS, while CD4/8 ratio and lipodystrophy are negatively associated. Discussion Our findings shed light on the possible importance of ageing, overweight and HIV-induced immune dysregulation in the development of liver fibrosis in the HIV-infected population. Nonetheless, further controlled studies are warranted to clarify causal relations. PMID:28097068

  17. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.

    PubMed

    Esposito, Christopher J; Tangorra, James L; Flammang, Brooke E; Lauder, George V

    2012-01-01

    We designed a robotic fish caudal fin with six individually moveable fin rays based on the tail of the bluegill sunfish, Lepomis macrochirus. Previous fish robotic tail designs have loosely resembled the caudal fin of fishes, but have not incorporated key biomechanical components such as fin rays that can be controlled to generate complex tail conformations and motion programs similar to those seen in the locomotor repertoire of live fishes. We used this robotic caudal fin to test for the effects of fin ray stiffness, frequency and motion program on the generation of thrust and lift forces. Five different sets of fin rays were constructed to be from 150 to 2000 times the stiffness of biological fin rays, appropriately scaled for the robotic caudal fin, which had linear dimensions approximately four times larger than those of adult bluegill sunfish. Five caudal fin motion programs were identified as kinematic features of swimming behaviors in live bluegill sunfish, and were used to program the kinematic repertoire: flat movement of the entire fin, cupping of the fin, W-shaped fin motion, fin undulation and rolling movements. The robotic fin was flapped at frequencies ranging from 0.5 to 2.4 Hz. All fin motions produced force in the thrust direction, and the cupping motion produced the most thrust in almost all cases. Only the undulatory motion produced lift force of similar magnitude to the thrust force. More compliant fin rays produced lower peak magnitude forces than the stiffer fin rays at the same frequency. Thrust and lift forces increased with increasing flapping frequency; thrust was maximized by the 500× stiffness fin rays and lift was maximized by the 1000× stiffness fin rays.

  18. The Interday Measurement Consistency of and Relationships Between Hamstring and Leg Musculo-articular Stiffness.

    PubMed

    Waxman, Justin P; Schmitz, Randy J; Shultz, Sandra J

    2015-10-01

    Hamstring stiffness (K(HAM)) and leg stiffness (K(LEG)) are commonly examined relative to athletic performance and injury risk. Given these may be modifiable, it is important to understand day-to-day variations inherent in these measures before use in training studies. In addition, the extent to which K(HAM) and K(LEG) measure similar active stiffness characteristics has not been established. We investigated the interday measurement consistency of K(HAM) and K(LEG), and examined the extent to which K(LEG) predicted K(HAM) in 6 males and 9 females. K(HAM) was moderately consistent day-to-day (ICC(2,5) = .71; SEM = 76.3 N·m(-1)), and 95% limits of agreement (95% LOA) revealed a systematic bias with considerable absolute measurement error (95% LOA = 89.6 ± 224.8 N·m(-1)). Day-to-day differences in procedural factors explained 59.4% of the variance in day-to-day differences in K(HAM). Bilateral and unilateral K(LEG) was more consistent (ICC(2,3) range = .87-.94; SEM range = 1.0-2.91 kN·m(-1)) with lower absolute error (95% LOA bilateral= -2.0 ± 10.3; left leg = -0.36 ± 3.82; right leg = -1.05 ± 3.61 kN·m(-1)). K(LEG) explained 44% of the variance in K(HAM) (P < .01). Findings suggest that procedural factors must be carefully controlled to yield consistent and precise K(HAM) measures. The ease and consistency of K(LEG), and moderate correlation with K(HAM), may steer clinicians toward K(LEG) when measuring lower-extremity stiffness for screening studies and monitoring the effectiveness of training interventions over time.

  19. Effects of exercise-induced low back pain on intrinsic trunk stiffness and paraspinal muscle reflexes.

    PubMed

    Miller, Emily M; Bazrgari, Babak; Nussbaum, Maury A; Madigan, Michael L

    2013-02-22

    The purpose of this study was to (1) compare trunk neuromuscular behavior between individuals with no history of low back pain (LBP) and individuals who experience exercise-induced LBP (eiLBP) when pain free, and (2) investigate changes in trunk neuromuscular behavior with eiLBP. Seventeen young adult males participated including eight reporting recurrent, acute eiLBP and nine control participants reporting no history of LBP. Intrinsic trunk stiffness and paraspinal muscle reflex delay were determined in both groups using sudden trunk flexion position perturbations 1-2 days following exercise when the eiLBP participants were experiencing an episode of LBP (termed post-exercise) and 4-5 days following exercise when eiLBP had subsided (termed post-recovery). Post-recovery, when the eiLBP group was experiencing minimal LBP, trunk stiffness was 26% higher in the eiLBP group compared to the control group (p=0.033) and reflex delay was not different (p=0.969) between groups. Trunk stiffness did not change (p=0.826) within the eiLBP group from post-exercise to post-recovery, but decreased 22% within the control group (p=0.002). Reflex delay decreased 11% within the eiLBP group from post-exercise to post-recovery (p=0.013), and increased 15% within the control group (p=0.006). Although the neuromuscular mechanisms associated with eiLBP and chronic LBP may differ, these results suggest that previously-reported differences in trunk neuromuscular behavior between individuals with chronic LBP and healthy controls reflect a combination of inherent differences in neuromuscular behavior between these individuals as well as changes in neuromuscular behavior elicited by pain.

  20. Estimation of Stiffness Parameter on the Common Carotid Artery

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Mizoshiri, Isao; Matsui, Kiyoaki; Nakamura, Takashi

    The arteriosclerosis is on the increase with an aging or change of our living environment. For that reason, diagnosis of the common carotid artery using echocardiogram is doing to take precautions carebropathy. Up to the present, several methods to measure stiffness parameter of the carotid artery have been proposed. However, they have analyzed at the only one point of common carotid artery. In this paper, we propose the method of analysis extended over a wide area of common carotid artery. In order to measure stiffness parameter of common carotid artery from echocardiogram, it is required to detect two border curves which are boundaries between vessel wall and blood. The method is composed of two steps. The first step is the detection of border curves, and the second step is the calculation of stiffness parameter using diameter of common carotid artery. Experimental results show the validity of the proposed method.

  1. Tailoring shear-stiff, mica-like nanoplatelets.

    PubMed

    Möller, Michael W; Handge, Ulrich A; Kunz, Daniel A; Lunkenbein, Thomas; Altstädt, Volker; Breu, Josef

    2010-02-23

    This work introduces a novel facile method to produce shear-stiff, mica-like nanoplatelets by efficient exfoliation. The essence of this procedure is the nonreversible alteration of the interlamellar reactivity of a synthetic fluorohectorite by simple cation exchange. The possibility of switching from highly hydrated to collapsed interlayers permits a highly efficient exfoliation in the swollen state while providing shear-stiffness in the collapsed state. This method restricts cation exchange in the mica-like nanoplatelets to the outer surfaces, which represents a significant advantage for use in nanocomposites as compared to conventional organoclays which contain up to 40%/wt of organocations. It is expected that this new type of rigid, shear-stiff, clay-based nanoplatelets will be superior for reinforcement when used in composite materials like polymer layered silicate nanocomposites or artificial nacre.

  2. Exact Dynamic Stiffness Matrix for Composite Timoshenko Beams with Applications

    NASA Astrophysics Data System (ADS)

    Bannerjee, J. R.; Williams, F. W.

    1996-07-01

    In this paper, an exact dynamic stiffness matrix is presented for a composite beam. It includes the effects of shear deformation and rotatory inertia: i.e., it is for a composite Timoshenko beam. The theory accounts for the (material) coupling between the bending and torsional deformations which usually occurs for such beams due to the anisotropic nature of fibrous composites. An explicit analytical expression for each of the elements of the dynamic stiffness matrix is derived by rigorous use of the symbolic computing package REDUCE. It is proved that the use of such expressions leads to substantial savings in computer time when compared with the matrix inversion method. The use of this dynamic stiffness matrix to investigate the free vibration characteristics of composite beams (with or without the effects of shear deformation and/or rotatory inertia included) is demonstrated by applying the Wittrick-Williams algorithm. Numerical results for which comparative results are available in the literature are discussed.

  3. Research on damping properties optimization of variable-stiffness plate

    NASA Astrophysics Data System (ADS)

    Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN

    2016-09-01

    This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.

  4. Summary of lateral-control research

    NASA Technical Reports Server (NTRS)

    Toll, Thomas A

    1947-01-01

    A summary has been made of the available information on lateral control. A discussion is given of the criterions used in lateral-control specifications, of the factors involved in obtaining satisfactory lateral control, and of the methods employed in making lateral-control investigations in flight and in wind tunnels. The available data on conventional flap-type ailerons having various types of aerodynamic balance are presented in a form convenient for use in design. The characteristics of spoiler devices and booster mechanisms are discussed. The effects of Mach number, boundary layer, and distortion of the wing or of the lateral-control system are considered insofar as the available information permits. An example is included to illustrate the use of the design data. The limitations of the available information and some of the lateral-control problems that remain to be solved are indicated.

  5. Modifiable risk factors for increased arterial stiffness in outpatient nephrology.

    PubMed

    Elewa, Usama; Fernandez-Fernandez, Beatriz; Alegre, Raquel; Sanchez-Niño, Maria D; Mahillo-Fernández, Ignacio; Perez-Gomez, Maria Vanessa; El-Fishawy, Hussein; Belal, Dawlat; Ortiz, Alberto

    2015-01-01

    Arterial stiffness, as measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5%) patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV) was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV) - (upper limit of the age-adjusted PWV values for the general population). Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients.

  6. Arterial stiffness and inflammatory response to psychophysiological stress.

    PubMed

    Ellins, Elizabeth; Halcox, Julian; Donald, Ann; Field, Bryony; Brydon, Lena; Deanfield, John; Steptoe, Andrew

    2008-08-01

    The processes through which psychological stress influences cardiovascular disease are poorly understood, but may involve activation of hemodynamic, neuroendocrine and inflammatory responses. We assessed the relationship between carotid arterial stiffness and inflammatory responses to acute psychophysiologic stress. Participants were 155 healthy men and women aged 55.3, SD 2.7 years. Blood samples for the assessment of plasma fibrinogen, tumor necrosis factor (TNF) alpha and interleukin (IL) 6 were drawn at baseline, immediately following standardized behavioral tasks, and 45 min later. Carotid artery stiffness was measured ultrasonically three years later, and blood pressure and heart rate responses were recorded. The tasks induced substantial increases in blood pressure and heart rate, together with increased fibrinogen, TNFalpha and IL-6 concentration. Carotid stiffness was positively associated with body mass, waist/hip ratio, blood pressure, low density lipoprotein cholesterol, and C-reactive protein, and inversely with high density lipoprotein and grade of employment. Baseline levels of inflammatory variables were not related to carotid artery stiffness. But carotid stiffness was greater in participants with larger fibrinogen (p=0.037) and TNFalpha (p=0.036) responses to psychophysiological stress. These effects were independent of age, gender, grade of employment, smoking, body mass, waist/hip ratio, systolic and diastolic pressure, high and low density lipoprotein cholesterol, and C-reactive protein. There were no associations between carotid stiffness and stress responses in IL-6, blood pressure, or heart rate. We conclude that individual differences in inflammatory responses to psychophysiological stress are independently related to structural changes in artery walls that reflect increased cardiovascular disease risk.

  7. Joint dependent passive stiffness in paretic and contralateral limbs of spastic patients with hemiparetic stroke.

    PubMed Central

    Given, J D; Dewald, J P; Rymer, W Z

    1995-01-01

    Torque-angle relations at the elbow and ankle joints of relaxed normal controls and patients with hemiparetic stroke were compared. Low velocity flexion/hold/extension angular perturbations were applied to the joint under examination. The resulting torque-angle profiles described a hysteresis loop with similar slopes during the extension and flexion stages but separated by a vertical torque offset. Torque-angle responses obtained in the absence of significant muscle activation, as recorded by surface electromyographic activity, were designated as passive. Elbow passive stiffness estimates were calculated from the slope of the torque-angle response during the flexion stage of the perturbation. The elbow torque-angle plots exhibited linear passive stiffness with magnitude significantly lower than the passive stiffness of the ankle in both normal subjects and spastic patients. Changing ramp velocity had no significant effect on the passive torque-angle hysteresis loop at the elbow. A comparison of the torque-angle relations between hemiparetic spastic and normal control arms showed no significant differences in passive stiffness. Furthermore, no significant differences were found between paretic and contralateral upper limbs of a given hemiparetic subject. By contrast, significant differences in the torque-angle hysteresis loop were present between the paretic and contralateral ankles in all hemiparetic patients tested. These differences were more significant during dorsiflexion, and therefore seem to be related to preferential changes in mechanical properties of plantar flexor muscles. It is hypothesised that the differences in the torque-angle hysteresis loop between elbow and angle joints are related primarily to the larger amount of connective tissue in the calf muscles, as well as to a larger total physiological cross sectional area of calf muscles compared with elbow muscles. It is further hypothesized that the preferential increases in passive stiffness at the

  8. Effects of Stiffness on Short, Semiflexible Homopolymer Chains

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel T.; Schnabel, Stefan; Bachmann, Michael; Landau, David P.

    2012-08-01

    Conformational and transition behavior of finite, semiflexible homopolymers is studied using an extension of the Wang-Landau algorithm. Generation of a flat distribution in the sampling parameters energy and stiffness allows for efficient investigation of transitions between various conformational phases. Of particular importance is the ability to predict behavior for a given stiffness value, where three classes of minimum energy conformations are expected: Solid-globular, rod-like and toroidal. We present first results highlighting the behavior of a single N = 20 length chain.

  9. [Stiff baby syndrome is a rare cause of neonatal hypertonicity].

    PubMed

    Rønne, Maria Sode; Nielsen, Preben Berg; Mogensen, Christian Backer

    2014-02-24

    Stiff baby syndrome (hyperekplexia) is a rare genetic disorder. The condition can easily be misdiagnosed as epilepsy or severe sepsis because of hypertonicity and seizure-like episodes and has an increased risk of severe apnoea and sudden infant death. Tapping of the nasal bridge inducing a startle response is the clinical hallmark. We report cases of two sisters born with stiff baby syndrome with hypertonicity, exaggerated startle reaction and cyanosis. The syndrome has a good prognosis if treated with clonazepam and both cases were developmental normal after one year.

  10. Negative post-buckling stiffness of meta-beams

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Overvelde, Johannes; Bertoldi, Katia; van Hecke, Martin

    2014-03-01

    We study the mechanical response of meta-materials whose building blocks undergo buckling. Euler elastica theory describes buckling of slender beams and predicts a positive post-buckling stiffness. Here, we demonstrate experimentally, numerically and theoretically that this limit breaks down when beams become non-slender and that the post-buckling stiffness eventually becomes negative. We further show that the poisson ratio can play the role of an additional design parameter and demonstrate experimentally and numerically that the mechanical response of auxetic meta-beams can indeed become unstable. This paves the way to a new generation of elastic switches, that can be triggered by simple uni-axial experiments.

  11. Thermal Testing of Tow-Placed, Variable Stiffness Panels

    NASA Technical Reports Server (NTRS)<