Science.gov

Sample records for air activation products

  1. Lipopolysaccharide-Activated Leukocytes Enhance Thymic Stromal Lymphopoietin Production in a Mouse Air-Pouch-Type Inflammation Model.

    PubMed

    Segawa, Ryosuke; Mizuno, Natsumi; Hatayama, Takahiro; Jiangxu, Dong; Hiratsuka, Masahiro; Endo, Yasuo; Hirasawa, Noriyasu

    2016-08-01

    Thymic stromal lymphopoietin (TSLP) is a key cytokine that exacerbates allergic and fibrotic reactions. Several microbes and virus components have been shown to induce TSLP production, mainly in epithelial cells. TLR4 activators, such as lipopolysaccharide (LPS), induce TSLP production in vivo, although the underlying mechanisms remain unclear. In this study, we investigated the contribution of LPS-activated leukocytes to the production of TSLP in a mouse air-pouch-type inflammation model. LPS induced the production of TSLP in this model but not in the mouse keratinocyte cell line PAM212. Transfer of the infiltrated leukocytes collected from an LPS-injected air pouch to the air pouch of another mouse enhanced TSLP production. Further, the LPS-activated leukocytes produced tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β); a deficiency in these cytokines attenuated the LPS-induced production of TSLP. TSLP production was induced by TNF-α and enhanced by IL-1β and LPS in the PAM212 cells. These results demonstrated that TNF-α and IL-1β, which are partly produced by LPS-activated leukocytes, contribute to TSLP production via TLR4 activation in vivo.

  2. In vitro equine embryo production using air-dried spermatozoa, with different activation protocols and culture systems.

    PubMed

    Alonso, A; Baca Castex, C; Ferrante, A; Pinto, M; Castañeira, C; Trasorras, V; Gambarotta, M C; Losinno, L; Miragaya, M

    2015-05-01

    The aim of this work was to evaluate the use of air-dried spermatozoa for in vitro production of equine embryos and verify if sperm extract activation and in vivo culture improve in vitro embryo production. Cooled spermatozoa (control) and air-dried spermatozoa stored for 2, 14 or 28 days were used for ICSI sperm extract, or ionomycin was used for oocyte activation, and embryos were in vitro or in vivo (in mare's oviduct) cultured for 7 days. With in vitro culture, cleavage rate was higher when activating with sperm extract (P < 0.05). No differences in embryo development were seen between the two activation treatments nor between storage periods (P > 0.05). Blastocysts were obtained with cooled spermatozoa, and morulae were achieved using in vivo culture with 28-day storage spermatozoa and ionomycin-activated oocytes. When in vivo culture was performed, sperm DNA fragmentation was assessed using the sperm chromatin dispersion test and did not show statistical correlation with cleavage nor embryo recovery rates. In conclusion, equine embryos can be produced using air-dried spermatozoa stored for several weeks. Sperm extract activation increased cleavage rates but did not improve embryo development. In vivo culture allowed intrauterine stage embryos to be achieved.

  3. The Utility of the OMI HCHO and NO2 Data Products in Air Quality Decision- Making Activities

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.

    2010-01-01

    We will present three related air quality applications of the OMI HCHO (formaldehyde) and NO2 (nitrogen dioxide) data products, which we us to support mission planning of an OMI-like instrument for the proposed GEO-CAPE satellite that has as one of its objectives to study air quality from space. First, we will discuss a novel and practical application of the data products to the "weight of evidence" in the air quality decision-making process (e.g., State Implementation Plan (SIP)) for a city, region, or state to demonstrate that it is making progress toward attainment of the National Ambient Air Quality Standard (NAAQS) for ozone. Any trend, or lack thereof, in the observed OMI HCHO/NO2, which we use as an air quality indicator, may support that an emission control strategy implemented to reduce ozone is or is not occurring for a metropolitan area. Second, we will discuss how we use variations in the OMI HCHO product as a proxy for variability in the biogenic hydrocarbon, isoprene, which is an important player for the formation of high levels of ozone and the dominant source of HCHO in the eastern U.S. Third, we will discuss the variability of NO2 in the U.S. as indicated by the OMI NO2 product. In addition, we will show the impact of the 2005 hurricanes on pollutant emissions, including those associated with the intensive oil extraction and refining activities, in the Gulf of Mexico region using the OMI NO2 product. The variability of HCHO and NO2 as indicated by OMI helps us to understand changes in the OMI HCHO/NO2 and the implications for ozone formation.

  4. Reporting air emissions from animal production activities in the United States.

    PubMed

    Centner, Terence J; Patel, Parag G

    2010-04-01

    Major releases of airborne ammonia and hydrogen sulfide from the decomposition of animal waste have the American public concerned about the health of persons near farms. Emissions of these hazardous substances are regulated by the US Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA). Moreover, federal regulatory provisions delineate thresholds for reporting hazardous pollutants being released into the air. In 2008, the US Environmental Protection Agency (EPA) adopted a reporting exemption under which all farms were exempted from reporting air emissions under CERCLA and small farms were exempted under EPCRA. The US EPA's exemption poses questions about whether the rule is contrary to congressional mandates. Environmental and industry groups have challenged this exemption in federal circuit court, and the judiciary will need to decide whether the agency had authority to adopt the rule. To accord protection to humans from hazardous airborne emissions from farms producing livestock, state agencies may want to adopt scientifically-justified ambient air quality standards.

  5. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(C3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2] > 10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron-ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t = 1-30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  6. Air cleaning and radon decay product mitigation

    SciTech Connect

    Hopke, P.K.; Li, C.S.; Ramamurthi, M.

    1990-12-31

    We evaluated air cleaning as a means to mitigate risks arising from exposure to indoor radon progeny in several single-family houses in the northeastern United States, using a new, automated, semi-continuous activity-weighted size distribution measurement system. Measurements included radon concentration, condensation nuclei count, and activity-weighted size distribution of radon decay products. Measurements were made with and without the air cleaning system operating. The influence of particles generated by various sources common to normal indoor activities on radon progeny behavior was evaluated. Aerosols were generated by running water in a shower, burning candles, smoking cigarettes, vacuuming, opening doors, and cooking. Both a filtration unit and an electrostatic precipitator were evaluated. Using a room model, the changes in attachment rates, average attachment diameters, and deposition rates of the ``unattached`` fraction with and without the air cleaning systems were calculated. The air cleaner typically reduced the radon progeny concentrations by 50 to 60%.

  7. Air Activation Following an Atmospheric Explosion

    SciTech Connect

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  8. EPA Activities for Cleaner Air

    EPA Pesticide Factsheets

    Activities in San Joaquin Valley to reduce air pollution, meet federal health standards for ozone and particulates, fund clean tech and health research, and enforce compliance with facility-specific operating permits for industrial air pollution sources.

  9. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  10. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    NASA Astrophysics Data System (ADS)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  11. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR INDOOR AIR PRODUCTS

    EPA Science Inventory

    The paper discusses environmental technology verification (ETV) for indoor air products. RTI is developing the framework for a verification testing program for indoor air products, as part of EPA's ETV program. RTI is establishing test protocols for products that fit into three...

  13. Clean Air Technology Center Products

    EPA Pesticide Factsheets

    The Clean Air Technology Center provides resources for emerging and existing air pollution prevention and control technologies and provides public access to data and information on their use, effectiveness and cost.

  14. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode.

    PubMed

    Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-04-01

    Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm(-3) could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm(-3)d(-1), and stable electricity production over 13.7Wm(-3) could be produced in a NB loading range of 1.2-14.7molm(-3)d(-1). The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm(-3)d(-1). The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy.

  15. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  16. Muon production in extended air shower simulations.

    PubMed

    Pierog, T; Werner, K

    2008-10-24

    Whereas air shower simulations are very valuable tools for interpreting cosmic ray data, there is a long-standing problem: it is difficult to accommodate at the same time the longitudinal development of air showers and the number of muons measured on the ground. Using a new hadronic interaction model (EPOS) in air shower simulations produces much more muons, in agreement with results from the HiRes-MIA experiment. We find that this is mainly due to a better description of (anti) baryon production in hadronic interactions. This is an aspect of air shower physics which has been neglected so far.

  17. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  18. PERFORMANCE TESTING OF AIR CLEANING PRODUCTS

    EPA Science Inventory

    The paper discuses the application of the Environmental Technology Verification (ETV) Program for products that clean ventilation air to the problem of protecting buildings from chemical and biological attack. This program is funded by the U.S. Environmental Protection Agency und...

  19. Transition of AIRS Products to the National Weather Service

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    Short-term Prediction Research and Transition Center (SPoRT) is a proven community leader for transitioning satellite products to operational end users and is working hard to bring data from Atmospheric Infrared Sounder (AIRS) to forecasters. SPoRT products using AIRS data are currently or will soon be evaluated at WFOs and National Centers (1) T and q profiles: HWT, Alaska WFOs, HRD/OPC, HMT (2) Ozone profiles: HPC/OPC (3) Carbon Monoxide: Southern and Western Region WFOs SPoRT is actively evaluating differences between V5 and V6 profiles for selected cases and will continue to provide feedback to the AIRS team as V6 development efforts conclude.

  20. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  1. Air-Activated Ration Heaters

    DTIC Science & Technology

    2008-12-01

    regulated. After use, the product of the heating reaction is zinc oxide, an inert chemical used in many different products such as sunscreen , creams...low cost, easy-to-use chemical heater called the Flameless Ration Heater (FRH). The FRH consists of a magnesium/iron mixture sealed in a waterproof...Prescribed by ANSI Std Z39-18 2 1. HEATER DESIGN There is a narrow operating temperature range for chemical heaters for this specific

  2. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    PubMed

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-02-21

    A stochastic model of the processes involved in the measurement of the activity of the (222)Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the (222)Rn decay products concentrations in the air are realistically evaluated.

  3. Synchronizing production and air transportation scheduling using mathematical programming models

    NASA Astrophysics Data System (ADS)

    Zandieh, M.; Molla-Alizadeh-Zavardehi, S.

    2009-08-01

    Traditional scheduling problems assume that there are always infinitely many resources for delivering finished jobs to their destinations, and no time is needed for their transportation, so that finished products can be transported to customers without delay. So, for coordination of these two different activities in the implementation of a supply chain solution, we studied the problem of synchronizing production and air transportation scheduling using mathematical programming models. The overall problem is decomposed into two sub-problems, which consists of air transportation allocation problem and a single machine scheduling problem which they are considered together. We have taken into consideration different constraints and assumptions in our modeling such as special flights, delivery tardiness and no delivery tardiness. For these purposes, a variety of models have been proposed to minimize supply chain total cost which encompass transportation, makespan, delivery earliness tardiness and departure time earliness tardiness costs.

  4. PRODUCTS OF ACTIVATED LYMPHOCYTES

    PubMed Central

    Sorg, Clemens; Bloom, Barry R.

    1973-01-01

    General methods were developed and applied to the biosynthesis and purification of products of activated lymphocytes available in minute quantities. The activity studied here was the migration inhibitory factor (MIF) produced by purified protein derivative (PPD)- or concanavalin A (Con A)-stimulated lymphocytes obtained from one guinea pig or less. The methods selected yielded results in terms of two chemical parameters characteristic of the molecules involved, namely Kd on Sephadex G-75 and isoionic point, pI, on isoelectric focusing. When supernatants were fractionated on G-75 columns, there were several areas even in control supernatants which produced migration inhibition relative to medium controls. However, in PPD- and Con A-stimulated supernatants, at least one peak of MIF activity was found solely in the stimulated cultures, with a Kd of 0.15. A double-labeling technique was used to characterize the proteins of this peak. Control, unstimulated cultures were labeled with [14C]leucine and stimulated cultures were labeled with [3H]leucine. After mixing the supernatants and G-75 filtration, a major "ratiolabeled" broad peak. i.e. one with increased 3H/14C ratio, was found. When a narrow portion of this peak about Kd 0.15, containing most of the MIF activity, was subjected to analytical isoelectric focusing, all of the label was associated with proteins of lower net charge than albumin. A unique ratiolabeled peak was found in PPD- and Con A-stimulated fractions with a pI of approx. 5.3. A micropreparative isoelectric focusing technique was developed and yielded MIF activity in the same region as the major ratiolabeled peak. Further study will be required to ascertain whether the ratiolabeled protein is MIF. By following the Kd, pI, and 3H/14C labeling ratio, at least 14 products of activated lymphocytes, synthesized either de novo or in increased amounts, could be distinguished. PMID:4688317

  5. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  6. Effects of air velocity on laying hen production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  7. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Tsouris, Costas; Burchell, Timothy D

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  8. Commercial Product Activation Using RFID

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas

    2008-01-01

    Radio-frequency identification (RFID) would be used for commercial product activation, according to a proposal. What is new here is the concept of combining RFID with activation - more specifically, using RFID for activating commercial products (principally, electronic ones) and for performing such ancillary functions as tracking individual product units on production lines, tracking shipments, and updating inventories. According to the proposal, an RFID chip would be embedded in each product. The information encoded in the chip would include a unique number for identifying the product. An RFID reader at the point of sale would record the number of the product and would write digital information to the RFID chip for either immediate activation of the product or for later interrogation and processing. To be practical, an RFID product-activation system should satisfy a number of key requirements: the system should be designed to be integrable into the inventory-tracking and the data-processing and -communication infrastructures of businesses along the entire supply chain from manufacture to retail; the system should be resistant to sophisticated hacking; activation codes should be made sufficiently complexity to minimize the probability of activating stolen products; RFID activation equipment at points of sale must be capable to two-way RF communication for the purposes of reading information from, and writing information to, embedded RFID chips; the equipment at points of sale should be easily operable by sales clerks with little or no training; the point-of-sale equipment should verify activation and provide visible and/or audible signals indicating verification or lack thereof; and, the system should be able to handle millions of products per year with minimal human intervention, among other requirements.

  9. Activation Cascading in Sign Production

    ERIC Educational Resources Information Center

    Navarrete, Eduardo; Peressotti, Francesca; Lerose, Luigi; Miozzo, Michele

    2017-01-01

    In this study, we investigated how activation unfolds in sign production by examining whether signs that are not produced have their representations activated by semantics (cascading of activation). Deaf signers were tested with a picture-picture interference task. Participants were presented with pairs of overlapping pictures and named the green…

  10. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.; Weschler, Charles J.

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which reacts rapidly with organics, leading to the formation of other potentially toxic air pollutants. Indoor reactive chemistry involving the nitrate radical and cleaning-product constituents is also of concern, since it produces organic nitrates as well as some of the same oxidation products generated by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic principles of indoor pollutant behavior and with information from relevant studies, to analyze and critically assess air pollutant exposures resulting from the use of cleaning products and air fresheners. Attention is focused on compounds that are listed as HAPs, TACs or Proposition 65 carcinogens/reproductive toxicants and compounds that can readily react to generate secondary pollutants. The toxicity of many of these secondary pollutants has yet to be evaluated. The inhalation

  11. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  12. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching…

  13. Active Behavior Recognition in Beyond Visual Range Air Combat

    DTIC Science & Technology

    2015-05-01

    Active Behavior Recognition in Beyond Visual Range Air Combat Ron Alford RONALD.ALFORD.CTR@NRL.NAVY.MIL ASEE Postdoctoral Fellow; Naval Research...planning and recognition, as well as its im- plementation in a beyond visual range air combat simulator. We found that it yields better behavior recognition...SUBTITLE Active Behavior Recognition in Beyond Visual Range Air Combat 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  14. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  15. Air Pollution Impacts on Global Crop Productivity and Nitrogen Depositio

    NASA Astrophysics Data System (ADS)

    Heald, C. L.; Tai, A. P. K.; Val Martin, M.

    2014-12-01

    The biosphere is undeniably transformed by air pollution. Emissions, climate change, and land use change are all expected to substantially alter future air quality. In this presentation, we discuss near-term projections (2050) of air quality impacts on both crop productivity and nitrogen deposition. First, we contrast the relative impacts of ozone air pollution and a warming climate on global crop yields. To do so, we define statistical crop yield functions to a warming climate based on the historical record. We combine these relationships with ozone-damage estimates and apply these to future air quality and climate projections from a global coupled chemistry-climate model (CESM). We find substantial variability in the response, with certain regions or crops more sensitive to ozone pollution and others more sensitive to warming. This work demonstrates that air quality management is a key element to ensuring global food security. Second, we examine the relative impacts of anthropogenic emissions, climate change, and land use change on global nitrogen deposition. Nitrogen deposition has rapidly increased over the Anthropocene. Excess deposition of nitrogen to ecosystems can lead to eutrophication of waters, and a decrease in biodiversity. We use the CESM to investigate two scenarios (RCP 4.5 and RCP8.5) and focus our analysis on the impacts on diverse ecoregions in North America, Europe, and Asia.

  16. Modeling activities in air traffic control systems: antecedents and consequences of a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor R; Ferreira, Bemildo

    2012-01-01

    In this article we present a model of some functions and activities of the Brazilian Air traffic Control System (ATS) in the period in which occurred a mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the ATM. Modeling in some detail activities during the collision and related them to overall behavior and antecedents that stress the organization uncover some drift into failure mechanisms that erode safety defenses provided by the Air Navigation Service Provider (ANSP), enabling a mid-air collision to be happen.

  17. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  18. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  19. Feasibility and energetic evaluation of air stripping for bioethanol production.

    PubMed

    Schläfle, Sandra; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard

    2017-05-01

    Stripping of mashes with air as stripping gas and low ethanol contents between 3 and 5wt% was investigated in terms of its suitability for continuous bioethanol production. Experiments in a Blenke cascade system were carried out and the results were compared with values obtained from theoretical vapour-liquid-equilibrium calculations. The whole stripping process was energetically evaluated by a simulation in ChemCAD and compared to conventional distillation. Therefore several parameters such as temperature, air volume flow and initial ethanol load of the mash were varied. Air stripping was found to be a suitable separation method for bioethanol from mashes with low concentrations. However, energetic aspects have to be considered, when developing a new process.

  20. Air toxics from heavy oil production and consumption

    SciTech Connect

    Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

    1992-12-22

    This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis.

  1. An experimental quantification of the NOX production efficiency of energetic alpha particles in air

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Cooray, Vernon; Possnert, Göran; Nyberg, Johan

    2006-07-01

    An experimental study on the production of NOX by alpha particles impact in air at atmospheric pressure is presented. A mixed radioactive source of 208Po and 209Po with an integrated activity of 9.6 MBq over a solid angle of 2π and an average alpha particle energy of 4.5 MeV was used for ionization of atmospheric air in an airtight chamber and the NOX production was measured by the chemiluminescence method. The NOX production rate is found to be about 1.2 NOX molecules per ion-pair. The NOX production efficiency per Joule of dissipated energy is calculated to be 20×1016 NOX molecules per Joule. This efficiency is comparable to that of hot laboratory sparks discharges.

  2. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  3. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress.

    PubMed

    Jasso-Chávez, Ricardo; Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Pineda, Erika; Zepeda-Rodríguez, Armando; Belmont-Díaz, Javier; Encalada, Rusely; Saavedra, Emma; Moreno-Sánchez, Rafael

    2015-01-01

    Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4-1% O2 (atmospheric) for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells). In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i) the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii) the thiol-molecules (cysteine + coenzyme M-SH + sulfide) and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days) of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens.

  4. Confined combustion of TNT explosion products in air

    SciTech Connect

    Chandler, J; Ferguson, R E; Forbes, J; Kuhl, A L; Oppenheim, A K; Spektor, R

    1998-08-31

    Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m3 chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C7H5N3O6) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolves into a turbulent mixing layer-a process enhanced by shock reflections from the walls. Under such circumstances rapid combustion takes place where the expanded detonation products play the role of fuel. Its dynamic effect is manifested by the experimental measurement of ~3 bar pressure increase in the chamber, in contrast to ~1bar attained by a corresponding TNT explosion in nitrogen. The experiments were modeled as a turbulent combustion in an unmixed system at infinite Reynolds, Peclet and DamkGhler numbers. The CFD solution was obtained by a high-order Godunov scheme using an AMR (Adaptive Mesh Refinement) to trace the turbulent mixing on the computational grid in as much detail as possible. The evolution of the mass fraction of fuel consumed by combustion thus determined exhibited the properties of an exponential decay following a sharp initiation. The results reveal all the dynamic features of the exothermic process of combustion controlled by fluid mechanic transport in a highly turbulent field, in contrast to those elucidated by the conventional reaction-diffusion model.

  5. Biomass production chamber air analysis of wheat study (BWT931)

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Peterson, B. V.; Berdis, E.; Wheeler, E. M.

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) biomass production chamber at John F. Kennedy Space Center provides a test bed for bioregenerative studies using plants to provide food, oxygen, carbon dioxide removal, and potable water to humans during long term space travel. Growing plants in enclosed environments has brought about concerns regarding the level of volatile organic compounds (VOC's) emitted from plants and the construction materials that make up the plant growth chambers. In such closed systems, the potential exists for some VOC's to reach toxic levels and lead to poor plant growth, plant death, or health problems for human inhabitants. This study characterized the air in an enclosed environment in which wheat cv. Yocora Rojo was grown. Ninty-four whole air samples were analyzed by gas chromatography/mass spectrometry throughout the eighty-four day planting. VOC emissions from plants and materials were characterized and quantified.

  6. CME Productivity of Active Regions.

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  7. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    PubMed

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  8. Activated Carbon Composites for Air Separation

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Tsouris, Costas; McFarlane, Joanna

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  9. FAA Air Traffic Activity, Fiscal Year 1979,

    DTIC Science & Technology

    1979-09-30

    TRAFIC CONTROL TOWERS BY STATE si-It 641. LOCATION* U Alk AIR GENERAL 11.1.6111. NAM6 11II R AOA CAMk R681 TAXI AVIAT ION MILITARY LA1.IA L&MbA...z 25 IV TUIAL UPERATIhS 22.3 799 6 123 1321 - AI TRAFIC 39SS All CLAIS81116 AS FOLLOWS, (PERCENT OF TOTAL EEPLARID FAMSENEOES) L LARGE 1.002 N MEDuM...88 N 11 16 CHIEFL AND FL 4N 64I LIRNb’UN N 16N1 LA6E KS N 169% It RANTEd NC. N 1616 I0 ARAMS M I S 169 6 11TOUGlHANAUHN PA N 1611 16 NORTH LIMA OH 5

  10. Cleaner production in a remanufacturing process of air compressors.

    PubMed

    Esquer, Javier; Arvayo, Jose Angel; Alvarez-Chavez, Clara Rosalia; Munguia-Vega, Nora Elba; Velazquez, Luis

    2017-03-01

    This article provides relevant results of a cleaner production program conducted in a company dedicated to remanufacturing air compressors in the city of Hermosillo, Sonora, Mexico. The overall study design was based on an integration of acknowledged cleaner production and pollution prevention programs. Although this kind of program also involves environmental issues, this study focused on occupational health and safety by addressing different aspects of the work environment: ergonomic, physical (noise and lighting), and chemical. Particularly, ergonomic aspects were evaluated through the Modular Arrangement of Predetermined Time Standards (MODAPTS) method. For physical aspects, noise and lighting were addressed through Standard No. NOM-011-STPS-2001 and Standard No. NOM-025-STPS-2008 respectively. In addition, chemical aspects were analyzed through material safety data sheets and different search tools. Root causes of each risk were identified, and options to prevent, eliminate, and/or reduce each risk have been provided.

  11. Characterization of air pollutants from an activated sludge process

    SciTech Connect

    Scheff, P.A.; Holden, J.A.; Wadden, R.A.

    1981-02-01

    An eight-month monitoring study was conducted to characterize air pollutants near a large activated sludge plant in a Chicago suburb. Air pollutants detected include aerobic bacteria-containing particles, total suspended particulates, nitrogen dioxide, sulfur dioxide, chloride, hydrogen sulfides, and trace elements. The wastewater treatment plant is concluded to be a significant source of total coliforms and atmospheric bacteria-containing particles. (6 maps, 23 references, 6 tables)

  12. Solar activity influence on air temperature regimes in caves

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  13. Improving AirNow Air Quality Products with NASA Near-Real-Time Remote Sensing Data (Invited)

    NASA Astrophysics Data System (ADS)

    Dye, T.; Pasch, A. N.; DeWinter, J. L.; Haderman, M.; Szykman, J.; White, J. E.; van Donkelaar, A.; Martin, R.

    2013-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program provides the public with real-time and forecasted air quality conditions. Millions of people each day use it to protect their health. The AirNow program (http://www.airnow.gov), reports ground-level ozone (O3) and fine particulate matter (PM2.5) in a standardized index called the Air Quality Index (AQI). AirNow aggregates information from over 130 state, local, and federal air quality agencies and provides tools for over 2,000 agency staff responsible for monitoring, forecasting, and communicating local air quality. Each hour, AirNow systems generate thousands of maps and products. This presentation will describe how AirNow is benefiting from NASA's remote sensing data. We will describe two applications of NASA near-real-time remote sensing data within AirNow through case studies, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impacts were observed. The first case study will show how AirNow is merging satellite-estimated PM2.5 concentrations into the AQI maps via the AirNow Satellite Data Processor (ASDP). AirNow derives these satellite estimates using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. The second case study will show how NASA's Global Image Browse Services (GIBS) provides a near-real-time satellite product in AirNow-Tech for agency users to quickly identify smoke plumes and access air quality conditions in data-sparse areas during wildland fires.

  14. Contributions to Climate Research Using the AIRS Science Team Version-5 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    This paper compares recent spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLRCLR (Clear Sky OLR) as determined using CERES and AIRS observations over the time period September 2002 through June 2010. We find excellent agreement in OLR anomaly time series of both data sets in almost every detail, down to the 1 x 1 spatial grid point level. This extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper then examines anomaly time series of AIRS derived products over the extended time period September 2002 through April 2011. We show that OLR anomalies during this period are closely in phase with those of an El Nino index, and that recent global and tropical mean decreases in OLR and OLR(sub CLR) are a result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. This relationship can be explained by temporal changes of the distribution of mid-tropospheric water vapor and cloud cover in two spatial regions that are in direct response to El Nino/La Nina activity which occurs outside these spatial regions

  15. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation

    SciTech Connect

    Tam, M.S.; Antal, M.J. Jr.

    1999-11-01

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. Fact Sheet - Final Air Toxics Rule for Gold Mine Ore Processing and Production

    EPA Pesticide Factsheets

    Fact sheet summarizing main points of National Emissions Standards for Hazardous Air Pollutants for gold ore processing and production facilities, the seventh largest source of mercury air emission in the United States.

  18. Clean Air Act Standards and Guidelines for Chemical Production and Distribution

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the chemical production & distribution industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  19. Level-1C Product from AIRS: Principal Component Filtering

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.

  20. New Courses: Unlock the Mysteries of Productivity, Air Quality, and the Indoor Environment in Schools.

    ERIC Educational Resources Information Center

    Raiford, Regina

    2001-01-01

    Discusses the relationship between indoor air quality and productivity and a three-year research project to measure productivity within an educational setting. Also discusses research showing the impact of good indoor air quality on increasing productivity. Ten ways to manage asthma in a school environment are highlighted. (GR)

  1. The Jar Magic--Instructional Activities for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-01-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass,…

  2. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  3. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  4. Porosity and sorption properties of activated carbons prepared from anthracite by steam-air activation

    SciTech Connect

    Sych, N.V.; Kartel, N.T.; Tsyba, N.N.; Strelko, V.V.; Nikolaichuk, A.D.; Mironyuk, T.I.

    2006-04-15

    Fundamental aspects of the steam-air activation of anthracite from Donets coal fields were studied. The effect of the flow rate of moistened air on the development of a porous structure and the sorption properties of the adsorbents obtained were examined.

  5. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  6. FIAM-pwp-Formaldehyde Indoor Air Model – Pressed Wood Products

    EPA Pesticide Factsheets

    The Formaldehyde Indoor Air Model-pressed wood products (FIAM-pwp) user guide contains information on the equations and defaults used to estimate exposure from formaldehye emitted from pressed wood products.

  7. Fact Sheet: Proposed Hazardous Air Pollutant Regulation for the Miscellaneous Cellulose Products Manufacturing

    EPA Pesticide Factsheets

    This August 2000 document contains information regarding the National Emissions Standards for Hazardous Air Pollutants for Cellulose Products Manufacturing. Some of the products of this industry are: cellulose, cellophane, and rayon.

  8. TESTING INDOOR AIR PRODUCTS: ONE APPROACH TO DEVELOPING WIDELY ACCEPTED PROTOCOLS

    EPA Science Inventory

    The paper describes an approach to developing widely acce ted products for testing indoor air products. [NOTE: Research Triangle Institute (RTI) is a partner in the U.S. Environmental Protection Agency's (EPA's) Environmental Technology Verification (ETV) Program with responsibil...

  9. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  10. Recent advances in improvement of forecast skill and understanding climate processes using AIRS Version-5 products

    NASA Astrophysics Data System (ADS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-10-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) generates products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. This paper shows results of some of our research using Version-5 products from the points of view of improving forecast skill as well as aiding in the understanding of climate processes.

  11. Compressed Air System Improvements Increase Production at a Tin Mill (Weirton Plant)

    SciTech Connect

    2000-12-01

    In 1999, Weirton Steel completed a project in which the compressed air system at their tin mill in Weirton, West Virginia was completely overhauled. The installation of new compressors, the addition of air treatment equipment, and the repair of leaks significantly reduced compressor shutdowns, production downtime, and product rejects.

  12. Oxygen-enriched air production for MHD power plants

    NASA Astrophysics Data System (ADS)

    1980-05-01

    An analysis of several of the cryogenic air separation process cycle variations and compression schemes designed to minimize net system power requirements for supplying pressurized, oxygen-enriched air to the combustor of a 2000 MWt (coal input) baseload MHD power plant is presented.

  13. US Air Force Space Weather Products Rapid Prototyping Efforts - Solar Radio Background/Burst Effects and Meteor Effects Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Scro, K.

    2001-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/VSB) has joined efforts with the Technology Applications Division of the Space and Missile Systems Center (SMC Det 11/CIT) to rapidly transition space weather research into prototype, operational, system-impact products. These Rapid Prototyping Center (RPC) products are used to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. A summary of RPC activity is provided. Emphasis will be placed on current products under development, to include Solar Radio Background/Burst Effects (SoRBE) and Meteor Effects (ME) products. These will be added to real-time operations in the near future. SoRBE specifies the detrimental interference effects of background and event-level solar radio output on radar observations and satellite communications. ME will provide general meteor shower "nowcast" and forecast information, along with more specific meteor and meteor shower impact, radar clutter, and bolide (exploding meteor) effects. A brief overview of recently delivered products: Radar Auroral Clutter, Satellite Scintillation, HF Illumination, and GPS Single-Frequency Error Maps will also be provided.

  14. Active Desiccant-Based Preconditioning Market Analysis and Product Development

    SciTech Connect

    Fischer, J.

    2001-01-11

    The Phase 1 report (ORNL/Sub/94-SVO44/1), completed earlier in this program, involved a comprehensive field survey and market analysis comparing various specialized outdoor air handling units. This initial investigation included conventional cooling and reheat, conventional cooling with sensible recovery, total energy recovery systems (passive desiccant technology) and various active desiccant systems. The report concluded that several markets do promise a significant sales opportunity for a Climate Changer-based active desiccant system offering. (Climate Changer is a registered trademark of Trane Company.) This initial market analysis defined the wants and needs of the end customers (design engineers and building owners), which, along with subsequent information included in this report, have been used to guide the determination of the most promising active desiccant system configurations. This Phase 2 report begins with a summary of a more thorough investigation of those specific markets identified as most promising for active desiccant systems. Table 1 estimates the annual sales potential for a cost-effective product line of active desiccant systems, such as that built from Climate Changer modules. The Product Development Strategy section describes the active desiccant system configurations chosen to best fit the needs of the marketplace while minimizing system options. Key design objectives based on market research are listed in this report for these active desiccant systems. Corresponding performance goals for the dehumidification wheel required to meet the overall system design objectives are also defined. The Performance Modeling section describes the strategy used by SEMCO to design the dehumidification wheels integrated into the prototype systems currently being tested as part of the U.S. Department of Energy's Advanced Desiccant Technology Program. Actual performance data from wheel testing was used to revise the system performance and energy analysis

  15. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand.

    PubMed

    Phairuang, Worradorn; Hata, Mitsuhiko; Furuuchi, Masami

    2017-02-01

    Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive, were estimated to evaluate the contribution of agricultural activity, including crop residue burning, forest fires and related agro-industries on air quality monitored in corresponding provinces. The monthly-based emission inventories of air pollutants, or, particulate matter (PM), NOx and SO2, for various agricultural crops were estimated based on information on the level of production of typical crops: rice, corn, sugarcane, cassava, soybeans and potatoes using emission factors and other parameters related to country-specific values taking into account crop type and the local residue burning period. The estimated monthly emission inventory was compared with air monitoring data obtained at monitoring stations operated by the Pollution Control Department, Thailand (PCD) for validating the estimated emission inventory. The agro-industry that has the greatest impact on the regions being evaluated, is the sugar processing industry, which uses sugarcane as a raw material and its residue as fuel for the boiler. The backward trajectory analysis of the air mass arriving at the PCD station was calculated to confirm this influence. For the provinces being evaluated which are located in the upper northern, lower northern and northeast in Thailand, agricultural activities and forest fires were shown to be closely correlated to the ambient PM concentration while their contribution to the production of gaseous pollutants is much less.

  16. Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico.

    PubMed

    Schifter, I; González-Macías, C; Miranda, A; López-Salinas, E

    2005-10-01

    Air emission data from offshore oil platforms, gas and oil processing installations and contribution of marine activities at the Sonda de Campeche, located at the Gulf of Mexico, were compiled and integrated to facilitate the study of long range transport of pollutants into the region. From this important region, roughly 76% of the total Mexican oil and gas production is obtained. It was estimated that the total air emissions of all contaminants are approximately 821,000 tons per year. Hydrocarbons are the largest pollutant emissions with 277,590 tons per year, generated during flaring activities, and SOx in second place with 185,907 tons per year. Marine and aviation activities contribute with less than 2% of total emissions. Mass of pollutants emitted per barrel of petroleum produced calculated in this work, are in the range reported by similar oil companies.

  17. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  18. The Jar Magic -- Instructional Activities for Teaching Air Pressure

    NASA Astrophysics Data System (ADS)

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-12-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass, amazingly, no water spills out. Further, one may also use balloons and plastic bottles as the components in another experiment. Place a balloon in a plastic bottle and spread the balloon's mouth over the bottle's rim. Inflate the balloon by blowing into it. Students will be astonished at the fact that the balloon remains inflated even though its mouth is open. Making suction cups "stick" to the wall is also an instance of proving how air pressure works.

  19. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  20. Highly durable and active non-precious air cathode catalyst for zinc air battery

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Choi, Ja-Yeon; Wang, Haijiang; Li, Hui; Chen, Zhongwei

    The electrochemical stability of non-precious FeCo-EDA and commercial Pt/C cathode catalysts for zinc air battery have been compared using accelerated degradation test (ADT) in alkaline condition. Outstanding oxygen reduction reaction (ORR) stability of the FeCo-EDA catalyst was observed compared with the commercial Pt/C catalyst. The FeCo-EDA catalyst retained 80% of the initial mass activity for ORR whereas the commercial Pt/C catalyst retained only 32% of the initial mass activity after ADT. Additionally, the FeCo-EDA catalyst exhibited a nearly three times higher mass activity compared to that of the commercial Pt/C catalyst after ADT. Furthermore, single cell test of the FeCo-EDA and Pt/C catalysts was performed where both catalysts exhibited pseudolinear behaviour in the 12-500 mA cm -2 range. In addition, 67% higher peak power density was observed from the FeCo-EDA catalyst compared with commercial Pt/C. Based on the half cell and single cell tests the non-precious FeCo-EDA catalyst is a very promising ORR electrocatalyst for zinc air battery.

  1. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  2. 75 FR 56538 - Air Products and Chemicals, Inc.; Analysis of Proposed Agreement Containing Consent Orders to Aid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... ] Consent Agreement, Air Products is required, among other things, to divest 15 air separation units (``ASUs... From the Federal Register Online via the Government Publishing Office FEDERAL TRADE COMMISSION Air.... Comments should refer to``Air Products, Inc., File No. 101 0093'' to facilitate the organization...

  3. Suomi NPP VIIRS active fire product status

    NASA Astrophysics Data System (ADS)

    Ellicott, E. A.; Csiszar, I. A.; Schroeder, W.; Giglio, L.; Wind, B.; Justice, C. O.

    2012-12-01

    We provide an overview of the evaluation and development of the Active Fires product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite during the first year of on-orbit data. Results from the initial evaluation of the standard SNPP Active Fires product, generated by the SNPP Interface Data Processing System (IDPS), supported the stabilization of the VIIRS Sensor Data Record (SDR) product. This activity focused in particular on the processing of the dual-gain 4 micron VIIRS M13 radiometric measurements into 750m aggregated data, which are fundamental for active fire detection. Following the VIIRS SDR product's Beta maturity status in April 2012, correlative analysis between VIIRS and near-simultaneous fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Aqua satellite confirmed the expected relative detection rates driven primarily by sensor differences. The VIIRS Active Fires Product Development and Validation Team also developed a science code that is based on the latest MODIS Collection 6 algorithm and provides a full spatially explicit fire mask to replace the sparse array output of fire locations from a MODIS Collection 4 equivalent algorithm in the current IDPS product. The Algorithm Development Library (ADL) was used to support the planning for the transition of the science code into IDPS operations in the future. Product evaluation and user outreach was facilitated by a product website that provided end user access to fire data in user-friendly format over North America as well as examples of VIIRS-MODIS comparisons. The VIIRS fire team also developed an experimental product based on 375m VIIRS Imagery band measurements and provided high quality imagery of major fire events in US. By August 2012 the IDPS product achieved Beta maturity, with some known and documented shortfalls related to the processing of

  4. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the

  5. Indoor air pollutants from household-product sources: Project report

    SciTech Connect

    Sack, T.M.; Steele, D.H.

    1991-09-01

    A Gas Chromatography/Mass Spectrometry (GS/MS) data base obtained during the analysis of 1,159 household products for six common chlorocarbon solvents has been reanalyzed for the presence and concentration of 25 additional chemicals. Using computerized GS/MS software, 1,043 of the original GC/MS data files were recovered and analyzed for the presence of the additional chemicals. Of the 25 additional chemicals, those found most frequently in the household products include acetone (315 products), 2-butanone (200 products), methylcyclohexane (150 products), toluene (488 products), ethylbenzene (157 products), m-xylene (101 products), and o.p-xylene (93 products). A total of 63.6% of the products analyzed in the study contained one or more of the 25 additional analytes at concentrations greater than or equal to 0.1% by weight. The quantitative information presented in the report is also available on diskette in a spreadsheet format.

  6. Costs, Productivity, and the Utilization of Physicians’s Extenders in Air Force Primary Medicine Clinics.

    DTIC Science & Technology

    1983-06-01

    on ex- tenders to deliver primary medicine. It was prepared as part of the Project AIR FORCE research study effort "Air Force Medical Resources...assistance and review as well as the results of their own research, upon which we draw throughout the report. Richard Buddin initiated the production...Adele Palmer reviewed an earlier version of the report. We are particularly grateful to those in the Air Force who worked with us. The Office of the

  7. Characterization of process air emissions in automotive production plants.

    PubMed

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  9. Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) Applicability Flowchart

    EPA Pesticide Factsheets

    This page contains a January 2005 document that has a flow chart to help you determine if this National Emission Standards for Hazardous Air Pollutants (NESHAP) rule for Surface Coating of Wood Building Products applies to your facility.

  10. Nde of Lumber and Natural Fiber Based Products with Air Coupled Ultrasound

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Utrata, David; Kuo, Monlin

    2010-02-01

    Due to the porous nature of wood and natural fiber based products, conventional fluid or gel coupled ultrasonic inspection is unsuitable. Air-coupled ultrasonic transmission scanning, being non-contact, is ideally suited for inspecting lumber, wood and natural fiber based products. We report here several successful applications of air-coupled ultrasound for the inspection of wood. Air-coupled ultrasonic scan at 120 kHz can easily detect "sinker-stock" lumber in which bacterial damage of ray tissue cells had occurred during anaerobic pond storage. Channels in ash lumber board caused by insect bore were imaged in transmission scan. Delamination and material inhomogeneities were mapped out in manufactured wood and natural fiber products including medium density fiberboards, compression molded shredded waste wood with formaldehyde resin, and acoustic panels molded with kenaf fibers. The study has demonstrated some of the capabilities of air-coupled ultrasound in the NDE of forest products.

  11. Biologically active proteins from natural product extracts.

    PubMed

    O'Keefe, B R

    2001-10-01

    The term "biologically active proteins" is almost redundant. All proteins produced by living creatures are, by their very nature, biologically active to some extent in their homologous species. In this review, a subset of these proteins will be discussed that are biologically active in heterologous systems. The isolation and characterization of novel proteins from natural product extracts including those derived from microorganisms, plants, insects, terrestrial vertebrates, and marine organisms will be reviewed and grouped into several distinct classes based on their biological activity and their structure.

  12. Sensory and chemical characterization of VOC emissions from building products: impact of concentration and air velocity

    NASA Astrophysics Data System (ADS)

    Knudsen, H. N.; Kjaer, U. D.; Nielsen, P. A.; Wolkoff, P.

    The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s -1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the

  13. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change.

  14. Assessment of Air Emissions at the U S Liquids Exploration and Production Land Treatment Facility

    SciTech Connect

    John H. Pardue; K.T. Valsaraj

    2000-12-01

    of E&P wastes. Additional emission measurements were made at the Bateman Island facility within cells over a range of ''ages'', from those most recently loaded with E&P wastes to cells that have not received wastes for 9 months or more. As expected the greatest chance for emissions when the cell is most recently loaded. Again, measured fluxes did not produce air concentrations that were of concern. As expected, the highest fluxes were observed in the cells that had recently received wastes and older cells had very low emissions. Measurements of emissions of hydrogen sulfide (H{sub 2}S) were also conducted at these two facilities. Levels of emissions were similar to the xange observed in the literature for natural salt marshes that surround these facilities. Production of sulfide within the cells was also measured by the most sensitive techniques available and measured sulfide production rates were low in the samples tested. The only potential concern at the facility with regards to sulfide was the levels of sulfide emitted from the sumps. The facility logbook at Bourg was analyzed to determine a time sequence of activities over 1998-1999. The Louisiana Department of Environmental Quality conducted a time-series of air concentrations for hazardous air pollutants during this period at the fenceline of the Bourg facility. These data were characterized by periods of static concentrations interspersed with peaks. A series of peaks were analyzed and compared with logbook records for the activities occurring at the time. In reverse fashion, a set of activities documented by the logbook was examined and the concentrations of benzene that developed from these activities were documented. No direct correlation could be made with the observed peaks and any activities suggesting that concentrations of benzene at the fenceline may be the result of a complex suite of activities including onsite activities not documented in the logbook (loading of the cells by truck haulers) and

  15. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    PubMed

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  16. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  17. Differential Instructional Productivity Indices. AIR Forum 1982 Paper.

    ERIC Educational Resources Information Center

    Bloom, Allan M.

    A set of weighting factors on student credit hour production by discipline was developed so that instructional productivity could be equitably compared across disparate disciplines and within disciplines. The new statistical methodology was applied to 3 years of teaching load data from 21 major public universities (the Southern University Group…

  18. Airport Activity Statistics of Certificated Route Air Carriers

    DTIC Science & Technology

    1988-12-31

    INDIA ........................................ INTERNATIONAL S 392 388 38 120190 5134.50 1048 1.78 INDONESIA...TZ -A iCAI TRANS AIR ...................... DOMESTIC ... S 219 NS 946 AS 1165 UA . UNITED AIR LINES ............................ D ........... S

  19. Turbokon scientific and production implementation company—25 years of activity

    NASA Astrophysics Data System (ADS)

    Favorskii, O. N.; Leont'ev, A. I.; Milman, O. O.

    2016-05-01

    The main results of studies performed at ZAO Turbokon NPVP in cooperation with leading Russian scientific organizations during 25 years of its activity in the field of development of unique ecologically clean electric power and heat production technologies are described. They include the development and experimental verification using prototypes and full-scale models of highly efficient air-cooled condensers for steam turbines, a high temperature gas steam turbine for stationary and transport power engineering, a nonfuel technology of electric power production using steam turbine installations with a unit power of 4-20 MW at gas-main pipelines and industrial boiler houses and heat stations. The results of efforts in the field of reducing vibroactivity of power equipment for transport installations are given. Basic directions of further research for increasing the efficiency and ecological safety of home power engineering are discussed.

  20. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2013-06-01

    This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  1. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  2. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  3. Sources of Combustion Products: An Introduction to Indoor Air Quality

    EPA Pesticide Factsheets

    In addition to environmental tobacco smoke, other sources of combustion products are unvented kerosene and gas space heaters, woodstoves, fireplaces, and gas stoves. The major pollutants released are carbon monoxide, nitrogen dioxide, and particles.

  4. Refinement of the Air Force Systems Command Production Rate Model

    DTIC Science & Technology

    1989-09-01

    the recommended modified formulations. The relationship between production rate and production ratio has a definite influence on the model’s ability to...1984 7 36 21.954 370.00 1985 8 48 21.017 412.00 A- 3 Table A.2.8 F-15E Cost/Quantity Data Fiscal Year Lot Quntit Recurring Unit Cost LPP 1986 1 60

  5. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near

  6. E-beam treatment of trichloroethylene-air mixtures: Products and rates

    NASA Astrophysics Data System (ADS)

    Mill, Theodore; Su, Minggong; David Yao, C. C.; Matthews, Stephen M.; Wang, Francis T. S.

    1997-09-01

    Electron beam (E-beam) treatment of 3000 ppmv trichloroethylene (TCE) vapor in dry and wet air led to rapid, nearly quantitative, conversion of TCE to dichloroacetyl chloride, plus small amounts of phosgene. Higher E-beam doses, up to 110 kGy, led to oxidation of the initial products to CO, CO 2, HCl and Cl 2. The results parallel results found for photo- and Cl-atom initiated oxidation of TCE vapor, and are accounted for by an efficient Cl-atom chain oxidation. Lack of effect of 28,000 ppmv water vapor (90% RH) on rates or products reflects a very high efficiency for the Cl-atom chain oxidation and the very slow reaction of vapor phase water with acyl halides. Irradiation experiments conducted with TCE dissolved in aerated and deaerated water at 10 and 300 ppm showed marked differences in radiolytic products from those found in the vapor phase. A preliminary cost estimate indicates that E-beam treatment of TCE vapor is very competitive with conventional activated carbon treatment and catalytic oxidation.

  7. Air-Based Remediation Workshop - Section 5 Multi-Phase Extraction And Product Recovery

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  8. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  9. Proctor & Gamble: Compressed Air System Upgrade Saves Energy & Improves Production at a Paper Mill

    SciTech Connect

    2004-05-01

    In 2002, Procter & Gamble applied a system-level strategy to optimize a compressed air system at its paper products mill in Mehoopany, Pennsylvania. The project improved production, improved system performance, and saved 7.6 million kWh per year and $309,000 per year in maintenance costs.

  10. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  11. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  12. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  13. Neuropeptide Y (NPY) modulates oxidative burst and nitric oxide production in carrageenan-elicited granulocytes from rat air pouch.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava; Mićić, Stana; Vujić, Vesna; Kovacević-Jovanović, Vesna; Mitić, Katarina; von Hörsten, Stephan; Kosec, Dusko

    2006-12-01

    We studied the effects of neuropeptide Y (NPY) and NPY-related receptor specific peptides on functions of carrageenan-elicited granulocytes in vitro and ability of NPY to modulate carrageenan-induced air pouch inflammation in rats in vivo. Anti-inflammatory effect of NPY comprises reduced granulocyte accumulation into the air pouch, to some extent attenuation of phagocytosis, attained via Y1 receptor, and considerable decrease in peroxide production, albeit mediated via Y2 and Y5 receptors activation. Conversely, NPY increases nitric oxide production and this potentiation is mediated via Y1 receptor. It is concluded that NPY Y1 and Y2/Y5 receptors' interaction participates in NPY-induced modulation of granulocyte functions related to inflammation.

  14. Trypanocidal Activity of Marine Natural Products

    PubMed Central

    Jones, Amy J.; Grkovic, Tanja; Sykes, Melissa L.; Avery, Vicky M.

    2013-01-01

    Marine natural products are a diverse, unique collection of compounds with immense therapeutic potential. This has resulted in these molecules being evaluated for a number of different disease indications including the neglected protozoan diseases, human African trypanosomiasis and Chagas disease, for which very few drugs are currently available. This article will review the marine natural products for which activity against the kinetoplastid parasites; Trypanosoma brucei brucei, T.b. rhodesiense and T. cruzi has been reported. As it is important to know the selectivity of a compound when evaluating its trypanocidal activity, this article will only cover molecules which have simultaneously been tested for cytotoxicity against a mammalian cell line. Compounds have been grouped according to their chemical structure and representative examples from each class were selected for detailed discussion. PMID:24152565

  15. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  16. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  17. Airport Activity Statistics of Certificated Route Air Carriers.

    DTIC Science & Technology

    1981-12-31

    between those centers and principal centers. schedules, including extra sections. medium air trafic hub. A community enplaning from 0.25 to small air...O1618C-800U1820 149684 lima $3 41.35 4017.10 1144.2S 51186 4949.01 AIR ooft6o.- 6 A 39 437.811 74.35 253.41 2314.41 3Mo.ŝ 5 AL $ Lima & 3698 48s .114324

  18. Prospective air pollutant emissions inventory for the development and production of unconventional natural gas in the Karoo basin, South Africa

    NASA Astrophysics Data System (ADS)

    Altieri, Katye E.; Stone, Adrian

    2016-03-01

    The increased use of horizontal drilling and hydraulic fracturing techniques to produce gas from unconventional deposits has led to concerns about the impacts to local and regional air quality. South Africa has the 8th largest technically recoverable shale gas reserve in the world and is in the early stages of exploration of this resource. This paper presents a prospective air pollutant emissions inventory for the development and production of unconventional natural gas in South Africa's Karoo basin. A bottom-up Monte Carlo assessment of nitrogen oxides (NOx = NO + NO2), particulate matter less than 2.5 μm in diameter (PM2.5), and non-methane volatile organic compound (NMVOC) emissions was conducted for major categories of well development and production activities. NOx emissions are estimated to be 68 tons per day (±42; standard deviation), total NMVOC emissions are 39 tons per day (±28), and PM2.5 emissions are 3.0 tons per day (±1.9). NOx and NMVOC emissions from shale gas development and production would dominate all other regional emission sources, and could be significant contributors to regional ozone and local air quality, especially considering the current lack of industrial activity in the region. Emissions of PM2.5 will contribute to local air quality, and are of a similar magnitude as typical vehicle and industrial emissions from a large South African city. This emissions inventory provides the information necessary for regulatory authorities to evaluate emissions reduction opportunities using existing technologies and to implement appropriate monitoring of shale gas-related activities.

  19. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    PubMed

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year.

  20. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  1. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  2. Air Force Organizational Transformation: Merging the Active and Reserve Components

    DTIC Science & Technology

    2007-11-02

    34Future Total Force." 18 34 Ibid. 35 Ibid. 36 John A. Tirpak, "The Blended Wing Goes to War," Air Force Magazine, October 2003. [ Jounal on-line...Space Power 3 (Fall 2004): 41-53. Tirpak, John A. "The Blended Wing Goes to War," Air Force Magazine, October 2003. Jounal on-line. Available from

  3. Advanced Productivity Analysis Methods for Air Traffic Control Operations

    DTIC Science & Technology

    1976-12-01

    games, corporate -pianning models, freeway simulation, hospital simu- lation, etc. The types ofi users range from engineers an4 scientists to business...radio and interphone commnications and direct- voice commnication ). For each identified task, we selected a "reasonable" minimum task performance...search parameters. To compute the Work Activity actual task times (e.g., for interphone commnication , RDP/RDP operations, and flight strip processing

  4. Pulsed-flow air classification for waste to energy production. Final report

    SciTech Connect

    Peirce, J.J.; Vesilind, P.A.

    1983-09-30

    The development and testing of pulsed-flow air classification for waste-to-energy production are discussed. Standard designs generally permit large amounts of combustible material to escape as reject while producing a fuel that is high in metal and glass contaminants. Pulsed-flow classification is presented as a concept which can avoid both pitfalls. Each aspect of theory and laboratory testing is summarized: particle characteristics, theory of pulsed-flow classification, laboratory testing, and pulsed-flow air classification for waste-to-energy production. Conclusions from the research are summarized.

  5. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3

    SciTech Connect

    Fischer, J.

    2001-07-09

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations--a college dormitory and a research laboratory--during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systems were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pilot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air.

  6. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  7. Environmental Resource Guide: Air Quality. A Series of Classroom Activities for Grades 6-8.

    ERIC Educational Resources Information Center

    Reed, Elizabeth W., Ed.

    Many different types of air quality can be studied in middle school science classes using available supplies. This grade 6-8 activity guide was developed to provide opportunities for children to learn about the issue of air quality. Sixteen hands-on activities integrate the issue into middle school science classes. A chart categorizes the…

  8. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light.

    PubMed

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15-35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m(2) each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m(3)·h(-1)) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8-73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from -5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL.

  9. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light

    PubMed Central

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15–35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m3·h−1) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8–73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from −5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012

  10. AIRS Products Confirm and Explain Recent Negative Trends of OLR as Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    Anomalies and trends of OLR serve as important indicators of climate change. Several satellite based instruments currently provide information related to OLR. CERES, on board the EOS Aqua and Terra satellites, contains broad band radiometers that measure total flux and short-wave flux, from which OLR is determined. AIRS is a high spectral resolution IR sounder on EOS Aqua that measures IR radiances covering most of the spectral interval 650/cm to 2670/cm. These observations enable the determination of detailed information about atmospheric temperature, moisture, and ozone profiles, as well as surface skin temperatures and cloud parameters. The AIRS OLR product is the total flux over the spectral interval 2/cm to 2750/cm computed for the surface and atmospheric state determined from AIRS observations. We compared spatial anomalies and trends of OLR, over the seven year period September 2002 through August 2009, as observed by CERES and computed using Version-5 AIRS products. These two sets of OLR anomalies and trends, obtained in very different ways, agree with each other almost perfectly in essentially every detail. This important finding shows that a very stable high spectral infra-red sounder such as AIRS corroborates the anomalies and trends of OLR obtained from CERES. More significantly, anomalies and trends of the individual geophysical parameters derived from AIRS explain the detailed causes of the anomalies and trends of CERES OLR. Both sets of results show that global mean OLR has been decreasing at a rate of 0.12 W/sq m/yr over the seven year time period under study. Both also confirm that the primary cause of this is due to changes in the tropics, in which OLR has been decreasing at a rate of 0.27 W/sq m/yr. AIRS products show that the decrease of tropical OLR is a result of increasing tropical atmospheric water vapor and cloud cover over that time period studied, which in turn is responding to a very strong La Nina; a event starting in late 2007

  11. Production of high specific activity silicon-32

    SciTech Connect

    Phillips, D.R.; Brzezinski, M.A.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  12. Air Pollutant Emissions from Oil and Gas Production pads (Investigating Low Cost Passive Samplers)

    EPA Science Inventory

    To help achieve the goal of sustainable, environmentally responsible development of oil and gas resources, it isnecessary to understand the potential for air pollutant emissions from various extraction and production (E&P)processes at the upstream, wellpad level. Upstream oil and...

  13. Compressed Air System Improvement Project Saves Foundry Energy and Increases Production

    SciTech Connect

    2002-05-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  14. 77 FR 33659 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Consumer Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Illinois; Consumer... approving the addition of a new rule to the Illinois State Implementation Plan (SIP) submitted by the... more stringent than, EPA's national consumer products and architectural and industrial maintenance...

  15. Compressed Air System Retrofitting Project Improves Productivity at a Foundry (Cast Masters, Bowling Green, OH)

    SciTech Connect

    2002-06-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  16. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being

  17. Copper-dependent inflammation and nuclear factor-kappaB activation by particulate air pollution.

    PubMed

    Kennedy, T; Ghio, A J; Reed, W; Samet, J; Zagorski, J; Quay, J; Carter, J; Dailey, L; Hoidal, J R; Devlin, R B

    1998-09-01

    Particulate air pollution causes increased cardiopulmonary morbidity and mortality, but the chemical determinants responsible for its biologic effects are not understood. We studied the effect of total suspended particulates collected in Provo, Utah, an area where an increase in respiratory symptoms in relation to levels of particulate pollution has been well documented. Provo particulates caused cytokine-induced neutrophil chemoattractant-dependent inflammation of rat lungs. Provo particulates stimulated interleukin-6 (IL-6) and IL-8 production, increased IL-8 messenger RNA (mRNA) and enhanced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured BEAS-2B cells, and stimulated IL-8 secretion in primary cultures of human bronchial epithelium. Cytokine secretion was preceded by activation of the transcription factor nuclear factor-kappaB (NF-kappaB) and was reduced by treatment of cultures with superoxide dismutase, deferoxamine, or N-acetylcysteine. These biologic effects were replicated by culturing BEAS cells with quantities of Cu2+ found in Provo extract. IL-8 secretion by BEAS cells could be modified by addition of normal constituents of airway lining fluid to the culture medium. Mucin significantly reduced IL-8 secretion, and ceruloplasmin significantly increased IL-8 secretion and activation of NF-kappaB. These findings suggest that copper ions may cause some of the biologic effects of inhaled particulate air pollution in the Provo region of the United States, and may provide an explanation for the sensitivity of asthmatic individuals to Provo particulates that has been observed in epidemiologic studies.

  18. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder

    The emissions of two volatile organic compounds (VOCs) of concern from five building products (BPs) were measured in the field and laboratory emission cell (FLEC) up to 250 d. The BPs (VOCs selected on the basis of abundance and low human odor thresholds) were: nylon carpet with latex backing (2-ethylhexanol, 4-phenylcyclohexene), PVC flooring (2-ethylhexanol, phenol), floor varnish on pretreated beechwood parquet (butyl acetate, N-methylpyrrolidone), sealant (hexane, dimethyloctanols), and waterborne wall paint on gypsum board (1,2-propandiol, Texanol). Ten different climate conditions were tested: four different air velocities from ca. 1 cm s -1 to ca. 9 cm s -1, three different temperatures (23, 35, and 60°C), two different relative humidities (0% and 50% RH), and pure nitrogen instead of clean air supply. Additionally, two sample specimen and two different batches were compared for repeatability and homogeneity. The VOCs were sampled on Tenax TA and determined by thermal desorption and gas chromatography (FID). Quantification was carried out by individual calibration of each VOC of concern. Concentration/time profiles of the selected VOCs (i.e. their concentration decay curves over time) in a standard room were used for comparison. Primary source emissions were not affected by the air velocity after a few days to any great extent. Both the temperature and relative humidity affected the emission rates, but depended strongly on the type of BP and type of VOC. Secondary (oxidative) source emissions were only observed for the PVC and for dimethyloctanols from the sealant. The time to reach a given concentration (emission rate) appears to be a good approach for future interlaboratory comparisons of BP's VOC emissions.

  19. Heat transfer properties, moisture loss, product yield, and soluble proteins in chicken breast patties during air convection cooking.

    PubMed

    Murphy, R Y; Johnson, E R; Duncan, L K; Clausen, E C; Davis, M D; March, J A

    2001-04-01

    Chicken breast patties were processed in an air convection oven at air temperatures of 149 to 218 C, air velocities of 7.1 to 12.7 m3/min, and air relative humidities of 40 to 95%. The air humidity was controlled via introducing steam into the oven. The patties were processed to a final center temperature of 50 to 80 C. Heat flux, heat transfer coefficient, moisture loss in the cooked chicken patties, the product yield, and the changes of soluble proteins in the product were evaluated for the cooking system. During cooking, heat flux varied with the processing time. Heat flux increased with increasing air humidity. The effective heat transfer coefficient was obtained for different cooking conditions. Air humidity in the oven affected the heat transfer coefficient. The moisture loss in the cooked products increased with increasing the final product temperature and the oven air temperature. The soluble proteins in the cooked patties decreased with increasing the final product temperature. Increasing humidity increased heat transfer coefficient and therefore reduced cooking time. Reducing oven temperature, reducing internal temperature, and increasing air humidity increased the product yield. Soluble proteins might be used as an indicator for the degree of cooking. The results from this study are important for evaluating commercial thermal processes and improving product yields.

  20. PRN 93-4: Ban on Aerosol Products Containing CFCs and HCFCs under the Clean Air Act

    EPA Pesticide Factsheets

    This notice alerts pesticide registrants to a rule under the Clean Air Act banning distribution and sale of aerosol and pressurized products, including pesticide products, that contain chlorofluorocarbons (CFCs).

  1. Helicopter air resonance modeling and suppression using active control

    NASA Technical Reports Server (NTRS)

    Takahashi, M. D.; Friedmann, P. P.

    1991-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected with an air resonance instability throughout most of its flight envelope. A multivariable compensator is then designed using two swashplate inputs and a single-body roll rate measurement. The controller design is based on the linear quadratic Gaussian technique and the loop transfer recovery method. The controller is shown to suppress the air resonance instability throughout a wide range of helicopter loading conditions and forward flight speeds.

  2. Measurement of HOxproduction rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (•OH and HO2 •) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HOxproduction rate in indoor air caused by radon decay. Average HOxproduction rate was found to be (4.31±0.07) x 105 HOx• per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G(HOx•)-value, 7.86±0.13 No./100 eV in air by directly measuring [HOx•] formed from the radiolysis procedure. This G value implies that HOx• produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HOxproduction rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for •OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial •OH produced from the photolysis of O3/H2O.

  3. Monascus secondary metabolites: production and biological activity.

    PubMed

    Patakova, Petra

    2013-02-01

    The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

  4. Production of high specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1994-01-01

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  5. Air Pollution and Weather: Activities and Demonstrations for Science Classes

    ERIC Educational Resources Information Center

    Cole, Henry S.

    1973-01-01

    Discusses a number of concepts (turbulence, dispersion, vertical temperature distribution, atmospheric stability and instability, and inversions) which are prerequisite to understanding how weather affects air quality. Describes classroom demonstrations effective in introducing these concepts to students at the elementary, secondary and college…

  6. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  7. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  8. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  9. Livestock Air Treatment Using PVA-Coated Powdered Activated Carbon Biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ideal biofilter media provide surface for attachment of microorganisms responsible for removing air-born contaminants while facilitating passage of air. This study evaluated the efficacy of polyvinyl alcohol (PVA)-coated powdered activated carbon particles as a biofiltration medium. This material e...

  10. 76 FR 56750 - Agency Information Collection Activities; Proposed Collection; Comment Request; Air Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... certain EPA regulations is consolidated in 40 CFR part 9. Abstract: The EPA promulgated the Air Emissions... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Air Emissions...-0489, by one of the following methods: http://www.regulations.gov . Follow the on-line instructions...

  11. Encouraging overweight students with intellectual disability to actively perform walking activity using an air mouse combined with preferred stimulation.

    PubMed

    Chang, Chia-Jui; Chang, Man-Ling; Shih, Ching-Hsiang

    2016-08-01

    This study continues the research on using an air mouse as a physical activity detector. An air mouse is embedded with a MEMS (Micro Electro Mechanical Systems) gyro sensor, which can measure even the slightest movement in the air. The air mouse was strapped to one of each participant's calves to detect walking activity. This study was conducted to evaluate whether four students with intellectual disability who were overweight and disliked exercising could be motivated to engage in walking actively by linking the target response with preferred stimulation. Single-subject research with ABAB design was adopted in this study. The experimental data showed substantial increases in the participants' target responses (i.e. the performance of the activity of walking) during the intervention phases compared to the baseline phases. The practical and developmental implications of the findings are discussed.

  12. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    NASA Astrophysics Data System (ADS)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  13. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor

  14. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  15. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola.

    PubMed

    Choi, Dubok; Maeng, Jeung-Moo; Ding, Ji-Lu; Cha, Wol-Suk

    2007-08-01

    For effective exopolysaccharide production and mycelial growth by a liquid culture of Fomitopsis pinicola in an air-lift bioreactor, the culture temperature, pH, carbon source, nitrogen source, and mineral source were initially investigated in a flask. The optimal temperature and pH for mycelial growth and exopolysaccharide production were 25degrees C and 6.0, respectively. Among the various carbon sources tested, glucose was found to be the most suitable carbon source. In particular, the maximum mycelial growth and exopolysaccharide production were achieved in 4% glucose. The best nitrogen sources were yeast extract and malt extract. The optimal concentrations of yeast extract and malt extract were 0.5 and 0.1%, respectively. K2HPO4 and MgSO4 x 7H2O were found to be the best mineral sources for mycelial growth and exopolysaccharide production. In order to investigate the effect of aeration on mycelial growth and exopolysaccharide production in an air-lift bioreactor, various aerations were tested for 8 days. The maximum mycelial growth and exopolysaccharide production were 7.9 g/l and 2.6 g/l, respectively, at 1.5 vvm of aeration. In addition, a batch culture in an air-lift bioreactor was carried out for 11 days under the optimal conditions. The maximum mycelial growth was 10.4 g/l, which was approximately 1.7-fold higher than that of basal medium. The exopolysaccharide production was increased with increased culture time. The maximum concentration of exopolysaccharide was 4.4 g/l, which was about 3.3-fold higher than that of basal medium. These results indicate that exopolysaccharide production increased in parallel with the growth of mycelium, and also show that product formation is associated with mycelial growth. The developed model in an air-lift bioreactor showed good agreement with experimental data and simulated results on mycelial growth and exopolysaccharide production in the culture of F pinicola.

  16. Catalog of Audiovisual Productions. Volume 3. Air Force and Miscellaneous DoD Productions

    DTIC Science & Technology

    1984-06-01

    govern for each title. Violation of federal copyright laws by unauthorized reproduction or exhibition may result in judicial or administrative penalties...Administration Services Office, for approval. 9. Prohibition Against Reproduction of DF AV Productions. Copies of DF AV productions are accountable AV...aspects of celestial bodies, their origin and evolution . Includes astronomical spectroscopy and radio astronomy. 03 Atmtpharit Physical and chemical

  17. Samaa : A Software For Air Pollution Modelling and Analysis Activities

    NASA Astrophysics Data System (ADS)

    Gueguen, C.; Mangin, A.; Sanchez, O.

    In order to better understand the qualitative and quantitative evolution of air pollu- tion in cities and their surroundings, ACRI-st has designed and developed, jointly with two French air surveillance networks, an integrated application for air pollution modelling. This simulator, called Samaa, enables testing the impact on pollution of different emission scenarios under a number of meteorological conditions. Samaa is a platform with a user-friendly interface for scenario management, including an emission module, and a GIS-based results viewing module, that may in turn be interfaced with a meteorological and a chemistry/dispersion module (or a dispersion module). The meteorological module is processed first, before any other air pollution module of the simulator. It supplies the meteorological files that will then be used by the emis- sion module and subsequently by the dispersion and chemical modules. This module calculates wind and temperature fields, as well as different meteorological parameters. The AIREMIS emission module was designed to calculate the hourly emissions of seven primary pollutants for each emission sector (transport, industry, heating and natural environment). The GIS, integrated in the emission module, executes two main tasks : - preparation of the emission data sets that the modelling system will process - results viewing for all the different calculation modules (emission, wind and concen- tration maps). The chemistry/dispersion and the dispersion modules enable reactive and non reac- tive pollutants simulation in urban and sub-urban areas. They are interfaced with the other system element to allow simulation of pollutants concentration derived from non chemical or photochemical reactions. Samaa has been validated on two 3-day simulations : the first one was dedicated to evaluate the "chemical processing" of the simulator, and the second one to the "dis- persion processing". The results have proven the strength and the robustness of the

  18. Investigation of Lithium-Air Battery Discharge Product Formed on Carbon Nanotube and Nanofiber Electrodes

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert Revell, III

    Carbon nanotubes have been actively investigated for integration in a wide variety of applications since their discovery over 20 years ago. Their myriad desirable material properties including exceptional mechanical strength, high thermal conductivities, large surface-to-volume ratios, and considerable electrical conductivities, which are attributable to a quantum mechanical ability to conduct electrons ballistically, have continued to motivate interest in this material system. While a variety of synthesis techniques exist, carbon nanotubes and nanofibers are most often conveniently synthesized using chemical vapor deposition (CVD), which involves their catalyzed growth from transition metal nanoparticles. Vertically-aligned nanotube and nanofiber carpets produced using CVD have been utilized in a variety of applications including those related to energy storage. Li-air (Li-O2) batteries have received much interest recently because of their very high theoretical energy densities (3200 Wh/kgLi2O2 ). which make them ideal candidates for energy storage devices for future fully-electric vehicles. During operation of a Li-air battery O2 is reduced on the surface a porous air cathode, reacting with Li-ions to form lithium peroxide (Li-O2). Unlike the intercalation reactions of Li-ion batteries, discharge in a Li-air cell is analogous to an electrodeposition process involving the nucleation and growth of the depositing species on a foreign substrate. Carbon nanofiber electrodes were synthesized on porous substrates using a chemical vapor deposition process and then assembled into Li-O2 cells. The large surface to volume ratio and low density of carbon nanofiber electrodes were found to yield a very high gravimetric energy density in Li-O 2 cells, approaching 75% of the theoretical energy density for Li 2O2. Further, the carbon nanofiber electrodes were found to be excellent platforms for conducting ex situ electron microscopy investigations of the deposition Li2O2 phase

  19. Sustainable intensive livestock production demands manure and exhaust air treatment technologies.

    PubMed

    Melse, Roland W; Timmerman, Maikel

    2009-11-01

    Intensive livestock production is connected with a number of environmental effects, including discharges to soils and surface waters and emissions to the atmosphere. In areas with a high livestock density the low availability of nearby arable land, together with the preferred use of chemical fertilizer by arable farmers, results in high off-farm disposal costs for manure. Furthermore, ammonia abatement technologies, such as treatment of exhaust air, are important as ammonia emissions may account up to a quarter of the total nitrogen flux. Firstly, the paper describes and discusses the development of manure treatment in the Netherlands since the 1970's. Manure treatment processes that result in products that compete with and replace the use of chemical fertilizers can (partly) close the nutrient cycle again. From this point of view aerobic treatment of manure (nitrification/denitrification) can not be considered sustainable as nitrogen is taken out of the cycle at high environmental costs. Secondly, the state-of-the-art of techniques for treatment of exhaust air is presented. Besides ammonia, application of air treatment may also reduce environmental emissions of odour and particulate matter (dust). Both manure treatment and treatment of exhaust air are considered essential for sustainable livestock operations in areas with a high livestock density.

  20. 78 FR 25352 - Agency Information Collection; Activity Under OMB Review; Preservation of Air carrier Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Preservation of Air carrier Records AGENCY: Research & Innovative Technology Administration (RITA), Bureau of... techniques or other forms of information technology. Issued in Washington, DC, on April 23, 2013....

  1. Measurement of Productive Capacity: A Methodology for Air Force Enlisted Specialties

    DTIC Science & Technology

    1992-06-01

    performance times to determine individual PC values, about 320 supervisors in four AFSs (Aircrew Life Support, Aerospace Ground Equipment, Avionic ...analysis purposes. Being able to predict an individual’s performance test score from their ASVAB scores and experience level still leaves the policy...experience to supervisor estimates of productivity in one Air Force electronics specialty (328X0, Avionics Communications). Their objectives were to: (1

  2. Study on particulate matter air pollution in Beijing with MODIS aerosol level 2 products

    NASA Astrophysics Data System (ADS)

    Mao, Jietai; Li, Chengcai; Lau, Alexis K.

    2004-09-01

    In the run-up to the 2008 Olympic Games in Beijing, Chinese government officials at both the central and municipal levels are keenly aware that they must transform Beijing into a world-class city. According to the Beijing Municipal Environmental Protection Bureau (BJEPB) to improve its air quality some actions are adopting, including taking steps to increase the forested area surrounding the city preventing dust storms, reducing the automotive vehicles, moving polluting factories now inside the fourth ring road ringing the inner city to locations outside of the fourth ring road, and switching the fuel of public buses and taxis from diesel to natural gas, etc. Will they eliminate most serious environmental problems in Beijing? MODIS aerosol products are helping us to answer this kind of questions. A long-term validation has been finished by sun-photometer observations, and the results proved the relative error of MODIS level 2 products was slightly larger than the estimation of Chu et al. (2002) from the results in most AERONET sites. However, the comparison between the products and moisture-corrected air pollution index (API) data, which were daily released to public by EPB, showed a high correlation coefficient. An air pollution episode in 2003 was investigated by the usage of satellite products. Our conclusion for the air pollution control strategy in Beijing is that only reducing the pollution sources from inner city can't fully solve the pollution problems in Beijing and the regional transports from the nearby southern provinces are contributing a lot to the pollution situation in Beijing.

  3. DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing.

    PubMed

    Marotta, Ester; Callea, Alessandro; Rea, Massimo; Paradisi, Cristina

    2007-08-15

    A large (ca 0.7 L) wire-cylinder benchtop reactor was developed and tested for DC corona processing of VOC (volatile organic compound)-contaminated air at room temperature and pressure. The aim of our research is the identification and rationalization of the chemical reactions responsible for VOC removal. Model hydrocarbons, n-hexane and 2,2,4-trimethylpentane (i-octane), were used to characterize the process and compare the effects of DC corona polarity and of humidity on its energy efficiency and products. n-Hexane and i-octane behave very similarly. For both, the energy efficiency is significantly better with negative than with positive DC corona, especially in humid air. The effect of humidity is most interesting. Thus, while with -DC corona the process efficiency is significantly better in humid air, a slight inhibition is observed with +DC corona. Differences between +DC and -DC corona are also found in the amounts of volatile products formed, which include CO2, CO, and minor quantities of organic byproducts (aldehydes, ketones, alcohols, and lower hydrocarbons). A significant fraction of the carbon originally present as VOC is, however, unaccounted for by the analysis of gaseous and volatile organic products and must, therefore, end up as nonvolatile materials and aerosols.

  4. Propagation of gamma rays and production of free electrons in air

    SciTech Connect

    Dimant, Y. S.; Nusinovich, G. S.; Romero-Talamas, C. A.; Granatstein, V. L.; Sprangle, P.; Penano, J.

    2012-10-15

    This paper is devoted to the analysis of production of free electrons in air by gamma-rays leaking from radioactive materials. A model based on the Klein-Nishina scattering theory is used to calculate scattering cross sections and approximate the electron production rate. The model includes the effects of primary gamma-quanta radiated by the source as well as that scattered in air. Comparison of the model with the mcnpx kinetic code (http://mcnpx.lanl.gov/) in a sample problem shows excellent agreement. The motivation for this research comes from the recently proposed concept of remote detection of concealed radioactive materials [V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)]. The concept is based on the breakdown in air at the focal point of a high-power beam of electromagnetic waves produced by a THz gyrotron with a 10-20 {mu}s pulse. The presence of a radioactive material can greatly exceed the production rate of free electrons over the natural background rate. Additional electrons act as seeds to initiate the breakdown and create sufficiently dense plasma at the focal region. The dense plasma can then be remotely detected as an unambiguous effect of the concealed radioactive material.

  5. Influences of air calcination and steam activation on microstructure and photocatalytic activity of continuous TiO{sub 2} fibers

    SciTech Connect

    You, Yang; Zhang, Shiying; Xu, Difa

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Effects of air calcination and steam activation on TiO{sub 2} fibers were studied. ► The photocatalytic activity was evaluated by degradation of formaldehyde. ► Steam activation promoted the anatase–rutile phase transformation. ► Steam activation decreased grain size and increased special surface area. ► Steam activation improved photocatalytic activity of TiO{sub 2} fibers. -- Abstract: Effects of air calcination and steam activation, on phase transformation, microstructure and photocatalytic activity of continuous TiO{sub 2} fibers prepared by sol–gel method were studied. The fibers were characterized by XRD, SEM, and N{sub 2} adsorption–desorption. The photocatalytic activity was evaluated by photocatalytic degradation of formaldehyde. Results showed that 100% rutile fibers heat-treated in air and steam were obtained at 800 °C and 600 °C, respectively. The anatase grain sizes and special surface areas of the fibers heat-treated at 500 °C in air and steam were 31.6 nm, 22.7 nm, 26.7 m{sup 2}/g and 32.3 m{sup 2}/g, respectively. The degradation rates of formaldehyde over the fibers heat-treated at 500 °C in air and steam were 92.3% and 98.6% after 14 h under UV irradiation, respectively. Compared with the air calcination, the steam activation promoted the anatase–rutile phase transformation, reduced the grain size, increased the special surface area, and improved photocatalytic activity of continuous TiO{sub 2} fibers.

  6. FAA (Federal Aviation Administration) Air Traffic Activity FY 1986.

    DTIC Science & Technology

    1986-09-30

    AIRPORTS WITH FAA-3PSRATEO TRAFIC CONTROL TVWERS RY STATE (CONTINUED) STAT? AND LOCATION U AIR AI6 GENERAL LOCATION NAME IENTIFIPR 8 TOTAL CARRISR...0 0 0 LINUE "I 1 ZM4 3497 1273 99 74 251 LIMA ALLEN COUNTY 31 N ZI0 17 0 2 15 3LINCNFIELO IL N iC 4 0 0 4 2 LINCOLN LOGAN COUNTY IL S I S*I 9 0 0 9 0...VIRGINIA LENISBURG GREENBRIER ELWIS N 2100. %v TABLE n FISCAL YEAR 196 OPEIRATIONS AT AtFPORTS WITN CONTIRACTOR-3PERATED TRAFIC C0N11)L VtflERS BY STATE

  7. Air pathway effects of nuclear materials production at the Hanford Site, 1983 to 1992

    SciTech Connect

    Patton, G.W.; Cooper, A.T.

    1993-10-01

    This report describes the air pathway effects of Hanford Site operations from 1983 to 1992 on the local environment by summarizing the air concentrations of selected radionuclides at both onsite and offsite locations, comparing trends in environment concentrations to changing facility emissions, and briefly describing trends in the radiological dose to the hypothetical maximally exposed member of the public. The years 1983 to 1992 represent the last Hanford Site plutonium production campaign, and this report deals mainly with the air pathway effects from the 200 Areas, in which the major contributors to radiological emissions were located. An additional purpose for report was to review the environmental data for a long period of time to provide insight not available in an annual report format. The sampling and analytical systems used by the Surface Environmental Surveillance Project (SESP) to collect air samples during the period of this report were sufficiently sensitive to observe locally elevated concentrations of selected radionuclides near onsite source of emission as well as observing elevated levels, compared to distant locations, of some radionuclides at the down wind perimeter. The US DOE Derived Concentration Guides (DCGs) for airborne radionuclides were not exceeded for any air sample collected during 1983 to 1992, with annual average concentrations of all radionuclides at the downwind perimeter being considerably below the DCG values. Air emissions at the Hanford Site during the period of this report were dominated by releases from the PUREX Plant, with {sup 85}Kr being the major release on a curie basis and {sup 129}I being the major release on a radiological dose basis. The estimated potential radiological dose from Hanford Site point source emissions to the hypothetical maximally exposed individual (MEI) ranged from 0. 02 to 0.22 mrem/yr (effective dose equivalent), which is well below the DOE radiation limit to the public of 100 mrem/yr.

  8. Environmental assessment of three egg production systems–Part I: Monitoring system and indoor air quality

    PubMed Central

    Zhao, Y.; Shepherd, T. A.; Li, H.; Xin, H.

    2015-01-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens’ activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  9. Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

    PubMed

    Zhao, Y; Shepherd, T A; Li, H; Xin, H

    2015-03-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  10. Impact of air pollution control regulations on thermal enhanced oil recovery production in the United States. Final report

    SciTech Connect

    Norton, J.F.; Rouge, J.D.; Beekley, P.K.; Husband, S.N.; Arnold, C.W.; Menzies, W.R.; Balentine, H.W.

    1982-03-01

    This study assesses the impact of air pollution control regulations on the costs of present and future thermal enhanced oil recovery (TEOR) production. The conclusions of this study indicate that lengthy permitting processes, limited control sytem availability, and costly control system requirements complicate regulatory compliance and constrain TEOR production expansion. Seven heavy oil production areas with potential for increased TEOR production were selected for detailed analyses. Five of these areas are in California: central Kern County, western Kern County, Coalinga, San Ardo, and Los Angeles Basin. The other two areas are the Slocum field in Texas and the Smackover field in Arkansas. Air pollution control rule and regulation requirements were determined for each production area. State-of-the-art air pollution control technology was assessed and costs were estimated for the control systems needed to comply with previous new source review (NSR) and retrofit rules in each area. For each California production area, the maximum potential increase in TEOR production was estimated, based on available emission offsets. Potential increases in the Texas and Arkansas fields were not projected because production is expected to decrease in these areas. Costs were calculated for the control systems required to allow the maximum increase in TEOR production. An air quality impact analysis was performed for the four largest production areas in California. The results of this analysis allowed estimation of the air quality changes associated with the maximum TEOR production increase and compliance with retrofit and NSR rules.

  11. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    NASA Astrophysics Data System (ADS)

    Singer, Brett C.; Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Lunden, Melissa M.; Weschler, Charles J.; Nazaroff, William W.

    This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m 3 chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm-weather seasons: an air exchange rate of 1.0 h -1 and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs was of similar magnitude to homogeneous reaction with continuously emitted constituents. Formaldehyde generation resulted from product use with ozone present, increasing indoor levels by the order of 10 ppb. Cleaning product use in the presence of ozone generated substantial fine particle concentrations (more than 100 μg m -3) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods.

  12. Evaluation of various activated carbons for air cleaning - Towards design of immune and sustainable buildings

    NASA Astrophysics Data System (ADS)

    Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash

    There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.

  13. Comparison of Methane Data Products from the TES and AIRS Infrared Sounders

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Pagano, T. S.; Worden, J. R.

    2015-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane retrievals to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellation (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both instruments sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. However, because AIRS spectral resolution is lower than that of the TES, there may be a difference in vertical sensitivity. In addition, the retrieval techniques and error characteristics are different for the two data sets. The current state of validation for these data products will be presented. To identify conditions in which the data sets agree and dis agree, we present global maps of methane concentrations from monthly level 3 (L3) data products. We also investigate the temporal stability between the two datasets by comparing global zonal averages derived from L3 over the last decade. Finally, we compare L2 retrieval profiles from representative granules in the tropical, mid-latitude and northern latitudes.

  14. Effect of plateout, air motion and dust removal on radon decay product concentration in a simulated residence.

    PubMed

    Rudnick, S N; Hinds, W C; Maher, E F; First, M W

    1983-08-01

    The effectiveness of increased air motion and dust removal in reducing radon decay product concentration in residences subject to radon intrusion was evaluated in a 78-m3 room under steady-state conditions for air infiltration rates between 0.2 and 0.9 air changes per hour. Room-size, portable electrostatic precipitators and high-efficiency fibrous filters were tested as typical residential air cleaning devices; a portable box fan and a ceiling fan were employed as typical residential air movers. Reductions in working levels of 40-90% were found. The fate of radon decay products, with and without mixing fans, was determined by direct measurement. When mixing fans were used, most of the nonairborne potential alpha-energy was plated out on the room surfaces; less than 10% was deposited on the fan blades or housing. Results were compared to a mathematical model based on well-mixed room air, and good agreement was obtained.

  15. Air Quality Activities in the Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2016-01-01

    GMAO's mission is to enhance the use of NASA's satellite observations in weather and climate modeling. This presentation will be discussing GMAO's mission, value of data assimilation, and some relevant (available) GMAO data products.

  16. Analysis of activated air following high yield shots in the NIF

    DOE PAGES

    Khater, Hesham; Brereton, Sandra

    2015-07-24

    During the ignition experimental campaign, the National Ignition Facility (NIF) is expected to perform shots with varying fusion yield (up to 20 MJ or 7.1 x 1018 neutrons per shot) and a maximum annual yield of 1200 MJ. A detailed MCNP model of the Target Bay (TB) and the two switchyards (SY) has been developed to estimate the post-shot radiation environment inside the facility. During D-T shots, a pulse of 14.1 MeV neutrons streaming outside the Target Chamber (TC) will activate the air present inside the TB and the argon gas inside the laser tubes. Smaller levels of activity aremore » also generated in the SY air and in the argon portion of the SY laser beam path. The activated TB air will be mixed with fresh air from the Operations Support Building (OSB) before release through the stack. Flow of activated air from the Target Bay is controlled by the heating, ventilating, and air conditioning (HVAC) system. 16N (T1/2 = 7.13 s) dominates the radiation levels during the first minute following the shot. It is expected that 16N will decay away during the confinement time before releasing the TB air through the stack. The other major contributors are 13N (T1/2 = 9.97 min) and 41Ar (T1/2 = 1.83 h). In general a low dose rate of < 1 μSv/h is expected near the stack during the first few hours following a 20 MJ shot. Here, the amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. In the mean time, due to a very small leakage rate out of the laser tubes, the activated argon gas decays within the tubes and any resulting release to the environment is insignificant.« less

  17. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  18. Compressed Air System Overhaul Improves Production at a Powdered Metal Manufacturing Plant (GKN Sinter Metals in Salem, IN)

    SciTech Connect

    2000-11-01

    In 1998, GKN Sinter Metals completed a successful compressed air system improvement project at its Salem, Indiana manufacturing facility. The project was performed after GKN undertook a survey of its system in order to solve air quality problems and to evaluate whether the capacity of their compressed air system would meet their anticipated plant expansion. Once the project was implemented, the plant was able to increase production by 31% without having to add any additional compressor capacity.

  19. Productive activity and life satisfaction in Korean elderly women.

    PubMed

    Kim, Ju-Hyun

    2013-01-01

    The purpose of this study is to explain the effect of participation in productive activities on life satisfaction and its implications for social evaluation of productive aging. This study uses data collected from 1,250 elderly women living in urban areas. The regression model was used to examine the influence of elderly women's participation in productive activities on their life satisfaction. Elderly women who participate in volunteer work, learning, and social group activities commonly recognized their activities as meaningful, feeling like worthwhile members of society, and evaluated such activities as very positive. In contrast, elderly women who participated in household chores and family care activities expressed a negative life satisfaction. The difference in life satisfaction regarding productive activities stems not only from the physical and environmental differences but also from the gap between the official social value underpinned by the recognition of surrounding people, their support, and the value of productive activities.

  20. Thermal analysis of HTS air-core transformer used in voltage compensation type active SFCL

    NASA Astrophysics Data System (ADS)

    Song, M.; Tang, Y.; Li, J.; Zhou, Y.; Chen, L.; Ren, L.

    2010-11-01

    The three-phase voltage compensation type active superconducting fault current limiter (SFCL) is composed of three HTS air-core transformers and a three-phase four-wire Pulse Width Modulation (PWM) converter. The primary winding of the each phase HTS air-core transformer is in series with the main system, and the second winding is connected with the PWM converter. The single-phase conduction-cooled HTS air-core transformer is consisting of four double-pancakes wound by the Bi2223/Ag tape. In this paper, according to the electromagnetic analysis on the single-phase HTS air-core transformer, its AC loss corresponding to different operation modes is calculated. Furthermore, the thermal behaviors are studied by the time-stepping numerical simulations. On the basis of the simulation results, the related problems with the HTS air-core transformer's thermal stability are discussed.

  1. 78 FR 49729 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Air Force Launches, Aircraft and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Specified Activities; U.S. Air Force Launches, Aircraft and Helicopter Operations, and Harbor Activities Related to Launch Vehicles From Vandenberg Air Force Base (VAFB), California AGENCY: National Marine... has received a request from the U.S. Air Force (USAF) for authorization to take marine...

  2. Actividades al Aire Libre (Outdoor Activities). OBIS/Mini-Corps.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Hall of Science.

    The all-Spanish version of the Outdoor Biology Instructional Strategies (OBIS)/Mini-Corps Outdoor Activities set contains twenty education and recreational activities which provide a variety of outdoor biological experiences and incorporate language skills into outdoor education. Prepared especially for use by migrant children aged 10-15 in a…

  3. SRT Evaluation of AIRS Version-6.02 and Version-6.02 AIRS Only (6.02 AO) Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Molnar, Gyula; Blaisdell, John

    2012-01-01

    Version-6 contains a number of significant improvements over Version-5. This report compares Version-6 products resulting from the advances listed below to those from Version-5. 1. Improved methodology to determine skin temperature (T(sub s)) and spectral emissivity (Epsilon(sub v)). 2. Use of Neural-net start-up state. 3. Improvements which decrease the spurious negative Version-5 trend in tropospheric temperatures. 4. Improved QC methodology. Version-6 uses separate QC thresholds optimized for Data Assimilation (QC=0) and Climate applications (QC=0,1) respectively. 5. Channel-by-channel clear-column radiances R-hat(sub tau) QC flags. 6. Improved cloud parameter retrieval algorithm. 7. Improved OLR RTA. Our evaluation compared V6.02 and V6.02 AIRS Only (V6.02 AO) Quality Controlled products with those of Version-5.0. In particular we evaluated surface skin temperature T(sub s), surface spectral emissivity Epsilon(sub v), temperature profile T(p), water vapor profile q(p), OLR, OLR(sub CLR), effective cloud fraction alpha-Epsilon, and cloud cleared radiances R-hat(sub tau) . We conducted two types of evaluations. The first compared results on 7 focus days to collocated ECMWF truth. The seven focus days are: September 6, 2002; January 25, 2003; September 29, 2004; August 5, 2005; February 24, 2007; August 10, 2007; and May 30, 2010. In these evaluations, we show results for T(sub s), Epsilon(sub v), T(p), and q(p) in terms of yields, and RMS differences and biases with regard to ECMWF. We also show yield trends as well as bias trends of these quantities relative to ECMWF truth. We also show yields and accuracy of channel by channel QC d values of R-hat(sub tau) for V6.02 and V6.02 AO. Version-5 did not contain channel by channel QC d values of R-hat(sub tau). In the second type of evaluation, we compared V6.03 monthly mean Level-3 products to those of Version-5.0, for four different months: January, April, July, and October; in 3 different years 2003, 2007, and 2011

  4. Recombination of Hydrogen-Air Combustion Products in an Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Lancashire, Richard B.

    1961-01-01

    Thrust losses due to the inability of dissociated combustion gases to recombine in exhaust nozzles are of primary interest for evaluating the performance of hypersonic ramjets. Some results for the expansion of hydrogen-air combustion products are described. Combustion air was preheated up to 33000 R to simulate high-Mach-number flight conditions. Static-temperature measurements using the line reversal method and wall static pressures were used to indicate the state of the gas during expansion. Results indicated substantial departure from the shifting equilibrium curve beginning slightly downstream of the nozzle throat at stagnation pressures of 1.7 and 3.6 atmospheres. The results are compared with an approximate method for determining a freezing point using an overall rate equation for the oxidation of hydrogen.

  5. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  6. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  7. Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B 6 production

    NASA Astrophysics Data System (ADS)

    Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi

    This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.

  8. Sustainability of the Catalytic Activity of a Silica-Titania Composite (STC) for Long-Term Indoor Air Quality Control

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.

    2011-01-01

    TiO2-assisted photocatalytic oxidation (PCO) is an emerging technology for indoor air quality control and is also being evaluated as an alternative trace contaminant control technology for crew habitats in space exploration. Though there exists a vast range of literature on the development of photocatalysts and associated reactor systems, including catalyst performance and performance-influencing factors, the critical question of whether photocatalysts can sustain their initial catalytic activity over an extended period of operation has not been adequately addressed. For a catalyst to effectively serve as an air quality control product, it must be rugged enough to withstand exposure to a multitude of low concentration volatile organic compounds (VOCs) over long periods of time with minimal loss of activity. The objective of this study was to determine the functional lifetime of a promising photocatalyst - the silica-titania composite (STC) from Sol Gel Solutions, LLC in a real-world scenario. A bench-scale STC-packed annular reactor under continuous irradiation by a UV-A fluorescent black-light blue lamp ((lambda)max = 365 nm) was exposed to laboratory air continuously at an apparent contact time of 0.27 sand challenged with a known concentration of ethanol periodically to assess any changes in catalytic activity. Laboratory air was also episodically spiked with halocarbons (e.g., octafluoropropane), organosulfur compounds (e.g., sulfur hexafluoride), and organosilicons (e.g., siloxanes) to simulate accidental releases or leaks of such VOCs. Total organic carbon (TOC) loading and contaminant profiles of the laboratory air were also monitored. Changes in STC photocatalytic performance were evaluated using the ethanol mineralization rate, mineralization efficiency, and oxidation intermediate (acetaldehyde) formation. Results provide insights to any potential catalyst poisoning by trace halocarbons and organosulfur compounds.

  9. Active suppression of air refractive index fluctuation using a Fabry-Perot cavity and a piezoelectric volume actuator

    SciTech Connect

    Banh, Tuan Quoc; Ohkubo, Yuria; Murai, Yoshinosuke; Aketagawa, Masato

    2011-01-01

    Air refractive index fluctuation ({Delta}n{sub air}) is one of the largest uncertainty sources in precision interferometry systems that require a resolution of nanometer order or less. We introduce a method for the active suppression of {Delta}n{sub air} inside a normal air-environment chamber using a Fabry-Perot cavity and a piezoelectric volume actuator. The temporal air refractive index (n{sub air}) at a local point is maintained constant with an expanded uncertainty of {approx}4.2x10{sup -9} (k=2), a sufficiently low uncertainty for precise measurements unaffected by {Delta}n{sub air} to be made inside a chamber.

  10. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  11. Fact Sheet: Final Rule to Reduce Air Toxics Emissions from Area Source Paints and Allied Products Manufacturing Facilities

    EPA Pesticide Factsheets

    This page contains a November 2009 fact sheet with information regarding the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Area Sources of Paints and Allied Products Manufacturing.

  12. Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) Questions and Answers (Q&A's)

    EPA Pesticide Factsheets

    This September 2004 document contains questions and answers on the Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) regulation. The questions cover topics such as compliance, and applicability, etc

  13. Air Pollution Upregulates Endothelial Cell Procoagulant Activity Via Ultrafine Particle-Induced Oxidant Signaling and Tissue Factor Expression

    EPA Science Inventory

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mecha...

  14. Sustainable, alternative farming practices as a means to simultaneously secure food production and reduce air pollution in East Asia

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Fung, K. M.; Yong, T.; Liu, X.

    2015-12-01

    Proper agricultural land management is essential for securing food supply and minimizing damage to the environment. Among available farming practices, relay strip intercropping and fertilizer application are commonly used, but to study their wider environmental implications and possible feedbacks we require an Earth system modeling framework. In this study, the effectiveness of a maize-soybean relay strip intercropping system and fertilizer reduction is investigated using a multi-model method. The DNDC (DeNitrification-DeComposition) model is used to simulate agricultural activities and their impacts on the environment through nitrogen emissions and changes in soil chemical composition. Crop yield, soil nutrient content and nitrogen emissions to the atmosphere in major agricultural regions of China are predicted under various cultivation scenarios. The GEOS-Chem global chemical transport model is then used to estimate the effects on downwind particle and ozone air pollution. We show that relay strip intercropping and optimal fertilization not only improve crop productivity, but also retain soil nutrients, reduce ammonia emission and mitigate downwind air pollution. By cutting 25% fertilization inputs but cultivating maize and soybean together in a relay strip intercropping system used with field studies, total crop production was improved slightly by 4.4% compared to monoculture with conventional amount of fertilizers. NH3 volatilization decreases by 29%, equivalent to saving the pollution-induced health damage costs by about US$2.5 billion per year. The possible feedback effects from atmospheric nitrogen deposition onto the croplands are also investigated. We show that careful management and better quantitative understanding of alternative farming practices hold huge potential in simultaneously addressing different global change issues including the food crisis, air pollution and climate change, and calls for greater collaboration between scientists, farmers and

  15. The Relationship between Physical Activity and Productivity

    DTIC Science & Technology

    1984-04-01

    CONTINUED Aerobic exercises were the primary type of physical activity considered. The research focused on two specific objectives: (1) to review and... physical fitness and exercise activities . One of the priority objectives is to increase the proportion of adults (aged 18 to 65) participating in... physical activity will be used to encompass both aerobic fitness and exercise . This will allow consideration of the impact of varying levels of exercise

  16. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    SciTech Connect

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  17. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  18. Exposure of organic extracts of air particulates to sunlight leads to metabolic activation independence for mutagenicity.

    PubMed

    al-Khodairy, F; Hannan, M A

    1997-06-13

    Air particulates were collected on Whatman, GFA glass fibre filters using a RADECO constant-flow air sampler from a car-parking basement and an open roadside adjacent to the basement. While the basement was not exposed to sunlight, the roadside from where air samples were collected was exposed to regular daylight in the month of July (peak summer month). The filters were soaked and sonicated in acetone to dislodge the particulates and then a residue was obtained after evaporation of acetone. The residues were either held in dark or exposed to natural sunlight or germicidal UV light before being tested for mutagenicity using the Salmonella tester strain TA98 with and without metabolic activation (S9 mix). The results showed that the addition of S9 mix resulted in only a slight increase in the frequency of histidine revertants/plate in the case of daylight-exposed roadside air samples. On the other hand, a considerable increase in mutagenicity was observed in the case of the basement air samples, particularly at higher concentrations of the organic extracts when S9 mix was added. However, a pre-exposure of the organic extract of air from the basement to sunlight abrogated the need for S9 mix for showing mutagenic activity. A pre-exposure of the same extracts to germicidal UV light failed to produce a similar effect. These results suggested that long wavelengths of natural sunlight could be responsible for the conversion of certain promutagens in air particulates into direct-acting mutagens. The environmental impact of solar radiation as a modifier of air particulate mutagens in high-sun countries like Saudi Arabia needs to be carefully considered for assessment of air pollution-related health risks.

  19. Actividades al Aire Libre (Outdoor Activities). OBIS/Mini-Corps.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Hall of Science.

    Prepared specifically for use in one-week outdoor summer camp programs for migrant children aged 10-15, the twenty bilingual (Spanish and English) educational and recreational activities in the Outdoor Biology Instructional Strategies (OBIS)/Mini-Corps package have been revised to develop language skills as well as an awareness of the outdoor…

  20. Collagenase Production by Endotoxin-Activated Macrophages

    PubMed Central

    Wahl, Larry M.; Wahl, Sharon M.; Mergenhagen, Stephan E.; Martin, George R.

    1974-01-01

    Peritoneal exudate macrophages, when exposed to bacterial lipopolysaccharide in culture, were found to produce collagenase (EC 3.4.24.3). This enzyme was not detected in extracts of the macrophages or in media from nonstimulated macrophage cultures. Lipidcontaining fractions of the lipopolysaccharide, including a glycolipid from the rough mutant of Salmonella minnesota (R595) and lipid A, were potent stimulators of collagenase production. The lipid-free polysaccharide fraction had no effect. Cycloheximide prevented the production of collagenase by endotoxin-treated macrophages, suggesting that it was newly synthesized. Images PMID:4372628

  1. Lung mucin production is stimulated by the air pollutant residual oil fly ash.

    PubMed

    Longphre, M; Li, D; Li, J; Matovinovic, E; Gallup, M; Samet, J M; Basbaum, C B

    2000-01-15

    Human and animal exposure to particulate air pollution is correlated with airway mucus hypersecretion and increased susceptibility to infection. Seeking clues to the mechanisms underlying this pathology, we examined the effect of the particulate air pollutant residual oil fly ash (ROFA) on production of the major component of mucus, mucin, and the major antibacterial protein of the respiratory tract, lysozyme. We found that following in vitro exposure to ROFA, epithelial cells showed an increase in mucin (MUC5AC) and lysozyme (LYS) steady state mRNA. This upregulation was controlled at least partly at the level of transcription as shown by reporter assays. Experiments testing the ability of the major components of ROFA to mimic these effects showed that vanadium, a metal making up 18.8% by weight, accounted for the bulk of the response. A screen of signaling inhibitors showed that MUC5AC and LYS induction by ROFA are mediated by dissimilar signaling pathways, both of which are, however, phosphotyrosine dependent. Recognizing that the ROFA constituent vanadium is a potent tyrosine phosphatase inhibitor and that mucin induction by pathogens is phophotyrosine dependent, we suggest that vanadium-containing air pollutants trigger disease-like conditions by unmasking phosphorylation-dependent pathogen resistance pathways.

  2. Polyphenols as active ingredients for cosmetic products.

    PubMed

    Zillich, O V; Schweiggert-Weisz, U; Eisner, P; Kerscher, M

    2015-10-01

    Polyphenols are secondary plant metabolites with antioxidant, anti-inflammatory and anti-microbial activity. They are ubiquitously distributed in the plant kingdom; high amounts contain, for example, green tea and grape seeds. Polyphenolic extracts are attractive ingredients for cosmetics and pharmacy due to their beneficial biological properties. This review summarizes the effects of polyphenols in the context of anti-ageing activity. We have explored in vitro studies, which investigate antioxidant activity, inhibition of dermal proteases and photoprotective activity, mostly studied using dermal fibroblasts or epidermal keratinocytes cell lines. Possible negative effects of polyphenols were also discussed. Further, some physicochemical aspects, namely the possible interactions with emulsifiers and the influence of the cosmetic formulation on the skin delivery, were reported. Finally, few clinical studies, which cover the anti-ageing action of polyphenols on the skin after topical application, were reviewed.

  3. Microbial production of sensory-active miraculin.

    PubMed

    Ito, Keisuke; Asakura, Tomiko; Morita, Yuji; Nakajima, Ken-ichiro; Koizumi, Ayako; Shimizu-Ibuka, Akiko; Masuda, Katsuyoshi; Ishiguro, Masaji; Terada, Tohru; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Misaka, Takumi; Abe, Keiko

    2007-08-24

    Miraculin (MCL), a tropical fruit protein, is unique in that it has taste-modifying activity to convert sourness to sweetness, though flat in taste at neutral pH. To obtain a sufficient amount of MCL to examine the mechanism involved in this sensory event at the molecular level, we transformed Aspergillus oryzae by introducing the MCL gene. Transformants were expressed and secreted a sensory-active form of MCL yielding 2 mg/L. Recombinant MCL resembled native MCL in the secondary structure and the taste-modifying activity to generate sweetness at acidic pH. Since the observed pH-sweetness relation seemed to reflect the imidazole titration curve, suggesting that histidine residues might be involved in the taste-modifying activity. H30A and H30,60A mutants were generated using the A. oryzae-mediated expression system. Both mutants found to have lost the taste-modifying activity. The result suggests that the histidine-30 residue is important for the taste-modifying activity of MCL.

  4. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  5. Microoxic Niches within the Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase and Support Hydrogen Production under Fully Aerobic Environment1[OPEN

    PubMed Central

    Liran, Oded; Milrad, Yuval; Eilenberg, Haviva; Weiner, Iddo

    2016-01-01

    Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen. Using membrane inlet mass spectrometry, 18O2 isotope, and various inhibitors, we were able to dissect the various oxygen uptake mechanisms. We found that both chlororespiration, catalyzed by plastid terminal oxidase, and Mehler reactions, catalyzed by photosystem I and Flavodiiron proteins, significantly contribute to oxygen uptake rate. This rate is considerably enhanced with increasing light, thus forming local anaerobic niches at the proximity of the stromal face of the thylakoid membrane. Furthermore, we found that in transition to high light, the hydrogen production rate is significantly enhanced for a short duration (100 s), thus indicating that [FeFe]-hydrogenase functions as an immediate sink for surplus electrons in aerobic as well as in anaerobic environments. In summary, we show that an anaerobic locality in the chloroplast preserves [FeFe]-hydrogenase activity and supports continuous hydrogen production in air-grown microalgal cells. PMID:27443604

  6. Mutagenic activity of disinfection by-products.

    PubMed Central

    Cognet, L; Courtois, Y; Mallevialle, J

    1986-01-01

    Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditions under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level. PMID:3816721

  7. Mutagenic activity of disinfection by-products

    SciTech Connect

    Cognet, L.; Courtois, Y.; Mallevialle, J.

    1986-11-01

    Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditions under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level.

  8. Exploration of OMI Products for Air Quality Applications Through Comparisons with Models and Observations

    NASA Technical Reports Server (NTRS)

    Pickering, K. E.; Ziemke, J.; Bucsela, E.; Gleason, J.; Marufu, L.; Dickerson, R.; Mathur, R.; Davidson, P.; Duncan, B.; Bhartia, P. K.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) on board NASA s Aura satellite was launched in July 2004, and is now providing daily global observations of total column ozone, NO2, and SO2, as well as aerosol information. Algorithms have also been developed to produce daily tropospheric ozone and NO2 products. The tropospheric ozone product reported here is a tropospheric residual computed through use of Aura Microwave Limb Sounder (MLS) ozone profile data to quantify stratospheric ozone. We are investigating the applicability of OMI products for use in air quality modeling, forecasting, and analysis. These investigations include comparison of the OMI tropospheric O3 and NO2 products with global and regional models and with lower tropospheric aircraft observations. Large-scale transport of pollution seen in the OM1 tropospheric O3 data is compared with output from NASA's Global Modeling Initiative global chemistry and transport model. On the regional scale we compare the OMI tropospheric O3 and NO2 with fields from the National Oceanic and Atmospheric Administration and Environmental Protection Agency (NOAA/EPA) operational Eta/CMAQ air quality forecasting model over the eastern United States. This 12-km horizontal resolution model output is roughly of equivalent resolution to the OMI pixel data. Correlation analysis between lower tropospheric aircraft O3 profile data taken by the University of Maryland over the Mid-Atlantic States and OMI tropospheric column mean volume mixing ratio for O3 will be presented. These aircraft data are representative of the lowest 3 kilometers of the atmosphere, the region in which much of the locally-generated and regionally-transported ozone exists.

  9. Can you help create the next generation of Land Surface Air Temperature products?

    NASA Astrophysics Data System (ADS)

    Thorne, Peter; Venema, Victor

    2013-04-01

    The International Surface Temperature Initiative comprises a group of multi-disciplinary researchers constituted in 2010 with the remit of creating a suite of open, transparent Land Surface Air Temperature products suitable for meeting 21st Century science and societal needs and expectations. Since instigation significant progress has been made in the creation of an improved set of 'raw' Land Surface Air Temperature data holdings (to be released in first version in February 2013), constituting in excess of 30,000 stations many going back over a Century, and towards the creation of a rigorous benchmarking framework. What is now requested is that multiple independent groups take up the challenge of creating global and regional products from the databank and submit their algorithms to the benchmarking framework. Key here is to rigorously assess structural uncertainty - it is not sufficient to assume because one group has tackled the problem it is in any meaningful sense mission accomplished. There undoubtedly exist a myriad of issues in the raw data and it is of vital importance to see how sensitive data homogenization is to the set of processing choices independent groups will undertake. This uncertainty will almost certainly be larger at the station or regional level - yet as we move into the 21st Century it is these scales that are of increasing import to end users. It is essential that we serve the right data in the right way with the correct caveats. This can only be achieved if a sufficient number of groups take up the challenge of creating new products from the raw databank. This poster will outline progress to date in the creation of the databank and global benchmarks and outline how investigators and groups can now get involved in creating products from the databank and participate in the benchmarking exercise. Further details upon the Initiative and its aims can be found at www.surfacetemperatures.org and http://surfacetemperatures.blogspot.com/

  10. Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame

    SciTech Connect

    Shaddix, C.R.; Harrington, J.E.; Smyth, K.C. . Building and Fire Research Lab.)

    1994-12-01

    Integrated models of soot production and oxidation are based upon experimental results obtained in steady, laminar flames. For successful application of these descriptions to turbulent combustion, it is instructive to test predictions of soot concentrations against experimental measurements obtained in time-varying flowfields. This paper reports quantitative measurements of the local soot volume fraction in a co-flowing, flickering CH[sub 4]/air diffusion flame burning at atmospheric pressure. Acoustic forcing of the fuel flow rate is used to phase lock the periodic flame flicker close to the natural flicker frequency. Measurements show that soot production is four time greater for a forcing condition in which flame tip clipping occurs, compared with a steady flame burning with the same mean fuel flow velocity. The soot field in the flickering flame has been characterized using tomographic reconstruction of extinction data obtained at 632.8 nm, laser-induced incandescence (LII) images calibrated against steady CH[sub 4]/air extinction results, and vertically polarized scattering data. The LII method is found to track the soot volume fraction closely and to give better signal-to-noise than the extinction measurements in both the steady and time-varying flowfields. A Mie analysis of these results suggests that the flickering flame exhibits similar number densities but larger particle sizes that the corresponding steady flame.

  11. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.

    PubMed

    Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum

    2011-01-15

    Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes.

  12. Nanoaerosols Including Radon Decay Products in Outdoor and Indoor Air at a Suburban Site

    PubMed Central

    Smerajec, Mateja; Vaupotič, Janja

    2012-01-01

    Nanoaerosols have been monitored inside a kitchen and in the courtyard of a suburban farmhouse. Total number concentration and number size distribution (5–1000 nm) of general aerosol particles, as measured with a Grimm Aerosol SMPS+C 5.400 instrument outdoors, were mainly influenced by solar radiation and use of farming equipment, while, indoors, they were drastically changed by human activity in the kitchen. In contrast, activity concentrations of the short-lived radon decay products 218Po, 214Pb, and 214Bi, both those attached to aerosol particles and those not attached, measured with a Sarad EQF3020-2 device, did not appear to be dependent on these activities, except on opening and closing of the kitchen window. Neither did a large increase in concentration of aerosol particles smaller than 10 or 20 nm, with which the unattached radon products are associated, augment the fraction of the unattached decay products significantly. PMID:22523488

  13. What You Need to Know About the OMI NO2 Data Product for Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Celarier, E. A.; Gleason, J. F.; Bucsela, E. J.; Brinksma, E.; Veefkind, J. P.

    2007-01-01

    The standard nitrogen dioxide (NO2) data product, produced from measurements by the Ozone Monitoring Instrument (OMI), are publicly available online from the NASA GESDISC facility. Important data fields include total and tropospheric column densities, as well as collocated data for cloud fraction and cloud top height, surface albedo and snow/ice coverage, at the resolution of the OMI instrument (12 km x 26 km, at nadir). The retrieved NO2 data have been validated, principally under clear-sky conditions. The first public-release version has been available since September 2006. An improved version of the data product, which includes a number of new data fields, and improved estimates of the retrieval uncertainties will be released by the end of 2007. This talk will describe the standard NO2 data product, including details that are essential for the use of the data for air quality studies. We will also describe the principal improvements with the new version of the data product.

  14. Development of a thermal desorption-gas chromatography-mass spectrometry method for determining personal care products in air.

    PubMed

    Ramírez, Noelia; Marcé, Rosa Maria; Borrull, Francesc

    2010-06-25

    This study describes the development of a new analytical method for determining 14 personal care products (PCPs) - nine synthetic musks, four parabens and one insect repellent - in air samples. The method is based on active sampling on sorbent tubes and thermal desorption-gas chromatography-mass spectrometry analysis, and is rapid, sensitive and drastically reduces the risk of sample contamination. Three kinds of tubes and traps were tested, those filled with Tenax TA being the most suitable for this study. Method validation showed good repeatability and reproducibility, low detection limits (between 0.03 ng m(-3) for DPMI and 12.5 ng m(-3) for propyl paraben) and good linearity for all compounds. Stability during storage indicated that samples must be kept refrigerated at 4 degrees C and analysed within 1 week of collection. The applicability of the technique to real samples was tested in different indoor and outdoor atmospheres. The total PCP values for indoor air ranged from 135 ng m(-3) in a pharmacy to 2838 ng m(-3) in a hairdresser's, whereas the values for outdoor air ranged from 14 ng m(-3) for a suburban environment to 26 ng m(-3) for an urban environment. In general, the most abundant synthetic musks were galaxolide (5.9-1256 ng m(-3)), musk xylene (1.6-766 ng m(-3)) and tonalide (1.1-138 ng m(-3)). Methyl and ethyl paraben (2.4-313 ng m(-3) and 1.8-117 ng m(-3), respectively) were the most abundant parabens. Although thermal desorption methods have been widely used for determining volatile organic compounds, they are rarely used with semi-volatile compounds. This study thus demonstrates that the thermal desorption method performs well with semi-volatile compounds and, for the first time, that it can be used for determining PCPs.

  15. American Water Heater Company: Compressed Air System Optimization Project Saves Energy and Improves Production at Water Heater Plant

    SciTech Connect

    2003-11-01

    In 2001, American Water Heater Company implemented a system-level improvement project on the compressed air system that serves its manufacturing plant in Johnson City, Tennessee. The plant now operates with less compressor capacity, which has reduced its energy consumption and maintenance needs. The project's total cost was $228,000. The annual compressed air energy savings (2,345,000 kWh) and maintenance savings total $160,000, yielding a simple payback of 17 months. Furthermore, the system now supports the plant's production processes more effectively, which has improved product quality and increased production.

  16. Active PZT fibers: a commercial production process

    NASA Astrophysics Data System (ADS)

    Strock, Harold B.; Pascucci, Marina R.; Parish, Mark V.; Bent, Aaron A.; Shrout, Thomas R.

    1999-07-01

    Lead Zirconate Titanate (PZT) active fibers, from 80 to 250 micrometers in diameter, are produced for the AFOSR/DARPA funded Active Fiber Composites Consortium (AFCC) Program and commercial customers. CeraNova has developed a proprietary ceramics-based technology to produce PZT mono-filaments of the required purity, composition, straightness, and piezoelectric properties for use in active fiber composite structures. CeraNova's process begins with the extrusion of continuous lengths of mono-filament precursor fiber from a plasticized mix of PZT-5A powder. The care that must be taken to avoid mix contamination is described using illustrations form problems experiences with extruder wear and metallic contamination. Corrective actions are described and example microstructures are shown. The consequences of inadequate lead control are also shown. Sintered mono- filament mechanical strength and piezoelectric properties data approach bulk values but the validity of such a benchmark is questioned based on variable correlation with composite performance measures. Comb-like ceramic preform structures are shown that are being developed to minimize process and handling costs while maintaining the required mono-filament straightness necessary for composite fabrication. Lastly, actuation performance data are presented for composite structures fabricated and tested by Continuum Control Corporation. Free strain actuation in excess of 2000 microstrain are observed.

  17. Analysis of activated air following high yield shots in the NIF

    SciTech Connect

    Khater, Hesham; Brereton, Sandra

    2015-07-24

    During the ignition experimental campaign, the National Ignition Facility (NIF) is expected to perform shots with varying fusion yield (up to 20 MJ or 7.1 x 1018 neutrons per shot) and a maximum annual yield of 1200 MJ. A detailed MCNP model of the Target Bay (TB) and the two switchyards (SY) has been developed to estimate the post-shot radiation environment inside the facility. During D-T shots, a pulse of 14.1 MeV neutrons streaming outside the Target Chamber (TC) will activate the air present inside the TB and the argon gas inside the laser tubes. Smaller levels of activity are also generated in the SY air and in the argon portion of the SY laser beam path. The activated TB air will be mixed with fresh air from the Operations Support Building (OSB) before release through the stack. Flow of activated air from the Target Bay is controlled by the heating, ventilating, and air conditioning (HVAC) system. 16N (T1/2 = 7.13 s) dominates the radiation levels during the first minute following the shot. It is expected that 16N will decay away during the confinement time before releasing the TB air through the stack. The other major contributors are 13N (T1/2 = 9.97 min) and 41Ar (T1/2 = 1.83 h). In general a low dose rate of < 1 μSv/h is expected near the stack during the first few hours following a 20 MJ shot. Here, the amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. In the mean time, due to a very small leakage rate out of the laser tubes, the activated argon gas decays within the tubes and any resulting release to the environment is insignificant.

  18. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    , air quality warnings by Environmental Protection Agency (EPA). This talk will provide an overview of VIIRS algorithms, aerosol product validation, and examples of various applications with a discussion on the relevance of product accuracy.

  19. Increased urea synthesis and/or suppressed ammonia production in the African lungfish, Protopterus annectens, during aestivation in air or mud.

    PubMed

    Loong, Ai M; Pang, Cheryl Y M; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2008-03-01

    The objective of this study was to elucidate how the African lungfish, Protopterus annectens, ameliorated ammonia toxicity during 12 or 46 days of aestivation in air or in mud. Twelve days of aestivation in air led to significant increases in contents of urea, but not ammonia, in tissues of P. annectens. The estimated rate of urea synthesis increased 2.7-fold despite the lack of changes in the activities of hepatic ornithine-urea cycle enzymes, but there was only a minor change in the estimated rate of ammonia production. After 46 days of aestivation in air, the ammonia content in the liver decreased significantly and contents of urea in all tissues studied increased significantly, indicating that the fish shifted to a combination of increased urea synthesis (1.4-fold of the day 0 value) and decreased ammonia production (56% of the day 0 value) to defend against ammonia toxicity. By contrast, 12 days of aestivation in mud produced only minor increases in tissue urea contents, with ammonia contents remained unchanged. This was apparently achieved through decreases in urea synthesis and ammonia production (40 and 15%, respectively, of the corresponding day 0 value). Surprisingly, 46 days of aestivation in mud resulted in no changes in tissue urea contents, indicating that profound suppressions of urea synthesis and ammonia production (2.6 and 1.2%, respectively, of the corresponding day 0 value) had occurred. This is the first report on such a phenomenon, and the reduction in ammonia production was so profound that it could be the greatest reduction known among animals. Since fish aestivated in mud had relatively low blood pO(2) and muscle ATP content, they could have been exposed to hypoxia, which induced reductions in metabolic rate and ammonia production. Consequently, fish aestivating in mud had a lower dependency on increased urea synthesis to detoxify ammonia, which is energy intensive, than fish aestivating in air.

  20. Rewiring host activities for synthetic circuit production: a translation view.

    PubMed

    Avcilar-Kucukgoze, Irem; Ignatova, Zoya

    2017-01-01

    The expression of synthetic circuits in host organisms, or chassis, is a key aspect of synthetic biology. Design adjustments made for maximal production may negatively affect the central metabolism and biosynthetic activities of the chassis host. Here, we review recent attempts to modulate synthetic circuit design for optimal production and present models that precisely capture the trade-off between circuit production and chassis growth. We also present emerging concepts for full orthogonalization of synthetic productivity and its decoupling from the endogenous biosynthetic activities of the cell, opening new routes towards robust synthetic circuit expression.

  1. Comparison study of laboratory and production spray guns in film coating: effect of pattern air and nozzle diameter.

    PubMed

    Müller, Ronny; Kleinebudde, Peter

    2006-01-01

    An optimal atomization air/pattern air ratio is necessary for a good coating process. The influences of variations in pattern air and nozzle diameter on the spray characteristics, such as droplet size, droplet velocity, and spray density, are investigated by using laboratory and production Schlick spray guns, both equipped with a new antibearding cap (ABC). An increase in the pattern air results in a wider spray accompanied with a decrease in droplet size in the spray center for both spray guns. Furthermore, an increase in the pattern air leads to a reduction in spray density in the spray center and, simultaneously, to an increase in spray density at the spray rim. A variation in nozzle diameter does not influence the spray characteristics for both spray guns.

  2. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  3. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  4. An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasion.

    PubMed

    Banerjee, Avijit; Pabari, Hiten; Paolinelis, George; Thompson, Ian D; Watson, Timothy F

    2011-12-01

    Unnecessary over-preparation of carious enamel often occurs clinically during operative caries management. The working hypothesis to be investigated in this study is the potential for bio-active glass air abrasion to remove selectively only demineralised enamel in artificial enamel lesions when compared to equivalent alumina air abrasion, so potentially minimising cavity over-preparation. Bisected artificial, paired smooth surface enamel lesions on ethics-approved, extracted sound human molars were created and subsequently air abraded with 27 μm alumina (n = 19) and bio-active glass (n = 19). The difference between pre-operative lesion boundary and post-operative cavity margin was calculated following optical confocal fluorescent assessment of the lesion boundary. Data indicated mean% over-preparation (sound enamel removal) of 176% with alumina and 15.2% for bio-active glass (p = 0.005). Bio-active glass abrasion removed completely the demineralised enamel from artificial lesions with clinically insignificant over-preparation of sound tissue, indicating technique selectivity towards grossly demineralised enamel. Alumina air abrasion resulted in substantial enamel removal in both sound and demineralised tissues indicating the operator selectivity required to use the techniques effectively in clinical practice.

  5. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  6. RBSE: Product development team research activity deliverables

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GHG Functions and Extensions to be added to the NASA Electronic Library System (NELS) 1.1 product are described. These functions will implement the 'output request' capability within the Object Browser. The functions will be implemented in two parts. The first part is a code to be added to the Object Browser (X version) to implement menus allowing the user to request that objects be copied to specific media, or that objects be downloaded to the user's system following a specific protocol, or that the object be printed to one of the printers attached to the host system. The second part is shell scripts which support the various menu selections. Additional scripts to support functions within the GHG shell (X version) will also be created along with the X version of the GHG Shell as initial capability for the 27 Mar. prototype. The scripts will be composed of C shell routines that will accept parameters (primary file pathways). Certain limitations in functionality will invoke Mail instead of Oracle Mail since that has yet to be delivered and the NELS invocation will default to the X-Windows version instead of the ASCII version.

  7. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  8. A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components

    DTIC Science & Technology

    2016-01-01

    C O R P O R A T I O N Research Report A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components...Lisa M. Harrington, James H . Bigelow, Alexander Rothenberg, James Pita, Paul D. Emslie Limited Print and Electronic Distribution Rights This document...of a particular component—whether active , guard, or reserve. As a result, when personnel policies are implemented in one component, little is known

  9. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  10. Transient Plasma Induced Production of OH and its Effects on Ignition in Atmospheric CH4-AIR Quiescent Mixtures (Postprint)

    DTIC Science & Technology

    2008-01-01

    Sinibaldi, C. Brophy, J. Hoke, F. Schauer, J. Corrigan , J. Yu, E. Barbour, and R. Hanson, “Transient Plasma Ignition for Delay Reduction in Pulse Detonation...contains color. PAO Case Number: WPAFB 07-0549, 29 Nov 2007. 14. ABSTRACT Transient plasma from a 60 kV, 70 ns pulse induced OH production in air...quiescent mixtures inside a cylindrical chamber. The chamber is filled with ambient air or a CH4/dry-air mixture, and a 60 kV electrical pulse 70 ns

  11. Combined use of the air monitoring system in production and transmission of electricity

    SciTech Connect

    Jakl, F.; Bakic, K.; Valencic, L.

    1997-08-01

    The paper presents a double use of the EIS (Environmental Information System) network for scheduling of thermal electricity generation with regard to ecological conditions (air quality in the vicinity of thermal power plants), and for control of the thermal loading of important transmission lines with regard to meteorological conditions. The Slovenian ecological monitoring system was set up fifteen years ago with the task of assuring acquisition of data about air pollution in the vicinity of thermal power plants. In the meantime it has been constantly upgraded and improved. At the end of 1994 immission, emission and meteorological data started to be on-line transmitted to the National Dispatching Centre. Problems with space and restrictions encountered at the construction of new transmission lines made researchers look for solutions that would allow a greater loading of transmission lines without threatening the system reliability. A method was consequently theoretically implemented about the monitoring of the thermal loading of the most important 400 kV transmission lines supported with meteorological data obtained from the EIS measuring system. Transmission of data from EIS into the Dispatching Centre, supported with an adequate software, will facilitate efficient control of the system at consideration of ecological limitations (electricity production in thermal power plants) and at the same time a more efficient exploitation of transmission lines in view of meteorological conditions. The main idea of this paper is the use of the same meteorological system for controlling both, thermal power generation and loading of important 400 kV overhead lines.

  12. Effects of Confinement on Combustion of TNT Explosion Products in Air

    SciTech Connect

    Kuhl, A.L.; Oppenheim, A.K.; Ferguson, R.E.; Reichenback, H.; Neuwald, P.

    2000-02-05

    Turbulent combustion fields established by detonative explosions of TNT in confinements of different sizes are studied by high-resolution numerical simulation, using AMR (Adaptive Mesh Refinement) method. The chambers are filled with nitrogen or air at NPT conditions. In the second case, the detonation products, rich in C and CO, act, upon turbulent mixing with air, as fuel in an exothermic process of combustion, manifested by a distinct pressure rise. It is the evolution in space and time of this dynamic process that formed the principal focus of this study. Our results demonstrate a dominating influence of the size of the enclosure on the burning rate--an effect that cannot be expressed in terms of the classical burning speed. Under such circumstances, combustion is of considerable significance, since it is associated with a calorific value (''heat release'') of an order of 3500 Cal/gm, as compared to 1100 Cal/gm of TNT detonation. The numerical simulations provide considerable insight into the evolution of combustion fields dominated by shock-turbulence interactions. Fuel consumption histories, extracted from the simulations, reveal the dynamic features of the system, represented by the rate of combustion (akin to velocity) and its change (akin to acceleration). Time profiles of the mass fraction consumed fuel are expressed, with a remarkable accuracy, by bi-parametric life functions, whereby the trajectories of these parameters, obtained by differentiation, can be evaluated with precision commensurate with their commanding role in the identification of the dynamic nature of the system.

  13. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  14. Simulation of climate change impacts on grain sorghum production grown under free air CO2 enrichment

    NASA Astrophysics Data System (ADS)

    Fu, Tongcheng; Ko, Jonghan; Wall, Gerard W.; Pinter, Paul J.; Kimball, Bruce A.; Ottman, Michael J.; Kim, Han-Yong

    2016-07-01

    Potential impacts of climate change on grain sorghum (Sorghum bicolor) productivity were investigated using the CERES-sorghum model in the Decision Support System for Agrotechnology Transfer v4.5. The model was first calibrated for a sorghum cultivar grown in a free air CO2 enrichment experiment at the University of Arizona, Maricopa, Arizona, USA in 1998. The model was then validated with an independent dataset collected in 1999. The simulated grain yield, growth, and soil water of sorghum for the both years were in statistical agreement with the corresponding measurements, respectively. Neither simulated nor measured yields responded to elevated CO2, but both were sensitive to water supply. The validated model was then applied to simulate possible effects of climate change on sorghum grain yield and water use efficiency in western North America for the years 2080-2100. The projected CO2 fertilizer effect on grain yield was dominated by the adverse effect of projected temperature increases. Therefore, temperature appears to be a dominant driver of the global climate change influencing future sorghum productivity. These results suggest that an increase in water demand for sorghum production should be anticipated in a future high-CO2 world.

  15. Microbiological detection of bacteria in animal products seized in baggage of international air passengers to Brazil.

    PubMed

    de Melo, Cristiano Barros; de Sá, Marcos Eielson Pinheiro; Sabino, Valéria Mourão; de Fatima Boechat-Fernandes, Maria; Santiago, Marco Túlio; Schwingel, Fábio Fraga; Freitas, Cleverson; Magioli, Carlos Alberto; Cabral-Pinto, Sergio; McManus, Concepta; Seixas, Luiza

    2015-01-01

    Airline travel favours the transmission of diseases, given the short time it takes to travel long distances. In this study, animal products without health certificates seized in international air passengers' baggage at Guarulhos (GRU) and Galeão (GIG) airports in Brazil underwent a microbiological evaluation. Analyses (1610) were carried out on 322 seizures to test for the presence of total and thermotolerant coliforms, as well as Staphylococcus aureus counts and the presence of Listeria monocytogenes and Salmonella. Most seizures analysed showed coliform contamination and coliforms were present above acceptable limits in 83.4% (40/48) of the products that had some type of contamination. The second most prevalent microorganism found was L. monocytogenes in 22.9% (11/48) and S. aureus was cultivated in 14.58% (7/48) of seizures. Among the items seized in the present work, Salmonella was found in one seizure of pig sausage. Contamination of animal products with microbiological pathogens of importance to public health and indicators of the bad quality of the food were shown in the present study.

  16. Kupffer Cell Activation by Ambient Air Particulate Matter Exposure May Exacerbate Non-alcoholic Fatty Liver Disease

    PubMed Central

    Tan, Hui-Hui; Fiel, M. Isabel; Sun, Qinghua; Guo, Jinsheng; Gordon, Ronald E.; Chen, Lung-Chi; Friedman, Scott L.; Odin, Joseph A.; Allina, Jorge

    2009-01-01

    Due to increased obesity, non-alcoholic fatty liver disease (NAFLD) is now the most prevalent liver disease in the United States. NAFLD is considered a component of metabolic syndrome, a cluster of disorders that also includes diabetes mellitus, dyslipidemia, arteriosclerosis, and hypertension. Exposure to ambient air particulate matter with aerodynamic diameters < 2.5 µm (PM2.5) is a risk factor for arteriosclerosis as well as lung disease, but its effect on NAFLD is unknown. PM2.5 induces pulmonary dysfunction via toll-like receptor activation on alveolar macrophages. Toll-like receptor activation of Kupffer cells, resident hepatic macrophages, and subsequent pro-inflammatory cytokine production have been shown to play a key role in NAFLD progression. We hypothesized that PM2.5 exposure is a significant risk factor for progression of NAFLD. Thus, following exposure of male C57BL/6 mice fed high fat chow to concentrated air particulate matter (CAPs) or filtered air for 6 wk, progression of NAFLD was evaluated by standardized histological assessment of hepatic inflammation and fibrosis. In mice fed high fat chow, the hepatic inflammatory grade (3.00 ± 0.00 vs. 1.50 ± 0.71, p < 0.001) and fibrosis stage (1.00 ± 0.00 vs. 0.60 ± 0.52, p = 0.023) were both significantly higher in mice exposed to CAPs versus filtered air, respectively. Increased numbers of Kupffer cells contained PM in CAPs-exposed mice (2.00 ± 0.94 vs. 0.20 ± 0.42, respectively, p < 0.001). PM exposure increased IL-6 secretion up to seven fold in a dose-dependent manner by isolated wild-type but not TLR4−/− Kupffer cells (p < 0.050). Conclusion: Ambient PM2.5 exposure may be a significant risk factor for NAFLD progression. PMID:19908945

  17. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    PubMed

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases.

  18. Unit for combustion of process exhaust gas and production of hot air

    SciTech Connect

    Andersson, J.O.; Eriksson, T.L.; Nystrom, O.

    1982-12-07

    Unit for thermal incineration of non-explosive gases with minor amounts of organic pollutants and for production of hot air, and which can be adapted to various types of supplementary fuel. There is a combustion chamber which consists of a flame pipe inside an outer jacket. Through the space therebetween, incoming process gas is led as coolant. At its front end, the combustion chamber has a burner for supplementary fuel and a mixing-in zone for process gas. The process gas rapidly mixes with the hot combustion gases in the flame, the gas reaching its reaction temperature directly. Powerful turbulence in the mixing-in zone gas, film-layer cooling, convective cooling and even flow give highly efficient and pure combustion while keeping the flame pipe temperature low enough to prevent corrosion.

  19. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D'Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-08-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment.

  20. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    PubMed Central

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-01-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment. PMID:26244712

  1. Emissions of air toxics from the production of charcoal in a simulated Missouri charcoal kiln

    SciTech Connect

    Lemieux, P.M.; Kariher, P.H.; Fairless, B.J.; Tapp, J.A.

    1998-11-01

    The paper gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutant from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In addition, other pollutants, including methanol, volatile organic compounds, semivolatile organic compounds, and particle emission rates and size distributions were measured using various techniques. Emissions of all pollutants are reported in grams emitted per unit mass of initial wood converted to charcoal. Two burn conditions--slow and fast burn--were examined. High levels of methanol, benzene, and fine particulate were emitted from all tests. The estimated emissions from the fast burn conditions were significantly higher than those from the slow burn conditions.

  2. Comparisons of Ship-based Observations of Air-Sea Energy Budgets with Gridded Flux Products

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Blomquist, B.

    2015-12-01

    Air-surface interactions are characterized directly by the fluxes of momentum, heat, moisture, trace gases, and particles near the interface. In the last 20 years advances in observation technologies have greatly expanded the database of high-quality direct (covariance) turbulent flux and irradiance observations from research vessels. In this paper, we will summarize observations from the NOAA sea-going flux system from participation in various field programs executed since 1999 and discuss comparisons with several gridded flux products. We will focus on comparisons of turbulent heat fluxes and solar and IR radiative fluxes. The comparisons are done for observing programs in the equatorial Pacific and Indian Oceans and SE subtropical Pacific.

  3. A novel technique for active fibre production

    NASA Astrophysics Data System (ADS)

    Renner-Erny, Ruth; Di Labio, Loredana; Lüthy, Willy

    2007-04-01

    Active fibre devices are conventionally manufactured using MCVD technique. Recently it has been shown that nearly equivalent results can also be obtained with sol-gel technology. Now we present a novel technique allowing simplification of the manufacturing process even more. The required constituents are mixed in the form of dry micro- and nano-sized particles. A silica glass tube forming the future core region of a fibre preform is filled with a powder mix of SiO 2, 1% Nd (as Nd 2O 3) and 10% Al (as Al 2O 3). This tube is mounted in the centre of a larger tube forming the future cladding. The empty space between the two tubes is filled with SiO 2 powder. After preheating, the evacuated preform is drawn to a fibre. A length of 45 cm, cladding-pumped with a diode laser at 808 nm as well as a core-pumped fibre of 5.1 cm length showed laser action between 1.05 and 1.1 μm.

  4. Elemental analysis of combustion products by neutron activation

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification. (DLC)

  5. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  6. Isocoumarins, miraculous natural products blessed with diverse pharmacological activities.

    PubMed

    Saeed, Aamer

    2016-06-30

    Isocoumarins are lactonic natural products abundant in microbes and higher plants. These are considered an amazing scaffold consecrated with more or less all types of pharmacological applications. This review is complementary to the earlier reviews and aims to focus the overlooked aspects of their fascinating chemistry with special emphasis on their classification and diverse biological activities with some SAR conclusions. The most recent available literature on the structural diversity and biological activity of these natural products has been reviewed.

  7. Validation and Verification of the Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Astrophysics Data System (ADS)

    Shaw, M.; Kumar, S.; Peters-Lidard, C. D.; Cetola, J.

    2011-12-01

    The importance of operational benchmarking and uncertainty characterization of land surface modeling can be clear upon considering the wide range of performance characteristics of numerical land surface models realizable through various combinations of factors. Such factors might include model physics and numerics, resolution, and forcing datasets used in operational implementation versus those that might have been involved in any prior development benchmarking. Of course, decisions concerning operational implementation may be better informed through more effective benchmarking of performance under various blends of such aforementioned operational factors. To facilitate this and other needs for land analysis activities at the Air Force Weather Agency (AFWA), the Model Evaluation Toolkit (MET) - a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community - and the land information system (LIS) Verification Toolkit (LVT) - developed at the Goddard Space Flight Center (GSFC) - have been adapted to the operational benchmarking needs of AFWA's land characterization activities in order to compare the performance of new land modeling and related activities with that of previous activities as well as observational or analyzed datasets. In this talk, three examples of adaptations of MET and LVT to evaluation of LIS-related operations at AFWA will be presented. One example will include comparisons of new surface rainfall analysis capabilities, towards forcing of AFWA's LIS, with previous capabilities. Comparisons will be relative to retrieval-, model-, and measurement-based precipitation fields. Results generated via MET's grid-stat, neighborhood, wavelet, and object based evaluation (MODE) utilities adapted to AFWA's needs will be discussed. This example will be framed in the context of better informing optimal blends of land surface model (LSM) forcing data sources - namely precipitation data- under

  8. Biofiltration of benzene contaminated air streams using compost-activated carbon filter media

    SciTech Connect

    Zhu, L.; Kocher, W.M.; Abumaizar, R.J.

    1998-12-31

    Three laboratory-scale biofilter columns were operated for 81 days to investigate the removal of benzene from a waste gas stream. The columns contain a mixture of yard waste and sludge compost as biomedia. Different amounts of granular activated carbon (GAC) are mixed with the compost in two of the three columns to evaluate the extent to which biofilter performance can be enhanced. The effects of different operating conditions on the performance of the removal of benzene from air were evaluated. More than 90% removal efficiency was observed for an influent benzene concentration of about 75 ppm and an air flow rate of 0.3 L/min. in all 3 columns under steady-state conditions. Under most cases of shock loading conditions, such as a sudden increase in the air flow rate, or the benzene concentration in the influent, the biofilters containing GAC provided higher removal efficiencies and more stable operation than the biofilter containing compost only.

  9. 38 CFR 3.7 - Individuals and groups considered to have performed active military, naval, or air service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... considered to have performed active military, naval, or air service. 3.7 Section 3.7 Pensions, Bonuses, and... Indemnity Compensation General § 3.7 Individuals and groups considered to have performed active military, naval, or air service. The following individuals and groups are considered to have performed...

  10. 38 CFR 3.7 - Individuals and groups considered to have performed active military, naval, or air service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... considered to have performed active military, naval, or air service. 3.7 Section 3.7 Pensions, Bonuses, and... Indemnity Compensation General § 3.7 Individuals and groups considered to have performed active military, naval, or air service. The following individuals and groups are considered to have performed...

  11. 38 CFR 3.7 - Individuals and groups considered to have performed active military, naval, or air service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... considered to have performed active military, naval, or air service. 3.7 Section 3.7 Pensions, Bonuses, and... Indemnity Compensation General § 3.7 Individuals and groups considered to have performed active military, naval, or air service. The following individuals and groups are considered to have performed...

  12. 38 CFR 3.7 - Individuals and groups considered to have performed active military, naval, or air service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... considered to have performed active military, naval, or air service. 3.7 Section 3.7 Pensions, Bonuses, and... Indemnity Compensation General § 3.7 Individuals and groups considered to have performed active military, naval, or air service. The following individuals and groups are considered to have performed...

  13. 38 CFR 3.7 - Individuals and groups considered to have performed active military, naval, or air service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... considered to have performed active military, naval, or air service. 3.7 Section 3.7 Pensions, Bonuses, and... Indemnity Compensation General § 3.7 Individuals and groups considered to have performed active military... military, naval, or air service: (a) Aerial transportation of mail (Pub. L. 140, 73d Congress). Persons...

  14. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  15. Which Words Are Activated during Bilingual Word Production?

    ERIC Educational Resources Information Center

    Colome, Angels; Miozzo, Michele

    2010-01-01

    Whether words are or are not activated within the lexicon of the nonused language is an important question for accounts of bilingual word production. Prior studies have not led to conclusive results, either because alternative accounts could be proposed for their findings or because activation could have been artificially induced by the…

  16. [Cytogenetic activity of the butylcaptax defoliant transformation product].

    PubMed

    Vesmanova, O Ia; Semykina, E E; Koblov, R K; Ergashev

    1989-01-01

    Cytogenetical activity of the product of metabolitic butylcaptax transformations in cells of cotton plants G. barbadense has been studied. It is shown that butylcaptax, with a significant mutagenicity, looses its mutagenic activity, metabolizing in low mutagenic 2-oxyamylthiobenzthiazole. Low water solubility prevents its concentration to exceed 0.005% in tissue liquids and to exert a mutagenic action on cotton plants.

  17. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  18. A Stable, Magnetic, and Metallic Li3O4 Compound as a Discharge Product in a Li-Air Battery.

    PubMed

    Yang, Guochun; Wang, Yanchao; Ma, Yanming

    2014-08-07

    The Li-air battery with the specific energy exceeding that of a Li ion battery has been aimed as the next-generation battery. The improvement of the performance of the Li-air battery needs a full resolution of the actual discharge products. Li2O2 has been long recognized as the main discharge product, with which, however, there are obvious failures on the understanding of various experimental observations (e.g., magnetism, oxygen K-edge spectrum, etc.) on discharge products. There is a possibility of the existence of other Li-O compounds unknown thus far. Here, a hitherto unknown Li3O4 compound as a discharge product of the Li-air battery was predicted through first-principles swarm structure searching calculations. The new compound has a unique structure featuring the mixture of superoxide O2(-) and peroxide O2(2-), the first such example in the Li-O system. The existence of superoxide O2(-) creates magnetism and hole-doped metallicity. Findings of Li3O4 gave rise to direct explanations of the unresolved experimental magnetism, triple peaks of oxygen K-edge spectra, and the Raman peak at 1125 cm(-1) of the discharge products. Our work enables an opportunity for the performance of capacity, charge overpotential, and round-trip efficiency of the Li-air battery.

  19. Milk kefir: composition, microbial cultures, biological activities, and related products

    PubMed Central

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R.; Thomaz-Soccol, Vanete; Soccol, Carlos R.

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  20. Compressed Air System Optimization Improves Production and saves energy at a Satellite Manufacturer

    SciTech Connect

    2002-05-01

    In 2001, a compressed air improvement project was implemented following an audit on the compressed air system at Boeing Satellite Systems (formerly Hughes Space & Communications Company) in Los Angeles, California.

  1. RADIOLOGICAL RELEASES DUE TO AIR AND SILICA DUST ACTIVATION IN EMPLACEMENT DRIFTS

    SciTech Connect

    J.S. Tang

    2003-05-07

    The purpose of this calculation is to determine the quantity and significance of annual Monitored Geologic Repository (MGR) subsurface normal radiological releases due to neutron activation of air and silica dust in emplacement drifts. This calculation includes the following items: (1) Calculate activation of ventilation airflow through emplacement drifts to quantify radioactive gaseous releases; and (2) Calculate the bounding potential activated silica dust concentration and releases. The sources of silica dust may arise from air supply to emplacement drifts as well as host rock around emplacement drifts. For this calculation, the source of dust is conservatively assumed to be the host rock (Assumption 3.6), which is subject to long-term neutron exposure resulting in saturated radioactivity. The scope of this calculation is limited to releases from activated air and silica dust only, excluding natural radioactive releases such as radon or releases from defective waste packages (breached or contaminated). This work supports the repository ventilation system design and Preclosure Safety Analysis. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Waste Package (CRWMS M&O [Civilian Radioactive Waste Management and Operation Contractor] 1999a, page 7). Therefore, this calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE [U.S. Department of Energy] 2003). The performance of the calculation and development of this document are carried out in accordance with AP-3.12Q, ''Design Calculation and Analyses'' and LP-3.30Q-BSC, ''Hazards Analysis System''.

  2. Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Pekárek, Stanislav; Mikeš, Jan

    2014-10-01

    Discharge ozone production depends on different quantities and the effect of one quantity on this process cannot be separated from the effects of other quantities. Thus the temperature influences the reaction rates of individual reactions involved in ozone generation and destruction, the thermodynamic properties, and the density of the feeding gas. The density of the feeding gas influences the reduced electric field, which affects ionization of the gas, production of electrons and consequently the electrical parameters of the discharge. Taking into account these considerations we investigated the effect of temperature and various arrangements of the input and output of the feeding gas to and from the discharge chamber together with related changes of electrical parameters of the surface dielectric barrier discharge on its ozone production for the temperatures in which commercial ozone generators function. We found that if the temperature of air at the output from the discharge chamber is increased from 15.0 ± 0.5 to 25.0 ± 0.5 °C, the discharge ozone production and peak discharge voltage decrease. Both the discharge ozone production and the peak discharge voltage are also affected by the way in which the feeding air is supplied to and leaves the discharge chamber. We also showed that for all ways in which the feeding air is supplied to and leaves the discharge chamber the discharge nitrogen dioxide production follows the same trends as discharge ozone production.

  3. The Utility of the OMI HCHO/NO2 in Air Quality Decision-Making Activities

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan

    2010-01-01

    I will discuss a novel and practical application of the OMI HCHU and NO2 data products to the "weight of evidence" in the air quality decision-making process (e.g., State Implementation Plan (SIP)) for a city, region, or state to demonstrate that it is making progress toward attainment of the National Ambient Air Quality Standard (NAAQS) for ozone. Any trend, or lack thereof, in the observed OMI HCHO/NO2 may support that an emission control strategy implemented to reduce ozone is or is not occurring for a metropolitan area. In addition, the observed OMI HCHO/NO2 may be used to define new emission control strategies as the photochemical environments of urban areas evolve over time. I will demonstrate the utility of the OMI HCHO/NO2 over the U.S. for air quality applications with support from simulations with both a regional model and a photochemical box model. These results support mission planning of an OMI-like instrument for the proposed GEO-CAPE satellite that has as one of its objectives to study air quality from space. However, I'm attending the meeting as the Aura Deputy Project Scientist, so I don't technically need to present anything to justify the travel.

  4. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.

    PubMed

    Tardif, Robert; Catto, Cyril; Haddad, Sami; Simard, Sabrina; Rodriguez, Manuel

    2016-07-01

    This study was aimed at assessing the profiles (occurrence and speciation) of disinfection by-product (DBP) contamination in air and water of a group of 41 public indoor swimming pools in Québec (Canada). The contaminants measured in the water included the traditional DBPs [i.e., four trihalomethanes (THMs), six haloacetic acids (HAAs)] but also several emergent DBPs [i.e., halonitriles, halonitromethanes, haloketones and nitrosodimethylamine (NDMA)]. Those measured in the air comprised THMs and chloramines (CAMs). Overall, extremely variable DBP levels were found from one pool to another (both quantitatively and in terms of speciation). For instance, in water, among the four THMs, chloroform was usually the most abundant compound (37.9±25.7µg/L). Nevertheless, the sum of the three other brominated THMs represented more than 25% of total THMs at almost half the facilities visited (19 cases). In 13 of them, the levels of brominated THMs (66±24.2µg/L) even greatly outweighed the levels of chloroform (15.2±6.31µg/L). Much higher levels of HAAs (294.8±157.6µg/L) were observed, with a consistent preponderance of brominated HAAs in the swimming pools with more brominated THMs. NDMA levels which were measured in a subset of 8 pools ranged between 2.8ng/L and 105ng/L. With respect to air, chloroform was still the most abundant THM globally (119.4±74.2µg/m(3)) but significant levels of brominated THMs were also observed in various cases, particularly in the previously evoked group of 13 swimming pools with preponderant levels of brominated THMs in water. CAM levels (0.23±0.15mg/m(3)) varied highly, ranging from not detected to 0.56mg/m(3). Overall, the levels were generally relatively high compared to current guidelines or reference values from several countries, and they point to a relatively atypical presence of brominated compounds, and to significant levels of emergent DBPs for which health risk is less documented.

  5. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    PubMed

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  6. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  7. Enriching step-based product information models to support product life-cycle activities

    NASA Astrophysics Data System (ADS)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  8. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    NASA Astrophysics Data System (ADS)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  9. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  10. Bacterial cinnamoyl esterase activity screening for the production of a novel functional food product.

    PubMed

    Guglielmetti, Simone; De Noni, Ivano; Caracciolo, Federica; Molinari, Francesco; Parini, Carlo; Mora, Diego

    2008-02-01

    Lactobacillus helveticus MIMLh5 was selected for its strong cinnamoyl esterase activity on chlorogenic acid and employed for the preparation of a food product containing a high concentration of free caffeic acid. The novel food product was demonstrated to display high total antioxidant power and potential probiotic properties.

  11. Novel condensation products having high activity to insolubilize proteins and protein-insolubilized products

    SciTech Connect

    Krasnobajew, V.; Boeniger, R.

    1980-01-01

    According to the invention a substantially more active product with respect to the fixing or insolubilization pf proteins, including enzymes, is obtained when 1,3 phenylenediamine is condensed with glutardialdehyde. One application of the process is the enzymatic hydrolysis of lactose in milk products by lactase.

  12. Meteorological conditions are associated with physical activities performed in open-air settings

    NASA Astrophysics Data System (ADS)

    Suminski, Richard R.; Poston, Walker C.; Market, Patrick; Hyder, Melissa; Sara, Pyle A.

    2008-01-01

    Meteorological conditions (MC) are believed to modify physical activity. However, studies in this area are limited and none have looked at the associations between MC and physical activity in open-air settings. Therefore, we examined the relationships between MC and physical activities performed on sidewalks/streets and outdoor oval tracks. Observation techniques were used to count individuals walking to school, exercising on oval tracks and walking/jogging/biking on sidewalks/streets. Meteorological conditions were obtained from an Automated Surface Observing System located at a nearby airport for the same time periods physical activities were observed. On weekdays, fewer children were seen walking to school and more bicyclists were observed on sidewalks/streets as wind speed increased ( p < 0.05). Ambient and apparent temperatures were positively ( p < 0.05) and humidity and barometric pressure negatively ( p < 0.005) related to the number of individuals walking on the track. Meteorological conditions were not significantly associated with physical activities observed on weekends. Multiple linear regression analyses showed that apparent temperature (+), barometric pressure (-) and dew point (-) accounted for 58.0% of the variance in the number of walkers on the track. A significant proportion of the variance (>30%) in the number of joggers and the length of time they jogged was accounted for by apparent temperature (+) and dew point (-). We found that meteorological conditions are related to physical activity in open-air settings. The results embellish the context in which environmental-physical activity relationships should be interpreted and provide important information for researchers applying the observation method in open-air settings.

  13. A mechanistic study of limonene oxidation products and pathways following cleaning activities

    NASA Astrophysics Data System (ADS)

    Carslaw, Nicola

    2013-12-01

    Indoor air pollution has caused increasing concern since the 1970s, when the advent of stricter energy efficiency measures lead to increased reports of building related symptoms. Cleaning activities have been linked to adverse health effects indoors, although it is unclear which of the components of cleaning products cause these reported health effects. This paper uses a detailed chemical model for indoor air chemistry, to identify the species formed at the highest concentrations following use of a limonene-based cleaning product. The explicit nature of the chemical mechanism also permits the key pathways to their formation to be identified. The results show that the key species in terms of gas-phase concentration are multi-functional carbonyl species including limonaldehyde, 4-acetyl-1-methyl-1-cyclohexene and other dicarbonyl species. The particle-phase was dominated by peroxide species. The predicted gas-phase concentrations for three limonene-oxidation products were compared to recently published human reference values, but found not to be high enough to cause concern for typical indoor conditions, or under high indoor ozone conditions. However, cleaning products contain a range of terpenes other than limonene, which could also produce some of the secondary products identified here, as well as more common species such as formaldehyde, glyoxal and hydrogen peroxide. A mechanistic pathway analysis shows that the secondary products formed through limonene oxidation indoors depend critically on the competition between ozone and hydroxyl radicals, such that indoor pollutant concentrations and composition could vary widely in different locations for a nominally similar residence and indoor activities. Future studies should focus on aiming to measure multi-functional carbonyl species indoors to help validate models, whilst human reference values are needed for many more relevant species indoors.

  14. Ambient air concentration of sulfur dioxide affects flight activity in bees

    SciTech Connect

    Ginevan, M.E.; Lane, D.D.; Greenberg, L.

    1980-10-01

    Three long-term (16 to 29 days) low-level (0.14 to 0.28 ppM) sulfur dioxide fumigations showed that exposure tothis gas has deleterious effects on male sweat bees (Lasioglossum zephrum). Although effects on mortality were equivocal, flight activity was definitely reduced. Because flight is necessary for successful mating behavior, the results suggest that sulfur dioxide air pollution could adversely affect this and doubtless other terrestrial insects.

  15. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds during Production of Stop Consonants: New Evidence of Aeromechanical Regulation.

    ERIC Educational Resources Information Center

    Zajac, David J.; Weissler, Mark C.

    2004-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults…

  16. Charged fusion product loss measurements using nuclear activation

    SciTech Connect

    Bonheure, G.; Hult, M.; Gonzalez de Orduna, R.; Wieslander, E.; Arnold, D.; Dombrowski, H.; Laubenstein, M.; Murari, A.; Collaboration: JET-EFDA Contributors

    2010-10-15

    In ITER, {alpha} particle loss measurements will be required in order to understand the alpha particle physics. Techniques capable of operating in a fusion reactor environment need further development. Recent experimental studies on JET demonstrated the potential of nuclear activation to measure the flux of escaping MeV ions. New results from MeV ion induced activation of metallic, ceramic, and crystal samples placed near the plasma edge are reported. Activation products were measured as function of orientation with respect to the magnetic field as well as function of the distance to the plasma. Sample activity was measured using ultralow-level gamma-ray spectrometry. Distribution of 14.68 MeV fusion proton induced activation products is strongly anisotropic in agreement with simulations and falls off sharply with increasing distance to the plasma. Prospects for using the technique in ITER are discussed.

  17. Enhanced production of prostaglandins and plasminogen activator during activation of human articular chondrocytes by products of mononuclear cells.

    PubMed

    Meats, J E; McGuire, M K; Ebsworth, N M; Englis, D J; Russell, R G

    1984-01-01

    We have examined the way in which products of cultured human blood mononuclear cells activate human articular chondrocytes. Conditioned medium from mononuclear cells enhanced the production of prostaglandin E by cultured human chondrocytes and also stimulated fibrinolytic activity in these cultures. These two effects may be interrelated, since the increased fibrinolysis in response to products of mononuclear cells was partially inhibited by indomethacin, an inhibitor of prostaglandin biosynthesis. The increased fibrinolysis is probably attributable to plasminogen activator, since it was strongly dependent on the presence of plasminogen. Increased amounts of PGE and chondroitin sulphate were also released from intact fragments of cartilage exposed to medium from cultured mononuclear cells. The time course and dose dependence of these effects were studied. The addition of exogenous arachidonic acid markedly enhanced production of PGE2. Ultrogel AcA54 was used to fractionate medium from cultured mononuclear cells and the chondrocyte-stimulating activity eluted with an apparent molecular weight between 12 000 and 25 000 daltons. Adherent and non-adherent mononuclear blood cells were also partially separated and conditioned medium from each was assayed for chondrocyte-stimulating factors. Both populations released factor(s) which increased the production of prostaglandin E by chondrocytes, but more activity came from the adherent mononuclear cells. The possible interrelationship between the chondrocyte activating factor studied here and others described in the literature is discussed.

  18. Production of activated carbon from rice husk Vietnam

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  19. Air pollution/working activity correlation: a case study in a dental hospital.

    PubMed

    Santarsiero, Anna; Fuselli, Sergio; Morlino, Roberta; Minniti, Gianluca; De Felice, Marco; Ortolani, Emanuela

    2011-02-01

    The paper deals with a multidimensional approach demonstrating a direct link between the entity of ongoing dentistry activity (number and kind of interventions) and specific pollution components. Simultaneously indoor/outdoor air concentrations of a set of volatile organic compounds (VOCs) and activity variables, describing the amount and nature of ongoing dentistry activities, were monitored over a year at a dental hospital located in an urban area. Principal Component Analysis (PCA) was used to single out mutually orthogonal pollution components which were then correlated to "pathology" factors arising from the analysis of dentistry activity indexes. The use of a multidimensional perspective allowed us to obtain a statistically significant model of the link between level of pollution and dentistry activity. In particular, the correlation approach linking pollution results to pathological variables allows us to establish a causative link even in the presence of sub-threshold concentrations of pollutants.

  20. Review of the anticancer activities of bee products

    PubMed Central

    Premratanachai, Pongsathon; Chanchao, Chanpen

    2014-01-01

    Bee products have long been used in traditional medicine. The raw materials, crude extracts and purified active compounds from them have been found to exhibit interesting bioactivities, such as antimicrobial, anti-inflammatory and antioxidant activities. In addition, they have been widely used in the treatment of many immune-related diseases, as well as in recent times in the treatment of tumors. Bee product peptides induce apoptotic cell death in vitro in several transformed (cancer) human cell lines, including those derived from renal, lung, liver, prostate, bladder and lymphoid cancers. These bioactive natural products may, therefore, prove to be useful as part of a novel targeted therapy for some types of cancer, such as prostate and breast cancer. This review summarizes the current knowledge regarding the in vivo and in vitro potential of selective bee products against tumor cells. PMID:25182716

  1. Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues.

    PubMed

    Kourti, Ioanna; Rani, D Amutha; Deegan, D; Boccaccini, A R; Cheeseman, C R

    2010-04-15

    Air pollution control (APC) residues are the hazardous waste produced from cleaning gaseous emissions at energy-from-waste (EfW) facilities processing municipal solid waste (MSW). APC residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium alumino-silicate glass. This research has investigated the optimisation and properties of geopolymers prepared from this glass. Work has shown that high strength geopolymers can be formed and that the NaOH concentration of the activating solution significantly affects the properties. The broad particle size distribution of the APC residue glass used in these experiments results in a microstructure that contains unreacted glass particles included within a geopolymer binder phase. The high calcium content of APC residues may cause the formation of some amorphous calcium silicate hydrate (C-S-H) gel. A mix prepared with S/L=3.4, Si/Al=2.6 and [NaOH]=6M in the activating solution, produced high strength geopolymers with compressive strengths of approximately 130 MPa. This material had high density (2070 kg/m(3)) and low porosity. The research demonstrates for the first time that glass derived from DC plasma treatment of APC residues can be used to form high strength geopolymer-glass composites that have potential for use in a range of applications.

  2. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  3. Indoor environmental and air quality characteristics, building-related health symptoms, and worker productivity in a federal government building complex.

    PubMed

    Lukcso, David; Guidotti, Tee Lamont; Franklin, Donald E; Burt, Allan

    2016-01-01

    Building Health Sciences, Inc. (BHS), investigated environmental conditions by many modalities in 71 discreet areas of 12 buildings in a government building complex that had experienced persistent occupant complaints despite correction of deficiencies following a prior survey. An online health survey was completed by 7,637 building occupants (49% response rate), a subset of whom voluntarily wore personal sampling apparatus and underwent medical evaluation. Building environmental measures were within current standards and guidelines, with few outliers. Four environmental factors were consistently associated with group-level building-related health complaints: physical comfort/discomfort, odor, job stress, and glare. Several other factors were frequently commented on by participants, including cleanliness, renovation and construction activities, and noise. Low relative humidity was significantly associated with lower respiratory and "sick building syndrome"-type symptoms. No other environmental conditions (including formaldehyde, PM10 [particulate matter with an aerodynamic diameter <10 μm], or mold levels, which were tested by 7 parameters) correlated directly with individual health symptoms. Indicators of atopy or allergy (sinusitis, allergies, and asthma), when present singly, in combinations of 2 conditions, or together, were hierarchically associated with the following: increased absence, increased presenteeism (presence at work but at reduced capacity), and increase in reported symptom-days, including symptoms not related to respiratory disease. We found that in buildings without unusual hazards and with environmental and air quality indicators within the range of acceptable indoor air quality standards, there is an identifiable population of occupants with a high prevalence of asthma and allergic disease who disproportionately report discomfort and lost productivity due to symptoms and that in "normal" buildings these outcome indicators are more closely

  4. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  5. Production of Enzymatically Active Human Acetylcholinesterase in E. Coli

    DTIC Science & Technology

    1993-10-01

    AD-A282 703 lE1l1lm11I AD( CONTRACT NO: DAMD17-90-C-0107 TITLE: PRODUCTION OF ENZYMATICALLY ACTIVE HUMAN ACETYLCHOLINESTERASE IN E . COLI PRINCIPAL...FUNDING NUMBERS Production of Enzymatically Active Human Contract No. Acetylcholinesterase in E . coli DAMD17-90-C-0107 6. AUTHOR(S) M. Gorecki, Ph.D. and M...S493pMFL-52Ser - Run #1 37 Table 8: Summary of reconstitution and purification of rhAChE derived from E . coli S493pMFL-52Ser - Run #2 38 Table 9

  6. Co-activation of syntax in bilingual language production.

    PubMed

    Hatzidaki, Anna; Branigan, Holly P; Pickering, Martin J

    2011-03-01

    We report four experiments that examined whether bilinguals' production of one language is affected by the syntactic properties of their other language. Greek-English and English-Greek highly proficient fluent bilinguals produced sentence completions following subject nouns whose translation had either the same or different number. We manipulated whether participants produced completions in the same language as the subject (the source language; one-language production) or the other language (the non-source language; two-language production), and whether they used only one language or both languages within the experimental session. The results demonstrated that the grammar systems of both languages were activated during both one-language and two-language production. The effects of the non-source language were particularly enhanced in two-language utterances, when both languages were used in the experiment, and when it was the bilinguals' native language. We interpret our results in terms of a model of bilingual sentence production.

  7. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  8. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    PubMed Central

    Rostami, Ali A.; Pithawalla, Yezdi B.; Liu, Jianmin; Oldham, Michael J.; Wagner, Karl A.; Frost-Pineda, Kimberly; Sarkar, Mohamadi A.

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  9. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.

    PubMed

    Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari

    2016-01-01

    This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge.

  10. Effects of Outdoor Air Pollutants on Platelet Activation in People with Type 2 Diabetes

    PubMed Central

    Frampton, Mark W.; Bausch, Jan; Chalupa, David; Hopke, Philip K.; Little, Erika L.; Oakes, David; Stewart, Judith C.; Utell, Mark J.

    2013-01-01

    Exposure to air pollution is associated with increased morbidity and mortality from cardiovascular disease. We hypothesized that increases in exposure to ambient air pollution are associated with platelet activation and formation of circulating tissue-factor-expressing microparticles. We studied 19 subjects with type 2 diabetes, without clinical evidence of cardiovascular disease, who had previously participated in a human clinical study of exposure to ultrafine particles (UFP). Blood was obtained for measurements of platelet activation following an overnight stay in the Clinical Research Center, prior to each of their two pre-exposure visits. Air pollution and meteorological data, including UFP counts, were analyzed for the 5 days prior to the subjects’ arrival at the Clinical Research Center. Contrary to expectations, increases in UFP were associated with decreases in surface expression of platelet activation markers. The number of platelet-leukocyte conjugates decreased by −80 (95% confidence interval (CI) −123 to −37, p=0.001) on the first lag day (20–44 hours prior to the blood draw) and by −85 (CI −139 to −31, p=0.005) on combined lag days 1 to 5, per interquartile range (IQR) increase in UFP particle number (2482). However, levels of soluble CD40L increased 104 (CI 3 to 205, p=0.04) pg/ml per IQR increase in UFP on lag day 1, a finding consistent with prior platelet activation. We speculate that, in people with diabetes, exposure to UFP activates circulating platelets within hours of exposure, followed by an increase in soluble CD40L and a rebound reduction in circulating platelet surface markers. PMID:23033996

  11. Effects of outdoor air pollutants on platelet activation in people with type 2 diabetes.

    PubMed

    Frampton, Mark W; Bausch, Jan; Chalupa, David; Hopke, Philip K; Little, Erika L; Oakes, David; Stewart, Judith C; Utell, Mark J

    2012-10-01

    Exposure to air pollution is associated with increased morbidity and mortality from cardiovascular disease. We hypothesized that increases in exposure to ambient air pollution are associated with platelet activation and formation of circulating tissue factor-expressing microparticles. We studied 19 subjects with type 2 diabetes, without clinical evidence of cardiovascular disease, who had previously participated in a human clinical study of exposure to ultrafine particles (UFP). Blood was obtained for measurements of platelet activation following an overnight stay in the Clinical Research Center, prior to each of their two pre-exposure visits. Air pollution and meteorological data, including UFP counts, were analyzed for the 5 days prior to the subjects' arrival at the Clinical Research Center. Contrary to expectations, increases in UFP were associated with decreases in surface expression of platelet activation markers. The number of platelet-leukocyte conjugates decreased by -80 (95% confidence interval (CI) -123 to -37, p = 0.001) on the first lag day (20-44 h prior to the blood draw) and by -85 (CI -139 to -31, p = 0.005) on combined lag days 1 to 5, per interquartile range (IQR) increase in UFP particle number (2482). However, levels of soluble CD40L increased 104 (CI 3 to 205, p = 0.04) pg/ml per IQR increase in UFP on lag day 1, a finding consistent with prior platelet activation. We speculate that, in people with diabetes, exposure to UFP activates circulating platelets within hours of exposure, followed by an increase in soluble CD40L and a rebound reduction in circulating platelet surface markers.

  12. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  13. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  14. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  15. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  16. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  17. Atmospheric Chemistry Measurements in Schools and Outreach Activities with Low-cost Air Quality Sensors

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; McKenzie, K.

    2014-12-01

    The increasing range of low cost air quality sensors entering the market-place or being developed in-house in the last couple of years has led to many possibilities for using these instruments for public outreach activities or citizen science projects. A range of instruments sent out into local schools for the children to interpret and analyse the data and put the air quality in their area into context. A teaching package with tutorials has been developed to bring the data to life and link in with curriculum.The instruments have also been positioned around the city of Leicester in the UK to help understand the spatial variations in air quality and to assess the impact of retro-fitting buses on a busy bus route. The data is easily accessible online on a near real time basis and the various instruments can be compared with others around the country or the world from classrooms around the world.We will give an overview of the instrumentation with a comparison with commercial and cutting edge research instrumentation, the type of activities that were carried out and the public outreach forums where the data can be used.

  18. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    PubMed

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-06

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  19. Active moss biomonitoring for extensive screening of urban air pollution: Magnetic and chemical analyses.

    PubMed

    Vuković, Gordana; Urošević, Mira Aničić; Goryainova, Zoya; Pergal, Miodrag; Škrivanj, Sandra; Samson, Roeland; Popović, Aleksandar

    2015-07-15

    In this study, active magnetic biomonitoring of moss for particulate air pollution and an assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) were performed for the entire metropolitan area of Belgrade. Two mosses, Sphagnum girgensohnii (a species of the most recommended biomonitoring moss genus) and Hypnum cupressiforme (a common moss in the study area), were used. During the summer of 2013, moss bags were exposed at 153 sampling sites, forming a dense network of sites. A type II regression model was applied to test the interchangeable use of the two moss species. Significantly higher levels of all measured pollutants were recorded by S. girgensohnii in comparison with H. cupressiforme. Based on the results, the mosses could not be interchangeably used in urban areas, except for the biomonitoring of Cu. Nevertheless, according to the relative accumulation factors obtained for both moss species, similar city zones related to high, moderate and low levels of air pollution were distinguished. Moreover, new pollution hotspots, omitted by regulatory monitoring, were identified. The results demonstrate that moss magnetic analysis represents an effective first step for obtaining an overview of particulate air pollution before more expensive chemical analyses. Active moss biomonitoring could be applied as a pragmatic approach for optimizing the representativeness of regulatory monitoring networks.

  20. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  1. STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory


    STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    Hazardous Air Pollutants (HAPs) refers to a set of structurally diverse environmental chemicals, many with limited toxicity data, that have...

  2. Effects of anti-odor automobile air-conditioning system products on adherence of Serratia marcescens to aluminum.

    PubMed

    Drago, G K; Simmons, R B; Price, D L; Crow, S A; Ahearn, D G

    2002-12-01

    Sixteen commercial products for use in automobile air-conditioning systems (ACS), most designated for abatement of malodors presumably of microbial origin, were examined for their potential to inhibit attachment and to detach cells of the Gram-negative bacterium Serratia marcescens on aluminum sections. Numbers of attached cells were appreciably reduced (>60%) following immersion in three alcohol-type and two acrylic-coating-type products. Several products had essentially no effect on the attached cells. Most of the products indicated for alleviation of associated microbial odors from ACS provided only short-term effects. When products were coated onto aluminum prior to exposure to the cells, water-insoluble coatings appeared to provide more consistent inhibition of primary adherence of S. marcescens. The differences in degrees of primary adherence of a selected strain of S. marcescens to variously treated aluminum provided a rapid and reproducible assessment of potential antimicrobial efficacy of ACS products.

  3. Review: Production and functionality of active peptides from milk.

    PubMed

    Muro Urista, C; Álvarez Fernández, R; Riera Rodriguez, F; Arana Cuenca, A; Téllez Jurado, A

    2011-08-01

    In recent years, research on the production of active peptides obtained from milk and their potential functionality has grown, to a great extent. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions or conditions, and they may ultimately have an influence on health. Individual proteins of casein or milk-derived products such as cheese and yogurt have been used as a protein source to study the isolation and activity of peptides with several applications. Currently, the milk whey waste obtained in the production of cheese also represents a protein source from which active peptides could be isolated with potential industrial applications. The active properties of milk peptides and the results found with regard to their physiological effects have led to the classification of peptides as belonging to the group of ingredients of protein nature, appropriate for use in functional foods or pharmaceutical formulations. In this study, the main peptides obtained from milk protein and the past research studies about its production and biological activities will be explained. Second, an analysis will be made on the methods to determinate the biological activities, the separation of bioactive peptides and its structure identification. All of these form the base required to obtain synthetic peptides. Finally, we explain the experimental animal and human trials done in the past years. Nevertheless, more research is required on the design and implementation of equipment for the industrial production and separation of peptides. In addition, different authors suggest that more emphasis should therefore be given to preclinical studies, proving that results are consistent and that effects are demonstrated repeatedly by several research human groups.

  4. A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Hook, Simon J.

    2012-10-01

    Land Surface Temperature (LST) has been identified by NASA and other international organizations as an important Earth System Data Record (ESDR). An ESDR is defined as a long-term, well calibrated and validated data set. Identifying uncertainties in LST products with coarse spatial resolutions (>10 km) such as those from hyperspectral infrared sounders is notoriously difficult due to the challenges of making reliable in situ measurements representative of the spatial scales of the output products. In this study we utilize a Radiance-based (R-based) LST method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) v5 LST product. The R-based method provides estimates of the true LST using a radiative closure simulation without the need for in situ measurements, and requires input air temperature, relative humidity profiles and emissivity data. The R-based method was employed at three validation sites over the Namib Desert, Gran Desierto, and Redwood National Park for all AIRS observations from 2002 to 2010. Results showed daytime LST root-mean square errors (RMSE) of 2-3 K at the Namib and Desierto sites, and 1.5 K at the Redwood site. Nighttime LST RMSEs at the two desert sites were a factor of two less when compared to daytime results. Positive daytime LST biases were found at each site due to an underestimation of the daytime AIRS v5 longwave spectral emissivity, while the reverse occurred at nighttime. In the AIRS v6 product (release 2012), LST biases and RMSEs will be reduced significantly due to improved methodologies for the surface retrieval and emissivity first guess.

  5. Seasonal variations in mutagenic activity of air pollutants at an industrial district of Silesia.

    PubMed

    Motykiewicz, G; Szeliga, J; Cimander, B; Choraźy, M

    1989-06-01

    Organic material from airborne particulate pollutants collected over a 7-month period at a highly industrialized region in Silesia (Poland) was tested for mutagenicity using the Ames test. Sequential elution solvent chromatography (SESC) was used for the separation of crude benzene extracts. Five out of 8 fractions showed mutagenic activity with differential direct and indirect responses. The mutagenicity of each active fraction was tested during the whole sampling period (from August to February 1984/1985) and seasonal variations were observed. All of the fractions, except fraction 3, showed only quantitative distinctions in mutagenic potential, expressed as a number of revertants per m3 of air. Over a period of 7 months, a steady increase of activity of fractions 2 and 4 was observed but the type of mutagenic response, indirect and direct respectively, remained unchanged in the summer and winter months. Fraction 3 (the most abundant component, probably containing polar derivatives of PAHs and heterocyclics) differed quantitatively and qualitatively between summer and winter time. From August to December samples showed enhanced mutagenic potency upon addition of rat liver microsomal enzymes, whereas in January a 4-5-fold increase in direct response was noted. This significant increase in direct mutagenic activity was accompanied by a considerable decrease in mean air temperature and resulted most probably from the intensive use of coal for domestic heating.

  6. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  7. Eliciting Production of L2 Target Structures through Priming Activities

    ERIC Educational Resources Information Center

    McDonough, Kim; Trofimovich, Pavel; Neumann, Heike

    2015-01-01

    This study focuses on the pedagogical applications of structural priming research in an English for academic purposes (EAP) context, investigating whether priming activities are an effective tool for eliciting production of target grammatical structures. University students across four EAP classes carried out a total of 6 information-exchange…

  8. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  9. Potential Air Emission Impacts of Cellulosic Ethanol Production at Seven Demonstration Refineries in the United States

    EPA Science Inventory

    This paper reports on the estimated potential air emissions as found in air permits and supporting documentation for seven of the first group of pre-commercial or Ademonstration@ U.S. cellulosic ethanol refineries currently operating or planning to operate in the near future. Th...

  10. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs

    PubMed Central

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-01-01

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization. PMID:26610539

  11. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs.

    PubMed

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-11-20

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization.

  12. Exploratory monitoring of air pollutants for mutagenicity activity with the Tradescantia stamen hair system.

    PubMed

    Schairer, L A; Van't Hof, J; Hayes, C G; Burton, R M; de Serres, F J

    1978-12-01

    The Tradescantia genetic system developed by the late Dr. Arnold H. Sparrow for the study of effects of ionizing radiation is applicable to chemical mutagen detection. Early radiobiological data demonstrated that the stamen hairs were sensitive to as little as 0.25 rad of x-rays and that the number of cells showing a phenotypic change in pigmentation from blue to pink plateaus after approximately 21 days of chronic, low-level irradiation. Exposures to the air pollutants SO(2), NO(2), and O(3) and to vapors of mutagens such as 1,2-dibromoethane (DBE) and ethyl methanesulfonate (EMS) demonstrated the usefulness of the system as a detector of chemical mutagens. A significant number of phenotypic changes was observed following exposures to as little as 0.14 ppm of DBE. The maximum sensitivity of the system is obtained with long-term or chronic exposures because the response increases linearly in proportion to the duration of exposure up to 21 days. To monitor industrial sites for atmospheric mutagens a mobile laboratory was designed to support plant culture in the field. Environment-controlled growth chambers were installed in a trailer so that both ambient air fumigations and concurrent clean-air control exposures could be made. Sites monitored by the mobile laboratory were: Elizabeth, N. J.; Charleston, W. Va.; Birmingham, Ala.; Baton Rouge, La.; Houston, Tex.; Upland, Calif.; Magna, Utah; and Grand Canyon, Ariz. The latter site at Grand Canyon served as a clean air control study. Atmospheric contaminants from petroleum and chemical processing plants generated a significant number of phenotypic pigment changes that were 17 to 31% above the control levels; contaminants from steel and copper smelters, automotive combustion products and photochemical compounds were negative. Chemical analyses are underway to identify the atmospheric mutagens at the sites that showed a positive response.

  13. Considerations for higher efficiency and productivity in research activities.

    PubMed

    Forero, Diego A; Moore, Jason H

    2016-01-01

    There are several factors that are known to affect research productivity; some of them imply the need for large financial investments and others are related to work styles. There are some articles that provide suggestions for early career scientists (PhD students and postdocs) but few publications are oriented to professors about scientific leadership. As academic mentoring might be useful at all levels of experience, in this note we suggest several key considerations for higher efficiency and productivity in academic and research activities. More research is needed into the main work style features that differentiate highly productive scientists and research groups, as some of them could be innate and others could be transferable. As funding agencies, universities and research centers invest large amounts of money in order to have a better scientific productivity, a deeper understanding of these factors will be of high academic and societal impact.

  14. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  15. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.

  16. Regional air quality impacts of increased natural gas production and use in Texas.

    PubMed

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  17. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  18. Air humidity as key determinant of morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii.

    PubMed

    Schwerbrock, R; Leuschner, C

    2016-07-01

    (1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species.

  19. Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: the effect on biological activity and microbial flora.

    PubMed

    Huttunen, Kati; Rintala, Helena; Hirvonen, Maija-Riitta; Vepsäläinen, Asko; Hyvärinen, Anne; Meklin, Teija; Toivola, Mika; Nevalainen, Aino

    2008-07-01

    Many building-related health problems coincide with moisture damage and mold growth within a building. Their elimination is assumed to improve indoor air quality. The aim of this study was to follow the success of remediation in two individual buildings by analyzing the microbial flora and immunotoxicological activity of filter samples. We compare results from samples collected from indoor air in the moisture-damaged buildings before and after renovation and results from matched reference buildings and outdoor air. The microbial characteristics of the samples were studied by analyzing ergosterol content and determining the composition of fungal flora with quantitative polymerase chain reaction (QPCR). In addition, the concentrations of particles were monitored with optical particle counter (OPC). The immunotoxicological activity of collected particle samples was tested by exposing mouse macrophages (RAW264.7) for 24 h to particle suspension extracted from the filters, and measuring the viability of the exposed cells (MTT-test) and production of inflammatory mediators (nitric oxide, IL-6 and TNF*) in cell culture medium by enzyme-linked immunoassay (ELISA). The results show that for Location 1 the renovation decreased the immunotoxicological activity of the particles collected from damaged building, whereas no difference was detected in the corresponding samples collected from the reference building. Interestingly, only slight differences were seen in the concentration of fungi. In the Location 2, a decrease was seen in the concentration of fungi after the renovation, whereas no effect on the immunotoxicological responses was detected. In this case, the immunotoxicological responses to the indoor air samples were almost identical to those caused by the samples from outdoor air. This indicates that the effects of remediation on the indoor air quality may not necessarily be readily measurable either with microbial or toxicological parameters. This may be associated

  20. Activation processes in a medical linear accelerator and spatial distribution of activation products.

    PubMed

    Fischer, Helmut W; Tabot, Ben E; Poppe, Björn

    2006-12-21

    Activation products have been identified by in situ gamma spectroscopy at the isocentre of a medical linear accelerator shortly after termination of a high energy photon beam irradiation with 15 x 15 cm field size. Spectra have been recorded either with an open or with a closed collimator. Whilst some activation products disappear from the spectrum with closed collimator or exhibit reduced count rates, others remain with identical intensity. The former isotopes are neutron-deficient and mostly decay by positron emission or electron capture; the latter have neutron excess and decay by beta(-) emission. This new finding is consistent with the assumption that photons in the primary beam produce activation products by (gamma, n) reactions in the treatment head and subsequently the neutrons created in these processes undergo (n, gamma) reactions creating activation products in a much larger area. These findings are expected to be generally applicable to all medical high energy linear accelerators.

  1. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time.

  2. Production and characterization of lignocellulosic biomass-derived activated carbon.

    PubMed

    Namazi, A B; Jia, C Q; Allen, D G

    2010-01-01

    The goal of this work is to establish the technical feasibility of producing activated carbon from pulp mill sludges. KOH chemical activation of four lignocellulosic biomass materials, two sludges from pulp mills, one sludge for a linerboard mill, and cow manure, were investigated experimentally, with a focus on the effects of KOH/biomass ratio (1/1, 1.5/1 and 2/1), activation temperature (400-600 °C) and activation time (1 to 2 h) on the development of porosity. The activation products were characterized for their physical and chemical properties using a surface area analyzer, scanning electron microscopy and Fourier transform infrared spectroscopy. Experiments were carried out to establish the effectiveness of the lignocellulosic biomass-derived activated carbon in removing methylene blue (MB), a surrogate of large organic molecules. The results show that the activated carbon are highly porous with specific surface area greater than 500 m²/g. The yield of activated carbon was greater than the percent of fixed carbon in the dry sludge, suggesting that the activation process was able to capture a substantial amount of carbon from the organic matter in the sludge. While 400 °C was too low, 600 °C was high enough to sustain a substantial rate of activation for linerboard sludge. The KOH/biomass ratio, activation temperature and time all play important roles in pore development and yield control, allowing optimization of the activation process. MB adsorption followed a Langmuir isotherm for all four activated carbon, although the adsorption capacity of NK-primary sludge-derived activated carbon was considerably lower than the rest, consistent with its lower specific surface area.

  3. Anti-TMV activity flavones from the leaves of Yunnan local air cured tobacco.

    PubMed

    Miao, Ming-Ming; Li, Lan; Shen, Qin-Peng; Liu, Chun-Bo; Li, Yin-Ke; Zhang, Tao; Zhang, Feng-Mei; He, Pei; Wang, Kun-Miao; Zhu, Rui-Zhi; Chen, Yong-Kuan; Yang, Guang-Yu

    2015-06-01

    Four new flavones, tobaflavones E-H (1-4), together with two known flavones (5 and 6), were isolated from the leaves of Dali Tiandeng tobacco (a variety of Yunnan local air cured tobacco). Their structures were elucidated by spectroscopic methods, including extensive 1D- and 2D NMR techniques. Compound 2 is the first naturally occurring flavone bearing a (4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)methyl moiety. These compounds were also evaluated for their anti-tobacco mosaic virus (anti-TMV) activity. The results revealed that compounds 1 and 2 exhibited high anti-TMV activity with inhibition rate of 35.3% and 39.6%, respectively. The rates are higher than those of positive control. The other compounds also showed potential anti-TMV activity with inhibition rates in the range of 18.7-28.4%, respectively.

  4. 76 FR 60020 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... FURTHER INFORMATION CONTACT: Laurie Trinca, Air Quality Assessment Division, Environmental Protection... initiating episode controls, air quality trends assessment, and air pollution research. The state and local... Quality Surveillance AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In...

  5. Field validation of sound mitigation models and air pollutant emission testing in support of missile motor disposal activities.

    PubMed

    McFarland, Michael J; Palmer, Glenn R; Kordich, Micheal M; Pollet, Dean A; Jensen, James A; Lindsay, Mitchell H

    2005-08-01

    The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy's energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and

  6. N-doped pierced graphene microparticles as a highly active electrocatalyst for Li-air batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Tao; Zhang, Weimin; Li, Wen-Ting; Song, Chuantao; He, Yu-Shi; Razal, Joselito M.; Ma, Zi-Feng; Chen, Jun

    2015-06-01

    In this work we report a novel scalable strategy to prepare a lithium-air battery electrode from 3D N-doped pierced graphene microparticles (N-PGM) with highly active performance. This approach has combined the merits of spray drying technology and the hard template method. The pierced structured graphene microparticles were characterized physically and electrochemically. An x-ray photoelectron spectrometer and Raman spectra have revealed that the novel structure possesses a higher N-doping level than conventional graphene without the pierced structure. A much higher BET surface area was also achieved for the N-PGM than the conventional N-doped graphene microparticles (N-GM). Cyclic voltammetry indicated that the lithium-air battery with the N-PGM electrode has a better utilization for the graphene mass and a higher void volume for Li2O2 formation than that of the N-GM electrode. N-PGM also exhibits improved decomposition kinetics for Li oxide species yielded in the cathodic reaction. Charge and discharge measurements showed that the N-PGM lithium-air battery achieved an improved specific capacity and an enhanced cycle performance than when an N-GM electrode is used.

  7. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    PubMed

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  8. Air surface microdischarge-photon synergy in antibacterial plasma-activated water

    NASA Astrophysics Data System (ADS)

    Graves, David; Pavlovich, Mathew; Chang, Hung-Wen; Sakiyama, Yuki; Clark, Douglas

    2013-09-01

    We show that the antibacterial effects of air plasma on water can be amplified by synergy with ultraviolet (UV) photons. We use the surface microdischarge configuration (SMD) in atmospheric air adjacent to bacteria-laden water coupled with UVA (360 nm) photons from a light emitting diode (LED) to demonstrate this synergy. Air SMD, especially if operated in a confined space, can operate in different modes: low power mode (<0.1 W/cm2) generates primarily O3 whereas higher powers generate mainly nitrogen oxides; we focus here on the latter. The nitrogen oxide mode creates a powerful antibacterial mixture in water, including NO2-, NO3- and H2O2. Although these species alone can be strongly antibacterial, especially at low pH, we show that addition of UVA photons greatly amplifies the antibacterial effect. We first measured log reductions with only photons and then only plasma. Only when UVA exposes water after plasma does the synergy appear. Synergy appears to be due to UVA photolysis of plasma-generated NO2- to form NO and OH. We conclude that combining plasma-generated chemical species with activating photons can amplify and strengthen plasma effectiveness in many biological and other applications. Supported by Department of Energy, Office of Fusion Science Plasma Science Center.

  9. Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air

    PubMed Central

    Brannan, Stephen; Liotti, Mario; Egan, Gary; Shade, Robert; Madden, Lisa; Robillard, Rachel; Abplanalp, Bart; Stofer, Katie; Denton, Derek; Fox, Peter T.

    2001-01-01

    There are defined medullary, mesencephalic, hypothalamic, and thalamic functions in regulation of respiration, but knowledge of cortical control and the elements subserving the consciousness of breathlessness and air hunger is limited. In nine young adults, air hunger was produced acutely by CO2 inhalation. Comparisons were made with inhalation of a N2/O2 gas mixture with the same apparatus, and also with paced breathing, and with eyes closed rest. A network of activations in pons, midbrain (mesencephalic tegmentum, parabrachial nucleus, and periaqueductal gray), hypothalamus, limbic and paralimbic areas (amygdala and periamygdalar region) cingulate, parahippocampal and fusiform gyrus, and anterior insula were seen along with caudate nuclei and pulvinar activations. Strong deactivations were seen in dorsal cingulate, posterior cingulate, and prefrontal cortex. The striking response of limbic and paralimbic regions points to these structures having a singular role in the affective sequelae entrained by disturbance of basic respiratory control whereby a process of which we are normally unaware becomes a salient element of consciousness. These activations and deactivations include phylogenetically ancient areas of allocortex and transitional cortex that together with the amygdalar/periamygdalar region may subserve functions of emotional representation and regulation of breathing. PMID:11172070

  10. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  11. Effect of air exposure and suction on blood cell activation and hemolysis in an in vitro cardiotomy suction model.

    PubMed

    El-Sabbagh, Ahmed M; Toomasian, Cory J; Toomasian, John M; Ulysse, Guerlain; Major, Terry; Bartlett, Robert H

    2013-01-01

    Cardiopulmonary bypass (CPB) elicits a systemic inflammatory response. The cause may include surface-induced leukocyte activation and hemolysis. A study was designed to describe the effects of both suction and an air-blood interface independently and in combination on leukocyte and platelet activation, and hemolysis in an in vitro model. Fresh human blood was drawn and tested in four different conditions including control (A), 10 minutes of -600 mm Hg suction (B), 10 minutes of blood exposure to room air at 100 ml/min (C), and 10 minutes of simultaneous suction and air flow (D). Samples were analyzed by flow cytometry (platelets and leukocytes) and plasma-free hemoglobin (PFHb). Leukocyte CD11b expression and platelet P-selectin (CD62P) were analyzed by flow cytometry. In comparison with baseline, granulocytes were significantly activated by air (group C, p = 0.0029) and combination (group D, p = 0.0123) but not by suction alone (group B). Monocytes and platelets were not significantly activated in any group. The PFHb increased significantly in group C (p < 0.001) and group D (p < 0.001). This study suggests that the inflammatory response and associated hemolysis during CPB may be related to air exposure, which could be reduced by minimizing the air exposure of air to blood during cardiotomy suction.

  12. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ...: Group IV Polymers and Resins; Pesticide Active Ingredient Production; and Polyether Polyols Production... pollutants: National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...: Group IV Polymers and Resins; Pesticide Active Ingredient Production; and Polyether Polyols...

  13. ACTIVITY OF NATURAL PRODUCTS AGAINST SOME PHYTOPATHOGENIC FUNGI.

    PubMed

    La Torre, A; Caradonia, F; Gianferro, M; Molinu, M G; Battaglia, V

    2014-01-01

    The requirement of environmental protection and food safety is perceived with always major interest by public opinion and it is consistent with European Union legislation on the sustainable use of pesticides (Directive 2009/128/EC). This directive requires member states to promote low pesticide-input, giving priority to non-chemical methods and low risk plant protection products. In order to contribute to the achievement of these objectives antifungal activity of natural substances, characterized by a good toxicological and ecotoxicological profile, was tested. Essential oil of Melaleuca alternifolia, essential oil of Syzygium aromaticum and extract from Mimosa tenuiflora were tested against Alternaria alternata, Botrytis cinerea and Fusarium oxysporum f. sp. lycopersici (races 1 and 2). In vitro tests involved determination of radial growth of the colonies of fungi in the presence of varying concentrations of tested products in agar media and determination of germination percentage in the presence of tested product at various concentrations. The products based on essential oil of M. alternifolia were also tested in vivo on tomato fruits wounded and artificially inoculated with A. alternata or with B. cinerea. The in vitro tests showed the antifungal activity of both essential oils instead the extract from M. tenuiflora exhibited poor antifungal activity and only against A. alternata and B. cinerea. The results on tomato fruits showed inhibition of grey mould and black mould by essential oil of M. alternifolia. The antifungal activity increased with increasing concentrations. In conclusion, the obtained results in the present study showed promising prospects for the utilisation of investigated products to reduce the using of antifungal chemicals and to achieve a more sustainable use of pesticides.

  14. Bird Activity Analysis Using Avian Radar Information in Naval Air Station airport, WA

    NASA Astrophysics Data System (ADS)

    Wang, J.; Herricks, E.

    2010-12-01

    The number of bird strikes on aircraft has increased sharply over recent years and airport bird hazard management has gained increasing attention in wildlife management and control. Evaluation of bird activity near airport is very critical to analyze the hazard of bird strikes. Traditional methods for bird activity analysis using visual counting provide a direct approach to bird hazard assessment. However this approach is limited to daylight and good visual conditions. Radar has been proven to be a useful and effective tool for bird detection and movement analysis. Radar eliminates observation bias and supports consistent data collection for bird activity analysis and hazard management. In this study bird activity data from the Naval Air Station Whidbey Island was collected by Accipiter Avian Radar System. Radar data was pre-processed by filtering out non-bird noises, including traffic vehicle, aircraft, insects, wind, rainfall, ocean waves and so on. Filtered data is then statistically analyzed using MATLAB programs. The results indicated bird movement dynamics in target areas near the airport, which includes (1) the daily activity varied at dawn and dusk; (2) bird activity varied by target area due to the habitat difference; and (3) both temporal and spatial movement patterns varied by bird species. This bird activity analysis supports bird hazard evaluation and related analysis and modeling to provide very useful information in airport bird hazard management planning.

  15. Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2013-01-01

    Extravehicular activities (EVAs) require high-pressure, high-purity oxygen. Shuttle EVAs use oxygen that is stored and transported as a cryogenic fluid. EVAs on the International Space Station (ISS) presently use the Shuttle cryo O2, which is transported to the ISS using a transfer hose. The fluid is compressed to elevated pressures and stored as a high-pressure gas. With the retirement of the shuttle, NASA has been searching for ways to deliver oxygen to fill the highpressure oxygen tanks on the ISS. A method was developed using low-pressure oxygen generated onboard the ISS and released into ISS cabin air, filtering the oxygen from ISS cabin air using a pressure swing absorber to generate a low-pressure (high-purity) oxygen stream, compressing the oxygen with a mechanical compressor, and transferring the high-pressure, high-purity oxygen to ISS storage tanks. The pressure swing absorber (PSA) can be either a two-stage device, or a single-stage device, depending on the type of sorbent used. The key is to produce a stream with oxygen purity greater than 99.5 percent. The separator can be a PSA device, or a VPSA device (that uses both vacuum and pressure for the gas separation). The compressor is a multi-stage mechanical compressor. If the gas flow rates are on the order of 5 to 10 lb (.2.3 to 4.6 kg) per day, the compressor can be relatively small [3 16 16 in. (.8 41 41 cm)]. Any spacecraft system, or other remote location that has a supply of lowpressure oxygen, a method of separating oxygen from cabin air, and a method of compressing the enriched oxygen stream, has the possibility of having a regenerable supply of highpressure, high-purity oxygen that is compact, simple, and safe. If cabin air is modified so there is very little argon, the separator can be smaller, simpler, and use less power.

  16. Effect of uniform magnetic and electric fields on microstructure and substructure characteristics of combustion products of aluminum nanopowder in air

    NASA Astrophysics Data System (ADS)

    Il'in, A. P.; Mostovshchikov, A. V.; Pak, A. Ya.

    2016-12-01

    We have analyzed the effect of constant electric and magnetic fields on the micro- and substructure characteristics of the combustion products of aluminum nanopowder in air. It has been found that the combustion of aluminum nanopowder in a magnetic field leads to the formation of single crystals of the hexagonal habitus, while the combustion in an electric field results in the formation of faceted crystallites with layered morphology. The fields noticeably affect the crystal lattice parameters of aluminum oxide and nitride (reduce the coherent scattering regions in aluminum nitride and increase such regions in aluminum γ-oxide). At the same time, the displacement of atoms relative to the equilibrium position becomes noticeably smaller for all crystal phases under the action of the fields (except for aluminum nitride in a magnetic field). These results have been explained by the orienting and stabilizing actions of the fields on the combustion products of aluminum nanopowder in air.

  17. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.

    PubMed

    Leakey, Andrew D B; Uribelarrea, Martin; Ainsworth, Elizabeth A; Naidu, Shawna L; Rogers, Alistair; Ort, Donald R; Long, Stephen P

    2006-02-01

    While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 micromol mol(-1)) and elevated [CO2] (550 micromol mol(-1)) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (-34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply.

  18. Rapid evolution of air pollution sensor technology for research and consumer product applications

    EPA Science Inventory

    Outdoor air pollution measurement approaches have historically been conducted using stationary shelters that require significant space, power, and expertise to operate. The cost and logistical requirements to conduct monitoring have limited the number of locations with continuou...

  19. 75 FR 31223 - Energy Conservation Program for Consumer Products: Test Procedure for Residential Central Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... tested with installed components to include the most restrictive filter(s), supplementary heating coils... unit without an indoor air filter but requires a compensatory increase of 0.08 in wc for the...

  20. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  1. Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler

    NASA Astrophysics Data System (ADS)

    Markovic, Milos Z.; Prokop, Sebastian; Staebler, Ralf M.; Liggio, John; Harner, Tom

    2015-07-01

    The particle infiltration efficiencies (PIE) of three passive and one active air samplers were evaluated under field conditions. A wide-range particle spectrometer operating in the 250-4140 nm range was used to acquire highly temporally resolved particle-number and size distributions for the different samplers compared to ambient air. Overall, three of the four evaluated samplers were able to acquire a representative sample of ambient particles with PIEs of 91.5 ± 13.7% for the GAPS Network sampler, 103 ± 15.5% for the Lancaster University sampler, and 89.6 ± 13.4% for a conventional PS-1 high-volume active air sampler (Hi-Vol). Significantly (p = 0.05) lower PIE of 54 ± 8.0% was acquired for the passive sampler used under the MONET program. These findings inform the comparability and use of passive and active samplers for measuring particle-associated priority chemicals in air.

  2. Using DOE-ARM and Space-Based Assets to Assess the Quality of Air Force Weather 3D Cloud Analysis and Forecast Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2015-12-01

    Air Force Weather (AFW) has documented requirements for global cloud analysis and forecasting to support DoD missions around the world. To meet these needs, AFW utilizes a number of cloud products. Cloud analyses are constructed using 17 different near real time satellite sources. Products include analysis of the individual satellite transmissions at native satellite resolution and an hourly global merge of all 17 sources on a 24km grid. AFW has also recently started creation of a time delayed global cloud reanalysis to produce a 'best possible' analysis for climatology and verification purposes. Forecasted cloud products include global short-range cloud forecasts created using advection techniques as well as statistically post processed cloud forecast products derived from various global and regional numerical weather forecast models. All of these cloud products cover different spatial and temporal resolutions and are produced on a number of different grid projections. The longer term vision of AFW is to consolidate these various approaches into uniform global numerical weather modeling (NWM) system using advanced cloudy-data assimilation processes to construct the analysis and a licensed version of UKMO's Unified Model to produce the various cloud forecast products. In preparation for this evolution in cloud modeling support, AFW has started to aggressively benchmark the performance of their current capabilities. Cloud information collected from so called 'active' sensors on the ground at the DOE-ARM sites and from space by such instruments as CloudSat, CALIPSO and CATS are being utilized to characterize the performance of AFW products derived largely by passive means. The goal is to understand the performance of the 3D cloud analysis and forecast products of today to help shape the requirements and standards for the future NWM driven system.This presentation will present selected results from these benchmarking efforts and highlight insights and observations

  3. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    SciTech Connect

    Bollinger, Benjamin

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  4. 78 FR 39254 - Notification of Proposed Production Activity; Subzone 7G; Schering-Plough Products, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Proposed Production Activity; Subzone 7G; Schering-Plough Products, L.L.C. (Pharmaceutical Products); Las... certain pharmaceutical products and their intermediates within Subzone 7G. The current request would add the production of suvorexant pharmaceutical tablets for the treatment of insomnia using a...

  5. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5degN - 20degS latitude extending eastward from 150degW - 30 E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as we] l as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino

  6. Accelerator Production and Separations for High Specific Activity Rhenium-186

    SciTech Connect

    Jurisson, Silvia S.; Wilbur, D. Scott

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  7. The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings.

    PubMed

    Lan, Li; Lian, Zhiwei; Pan, Li

    2010-12-01

    Productivity bears a close relationship to the indoor environmental quality (IEQ), but how to evaluate office worker's productivity remains to be a challenge for ergonomists. In this study, the effect of indoor air temperature (17 °C, 21 °C, and 28 °C) on productivity was investigated with 21 volunteered participants in the laboratory experiment. Participants performed computerized neurobehavioral tests during exposure in the lab; their physiological parameters including heart rate variation (HRV) and electroencephalograph (EEG) were also measured. Several subjective rating scales were used to tap participant's emotion, well-being, motivation and the workload imposed by tasks. It was found that the warm discomfort negatively affected participants' well-being and increased the ratio of low frequency (LF) to high frequency (HF) of HRV. In the moderately uncomfortable environment, the workload imposed by tasks increased and participants had to exert more effort to maintain their performance and they also had lower motivation to do work. The results indicate that thermal discomfort caused by high or low air temperature had negative influence on office workers' productivity and the subjective rating scales were useful supplements of neurobehavioral performance measures when evaluating the effects of IEQ on productivity.

  8. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, M.; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.

  9. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  10. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.

    PubMed

    Rau, Greg H; Carroll, Susan A; Bourcier, William L; Singleton, Michael J; Smith, Megan M; Aines, Roger D

    2013-06-18

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 10(5)-fold increase in OH(-) concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH(-) initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification.

  11. Impact of air pollution control costs on the cost and spatial arrangement of cellulosic biofuel production in the U.S.

    PubMed

    Murphy, Colin W; Parker, Nathan C

    2014-02-18

    Air pollution emissions regulation can affect the location, size, and technology choice of potential biofuel production facilities. Difficulty in obtaining air pollutant emission permits and the cost of air pollution control devices have been cited by some fuel producers as barriers to development. This paper expands on the Geospatial Bioenergy Systems Model (GBSM) to evaluate the effect of air pollution control costs on the availability, cost, and distribution of U.S. biofuel production by subjecting potential facility locations within U.S. Clean Air Act nonattainment areas, which exceed thresholds for healthy air quality, to additional costs. This paper compares three scenarios: one with air quality costs included, one without air quality costs, and one in which conversion facilities were prohibited in Clean Air Act nonattainment areas. While air quality regulation may substantially affect local decisions regarding siting or technology choices, their effect on the system as a whole is small. Most biofuel facilities are expected to be sited near to feedstock supplies, which are seldom in nonattainment areas. The average cost per unit of produced energy is less than 1% higher in the scenarios with air quality compliance costs than in scenarios without such costs. When facility construction is prohibited in nonattainment areas, the costs increase by slightly over 1%, due to increases in the distance feedstock is transported to facilities in attainment areas.

  12. Selection of a suitable extraction method for mutagenic activity from woodsmoke-impacted air particles

    SciTech Connect

    Williams, R.; Pasley, T.; Warren, S.; Zweidinger, R.; Watts, R.

    1988-01-01

    Extraction methods were evaluated for recovery of mutagneic activity from woodsmoke-impacted air particles. Soxhlet and sonication techniques were utilized with a variety of solvents to ascertain the effect of solvent choice, extraction methods, or dissolved gases in extraction solvents on the recovery of mutagenicity. Sonication extraction gave slightly less mass recovery than the Soxhlet method. Methanol extracted more mass than the other solvents with dichloromethane recovering the least. Dissolved gases were not found to have any effect, while mutagenicity was shown to be dependent upon solvent and extraction method. Soxhlet extraction with acetone and toluene/ethanol yielded the highest recovery of mutagenic activity; however, results indicated a solvent/solute interaction which chemically altered one or more extract components. Extraction employing dichloromethane and sonication was selected as a suitable method since this treatment appeared not to alter extracted compounds, and good recovery of mutagenicity was obtained. (Copyright (c) 1988 Gordon and Breach Science Publishers Inc.)

  13. Isoleukotrienes are biologically active free radical products of lipid peroxidation.

    PubMed

    Harrison, K A; Murphy, R C

    1995-07-21

    The free radical oxidation of arachidonic acid esterified to glycerophospholipids is known to generate complex metabolites, termed isoprostanes, that share structural features of prostaglandins derived from prostaglandin H2 synthase. Furthermore, certain isoprostanes have been found to exert biological activity through endogenous receptors on cell surfaces. Using mass spectrometry and ancillary techniques, the free radical oxidation of 1-hexadecanoyl-2-arachidonoyl-glycerophosphocholine was studied in the search for products of arachidonic acid isomeric to the leukotrienes that are derived from 5-lipoxygenase-catalyzed metabolism of arachidonic acid. Several conjugated triene metabolites were chromatographically separated from known 5-lipoxygenase products and structures characterized as 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid esterified to the glycerophosphocholine backbone. We have termed these products as B4-isoleukotrienes. Following saponification some, but not all, B4-isoleukotrienes were found to exert biological activity in elevating intracellular calcium in Indo-1-loaded human polymorphonuclear leukocytes. This activity could be blocked by a leukotriene B4 receptor antagonist. An EC50 of approximately 30 nM was determined for one unique B4-isoleukotriene with a relative retention index of 2.54. We have shown that free radical processes can lead to the formation of biologically active isoleukotrienes in glycerophosphocholine liposomes, and we propose that B4-isoleukotrienes may also be formed in membrane glycerophospholipids as a result of lipid peroxidation during tissue injury. Such B4-isoleukotrienes could then mediate events of tissue damage through activation of leukotriene B4 receptors on target cells.

  14. Ethylene production and peroxidase activity in aphid-infested barley.

    PubMed

    Argandoña, V H; Chaman, M; Cardemil, L; Muñoz, O; Zúñiga, G E; Corcuera, L J

    2001-01-01

    The purpose of this work was to investigate whether ethylene is involved in the oxidative and defensive responses of barley to the aphids Schizaphis graminum (biotype C) and Rhopalophum padi. The effect of aphid infestation on ethylene production was measured in two barley cultivars (Frontera and Aramir) that differ in their susceptibility to aphids. Ethylene evolution was higher in plants infested for 16 hr than in plants infested for 4 hr in both cultivars. Under aphid infestation, the production of ethylene was higher in cv. Frontera than in Aramir, the more aphid susceptible cultivar. Ethylene production also increases with the degree of infestation. Maximum ethylene evolution was detected after 16 hr when plants were infested with 10 or more aphids. Comparing the two species of aphids, Schizaphis graminum induced more ethylene evolution than Rhopalosiphum padi. Infestation with S. graminum increased hydrogen peroxide content and total soluble peroxidase activity in cv. Frontera, with a maximum level of H2O2 observed after 20 min of infestation and the maximum in soluble peroxidase activity after 30 min of infestation. When noninfested barley seedlings from cv. Frontera were exposed to ethylene, an increase in hydrogen peroxide and in total peroxidase activity was detected at levels similar to those of infested plants from cv. Frontera. When noninfested plants were treated with 40 ppm of ethylene, the maximum levels of H2O2 and soluble peroxidase activity were at 10 and 40 min, respectively. Ethylene also increased the activity of both cell-wall-bound peroxidases types (ionically and covalently bound), comparable with infestation. These results suggest that ethylene is involved in the oxidative responses of barley plants induced by infestation.

  15. 77 FR 71167 - Foreign-Trade Zone 59-Lincoln, Nebraska, Authorization of Production Activity, Novartis Consumer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... Foreign-Trade Zones Board Foreign-Trade Zone 59--Lincoln, Nebraska, Authorization of Production Activity, Novartis Consumer Health, Inc. (Pharmaceutical and Related Preparations Production), Lincoln, Nebraska Novartis Consumer Health, Inc. submitted a notification of proposed production activity for the...

  16. Impacts on ambient air quality due to flaring activities in one of Oman's oilfields.

    PubMed

    Abdul-Wahab, Sabah; Ali, Sappurd; Sardar, Sabir; Irfan, Naseem

    2012-01-01

    This work was conducted to assess the impacts on workplace and ambient air quality due to release of sulfur dioxide (SO(2)) into the atmosphere at Al-Noor production station, located in southern desert of Sultanate of Oman. The SO(2) is released because of oxidation of H(2)S to SO(2) on flaring of H(2)S rich off gas at the Al-Noor. In the first phase of the study, CALPUFF modeling system was used to predict the ground level concentrations of SO(2) emissions from the flare stacks. The evaluation of the modeling system was carried out by comparing the predicted results with that of the measured. In the second stage of the study, the estimated results were compared with the air quality standards/guidelines set by Omani regulatory authorities as well as by World Health Organization (WHO). It was concluded on the basis of current study that the sensitive individuals in the workplace of the Al-Noor could experience adverse health effects due to short-term exposure of SO(2).

  17. Production of activated carbon and its catalytic application for oxidation of hydrogen sulphide

    NASA Astrophysics Data System (ADS)

    Azargohar, Ramin

    Hydrogen sulphide is an environmentally hazardous gas which is present in many gas streams associated with oil and gas industry. Oxidation of H 2S to sulphur in air produces no bulky or waste material and requires no further purification. Activated carbon is known as a catalyst for this reaction. In this research, a coal-based precursor (luscar char) and a biomass-based precursor (biochar) were used for production of activated carbons by two common methods of activation: physical and chemical activation in which steam and potassium hydroxide (KOH), respectively, were used. Experiments were designed by the statistical central composite design method. Two models were developed for the BET surface area and reaction yield of each activation process. These models showed the effects of operating conditions, such as activation temperature, mass ratio of activating agent to precursor, activation time, and nitrogen flowrate on the BET surface area and reaction yield for each activation method for each precursor. The optimum operating conditions were calculated using these models to produce activated carbons with relatively large BET surface area (> 500 m2/g) and high reaction yield (> 50 wt %). The BET surface area and reaction yield for activated carbons produced at optimum operating conditions showed maximum 7 and 7.4% difference, respectively, comparing to the values predicted by models. The activated carbons produced at optimum operating conditions were used as the base catalysts for the direct oxidation of 1 mol % hydrogen sulphide in nitrogen to sulphur at the temperature range of 160-205°C and pressure of 700 kPa. Originally activated carbons showed a good potential for oxidation of hydrogen sulphide by their selectivity for sulphur product and low amount of sulphur dioxide production. To improve the performance of steam-activated carbons, the catalysts were modified by acid-treatment followed by thermal desorption. This method increased the break-through times for

  18. Identification of oxidation products of solanesol produced during air sampling for tobacco smoke by electrospray mass spectrometry and HPLC.

    PubMed

    Tucker, Samuel P; Pretty, Jack R

    2005-10-01

    Solanesol, a 45-carbon, trisesquiterpenoid alcohol found in tobacco leaves and tobacco smoke, has been used as a quantitative marker for tobacco smoke for years. However, solanesol appears to be unreliable as a quantitative marker for tobacco smoke during environmental air sampling because it can be degraded substantially when present as a component of tobacco smoke and by as much as 100% when present as pure solanesol on fortified filters during air sampling. Since there is strong evidence that ozone is the agent responsible for the degradation, solanesol appears to be unreliable as a quantitative marker during indoor air sampling when indoor levels of ozone are greater than about 15 ppb. The degree of loss of pure solanesol is directly proportional to the concentration of ozone and the length of the sampling period and depends on the type of 37 mm membrane filter used for air sampling (PTFE or quartz fiber). While the degree of loss of solanesol is inversely proportional to the relative humidity of the air at a sampling rate of 1.7 L min(-1), the degree of loss is virtually independent of relative humidity at a lower sampling rate; i.e., 0.25 L min(-1). A curve of loss of solanesol on a filter versus concentration of ozone from an ozone generator is virtually identical to a curve segment based on atmospheric ozone under the same conditions of air sampling. Oxidation of solanesol by ozone to approximately 25 to 60% completion produces at least three series of products for a total of at least 26 compounds: (1) isoprenoid acetones, (2)omega-hydroxyisoprenoid acetaldehydes, and (3) isoprenoid oxoaldehydes. All products in each series were tentatively identified as their derivatives with 2-(p-aminophenyl)ethanol (APE) by electrospray mass spectrometry (ES-MS). Ten ozonation products were detected as their 2,4-dinitrophenylhydrazine derivatives by HPLC at 360 nm: 4-oxopentanal and nine isoprenoid acetones (acetone, 6-methyl-5-hepten-2-one, geranylacetone

  19. Production and characterization of activated carbons from cereal grains

    SciTech Connect

    Venkatraman, A.; Walawender, W.P.; Fan, L.T.

    1996-12-31

    The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and the remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.

  20. Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?

    PubMed

    Johansson, Jana H; Berger, Urs; Cousins, Ian T

    2017-05-01

    Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.

  1. Measuring of urban ultrafine aerosol as a part of regular air pollution monitoring activities

    NASA Astrophysics Data System (ADS)

    Hejkrlík, Libor; Plachá, Helena

    2015-04-01

    Number size distribution of UFP has been measured since June 2012 to present time (end of 2014) at a background urban site in Northern Bohemia in the frame of UltraSchwarz Project. The project sustainability guarantees at least five years further measuring thus this highly specific activity already becomes part of existing air pollution monitoring system of Czech Hydrometeorological Institute. Number concentrations of UFP were measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of 10 minutes. For the purposes of this study the data were re-arranged into series of one-hour means in three size categories: nucleation mode (10-30 nm), Aitken mode (30-100 nm) and accumulation mode (100-800 nm). At the same measuring site 7 other air pollutants (PM1-BC, NO, NOX, NO2, O3, PM10 and SO2) were measured with identical time resolution. The successive daily courses of submicron particles in three size modes as well as of seven other ambient air pollutants were drawn in the form of 3D surface diagrams expressing different behavior of specific substances in the course of 26 months of continuous measuring campaign, allowing for analysis of both diurnal and seasonal changes. The three modes of UFP manifest diverse pictures, the nucleation mode is apparent mainly during warm seasons, the particles in Aitken mode behave rather indifferently to the period of the year and the accumulation mode has close relationship to coarse particles. Month by month correlation analysis indicate that nucleation mode nanoparticles are positively correlated especially with increasing O3 and SO2 concentration and that there exists connection between Aitken and accumulation modes and nitrogen oxides. In order to better understand fine time patterns we plan to calculate moving correlation indices over shorter time periods. Good idea would also be to make use of large database of data from nearby stations of CHMI to analyze the role of meteorological conditions.

  2. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    NASA Astrophysics Data System (ADS)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  3. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes.

    SciTech Connect

    Zhang, Z.; Lu, J.; Assary, R. S.; Du, P.; Wang, H-H.; Sun, Y-K.; Qin, Y.; Lau, K. C.; Greeley, J.; Redfern, P. C.; Iddir, H.; Curtiss, L. A.; Amine, K.

    2011-01-01

    The successful development of Li-air batteries would significantly increase the possibility of extending the range of electric vehicles. There is much evidence that typical organic carbonate based electrolytes used in lithium ion batteries form lithium carbonates from reaction with oxygen reduction products during discharge in lithium-air cells so more stable electrolytes need to be found. This combined experimental and computational study of an electrolyte based on a tri(ethylene glycol)-substituted trimethylsilane (1NM3) provides evidence that the ethers are more stable toward oxygen reduction discharge species. X-ray photoelectron spectroscopy (XPS) and FTIR experiments show that only lithium oxides and no carbonates are formed when 1NM3 electrolyte is used. In contrast XPS shows that propylene carbonate (PC) in the same cell configuration decomposes to form lithium carbonates during discharge. Density functional calculations of probable decomposition reaction pathways involving solvated oxygen reduction species confirm that oligoether substituted silanes, as well as other ethers, are more stable to the oxygen reduction products than propylene carbonate. These results indicate that the choice of electrolyte plays a key role in the performance of Li-air batteries.

  4. Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes

    SciTech Connect

    Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.; Du, Peng; Wang, Hsien-Hau; Sun, Yang-Kook; Qin, Yan; Lau, Kah Chun; Greeley, Jeffrey P.; Redfern, Paul C.; Iddir, Hakim; Curtiss, Larry A.; Amine, Khalil

    2011-12-29

    The successful development of Li-air batteries would significantly increase the possibility of extending the range of electric vehicles. There is much evidence that typical organic carbonate based electrolytes used in lithium ion batteries form lithium carbonates from reaction with oxygen reduction products during discharge in lithium-air cells so more stable electrolytes need to be found. This combined experimental and computational study of an electrolyte based on a tri(ethylene glycol)-substituted trimethylsilane (1NM3) provides evidence that the ethers are more stable toward oxygen reduction discharge species. X-ray photoelectron spectroscopy (XPS) and FTIR experiments show that only lithium oxides and no carbonates are formed when 1NM3 electrolyte is used. In contrast XPS shows that propylene carbonate (PC) in the same cell configuration decomposes to form lithium carbonates during discharge. Density functional calculations of probable decomposition reaction pathways involving solvated oxygen reduction species confirm that oligoether substituted silanes, as well as other ethers, are more stable to the oxygen reduction products than propylene carbonate. These results indicate that the choice of electrolyte plays a key role in the performance of Li-air batteries.

  5. An inventory of primary air pollutants and CO 2 emissions from cement production in China, 1990-2020

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Zhang, Qiang; Nielsen, Chris; He, Kebin

    2011-01-01

    Direct emissions of air pollutants from the cement industry in China were estimated by developing a technology-based methodology using information on the proportion of cement produced from different types of kilns and the emission standards for the Chinese cement industry. Historical emissions of sulfur dioxide (SO 2), nitrogen oxides (NO X), carbon monoxide (CO), particulate matter (PM) and carbon dioxide (CO 2) were estimated for the years 1990-2008, and future emissions were projected up to 2020 based on current energy-related and emission control policies. Compared with the historical high (4.36 Tg of PM 2.5, 7.16 Tg of PM 10 and 10.44 Tg of TSP in 1997), PM emissions are predicted to drop substantially by 2020, despite the expected tripling of cement production. Certain other air pollutant emissions, such as CO and SO 2, are also predicted to decrease with the progressive closure of shaft kilns. NO X emissions, however, could increase because of the promotion of precalciner kilns and the rapid increase of cement production. CO 2 emissions from the cement industry account for approximately one eighth of China's national CO 2 emissions. Our analysis indicates that it is possible to reduce CO 2 emissions from this industry by approximately 12.8% if advanced energy-related technologies are implemented. These technologies will bring co-benefits in reducing other air pollutants as well.

  6. Changes in cervical muscle activity according to the traction force of an air-inflatable neck traction device

    PubMed Central

    Kang, Jong Ho; Park, Tae-Sung

    2015-01-01

    [Purpose] The purpose of this study was to analyze cervical muscle activity at different traction forces of an air-inflatable neck traction device. [Subjects] Eighteen males participated in this study. [Methods] The subjects put on an air-inflatable neck traction device and the traction forces administered were 40, 80, and 120 mmHg. The electromyography (EMG) signals of the splenius capitis, and upper trapezius were measured to assess the muscle activity. [Results] The muscle activity of the splenius capitis was significantly higher at 80, and 120 mmHg compared to 40 mmHg. The muscle activity of the upper trapezius did not show significant differences among the traction forces. [Conclusion] Our research result showed that the air-inflatable home neck traction device did not meet the condition of muscle relaxation. PMID:26504278

  7. Changes in cervical muscle activity according to the traction force of an air-inflatable neck traction device.

    PubMed

    Kang, Jong Ho; Park, Tae-Sung

    2015-09-01

    [Purpose] The purpose of this study was to analyze cervical muscle activity at different traction forces of an air-inflatable neck traction device. [Subjects] Eighteen males participated in this study. [Methods] The subjects put on an air-inflatable neck traction device and the traction forces administered were 40, 80, and 120 mmHg. The electromyography (EMG) signals of the splenius capitis, and upper trapezius were measured to assess the muscle activity. [Results] The muscle activity of the splenius capitis was significantly higher at 80, and 120 mmHg compared to 40 mmHg. The muscle activity of the upper trapezius did not show significant differences among the traction forces. [Conclusion] Our research result showed that the air-inflatable home neck traction device did not meet the condition of muscle relaxation.

  8. Fractionating soluble microbial products in the activated sludge process.

    PubMed

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Sheng, Guo-Ping; Yu, Han-Qing

    2010-04-01

    Soluble microbial products (SMP) are the pool of organic compounds originating from microbial growth and decay, and are usually the major component of the soluble organic matters in effluents from biological treatment processes. In this work, SMP in activated sludge were characterized, fractionized, and quantified using integrated chemical analysis and mathematical approach. The utilization-associated products (UAP) in SMP, produced in the substrate-utilization process, were found to be carbonaceous compounds with a molecular weight (MW) lower than 290 kDa which were quantified separately from biomass-associated products (BAP). The BAP were mainly cellular macromolecules with an MW in a range of 290-5000 kDa, and for the first time were further classified into the growth-associated BAP (GBAP) with an MW of 1000 kDa, which were produced in the microbial growth phase, and the endogeny-associated BAP (EBAP) with an MW of 4500 kDa, which were generated in the endogenous phase. Experimental and modeling results reveal that the UAP could be utilized by the activated sludge and that the BAP would accumulate in the system. The GBAP and EBAP had different formation rates from the hydrolysis of extracellular polymeric substances and distinct biodegradation kinetics. This study provides better understanding of SMP formation mechanisms and becomes useful for subsequent effluent treatment.

  9. Production of charcoal and activated carbon at elevated pressure

    SciTech Connect

    Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr.

    1995-12-31

    With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

  10. Active control of spectral detail radiated by an air-loaded impacted membrane

    NASA Astrophysics Data System (ADS)

    Rollow, J. Douglas, IV

    An active control system is developed to independently operate on the vibration of individual modes of an air-loaded drum head, resulting in changes in the acoustic field radiated from the structure. The timbre of the system is investigated, and techniques for changing the characteristic frequencies by means of the control system are proposed. A feedforward control system is constructed for empirical investigation of this approach, creating a musical instrument which can produce a variety of sounds not available with strictly mechanical systems. The work is motivated by applications for actively controlled structures, active control of sound quality, and musical acoustics. The instrument consists of a Mylar timpano head stretched over an enclosure which has been outfitted with electroacoustic drivers. Sensors are arranged on the surface of the drum head and combined to measure modal vibration, and the array of drivers allows independent control of these modes. A signal processor is used to form modal control filters which can modify the loading of each mode, changing the time-dependent and spectral characteristics, and therefore the timbre, of the radiated sound. A theoretical formulation of active control of structural vibration by means of fluid-coupled actuators is expressed, and computational solutions show the effects of fluid loading and the radiated field. Experimental results with the new instrument are shown, with implementations of the control system providing a demonstrated degree of control, and illustrating several limitations of such systems.

  11. Effects of negative air ions on activity of neural substrates involved in autonomic regulation in rats

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoko; Yanagita, Shinya; Amemiya, Seiichiro; Kato, Yumi; Kubota, Natsuko; Ryushi, Tomoo; Kita, Ichiro

    2008-07-01

    The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.

  12. Activated air produced by shielded sliding discharge plasma mediates plasmid DNA delivery to mammalian cells.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Heller, Richard

    2015-12-01

    Cold plasma is emerging as a potential method for medical applications. The current study assessed the efficacy of a novel cold plasma reactor based on shielded sliding discharge producing cathode-directed streamers generated in ambient air for the delivery of plasmid DNA. Experiments were performed with mouse melanoma cells (B16F10) and human keratinocyte cells (HaCaT) inoculated with plasmid DNA encoding luciferase. Quantitative results measured over a 72-h period displayed luciferase expression levels as high as 5-fold greater in cells exposed to plasma-activated air (PAA) than levels obtained from the inoculation of plasmid DNA alone (P < 0.05, P < 0.01). No effect on cell viability was observed. Delivery of plasmid encoding GFP to HaCaT cells seeded on polycaprolactone (PCL) scaffolds was confirmed by immunostaining. The use of cold plasma for DNA delivery is attractive as it provides a non-viral, non-invasive method where the electrode or the plasma itself never directly contacts the exposed site. The current device design provides localized DNA transfer using a novel technology. Our report suggests PAA warrants further exploration as an alternative or supplemental approach for DNA transfer.

  13. Termination and activation of store-operated cyclic AMP production

    PubMed Central

    Maiellaro, Isabella; Lefkimmiatis, Konstantinos; Moyer, Mary Pat; Curci, Silvana; Hofer, Aldebaran M

    2012-01-01

    Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1-AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca2+] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this ‘store-operated’ pathway requires the ER Ca2+ sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET-based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store-operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca2+ entry via the plasma membrane Ca2+ channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca2+/cAMP crosstalk system. PMID:22681560

  14. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts.

    PubMed

    Slominski, Andrzej; Zbytek, Blazej; Semak, Igor; Sweatman, Trevor; Wortsman, Jacobo

    2005-05-01

    It has been previously documented that human skin cells including epidermal keratinocytes and dermal fibroblasts produce and process proopiomelanocortin (POMC), corticotropin releasing hormone (CRH), and express functional CRH receptors type-1 (CRH-R1). The skin also has corticosteroidogenic activity, suggesting a functional connection between these elements. In the current study, we found that human dermal fibroblasts (but not normal epidermal keratinocytes) respond to CRH with stimulation of cAMP, with POMC gene and protein expression, and ACTH production and release. Furthermore, CRH and ACTH stimulate production of corticosterone in fibroblasts, with ACTH being more potent. Although cortisol-immunoreactivity accumulation/production in fibroblasts has been detected by ELISA, it appears to be constitutive (not affected by CRH or ACTH). These effects are absent in keratinocytes. Therefore, we propose that fibroblasts but not keratinocytes display a functional CRH-POMC-corticosteroid axis organized similarly to the hypothalamus-pituitary-adrenal (HPA) axis. However, it diverges from the HPA organization in its distal step, where CRH and ACTH stimulate production of corticosterone, instead of cortisol.

  15. On the production of active nitrogen by thunderstorms over New Mexico

    NASA Astrophysics Data System (ADS)

    Ridley, B. A.; Dye, J. E.; Walega, J. G.; Zheng, J.; Grahek, F. E.; Rison, W.

    1996-09-01

    In July and August of 1989 the National Center for Atmospheric Research (NCAR) Sabreliner jet aircraft was used to probe electrically active and inactive convective storms over west central New Mexico to examine the production of odd nitrogen in the middle and upper troposphere by thunderstorms. In the anvil outflow or cloud top region of active and nonactive storms, the majority of flights showed that O3 was reduced relative to the extracloud air owing to transport of ozone-poor air from lower altitudes. A similar result was found for active nitrogen (NOx) and total odd nitrogen (NOy) in nonelectrically active storms, but the reduction in NOy was also enhanced by removal of soluble constituents during convective transport. Examples of efficient removal from the gas phase are described. There was no evidence of O3 production by lightning discharges. Indeed, O3 was a good tracer over the lifetime (˜1 hour) of the storms. During the active-to-mature stage of air mass thunderstorms, large enhancements in active nitrogen were observed in the anvil altitude region (9-11.8 km) and, in one case, in the midlevel outflow (near 7 km) of a dissipating thunderstorm. Two thunderstorms allow good estimates of the NOx production by lightning within or transport to the upper altitude region (8-11.8 km). Thunderstorms of August 12 and August 19 yield amounts in the range of 253-296 kg(N) and 263-305 kg(N), respectively. If, as an exercise, these amounts are extrapolated to the global scale on the basis of the number of cloud-to-ground and intracloud lightning flashes counted or estimated for each storm and a global flash frequency of 100 s-1 the result is 2.4-2.7 and 2.0-2.2 Tg(N)/yr. Alternatively, an estimate for the two storms made on the basis of the average number of thunderstorms that occur per day globally (44,000) yields amounts in the range of 4.1-4.7 and 4.2-4.9 Tg(N)/yr, respectively. These estimates only apply to the production or transport of lightning-generated NOx

  16. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    SciTech Connect

    Not Available

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  17. Sociophonetic Variation in the Production and Perception of Obstruent Voicing in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Rohena-Madrazo, Marcos

    2011-01-01

    This dissertation presents an instrumental study of variation in fricative voicing in Buenos Aires Spanish (BAS), particularly with respect to the devoicing change of the postalveolar fricative: /y/greater than/[function of]/. It proposes a novel way of determining the completion of this change by comparing the percentage voicing of the…

  18. 76 FR 72769 - National Emissions Standards for Hazardous Air Pollutants: Mineral Wool Production and Wool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... Web site is an ``anonymous access'' system, which means the EPA will not know your identity or contact... bag leak detection systems BTF beyond the floor CAA Clean Air Act CalEPA California EPA CA-REL... Flexibility Analysis IRIS Integrated Risk Information System kg/MG kilogram/megawatt km kilometer LAER...

  19. The Atmospheric Infrared Sounder (AIRS) on Aqua: instrument stability and data products for climate observations

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, M.; Aumann, H.; Strow, L.; Broberg, S.; Gaiser, S.

    2003-01-01

    30th International Symposium on Remote Sensing of the Environment (ISRSE) NASA Honolulu, Hawaii, USAThis paper discusses the stability of the AIRS instrument as measured pre-flight and in-orbit. In order differentiate instrument related changes with true changes in climate observations, the instrument stability must be demonstrated.

  20. 78 FR 26301 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Consumer Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Illinois; Consumer... is proposing to approve a revision to the Illinois State Implementation Plan (SIP). This approval... language to clarify VOC limit applicability for architectural and industrial maintenance coatings into...

  1. 76 FR 65616 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Central Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... its submission, AHRI stated that ``systems with P WOFF greater than 100 are very efficient (18-20 SEER... central air conditioning systems that otherwise would be right-sized for smaller or more efficient homes.... Discussion A. Testing Burden and Complexity B. Individual Component Testing C. Length of Shoulder and...

  2. Steady-state radiolysis and product analysis of aqueous diphenyloxide in the presence of air and N 2O

    NASA Astrophysics Data System (ADS)

    Popov, P.; Getoff, N.; Grodkowski, J.; Zimek, Z.; Chmielewski, A. G.

    2004-01-01

    The radiation-induced decomposition and product analysis of diphenyloxide (DPO; diphenylether), selected as a representative of the toxic polyaromatic, volatile, hydrocarbons produced by combustion of coal, was investigated in aqueous solution. In the presence of air an initial degradation yield, Gi(-DPO)0=4.6 was obtained. Phenol ( Gi=1.3) appeared to be the major decomposition product in addition to a number of hydroxy-compounds as well as a mixture of aldehydes and carboxylic acids. DPO as well as the resulting products can be decomposed at an absorbed radiation dose of about 5 kGy. By performing analogous studies in solution saturated with N 2O an initial yield of Gi(-DPO)=5.0 and similar radiolytic products were found. Again phenol ( Gi=1.5) is observed as the main product. In this case a much lower radiation dose (˜2.5 kGy) is found to be sufficient for the decomposition of DPO and its radiolytic products. Most likely reaction mechanisms are presented for explanation of the observed products.

  3. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    PubMed

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  4. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting...

  5. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting...

  6. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting...

  7. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting...

  8. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting...

  9. Land processes distributed active archive center product lifecycle plan

    USGS Publications Warehouse

    Daucsavage, John C.; Bennett, Stacie D.

    2014-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the National Aeronautics and Space Administration (NASA) Earth Science Data System Program worked together to establish, develop, and operate the Land Processes (LP) Distributed Active Archive Center (DAAC) to provide stewardship for NASA’s land processes science data. These data are critical science assets that serve the land processes science community with potential value beyond any immediate research use, and therefore need to be accounted for and properly managed throughout their lifecycle. A fundamental LP DAAC objective is to enable permanent preservation of these data and information products. The LP DAAC accomplishes this by bridging data producers and permanent archival resources while providing intermediate archive services for data and information products.

  10. Viscous Product from Activated Sludge by Methanol Fermentation

    PubMed Central

    Davis, Edwin N.; Wallen, Lowell L.

    1976-01-01

    Aeration of activated sludge with 3 to 4% added methanol for 5 to 7 days yields an odorless, highly viscous (5,000 to 10,000 centipoise), black, pudding-like product containing glycan(s) linked other than α-1-4 or β-1-3. Backseeding gives maximum thickening in 3 to 4 days. Incomplete acid hydrolysis of the black product gives a 0.27% solution of reducing sugars (75% glucose) which is an 11.4% yield from the added methanol. Backseeding into either centrifuge supernatant or 0.1% yeast extract in tap water gives a light-colored polymer. Viscosity decreases during extended sterile cold storage. A 5% salt addition lowers viscosity one-half. From 6 to 12 colony types appear on plating backseeded media, but none of these isolates is a reliable polymer former. PMID:16345172

  11. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.

  12. Natural Product Compounds with Aromatase Inhibitory Activity: An Update

    PubMed Central

    Balunas, Marcy J.; Kinghorn, A. Douglas

    2010-01-01

    Several synthetic aromatase inhibitors are currently in clinical use for the treatment of postmenopausal women with hormone-receptor positive breast cancer. However, these treatments may lead to untoward side effects and so a search for new aromatase inhibitors continues, especially those for which the activity is promoter-specific, targeting the breast-specific promoters I.3 and II. Recently, numerous natural product compounds have been found to inhibit aromatase in non-cellular, cellular, and in vivo studies. These investigations, covering the last two years, as well as additional studies that have focused on the evaluation of natural product compounds as promoter-specific aromatase inhibitors or as aromatase inducers, are described in this review. PMID:20635310

  13. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    PubMed

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG

  14. Intercomparison of Recent Anomaly Time-Series of OLR as Observed by CERES and Computed Using AIRS Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.

    2011-01-01

    This paper compares recent spatial and temporal anomaly time series of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the 7 year time period September 2002 through February 2010. This time period is marked by a substantial decrease of OLR, on the order of +/-0.1 W/sq m/yr, averaged over the globe, and very large spatial variations of changes in OLR in the tropics, with local values ranging from -2.8 W/sq m/yr to +3.1 W/sq m/yr. Global and Tropical OLR both began to decrease significantly at the onset of a strong La Ni a in mid-2007. Late 2009 is characterized by a strong El Ni o, with a corresponding change in sign of both Tropical and Global OLR anomalies. The spatial patterns of the 7 year short term changes in AIRS and CERES OLR have a spatial correlation of 0.97 and slopes of the linear least squares fits of anomaly time series averaged over different spatial regions agree on the order of +/-0.01 W/sq m/yr. This essentially perfect agreement of OLR anomaly time series derived from observations by two different instruments, determined in totally independent and different manners, implies that both sets of results must be highly stable. This agreement also validates the anomaly time series of the AIRS derived products used to compute OLR and furthermore indicates that anomaly time series of AIRS derived products can be used to explain the factors contributing to anomaly time series of OLR.

  15. Overview of the Activities to Replace a Radioactive Air Emissions System

    SciTech Connect

    SWAN, R.J.

    2002-07-01

    The Plutonium Finishing Plant (PFP) is located on the Department of Energy's Hanford Reservation in Richland, Washington. This facility recently initiated replacement of its main stack's sample probe. The facility has historically handled and processed plutonium. When problems with intermittent continuous air monitor (CAM) alarms on the stack's sampling system were encountered, concerns with the integrity of the overall ventilation system were raised. Many activities were launched by PFP to resolve the issue, including an investigation of the sampling system, installation of a temporary shrouded probe for comparison sampling and replacement of the existing rake probe. To address concerns raised by the regulators (the Environmental Protection Agency and the Washington State Department of Health) ongoing meetings were held. It was concluded that the probe should be replaced and the historical depositions analyzed.

  16. Underground air returns as active transportation pathways for radon gas entry into homes.

    PubMed

    Kearfott, K J; Metzger, R L; Holbert, K E

    1992-12-01

    Levels of elevated 222Rn in homes can fail to correlate with measured radium concentrations in soils and surrounding rocks for reasons which can include water sources, building materials, and unusual variations in climate or building construction. Several homes were identified in the Phoenix, AZ metropolitan area with soil radium concentrations of < 0.074 Bq g-1 (2.0 pCi g-1) which had elevated radon concentrations unexplained by geological sources alone. Continuous monitoring of eight houses under different conditions of cooling system usage revealed a definite role of the underground air returns as active transport pathways contributing to the enhancement of the indoor concentration of 222Rn in six of the houses. The ratio of indoor 222Rn concentrations on days when the cooling system was operated continuously compared to days the system was off ranged from essentially one up to a factor exceeding 10.

  17. A prediction of accelerator-produced activation products.

    PubMed

    Culp, Todd

    2007-02-01

    The operational radiation protection issues associated with the Z-Machine accelerator located at Sandia National Laboratories are large: a variety of materials can be placed into the machine; these materials can be subjected to a variety of nuclear reactions, producing a variety of activation products. Without full understanding of the most likely contaminants, a realistic identification of the radiological hazards and appropriate controls is not possible. This paper presents a process developed to provide a realistic prediction of the accelerator-produced radionuclides of interest.

  18. Digital Wave Processor Products in the Cluster Active Archive

    NASA Astrophysics Data System (ADS)

    Yearby, K. H.; Alleyne, H. St. C.; Walker, S. N.; Bates, I.; Gough, M. P.; Buckley, A.; Carozzi, T. D.

    The Digital Wave Processor (DWP) is the central control and data processing instrument for the Cluster Wave Experiment Consortium. DWP products in the Cluster Active Archive (CAA) provide a mainly supporting function for the rest of the consortium. This includes a time correction dataset which allows the standard timing accuracy of 2 ms to be improved to around 20 μs, and experiment command and status datasets which show what commands have been sent to the experiments, and the resulting status. DWP also contains a particle correlator experiment that computes the auto-correlation of electron counts received by the PEACE electron experiment via an inter-experiment link.

  19. Outdoor air pollution activities at the Wisconsin State Laboratory of Hygiene.

    PubMed

    Schauer, Jamie J; Lough, Glynis C; Sonzogni, William C

    2003-01-01

    Outdoor air quality testing at the Wisconsin State Laboratory of Hygiene (WSLH) began in the 1970s with the advent of the federal Clean Air Act. Since then, air quality has emerged as a major environmental issue equal to or more important, from a public health standpoint, than water pollution. Epidemiological studies have shown that health issues are not limited to highly urbanized areas. In Wisconsin, local climatic conditions caused by the Great Lakes can result in unhealthy conditions even in relatively pristine areas. Air pollution affects thousands of Wisconsin residents each year, and it can be severe enough to require a physician's care. Although certain air testing (e.g., ozone) is done regionally by in situ monitors, the WSLH analyzes a variety of air pollutants including ozone precursor hydrocarbons, air particulates, and toxic metals. Exposure to aerosols containing metals may not follow typical patterns of air pollution based on routinely monitored particle mass.

  20. Production of fission and activation product isotopes at Sandia National Laboratories

    SciTech Connect

    Coats, R.L.

    1997-08-01

    The mission of the Sandia National Laboratories (SNL) Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF) has recently changed from support of Defense and other programs to support of the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP). SNL`s primary role, in support of IPDP, is ensuring a reliable supply of {sup 99}Mo to the US health care system. SNL will also play a role of complementing the isotope production of other DOE Reactor facilities such as High Flux Isotope Reactor (HFIR) at Oak Ridge, Tennessee; High Flux Beam Reactor (HFBR) at Brookhaven, New York, ad Advanced Test Reactor (ATR) in Idaho. The unique characteristics that the SNL facilities offer to the IPDP facility capability are simplicity, multiple irradiation locations, ready irradiation space access and co-located hot cell facilities capable of processing a short decay fission product stream. The SNL {sup 99}Mo effort is characterized elsewhere and this paper is intended to describe the production of additional isotopes for that can be produced medical and other uses planned to start soon after the {sup 99}Mo capability has been established. Isotope production in the SNL facilities is through fission or by neutron activation.

  1. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  2. Airborne Measurements of Emissions from Oil and Gas Exploration and Production Activities in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Roiger, A.; Raut, J.; Rose, M.; Weinzierl, B.; Reiter, A.; Thomas, J. L.; Marelle, L.; Law, K.; Schlager, H.

    2013-12-01

    A rapid decline of Arctic sea ice is expected to promote hydrocarbon extraction in the Arctic, which in turn will increase emissions of atmospheric pollutants. To investigate impacts of different pollution sources on the Arctic atmosphere, an aircraft campaign based in northern Norway was conducted in July 2012, as a part of the EU ACCESS (Arctic Climate Change Economy and Society) project. One of the flights focused on measuring emissions from various oil/gas exploration and production facilities ~110 km south of the Arctic Circle in the Norwegian Sea. Fresh and aged (from 5 minutes to 2.5 hours old) exhaust plumes from oil/gas production platforms, drilling rigs and tankers were probed with extensive aerosol and trace gas instrumentations. It was found that different types of facilities emit plumes with distinct chemical compositions. For example, tanker plumes were characterized by high SO2 concentration and high fraction of non-volatile particles while plumes from oil/gas production platforms showed significant increase in the nucleation mode particle concentration. Drilling rigs were found to be high black carbon emitters. In addition to the fresh plumes, relatively aged plumes (1.5 - 2.5 hours old) from a facility under development were measured. Even in these aged plumes, total particle concentrations were more than 6 times higher than the background concentration. Therefore, emissions from oil and gas activities are expected to have a significant impact on local air quality and atmospheric composition. With the aid of FLEXPART-WRF (a Lagrangian dispersion model) simulations, the results of this study will be used to validate and improve current emission inventories. In the future, these improved emission inventories can be used in regional and global chemical transport models to more accurately predict future Arctic air pollution.

  3. 78 FR 79391 - Foreign-Trade Zone (FTZ) 22-Chicago, Illinois, Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Production Activity, Electrolux Home Care Products Inc., (Kitting of Home Care Products), Minooka, Illinois... production activity to the FTZ Board on behalf of Electrolux Home Care Products Inc. (Electrolux), located in... FTZ 22. The facility is used for the distribution and kitting of floor care and other small...

  4. Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron.

    PubMed

    Gregory, Matthew J; Menary, Robert C; Davies, Noel W

    2005-07-27

    Safranal is the compound most responsible for the aroma of saffron spice and is, together with the suite of crocin pigments, the major determinant of the product quality. The content of safranal and pigments in saffron is determined by the method of postharvest treatment of the Crocus stigmas. A range of drying treatments involving different temperatures, with or without air flow, was applied to stigmas from three harvest dates. Dual solvent extractions combined with quantitative measurement using GC and HPLC-UV-vis techniques were used to analyze the secondary metabolite contents of the products. It was demonstrated that these methods overcame the previously reported problems in measuring the concentration of both pigments and safranal in saffron caused by the very different polarities and thus solubilities of these compounds. The results showed that a brief (20 min) initial period at a relatively high temperature (between 80 and 92 degrees C) followed by continued drying at a lower temperature (43 degrees C) produced saffron with a safranal content up to 25 times that of saffron dried only at lower temperatures. Evidence was provided suggesting that drying with significant air flow reduced the safranal concentration. The results, moreover, indicated that high-temperature treatment had allowed greater retention of crocin pigments than in saffron dried at intermediate temperatures (46-58 degrees C). The biochemical implications of the various treatments are discussed in relation to the potential for optimizing color and fragrance quality in the product.

  5. Long-term antibacterial efficacy of air plasma-activated water

    NASA Astrophysics Data System (ADS)

    Traylor, Matthew J.; Pavlovich, Matthew J.; Karim, Sharmin; Hait, Pritha; Sakiyama, Yukinori; Clark, Douglas S.; Graves, David B.

    2011-11-01

    Indirect air dielectric barrier discharge in close proximity to water creates an acidified, nitrogen-oxide containing solution known as plasma-activated water (PAW), which remains antibacterial for several days. Suspensions of E. coli were exposed to PAW for either 15 min or 3 h over a 7-day period after PAW generation. Both exposure times yielded initial antibacterial activity corresponding to a ~5-log reduction in cell viability, which decreased at differing rates over 7 days to negligible activity and a 2.4-log reduction for 15 min and 3 h exposures, respectively. The solution remained at pH ~2.7 for this period and initially included hydrogen peroxide, nitrate and nitrite anions. The solution composition varied significantly over this time, with hydrogen peroxide and nitrite diminishing within a few days, during which the antibacterial efficacy of 15 min exposures decreased significantly, while that of 3 h exposures produced a 5-log reduction or more. These results highlight the complexity of PAW solutions where multiple chemical components exert varying biological effects on differing time scales.

  6. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  7. The effect of hyperbaric air on the electric activity of neuronal in vitro networks.

    PubMed

    Stubbe, Marco; Nissen, Matthias; Schroeder, Jessica; Gimsa, Jan

    2015-11-15

    Breathing hyperbaric air or gas mixtures, for example during diving or when working underwater is known to alter the electrophysiological behavior of neuronal cells, which may lead to restricted cognition. During the last few decades, only very few studies into hyperbaric effects have been published, especially for the most relevant pressure range of up to 10 bar. We designed a pressurized measuring chamber to record pressure effects on the electrical activity of neuronal networks formed by primary cells of the frontal cortex of NMRI mice. Electrical activity was recorded with multi-electrode arrays (MEAs) of glass neuro chips while subjected to a step-by-step pressure increase from atmospheric pressure (1 bar) to 2 and 4 bar, followed by a decompression to 1 bar, in order to record recovery effects. The effects of pressure on the total spike rates (TSRs), which were averaged from at least 45 chips, were detected in two cell culture media with different compositions. In a DMEM medium with 6% horse serum, the TSR was increased by 19% after a pressure increase to 2 bar and remained stable at 4 bar. In NMEM medium with 2% B27, the TSR was not altered by a pressure increase to 2 bar but increased by 9% at 4 bar. After decompression to 1 bar, the activities decreased to 76% and 101% of their respective control levels in the two media. MEA recordings from neuronal networks in miniaturized hyperbaric measuring chambers provide new access for exploring the neuronal effects of hyperbaric breathing gases.

  8. Cleaning practices and cleaning products in nurseries and schools: to what extent can they impact indoor air quality?

    PubMed

    Wei, W; Boumier, J; Wyart, G; Ramalho, O; Mandin, C

    2016-08-01

    In the framework of a nationwide survey on indoor air quality conducted from September 2009 to June 2011 in 310 nurseries, kindergartens, and elementary schools in all regions of France, cleaning practices and products were described through an extensive questionnaire completed on-site by expert building inspectors. The questionnaire included the cleaning frequencies and periods, cleaning techniques, whether windows were open during cleaning, and the commercial names of the products used. Analysis of the questionnaire responses showed that cleaning was generally performed daily for furniture and floors. It was performed mostly in the evening with wet mopping and with one or more windows open. Five hundred eighty-four different cleaning products were listed, among which 218 safety data sheets (SDSs) were available and analyzed. One hundred fifty-two chemical substances were identified in the SDSs. The typical substances in cleaning products included alcohols, chlorides, terpenes, aldehydes, and ethers; more than half of them are irritants. Two endocrine disruptors, 2-phenylphenol and Galaxolide, were identified in two cleaning products used every day to clean the floors, in seven kindergartens and in a nursery respectively. Eleven reactive substances containing C=C double bonds, mostly terpenes, were identified in a wide variety of cleaning products.

  9. Production and Characterization of High Repetition Rate Terahertz Radiation in Femtosecond-Laser-Induced Air Plasma

    DTIC Science & Technology

    2009-03-01

    and plasma signal. The air plasma intensity was measured using a 40 kHz ultrasonic transducer, while the terahertz radiation was measured by a... calibrate the time axis of the streak camera ................................................... 28 8. Processed data used to calibrate the time axis of...field can be measured 5 directly, but is difficult to manipulate and requires bulky waveguides. However, in optics, radiation is viewed as light

  10. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    SciTech Connect

    Jarvis, Ian W.H.; Bergvall, Christoffer; Bottai, Matteo; Westerholm, Roger; Stenius, Ulla; Dreij, Kristian

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  11. Field verification of sound attenuation modeling and air emission testing in support of missile motor disposal activities.

    PubMed

    McFarland, Michael J; Palmer, Glenn R; Rasmussen, Steve L; Kordich, Micheal M; Pollet, Dean A; Jensen, James A; Lindsay, Mitchell H

    2006-07-01

    The U.S. Department of Defense-approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile (ICBM) motors, as well as the destruction of obsolete or otherwise unusable ICBM motors through open burn/open detonation (OB/OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of volatile organic compounds (VOCs). Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 81,374 lb without generating adverse noise levels within populated areas. In conjunction with collecting noise-monitoring data, air emissions were collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion-fixed gases, VOCs, and chlorides was monitored during the 81,374-lb NEW detonation event. Comparison of field measurements to predictions generated from the US Navy energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fire ball expanded, organic compounds, as well as CO, continued to oxidize as the combustion gases mixed with ambient air. VOC analysis of air samplers confirmed the presence of chloromethane, vinyl chloride, benzene, toluene, and 2-methyl-1-propene. Qualitative chloride analysis indicated that gaseous HCl was generated at low concentrations, if at all.

  12. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium-Air Batteries.

    PubMed

    Jeong, Yo Sub; Park, Jin-Bum; Jung, Hun-Gi; Kim, Jooho; Luo, Xiangyi; Lu, Jun; Curtiss, Larry; Amine, Khalil; Sun, Yang-Kook; Scrosati, Bruno; Lee, Yun Jung

    2015-07-08

    Among many challenges present in Li-air batteries, one of the main reasons of low efficiency is the high charge overpotential due to the slow oxygen evolution reaction (OER). Here, we present systematic evaluation of Pt, Pd, and Ru nanoparticles supported on rGO as OER electrocatalysts in Li-air cell cathodes with LiCF3SO3-tetra(ethylene glycol) dimethyl ether (TEGDME) salt-electrolyte system. All of the noble metals explored could lower the charge overpotentials, and among them, Ru-rGO hybrids exhibited the most stable cycling performance and the lowest charge overpotentials. Role of Ru nanoparticles in boosting oxidation kinetics of the discharge products were investigated. Apparent behavior of Ru nanoparticles was different from the conventional electrocatalysts that lower activation barrier through electron transfer, because the major contribution of Ru nanoparticles in lowering charge overpotential is to control the nature of the discharge products. Ru nanoparticles facilitated thin film-like or nanoparticulate Li2O2 formation during oxygen reduction reaction (ORR), which decomposes at lower potentials during charge, although the conventional role as electrocatalysts during OER cannot be ruled out. Pt-and Pd-rGO hybrids showed fluctuating potential profiles during the cycling. Although Pt- and Pd-rGO decomposed the electrolyte after electrochemical cycling, no electrolyte instability was observed with Ru-rGO hybrids. This study provides the possibility of screening selective electrocatalysts for Li-air cells while maintaining electrolyte stability.

  13. Chocolate consumption, fecal water antioxidant activity, and hydroxyl radical production.

    PubMed

    Record, Ian R; McInerney, Jennifer K; Noakes, Manny; Bird, Anthony R

    2003-01-01

    As part of a larger study into the effects of polyphenols derived from chocolate on bowel health we have compared the effects of consumption of chocolate containing either 200 mg of flavanols and related procyanidins or a similar chocolate containing less than 10 mg of polyphenols on fecal free radical production and antioxidant activity in 18 volunteers. In a double-blind crossover trail volunteers consumed chocolate for two 4-wk periods separated by a 4-wk washout period. During the time the volunteers consumed the chocolate they also consumed a low-polyphenol diet. Free radical production in the fecal water was lowered from 122 +/- 10 micromol/l/h to 94 +/- 9 micromol/l/h (P = 0.009) when the high procyanidin chocolate diet was consumed and from 117 +/- 14 micromol/l/h to 86 +/- 12 micromol/l/h when the low procyanidin chocolate was consumed (P = 0.014). Fecal water antioxidant capacity measured by either the Trolox equivalent antioxidant capacity or ferric reducing ability of plasma procedure was not significantly affected. Consumption of either chocolate reduced the production of free radicals in fecal water. This suggests that some component of the chocolate other than the flavanols and related procyanidins may have been effective.

  14. Prostanoid production in the presence of platelet activation in hypoxic cocaine-treated rats.

    PubMed

    Togna, G; Graziani, M; Sorrentino, C; Caprino, L

    1996-01-01

    To extend our previous in vitro data, we investigated the effects of cocaine on thromboxane A2 (TXA2) and prostacyclin (PGI2) production in vivo in the rat. To obtain the slight platelet activation that our in vitro experiments showed useful to highlight the effect of cocaine, we infused cocaine in rats in the presence of platelet-activating factors (circulation of blood through a perspex vascular device or by infusion of sodium arachidonate) and in various respiratory conditions. Experiments were conducted in rats breathing atmospheric air (normoxic conditions) and in rats breathing an oxygen-poor mixture (hypoxic conditions). In rats under hypoxic conditions cocaine invariably increased TXA2 plasma levels, whereas in normoxic conditions it increased TXA2 only in the presence of platelet-activating factors. Cocaine significantly increased PGI2 plasma levels in arachidonate-treated rats in hypoxic respiratory conditions; in normoxic conditions cocaine left PGI2 levels unchanged. These results support the hypothesis that in cocaine users who have concomitant pathological conditions able to activate platelets, such as atherosclerosis, coronary vasospasm or ischaemia, or both, cocaine may contribute to the onset of thrombotic phenomena by interfering with the prostaglandin system.

  15. Cloud parcel modelling of CCN activation in megacity air based on observations from Beijing and Guangzhou

    NASA Astrophysics Data System (ADS)

    Su, H.; Reutter, P.; Trentmann, J.; Rose, D.; Gunthe, S.; Simmel, M.; Nowak, A.; Wiedensohler, A.; Zhu, T.; Pöschl, U.

    2009-04-01

    ., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys. Discuss., 8, 17343-17392, 2008. Simmel, M. and Wurzler, S.: Condensation and activation in sectional cloud microphysical models., Atmospheric Research 80(2-3): 218-236., 2006. Wiedensohler, A., Cheng, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof, M., Birmili, W., Wu, Z. J., Hu, M., Zhu, T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S., Rose, D., and Pöschl, U.: Rapid Aerosol Particle Growth and Increase of Cloud Condensation Nucleus (CCN) Activity by Secondary Aerosol Formation: a Case Study for Regional Air Pollution in North Eastern China, J. Geophys. Res., submitted, 2008

  16. Sustainable production of biologically active molecules of marine based origin.

    PubMed

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules.

  17. Mucus accumulation and necrosis of the ventral air pouch in a marabou stork (Leptoptilos crumeniferus) with productive rhinitis.

    PubMed

    Collarile, Tommaso; Di Girolamo, Nicola; Selleri, Paolo; Melidone, Raffaele

    2013-09-01

    A captive-born marabou stork (Leptoptilos crumeniferus) was presented for swelling of the ventral air pouch of 1 month's duration. The pouch appeared fluid filled, and its distal third wall was markedly inspissated. The thickened distal portion of the pouch wall was removed surgically. During anesthesia, mucous discharge from the nares was evident and the nasal mucosa was hyperemic. Aeromonas and Proteus species were isolated from a nasal culture. Postoperative therapy that consisted of nasal flushing, antimicrobial agents, and nonsteroidal anti-inflammatory drugs was effective in managing the disease. On histologic examination, diffuse hemorrhage, necrosis, and multifocal vasculitis with moderate-to-severe heterophilic inflammation were present within sections of the ventral pouch. To our knowledge this is the first report of a mucus-filled ventral air pouch with associated pathologic changes secondary to a productive infection of the upper respiratory tract in a marabou stork. The unique communication between nasal cavities and the ventral air pouch should be considered in future cases of respiratory infection in marabou storks.

  18. Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Dingkun; Wang, Zhihua; Ding, Can; He, Yong; Whiddon, Ronald; Cen, Kefa

    2016-11-01

    This research aims to investigate the influence of gas pressure (0.1 Mpa-0.2 Mpa) on ozone generation in a parallel multichannel dielectric barrier discharge (DBD) reactor with a narrow gap (0.2 mm). In addition to determining ozone concentration and ozone yield characteristics with gas pressure variation, this paper examines the possible reasons leading to the inconsistency with previous reported results. All the experimental results are plotted on the basis of specific input energy (SIE) in order to conduct the comparison within identical power density. By reviewing the experimental results, the possible cause leading to the inconsistency concerning gas pressure dependences of ozone generation was found using different comparison bases. Results show that ozone generation is slightly suppressed with an increase of gas pressure with an initial increase in SIE. The results of the ozone yield show that an increase of gas pressure would have a favorable effect on ozone production efficiency with an SIE larger than 400 J l-1 in oxygen while ozone yield reaches the maximum at 0.14 Mpa with an SIE larger than 150 J l-1 in air. Increasing gas pressure would lead to a higher critical SIE value at which ozone yield firstly decreases with an increase of SIE both in oxygen and air. The results of nitrogen oxide byproducts show that both NO x byproducts emission and the discharge poisoning effect are suppressed by increasing gas pressure in air plasmas.

  19. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Li, Nan; An, Jingkun; Zhou, Lean; Li, Tian; Li, Junhui; Feng, Cuijuan; Wang, Xin

    2016-02-01

    Carbon black and graphite hybrid air-cathode is proved to be effective for H2O2 production in bioelectrochemical systems. The optimal mass ratio of carbon black to graphite is 1:5 with the highest H2O2 yield of 11.9 mg L-1 h-1 cm-2 (12.3 mA cm-2). Continuous flow is found to improve the current efficiency due to the avoidance of H2O2 accumulation. In the biological system, the highest H2O2 yield reaches 3.29 mg L-1h-1 (0.079 kg m-3day-1) with a current efficiency of 72%, which is higher than the abiotic system at the same current density. H2O2 produced in this system is mainly from the oxygen diffused through this air-cathode (>66%), especially when a more negative cathode potential is applied (94% at -1.0 V). This hybrid air-cathode has advantages of high H2O2 yield, high current density and no need of aeration, which make the synthesis of H2O2 more efficient and economical.

  20. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.

  1. Comparison of the genotoxic activities of extracts from ambient and forest fire polluted air. [Humans

    SciTech Connect

    Viau, C.J.; Lockard, J.M.; Enoch, H.G.; Sabharwal, P.S.

    1982-01-01

    The genotoxicity of airborne organic particles from forest fire smoke was compared to that from nonsmoky (ambient) urban air using the Salmonella reversion assay and the sister chromatid exchange (SCE) assay in cultured human lymphocytes. Salmonella strains TA98 and TA100 were used with and without the addition of Aroclor-induced rat liver homogenate (S9). Each sample induced dose-related increases in mutagenicity and SCE. However, on the basis of the volume of air sampled, the smoke-filled air induced 12 to 14 times more bacterial reversions in TA 100 and 16-38 times more reversion in TA98 than ambient air. Similarly, on a volume basis smoky air induced 43 times more SCE in human lymphocytes than did ambient air. The results indicate that the increased mutagenicity was due not only to the heavier particulate load of the air, but also to the increased specific mutagenicity of the particles.

  2. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin with Intensive Oil and Gas Production

    NASA Astrophysics Data System (ADS)

    Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.

    2015-12-01

    The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.

  3. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry

    NASA Astrophysics Data System (ADS)

    Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.

    An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper

  4. Lightning Activity Analyses with Respect to the SPCZ Location and to Surface Air Humidity Around Tahiti

    NASA Astrophysics Data System (ADS)

    Ortega, P.; Guignes, T.

    2006-12-01

    The South Pacific Convergence Zone (SPCZ) is located from the West Pacific warm pool and trends Southeast towards French Polynesia. The Island Climate Update monthly publishes the mean location deduced from the outgoing long-wave radiation anomalies or higher rainfall. On the other hand, the Wide World Lightning Location Network monthly provides data from which the lightning activity distribution in the 0°-30° South latitude and 150°-240° West longitude area can be drawn. Scanning this rectangle from West to East the location of the maximum lightning activity can be located versus the longitude. Fitting the location of these maximum with a polynomial function leads to a curve comparable with the monthly mean position of the SPCZ, showing that this band of cloudiness is the main source of lightning in this whole area. Besides, relations between surface atmospheric parameters, the number of thunder days and the number of flashes recorded around Tahiti have been analyzed using, the absolute humidity and the lightning activity recorded during the last nine years with the help of CIGRE Lightning Flash Counters. Since it is known that the cloud base is closely related to the boundary layer relative humidity, the aim of the analysis was to sort out a correlation between this parameter and the lightning activity. No correlation has been clearly put in evidence with the number of thunder days but the monthly mean values of the amount of flashes recorded exhibit similar oscillation with air humidity over a 9 year long period including the several phases of the ENSO.

  5. Minimum detectable activity concentration in direct alpha spectrometry from outdoor air samples: continuous monitoring versus separate sampling and counting.

    PubMed

    Pöllänen, R; Siiskonen, T

    2006-02-01

    Rapid method for identifying the presence of alpha particle emitting radionuclides in outdoor air is of paramount importance should a nuclear or radiological incident occur. Minimum detectable activity concentrations of U, U, Pu, and Pu in outdoor air are calculated for two direct alpha spectrometry methods: continuous air monitoring is compared with separate sampling and subsequent alpha particle counting in a vacuum chamber. The radon progeny activity concentration typical for outdoor air and the effects for the alpha particle spectra caused by the properties of the filter and the aerosol particles are taken into account using measurements and Monte Carlo simulations. Continuous air monitoring is a faster method for identifying the presence of (trans)uranium elements when their activity concentration is considerably higher than the typical detection limit. Separate sampling and counting in a vacuum chamber is a more sensitive method when concentrations are close to the detection limit and when the duration of the sampling-counting cycle is greater than approximately 2 h. The method may serve as a tool for rapid field measurements.

  6. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    NASA Astrophysics Data System (ADS)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased

  7. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts.

  8. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants.

    PubMed

    Calderón-Garcidueñas, L; Villarreal-Calderon, R; Valencia-Salazar, G; Henríquez-Roldán, C; Gutiérrez-Castrellón, P; Torres-Jardón, R; Osnaya-Brizuela, N; Romero, L; Torres-Jardón, R; Solt, A; Reed, W

    2008-03-01

    Mexico City children are chronically exposed to significant concentrations of air pollutants and exhibit chronic respiratory-tract inflammation. Epidemiological, controlled human exposures, laboratory-based animal models, and in vitro/in vivo studies have shown that inflammatory, endothelial dysfunction, and endothelial damage mediators are upregulated upon exposure to particulate matter (PM). Endothelial dysfunction is a critical event in cardiovascular disease. The focus of this work was to investigate whether exposure to ambient air pollution including PM(2.5) produces systemic inflammation and endothelial injury in healthy children. We measured markers of endothelial activation, and inflammatory mediators in 52 children age 8.6+/-0.1 yr, residents of Mexico City (n: 28) or of Polotitlán (n: 24), a city with low levels of pollutants. Mexico City children had significant increases in inflammatory mediators and vasoconstrictors, including tumor necrosis factor (TNF)alpha, prostaglandin (PG) E2, C-reactive protein, interleukin-1beta, and endothelin-1. There was a significant anti-inflammatory response, and a downregulation of vascular adhesion molecule-1, intercellular adhesion molecule-1 and -2, and selectins sE and sL. Results from linear regression found TNF a positively associated with 24- and 48-h cumulative levels of PM(2.5), while the 7-d PM(2.5) value was negatively associated with the numbers of white blood cells in peripheral blood in highly exposed children. Systemic subclinical inflammation, increased endothelin- 1, and significant downregulation of soluble adhesion molecules are seen in Mexico City children. Children chronically exposed to fine PM above the standard could be at risk of developing cardiovascular diseases, atherosclerosis, stroke, and other systemic effects later in life.

  9. Simulation of climate change impacts on grain sorghum production grown under free air CO2 enrichment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential impacts of global climate change on crop productivity have drawn much attention in recent years. To investigate these impacts on grain sorghum [Sorghum bicolor (L.) Möench] productivity, we calibrated the CERES-Sorghum model in the Decision Support System for Agrotechnology Transfer (DSSAT...

  10. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  11. Report: EPA Needs to Improve Air Emissions Data for the Oil and Natural Gas Production Sector

    EPA Pesticide Factsheets

    Report #13-P-0161, February 20, 2013. High levels of growth in the oil and natural gas (gas) production sector have underscored the need for EPA to gain a better understanding of emissions and potential risks from the production of oil and gas.

  12. Detection of airborne bacteria in a duck production facility with two different personal air sampling devices for an exposure assessment.

    PubMed

    Martin, Elena; Dziurowitz, Nico; Jäckel, Udo; Schäfer, Jenny

    2015-01-01

    Prevalent airborne microorganisms are not well characterized in industrial animal production buildings with respect to their quantity or quality. To investigate the work-related microbial exposure, personal bioaerosol sampling during the whole working day is recommended. Therefore, bioaerosol sampling in a duck hatchery and a duck house with two personal air sampling devices, a filter-based PGP and a NIOSH particle size separator, was performed. Subsequent, quantitative and qualitative analyses were carried out with" culture independent methods. Total cell concentrations (TCC) determined via fluorescence microscopy showed no difference between the two devices. In average, 8 × 10(6) cells/m(3) were determined in the air of the duck hatchery and 5 × 10(7) cells/m(3) in the air of the duck house. A Generated Restriction Fragment Length Polymorphism (RFLP) pattern revealed deviant bacterial compositions comparing samples collected with both devices. Clone library analyses based on 16S rRNA gene sequence analysis from the hatchery's air showed 65% similarity between the two sampling devices. Detailed 16S rRNA gene sequence analyses showed the occurrence of bacterial species like Acinetobacter baumannii, Enterococcus faecalis, Escherichia sp., and Shigella sp.; and a group of Staphylococcus delphini, S. intermedius, and S. pseudintermedius that provided the evidence of potential exposure to risk group 2 bacteria at the hatchery workplace. Size fractionated sampling with the developed by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) device revealed that pathogenic bacteria would deposit in the inhalable, the thorax, and possibly alveolar dust fraction according to EN481. TCC analysis showed the deposition of bacterial cells in the third stage (< 1μm) at the NIOSH device which implies that bacteria can reach deep into the lungs and contaminate the alveolus after inhalation. Nevertheless, both personal sampling devices

  13. FTIR kinetic, product, and modeling study of the OH-initiated oxidation of 1-butanol in air.

    PubMed

    Cavalli, Fabrizia; Geiger, Harald; Barnes, Ian; Becker, Karl Heinz

    2002-03-15

    A kinetic and product study was performed on the reaction of OH radicals with 1-butanol in a 480 L indoor photoreactor and also in the EUPHORE outdoor smog chamber in Valencia, Spain. Long path in situ FTIR spectroscopy and gas chromatography with photoionization detection were used to analyze reactants and products. Using a kinetic relative rate technique, a rate coefficient of k(OH + 1-butanol) = (8.28 +/- 0.85) x 10(-12) cm3 s(-1) was measured in 740 Torr synthetic air at 298 +/- 2 K. The reaction products observed and their fractional molar yields were (in percent) butanal (51.8 +/- 7.1), propanal (23.4 +/- 3.5), ethanal (12.7 +/- 2.2), and formaldehyde (43.4 +/- 2.4). In addition, the results support the probable formation of 4-hydroxy-2-butanone. Propanal, ethanal, and formaldehyde could also be formed in secondary reactions of some of the primary aldehydic products. However, under the conditions employed in the experiments, the contribution from secondary reactions is very minor. On the basis of the product studies, a detailed atmospheric degradation mechanism was constructed and tested against experimental data by chemical box model calculations. Measured and simulated concentration-time profiles for selected reactants were in excellent agreement.

  14. Ice nucleation active particles in continental air samples over Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Aerosol particles are of central importance for atmospheric chemistry and physics, climate and public health. Some of these particles possess ice nucleation activity (INA), which is highly relevant for cloud formation and precipitation. In 2010, air filter samples were collected with a high-volume filter sampler separating fine and coarse particles (aerodynamic cut-off diameter 3 μm) in Mainz, Germany. In this study, the INA of the atmospheric particles deposited on these filters was determined. Therefore,they were extracted with ultrapure water, which was then measured in a droplet freezing assay, as described in Fröhlich-Nowoisky et al. (2015). The determined concentration of ice nucleators (INs) was between 0.3 and 2per m³ at 266 K, and between5 and 75 per m³ at 260 K. The INs were further characterized by different treatments, like heating (308 K, 371 K), filtration (0.1 μm, 300 kDa), and digestion with papain (10 mg/ml). We further investigated, which atmospheric conditions (e.g. weather) and distinguished events (e.g. dust storms, volcanic eruptions, and pollen peaks) influenced the number and nature of these INs. Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., and Pöschl, U.: Ice nucleation activity in the widespread soil fungus Mortierella alpina, Biogeosci., 12, 1057-1071, doi:10.5194/bg-12-1057-2015, 2015.

  15. Surface activity coefficients of spread monolayers of behenic acid salts at air-water interface.

    PubMed

    Chattoraj, D K; Halder, E; Das, K P; Mitra, A

    2006-11-16

    The pressure-area isotherms of ionized monolayers of behenic acid at air-water interface at pH 12.0 have been obtained from the Langmuir film balance experiments under various physico-chemical conditions. The value of the measured surface pressure at a given area per molecule is equal to the sum of the ideal pressure, cohesive pressure and electrical pressure. The electrical pressure term is regarded as the sum of the pressure originating from the Gouy-Chapman double layer including discrete ion effect, ion binding and monolayer hydration effect. At a given area, the deviation of the measured surface pressure from its ideal value has been calculated in terms of the apparent surface compressibility coefficients, surface fugacity coefficients for gaseous monolayer and surface activity coefficients of solute forming two-dimensional solutions in the monolayer phase respectively. Values of all these coefficients have been calculated for different compositions of the monolayer using non-ideal gas model and Raoult's and Henry's laws modified for two-dimensional non-ideal solutions respectively. Values of these coefficients may be higher or lower than unity depending upon ionic strengths and nature of inorganic salts present in the sub-phase. Using these values of surface activity coefficients, the standard free energies of formation, of spread monolayers of salts of behenic acid have been calculated at different standard states of reference.

  16. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  17. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  18. Map Design for a 1:100,000 Ground/Air Product.

    DTIC Science & Technology

    1986-04-01

    maps when viewed view. In addition, slope zoning quickly summarizes mask- through the AN/PVS-5 night vision goggles (blue-green ing potential and clear...useful if mapped. Glick, David D. and Roger W. Wiley (1975). A Visual Comparison of Standard and Experimental Maps Using the AN/FVS-5 Night Vision ...terrain analysis needs of air and ground users. Accesion For NTIS CRA&I DTIC TAB U a:I’.Oi ,ed 0j J ttC t ......................... By ------ - -- w

  19. Weyerhaeuser: Compressed Air System Improvement Saves Energy and Improves Production at a Sawmill

    SciTech Connect

    2004-11-01

    In 2000, Weyerhaeuser Company, a U.S. Department of Energy Allied Partner in the Industrial Technologies Program, increased the efficiency of the compressed air system at its sawmill facility in Coburg, Oregon. This improved the system's performance and will save about 1.3 million kWh annually. Total project costs were $55,000; because annual energy cost savings were also $55,000, the simple payback period was only 1 year. Subsequent improvements at six other company plants and mills are yielding 6.8 million kWh in energy savings and reducing annual energy costs by $250,000.

  20. Air Force Policy for Advanced Education: Production of Human Capital or Cheap Signals?

    DTIC Science & Technology

    2011-01-01

    many reasons to be discouraged or dissatis­ fied with our current system —limited PME in-residence slots, limited advanced degree opportunities, or...improve their ability to serve the Air Force—or both. To help dissect and answer this question about the role of AADs in our promotion systems , the...analyzed promotion data, a perusal of the list of off-duty education programs mar­ keted to military personnel, such as those offered by American

  1. Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought1[OA

    PubMed Central

    Leakey, Andrew D.B.; Uribelarrea, Martin; Ainsworth, Elizabeth A.; Naidu, Shawna L.; Rogers, Alistair; Ort, Donald R.; Long, Stephen P.

    2006-01-01

    While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 μmol mol−1) and elevated [CO2] (550 μmol mol−1) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (−34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply. PMID:16407441

  2. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 2. HOx radical production.

    PubMed

    Griffin, Robert J

    2004-02-01

    The production of HOx radicals in the South Coast Air Basin of California is investigated during the smog episode of September 9, 1993 using the California Institute of Technology (CIT) air-quality model. Sources of HOx(hydroxyl, hydroperoxy, and organic peroxy radicals) incorporated into the associated gas-phase chemical mechanism include the combination of excited-state singlet oxygen (formed from ozone (O3) photolysis (hv)) with water, the photolysis of nitrous acid, hydrogen peroxide (H2O2), and carbonyl compounds (formaldehyde (HCHO) or higher aldehydes and ketones), the consumption of aldehydes and alkenes (ALK) by the nitrate radical, and the consumption of alkenes by O3 and the oxygen atom (O). At a given time or location for surface cells and vertical averages, each route of HOx formation may be the greatest contributor to overall formation except HCHO-hv, H2O2-hv, and ALK-O, the latter two of which are insignificant pathways in general. The contribution of the ALK-O3 pathway is dependent on the stoichiometric yield of OH, but this pathway, at least for the studied smog episode, may not be as generally significant as previous research suggests. Future emissions scenarios yield lower total HOx production rates and a shift in the relative importance of individual pathways.

  3. The Use of OMPS Near Real Time Products in Volcanic Cloud Risk Mitigation and Smoke/Dust Air Quality Assessments

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Durbin, P. B.

    2015-12-01

    Near real time (NRT) SO2 and aerosol index (AI) imagery from Aura's Ozone Monitoring Instrument (OMI) has proven invaluable in mitigating the risk posed to air traffic by SO2 and ash clouds from volcanic eruptions. The OMI products, generated as part of NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) NRT system and available through LANCE and both NOAA's NESDIS and ESA's Support to Aviation Control Service (SACS) portals, are used to monitor the current location of volcanic clouds and to provide input into Volcanic Ash (VA) advisory forecasts. NRT products have recently been developed using data from the Ozone Mapping and Profiler Suite onboard the Suomi NPP platform; they are currently being made available through the SACS portal and will shortly be incorporated into the LANCE NRT system. We will show examples of the use of OMPS NRT SO2 and AI imagery to monitor recent volcanic eruption events. We will also demonstrate the usefulness of OMPS AI imagery to detect and track dust storms and smoke from fires, and how this information can be used to forecast their impact on air quality in areas far removed from their source. Finally, we will show SO2 and AI imagery generated from our OMPS Direct Broadcast data to highlight the capability of our real time system.

  4. Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)

    2002-01-01

    This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.

  5. OH production by transient plasma and mechanism of flame ignition and propagation in quiescent methane-air mixtures

    SciTech Connect

    Cathey, Charles; Cain, Jeremy; Wang, Hai; Gundersen, Martin A.; Carter, Campbell; Ryan, Michael

    2008-09-15

    Transient plasma induced production of OH is followed in a quiescent, stoichiometric CH{sub 4}-air mixture using the planar laser induced fluorescence technique. Ignition and subsequent flame propagation, for both the transient plasma and traditional spark ignition, are observed with a high speed camera (2000 fps). The transient plasma is generated using a 70 ns FWHM, 60 kV, 800 mJ pulse. OH production was confirmed throughout the chamber volume; however, the mean number density was found to decay below 1.3 x 10{sup 14}cm{sup -3} near 100 {mu}s. Nonetheless, ignition induced by transient plasma was decidedly faster than by spark ignition. Using the high speed camera, ignition initiated by transient plasma was found to occur along the length of the anode at approximately 1 ms, leading to the formation of a wrinkled, cylindrically-shaped flame. Analysis of the flame front propagation rates shows that flames ignited by transient plasma propagate essentially at the speed consistent with well accepted literature values for the stoichiometric methane-air mixture. This supports the notion that residue plasma, if any, has little effect on flame propagation. (author)

  6. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    PubMed

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries.

  7. Regional Air Quality Impacts of Hydraulic Fracturing and Natural Gas Activity: Evidence from Ambient VOC Observations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, T.; Ehrman, S.; Yao, S.; Dadzie, J.; Chittams, A.; Dickerson, R. R.

    2014-12-01

    Over the past decade, many anthropogenic pollutants have been successfully reduced, providing improved air quality. However, a new influx of emissions associated with hydraulic fracturing and natural gas operations could be counteracting some of these benefits. Using hourly measurements from Photochemical Assessment Monitoring Stations (PAMS) in the Baltimore, MD and Washington, D.C. areas, we observed that following a period of decline, daytime ethane concentrations have increased significantly since 2010. This trend appears to be linked with the rapid natural gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Furthermore, ethane concentrations failed to display this trend at a PAMS site outside of Atlanta, GA, a region without widespread natural gas operations. Year-to-year changes in VOCs were further evaluated by using Positive Matrix Factorization (PMF) to perform source apportionment on hourly observations in Essex, MD from 2005-2013. This process takes ambient measurements and attributes them to sources such as biogenic, natural gas, industrial, gasoline, and vehicle exhaust by using tracer species as identifiers. Preliminary PMF results also indicate an increasing influence of natural gas sources for this area.

  8. Gas-phase photolytic production of hydroxyl radicals in an ultraviolet purifier for air and surfaces.

    PubMed

    Crosley, David R; Araps, Connie J; Doyle-Eisele, Melanie; McDonald, Jacob D

    2017-02-01

    We have measured the concentration of hydroxyl radicals (OH) produced in the gas phase by a commercially available purifier for air and surfaces, using the time rate of decay of n-heptane added to an environmental chamber. The hydroxyl generator, an Odorox® BOSS™ model, produces the OH through 185-nm photolysis of ambient water vapor. The steady-state concentration of OH produced in the 120 m(3) chamber is, with 2σ error bars, (3.25 ± 0.80) × 10(6) cm(-3). The properties of the hydroxyl generator, in particular the output of the ultraviolet lamps and the air throughput, together with an estimation of the water concentration, were used to predict the amount of OH produced by the device, with no fitted parameters. To relate this calculation to a steady-state concentration, we must estimate the OH loss rate within the chamber owing to reaction with the n-heptane and the 7 ppb of background hydrocarbons that are present. The result is a predicted steady-state concentration in excellent agreement with the measured value. This shows we understand well the processes occurring in the gas phase during operation of this hydroxyl radical purifier.

  9. Air-substrate mercury exchange associated with landfill disposal of coal combustion products

    SciTech Connect

    Mei Xin; Mae S. Gustin; Kenneth Ladwig; Debra F. Pflughoeft-Hassett

    2006-08-15

    Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash land-fill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (- 0.1 to 1.2 ng/m{sup 2}hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates ({approximately} 10 ng/m{sup 2}hr) but were still comparable with natural background soils (- 0.3 to 13 ng/m{sup 2}hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods. 19 refs., 4 figs., 6 tabs.

  10. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.

    PubMed

    Xin, Mei; Gustin, Mae S; Ladwig, Kenneth; Pflughoeft-Hassett, Debra F

    2006-08-01

    Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash landfill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (-0.1 to 1.2 ng/ m2hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates (approximately 10 ng/m2hr) but were still comparable with natural background soils (-0.3 to 13 ng/ m2hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods.

  11. Dehydro-α-lapachone, a plant product with antivascular activity

    PubMed Central

    Garkavtsev, Igor; Chauhan, Vikash P.; Wong, Hon Kit; Mukhopadhyay, Arpita; Glicksman, Marcie A.; Peterson, Randall T.; Jain, Rakesh K.

    2011-01-01

    Antivascular agents have become a standard of treatment for many malignancies. However, most of them target the VEGF pathway and lead to refractoriness. To improve the diversity of options for antivascular therapy, we applied a high-throughput screen for small molecules targeting cell adhesion. We then assayed the resulting antiadhesion hits in a transgenic zebrafish line with endothelial expression of EGFP (Tg(fli1:EGFP)y1) to identify nontoxic molecules with antivascular activity selective to neovasculature. This screen identified dehydro-α-lapachone (DAL), a natural plant product. We found that DAL inhibits vessel regeneration, interferes with vessel anastomosis, and limits plexus formation in zebrafish. Furthermore, DAL induces vascular pruning and growth delay in orthotopic mammary tumors in mice. We show that DAL targets cell adhesion by promoting ubiquitination of the Rho-GTPase Rac1, which is frequently up-regulated in many different cancers. PMID:21709229

  12. Production and biological activities of yellow pigments from Monascus fungi.

    PubMed

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed.

  13. 78 FR 75343 - Pesticide Products; Registration Applications for New Active Ingredients

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... AGENCY Pesticide Products; Registration Applications for New Active Ingredients AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA has received several applications to register pesticide products containing active ingredients not included in any currently registered pesticide...

  14. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  15. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model

    SciTech Connect

    Hamby, D.M.; Bauer, L.R.

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates. 11 refs., 1 fig., 3 tabs.

  16. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model.

    PubMed

    Hamby, D M; Bauer, L R

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates.

  17. Design considerations in an active medical product safety monitoring system.

    PubMed

    Gagne, Joshua J; Fireman, Bruce; Ryan, Patrick B; Maclure, Malcolm; Gerhard, Tobias; Toh, Sengwee; Rassen, Jeremy A; Nelson, Jennifer C; Schneeweiss, Sebastian

    2012-01-01

    Active medical product monitoring systems, such as the Sentinel System, will utilize electronic healthcare data captured during routine health care. Safety signals that arise from these data may be spurious because of chance or bias, particularly confounding bias, given the observational nature of the data. Applying appropriate monitoring designs can filter out many false-positive and false-negative associations from the outset. Designs can be classified by whether they produce estimates based on between-person or within-person comparisons. In deciding which approach is more suitable for a given monitoring scenario, stakeholders must consider the characteristics of the monitored product, characteristics of the health outcome of interest (HOI), and characteristics of the potential link between these. Specifically, three factors drive design decisions: (i) strength of within-person and between-person confounding; (ii) whether circumstances exist that may predispose to misclassification of exposure or misclassification of the timing of the HOI; and (iii) whether the exposure of interest is predominantly transient or sustained. Additional design considerations include whether to focus on new users, the availability of appropriate active comparators, the presence of an exposure time trend, and the measure of association of interest. When the key assumptions of self-controlled designs are fulfilled (i.e., lack of within-person, time-varying confounding; abrupt HOI onset; and transient exposure), within-person comparisons are preferred because they inherently avoid confounding by fixed factors. The cohort approach generally is preferred in other situations and particularly when timing of exposure or outcome is uncertain because cohort approaches are less vulnerable to biases resulting from misclassification.

  18. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  19. Cardiorespiratory Fitness and Unintentional Nonfatal Injury Among the United States Air Force Active Duty

    DTIC Science & Technology

    2005-10-01

    physiological co- conditions; geographic morbidities; nutritional status; location of AFB; time of fatigue ; psychosocial & cultural day/week; assigned...from cycle ergometry fitness evaluations for the duration of the pregnancy and six months postpartum . All confirmed cases of any injury-related...Air Force Special Operations Command AFSPC Air Force Space Command ASIS Abbreviated Severity of Injury Scale AMC Air Mobility Command AMSA Army

  20. Environmental Assessment for the Construction of a Community Activities Center Malmstron Air Force Base, Montana

    DTIC Science & Technology

    2008-12-01

    noted through specific reference. 3.1 Air Resources The air resources section describes the existing concentrations of various pollutants and the...values to federal or state Ambient Air Quality Standards (AAQS) determines the significance of a pollutant concentration in a region or geographical...atmospheric concentrations and were developed for six criteria pollutants, including ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO

  1. Plans for the Sentinel-3 SLSTR Active Fire Product

    NASA Astrophysics Data System (ADS)

    Wooster, Martin; Xu, Weidong

    2010-05-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) will fly on the ESA Sentinel-3 satellites as a follow-on to the highly successful ERS/ENVISAR (A)ATSR series of imaging radiometers. SLSTR has been designed to offer a series of new capabilities over and above those of the forunner instruments (including an increased number of spectral channels, a much wider swath width, and an increased revisit frequency) whist still maintaining the key characteristics of dual-view, high accuracy and high precision radiometry. Included in the SLSTR-design are two dedicated "fire channels" that will allow unsaturated thermal spectral radiance observations over even high intensity and/or large open vegetation fires. Data from these and the other spectral channels will be used to generate an operational near real-time SLSTR active fire detection and fire radiative power product, to be used for both scientific studies on wildfire causes, behaviour and effects, and also operational applications involved with forecasting the short-term atmospheric impact of wildfire smoke. This work will present the plans for the SLSTR fire product, including details of the algorithm design and performance analysis, and an evaluation of the ver1 algorithm using MODIS data of global fire events.

  2. Risk Management Analysis of Air Ambulance Blood Product Administration in Combat Operations

    DTIC Science & Technology

    2014-11-01

    Medical Evacuation (medevac) helicopters in Afghanistan. This represents the initial experience for pre- hospital blood product transfusion by U.S...adverse reaction or local blood product wastage . Shock index (heart rate/systolic blood pressure) improved significantly en-route, with a median shock...adherence to protocol, and diversion and/or wastage of limited resources were important considerations in the development of the pilot program. Aviation

  3. Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 °C.

    PubMed

    Parlapani, Foteini F; Haroutounian, Serkos A; Nychas, George-John E; Boziaris, Ioannis S

    2015-09-01

    Microbiological, sensory, TVB-N and TMA-N changes and Volatile Organic Compounds (VOCs) detection using the SPME/GC-MS technique, were performed to evaluate potential chemical spoilage indices (CSI) of gutted sea bass (Dicentrarchus labrax) stored at 2 °C under air and in modified atmosphere packaging (MAP CO2: 60%, O2: 10%, N2: 30%). Shelf-life, determined by sensory evaluation, of gutted sea bass stored at 2 °C under air and MAP was 9 and 13 d respectively. Pseudomonas and H2S producing bacteria were among the dominant spoilage microorganisms under both storage conditions, while Lactic Acid Bacteria (LAB) and Brochothrix thermosphacta were co-dominant with Pseudomonas and H2S producing bacteria under MAP. The traditional CSIs such as TVB-N and TMA-N were increased substantially only at the late stages of storage or after rejection of the products, making them unsuitable for freshness/spoilage monitoring throughout storage. A substantial number of VOCs attributed to microbiological action or chemical activity, were detected including alcohols, aldehydes, ketones, organic acids and esters. The level of microbial origin VOCs such as ethanol, 2-ethyl-1-hexanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 3-methylbutanal, 2-methylbutanal and some ethyl esters increased during storage, suggesting their potential as CSIs.

  4. A feasibility study on assessing public health impacts of cumulative air pollution reduction activities in a small geographic area

    EPA Science Inventory

    Background and Objective: The rnain objective ofthis study was to examine the feasibility ofconducting a local (e.g., city level) assessment ofthe public health impacts ofcumulative air pollution reduction activities (a.k.a. accountability) from the federal, state, local and vo...

  5. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    PubMed

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (p<0.05). The DC of GO and Stae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems.

  6. Baseload power production from wind turbine arrays coupled to compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Succar, Samir

    An analysis is presented of compressed air energy storage (CAES) and its potential for mitigating the intermittency of wind power, facilitating access to remote wind resources and transforming wind into baseload power. Although CAES has traditionally served other grid support applications, it is also well suited for wind balancing applications due its ability to provide long duration storage, its fast ramp rates and its high part load efficiencies. In addition, geologies potentially suitable for CAES appear to be abundant in regions with high-quality wind resources. This is especially true of porous rock formations, which have the potential to be the least costly air storage option for CAES. The characteristics of formations suitable for CAES storage and the challenges associated with using air as a storage fluid are discussed. An optimization framework is developed for analyzing the cost of baseload plants comprised of wind turbine arrays backed by natural gas-fired generating capacity and/or CAES. The optimization model analyzes changes to key aspects of the system configuration such as the wind turbine rating, the relative capacities of the system components, the size of the CAES storage reservoir and the wind turbine spacing. The response of the optimal system configuration to changes in natural gas price, greenhouse gas (GHG) emissions price, capital cost, and wind resource is also considered. Wind turbine rating is given focused attention because of its substantial impact on system configuration and output behavior. The generation cost of baseload wind is compared to that of other baseload options. To highlight the carbon-mitigation potential of baseload wind, the competition with coal power (with and without CO2 capture and storage, CCS) is given prominent attention. The ability of alternative options to compete under dispatch competition is explored thereby clarifying the extent to which baseload wind can defend high capacity factors in the market. This

  7. Uncertainty analysis of moderate- versus coarse-scale satellite fire products for quantifying agricultural burning: Implications for Air Quality in European Russia, Belarus, and Lithuania

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Krylov, A.; Prishchepov, A. V.; Banach, D. M.; Potapov, P.; Tyukavina, A.; Rukhovitch, D.; Koroleva, P.; Turubanova, S.; Romanenkov, V.

    2015-12-01

    Cropland and pasture burning are common agricultural management practices that negatively impact air quality at a local and regional scale, including contributing to short-lived climate pollutants (SLCPs). This research focuses on both cropland and pasture burning in European Russia, Lithuania, and Belarus. Burned area and fire detections were derived from 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS), 30 m Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data. Carbon, particulate matter, volatile organic carbon (VOCs), and harmful air pollutants (HAPs) emissions were then calculated using MODIS and Landsat-based estimates of fire and land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fire detections occurring in March - June and smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout this region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands and pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times higher than the 1 km MODIS active fire estimates. In general, European Russia is the main source of agricultural burning emissions compared to Lithuania and Belarus. On average, all cropland burning in European Russia as detected by the MCD45A1 MODIS Burned Area Product emitted 17.66 Gg of PM10 while annual burning of pasture in Smolensk Oblast, Russia as detected by Landsat burn scars emitted 494.85 Gg of PM10, a 96% difference. This highlights that quantifying the contribution of pasture burning and burned area versus cropland burning in agricultural regions is important for accurately

  8. THE ENHANCEMENT OF MACROPHAGE BACTERIOSTASIS BY PRODUCTS OF ACTIVATED LYMPHOCYTES

    PubMed Central

    Fowles, Robert E.; Fajardo, Ileana M.; Leibowitch, Jacques L.; David, John R.

    1973-01-01

    It was reported previously that the incubation of normal guinea pig macrophages with partially purified products of activated lymphocytes resulted in altered macrophage function including increased cell adherence to culture vessels, spreading, phagocytosis, and glucose carbon-1 oxidation. Studies reported here demonstrate that such macrophages also exhibit enhanced bacteriostasis. Lymphocytes were stimulated with concanavalin A, the culture supernatant was chromatographed over Sephadex G-100 and the fraction of mol wt 25,000–55,000, rich in lymphocyte mediators, was cultured with normal guinea pig macrophages for 1–3 days. Macrophages incubated with fractions from unstimulated lymphocyte cultures served as controls. The resulting macrophage monolayers were infected with Listeria monocytogenes. Macrophages incubated with mediator-rich fractions exhibited 2- to 10-fold enhanced bacteriostasis compared to controls. Further studies indicate that this enhancement was attributable to intrinsic changes in the macrophages and not simply a consequence of the number of macrophages on the monolayers. The studies support the concept that macrophage bacteriostasis can be enhanced by lymphocyte mediators. However, macrophages, which have been preincubated directly with sensitive lymphocytes and antigen exhibit even greater bacteriostasis and sometimes bactericidal capacity, suggesting that either a labile lymphocyte factor or direct lymphocyte macrophage interaction may also be involved in bactericidal activity. PMID:4200649

  9. Natural products as a resource for biologically active compounds

    SciTech Connect

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod)/sub 3/ is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous /sup 13/C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the /sup 1/H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants.

  10. Productive Activities and Subjective Well-Being among Older Adults: The Influence of Number of Activities and Time Commitment

    ERIC Educational Resources Information Center

    Baker, Lindsey A.; Cahalin, Lawrence P.; Gerst, Kerstin; Burr, Jeffrey A.

    2005-01-01

    This study examines relationships among three measures of subjective well-being (life satisfaction, happiness and depressive symptoms), and two global measures of productive activity (number of activities and time commitment). We argue that participation in multiple productive activities should increase subjective well-being because these…

  11. Effect on air quality and flow rate of fresh water production in humidification and dehumidification system

    NASA Astrophysics Data System (ADS)

    Rajasekar, K.; Pugazhenthi, R.; Selvaraju, A.; Manikandan, T.; Saravanan, R.

    2017-03-01

    Water is the vital need of any living organisms of the world when water fails, functions of nature cease the world. The water scarcity is one of the major problems to be faced by the developing world, which indicates a critical need to develop inexpensive small-scale desalination technologies. The cost of the desalination process takes more, so the world expecting the desalination plants with minimum operating cost, so the utilization of renewable energy source is a preferable one. This research article provides a glimpse of an overview of the humidification-dehumidification (HDH) based desalination method which uses the solar energy. The HDH based desalination method monitored and evaluated the performance parameters, i.e. mass flow rates of water and air.

  12. Impact of combustion products from Space Shuttle launches on ambient air quality

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.

    1974-01-01

    The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.

  13. Ozone production during an urban air stagnation episode over Nashville, Tennessee

    NASA Astrophysics Data System (ADS)

    Valente, R. J.; Imhoff, R. E.; Tanner, R. L.; Meagher, J. F.; Daum, P. H.; Hardesty, R. M.; Banta, R. M.; Alvarez, R. J.; McNider, R. T.; Gillani, N. V.

    1998-09-01

    The highest O3 levels observed during the 1995 Southern Oxidants Study in middle Tennessee occurred during a period of air stagnation from July 11 through July 15. Extensive airborne (two fixed wing and one helicopter) and ground-based measurements of the chemistry and meteorology of this episode near Nashville, Tennessee, are presented. In situ airborne measurements include O3, NOy, NO, NO2, SO2, CO, nitrate, hydrocarbons, and aldehydes. Airborne LIDAR O3 measurements are also utilized to map the vertical and horizontal extent of the urban plume. The use of multiple instrumented research aircraft permitted highly detailed mapping of the plume chemistry in the vertical and horizontal dimensions. Interactions between the urban Nashville plume (primarily a NOx and hydrocarbon source) and the Gallatin coal-fired power plant plume (primarily a NOx and SO2 source) are also documented, and comparisons of ozone formation in the isolated and mixed urban and power plant plume are presented. The data suggest that during this episode the background air and the edges of the urban plume are NOx sensitive and the core of the urban plume is hydrocarbon sensitive. Under these worst case meteorological conditions, ambient O3 levels well over the level of the new National Ambient Air Quality Standard (NAAQS) for ozone (80 ppb) were observed over and just downwind of Nashville. For example, on July 12, the boundary layer air upwind of Nashville showed 60 to 70 ppb O3, while just downwind of the city the urban plume maximum was over 140 ppb O3. With a revised ozone standard set at 80 ppb (8 hour average) and upwind levels already within 10 or 20 ppb of the standard, only a slight increase in ozone from the urban area will cause difficulty in attaining the standard at monitors near the core of the urban plume during this type of episode. The helicopter mapping and LIDAR aircraft data clearly illustrate that high O3 levels can occur during stagnation episodes within a few kilometers of

  14. Source Term Estimates of Radioxenon Released from the BaTek Medical Isotope Production Facility Using External Measured Air Concentrations

    SciTech Connect

    Eslinger, Paul W.; Cameron, Ian M.; Dumais, Johannes R.; Imardjoko, Yudi; Marsoem, Pujadi; McIntyre, Justin I.; Miley, Harry S.; Stoehlker, Ulrich; Widodo, Susilo; Woods, Vincent T.

    2015-10-01

    Abstract Batan Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies 99mTc for use in medical procedures. Atmospheric releases of Xe-133 in the production process at BaTek are known to influence the measurements taken at the closest stations of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The xenon isotopes released from BaTek are the same as those produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide whether a specific measurement result came from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84E13 Bq of Xe-133. Concentrations of Xe-133 in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88E13 Bq. The same optimization process yielded a release estimate of 1.70E13 Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10 percent of each other. Weekly release estimates of 1.8E13 Bq and a 40 percent facility operation rate yields a rough annual release estimate of 3.7E13 Bq of Xe-133. This value is consistent with previously published estimates of annual releases for this facility, which are based on measurements at three IMS stations. These multiple lines of evidence cross-validate the stack release estimates and the release estimates from atmospheric samplers.

  15. Activation product safety in the ARIES-I reactor design

    SciTech Connect

    Herring, J.S. ); Sze, D.K. ); Wong, C.; Cheng, E.T. ); Grotz, S.P. )

    1990-01-01

    The ARIES design effort has sought to maximize the environmental and safety advantages of fusion through careful selection of materials and careful design. Three goals are that the reactor achieve inherent or passive safety, that no public evacuation plan be necessary and that the waste be disposable as 10CFR61 Class C waste. The ARIES-I reactor consists of a SiC composite structure for the first wall and blanket, cooled by 10 MPa He. The breeder is Li{sub 2}ZrO{sub 3}, although Li{sub 2}O and Li{sub 4}SiO{sub 4} were also considered. The divertor consists of SiC composite tubes coated with 2 mm of tungsten. Due to the minimal afterheat of this blanket design, LOCA calculations indicate maximum temperatures will not cause damage if the plasma is promptly extinguished. Two primary safety issues are the zirconium in the breeder and tungsten on the divertor. Li{sub 2}ZrO{sub 3} was chosen because of its demonstrated high-temperature stability. The other breeders have lower afterheat and activation. Use of zirconium in the breeder will necessitate isotopic tailoring to remove {sup 90}Zr and {sup 94}Zr. The 5.8 tonnes of W on the divertor would also have to be tailored to remove {sup 186}W and/or to concentrate {sup 183}W. Thus the ARIES-I design achieves the passive safety and low-level waste disposal criteria with respect to activation products. Development of low activation materials to replace zirconium and tungsten is needed to avoid requiring an evacuation plan.

  16. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    PubMed

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  17. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  18. A preliminary study of air-pollution measurement by active remote-sensing techniques

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Gasiorek, L. S.; Liston, E. M.

    1975-01-01

    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study.

  19. Development of an activated carbon filter to remove NO2 and HONO in indoor air.

    PubMed

    Yoo, Jun Young; Park, Chan Jung; Kim, Ki Yeong; Son, Youn-Suk; Kang, Choong-Min; Wolfson, Jack M; Jung, In-Ha; Lee, Sung-Joo; Koutrakis, Petros

    2015-05-30

    To obtain the optimum removal efficiency of NO2 and HONO by coated activated carbon (ACs), the influencing factors, including the loading rate, metal and non-metal precursors, and mixture ratios, were investigated. The NOx removal efficiency (RE) for K, with the same loading (1.0 wt.%), was generally higher than for those loaded with Cu or Mn. The RE of NO2 was also higher when KOH was used as the K precursor, compared to other K precursors (KI, KNO3, and KMnO4). In addition, the REs by the ACs loaded with K were approximately 38-55% higher than those by uncoated ACs. Overall, the REs (above 95%) of HONO and NOx with 3% KOH were the highest of the coated AC filters that were tested. Additionally, the REs of NOx and HONO using a mixing ratio of 6 (2.5% PABA (p-aminobenzoic acid)+6% H3PO4):4 (3% KOH) were the highest of all the coatings tested (both metal and non-metal). The results of this study show that AC loaded with various coatings has the potential to effectively reduce NO2 and HONO levels in indoor air.

  20. [Comparative assessment of the cancer risk of the products of smoking and ambient air pollution].

    PubMed

    Litvichenko, O N; Chernichenko, N A; Kovalenko, T V; Zinchenko, G G

    2006-01-01

    Danger from aerogenic dose carcinogens entering the body with smoking products is shown to be essentially greater than that from aerogenic loading in industrial centers. The individual and population risks for smoking-induced cancer and the economic damage to the country, associated with the treatment of a large number of patients are given. To make a complete assessment of the carcinogenic risk of tobacco smoking, it is necessary to estimate all its carcinogenic constituents, their precursors, and possible transformation products at elevated temperatures.

  1. High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production.

    PubMed

    Fang, Hao; Xia, Liming

    2013-09-01

    The cbh1 strong promoter was employed to over-express the cbh2 gene for enhancing cellobiohydrolase (CBH) production in Trichoderma reesei because CBH II component has higher specific activity than CBH I and is an important component in cellulase. The recombinant plasmid pCAMBIA1300-hph-PsCT containing strong expression cassette was constructed and transformed into T. reesei via optimized Agrobacterium-mediated transformation, producing 324 positive T. reesei transformants for the two steps of screening. Ten fast-growing T. reesei transformants were selected, amongst which C10 was found to have the highest filter paper activity 28.92±2.45 IU/mL, 4.3-fold higher than that of ZU-02, 6.71±0.79 IU/mL. C10 also has the highest cellobiohydrolase activity 122.44±7.42 U/mL, 5.4 times higher than that of ZU-02, 22.49±2.27 U/mL. The cellulase from C10 performed better (93.06±2.83%) than the one from ZU-02 in enzymatic hydrolysis because the exo-exo-synergism played a role.

  2. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Kexun; Liu, Xianhua

    2014-10-01

    Highly active and low-cost electrocatalysts are of great importance for large-scale commercial applications of microbial fuel cells (MFCs). In this work, we prepared an activated carbon (AC) air cathode containing electrodeposited γ-MnO2 using a potentiostatic method. The results indicated that carnation-like MnO2 crystals were bound to the surface of the AC air cathode after a deposition time of 10 min, which greatly improved the performance of the cathode. BET analysis results demonstrated that the electrodeposition of MnO2 decreased the micropore surface area of the cathode but increased the mesopore surface area. When compared with a bare AC air cathode, the electrodeposited MnO2 cathode exhibited higher catalytic activity for oxygen reduction reaction. The maximum power density of the MFC equipped with the electrodeposited MnO2 AC air cathode was 1554 mW m-2, which is 1.5 times higher than the control cathode.

  3. 77 FR 3223 - National Emissions Standards for Hazardous Air Pollutants: Mineral Wool Production and Wool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...-3224] [FR Doc No: 2012-1222] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-HQ-OAR-2010-1042; FRL... rule (76 FR 78872). The comment period for the mineral wool production proposed rule was not extended..., Assistant Administrator. [FR Doc. 2012-1222 Filed 1-20-12; 8:45 am] BILLING CODE 6560-50-P...

  4. Ozone-cyclohexene reaction in air: quantitative analysis of particulate products and the reaction mechanism

    SciTech Connect

    Hatakeyama, S.; Tanonaka, T.; Weng, J.; Bandow, H.; Takagi, H.; Akimot, H.

    1985-10-01

    Both gaseous and particulate products of the cyclohexene-ozone reaction were analyzed. Major gaseous products were aldehydes that consist of adipaldehyde (CHO(CH/sub 2/)/sub 4/CHO), glutaraldehyde (CHO(CH/sub 2/)/sub 3/CHO), and pentanal (CH/sub 3/(CH/sub 2/)/sub 3/CHO). The sum of the primary yields of aldehydes reaches as high as 50%. In addition to aldehydes, formic acid, CO, and CO/sub 2/ were produced, but formaldehyde was not detected. Main particulate products were adipaldehyde, 6-oxohexanoic acid (CHO(CH/sub 2/)/sub 4/COOH), adipic acid (HOOC(CH/sub 2/)/sub 4/COOH), glutaraldehyde, 5-oxopentanoic acid (CHO(CH/sub 2/)/sub 3/COOH), and glutaric acid (HOOC(CH/sub 2/)/sub 3/COOH). All these compounds were analyzed quantitatively, and the fraction of initial cyclohexene converted to aerosol organic carbon was estimated to be 13 +/- 3% as the value extrapolated to a ppm concentration range of reactants. Although the reaction mechanism is in general explainable in terms of the Criegee mechanism, the reaction pathway to form formic acid is quite unique in this reaction system. The entire mechanism was discussed on the basis of the quantitative product analysis data.

  5. An Examination of the Technical Product Knowledge of Contracting Professionals at Air Force System Program Offices

    DTIC Science & Technology

    2012-12-12

    8217 D Ruponu ~till R .. pocae COUll I s 14 10. Briefly idantffy tn• product! sel ’\\flcce for whieh you contract; for example GPS aatemte, F . 22. or...ORGANIZATION .................................................................10  F .  METHODOLOGY...EXPECTATIONS ..........................................................................................34  F .  SUMMARY

  6. First public release of AirMSPI Level 1B2 data products

    Atmospheric Science Data Center

    2013-07-10

    ... under NASA’s Instrument Incubator and Airborne Instrument Technology Transition Programs, and is aimed primarily at remote sensing of the ... and 935 nm.  The data products include intensity, time, solar zenith, solar azimuth, view zenith, and view azimuth for all spectral ...

  7. Examining the impact of heterogeneous nitryl chloride production on air quality across the United States

    EPA Science Inventory

    The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride can alter the reaction product to produce nitryl chlo...

  8. DEVELOPMENT OF AN INNOVATIVE SPRAY DISPENSER TO REDUCE INDOOR AIR EMISSIONS FROM AEROSOL CONSUMER PRODUCTS

    EPA Science Inventory

    The report presents the operating principles and performance of a new type of spray nozzle. This nozzle, termed a "ligament-controlled effervescent atomizer," was developed to allow consumer product manufacturers to replace volatile organic compound (VOC) solvents with water, and...

  9. Fact Sheet: Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Wood Building Products

    EPA Pesticide Factsheets

    This page contains the February 2003 final rule fact sheet on the NESHAP for Surface Coating of Wood Building Products. This document provides a background for this rule, a summary of the benefits of this rule, who is affected by the rule, and rule costs

  10. Design of flapping wings for application to single active degree of freedom micro air vehicles

    NASA Astrophysics Data System (ADS)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  11. Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant.

    PubMed

    Boudissa, Soraya M; Lambert, Jean; Müller, Caroline; Kennedy, Greg; Gareau, Lise; Zayed, Joseph

    2006-05-15

    In Montreal (Canada), the mean annual atmospheric Mn concentrations between 1981 and 1990 were stable, followed by a decrease of almost 50% from 1990 to 1992. The reason for such a decrease in Mn is probably the shutdown of a large manganese alloy production plant in Beauharnois, approximately 25 km from Montreal. The objective of this study is to assess the level of air and soil contamination by Mn in the vicinity of this ferroalloy plant more than 10 years after its closure. Air and soil were sampled over 5 days at two and three sites, respectively. Site 1 was located 10 m NE of the closed plant, in the direction of the prevailing SW-NE winds. Sites 2 and 3 were at 50 and 800 m SE from the plant. Air samples were collected in order to determine total (MnT) and respirable (MnR). Soil samples were taken in the surface and subsurface strata. The results show that site 1 is extremely polluted with a mean Mn concentration in surface strata of 2,66,000+/-45,000 ppm and 2,83,000+/-23,000 ppm in the subsurface strata, while the average MnT and MnR are 21.9+/-13.7 and 3.5+/-3.9 microg/m(3), respectively. The explanation for this contamination is direct deposition on the soil of solid Mn-rich residue and atmospheric erosion of Mn particles. The situation should be remediated by the public authority with high priority.

  12. Production Scale-Up or Activated Carbons for Ultracapacitors

    SciTech Connect

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  13. Needed: Clean Air.

    ERIC Educational Resources Information Center

    Schneider, Gerald

    1979-01-01

    Provides information on air pollution for young readers. Discusses damage to substances and sickness from air pollution, air quality, and what to do in a pollution alert. Includes questions with answers, illustrations, and activities for the learner. (MA)

  14. The use of heteroduplex analysis of polymerase chain reaction products to support the possible transmission of Legionella pneumophila from a malfunctioning automobile air conditioner.

    PubMed

    Pinar, Ahmet; Ramirez, Julio A; Schindler, Laura L; Miller, Richard D; Summersgill, James T

    2002-03-01

    Air conditioner condensates have not been previously associated with cases of Legionnaires' disease. We report the possible transmission of Legionella pneumophila serogroup 1 from a malfunctioning automobile air conditioning system's leaking water onto the floorboard of a car driven for a long distance by the patient. Heteroduplex analysis of polymerase chain reaction products was used to help establish an epidemiologic link between the water specimen and the patient.

  15. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.

    PubMed

    Chen, Zhu; Yu, Aiping; Higgins, Drew; Li, Hui; Wang, Haijiang; Chen, Zhongwei

    2012-04-11

    A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

  16. Excess of ²¹⁰polonium activity in the surface urban atmosphere. Part (1) fluctuation of the ²¹⁰Po excess in the air.

    PubMed

    Długosz-Lisiecka, Magdalena

    2015-02-01

    The concentrations of (210)Pb, (210)Bi, and (210)Po in the urban atmosphere of Lodz city were measured from February 2010 to May 2010 and from May 2011 to April 2012. The seasonal changes in the activity ratios for (210)Po/(210)Pb and (210)Bi/(210)Pb indicated that the observed fluctuations were independent of the concentration of tropospheric (210)Pb and its decay products, particularly (210)Po. A simple calculation method was proposed for the estimation of the excess of (210)Po in urban aerosols in relation to the fraction of its activity formed from (210)Pb. On the basis of the results obtained, it was concluded that a substantial part of the (210)Po in urban air did not come from the decay of atmospheric (222)Rn, but rather it was from artificial sources. The highest levels of measured total (210)Po activity were observed during the winter period. This observation suggests that the main source of (210)Po in the investigated region could be related to anthropogenic emissions from domestic heating systems and local coal power plants, rather than from other sources, such as soil resuspension or stratospheric air intrusion as usually suggested in the literature.

  17. Air Quality and Health Impacts of Future Ethanol Production and Use in São Paulo State, Brazil.

    PubMed

    Scovronick, Noah; França, Daniela; Alonso, Marcelo; Almeida, Claudia; Longo, Karla; Freitas, Saulo; Rudorff, Bernardo; Wilkinson, Paul

    2016-07-11

    It is often argued that liquid biofuels are cleaner than fossil fuels, and therefore better for human health, however, the evidence on this issue is still unclear. Brazil's high uptake of ethanol and role as a major producer makes it the most appropriate case study to assess the merits of different biofuel policies. Accordingly, we modeled the impact on air quality and health of two future fuel scenarios in São Paulo State: a business-as-usual scenario where ethanol production and use proceeds according to government predictions and a counterfactual scenario where ethanol is frozen at 2010 levels and future transport fuel demand is met with gasoline. The population-weighted exposure to fine particulate matter (PM2.5) and ozone was 3.0 μg/m³ and 0.3 ppb lower, respectively, in 2020 in the scenario emphasizing gasoline compared with the business-as-usual (ethanol) scenario. The lower exposure to both pollutants in the gasoline scenario would result in the population living 1100 additional life-years in the first year, and if sustained, would increase to 40,000 life-years in year 20 and continue to rise. Without additional measures to limit emissions, increasing the use of ethanol in Brazil could lead to higher air pollution-related population health burdens when compared to policy that prioritizes gasoline.

  18. Air Quality and Health Impacts of Future Ethanol Production and Use in São Paulo State, Brazil

    PubMed Central

    Scovronick, Noah; França, Daniela; Alonso, Marcelo; Almeida, Claudia; Longo, Karla; Freitas, Saulo; Rudorff, Bernardo; Wilkinson, Paul

    2016-01-01

    It is often argued that liquid biofuels are cleaner than fossil fuels, and therefore better for human health, however, the evidence on this issue is still unclear. Brazil’s high uptake of ethanol and role as a major producer makes it the most appropriate case study to assess the merits of different biofuel policies. Accordingly, we modeled the impact on air quality and health of two future fuel scenarios in São Paulo State: a business-as-usual scenario where ethanol production and use proceeds according to government predictions and a counterfactual scenario where ethanol is frozen at 2010 levels and future transport fuel demand is met with gasoline. The population-weighted exposure to fine particulate matter (PM2.5) and ozone was 3.0 μg/m3 and 0.3 ppb lower, respectively, in 2020 in the scenario emphasizing gasoline compared with the business-as-usual (ethanol) scenario. The lower exposure to both pollutants in the gasoline scenario would result in the population living 1100 additional life-years in the first year, and if sustained, would increase to 40,000 life-years in year 20 and continue to rise. Without additional measures to limit emissions, increasing the use of ethanol in Brazil could lead to higher air pollution-related population health burdens when compared to policy that prioritizes gasoline. PMID:27409628

  19. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation.

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Templeton, Michael R; Yin, Da-Qiang

    2011-04-01

    The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV(254) by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV(254) were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7μgL(-1), respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3μgL(-1). However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN.

  20. Actinide, Activation Product and Fission Product Decay Data for Reactor-based Applications

    SciTech Connect

    Perry, R.J.; Dean, C.J.; Nichols, A.L.

    2014-06-15

    The UK Activation Product Decay Data Library was first released in September 1977 as UK-PADD1, to be followed by regular improvements on an almost yearly basis up to the assembly of UKPADD6.12 in March 2013. Similarly, the UK Heavy Element and Actinide Decay Data Library followed in December 1981 as UKHEDD1, with the implementation of various modifications leading to UKHEDD2.6, February 2008. Both the data content and evaluation procedures are defined, and the most recent evaluations are described in terms of specific radionuclides and the resulting consistency of their recommended decay-data files. New versions of the UKPADD and UKHEDD libraries are regularly submitted to the NEA Data Bank for possible inclusion in the JEFF library.