Science.gov

Sample records for air atomized oil

  1. Development of an air-atomized oil burner

    SciTech Connect

    Butcher, T.A.; Celebi, Y.

    1996-06-01

    A new concept for the design of a residential oil burner is presented involving a low pressure, air atomizing nozzle. Advantages of this approach, relative to conventional, pressure atomized burners include: ability to operate at very low excess air levels without smoke, ability to operate at low (and possibly variable) rates, reduced boiler fouling, and low NO{sub x}. The nozzle used is a low pressure, airblast atomizer which can achieve fuel spray drop sizes similar to conventional nozzles and very good combustion performance with air pressure as low as 5 inches of water (1.24 kPa). A burner head has been developed for this nozzle and combustion test results are presented in a wide variety of equipment including cast iron and steel boilers, warm air furnaces, and water heaters over the firing rate range 0.25 gph to 1.0 gph (10 to 41 kW). Beyond the nozzle and combustion head the burner system must be developed and two approaches have been taken. The first involves a small, brushless DC motor/fan combination which uses high fan speed to achieve air pressures from 7 to 9 inches of water (1.74 to 2.24 kPa). Fuel is delivered to the atomizer at less than 1 psig (6.9 kPa) using a solenoid pump and flow metering orifice. At 0.35 gph (14 kW) the electric power draw of this burner is less than 100 watts. In a second configuration a conventional motor is used with a single stage fan which develops 5 to 6 inches of water pressure (1.24 to 1.50 kPa) at similar firing rates. This burner uses a conventional type fuel pump and metering orifice to deliver fuel. The fuel pump is driven by the fan motor, very much like a conventional burner. This second configuration is seen as more attractive to the heating industry and is now being commercialized. Field tests with this burner have been conducted at 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination.

  2. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  3. The atomization of water-oil emulsions

    SciTech Connect

    Broniarz-Press, L.; Ochowiak, M.; Rozanski, J.; Woziwodzki, S.

    2009-09-15

    The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20-90, 20-70, 20-50 and 20-30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm{sup 3}/s) and gas phase changed from 0.28 to 1.4 (dm{sup 3}/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 {mu}m. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air-water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity. (author)

  4. Spray atomization of bio-oil/ethanol blends with externally mixed nozzles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to investigate the properties of sprays of pyrolysis oil from biomass (bio-oil) using an air assisted atomization nozzle operated without combustion to explore the potential of pyrolysis oil combustion in industrial and home furnaces. Bio-oil was blended with ethanol to im...

  5. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  6. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.

  7. Breakup mechanisms of electrostatic atomization of corn oil and diesel fuel

    NASA Astrophysics Data System (ADS)

    Malkawi, G.; Yarin, A. L.; Mashayek, F.

    2010-09-01

    High-viscosity organic oils may be considered as an alternative to the ordinary diesel fuel. These organic oils and the diesel fuel are all Newtonian liquids; however, viscosity values of the organic oils are more than 20 times higher than that of the diesel fuel. In the present work, the electrostatic atomization of corn oil jets is studied and compared to the electrostatic atomization of diesel fuel jets. The experimental data revealed that in addition to the varicose breakup of straight jets, bending modes set in and grow in conjunction with the varicose undulations. Bending instability, kindred to the aerodynamically-driven bending instability of high-speed liquid jets moving in air, and to the electrically-driven bending instability of polymer jets in electrospinning, is significantly more pronounced in the case of the highly-viscous corn oil jets than in diesel jets. The experimental results are interpreted using the theory of bending instability developed previously for electrospinning.

  8. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  9. Kuwaiti oil fires — Air quality monitoring

    NASA Astrophysics Data System (ADS)

    Amin, Mohamed B.; Husain, Tahir

    Just before the Gulf War was concluded in early March 1991, more than 700 wells in Kuwaiti oil fields were set on fire. About 6 million barrels per day of oil were lost in flames and a large number of pools and lakes were formed. Burning wells in Kuwait emitted several thousand tons of gases such as sulfur dioxide, carbon monoxide, hydrogen sulfide, carbon dioxide, and the oxides of nitrogen, as well as particulate matter, on a daily basis containing partially burned hydrocarbons and metals, all of which were potential for affecting human health and vegetation growth. This paper summarizes the real-time measurements of various gaseous pollutants in the Eastern Province of Saudi Arabia in Dhahran, Abqaiq, Rahimah, Jubail and Tanajib. The statistics on monthly variation of gaseous pollutants showed that pollution concentration in general was high in May 1991. The levels of typical pollutants such as sulfur dioxide (SO 2), carbon monoxide (CO) and nitrogen dioxide (NO 2) in the ambient air were much lower than the permissible limits defined in the Meteorology and Environmental Protection Agency (MEPA) standards. The pollutants measured during the Kuwaiti Oil Fires were compared with the corresponding values measured in the previous year. The comparison shows that although the concentration of gaseous pollutants were within the MEPA limits, during the period of oil well fires, the concentration level increased persistently which might have been harmful for human health. The harmful effects of the major pollutants on human health and vegetation are also briefly discussed in the paper.

  10. Controlling Air Pollution from the Oil and Natural Gas Industry

    EPA Pesticide Factsheets

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  11. Atomic resolution images of graphite in air

    SciTech Connect

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  12. Market assessment for the fan atomized oil burner

    SciTech Connect

    Westphalen, D.

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  13. Field testing the prototype BNL fan-atomized oil burner

    SciTech Connect

    McDonald, R.; Celebi, Y.

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  14. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  15. Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography

    NASA Astrophysics Data System (ADS)

    Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.

    2016-11-01

    Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.

  16. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  17. Air toxics from heavy oil production and consumption

    SciTech Connect

    Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

    1992-12-22

    This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis.

  18. Characterization of air toxics from oil-fired firetube boiler

    SciTech Connect

    Miller, C.A.; Ryan, J.V.; Lombardo, T.

    1996-08-01

    Tests were conducted on a commercially available firetube package boiler running on No. 2 through No. 6 oils to determine the emissions levels of hazardous air pollutants from the combustion of four fuel oils. Measurements of carbon monoxide, nitrogen oxides, particulate matter, and sulfur dioxide stack gas concentrations were made for each oil. Flue gases were also sampled to determine levels of volatile and semivolatile organic compounds and of metals. Analytical procedures were used to provide more detailed information regarding the emissions rates for carbonyls (aldehydes and ketones), and polycyclic aromatic hydrocarbons (PAHs) in addition to the standard analyses for volatile and semivolatile organics. Metals emissions were greater than organic emissions for all oils tested, by an order of magnitude. Carbonyls dominated the organic emissions, with emission rates more than double the remaining organics for all four oils tested. Formaldehyde made up the largest percentage of carbonyls, at roughly 50% of these emissions for three of the four oils, and approximately 30% of the carbonyl emissions from the low sulfur No. 6 oil. Naphthalene was found to be the largest part of the PAH emissions for three of the four oils, with phenanthrene being greatest for the No. 2 fuel oil. The flue gases were also sampled for polychlorinated dibenzodioxins and polychlorinated dibenzofurans. 9 refs., 4 figs., 8 tabs.

  19. Nano- and microstructure of air/oil/water interfaces.

    PubMed

    McGillivray, Duncan J; Mata, Jitendra P; White, John W; Zank, Johann

    2009-04-07

    We report the creation of air/oil/water interfaces with variable-thickness oil films using polyisobutylene-based (PIB) surfactants cospread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to approximately 100 A thick above the water surface as determined using X-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a nonionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10 microm at the interface. At low surface pressure (pi < 24 mN m(-1)) large, approximately 10 microm inhomogeneities are observed. Beyond a phase transition observed at pi approximately = 24 mN m(-1), a structure with a spongy appearance and a microscale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions.

  20. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  1. BIOLOGICAL EFFECTS OF OIL FLY ASH AND RELEVANCE TO AMBIENT AIR PARTICULATE MATTER

    EPA Science Inventory

    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle bur...

  2. Low excess air operations of oil boilers

    SciTech Connect

    Butcher, T.A.; Celebi, Y.; Litzke, Wai Lin

    1997-09-01

    To quantify the benefits which operation at very low excess air operation may have on heat exchanger fouling BNL has recently started a test project. The test allows simultaneous measurement of fouling rate, flue gas filterable soot, flue gas sulfuric acid content, and flue gas sulfur dioxide.

  3. Emissions of industrial furnaces burning diesel fuel oils of various sulfur contents with NaCl - contained atmospheric air

    SciTech Connect

    Lin, C.Y.; Hsieh, M.J.

    1996-04-01

    A small furnace associated with an industrial automatic burner was employed in this study to investigate the influences of sulfur content of fuel oils burned with NaCl contained atmospheric air on the emission characteristics of marine or industrial power-plants. The sulfur contents of 0.3 wt% and 1.0 wt% were considered. Diesel fuel oil A which approximates ASTM No. 2 fuel oil was atomized by the inlet air added with NaCl of 1.5 ppm concentration and thereafter burned within the furnace. It was found that under this burning condition the CO, SO{sub 2}, and O{sub 2} emissions increased with the addition of sulfur in the fuel oil. However, the gas temperature and NO{sub x} concentration were affected by the increase of sulfur content to only a minor extent. 14 refs., 10 figs.

  4. Combustion performance evaluation of air staging of palm oil blends.

    PubMed

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.

  5. Air-cushion tankers for Alaskan North Slope oil

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    A concept is described for transporting oil from the Arctic to southern markets in 10,000-ton, chemically fueled air-cushion vehicles (ACV's) configured as tankers. Based on preliminary cost estimates the conceptual ACV tanker system as tailored to the transportation of Alaskan North Slope oil could deliver the oil for about the same price per barrel as the proposed trans-Alaska pipeline with only one-third of the capital investment. The report includes the description of the conceptual system and its operation; preliminary cost estimates; an appraisal of ACV tanker development; and a comparison of system costs, versatility, vulnerability, and ecological effect with those of the trans-Alaska pipeline.

  6. Evaluation of a carbon-rod atomizer for routine determination of trace metals by atomic-absorption spectroscopy applications to analysis of lubricating oil and crude oil.

    PubMed

    Hall, G; Bratzel, M P; Chakrabarti, C L

    1973-08-01

    A carbon-rod atomizer (CRA) fitted with a 'mini-Massmann' carbon rod was evaluated for routine analysis of petroleum and petroleum products for trace metal content by atomic-absorption spectroscopy. Aspects investigated included sensitivity, detection limit, effect of solvent type, and interferences. The results of analysis of oil samples with this technique were compared with those obtained by other techniques. Metals studied were silver, copper, iron, nickel, and lead. Sensitivity and detection limit values obtained with the CRA were similar to those obtained with the carbon-filament atomizer. Strong 'solvent effects' were observed as well as interference by cations. On the basis of this study, design changes for the CRA are suggested, with the object of minimizing 'solvent effects' and interferences, increasing the atomization efficiency, and increasing the residence time of the atomic vapour in the optical path of the instrumental system.

  7. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  8. Study on earthed atomizing corona discharge enhancing the biodegradability of waste water from oil extraction

    NASA Astrophysics Data System (ADS)

    Du, S.; Xu, J.; Mi, J.; Li, N.

    2012-10-01

    This paper studies the usage of earthed atomizing corona discharge to dispose waste water from oil extraction. The I-V characteristic curves of earthed atomizing positive and negative corona discharge are compared to study the influence of water flux and inter-electrode distance (which refers to the distance between line electrode and plate electrodes) on discharge characteristics, and to measure the turbidity, pH, biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and the variation tendency of BOD5/COD in the process of dealing with waste water from oil extraction by earthed atomizing corona discharge. Ultimately, the mechanism of earthed atomizing corona discharge is analyzed. Research results indicate that when using earthed atomizing corona discharge to dispose of waste water from oil extraction, as the processing time grows there is a maximum value of turbidity, the pH level increases gradually then stabilizes, COD appears to descend, and BOD5 as well as BOD5/COD both have minimum values. When the processing time attains 300 min, waste water from oil extraction is suitable for biochemical treatment, foreshadowing that earthed atomizing corona discharge technology demonstrates energy conservation characteristic in improving the biodegradability of waste water from oil extraction and has a brilliant application prospect waiting ahead.

  9. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  10. Oil-air mist lubrication for helicopter gearing

    NASA Technical Reports Server (NTRS)

    Mcgrogan, F.

    1976-01-01

    The applicability of a once-through oil mist system to the lubrication of helicopter spur gears was investigated and compared to conventional jet spray lubrication. In the mist lubrication mode, cooling air was supplied at 366K (200 F) to the out of mesh location of the gear sets. The mist air was also supplied at 366K (200 F) to the radial position mist nozzle at a constant rate of 0.0632 mol/s (3 SCFM) per nozzle. The lubricant contained in the mist air varied between 32 - 44 cc/hour. In the recirculating jet spray mode, the flow rate was varied between 1893 - 2650 cc/hour. Visual inspection revealed the jet spray mode produced a superior surface finish on the gear teeth but a thermal energy survey showed a 15 - 20% increase in heat generated. The gear tooth condition in the mist lubrication mode system could be improved if the cooling air and lubricant/air flow ratio were increased. The test gearbox and the procedure used are described.

  11. The effects of evaporating essential oils on indoor air quality

    NASA Astrophysics Data System (ADS)

    Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih

    Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.

  12. The Feasibility of Oil Analysis for Air Force Diesel Engines

    DTIC Science & Technology

    1979-06-01

    period 18 September 1978 to 18 June 1979. The Air F’orce Project Monitor was MrW~ le MaW e, - an rton16h ALC /MMET,’ . Mr. J,P. Cuellar, Jr., of SwRI...insolub les 28 TABLE 5. RELATION OF USED CRANKCASE OIL ANALYSIS TO ENGINE CONDITION OR OPERATION (Cont’d) Contributing Engine Condition Test Result...guidelines for wearmetal and lubricant control limits. 46. Schilling, A. (Chief Engineer, Institut Francais du Petrole ), Automobile Engine Lubrication, 1972

  13. Oil lenses on the air-water surface and the validity of Neumann's rule.

    PubMed

    Nikolov, Alex; Wasan, Darsh

    2016-05-10

    Many studies have focused on the mechanisms of oil spreading over the air-water surface, oil lens formation, and lens dynamics: Franklin et al.(1774), Rayleigh (1890), Neumann and Wangerin (1894), Hardy (1912), Lyons (1930), Langmuir (1933), Miller (1941), Zisman (1941), Pujado and Scriven (1972), Seeto et al. (1983), and Takamura et al. (2012). Despite all of these studies, the phenomenon of the oil lens's air-water surface equilibrium is still under discussion. Here, we highlight an accurate method to study the oil lens's three-phase-contact angle by reflected light interferometry, using both common (CRLI) and differential reflected light interferometry (DRLI) to verify Neumann's rule (the vectorial sum of the three tensions is zero). For non-spreading oils, the validity of Neumann's rule is confirmed for small lenses when the role of the oil film tension around the lens's meniscus is taken into consideration. Neumann's rule was also validated when the monolayer surface pressure isotherm was taken into consideration for oil spreading on the air-water surface. The periodic monolayer surface pressure oscillation of the oil phase monolayer created by the air-evaporating biphilic oil was monitored with time. The monolayer's surface pressure periodic oscillation was attributed to the instability of the aqueous film covering the oil drop phase. The knowledge gained from this study will benefit the fundamental understanding of the oil lens's air-water surface equilibrium and oil spill mechanisms, thereby promoting better methods for the prevention and clean-up of oil spills.

  14. PAH Measurements in Air in the Athabasca Oil Sands Region.

    PubMed

    Hsu, Yu-Mei; Harner, Tom; Li, Henrik; Fellin, Phil

    2015-05-05

    Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (∼35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air.

  15. Determination of aluminum by electrothermal atomic absorption spectroscopy in lubricating oils emulsified in a sequential injection analysis system.

    PubMed

    Burguera, José L; Burguera, Marcela; Antón, Raquel E; Salager, Jean-Louis; Arandia, María A; Rondón, Carlos; Carrero, Pablo; de Peña, Yaneira Petit; Brunetto, Rosario; Gallignani, Máximo

    2005-12-15

    The sequential injection (SIA) technique was applied for the on-line preparation of an "oil in water" microemulsion and for the determination of aluminum in new and used lubricating oils by electrothermal atomic absorption spectrometry (ET AAS) with Zeeman-effect background correction. Respectively, 1.0, 0.5 and 1.0ml of surfactants mixture, sample and co-surfactant (sec-butanol) solutions were sequentially aspirated to a holding coil. The sonication and repetitive change of the flowing direction improved the stability of the different emulsion types (oil in water, water in oil and microemulsion). The emulsified zone was pumped to fill the sampling arm of the spectrometer with a sub-sample of 200mul. Then, 10mul of this sample solution were introduced by means of air displacement in the graphite tube atomizer. This sequence was timed to synchronize with the previous introduction of 15mug of Mg(NO(3))(2) (in a 10mul) by the spectrometer autosampler. The entire SIA system was controlled by a computer, independent of the spectrometer. The furnace program was carried out by employing a heating cycle in four steps: drying (two steps at 110 and 130 degrees C), pyrolisis (at 1500 degrees C), atomization (at 2400 degrees C) and cleaning (at 2400 degrees C). The calibration graph was linear from 7.7 to 120mugAll(-1). The characteristic mass (mo) was 33.2pg/0.0044s and the detection limit was 2.3mugAll(-1). The relative standard (RSD) of the method, evaluated by replicate analyses of different lubricating oil samples varied in all cases between 1.5 and 1.7%, and the recovery values found in the analysis of spiked samples ranged from 97.2 to 100.4%. The agreement between the observed and reference values obtained from two NIST Standard Certified Materials was good. The method was simple and satisfactory for determining aluminum in new and used lubricating oils.

  16. Gulf of Mexico Air Quality: CALIPSO Support for Gulf of Mexico Air Quality Relating to the Deepwater Horizon Oil Spill

    NASA Technical Reports Server (NTRS)

    Nguyen, Myngoc T.; Lapointe, Stephen; Jennings, Brittney; Zoumplis, Angela

    2011-01-01

    On April 20, 2010, an oil platform belonging to BP exploded and leaked a huge volume of oil into the Gulf of Mexico. In an effort to control the spread of the oil, BP applied dispersants such as Corexit and conducted in-situ burnings of the oil. This catastrophe created a complex chain of events that affected not only the fragile water and land ecosystems, but the humans who breathe the air every day. Thousands of people were exposed to fumes associated with oil vapors from the spill, burning of the oil, and the toxic mixture of dispersants. While aiding in clean-up efforts, local fishermen were directly exposure to fumes when working on the Gulf. A notable amount of Gulf Coast residents were also exposed to the oil fumes as seasonal southeasterly winds blew vapors toward land. The Volatile Organic Compounds (VOC) found in oil vapors include: benzene, toluene, ethyl benzene, xylene, naphthalene, hydrogen sulfide and particulate matter (PM). Increases in water temperature and sunlight due to the summer season allow for these VOCs and PM to evaporate into the air more rapidly. Aside from the VOCs found in oil vapors, the dispersant being used to break up the oil is highly toxic and is thought to be even more toxic than the oil itself (EPA website, 2010). To protect human health, the environment, and to make informed policy decisions relevant to the spill, the EPA Region 6 has continuously monitored the affected areas carefully for levels of pollutants in the outdoor air that are associated with petroleum products and the burning of oil along the coast. In an effort to prevent, prepare for, and respond to future oil spills that occur in and around inland waters of the United States, the EPA has been working with local, state, and federal response partners. Air quality measurements were collected by the EPA at five active monitoring systems stationed along the coast.

  17. Efficient Atomization and Combustion of Emulsified Crude Oil

    DTIC Science & Technology

    2014-09-18

    medium, moderate sulfur content crude oil from Ecuador, sampled in 2010. It has an API of 23.4, a specific gravity of 0.9135, and contains 1.48... sulfur . It has a 25.3% vacuum residual with 30% asphaltenes (7.6% of total mass). The assay, provided by Chevron, is listed in the appendix. The...aforementioned equipment were located on a concrete testing platform used for outdoor fire and burn testing. Initial burn tests were unsuccessful due to

  18. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    ERIC Educational Resources Information Center

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  19. Symmetry assessment of an air-blast atomizer spray

    NASA Technical Reports Server (NTRS)

    Mcdonnell, V. G.; Cameron, C. D.; Samuelsen, G. S.

    1990-01-01

    This study represents an evaluation of the extent to which conventional and recently introduced modern diagnostics can assess the symmetry of sprays formed by three atomizers of identical design. The conventional diagnostics include sheet-lit photography, patternation, and laser diffraction. The modern diagnostic is laser interferometry (phase Doppler). Symmetry is assessed in ambient conditions for four atomizer orientations, and comparisons are made between the diagnostic techniques. The results demonstrate that conventional and modern diagnostics are consistent in the assessment of symmetry, patternation and phase Doppler are most effective in establishing symmetry of mass flux, and phase Doppler, although more tedious to employ, provides the additional information necessary to establish the sources of detected asymmetries in terms of nonuniformities in droplet velocities, size distributions, volume flux, and concentration.

  20. Inflence of air shear and adjuvants on spray atomization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Droplet size is critical to maximizing pesticide efficacy and mitigating off-target movement and correct selection and adjustment of nozzles and application equipment, as well as the use of adjuvants can aid in this process. However, in aerial applications air shear tends to be the dominate factor ...

  1. Atom-probe tomography of tribological boundary films resulting from boron-based oil additives

    SciTech Connect

    Kim, Yoon-Jun; Baik, Sung-Il; Bertolucci-Coelho, Leonardo; Mazzaferro, Lucca; Ramirez, Giovanni; Erdemir, Ali; Seidman, D K

    2016-01-15

    Correlative characterization using atom-probe tomography (APT) and transmission electron microscopy (TEM) was performed on a tribofilm formed during sliding frictional testing with a fully formulated engine oil, which also contains a boron-based additive. The tribofilm formed is ~15 nm thick and consists of oxides of iron and compounds of B, Ca, P, and S, which are present in the additive. This study provides strong evidence for boron being embedded in the tribofilm, which effectively reduces friction and wear losses.

  2. Petition for EPA action to protect communities from oil and gas wells toxic air pollution

    EPA Pesticide Factsheets

    Petition submitted by Earthjustice urging EPA to list oil and gas wells and associated equipment as an area sourcecategory and set national air toxics standards to protect public health from these sources.

  3. CHARACTERIZATION OF AIR TOXICS FROM AN OIL-FIRED FIRETUBE BOILER

    EPA Science Inventory

    Tests were conducted on a commercially available firetube package boiler running on #2 through #6 oils to determine the emissions levels of hazardous air pollutants (HAPs) from the combustion of four fuel oils. Flue gas was sampled to determine levels of volatile and semivolatile...

  4. Microencapsulation using an oil-in-water-in-air 'dry water emulsion'.

    PubMed

    Carter, Benjamin O; Weaver, Jonathan V M; Wang, Weixing; Spiller, David G; Adams, Dave J; Cooper, Andrew I

    2011-08-07

    We describe the first example of a tri-phasic oil-in-water-in-air 'dry water emulsion'. The method combines highly stable oil-in-water emulsions prepared using branched copolymer surfactants, with aqueous droplet encapsulation using 'dry water' technology.

  5. Air Pollutant Emissions from Oil and Gas Production pads (Investigating Low Cost Passive Samplers)

    EPA Science Inventory

    To help achieve the goal of sustainable, environmentally responsible development of oil and gas resources, it isnecessary to understand the potential for air pollutant emissions from various extraction and production (E&P)processes at the upstream, wellpad level. Upstream oil and...

  6. Wear-metal analysis in engine oil by microwave digestion and atomic absorption spectroscopy. Final report, August 1987-January 1988

    SciTech Connect

    Muse, W.T.

    1990-05-01

    Digestion procedures are described for the analysis of wear metals in National Bureau of Standards (NBS) oil samples by a closed vessel microwave digestion system. Samples were analyzed by flame atomic absorption spectroscopy. Recoveries of Al, Fe, Ni, Cu, and Pb in the 300-ppm NBS oil ranged from 98 to 103% with standard deviations from 3 to 14%. This method serves as a relatively quick matrix destruction technique for the quantitation of metals in oil.

  7. Slip-length measurement of confined air flow using dynamic atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Bhushan, Bharat

    2008-08-01

    We present an experimental measurement of the slip length of air flow close to solid surfaces using an atomic force microscope (AFM) in dynamic mode. The air was confined between a glass surface and a spherical glass particle glued to an AFM cantilever. The Knudsen number was varied continuously over three decades by varying the distance between the two surfaces. Our results show that the effect of confining the air is purely dissipative. The data are described by an isothermal Maxwell slip-boundary condition, and the measured slip-length value was 118 nm .

  8. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  9. The Oil, Chemical, and Atomic Workers International Union: refining strategies for labor.

    PubMed

    Wooding, J; Levenstein, C; Rosenberg, B

    1997-01-01

    In a period of declining union membership and severe economic and environmental crisis it is important that labor unions rethink their traditional roles and organizational goals. Responding to some of these problems and reflecting a history of innovative and progressive unionism, the Oil, Chemical and Atomic Workers Union (OCAW) has sought to address occupational and environmental health problems within the context of a political struggle. This study suggests that by joining with the environmental movement and community activists, by pursuing a strategy of coalition building, and by developing an initiative to build and advocate for a new political party, OCAW provides a model for reinvigorating trade unionism in the United States.

  10. Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells.

    PubMed

    Ghasemi Naghdi, Forough; Schenk, Peer M

    2016-10-01

    Solvent-free microalgal lipid recovery is highly desirable for safer, more sustainable and more economical microalgal oil production. Dispersed air flotation and centrifugation were evaluated for the ability to separate oil and debris from a slurry mixture of osmotically fractured Chaetoceros muelleri cells with and without utilizing collectors. Microalgal oil partially phase-separated as a top layer and partially formed an oil-in-water emulsion. Although collectors, such as sodium dodecyl sulphate enhanced selective flotation, by just adjusting the pH and cell concentration of the mixture, up to 78% of the lipids were recovered in the froth. Using centrifugation of fractured microalgal slurry resulted in removal of 60% cell debris and up to 68.5% of microalgal oil was present in the supernatant. Both methods, centrifugation and flotation provided options for separation of microalgal oil from C. muelleri slurry with similar fatty acid recoveries of 57% and 60%, respectively.

  11. Comparative evaluation of outcomes of phacoemulsification in vitrectomized eyes: silicone oil versus air/gas group.

    PubMed

    Titiyal, Jeewan S; Agarwal, Esha; Angmo, Dewang; Sharma, Namrata; Kumar, Atul

    2016-08-02

    The purpose of this study is to comparatively evaluate the morphology of cataract, intraoperative and postoperative complications (IPC), and surgical outcomes of phacoemulsification in post 23G vitrectomized eyes in silicone oil versus air/gas group. This prospective interventional clinical study took place in the Dr. RP Centre for Ophthalmic Sciences, AIIMS, New Delhi, India. Eighty-nine eyes of 89 consecutive vitrectomized patients with cataract were included. All underwent phacoemulsification and evaluated for cataract morphology, surgical difficulties, IPC, visual acuity, and specular count. Mean age of patients was 50.24 ± 15.19 years. There were 65 males and 24 females and 48 eyes in silicone oil group and 41 in air/gas group. Combination type was the commonest morphology seen in both silicone oil (52.08 %) and air/gas group (70.33 %) followed by posterior subcapsular cataract (PSC) in 31.25 % silicone group and 12.2 % air/gas group. Posterior capsular plaque (PCP) was seen in 41.67 % of silicone oil versus 7.32 % air/gas group; p < 0.005. Pupillary abnormalities were significantly more in oil (31.25 %) than in air/gas group (9.76 %); p = 0.014. Mean duration between vitrectomy and phacoemulsification in oil group versus air/gas group was 8.39 ± 4.7 months and 10.9 ± 5.22 months, respectively; p < 0.005. Mean postoperative logMAR visual acuity was better in air/gas (0.43 ± 0.25) than in oil (0.66 ± 0.29) group, p < 0.005. There was no significant difference in mean endothelial cell loss postoperatively in either groups (p = 0.25). Morphology of cataract differs in the two groups with PSC being more common in oil group. The mean time of cataract onset was significantly less in patients with oil group, and poor visual outcome in oil group may be attributable to the increased PCP noted.

  12. Impact of oil spill from ship on air quality around coastal regions of Korea

    NASA Astrophysics Data System (ADS)

    Shon, Zang-Ho; Song, Sang-Keun

    2010-05-01

    Regional air quality around coastal regions, where regular maritime traffic emissions from cargo, other commercial, fishing and military vessels are significantly active, can be affected by their direct emission of primary air pollutants (NOx, SO2, particulate matter (PM), etc.). For instance, harbor traffic exerted an important impact on NO2, SO2, O3, and PM levels. In addition, regional air quality around coastal regions is also affected by oil spill caused by ship accident in the coast. On 7 Dec., 2007, a barge carrying a crane hit the oil tanker MT Hebei Sprit off the west coast of the Republic of Korea, Yellow Sea (approximately 10 km off the coast), at 0700 local time, causing the spill of total estimated 12,547 tons of Iranian heavy (IH) and Kuwait Export (KE) crude oils. Since then, oil began coming on shore late in the night on 7 Dec. More than 150 km of coastline had been identified as being impacted by 17 Dec. Much of the affected area is part of the Taean-gun National Park and the nearest coastal city to spilled area is Taean. On 8 Dec., the flow of oil from the tanker was stopped when the holes were patched. The accident is the worst oil spill in Korea and the spill area is about one-third of the size of the Exxon Valdez oil spill. The short- and long-term effects of oil spill on marine environment have been numerously studied, not on atmospheric environment. In this study, the air quality impact near spilled area by the evaporation of hydrocarbons from the oil spill is studied in detail. The evaporation rates of the volatile fractions of the crude oils released by oil spill were estimated based on their mole fractions of crude oils and mass transfer coefficients. Based on a molecular diffusion process, the flux of spilled oil component (Fivap, mol m-2 s-1) can be expressed as follows: Fivap = Kivap(Civap - C∞vap) (1) where Civap is concentration (mol m-3) of a component i of crude oil vapor in the air at the oil-air interface; C∞vap is the

  13. Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology.

    PubMed

    Lucatero, Savidra; Larralde-Corona, Claudia Patricia; Corkidi, Gabriel; Galindo, Enrique

    2003-01-01

    The culture conditions of a multiphase fermentation involving morphologically complex mycelia were simulated in order to investigate the influence of mycelial morphology (Trichoderma harzianum) on castor oil and air dispersion. Measurements of oil drops and air bubbles were obtained using an image analysis system coupled to a mixing tank. Complex interactions of the phases involved could be clearly observed. The Sauter diameter and the size distributions of drops and bubbles were affected by the morphological type of biomass (pellets or dispersed mycelia) added to the system. Larger oil drop sizes were obtained with dispersed mycelia than with pellets, as a result of the high apparent viscosity of the broth, which caused a drop in the power drawn, reducing oil drop break-up. Unexpectedly, bubble sizes observed with dispersed mycelia were smaller than with pellets, a phenomenon which can be explained by the segregation occurring at high biomass concentrations with the dispersed mycelia. Very complex oil drops were produced, containing air bubbles and a high number of structures likely consisting of small water droplets. Bubble location was influenced by biomass morphology. The percentage (in volume) of oil-trapped bubbles increased (from 32 to 80%) as dispersed mycelia concentration increased. A practically constant (32%) percentage of oil-trapped bubbles was observed with pelleted morphology at all biomass concentrations. The results evidenced the high complexity of phases interactions and the importance of mycelial morphology in such processes.

  14. Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Silva, Sam J.; Heald, Colette L.; Geddes, Jeffrey A.; Austin, Kemen G.; Kasibhatla, Prasad S.; Marlier, Miriam E.

    2016-08-01

    Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). According to the United Nations, oil palm production in SEA increased by a factor of 3 from 1995 to 2010. We investigate the impacts of current (2010) and near-term future (2020) projected oil palm expansion in SEA on surface-atmosphere exchange and the resulting air quality in the region. For this purpose, we use satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. Relative to a no oil palm plantation scenario (˜ 1990), overall simulated isoprene emissions in the region increased by 13 % due to oil palm plantations in 2010 and a further 11 % in the near-term future. In addition, the expansion of palm plantations leads to local increases in ozone deposition velocities of up to 20 %. The net result of these changes is that oil palm expansion in SEA increases surface O3 by up to 3.5 ppbv over dense urban regions, and in the near-term future could rise more than 4.5 ppbv above baseline levels. Biogenic secondary organic aerosol loadings also increase by up to 1 µg m-3 due to oil palm expansion, and could increase by a further 2.5 µg m-3 in the near-term future. Our analysis indicates that while the impact of recent oil palm expansion on air quality in the region has been significant, the retrieval error and sensitivity of the current constellation of satellite measurements limit our ability to observe these impacts from space. Oil palm expansion is likely to continue to degrade air quality in the region in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.

  15. Flame and graphite furnace atomic absorption spectrometry for trace element determination in vegetable oils, margarine and butter after sample emulsification.

    PubMed

    Ieggli, C V S; Bohrer, D; Do Nascimento, P C; De Carvalho, L M

    2011-05-01

    Trace element analysis plays an important role in oil characterisation and in the detection of oil adulteration because the quality of edible oils and fats is affected by their trace metal content. In this study, the quantification of selected metals in various oils and fats (rice oil, canola oil, sunflower oil, corn oil, soy oil, olive oil, light margarine, regular margarine and butter) was carried out using flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after sample emulsification. FAAS was used to determine the Na, K, Ca, Mg, Zn and Fe levels in the samples, while GFAAS was used for quantifying Cr, Ni, As, Pb, Cd, Cu and Mn, as these elements appeared in the samples at much lower concentrations. Tween-80 and Triton X-100 were employed as surfactants, and emulsions were prepared by a conventional method that involved heating and mixing of the constituents. Complete stabilisation was achieved through magnetic stirring for 15 min at room temperature. The evaluated figures of merit were linearity, accuracy and sensitivity, which were determined by the characteristic concentration and mass. Analysis of spiked samples demonstrated accuracy, which ranged from 90% (Na) to 112% (Fe) for FAAS and from 83% (Cd) to 121% (Pb) for GFAAS measurements. Atomic absorption spectrometry proved to be a promising approach for the analysis of metals in emulsified edible oils and fats. Additionally, under appropriate emulsification conditions (formulation, stirring time and temperature), the emulsions were homogeneous, had excellent stability, and had appropriate viscosity. The proposed method has proved to be simple, sensitive, reproducible, and economical.

  16. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  17. Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico.

    PubMed

    Schifter, I; González-Macías, C; Miranda, A; López-Salinas, E

    2005-10-01

    Air emission data from offshore oil platforms, gas and oil processing installations and contribution of marine activities at the Sonda de Campeche, located at the Gulf of Mexico, were compiled and integrated to facilitate the study of long range transport of pollutants into the region. From this important region, roughly 76% of the total Mexican oil and gas production is obtained. It was estimated that the total air emissions of all contaminants are approximately 821,000 tons per year. Hydrocarbons are the largest pollutant emissions with 277,590 tons per year, generated during flaring activities, and SOx in second place with 185,907 tons per year. Marine and aviation activities contribute with less than 2% of total emissions. Mass of pollutants emitted per barrel of petroleum produced calculated in this work, are in the range reported by similar oil companies.

  18. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens.

    PubMed

    Tyagi, A K; Malik, A

    2010-10-15

    The aim of this study was to investigate the antibacterial activity of essential oil (in liquid as well as in vapour phase) and negative air ions (NAI) against Pseudomonas fluorescens. The combined effect of NAI with essential oil vapour was also investigated to determine kill time and morphological changes in bacterial cells. The MIC of Cymbopogon citratus (0.567 mg/ml), Mentha arvensis (0.567 mg/ml), Mentha piperita (1.125 mg/ml) and Eucalyptus globulus (2.25 mg/ml) was studied via the agar dilution method. To estimate the antibacterial activity of essential oils in the vapour phase, agar plates inoculated with P. fluorescens were incubated with various concentrations of each essential oil vapour and zone of inhibition was recorded. Further, in order to assess the kill time, P. fluorescens inoculated agar plates were exposed to selected bactericidal essential oil vapour and NAI, separately, in an air-tight chamber. A continuous decrease in bacterial count was observed over time. A significant enhancement in the bactericidal action was observed by exposure to the combination of essential oil vapour and NAI as compared to their individual action. Scanning electron microscopy was used to study the alteration in morphology of P. fluorescens cells after exposure to C. citratus oil vapour, NAI, and combination of C. citratus oil vapour and NAI. Maximum morphological deformation was found due to the combined effect of C. citratus oil vapour and NAI. This study demonstrates that the use of essential oils in the vapour phase is more advantageous than the liquid phase. Further the antibacterial effect of the essential oil vapours can be significantly enhanced by the addition of NAI. The work described here offers a novel and efficient approach for control of bacterial contamination that could be applied for food stabilization practices.

  19. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    PubMed

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  20. Development of polyvinylether refrigeration oil for hydrofluorocarbon air-conditioning systems

    SciTech Connect

    Tozaki, Toshinori; Konishi, Tsuneo; Nagamatsu, Noritoshi

    1998-10-01

    Polyolestor (POE) poses capillary tube blockage problems when it is used as an air-conditioner refrigeration oil. A polyvinylether (PVE) oil has been developed to settle such problems. The causes of blockage were determined by analyzing capillary tubes after testing them with PVE and POE in the laboratory and in actual equipment. PVE was confirmed to have superior performance over POE with respect to resistance of capillary tube blockage.

  1. Oil Palm expansion over Southeast Asia: land use change and air quality

    NASA Astrophysics Data System (ADS)

    Silva, S. J.; Heald, C. L.; Geddes, J.; Marlier, M. E.; Austin, K.; Kasibhatla, P. S.

    2015-12-01

    Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). Much of this expansion has come at the expense of natural forests and grasslands. Aircraft measurements from a 2008 campaign, OP3, found that oil palm plantations emit as much as 7 times more isoprene than nearby natural forests. Furthermore, SEA is a rapidly developing region, with increasing urban population, and growing air quality concerns. Thus, SEA represents an ideal case study to examine the impacts of land use change on air quality in the region, and whether those changes can be detected from satellite observations of atmospheric composition. We investigate the impacts of historical and future oil palm expansion in SEA using satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. We examine the impact of palm plantations on surface-atmosphere processes (dry deposition, biogenic emissions). We show the sensitivity of air quality to current and future oil palm expansion scenarios, and discuss the limitations of current satellite measurements in capturing these changes. Our results indicate that while the impact of oil palm expansion on air quality can be significant, the retrieval error and sensitivity of the satellite measurements limit our ability to observe these impacts from space.

  2. Combined air-oil cooling on a supercharged TC IC TAM diesel engine

    SciTech Connect

    Trenc, F. ); Pavletic, R. . Dept. of Mechanical Engineering)

    1993-10-01

    In order to reduce the maximum cylinder wall temperatures of an air-cooled TC IC diesel engine with large longitudinal and circumferential temperature gradients, a curved, squared cross-sectional channel supplied with engine lubrication oil was introduced into the upper part of the cylinder wall. Numerical analyses of the heat transfer within the baseline air-cooled cylinder and intensive experimental work helped to understand the temperature situation in the cylinder at diverse engine running conditions. The results of the combined cooling were greatly affected by the design, dimensions, position of the channel, and the distribution of the cooling oil flow, and are presented in the paper.

  3. Determination of the total iron content of used lubricating oils by atomic-absorption with use of emulsions.

    PubMed

    Salvador, A; de la Guardia, M; Berenguer, V

    1983-12-01

    A new method is proposed for the determination of the total iron content of used lubricating oils. It is based on treatment of the samples with a mixture of hydrofluoric and nitric acids (without destruction of the organic matter) and emulsification, followed by atomic-absorption measurement. This allows the use of aqueous standards and provides a simple, rapid, inexpensive and accurate method, that is not affected by the particle size of the solids in the oil.

  4. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    SciTech Connect

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  5. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  6. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction.

    PubMed

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-06-01

    The dispersive liquid-liquid microextraction of edible oils with a low volume of an acidic solution in the presence of isopropyl alcohol allows cadmium and lead to be completely separated into the aqueous phase. After centrifugation, the metals are determined by electrothermal atomization atomic absorption spectrometry using a palladium salt for chemical modification in the heating cycle. Using a 10 g oil sample, the enrichment factor is 140, which permits detection limits of 0.6 and 10 ng kg(-1) for cadmium and lead, respectively. The results agree with those obtained after sample mineralization. Data for the cadmium and lead levels for 15 samples of different characteristics are given.

  7. Remediation of oil-contaminated sand with self-collapsing air microbubbles.

    PubMed

    Agarwal, Ashutosh; Zhou, Yufeng; Liu, Yu

    2016-12-01

    In this study, a novel chemical-free approach for cleaning oil-contaminated sand with self-collapsing air microbubbles (MBs) with diameter less than 50 μm was developed without the use of chemicals, such as surfactants and alkalis. Diesel and rotary-vane pump oil-contaminated fine and medium sands were treated with MBs to study the effect of oil viscosity and sand grain size on oil removal with MBs. About 95 % of diesel removal was achieved for 24 h old 10 % (w/w) diesel-contaminated medium sand in contrast to only 70 % removal from fine sand after 40-min treatment with MBs. While rotary-vane pump oil removal exceeds that of diesel after 40-min treatment with MBs, combination of mechanical stirring with MBs significantly enhanced the oil removal rate, whereby 95 % diesel removal was achieved from fine sand in 30 min in contrast to only 52 % diesel removal with MBs alone. A possible MBs cleaning mechanism for oil-contaminated sand was also proposed. This study provides experimental evidence for the applicability of self-collapsing MBs as a novel chemical-free approach for cleaning oil-contaminated sand.

  8. Survey of reproductive hazards among oil, chemical, and atomic workers exposed to halogenated hydrocarbons

    SciTech Connect

    Savitz, D.A.; Harley, B.; Krekel, S.; Marshall, J.; Bondy, J.; Orleans, M.

    1984-01-01

    Several halogenated hydrocarbons are suspected of causing adverse reproductive effects. Because of such concerns, the Oil, Chemical, and Atomic Workers International Union surveyed the reproductive histories of two groups of workers. One group worked at plants engaged in the production or use of halogenated hydrocarbons (exposed) whereas the others had no such opportunity for exposure (nonexposed). Although a low response rate precludes firm conclusions, the 1,280 completed questionnaires provide useful data for generating hypotheses in this developing field of interest. A history of diagnosed cancer was reported more frequently among exposed workers. The infant mortality rate was also significantly elevated among the offspring of exposed workers. No risk gradient was observed for episodes of infertility, fetal loss, congenital defects, or low-birthweight offspring. Concerns with nonresponse, exposure characterization, possible confounding factors, and limited statistical power are addressed. The results provide further suggestions which help to direct studies of occupational reproductive risks.

  9. [Oil atomic spectrometric feature selection by Parzen window based vague sets theory].

    PubMed

    Xu, Chao; Zhang, Pei-Lin; Ren, Guo-Quan; Zhang, Xiao-Dong; Yang, Yu-Dong

    2011-02-01

    Large quantity and ambiguity of oil atomic spectrometric information greatly affects the applicable efficiency and accuracy in fault diagnosis. A novel method for choosing less and effective spectrometric features is presented. Based on gearbox test bed, we simulated the normal wear state and two typical faults to acquire the lubricant samples. The three wear states are regarded as three vague sets, and spectrometric feature values are vague values on vague sets. Based on similarity between vague values, mean vague sensibility (MVS) is defined to describe the sensitive degree of spectrometric feature to wear state. Besides, the membership degrees of vague sets greatly depend on human experience. The probability density distribution of spectrometric data of three wear states was estimated with Parzen window. Combined with Bayesian formula, the range of vague sets membership was calculated. Experimental results verify that the proposed method is of efficient help in choosing high fault-sensitive features from so many spectrometric features.

  10. Determination of calcium, magnesium and zinc in unused lubricating oils by atomic absorption spectroscopy.

    PubMed

    Udoh, A P

    1995-12-01

    Varying concentrations of lanthanum and strontium were added to solutions of ashed unused lubricating oils for the determination of calcium, magnesium and zinc content using flame atomic absorption spectrophotometry. At least 3000 mug g(-1) of lanthanum or strontium was required to completely overcome the interference of the phosphate ion, PO(3-)(4), and give peak values for calcium. The presence of lanthanum or strontium did not cause an appreciable increase in the amount of magnesium and zinc obtained from the analyses. The method is fast and reproducible, and the coefficients of variation calculated for the elements using one of the samples were 1.6% for calcium, 3.5% for magnesium and 0.2% for zinc. Results obtained by this method were better than those obtained by other methods for the same samples.

  11. Summary of the setting, air quality problems, and meteorological activities in the oil shale region

    SciTech Connect

    Barr, S.; Clements, W.E.

    1981-01-01

    This document discusses air quality problems that may arise in the valleys of the Uinta mountains and the Roan Ridge in the oil shale area in western Colorado and eastern Utah. A meteorological field expedition that was undertaken in August 1980 by LASL and PNL is described. (DLC)

  12. Air/Oil Seals R and D at AlliedSignal

    NASA Technical Reports Server (NTRS)

    Ullah, M. Rifat

    2006-01-01

    AlliedSignal aerospace company is committed to significantly improving the reliabilities of air/oil seals in their gas turbine engines. One motivation for this is that aircraft cabin air quality can be affected by the performance of mainshaft air/oil seals. In the recent past, coking related failure modes have been the focus of air/oil seal R&D at AlliedSignal. Many significant advances have been made to combat coke related failures, with some more work continuing in this area. This years R&D begins to address other commin failure modes. Among them, carbon seal "blistering" has been a chronic problem facing the sealing industry for many decades. AlliedSignal has launched an aggressive effort this year to solve this problem for our aerospace rated carbon seals in a short (one to two year) timeframe. Work also continues in developing more user-friendly tools and data for seal analysis & design. Innovations in seal cooling continue. Nominally non-contacting hydropad sealing concept is being developed for aerospace applications. Finally, proprietary work is in planning stages for development of a seal with the aggressive aim of zero oil leakage.

  13. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  14. A laboratory assessment of air sparging performance on oil-contaminated soil

    SciTech Connect

    Harkness, M.R.; Bracco, A.A.; Ciampa, J.D.

    1995-12-31

    The efficacy of air sparging to remediate a subsurface plume of transformer oil is evaluated in a comprehensive laboratory study. Shake flask assays containing contaminated soil indicated the oil was highly (>80%) biodegradable by indigenous bacteria when oxygen, nitrogen, and phosphorous were supplied. From 50 to 60% of the oil was removed from the soil in a 169-day biodegradation rate study performed in laboratory soil columns designed to mimic air sparged conditions. Maximal total petroleum hydrocarbon (TPH) biodegradation rates of {approximately}70 mg/kg per day were observed in nutrient (N and P) amended columns at 23 C, based upon O{sub 2} uptake and CO{sub 2} production. The total TPH biodegraded in these columns was 3-fold higher than in an unamended control column.

  15. United States Air Force Shale Oil to Fuels. Phase II.

    DTIC Science & Technology

    1981-11-01

    V)) -r 0 0 9 0 0A 1 pe i.o o Cl 0 0 cc 4- < (o 0 L ) 0 C ill, N - - 0 n 0 nn I * Z~O s’ 4 0 )-- 0 0D 00 0O o - - fu W O 0 0 0 CYj -- OD CO 0 C14...Braun and R. H. Hausler , Oil & Gas J., 75, 6, 90 (February 14, 1977). 2. R. Braun, Materials Performance, 16, 11, 35 (1977). 3. R. H. Hazlett, et al

  16. Atomic structure and thermophysical properties of molten silver-copper oxide air braze alloys

    NASA Astrophysics Data System (ADS)

    Hardy, John Steven

    The Ag-CuOx materials system is the basis for a family of filler alloys used in a recently developed ceramic-metal joining technique referred to as air brazing, which is a brazing process that can be carried out in ambient air rather than under the vacuum or inert to reducing gas conditions required for conventional brazing methods. This research was conducted to elucidate the atomic coordination and selected thermophysical properties of these materials as a function of temperature when they are in the salient liquid state in air, since this is when the critical steps of wetting and spreading occur in the joining process. A series of alloys was selected spanning the entire length of the phase diagram including the pure end members, Ag and CuOx; alloys that form the two constituent single phase liquids; and alloys for which the two liquid phases coexist in the miscibility gap of the phase diagram. The oxygen content of the liquid alloys in air was measured using thermogravimetry. The oxidative weight gain of 99.999% pure metallic precursors was measured while simultaneously accounting for the concurrent silver volatility using a method that was developed in the course of the study. The surface tension and mass density were measured using the maximum bubble pressure method. The number density was calculated based on the information gained from the oxygen content and mass density measurements. For compositions that were amenable to laser heating, containerless high energy x-ray scattering measurements of the liquid atomic coordination were performed using a synchrotron beamline, an aerodynamic levitator, and laser heating. For the remaining compositions x-ray scattering measurements were performed in a beamline-compatible furnace. The two liquid phases that form in this materials system have distinct atomic coordinations characterized by an average of nearly two-fold coordinated ionic metal-oxygen pairs in the CuOx-rich liquid and nearly eight-fold coordinated atomic

  17. Improvement of air quality according to Mobile reduction measures to establish Korean Auto-oil program

    NASA Astrophysics Data System (ADS)

    Sunwoo, Y.; Jo, H.; Ma, Y.; Kim, S.; Hong, K.; Lim, Y.; Javascript:Setnextpage('sponsor')

    2011-12-01

    The mobile of NOx and PM10 emission of Korea in 2007 accounted for 42%, 23%, respectively (excluded fugitive dust). Seoul highly affected mobile emission which accounted for 46%, 49%, respectively. Korean government ,therefore, established "Special Act for improvement of air quality in Seoul metropolitan area" including mobile emission reduction measures and organized research forum including reformation of fuel and cars, risk assessment, control of greenhouse gas and assessment of air quality to establish Korean Auto-oil program This study quantitatively analyses improvement of air quality in Seoul according to the reformation of fuel and supply of DPF in Korean Auto-oil program. WRF-SMOKE-CMAQ were emploied for this study. SO2, CO, NOx, PM10 and VOCs emission are based on the INTEX-B emission inventory, NH3 were from the REAS emission inventory. Korea emission is derived by CAPSS (Clean Air Policy Support System) data. The reduction through reformation of fuel and supply of DPF is calculated by reduction ratio of air pollutants with strengthen fuel quality standard and number of car supplied DPF, refer to Metropolitan Air Quality Management Office Republic of Korea (2011) in detail. The effect of air quality is quantifiably comparing modeling results which are applied/not applied on the measures. This study will be provided basic data to establish Korean Auto-oil program through quantifying and predicting to improvement of air quality according to the mobile measures. Acknowledgement This research was supported in part by the "Assessment of risk and health benefits considering exposure characteristics of fuel" project sponsored by the Korea Automobile Environmental Association.

  18. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  19. Wintertime Air Quality Impacts from Oil and Natural Gas Drilling Operations in the Bakken Formation Region

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, Ashley; Sive, Barkley; Zhou, Yong; Prenni, Anthony; Schurman, Misha; Day, Derek; Sullivan, Amy; Li, Yi; Hand, Jenny; Gebhart, Kristi; Schichtel, Bret; Collett, Jeffrey

    2016-04-01

    Oil and natural gas extraction has dramatically increased in the last decade in the United States due to the increased use of unconventional drilling techniques which include horizontal drilling and hydraulic fracturing. The impact of these drilling activities on local and regional air quality in oil and gas basins across the country are still relatively unknown, especially in recently developed basins such as the Bakken shale formation. This study is the first to conduct a comprehensive characterization of the regional air quality in the Bakken region. The Bakken shale formation, part of the Williston basin, is located in North Dakota and Montana in the United States and Saskatchewan and Manitoba in Canada. Oil and gas drilling operations can impact air quality in a variety of ways, including the generation of atmospheric particulate matter (PM), hazardous air pollutants, ozone, and greenhouse gas emissions. During the winter especially, PM formation can be enhanced and meteorological conditions can favor increased concentrations of PM and other pollutants. In this study, ground-based measurements throughout the Bakken region in North Dakota and Montana were collected over two consecutive winters to gain regional trends of air quality impacts from the oil and gas drilling activities. Additionally, one field site had a comprehensive suite of instrumentation operating at high time resolution to gain detailed characterization of the atmospheric composition. Measurements included organic carbon and black carbon concentrations in PM, the characterization of inorganic PM, inorganic gases, volatile organic compounds (VOCs), precipitation and meteorology. These elevated PM episodes were further investigated using the local meteorological conditions and regional transport patterns. Episodes of elevated concentrations of nitrogen oxides and sulfur dioxide were also detected. The VOC concentrations were analyzed and specific VOCs that are known oil and gas tracers were used

  20. On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids

    SciTech Connect

    Kiracofe, Daniel; Raman, Arvind

    2010-02-15

    The effect of hydrodynamic loading on the eigenmode shapes, modal stiffnesses, and optical lever sensitivities of atomic force microscope (AFM) microcantilevers is investigated by measuring the vibrations of such microcantilevers in air and water using a scanning laser Doppler vibrometer. It is found that for rectangular tipless microcantilevers, the measured fundamental and higher eigenmodes and their equivalent stiffnesses are nearly identical in air and in water. However, for microcantilevers with a tip mass or for picket shaped cantilevers, there is a marked difference in the second (and higher) eigenmode shapes between air and water that leads to a large decrease in their modal stiffness in water as compared to air as well as a decrease in their optical lever sensitivity. These results are explained in terms of hydrodynamic interactions of microcantilevers with nonuniform mass distribution. The results clearly demonstrate that tip mass and hydrodynamic loading must be taken into account in stiffness calibration and optical lever sensitivity calibration while using higher-order eigenmodes in dynamic AFM.

  1. DNA nanofilm thickness measurement on microarray in air and in liquid using an atomic force microscope.

    PubMed

    Legay, Guillaume; Finot, Eric; Meunier-Prest, Rita; Cherkaoui-Malki, Mustapha; Latruffe, Norbert; Dereux, Alain

    2005-10-15

    The measurement of the thickness of DNA films on microarray as a function of the medium (liquid, air) is gaining importance for understanding the signal response of biosensors. Thiol group has been used to attach DNA strands to gold micropads deposited on silicon surface. Atomic force microscopy (AFM) was employed in its height mode to measure the change in the pad thickness and in its force mode to measure the indentation depth of the nanofilm. A good coherence between the height and force modes is observed for the film thickness in air. The adhesion force was found to be an alternative way to measure the surface coverage of the biolayer at nanoscopic scale. However the force analysis (compression, steric and electrostatic) provides baseline information necessary to interpret the AFM height image in liquid. Analysis of the film thickness distribution shows that the height of the DNA strands depends on both the DNA strand length (15-35 base pairs) and the environment (air, liquid). In air, longer strands lay down onto gold surface whereas the charge reversal of gold in liquid causes a repulsion of longer strands, which stand up.

  2. Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air.

    PubMed

    Guangul, Fiseha M; Sulaiman, Shaharin A; Ramli, Anita

    2012-12-01

    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.

  3. Modeling VOC emissions and air concentrations from the Exxon Valdez oil spill

    SciTech Connect

    Hanna, S.R. ); Drivas, P.J. )

    1993-03-01

    During the two-week period following the Exxon Valdez oil spill in March 1989 in Prince William Sound, Alaska, toxic volatile organic compounds (VOCs) evaporated from the surface of the oil spill and were transported and dispersed throughout the region. To estimate the air concentrations of these VOCs, emissions and dispersion modeling was conducted for each hour during the first two weeks of the spill. A multicomponent evaporative emissions model was developed and applied to the oil spill; the model considered the evaporation of 15 specific compounds, including benzene and toluene. Both mass transfer from the surface of the spill and diffusion through the oil layer were considered in the emissions model. Maximum emissions of toluene were calculated to equal about 20,000 kg/hr, or about 5 g/m[sup 2] hr, at a time of eight hours after the initial oil spill. Meteorological data were acquired from sources and used to estimate hourly-averaged wind velocity over the spill. Air concentrations of specific components were calculated using the ATDL area source diffusion model and the Offshore and Coastal Dispersion (OCD) model. Maximum hourly-averaged concentrations were predicted not to exceed 10 ppmv for any compound. 24 refs., 6 figs., 4 tabs.

  4. A 3D Computational Study on the Air-Blast Atomization of a Planar Liquid Layer

    NASA Astrophysics Data System (ADS)

    Chiodi, Robert; Desjardins, Olivier

    2016-11-01

    The air-blast atomization of a planar liquid layer is a complex fluid phenomenon involving the destabilization of a low speed liquid layer by a high speed gas coflow. While progress has been made in recent years on understanding the instability of the liquid surface, it remains difficult to accurately predict using stability analysis and requires special expertise and equipment to perform thorough experiments. Simulations provide an excellent way to conduct parametric studies to determine the effect of splitter plate geometry and momentum flux ratio on the frequency and wavelengths of instability, however, they are extremely difficult due to the high density ratio and large range of length and time scales present in the flow. Using an accurate conservative level set method in conjunction with a newly reformulated reinitialization equation, we perform 3D simulations of the air-blast atomization of a planar liquid layer and compare them to experiments. We then go on to explore the role momentum flux ratio plays in the longitudinal and transverse wavelengths of instability.

  5. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mcdonell, Vincent G.; Samuelsen, Scott

    1991-01-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  6. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Astrophysics Data System (ADS)

    McDonell, Vincent G.; Samuelsen, Scott

    1991-10-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  7. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    NASA Astrophysics Data System (ADS)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  8. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  9. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.

    PubMed

    Xie, Lei; Shi, Chen; Wang, Jingyi; Huang, Jun; Lu, Qiuyi; Liu, Qingxia; Zeng, Hongbo

    2015-03-03

    The interaction between air bubbles and solid surfaces plays important roles in many engineering processes, such as mineral froth flotation. In this work, an atomic force microscope (AFM) bubble probe technique was employed, for the first time, to directly measure the interaction forces between an air bubble and sphalerite mineral surfaces of different hydrophobicity (i.e., sphalerite before/after conditioning treatment) under various hydrodynamic conditions. The direct force measurements demonstrate the critical role of the hydrodynamic force and surface forces in bubble-mineral interaction and attachment, which agree well with the theoretical calculations based on Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. The hydrophobic disjoining pressure was found to be stronger for the bubble-water-conditioned sphalerite interaction with a larger hydrophobic decay length, which enables the bubble attachment on conditioned sphalerite at relatively higher bubble approaching velocities than that of unconditioned sphalerite. Increasing the salt concentration (i.e., NaCl, CaCl2) leads to weakened electrical double layer force and thereby facilitates the bubble-mineral attachment, which follows the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by including the effects of hydrophobic interaction. The results provide insights into the basic understanding of the interaction mechanism between bubbles and minerals at nanoscale in froth flotation processes, and the methodology on probing the interaction forces of air bubble and sphalerite surfaces in this work can be extended to many other mineral and particle systems.

  10. Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu

    2015-01-01

    Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10-4 g m-2 day-1] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10 000 h.

  11. Mixing layer growth and background air-quality measurements over the Colorado oil-shale area

    SciTech Connect

    Laulainen, N.S.; Whiteman, C.D.; Davis, W.E.; Thorp, J.M.

    1981-06-01

    The daily growth of convective boundary layers over the complex terrain of the oil shale areas of Colorado is a prominent feature of the meteorology of the region. The development of these layers was investigated using airsondes, rawinsondes, and aircraft. The deep growth of the layers in August, to heights in excess of 5500-m MSL on clear or partly cloudy days, is expected to have important implications for the dispersal of pollutants released in the region as the oil shale resource undergoes future development. Aircraft observations show that the present background air quality is good over the region and that pollutants, when present, become well mixed throughout the depth of the convective boundary layer. The layer therefore represents an important natural means of dilution for pollutants introduced into the atmosphere. Work is proceeding to incorporate the time-dependent convective boundary layer growth into air pollution models for the region.

  12. Genotoxicity to human cells induced by air particulates isolated during the Kuwait oil fires

    SciTech Connect

    Kelsey, K.T.; Xia, F.; Christiani, D.C.; Liber, H.L.; Spengler, J.D.; Dockery, D.W. ); Bodell, W.J. )

    1994-01-01

    In an effort to examine the potential of exposure to soot from the 1991 oil fires in the Kuwait desert for inducing genetic effects we studied the in vitro genotoxicity of this materials. Air particulates isolated near the Kuwait oil fires were studied using three assays. Dose-dependent increases were observed for both sister chromatid exchanges in human peripheral blood lymphocytes and mutation at the hprt locus in the metabolically competent human lymphoblast cell line AHH-1. Similar magnitudes of response were seen using these two assays when testing a standard air particulate sample which had been isolated from the Washington, DC, area. Using the [sup 32]P-postlabeling assay, no increase in DNA adduct formation was observed in AHH-1 cells treated with particulates isolated from sampling in Kuwait. 18 refs., 4 figs.

  13. Air quality over the Alberta oil sands: Satellite observations of NO2 and SO2

    NASA Astrophysics Data System (ADS)

    McLinden, C. A.; Fioletov, V.

    2011-12-01

    A vast reserve of bitumen - oil mixed with sand, clay, and water generally referred to as oil sands - resides in northern Alberta, Canada. Extraction of bitumen and its upgrade to liquid fuel is very energy intensive and generates significant emissions, including nitrogen and sulphur oxides. Satellite observations of NO2 and SO2 vertical column densities have been used to assess the magnitude and distribution of these pollutants throughout the oil sands. Preliminary results indicate a statistically significant enhancement in both species over an area (~30 x 30 km2) of intensive surface mining. Quantifying the burden of these enhancements and their recent changes over such a small area, comparable to the resolution of the best air quality satellite instruments, represents a significant challenge. The methodology used to meet this challenge will be presented, as will initial results including trends over the past decade, comparisons with other large industrial operations, and an assessment of consistency with emission inventories.

  14. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    PubMed

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  15. Predicting Air Quality Impacts Associated with Oil and Gas Development in the Uinta Basin Using EPA’s Photochemical Air Quality Model

    EPA Science Inventory

    Rural areas with close proximity to oil and natural gas operations in Utah have experienced winter ozone levels that exceed EPA’s National Ambient Air Quality Standards (NAAQS). Through a collaborative effort, EPA Region 8 – Air Program, ORD, and OAQPS used the Commun...

  16. Comparison of Y-jet and OIL effervescent atomizers based on internal and external two-phase flow characteristics

    NASA Astrophysics Data System (ADS)

    Mlkvik, Marek; Zaremba, Matous; Jedelsky, Jan; Jicha, Miroslav

    2016-03-01

    Presented paper focuses on spraying of two viscous liquids (μ = 60 and 143 mPa·s) by two types of twinfluid atomizers with internal mixing. We compared the well-known Y-jet atomizer with the less known, "outside in liquid" (OIL), configuration of the effervescent atomizer. The required liquid viscosity was achieved by using the water-maltodextrin solutions of different concentrations. Both the liquids were sprayed at two gas inlet pressures (Δp = 0.14 and 0.28 MPa) and various gas-to-liquid ratios (GLR = 2.5%, 5%, 10% and 20%). The comparison was focused on four characteristics: liquid flow-rate (for the same working regimes, defined by Δp and GLR), internal flow regimes, Weber numbers of a liquid breakup (We) and droplet sizes. A high-speed camera and Malvern Spraytec laser diffraction system were used to obtain necessary experimental data. Comparing the results of our experiments, we can state that for both the liquids the OIL atomizer reached higher liquid flow-rates at corresponding working regimes, it was typical by annular internal flow and higher We in the near-nozzle region at all the working regimes. As a result, it produced considerably smaller droplets than the second tested atomizing device, especially for GLR < 10%.

  17. Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution.

    PubMed

    Thompson, Tammy M; Shepherd, Donald; Stacy, Andrea; Barna, Michael G; Schichtel, Bret A

    2017-04-01

    Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas.

  18. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  19. Stationary rotary force waves on the liquid-air core interface of a swirl atomizer

    NASA Astrophysics Data System (ADS)

    Chinn, J. J.; Cooper, D.; Yule, A. J.; Nasr, G. G.

    2016-10-01

    A one-dimensional wave equation, applicable to the waves on the surface of the air-core of a swirl atomizer is derived analytically, by analogy to the similar one-dimensional wave equation derivation for shallow-water gravity waves. In addition an analogy to the flow of water over a weir is used to produce an analytical derivation of the flow over the lip of the outlet of a swirl atomizer using the principle of maximum flow. The principle of maximum flow is substantiated by reference to continuity of the discharge in the direction of streaming. For shallow-water gravity waves, the phase velocity is the same expression as for the critical velocity over the weir. Similarly, in the present work, the wave phase velocity on the surface of the air-core is shown to be the same expression as for the critical velocity for the flow at the outlet. In addition, this wave phase velocity is shown to be the square root of the product of the radial acceleration and the liquid thickness, as analogous with the wave phase velocity for shallow water gravity waves, which is the square root of the product of the acceleration due to gravity and the water depth. The work revisits the weirs and flumes work of Binnie et al. but using a different methodology. The results corroborate with the work of Binnie. High speed video, Laser Doppler Anemometry and deflected laser beam experimental work has been carried out on an oversize Perspex (Plexiglas) swirl atomizer. Three distinctive types of waves were detected: helical striations, low amplitude random ripples and low frequency stationary waves. It is the latter wave type that is considered further in this article. The experimentally observed waves appear to be stationary upon the axially moving flow. The mathematical analysis allows for the possibility of a negative value for the phase velocity expression. Therefore the critical velocity and the wave phase velocity do indeed lead to stationary waves in the atomizer. A quantitative comparison

  20. Computational Studies on Interaction between Air Bubbles and Hydrophobic Mineral Particles Covered by Nonpolar Oil.

    PubMed

    Song; Lopez-Valdivieso

    1999-04-01

    Computations based on the extended DLVO theory are carried out on the potential energies of interactions between air bubbles and talc particles covered by nonpolar oil. It is shown that the major role of nonpolar oil in this system is to greatly increase the depth of the primary energy valley, giving rise to a much stronger bubble-particle aggregate that can support greater aggregate-rupture force fields from turbulent flows. Also, due to nonpolar oil involvement, the energy barrier between bubbles and mineral particles sharply collapses down and further separates, indicative of a greater probability of attachment of mineral particles to air bubbles. A linear relationship is found between the primary energy valley and the contact angles of oil or bubbles, and thus a simple and approximate formula is presented to evaluate the depth of the primary energy valley. In addition, it is found that the primary energy valley and the energy barrier are directly proportional to the effective particle radius, but the barrier location is independent of the effective particle radius. Copyright 1999 Academic Press.

  1. Controlling a rabbet load and air/oil seal temperatures in a turbine

    DOEpatents

    Schmidt, Mark Christopher

    2002-01-01

    During a standard fired shutdown of a turbine, a loaded rabbet joint between the fourth stage wheel and the aft shaft of the machine can become unloaded causing a gap to occur due to a thermal mismatch at the rabbet joint with the bearing blower turned on. An open or unloaded rabbet could cause the parts to move relative to each other and therefore cause the rotor to lose balance. If the bearing blower is turned off during a shutdown, the forward air/oil seal temperature may exceed maximum design practice criterion due to "soak-back." An air/oil seal temperature above the established maximum design limits could cause a bearing fire to occur, with catastrophic consequences to the machine. By controlling the bearing blower according to an optimized blower profile, the rabbet load can be maintained, and the air/oil seal temperature can be maintained below the established limits. A blower profile is determined according to a thermodynamic model of the system.

  2. Air damping of atomically thin MoS{sub 2} nanomechanical resonators

    SciTech Connect

    Lee, Jaesung; Wang, Zenghui; Feng, Philip X.-L.; He, Keliang; Shan, Jie

    2014-07-14

    We report on experimental measurement of air damping effects in high frequency nanomembrane resonators made of atomically thin molybdenum disulfide (MoS{sub 2}) drumhead structures. Circular MoS{sub 2} nanomembranes with thickness of monolayer, few-layer, and multi-layer up to ∼70 nm (∼100 layers) exhibit intriguing pressure dependence of resonance characteristics. In completely covered drumheads, where there is no immediate equilibrium between the drum cavity and environment, resonance frequencies and quality (Q) factors strongly depend on environmental pressure due to bulging of the nanomembranes. In incompletely covered drumheads, strong frequency shifts due to compressing-cavity stiffening occur above ∼200 Torr. The pressure-dependent Q factors are limited by free molecule flow (FMF) damping, and all the mono-, bi-, and tri-layer devices exhibit lower FMF damping than thicker, conventional devices do.

  3. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  4. Atomic oxygen recombination on the ODS PM 1000 at high temperature under air plasma

    NASA Astrophysics Data System (ADS)

    Balat-Pichelin, M.; Bêche, E.

    2010-06-01

    High temperature materials are necessary for the design of primary heat shields for future reusable space vehicles re-entering atmospheric planet at hypersonic velocity. During the re-entry phase on earth, one of the most important phenomena occurring on the heat shield is the recombination of atomic oxygen and this phenomenon is more or less catalyzed by the material of the heat shield. PM 1000 is planned to be use on the EXPERT capsule to study in real conditions its catalycity. Before the flight, it is necessary to perform measurements on ground test facility. Experimental data of the recombination coefficient of atomic oxygen under air plasma flow were obtained in the diffusion reactor MESOX on pre-oxidized PM 1000, for two total pressures 300 and 1000 Pa in the temperature range (850-1650 K) using actinometry and optical emission spectroscopy. In this investigation, the evolution of the recombination coefficient is dependent of temperature, pressure level and also of the chemical composition of the surface leading to one order of magnitude for a given temperature. The recombination coefficient is increasing with temperature and also dependent on the static pressure. The surface change due to the plasma exposure is inspected with SEM, XRD and XPS. As chromium oxide is the main part of the oxide layer formed during the oxidation in air plasma conditions, a sintered Cr 2O 3 sample was elaborated from powders to compare the data of the recombination coefficient obtained on PM 1000. Pre- and post-test analyses on the several materials were carried out using SEM, WDS, XRD and XPS.

  5. Determination of antimony, arsenic, bismuth, selenium, tellurium and tin by low pressure atomic absorption spectrometry with a quartz tube furnace atomizer and hydride generation with air addition.

    PubMed

    Zhang, B; Wang, Y; Wang, X; Chen, X; Feng, J

    1995-08-01

    A new method has been developed for the determination of antimony, arsenic, bismuth, selenium, tellurium and tin by hydride generation-atomic absorption spectrometry in an electrically heated quartz tube furnace under sub-atmospheric pressure. The hydride generator, operating at a pressure lower than atmospheric, is used to generate and collect the hydrides of these elements. A certain volume (at atmospheric pressure) of air is then added to the generator after the formation of the volatile hydride. The gaseous mixture of the hydride and air is drawn into an evacuated, heated quartz tube by a vacuum pump. The proposed method gives improved sensitivities and detection limits.

  6. Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet

    NASA Astrophysics Data System (ADS)

    Nikiforov, A.; Li, L.; Britun, N.; Snyders, R.; Vanraes, P.; Leys, C.

    2014-02-01

    Treatment of samples with plasmas in biomedical applications often occurs in ambient air. Admixing air into the discharge region may severely affect the formation and destruction of the generated oxidative species. Little is known about the effects of air diffusion on the spatial distribution of OH radicals and O atoms in the afterglow of atmospheric-pressure plasma jets. In our work, these effects are investigated by performing and comparing measurements in ambient air with measurements in a controlled argon atmosphere without the admixture of air, for an argon plasma jet. The spatial distribution of OH is detected by means of laser-induced fluorescence diagnostics (LIF), whereas two-photon laser-induced fluorescence (TALIF) is used for the detection of atomic O. The spatially resolved OH LIF and O TALIF show that, due to the air admixture effects, the reactive species are only concentrated in the vicinity of the central streamline of the afterglow of the jet, with a characteristic discharge diameter of ˜1.5 mm. It is shown that air diffusion has a key role in the recombination loss mechanisms of OH radicals and atomic O especially in the far afterglow region, starting up to ˜4 mm from the nozzle outlet at a low water/oxygen concentration. Furthermore, air diffusion enhances OH and O production in the core of the plasma. The higher density of active species in the discharge in ambient air is likely due to a higher electron density and a more effective electron impact dissociation of H2O and O2 caused by the increasing electrical field, when the discharge is operated in ambient air.

  7. Performance Analysis and Parametric Study of a Natural Convection Solar Air Heater With In-built Oil Storage

    NASA Astrophysics Data System (ADS)

    Dhote, Yogesh; Thombre, Shashikant

    2016-10-01

    This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.

  8. DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.

    SciTech Connect

    MCDONALD,R.J.

    2007-05-01

    Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used

  9. The determination of wear metals in used lubricating oils by flame atomic absorption spectrometry using sulphanilic acid as ashing agent.

    PubMed

    Ekanem, E J; Lori, J A; Thomas, S A

    1997-11-01

    A simple and reliable ashing procedure is proposed for the preparation of used lubricating oil samples for the determination of calcium, magnesium, zinc, iron, chromium and nickel by flame atomic absorption spectrometry. Sulphanilic acid was added to oil samples and the mixture coked and the coke ashed at 550 degrees C. The solutions of the ash were analysed by flame AAS for the metals. The release of calcium, zinc, iron and chromium was improved by the addition of sulphanilic acid to samples. The relative standard deviations of metal concentration results in the initial oil samples were 1.5% for Ca (1500 mg l(-1) level), 0.3% for Mg (100 mg l(-1) level), 3.1% for Zn (1500 mg l(-1) level), 0.7% for Fe (500 mg l(-1) level), 0.02% for Cr (50 mg l(-1) level) and 0.002% for Ni (10 mg l(-1) level). The optimum sample size for efficient metal release was 20 g while the optimum sulphanilic acid to oil ratio was 0.05 g per gram of oil for Zn and Cr and 0.10 g for Ca and Fe. Results obtained by this procedure were highly reproducible and comparable with those obtained for the same samples using standard procedures.

  10. Air Quality Impacts of Oil and Gas Operations in the Northern Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Thompson, C. R.; Jacques, H.; Smith, K. R.; Terrell, R. M.

    2014-12-01

    Exceedences of the US EPA National Ambient Air Quality Standard (NAAQS) for surface ozone have been reported from monitoring sites in the Northern Colorado Front Range (NCFR) for more than fifteen years during summer. Comparison of ozone records from the NCFR clearly show that ozone primarily results from regional photochemical daytime production. Recent trend analyses do not show an improvement of surface ozone despite efforts by the State of Colorado to curb ozone precursor emissions. Our review of atmospheric volatile organic compound (VOC) measurements from historic and recent monitoring shows significant spatial increases of atmospheric VOC towards the oil and gas development area in Weld County, NW of the Denver-Boulder metropolitan region. Secondly, analyses of VOC trends and VOC signatures show an overall increase of oil and gas associated VOC relative to other VOC sources. These analyses suggest that oil and gas emissions are playing and increasing role in ozone production in the NCFR and that reductions of oil and gas emissions would be beneficial for lowering surface ozone and attainment of the ozone NAAQS.

  11. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  12. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  13. Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology

    DTIC Science & Technology

    2003-01-01

    Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology January 2003 Report Documentation Page Form ApprovedOMB No. 0704...2003 to 00-00-2003 4. TITLE AND SUBTITLE Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology...iii LIST OF FIGURES Page Figure 1. Air-Sparged Hydrocyclone (ASH) Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. ASH

  14. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil.

  15. Air Quality measurements near the Gulf of Mexico Deep Water Horizon Oil Spill site in July 2010

    NASA Astrophysics Data System (ADS)

    Schade, G. W.; Rasmussen, R.; Conlee, D.; Seroka, G.; Delao, D.

    2010-12-01

    Eight whole air samples were acquired within several kilometers of the Deepwater Horizon well head location between 5 and 13 July 2010. A Teflon coated pump was used to pressurize 0.8 L volume stainless steel canisters to approximately 2 bar. Various amounts of oil were visible on the water surface during most sampling times, and some samples were accompanied by strong hydrocarbon smells. The air samples were analyzed over the next two months using high sensitivity GC-FID and GC-MS methods for C1-C30 hydrocarbons and selected hetero-atomic compounds. Highest concentrations reached several ppm for total hydrocarbons, comparable to concentrations in highway road tunnels. None of the samples showed elevated concentrations suggestive of hazardous concentrations, or near OSHA PEL or NIOSH REL levels. Consistent with studies of seawater methane concentrations at different depths, atmospheric methane mixing ratios were close to background abundances at 1.75-1.78 ppm, suggesting that the spill’s methane emissions had not reached the surface at that time. Non-methane hydrocarbons presented a highly complex mixture (100+ species) of dominantly alkanes, as expected. Linear alkanes were detected at elevated mixing ratios from C4 up to C30, and were dominated by nonane (C9). Aromatic hydrocarbons showed a pattern suggestive of a significant retention by seawater of benzene and toluene, the compounds with the highest water solubilities. While benzene was hardly and toluene only slightly elevated, lower solubility compounds such as the xylenes and naphthalene were clearly elevated. Data will be presented relative to an upwind sample taken on 5 July.

  16. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

    PubMed Central

    Wagner, Tino

    2016-01-01

    Summary Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions. PMID:27335735

  17. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    PubMed

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  18. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Schichtel, B. A.; Collett, J. L., Jr.

    2015-10-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than four months.

  19. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Collett, J. L., Jr.; Schichtel, B. A.

    2016-02-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.

  20. Additive-free harvesting of oleaginous phagotrophic microalga by oil and air flotation.

    PubMed

    Hosseini, Majid; Starvaggi, Haley A; Ju, Lu-Kwang

    2016-07-01

    A unique oleaginous phagotrophic microalga Ochromonas danica is poised for effective lipid production from waste. Cell harvesting and dewatering are major costs in making algae-based products. In this work an effective additive-free harvesting method was developed, taking advantage of O. danica's comparatively more hydrophobic surface and larger size. The algal cells' partitioning to oil/water interface was evaluated. Recovery by flotation with waste cooking oil was optimized using an L-9 Taguchi orthogonal-array design. Further, additive-free cell collection and concentrating by air flotation was studied for the effects of both physical factors (column dimension, air-stone pore size, sample-to-column volume ratio) and culture properties (pH, culture growth stage, cell concentration, and pure versus impure cultures). The optimized process consistently achieved >90 % recovery in a single stage. 98+ % recovery could be achieved when starting concentrations were >10(8) cells/ml, or potentially using a two- or multi-stage process for diluter cultures.

  1. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  2. Final Environmental Impact Statement. Potential Exploration, Development, and Production of Oil and Gas Resources, Vandenberg Air Force Base, CA

    DTIC Science & Technology

    1987-12-18

    without application of additional control measures. The short- and ’ong-term effect of alternative 4 on air quality will be a decrease in backgro,’ I...and community services would be most sensitive to the effects of oil and gas development. Environmental Consequences. Because neither the proposed...alternative I primarily exclude launch-related coastal areas and could have the effect of concentrating oil and gas development in the high

  3. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    PubMed Central

    Michalek, Jeremy J.; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B.

    2011-01-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO2 emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  4. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    PubMed

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-04

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent.

  5. Inactivation of Salmonella on pecan nutmeats by hot air treatment and oil roasting.

    PubMed

    Beuchat, Larry R; Mann, David A

    2011-09-01

    Studies were done to determine the effectiveness of hot air drying, dry roasting, and oil roasting in killing Salmonella on pecan nutmeats. Pecan halves and pieces were inoculated by immersion in a five-serotype suspension of Salmonella or by surface application of powdered chalk containing the pathogen. Hot air treatment of low-moisture (2.8 to 4.1%) and high-moisture (10.5 to 11.2%) immersion-inoculated nutmeats (initial population, 6.18 to 7.16 log CFU/g) at 120°C for 20 min reduced the number of Salmonella by 1.18 to 1.26 and 1.89 to 2.04 log CFU/g, respectively. However, regardless of the moisture content, hot air treatment of pecan halves containing 0.77 log CFU/g at 120°C for 20 min failed to eliminate Salmonella. Reductions were >7 log CFU/g when dry pieces were dry roasted at 160°C for 15 min. Treatment of halves at 140°C for 20 min, 150°C for 15 min, or 170°C for 10 min reduced Salmonella by 5 log CFU/g. The pathogen was slightly more heat resistant in immersion-inoculated nutmeats than on surface-inoculated nutmeats. Exposure of immersion-inoculated pieces to peanut oil at 127°C for 1.5 min or 132°C for 1.0 min reduced the number of Salmonella by 5 log CFU/g. Treatment of halves at 138°C for 2.0 min reduced Salmonella by 5 log CFU/g; treatment at 132°C for 2.5 to 4.0 min did not always achieve this reduction. Hot air treatment cannot be relied upon to reduce Salmonella by 5 log CFU/g of raw pecan nutmeats without changing sensory qualities. Treatment temperatures and times typically used to oil roast nutmeats appear to be sufficient to reduce Salmonella by 5 log CFU/g.

  6. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. 1st Quarterly report, October 1, 1990--December 31, 1990

    SciTech Connect

    Peng, F.F.

    1995-01-01

    In the froth flotation process, whether accomplished In a conventional stirred tank flotation cell, in a column flotation cell, in an air sparged cyclone flotation or in a static-tube cell by using microbubbles, it requires the addition of large quantity of surfactants such as frother and/or collector (or promoter). In coarse coal flotation, special reagents are used such as high molecular weight frothers, the collector with a non-ionic, low foam emulsifier, Sherex Shur Coal 159 or Sherex Shur Coal 168 blended with fuel oil No. 2. These reagents in liquid forms are directly added into the coal pulp in the flotation cell. Frequently, a conditioning tank is required to achieve the dispersion of the reagents. The dispersion of the collector such as hydrocarbon-oil (insoluble or partially soluble) by a mechanical mixer in the coal pulp is often inadequate. In this work, in order to demonstrate the effectiveness of collector droplet size and dispersion on froth flotation processes, a unique gasified collector dispersion and oil-coated bubble generation system was used. The hydrocarbon oil collector was gasified at a temperature approximately 40 degrees C above the fractionation temperature of the collector to avoid pyrolysis. Gasified collector is first mixed in the air stream and transported to the air diffusion hood in the flotation cell. The oil-coated air bubbles were then generated and diffused into solid-water phases.

  7. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    NASA Astrophysics Data System (ADS)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  8. Lung mucin production is stimulated by the air pollutant residual oil fly ash.

    PubMed

    Longphre, M; Li, D; Li, J; Matovinovic, E; Gallup, M; Samet, J M; Basbaum, C B

    2000-01-15

    Human and animal exposure to particulate air pollution is correlated with airway mucus hypersecretion and increased susceptibility to infection. Seeking clues to the mechanisms underlying this pathology, we examined the effect of the particulate air pollutant residual oil fly ash (ROFA) on production of the major component of mucus, mucin, and the major antibacterial protein of the respiratory tract, lysozyme. We found that following in vitro exposure to ROFA, epithelial cells showed an increase in mucin (MUC5AC) and lysozyme (LYS) steady state mRNA. This upregulation was controlled at least partly at the level of transcription as shown by reporter assays. Experiments testing the ability of the major components of ROFA to mimic these effects showed that vanadium, a metal making up 18.8% by weight, accounted for the bulk of the response. A screen of signaling inhibitors showed that MUC5AC and LYS induction by ROFA are mediated by dissimilar signaling pathways, both of which are, however, phosphotyrosine dependent. Recognizing that the ROFA constituent vanadium is a potent tyrosine phosphatase inhibitor and that mucin induction by pathogens is phophotyrosine dependent, we suggest that vanadium-containing air pollutants trigger disease-like conditions by unmasking phosphorylation-dependent pathogen resistance pathways.

  9. Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/Water Separation.

    PubMed

    Lei, Zhiwen; Zhang, Guangzhao; Deng, Yonghong; Wang, Chaoyang

    2017-03-15

    Here we have obtained a temperature responsive melamine sponge with a controllable wettability between superhydrophilicity and superhydrophobicity by grafting the octadecyltrichlorosilane and thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) onto the surface of melamine sponge skeletons. The whole process included the silanization in which step the rough surface with low surface energy and the NH2 were provided, and the atom transfer radical polymerization which ensured the successful grafting of PNIPAAm onto the skeleton's surface. The product exhibits a good reversible switch between superhydrophilicity and superhydrophobicity by changing the temperature below or above the lower critical solution temperature (LCST, about 32 °C) of PNIPAAm, and the modified sponge still retains a good responsiveness after undergoing two temperature switches for 20 cycles. Simultaneously, the functionalized sponges could be used to absorb the oil under water at 37 °C, and they released the absorbed oil in various ways under water at 20 °C, showing wide potential applications including oil/water separation.

  10. 76 FR 24975 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ...The United States (U.S.) Environmental Protection Agency (EPA or Agency) is proposing national emission standards for hazardous air pollutants (NESHAP) from coal- and oil-fired electric utility steam generating units (EGUs) under Clean Air Act (CAA or the Act) section 112(d) and proposing revised new source performance standards (NSPS) for fossil fuel-fired EGUs under CAA section 111(b). The......

  11. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  12. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  13. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  14. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    NASA Astrophysics Data System (ADS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  15. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  16. What measurements tell us about air composition and emissions in three US oil and gas fields

    NASA Astrophysics Data System (ADS)

    Petron, G.; Miller, B. R.; Montzka, S. A.; Dlugokencky, E. J.; Kofler, J.; Sweeney, C.; Karion, A.; Frost, G. J.; Helmig, D.; Hueber, J.; Schnell, R. C.; Conley, S. A.; Tans, P. P.

    2013-12-01

    In 2012 and 2013, the NOAA Global Monitoring Division and several collaborators conducted intensive airborne and ground campaigns in three US oil and gas plays to study emissions of methane and surface ozone precursors. In this presentation we will focus on the multiple species analysis in discrete air samples collected with the NOAA Mobile Laboratory (ML) and the light aircraft in the Uinta Basin (Utah), Denver Julesburg Basin (Colorado) and Barnett Shale (Texas). Hydrocarbon ratios in samples collected with the ML downwind of specific sources show significantly more variability than the aircraft samples. These surface samples provide some useful information about the composition of various sources in each region. Ratios of the non-methane hydrocarbons on the ground and higher in the boundary layer show some differences between the plays, which could be explained by the different composition of the raw gas being produced or by different mixes of sources contributions. Understanding the speciation of atmospheric emissions is critical to identify emission vectors and to assess their potential air quality and climate impacts. Our measurement results will be compared with data from other studies, including emission inventories.

  17. Amphiphilic derivatives of dextran: adsorption at air/water and oil/water interfaces.

    PubMed

    Rotureau, E; Leonard, M; Dellacherie, E; Durand, A

    2004-11-01

    Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.

  18. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  19. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 10{sup 17} cm{sup −3} and peak N atom densities of 9.9 × 10{sup 17} cm{sup −3} are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum.

  20. Recombination of atomic oxygen on α-Al 2O 3 at high temperature under air microwave-induced plasma

    NASA Astrophysics Data System (ADS)

    Balat-Pichelin, M.; Bedra, L.; Gerasimova, O.; Boubert, P.

    2007-11-01

    New ceramic materials are necessary for the design of primary heat shields for future reusable space vehicles re-entering atmospheric planet. During the re-entry phase on earth, one of the most important phenomena occurring on the heat shield is the recombination of atomic species and among them atomic oxygen. The recombination of atomic oxygen is catalyzed by the material of the heat shield. This paper presents some experimental results for the recombination coefficient γ and the thermal flux of recombination transferred to the material in the surface-catalyzed recombination of oxygen atoms based on experiments performed on the MESOX set-up using optical emission spectroscopy, actinometry and calorimetry techniques. Experimental results on the recombination coefficient are presented for three types of α-Al 2O 3 in the temperature range 900-2400 K for 300 Pa total air pressure. The thermal flux of recombination is given for only two representative samples. These three alumina differ essentially by their content of sintering additives. Different behaviors of the recombination coefficient versus temperature are observed according to the impurity level of the α-alumina.

  1. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.

  2. Anti-Inflammatory Activity of the Essential Oil Citral in Experimental Infection with Staphylococcus aureus in a Model Air Pouch

    PubMed Central

    Martins, Hellen Braga; Selis, Nathan das Neves; Souza, Clarissa Leal Silva e; Nascimento, Flávia S.; de Carvalho, Suzi Pacheco; Gusmão, Lorena D'Oliveira; Nascimento, Jannine dos Santos; Brito, Anne Karoline Pereira; de Souza, Samira Itana; de Oliveira, Marcio Vasconcelos; Timenetsky, Jorge; Yatsuda, Regiane

    2017-01-01

    This study proposes to implement an alternative and effective strategy for local treatment of disease provoked by S. aureus. For the analysis of possible anti-inflammatory activity of essential oil, after establishing an air pouch model, 48 male mice of Balb/c were treated, infected, and euthanized at 4 and 8 h. Thus, the total and differential white blood cells were counted in the animal's blood, and cytokines IL-1β, IL-6, and TNF-α were titrated using ELISA in the air pouch lavage. Moreover, TNF-α, IL-1β, and IL-6 gene expression was analyzed through an RT-qPCR array, and S. aureus was quantified using qPCR. Our results, p < 0.05, showed that EOC reduced the quantity of microorganisms. The group of mice treated with essential oil citral showed a significant decrease in TNF-α levels in tests demonstrating anti-inflammatory activity. There is no data about the mutual influence of the air pouch model, essential oil citral, and S. aureus. Thus, considering the interaction of these variables and the anti-inflammatory activity of the essential oil citral, we demonstrated, by alternative local treatment, a new antimicrobial agent that is not an antibiotic. PMID:28316634

  3. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    NASA Technical Reports Server (NTRS)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  4. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    PubMed

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  5. Imaging and studying human topoisomerase I on mica surfaces in air and in liquid by atomic force microscopy.

    PubMed

    Liu, Zhiguo; Meng, Ronghua; Zu, Yuangang; Li, Qingyong; Yao, Liping

    2009-01-01

    In this study, the topography of human topoisomerase I (TOPO I) on mica surfaces in air and in liquid has been studied by atomic force microscopy (AFM). The average height of TOPO I on mica surface in air measured by AFM was 2.59+/-0.32 nm. After adsorption of the 0.3 U/microl TOPO I on mica surfaces for 2 h, and then imaged in liquid by AFM, well-separated single TOPO I was observed. The average height of TOPO I on mica surfaces in liquid measured by AFM was 2.93+/-0.42 nm. After adsorption of the 4 U/microl TOPO I on mica surfaces for 1.5 h, TOPO I monolayer can be formed. The produced TOPO I monolayer on mica was flat and exhibited good stability.

  6. Determination of metals in lubricating oils by flame atomic absorption spectrometry using a single-bore high-pressure pneumatic nebulizer.

    PubMed

    Mora, J; Todolí, J L; Sempere, F J; Canals, A; Hernandis, V

    2000-12-01

    The behaviour of a single-bore high-pressure pneumatic nebulizer (SBHPPN) as a tool for the analysis of lubricating oils by flame atomic absorption spectrometry (FAAS) was investigated. The effects of the sample oil content [from 10% to 100% (w/w) oil in 4-methylpentan-2-one, IBMK] and the carrier nature (IBMK and methanol) on the characteristics of the aerosols generated, on the analyte transport efficiency and on the analytical figures of merit in FAAS were studied. A pneumatic concentric nebulizer (PCN) was used for comparison. Increasing the oil content increases the viscosity of the sample. With the PCN this gives rise to coarser aerosols, making it impossible to nebulize samples with an oil content higher than 70% (w/w). Using the SBHPPN, the viscosity of the sample scarcely affects the characteristics of the primary aerosols. Hence, the SBHPPN is able, by using the appropriate carrier, to nebulize pure lubricating oils. Among the carriers tested, IBMK is the most advisable because it is fully miscible with all the oil samples. The SBHPPN provides higher sensitivities and lower limits of detection than the PCN. Compared with a method based on organic dilution, the use of the SBHPPN for the direct analysis of lubricating oils by FAAS makes it possible, in addition to increasing the analysis throughput, to detect elements at lower concentrations. Moreover, the SBHPPN provides similar results to those obtained using a previous acid digestion step.

  7. Multi-elemental analysis of jet engine lubricating oils and hydraulic fluids and their implication in aircraft air quality incidents.

    PubMed

    van Netten, C

    1999-05-07

    The flight crews of aircraft often report symptoms including dizziness, nausea, disorientation, blurred vision and tingling in legs and arms. Many of these incidents have been traced to contamination of cabin air with lubricating oil, as well as hydraulic fluid, constituents. Considering that these air contaminants are often subjected to temperatures in excess of 500 degrees C, a large number of different exposures can be expected. Although the reported symptoms are most consistent with exposures to volatile organic compounds, carbon monoxide, and the organophosphate constituents in these oils and fluids, the involvement of these agents has not been clearly demonstrated. Possible exposure to toxic elements, such as lead, mercury, thallium and others, have not been ruled out. In order to assess the potential of exposure to toxic elements a multi-elemental analysis was done on two hydraulic fluids and three lubricating oils which have been implicated in a number of air quality incidents. A secondary objective was to establish if the multi-elemental concentrations of the fluids tested are different enough to allow such an analysis to be used as a possible method of identifying the source of exposure that might have been present during aircraft air quality incidents. No significant concentrations of toxic elements were identified in any of the oils or hydraulic fluids. The elemental compositions of the samples were different enough to be used for identification purposes and the measurement of only three elements was able to achieve this. Whether these findings have an application, in aircraft air quality incident investigations, needs to be established with further studies.

  8. Essential oil composition of the aerial parts of fresh and air-dried Salvia palaestina Benth. (Lamiaceae) growing wild in Jordan.

    PubMed

    Al-Jaber, Hala I; Al-Qudah, Mahmoud A; Barhoumi, Lina M; Abaza, Ismail F; Afifi, Fatma U

    2012-01-01

    The composition of the essential oil of fresh and air-dried Salvia palaestina Benth. (Lamiaceae) growing wild in Jordan has been studied using gas chromatography-mass spectrometry analysis. The essential oils of fresh and air-dried S. palaestina were mainly composed of sesquiterpene hydrocarbons (52.66% and 65.98%, respectively). The major component detected in the oils of fresh and dry S. palaestina was germacrene D (21.18% and 26.02%, respectively). Air drying resulted in a general increase of sesquiterpene hydrocarbons and a great decrease in the percentage of monoterpene hydrocarbons.

  9. Determination of subnanogram per cubic meter concentrations of metals in the air of a trace metal clean room by impaction graphite furnace atomic absorption and laser excited atomic fluorescence spectrometry.

    PubMed

    Liang, Z W; Wei, G T; Irwin, R L; Walton, A P; Michel, R G; Sneddon, J

    1990-07-15

    Air, drawn by vacuum through a jet, was impacted against the inside surface of an atomic absorption graphite electrothermal atomizer (ETA). The amounts of the particles thus collected were determined at the ng m-3 level by graphite furnace atomic absorption or at the pg m-3 level by laser excited atomic fluorescence. The overall reproducibility of two sets of measurements, made 7 months apart, was 23%, with no significant difference between the two sets of data, based on Student's "t" test at the 95% confidence level. Short-term reproducibility varied from 13% to 34% depending upon the air concentration of the metal. The method shows promise for monitoring long-term effectiveness of the filtering systems in trace metal clean rooms. It was not possible to test for accuracy, due to the low concentrations involved, but accuracy was expected to be within a factor of 2 or 3 of the actual value, based on theoretical aspects of impaction.

  10. Atomization from agricultural spray nozzles: Effects of air shear and tank mix adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray adjuvants can have a substantial impact on spray atomization from agricultural nozzles; however, this process is also affected by the nozzle type, operating pressure and, for aerial application, the airspeed of application. Different types of ground spray nozzle can dramatically affect the im...

  11. Impact of air pollution control regulations on thermal enhanced oil recovery production in the United States. Final report

    SciTech Connect

    Norton, J.F.; Rouge, J.D.; Beekley, P.K.; Husband, S.N.; Arnold, C.W.; Menzies, W.R.; Balentine, H.W.

    1982-03-01

    This study assesses the impact of air pollution control regulations on the costs of present and future thermal enhanced oil recovery (TEOR) production. The conclusions of this study indicate that lengthy permitting processes, limited control sytem availability, and costly control system requirements complicate regulatory compliance and constrain TEOR production expansion. Seven heavy oil production areas with potential for increased TEOR production were selected for detailed analyses. Five of these areas are in California: central Kern County, western Kern County, Coalinga, San Ardo, and Los Angeles Basin. The other two areas are the Slocum field in Texas and the Smackover field in Arkansas. Air pollution control rule and regulation requirements were determined for each production area. State-of-the-art air pollution control technology was assessed and costs were estimated for the control systems needed to comply with previous new source review (NSR) and retrofit rules in each area. For each California production area, the maximum potential increase in TEOR production was estimated, based on available emission offsets. Potential increases in the Texas and Arkansas fields were not projected because production is expected to decrease in these areas. Costs were calculated for the control systems required to allow the maximum increase in TEOR production. An air quality impact analysis was performed for the four largest production areas in California. The results of this analysis allowed estimation of the air quality changes associated with the maximum TEOR production increase and compliance with retrofit and NSR rules.

  12. Nickel and vanadium in air particulates at Dhahran (Saudi Arabia) during and after the Kuwait oil fires

    NASA Astrophysics Data System (ADS)

    Sadiq, M.; Mian, A. A.

    Air particulates, both the total suspended (TSP) and inhalable (PM 10, smaller than 10 microns in size), were collected during and after the Kuwait oil fires (from March 1991 to July 1992) using Hi-Vol samplers. These samples were wet-digested at 120°C in an aqua regia and perchloric acids mixture for 3 h. Air particulate samples collected in 1982 at the same location were prepared similarly. Concentrations of nickel and vanadium were determined in the aliquot samples using an inductively coupled argon plasma analyser (ICAP). The monthly mean concentrations of nickel and vanadium, on volume basis, increased rapidly from March to June and decreased sharply during July-August in 1991. The minimum mean concentrations of these elements were found in the particulate samples collected in December 1991 which gradually increased through May 1992. Like 1991, nickel and vanadium concentrations in the air particulates spiked in June and decreased again in July 1992. This distribution pattern of nickel and vanadium concentrations was similar to that of the predominant wind from the north (Kuwait). In general, concentrations of these elements were higher in the air particulates collected during April-July 1991 as compared with those collected in 1992 during the same period. The TSPs contained higher concentrations of nickel and vanadium than those found in the PM 10 samples. However, this trend was reversed when concentrations of nickel and vanadium, on were expressed on particulate weight basis. The monthly mean concentrations of nickel and vanadium, on weight basis, decreased gradually through 1991 and increased slightly from March to July 1992. Concentrations of these elements were significantly higher in the air particulate samples collected in 1991 than those samples collected during 1982 at the same location. The data of this study suggest a contribution of the Kuwait oil fires in elevating nickel and vanadium concentrations in the air particulates at Dhahran during

  13. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure.

    PubMed

    Rudbäck, Johanna; Bergström, Moa Andresen; Börje, Anna; Nilsson, Ulrika; Karlberg, Ann-Therese

    2012-03-19

    The monoterpene α-terpinene is used as a fragrance compound and is present in different essential oils. It is one of the components responsible for the antioxidant activity of tea tree oil. α-Terpinene is structurally similar to other monoterpenes, e.g., limonene, known to autoxidize on air exposure and form allergenic compounds. The aim of the present study was to investigate the possible autoxidation of α-terpinene at room temperature. To investigate the sensitization potency of air-exposed α-terpinene and the oxidation products formed, the murine local lymph node assay was used. Chemical analysis showed that α-terpinene degrades rapidly, forming allylic epoxides and p-cymene as the major oxidation products and also hydrogen peroxide. Thus, the oxidation pathway differs compared to that of, e.g., limonene, which forms highly allergenic hydroperoxides as the primary oxidation products on autoxidation. The sensitization potency of α-terpinene was increased after air-exposure. The allylic epoxides and a fraction, in which only an α,β-unsaturated aldehyde could be identified, were shown to be strong sensitizers in the local lymph node assay. Thus, we consider them to be the major contributors to the increased sensitization potency of the autoxidized mixture. We also investigated the presence of α-terpinene and its oxidation products in four different tea tree oil samples of various ages. α-Terpinene and its oxidation products were identified in all of the tea tree oil samples. Thus, from a technical perspective, α-terpinene is a true antioxidant since it autoxidizes rapidly compared with many other compounds, preventing these from degradation. However, as it easily autoxidizes to form allergens, its suitability can be questioned when used in products for topical applications, e.g., in tea tree oil but also in cosmetics and skin care products.

  14. Air quality over the Canadian oil sands: A first assessment using satellite observations

    NASA Astrophysics Data System (ADS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-02-01

    Results from the first assessment of air quality over the Canadian oil sands-one of the largest industrial undertakings in human history-using satellite remote sensing observations of two pollutants, nitrogen dioxide (NO2) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km × 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 ± 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  15. Air Quality Over the Canadian Oil Sands: A First Assessment Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-01-01

    Results from the first assessment of air quality over the Canadian oil sands -- one ofthe largest industrial undertakings in human history -- using satellite remote sensing observations of two pollutants, nitrogen dioxide (N0O) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km x 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 +/- 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  16. Air-Sea Methane Flux after the Deepwater Horizon Oil Leak

    NASA Astrophysics Data System (ADS)

    McAdoo, J.; Sweeney, C.; Kiene, R. P.; McGillis, W. R.

    2012-12-01

    One of the key questions associated with the Deepwater Horizon's (DWH) oil leak involves understanding how much of its methane is still entrained in deep waters. Analysis of air-sea fluxes reveals a slight decrease in average aqueous CH4 from 3.3 nM in June to 3.1 and 2.8 nM in August and September, respectively. The flux estimate showed higher methane flux to the atmosphere after the blowout was capped (3.8 μmol m-2 d-1 in August) compared to 0.024 μmol m-2 d-1 during the leak. Almost all observations were within the range of historical levels. The exception was one large peak to the southwest of the wellhead, but its contribution to atmospheric methane is found to be insignificant compared to the total amount of methane released by the leak. This result supports findings that DWH methane remained entrained in the deep waters and consequently is available for biological degradation and threatens to deplete oxygen, adding further stress to an area that already suffers from anoxic-induced dead zones.

  17. Performance and Durability of High Temperature Foil Air Bearing for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    1999-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304, is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  18. Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Lukaszewicz, V.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    2000-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304 is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  19. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    PubMed

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.

  20. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the fifth quarter, October 1, 1991--December 30, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    A main portion of this reporting period has been consumed in the following tasks: (i) Contact angle measurement using gasified collector encapsulated bubble; (ii) wettability measurement using film flotation method; (iii) induction time measurement; (iv) conducting atomized collector flotation tests in a stirred tank cell; (v) developing the experimental design and conducting a column flotation test. The coal samples used in this period of work are five ranks of coal samples from Mammoth, Lower Kittanning, Upper Freeport, Pittsburgh No. 8 and Wyodak seam coals. To better understand the fundamental steps involved in the modes of collector addition techniques in the froth flotation, contact angle, wettability and induction time were measurement. It was found increasing in the contact angles and decreasing in the induction time for a hydrocarbon-oil encapsulated air bubble compared to those for an oil-free bubble for all the coal samples measured. These observations may account for the improved flotation kinetics and, hence, the recovery with the hydrocarbon-oil encapsulated bubbles. Two level fractional factorial experimental design were developed for conducting the column flotation tests to obtain the optimal operating conditions. In the first series of the tests, seven operating parameters were considered with 16 runs. Based on those results, subsequently, the second experimental design was developed for six operating parameters with 16 runs. The third experiment design was formulated with three most significant operating parameters with 8 runs. A high combustible recovery was obtained for -200 mesh Upper Freeport coal sample. However, the results indicated that for further reduction of the ash content of the froth product, the height of column flotation cell needed to be increased.

  1. Comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens.

    PubMed

    State, Gabriel; Popescu, Ion V; Radulescu, Cristiana; Macris, Cristina; Stihi, Claudia; Gheboianu, Anca; Dulama, Ioana; Niţescu, Ovidiu

    2012-09-01

    Our study was dedicated to the analysis of air pollution level with metals in Dambovita County, Romania; maps of the concentration distributions for air pollutants were drawn; statistical analysis includes calculation of the background concentrations and the contamination factors. The highest values of the contamination factor CF is 63.1 ± 6.63 for mosses samples and 33.12 ± 3.96 for lichens and it indicates extreme contaminations in the surroundings of steel works and an electric plant. The comparison of the distribution maps for Cr, Cu, Fe, Ni, Pb and Zn concentrations enables the identification of the pollution sources, the limits of areas with very high levels of pollution, the comparison of the concentration gradients in some areas and the influence of woodlands on the spread of pollutants through the air.

  2. Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and SpatialDistribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    EPA Science Inventory

    The contribution of inorganic air pollutant emissions to atmospheric deposition in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada was investigated in the surrounding boreal forests, using a common epiphytic lichen bio-indicator species (Hypogymnia physodes) and applyi...

  3. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    SciTech Connect

    Pekney, Natalie J.; Cheng, Hanqi; Small, Mitchell J.

    2015-11-05

    Abstract: The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality.

  4. Interdisciplinary study of atmospheric processes and constituents of the mid-Atlantic coastal region. Attachment 3: Data set for Craney Island oil refinery installation experiment. [air pollution monitoring

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Bandy, A.; Copeland, G.; Blais, R.; Levy, G.; Sonenshine, D.; Adams, D.; Maier, G.

    1975-01-01

    Data tables and maps are presented which include background information and experimental data on the Craney Island oil refinery installation experiment. The experiment was to investigate air pollution effects.

  5. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry

    NASA Astrophysics Data System (ADS)

    Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.

    An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper

  6. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  7. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  8. Dynamic performance of duolayers at the air/water interface. 2. Mechanistic insights from all-atom simulations.

    PubMed

    Christofferson, Andrew J; Yiapanis, George; Leung, Andy H M; Prime, Emma L; Tran, Diana N H; Qiao, Greg G; Solomon, David H; Yarovsky, Irene

    2014-09-18

    The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.

  9. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin with Intensive Oil and Gas Production

    NASA Astrophysics Data System (ADS)

    Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.

    2015-12-01

    The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.

  10. Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area.

    PubMed

    Tao, Ling; Fairley, David; Kleeman, Michael J; Harley, Robert A

    2013-09-17

    Ocean-going vessels burning high-sulfur heavy fuel oil are an important source of air pollutants, such as sulfur dioxide and particulate matter. Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle concentration data from four urban sites and two more remote sites. Measured changes in concentrations of vanadium, a specific marker for heavy fuel oil combustion, are related to overall changes in aerosol emissions from ships. We found a substantial reduction in vanadium concentrations after the fuel change and a 28-72% decrease in SO2 concentrations, with the SO2 decrease varying depending on proximity to shipping lanes. We estimate that the changes in ship fuel reduced ambient PM2.5 mass concentrations at urban sites in the Bay area by about 3.1 ± 0.6% or 0.28 ± 0.05 μg/m(3). The largest contributing factor to lower PM mass concentrations was reductions in particulate sulfate. Absolute sulfate reductions were fairly consistent across sites, whereas trace metal reductions were largest at a monitoring site in West Oakland near the port.

  11. Survival in air of Mytilus trossulus following long-term exposure to spilled Exxon Valdez crude oil in Prince William Sound.

    PubMed

    Thomas, R E; Harris, P M; Rice, S D

    1999-01-01

    Mussels, Mytilus trossulus, were sampled in 1996 from beaches in Prince William Sound (PWS) which contained residual oil resulting from the Exxon Valdez oil spill of March 1989, and from one beach which had been lightly oiled in 1989, but contained no residual oil in 1996. The latter mussels served as un-oiled references. Mussels were also collected from Tee Harbor, Southeast Alaska, to be used as an additional reference group. Where the size of the individuals in the resident population would permit, two size groups were sampled, 32-35 and 18-20 mm in length. Polynuclear aromatic hydrocarbon (PAH) concentrations in mussel tissue, and air survival time were determined for each group of mussels. Total PAH concentrations were significantly greater in tissue of mussels from oiled beds (0.6-2.0 micrograms g-1) than from references (0.01-0.12 microgram g-1) (P < 0.01). Oil-exposed mussels had significantly lower LT50 values (P < 0.05) for air survival than reference groups. Tolerance of small mussels to air exposure was significantly greater (P < 0.01) than large mussels in both the unoiled reference and oil exposed groups.

  12. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  13. The use of lidar as optical remote sensors in the assessment of air quality near oil refineries and petrochemical sites

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; Landulfo, Eduardo; Guardani, Roberto; Oller do Nascimento, Cláudio A.; Moreira, Andréia

    2008-10-01

    Petrochemical and oil refining facilities play an increasingly important role in the industrial context. The corresponding need for monitoring emissions from these facilities as well as in their neighborhood has raised in importance, leading to the present tendency of creating real time data acquisition and analysis systems. The use of LIDAR-based techniques, both for air quality and emissions monitoring purposes is currently being developed for the area of Cubatao, Sao Paulo, one of the largest petrochemical and industrial sites in Brazil. In a partnership with the University of SÃ#o Paulo (USP) the Brazilian oil company PETROBRAS has implemented an Environmental Research Center - CEPEMA - located in the industrial site, in which the development of fieldwork will be carried out. The current joint R&D project focuses on the development of a real time acquisition system, together with automated multicomponent chemical analysis. Additionally, fugitive emissions from oil processing and storage sites will be measured, together with the main greenhouse gases (CO2, CH4), and aerosols. Our first effort is to assess the potential chemical species coming out of an oil refinery site and to verify which LIDAR technique, DIAL, Raman, fluorescence would be most efficient in detecting and quantifying the specific atmospheric emissions.

  14. Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery.

    PubMed

    Krastinyte, Viktorija; Baltrenaite, Edita; Lietuvninkas, Arvydas

    2013-01-01

    Snow-cap can be used as a simple and effective indicator of industrial air pollution. In this study snow-cap samples were collected from 11 sites located in the vicinity of an oil refinery in Mazeikiai, a region in the north-west of Lithuania, in the winter of 2011. Analysis of snowmelt water and snow-dust was used to determine anthropogenic pollutants such as: sulphates and chlorides, nitrites, nitrates, ammonium nitrogen, total carbon, total nitrogen; heavy metals: lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd). Concentrations of heavy metals in snow-dust were detected thousands of times higher than those in the snowmelt water. In this study, analysis of heavy metal concentration was conducted considering different distances and the wind direction within the impact zone of the oil refinery. The sequence of heavy metals according to their mean concentrations in the snow-dust samples was the following: Pb > Cr > Cu > Cd. Heavy metals highly correlated among each other. The load of snow-dust was evaluated to determine the pollution level in the study area. The highest daily load of snow-dust was 45.81 +/- 12.35 mg/m2 in the north-western direction from the oil refinery. According to classification of the daily load of snow-dust a lower than medium-risk level of pollution was determined in the vicinity of the oil refinery.

  15. Report: EPA Needs to Improve Air Emissions Data for the Oil and Natural Gas Production Sector

    EPA Pesticide Factsheets

    Report #13-P-0161, February 20, 2013. High levels of growth in the oil and natural gas (gas) production sector have underscored the need for EPA to gain a better understanding of emissions and potential risks from the production of oil and gas.

  16. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.

    PubMed

    Veksha, Andrei; Zaman, Waheed; Layzell, David B; Hill, Josephine M

    2014-11-01

    The influence of KOH addition and air pretreatment on co-pyrolysis (600 °C) of a mixture of bio-oil and biomass (aspen wood) was investigated with the goal of increasing biochar yield. The bio-oil was produced as a byproduct of the pyrolysis of biomass and recycled in subsequent runs. Co-pyrolysis of the biomass with the recycled bio-oil resulted in a 16% mass increase in produced biochar. The yields were further increased by either air pretreatment or KOH addition prior to co-pyrolysis. Air pretreatment at 220 °C for 3 h resulted in the highest mass increase (32%) compared to the base case of pyrolysis of biomass only. No synergistic benefit was observed by combining KOH addition with air pretreatment. In fact, KOH catalyzed reactions that increased the bed temperature resulting in carbon loss via formation of CO and CO2.

  17. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    ERIC Educational Resources Information Center

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  18. Correlation and analysis of oil flow data for an air-breathing missile model

    NASA Technical Reports Server (NTRS)

    Stoy, S. L.; Dillon, J. L.; Roman, A. P.

    1985-01-01

    This paper will present the results of an oil flow investigation on an airbreathing missile model. This oil flow study examined the flow around the model, which can be configured with both axisymmetric and two-dimensional inlets. Flow visualization analyses were conducted for both types of geometries by examining the surface flow patterns made visible by the oil flows for Mach numbers of 2.5 and 3.95. The analysis has shown the extent of flow spillage around the inlet which has helped explain the force and moment data collected during previous testing of the model. The oil flow data has also been used to develop guidelines for modeling the location of the crossflow separation line along inlet fairings. Finally, the oil flow analysis has been used to identify unique features of the boattail flow. These boattail flow characteristics have been correlated with previous oil flow analysis of noncircular body models. This paper demonstrates the use of this type of oil flow analysis in developing missile flow field analysis and aerodynamic predictions ranging from impact angle methods through Navier-Stokes methods.

  19. Development of a health effects-based priority ranking system for air emissions reductions from oil refineries in Canada.

    PubMed

    Gower, Stephanie; Hicks, John; Shortreed, John; Craig, Lorraine; McColl, Stephen

    2008-01-01

    In Canada, the Canadian Council of Ministers for the Environment (CCME) is currently engaged in a process to determine how best to reduce air emissions from oil refineries. The National Framework for Petroleum Refineries Emissions Reduction (NFPRER) is being developed with the input of stakeholders, including nongovernment organizations (NGOs), industry, and regulatory jurisdictions. One component of this framework is the development of a tool to prioritize emissions for reduction based on estimated health impacts. HEIDI II (Health Effects Indicators Decision Index II) is a spreadsheet-based model that prioritizes a series of carcinogenic and noncarcinogenic air toxicicants and criteria air contaminants commonly emitted from Canadian oil refineries. A generic meteorological dispersion model was applied to reported annual emissions data for each of Canada's 20 refineries. Photodegradation rates and ambient levels of each substance were accounted for, and air concentrations were calculated for 20 geographic zones around each refinery. These were coupled to toxicity data derived mainly from Health Canada and the U.S. Environmental Protection Agency (EPA), and applied to target populations of children, adults and seniors. HEIDI II predicts incidence of relevant disease endpoints from each substance emitted, except for benzene, toluene, ethylbenzene, and xylene (BTEX) and polycyclic aromatic hydrocarbons (PAH), which were treated as chemical mixtures. Rankings were based on predicted case incidence or the application of a common health impact metric, disability-adjusted life years (DALYs), to the predicted incidence. Using the DALY approach, priority rankings can be made within each of the chemical classes, or across all three classes together. HEIDI II incorporates several switches that allow the user to investigate alternate scenarios based on stack height, average daily sunlight hours (for calculating photodegradation), and the possibility of emissions below

  20. Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combustion characteristics of neat biomass fast-pyrolysis oil were studied in a horizontal combustion chamber with a rectangular cross-section. An air-assisted externally mixed nozzle known to successfully atomize heavy fuel oils was installed in a modified nominal 100 kW (350,000 BTU/h nominal cap...

  1. Fan Atomized Burner design advances & commercial development progress

    SciTech Connect

    Kamath, B.; Butcher, T.A.

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  2. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method.

  3. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    NASA Astrophysics Data System (ADS)

    Cheng, Hanqi; Small, Mitchell J.; Pekney, Natalie J.

    2015-10-01

    The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality. Nonparametric regression of pollutant concentrations on wind direction was combined with bootstrap hypothesis testing to provide statistical inference regarding the existence of a local/regional air quality impact. The block bootstrap method was employed to address the effect of autocorrelation on test significance. The method was applied to short-term air monitoring data collected at three sites within Pennsylvania's Allegheny National Forest. All of the measured pollutant concentrations were well below the National Ambient Air Quality Standards, so the usual criteria and methods for data analysis were not sufficient. Using advanced directional analysis methods, test results were first applied to verify the existence of a regional impact at a background site. Next the impact of an oil field on local NOx and SO2 concentrations at a second monitoring site was identified after removal of the regional effect. Analysis of a third site also revealed air quality impacts from nearby areas with a high density of oil and gas wells. All results and conclusions were quantified in terms of statistical significance level for the associated inferences. The proposed method can be used to formulate hypotheses and verify conclusions regarding oil and gas well impacts on air quality and support better-informed decisions for their management and regulation.

  4. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  5. Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Honig, Christopher D. F.; Sader, John E.; Mulvaney, Paul; Ducker, William A.

    2010-05-01

    By analysis of the thermally driven oscillation of an atomic force microscope (AFM) cantilever, we have measured both the damping and static forces acting on a sphere near a flat plate immersed in gas. By varying the proximity of the sphere to the plate, we can continuously vary the Knudsen number (Kn) at constant pressure, thereby accessing the slip flow, transition, and molecular regimes at a single pressure. We use measurements in the slip-flow regime to determine the combined slip length (on both sphere and plate) and the tangential momentum accommodation coefficient, σ . For ambient air at 1 atm between two methylated glass solids, the inverse damping is linear with separation and the combined slip length on both surfaces is 250nm±100nm , which corresponds to σ=0.77±0.24 . At small separations (Kn>0.4) the measured inverse damping is no longer linear with separation, and is observed to exhibit reasonable agreement with the Vinogradova formula.

  6. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    SciTech Connect

    Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

    1981-07-01

    Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

  7. Air-stable droplet interface bilayers on oil-infused surfaces

    PubMed Central

    Boreyko, Jonathan B.; Polizos, Georgios; Datskos, Panos G.; Sarles, Stephen A.; Collier, C. Patrick

    2014-01-01

    Droplet interface bilayers are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit noncoalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the noncoalescing water droplets. As with traditional oil-submerged droplet interface bilayers, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in ambient environments, which could potentially enable biosensing of airborne matter. PMID:24821774

  8. Adelphi-Goddard emulsified fuel project. [using water/oil emulsions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.

  9. Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dittert, Ingrid M.; Silva, Jessee S. A.; Araujo, Rennan G. O.; Curtius, Adilson J.; Welz, Bernhard; Becker-Ross, Helmut

    2009-06-01

    A simple, fast and sensitive direct method for the simultaneous determination of Cr and Fe in crude oil samples is proposed using high-resolution continuum source graphite furnace atomic absorption spectrometry. No sample preparation is used except for a 10-minute homogenization in an ultrasonic bath. Aliquots of 0.1-4 mg of the samples are weighed onto solid sampling platforms and analyzed directly using aqueous standards for calibration. The simultaneous determination was possible because there is a secondary Fe line at 358.120 nm in the vicinity of the most sensitive Cr line at 357.868 nm, and both absorption lines were within the wavelength interval covered by the linear charge-coupled device array detector. It has also been of advantage that the sensitivity ratio between the two analytical lines corresponded roughly to the concentration ratio of the two elements found in crude oil, and that both analytes have very similar volatility, so that no compromises had to be made regarding pyrolysis and atomization temperatures. Two oil reference materials have been analyzed and the results were in agreement with the certified or reported values. Characteristic masses of 3.6 pg and 0.5 ng were obtained for Cr and Fe, respectively. The limits of detection (3 σ, n = 10) were 1 µg kg - 1 for Cr and 0.6 mg kg - 1 for Fe, and the precision, expressed as the relative standard deviation, ranged from 4 to 20%, which is often acceptable for a rapid direct analytical procedure. Five crude oils samples were analyzed.

  10. Residential releases of number 2 fuel oil: a contributor to indoor air pollution.

    PubMed Central

    Kaplan, M B; Brandt-Rauf, P; Axley, J W; Shen, T T; Sewell, G H

    1993-01-01

    OBJECTIVES. Analysis of data from the New York City Fire Department showed that residential fuel oil releases frequently occur in quantities ranging from 5 to 1000 gal, primarily from storage tank leaks and overfill. A risk assessment was conducted to determine whether Number 2 fuel oil basement spills pose a significant risk to human health. METHODS. Exposure was derived from a simulated field study spill of Number 2 fuel oil in a townhouse basement to develop emission rates for the indicator constituent xylene. Distribution of xylene throughout the townhouse was determined using a multizone contaminant dispersal model. RESULTS. Spills of 85 and 21 gal resulted in xylene exposure estimates as high as 20 and 5 mg/kg/day, respectively. CONCLUSIONS. A spill of about 21 gal or more of Number 2 fuel oil would present a human health risk for central nervous and reproductive systems for 8 days or longer. Tank inspection and supervised delivery would provide effective prevention at minimal expense. PMID:8417613

  11. Application of the extraction induced by emulsion breaking for the determination of chromium and manganese in edible oils by electrothermal atomic absorption spectrometry.

    PubMed

    Robaina, Nicolle F; Brum, Daniel M; Cassella, Ricardo J

    2012-09-15

    This work reports the optimization of a method, based on the extraction induced by emulsion breaking, for the determination of trace concentrations of Cr and Mn in edible oils by electrothermal atomic absorption spectrometry (ETAAS). In the method, a water-in-oil emulsion was prepared by mixing the oil sample with an acid solution (HNO(3)) of Triton X-114 to allow the intense contact between the sample and the extractant acid solution. Afterwards, the emulsion was broken by heating and the acid aqueous phase deposited in the bottom of the flask was collected for the determination of the metals of interest. The method was optimized by studying the influence of several parameters such as the concentration of HNO(3) and the emulsifier agent (Triton X-100 and Triton X-114) in the extractant solution. The best results were verified when the procedure was performed with 5 mL of the sample and 1 mL of the extractant solution containing 15%m/v of Triton X-114 and 2.8 mol L(-1) of HNO(3). Also, the fastest emulsion breaking was verified when the emulsions were heated at 90°C. In these conditions, the emulsions were broken in approximately 10 min. The quantification of Cr and Mn in the extracts was carried out by external calibration with aqueous standard solutions, which simplified the procedure. The limits of detection for the determination of Cr and Mn in the oil samples were 66 and 36 ng L(-1), respectively, and the limits of quantification were 219 and 120 ng L(-1), respectively. The developed method was applied in the determination of Cr and Mn in twelve samples of edible oils produced with different oleaginous. Recovery tests were performed to attest the accuracy of the method, being observed recovery percentages in the range of 86-115%.

  12. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  13. Robust self-cleaning surfaces that function when exposed to either air or oil

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R.; Carmalt, Claire J.; Parkin, Ivan P.

    2015-03-01

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

  14. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil.

    PubMed

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R; Carmalt, Claire J; Parkin, Ivan P

    2015-03-06

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

  15. Advanced oil burner for residential heating -- development report

    SciTech Connect

    Butcher, T.A.

    1995-07-01

    The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

  16. Potential Exploration, Development, and Production of Oil and Gas Resources, Vandenberg Air Force Base, California

    DTIC Science & Technology

    1987-12-01

    perched groundwater basins not presently developed for water supply, saline groundwater , wastewater treatment plant effluent, produced water from oil field...supply sources are the groundwater basins within the San Antonio Basin (a 500,000-acre-foot basin beneath San Antonio Creek Valley) and the Lompoc...draw their water supply from the Lompoc Valley groundwater basin along the Santa Ynez River. The water quality of the VAFB groundwater supplies is best

  17. Feasibility of using solid sampling graphite furnace atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil.

    PubMed

    Silva, Márcia M; Damin, Isabel C F; Vale, Maria Goreti R; Welz, Bernhard

    2007-03-30

    A method for the direct determination of volatile and non-volatile nickel and vanadium compounds in crude oil without previous treatment using direct solid sampling graphite furnace atomic absorption spectrometry is proposed. The crude oil samples were weighed directly onto solid sampling platforms using a microbalance and introduced into a transversely heated solid sampling graphite tube. In previous work of our group losses of volatile nickel and vanadium compounds have been detected, whereas other nickel and vanadium compounds were thermally stable up to 1300 and 1600 degrees C, respectively. In order to avoid this problem different chemical modifiers (conventional and permanent) have been investigated. With 400microg of iridium as permanent modifier, the signal started to drop already after two atomization cycles, possibly because of an interaction of nickel (which is a catalyst poison) with iridium. Twenty micrograms of palladium applied in each determination was found to be optimum for both elements. The palladium was deposited on the platform and submitted to a drying step at 150 degrees C for 75s. After that the sample was added onto the platform and submitted to the furnace program. The influence of sample mass on the linearity of the response and on potential measurement errors was also investigated using four samples with different nickel content. For the sample with the lowest nickel concentration the relationship between mass and integrated absorbance was found to be non-linear when a high sample mass was introduced. It was suspected that the modifier had not covered the entire platform surface, which resulted in analyte losses. This problem could be avoided by using 40microL of 0.5g L(-1) Pd with 0.05% Triton X-100. Calibration curves were established with and without modifier, with aqueous standards, oil-in-water emulsions and the certified reference material NIST SRM 1634c (trace metals in residual fuel oil). The sensitivity for aqueous standards

  18. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    EPA Science Inventory

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  19. Coupling lead isotopes and element concentrations in epiphytic lichens to track sources of air emissions in the Alberta Oil Sands Region

    EPA Science Inventory

    A study was conducted that coupled use of element concentrations and lead (Pb) isotope ratios in the lichen Hypogymnia physodes collected during 2002 and 2008, to assess the impacts of air emissions from the Alberta Oil Sands Region (AOSR, Canada) mining and processing operations...

  20. The Buncefield Oil Depot Fire of 2005: Potential Air-Pollution Health Impacts Under Alternative Meteorological Scenarios

    PubMed Central

    Mohan, Richard; Walton, Heather A.; Thomson, David; Webster, Helen; Wilkinson, Paul; Grundy, Chris; Murray, Virginia; Leonardi, Giovanni

    2012-01-01

    Objective: To model the possible air pollution-related health impact of the 2005 oil depot fire at Buncefield, near London, UK, under alternative meteorological conditions to those experienced at the time. Design: Atmospheric dispersion modelling of the smoke plume was conducted under the range of meteorological conditions occurring throughout 2005 assuming constant particle emission rates. Population exposure to particle concentrations (PM10) was calculated by linking the atmospheric dispersion modelling data (2 km resolution) and postcode population data. Health impacts were estimated using time-series-based exposure-response relationships for PM10 available from the epidemiological literature. Main outcomes: Estimates of pollution-related deaths brought forward, emergency hospital admissions from respiratory problems and emergency hospital admissions from cardiovascular disease. Findings: The highest four-day population exposure to PM10 for meteorological data from 2005 was predicted to occur between 5 and 8 August 2005, when northerly winds would have carried the plume towards London and surrounding areas of high population density. On these days, we estimated the additional PM10 exposure would have resulted in around 12 extra deaths brought forward, and around 13 additional emergency hospital admissions and a similar additional number of emergency admissions for cardiovascular disease. These numbers are slightly greater than estimated deaths and emergency admissions attributable to regular anthropogenic PM10 concentrations in south east England over the same four day period. Conclusions: Although the particle pollution-related health impacts of the Buncefield fire could have been higher under different meteorological conditions, it is unlikely that the impacts would be substantially greater than those attributable to regular anthropogenic particle pollution over the similar period. Keywords: oil depot fire; health impact; epidemiology; air pollution; explosion

  1. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the third quarter, April 1, 1991--June 30, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    This report is concerned with the progress made during the third period of the two year project. A significant portion of this reporting period has been consumed in measurement of induction time of oil-free and oil-coated bubbles, modification of collector gasifier, hydrocarbon oil encapsulated flotation tests and float and sink analyses of various rank of coal samples, building a 1-inch column cell, as well as building the ultrasound collector emulsification apparatus. Induction time has been measured using an Electronic Induction Timer. The results indicate that alteration of chemical properties of air bubble by applying hydrocarbon oil or reagent can drastically improve the rate of flotation process. Various techniques have been employed in hydrocarbon oil encapsulated flotation processes to further enhance the selectivity of the process, which include: (1) gasified collector flotation with addition of gasified collector into the air stream in the initial stage; (2) two-stage (rougher-cleaner) gasified collector flotation; and (3) starvation gasified collector flotation by addition of gasified collector at various flotation times. Among these, three techniques used in hydrocarbon oil encapsulated flotation process, the starvation flotation technique provides the best selectivity.

  2. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  3. Interfacial diffusion of metal atoms during air annealing of chemically deposited ZnS-CuS and PbS-CuS thin films

    SciTech Connect

    Huang, L.; Zingaro, R.A.; Meyers, E.A. . Dept. of Chemistry); Nair, P.K.; Nair, M.T.S. . Lab. de Energia Solar)

    1994-09-01

    The authors report on the interfacial diffusion of metal ions occurring during air annealing of multilayer CuS films (0.15-0.6[mu]m) deposited on thin coating of ZnS or PbS ([approximately]0.06 [mu]m) on glass substrates. All the films are deposited from chemical baths at room temperature. The interfacial diffusion on the metal atoms during the air annealing is illustrate by X-ray photoelectron spectroscopy studies. A multilayer of 0.3 [mu]m thick CuS film deposited over a thin film of ZnS upon annealing at 150 C shows atomic ratios of Zn to Cu of [approximately]0.15 and [approximately]0.48 at the surface layers of the samples annealed for 12 and 24 h, respectively. In the case of CuS on PbS film, the corresponding Pb to Cu atomic ratios at the surface layers are 0.43 and 0.83. The optical transmittance spectra and sheet resistance of these multilayer films indicate thermal stabilities superior to that of the CuS-only coatings. Application of the interfacial diffusion process in the production of thermally stable solar control coatings, solar absorber coating, or p-type films for solar cell structures is discussed.

  4. A comparative study on total reflection X-ray fluorescence determination of low atomic number elements in air, helium and vacuum atmospheres using different excitation sources

    NASA Astrophysics Data System (ADS)

    Misra, N. L.; Kanrar, Buddhadev; Aggarwal, S. K.; Wobrauschek, Peter; Rauwolf, M.; Streli, Christina

    2014-09-01

    A comparison of trace element determinations of low atomic number (Z) elements Na, Mg, Al, P, K and Ca in air, helium and vacuum atmospheres using W Lβ1, Mo Kα and Cr Kα excitations has been made. For Mo Kα and W Lβ1 excitations a Si (Li) detector with beryllium window was used and measurements were performed in air and helium atmospheres. For Cr Kα excitation, a Si (Li) detector with an ultra thin polymer window (UTW) was used and measurements were made in vacuum and air atmospheres. The sensitivities of the elemental X-ray lines were determined using TXRF spectra of standard solutions and processing them by IAEA QXAS program. The elemental concentrations of the elements in other solutions were determined using their TXRF spectra and pre-determined sensitivity values. The study suggests that, using the above experimental set up, Mo Kα excitation is not suited for trace determination of low atomic number element. Excitation by WLβ1 and helium atmosphere, the spectrometer can be used for the determination of elements with Z = 15 (P) and above with fairly good detection limits whereas Cr Kα excitation with ultra thin polymer window and vacuum atmosphere is good for the elements having Z = 11 (Na) and above. The detection limits using this set up vary from 7048 pg for Na to 83 pg for Ti.

  5. Potential hazards of air pollutant emissions from unconventional oil and natural gas operations on the respiratory health of children and infants.

    PubMed

    Webb, Ellen; Hays, Jake; Dyrszka, Larysa; Rodriguez, Brian; Cox, Caroline; Huffling, Katie; Bushkin-Bedient, Sheila

    2016-06-01

    Research on air pollutant emissions associated with unconventional oil and gas (UOG) development has grown significantly in recent years. Empirical investigations have focused on the identification and measurement of oil and gas air pollutants [e.g. volatile organic compounds (VOCs), particulate matter (PM), methane] and the influence of UOG on local and regional ambient air quality (e.g. tropospheric ozone). While more studies to better characterize spatial and temporal trends in exposure among children and newborns near UOG sites are needed, existing research suggests that exposure to air pollutants emitted during lifecycle operations can potentially lead to adverse respiratory outcomes in this population. Children are known to be at a greater risk from exposure to air pollutants, which can impair lung function and neurodevelopment, or exacerbate existing conditions, such as asthma, because the respiratory system is particularly vulnerable during development in-utero, the postnatal period, and early childhood. In this article, we review the literature relevant to respiratory risks of UOG on infants and children. Existing epidemiology studies document the impact of air pollutant exposure on children in other contexts and suggest impacts near UOG. Research is sparse on long-term health risks associated with frequent acute exposures - especially in children - hence our interpretation of these findings may be conservative. Many data gaps remain, but existing data support precautionary measures to protect the health of infants and children.

  6. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Myers, Samuel S.

    2015-08-01

    Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. In this study, we estimate the relative contributions of the oil palm, timber (for wood pulp and paper), and logging industries in Sumatra and Kalimantan to land cover change, fire activity, and regional population exposure to smoke concentrations. Concessions for these three industries cover 21% and 49% of the land area in Sumatra and Kalimantan respectively, with the highest overall area in lowlands on mineral soils instead of more carbon-rich peatlands. In 2012, most remaining forest area was located in logging concessions for both islands, and for all combined concessions, there was higher remaining lowland and peatland forest area in Kalimantan (45% and 46%, respectively) versus Sumatra (20% and 27%, respectively). Emissions from all combined concessions comprised 41% of total fire emissions (within and outside of concession boundaries) in Sumatra and 27% in Kalimantan for the 2006 burning season, which had high fire activity relative to decadal emissions. Most fire emissions were observed in concessions located on peatlands and non-forested lowlands, the latter of which could include concessions that are currently under production, cleared in preparation for production, or abandoned lands. For the 2006 burning season, timber concessions from Sumatra (47% of area and 88% of emissions) and oil palm concessions from Kalimantan (33% of area and 67% of emissions) contributed the most to concession-related fire emissions from each island. Although fire emissions from concessions were higher in Kalimantan, emissions from Sumatra contributed 63% of concession-related smoke concentrations for the population-weighted region because fire sources were located closer to population centers. In order to protect regional public health, our results

  7. Air Quality and Climate Effects of Oil Palm Expansion in Southeast Asia 1990 - 2010

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Yue, X.

    2015-12-01

    The natural rainforests of Southeast Asia have endured large-scale losses over the last few decades, principally driven by logging and agroforestry activities, including rapid expansion of plantations of high-isoprene-emitting oil palm (Elaeis guineensis) trees at the expense of comparatively low-emitting natural dipterocarp rainforests. Satellite-derived estimates of land cover represent snapshots in time of this highly-dynamic landscape. We apply multiple observational datasets and a global carbon-chemistry-climate model (NASA ModelE2-YIBs) to quantify the magnitude of altered biogenic volatile organic compound (BVOC) fluxes in Southeast Asia and the resulting impacts on atmospheric chemical composition due to the past two decades of land cover change in the region. NASA ModelE2-YIBs includes a fully interactive land carbon cycle. Isoprene production is energetically coupled to photosynthesis. Time-slice simulations for the period spanning 1990 - 2010 are forced with monthly anthropogenic and biomass burning emissions from the MACCity emissions inventory. Simulated tropospheric chemical composition is compared to observations, including fire-free formaldehyde columns, TES vertically-resolved ozone concentrations, and surface-level ozone measurements. We assess the contribution of land cover change-induced BVOC emission changes to regional ozone and aerosol pollution and provide the first estimate of the impacts on global climate.

  8. Studies on the mixing of liquid jets and pre-atomized sprays in confined swirling air flows for lean direct injection combustion

    NASA Astrophysics Data System (ADS)

    Huh, Jun-Young

    A lean direct injection (LDI) combustion concept was introduced recently to obtain both low NOsbx emissions and high performance for advanced aircraft gas turbine engines. It was reported that pollutant emissions, especially NOsbx, in a lean combustion mode depend significantly on the degree of mixing (mixedness) of supplied air and liquid fuel droplets. From a viewpoint of environmental protection, therefore, uniform mixing of fuel and air in a very short period of time, i.e., well-stirred mixing, is crucially important in the LDI combustion mode. In the present study, as the first stage toward understanding the combustion phenomena in a lean direct injection (LDI) mode, the hydrodynamic behavior of liquid jets and pre-atomized sprays in confined swirling air flows is investigated. Laser-based flow visualization and image analysis techniques are applied to analyze the instantaneous motion of the mixing process of the jets and pre-atomized sprays. Statistical analysis system (SAS) software is utilized to analyze the experimental data, and correlate experimental parameters. Statistical parameters, such as centrality, degree of spread, and total area ratio of particles, are defined in this study, and used to quantify the mixedness (degree of mixing) of liquid particles in confined geometry. Two empirical equations are obtained to predict jet intact lengths and spray angles, respectively, in confined swirling air flows. It is found that initial jet characteristics, such as intact length and spray angle, determine the mixing of the liquid particles resulting from the jet. It is verified that image analysis is feasible in quantitative determination of the mixedness of liquid particles. Even though substantial improvements in liquid fuel injector systems are required before they can be considered adequate for LDI combustion at high pressure and high temperature, the results and ideas obtained from the present study will help engineers find better mixing methods for LDI

  9. Initial Field Trials of the Site Characterization and Analysis Penetrometer System (SCAPS). Reconnaissance of Jacksonville Naval Air Station Waste Oil and Solvents Disposal Site

    DTIC Science & Technology

    1993-12-01

    Engineers Waterways Experiment Station DTIC Initial Field Trials of the Site ELECTF Characterization and Analysis JAN2 5 1994D Penetrometer System...038Prepared f NlFclitie 24En g m Prepared for Naval Facilities Engineering Command The contents of this report are not to be used for advertising. publication...Characterization and Analysis Penetrometer Sysstem (SCAPS) Reconnaissance of Jacksonville Naval Air Station Waste Oil and Solvents Disposal Site by Stafford S

  10. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    EPA Science Inventory

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  11. Reheat response and accelerated cooling of a microalloyed steel with an air/water atomizer: Effect on microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Pejavar, S. R.; Aswath, P. B.

    1994-04-01

    The use of an atomizer for accelerated cooling is discussed. An atomizer is an effective tool for controlling the microstructure and properties of a microalloyed steel because of its flexibility of operation and control of cooling rate over a broad range of temperatures. Some basic issues regarding heat transfer in pool boiling and in spray cooling also are presented. Reheating response studies were conducted in addition to studies of the effect of accelerated cooling on the microstructure and properties of a low- carbon steel microalloyed with niobium and vanadium. This steel produces a tempered martensitic microstructure on quenching and a predominantly bainitic microstructure at slower cooling rates. The yield, tensile, and fracture strengths can be tailored by controlling the cooling rate, which in turn can be controlled by the air/water ratio and flow rates in the atomizer. Impact toughness is a function of cooling rate and reaches a maximum followed by a decrease, probably due to the formation of upper bainite at lower cooling rates. Fractographic studies indicated that tensile fracture occurred by microvoid coalescence, with the dimple size decreasing as the cooling rate decreased. Charpy impact fracture studies indicated that the primary mode of failure was by quasi- cleavage, with the number of secondary cracks also decreasing as the cooling rate decreased.

  12. Non-dispersive atomic-fluorescence spectrometry of trace amounts of bismuth by introduction of its gaseous hydride into a premixed argon (entrained air)-hydrogen flame.

    PubMed

    Kobayashi, S; Nakahara, T; Musha, S

    1979-10-01

    A method has been developed for the determination of bismuth by generation of its gaseous hydride and introduction of the hydride into a premixed argon (entrained air)-hydrogen flame, the atomic-fluorescence lines from which are all detected by use of a non-dispersive system. The detection limit is 5 pg/ml, or 0.1 ng of bismuth, but the reagent blank found in a 20-ml sample volume was approximately 2 ng of bismuth. Analytical working curves obtained by measuring peak-heights and integrated peak-areas of the signals are linear over a range of about four orders of magnitude from the detection limit. Perchloric, phosphoric and sulphuric acids up to 2.0M concentration give no interference, but nitric acid gives slight depression of the signal. The presence of silver, gold, nickel, palladium, platinum, selenium and tellurium in 1000-fold ratio to bismuth causes pronounced depression of the signal, whereas mercury and tin slightly enhance the atomic-fluorescence signal. The method has been applied to the determination of bismuth in aluminium-base alloys and sulphide ores with use of the standard additions method. The results are in good agreement with those obtained by flame atomic-absorption spectrometry and optical emission spectrometry with an inductively coupled plasma.

  13. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  14. Atomic force microscopy in vitro study of surface roughness and fractal character of a dental restoration composite after air-polishing

    PubMed Central

    2010-01-01

    Background Surface roughness is the main factor determining bacterial adhesion, biofilm growth and plaque formation on the dental surfaces in vivo. Air-polishing of dental surfaces removes biofilm but can also damage the surface by increasing its roughness. The purpose of this study was to investigate the surface damage of different conditions of air-polishing performed in vitro on a recently introduced dental restorative composite. Methods Abrasive powders of sodium bicarbonate and glycine, combined at different treatment times (5, 10 and 30 s) and distances (2 and 7 mm), have been tested. The resulting root mean square roughness of the surfaces has been measured by means of atomic force microscopy, and the data have been analyzed statistically to assess the significance. Additionally, a fractal analysis of the samples surfaces has been carried out. Results The minimum surface roughening was obtained by air-polishing with glycine powder for 5 s, at either of the considered distances, which resulted in a mean roughness of ~300 nm on a 30 × 30 μm2 surface area, whereas in the other cases it was in the range of 400-750 nm. Both untreated surfaces and surfaces treated with the maximum roughening conditions exhibited a fractal character, with comparable dimension in the 2.4-2.7 range, whereas this was not the case for the surfaces treated with the minimum roughening conditions. Conclusions For the dental practitioner it is of interest to learn that use of glycine in air polishing generates the least surface roughening on the considered restorative material, and thus is expected to provide the lowest rate of bacterial biofilm growth and dental plaque formation. Furthermore, the least roughening behaviour identified has been correlated with the disappearance of the surface fractal character, which could represent an integrative method for screening the air polishing treatment efficacy. PMID:20939880

  15. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and

  16. High resolution imaging of immunoglobulin G antibodies and other biomolecules using amplitude modulation atomic force microscopy in air.

    PubMed

    Santos, Sergio; Thomson, Neil H

    2011-01-01

    The atomic force microscope (AFM) is a very versatile tool for studying biological samples at -nanometre-scale resolution. The resolution one achieves depends on many factors, including the sample properties, the imaging environment, the AFM tip and cantilever probe characteristics, and the signal detection and feedback control mechanism, to name a few. This chapter describes how to routinely achieve the highest possible spatial resolution on isolated protein molecules on mica surfaces. This is illustrated with Immunoglobulin G antibodies but the methods apply equally well to any other globular multi-subunit protein, as well as other biomolecules. Double-stranded DNA is used as a model sample to illustrate the effects of the force regime in amplitude modulation atomic force microscopy (AM AFM) on the image resolution and contrast. AM control is a widely used technique in biological AFM for reasons which are discussed.

  17. Engendering Long-Term Air and Light Stability of a TiO2-Supported Porphyrinic Dye via Atomic Layer Deposition.

    PubMed

    Hoffeditz, William L; Son, Ho-Jin; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2016-12-21

    Organic and porphyrin-based chromophores are prevalent in liquid-junction photovoltaic and photocatalytic solar-cell chemistry; however, their long-term air and light instability may limit their practicality in real world technologies. Here, we describe the protection of a zinc porphyrin dye, adsorbed on nanoparticulate TiO2, from air and light degradation by a protective coating of alumina grown with a previously developed post-treatment atomic layer deposition (ALD) technique. The protective Al2O3 ALD layer is deposited using dimethylaluminum isopropoxide as an Al source; in contrast to the ubiquitous ALD precursor trimethylaluminum, dimethylaluminum isopropoxide does not degrade the zinc porphyrin dye, as confirmed by UV-vis measurements. The growth of this protective ALD layer around the dye can be monitored by an in-reactor quartz crystal microbalance (QCM). Furthermore, greater than 80% of porphyrin light absorption is retained over ∼1 month of exposure to air and light when the protective coating is present, whereas almost complete loss of porphyrin absorption is observed in less than 2 days in the absence of the ALD protective layer. Applying the Al2O3 post-treatment technique to the TiO2-adsorbed dye allows the dye to remain in electronic contact with both the semiconductor surface and a surrounding electrolyte solution, the combination of which makes this technique promising for numerous other electrochemical photovoltaic and photocatalytic applications, especially those involving the dye-sensitized evolution of oxygen.

  18. Fast emulsion-based method for simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel by graphite furnace atomic absorption spectrometry.

    PubMed

    Luz, Maciel S; Nascimento, Angerson N; Oliveira, Pedro V

    2013-10-15

    A method for the simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel samples using emulsion-based sampling and GF AAS is proposed. 400mg of sample was weighted in volumetric flask following the sequential addition of 125 µL of hexane and 7.5 mL of Triton X-100(®) (20% mv(-1)). Subsequently, the mixture was stirred in ultrasonic bath, during 30 min, before dilution to 25 mL with deionized water. Aliquots of 20 μL of reference solution or sample emulsion were co-injected into the graphite tube with 10 μL of 2 g L(-1) Pd(NO3)2. The pyrolysis and atomization temperatures were 1300°C and 2250°C, respectively. The limits of detection (n=10, 3σ) and characteristic masses were 0.02 μg g(-1) (0.32 μg L(-1)) and 18 pg for Co, 0.03 μg g(-1) (0.48 μg L(-1)) and 15 pg for Cu, 0.04 μg g(-1) (0.64 μg L(-1)) and 48 pg for Pb, and 0.11 μg g(-1) (1.76 μg L(-1)) and 47 pg for Se. The reliabilities of the proposed method for Co and Se were checked by SRM(®) 1634c Residual Oil analysis. The found values are in accordance to the SRM at 95% confidence level (Student's t-test). Each sample was spiked with 0.18 μg g(-1) of Co, Cu, Pb and Se and the recoveries varied from 92% to 116% for Co, 83% to 117% for Cu, 72% to 117% for Pb, and 82% to 122% for Se.

  19. Optimal Design of Air Quality Monitoring Network and its Application in an Oil Refinery Plant: An Approach to Keep Health Status of Workers

    PubMed Central

    ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza

    2015-01-01

    Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program) was explored for configur­ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta­tion’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health. PMID:26933646

  20. Method and apparatus for igniting an in situ oil shale retort

    DOEpatents

    Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.

    1981-01-01

    A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.

  1. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    SciTech Connect

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  2. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al{sub 2}O{sub 3} atomic layer deposition

    SciTech Connect

    Hu, Chen; Gassenq, Alban; Chen, Hongtao; Roelkens, Günther; Justo, Yolanda; Hens, Zeger; Devloo-Casier, Kilian; Detavernier, Christophe

    2014-10-27

    A PbS colloidal quantum dot photoconductor with Al{sub 2}O{sub 3} atomic layer deposition (ALD) passivation for air-stable operation is presented. Two different types of inorganic ligands for the quantum dots, S{sup 2−} and OH{sup −}, are investigated. PbS/S{sup 2−} photoconductors with a cut-off wavelength up to 2.4 μm are obtained, and a responsivity up to 50 A/W at 1550 nm is reported. The corresponding specific detectivity is ∼3.4 × 10{sup 8} Jones at 230 K. The 3-dB bandwidth of the PbS/S{sup 2−} and PbS/OH{sup −} photodetectors is 40 Hz and 11 Hz, respectively.

  3. Phosphatidylcholine/vegetable oil pseudo-binary mixtures at the air-water interface: predictive formulation of oil blends with selected surface behavior.

    PubMed

    Caruso, Benjamín; Maestri, Damián M; Perillo, María A

    2010-01-01

    The present work is an attempt to define how to formulate oil blends with an expected surface behavior using easily accessible data such as chemical compositions. Hence, we determined average surface properties of triglycerides (TG) from olive (O), soybean (S), and walnut (W) oils self-organized in Langmuir films alone or in pseudo-binary mixtures with phosphatidylcholines (PC). Collapse pressure (pi(c)), compressibility modulus (K) and molecular area at the closest packing (A(min)) were determined from pi-mean molecular area (Mma) isotherms. The pi(c)-composition phase diagrams of TG-PC mixtures provided information about oils solubility limit with PCs in the monolayer phase. A thermodynamic equilibrium model was fitted to the line joining points of monolayer-TG(liquid phase) coexistence and allowed to obtain interaction parameters, omega, which consistently with those of excess surface energy (Delta G(ex)) and Mma deviations from ideality, contributed to describe interfacial intermolecular interactions. Oil molar fractions (x(TG)) for TGs-PCs self-assembling into vesicles were estimated from x(TG) values at pi(c) congruent with 30 mN/m (equilibrium pi of bilayers), which resulted higher in egg PC (0.15, 0.2, 0.15 for O, S and W, respectively) than in dipalmitoyl-PC (0.125, 0.075, 0.1). Principal component analysis performed on surface parameters, grouped S and W separated from O. This result was mainly influenced by variables estimating the effect of unsaturation degrees of fatty acids sterified at TGs, A(min) and pi(c). Peanut oils surface data interpolated in pi(c)-C16/C18 and A(min)-DBI correlation lines obtained with O-S mixtures (TG(mix)) and with TG(mix)-PC supported C16/C18 ratio and DBI as predictors to formulate oil blends with selected surface behavior.

  4. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  5. Influence of the continuous and dispersed phases on the symmetry of a gas turbine air-blast atomizer

    NASA Technical Reports Server (NTRS)

    Mcdonell, V. G.; Samuelsen, G. S.

    1990-01-01

    Current trends in liquid-fueled practical combustion systems are leaving less tolerance for fuel injection deficiencies such as poor spray field symmetry. The present paper evaluates the symmetry of the flowfield produced by a practical airblast atomizer. Specifically, the influence of both the continuous phase and dispersed phase on the spray field symmetry is assessed. In the present case, asymmetry in volume flux is associated principally with disparities in the injection of the dispersed phase, which is manifested by a maldistribution of larger drops. Asymmetries observed in the continuous phase without the dispersed phase are reduced in magnitude by the presence of the dispersed phase, but still contribute to asymmetry in radial spread of the dispersed phase.

  6. The interplay between surface micro-topography and -mechanics of type I collagen fibrils in air and aqueous media: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Kato, K.; Bar, G.; Cantow, H.-J.

    2001-09-01

    Calf skin type I collagen fibrils were regenerated from acidic solution and imaged with contact mode atomic force microscopy in air, water, and buffer solution. When imaged in air at a contact force of 20-150 nN, collagen fibrils exhibited a distinct transverse banding pattern with a period of 65 nm, consisting of high ridges and shallow grooves. The force dependence of the images suggests that such banding pattern is attributed to the transverse contraction of the fibril upon dehydration during sample preparation, which reflects the tangential mass density across the fibril. Imaging in water and phosphate buffer solution at a contact force of 15-80 nN revealed hydrated collagen fibrils with smooth surfaces. The rigidity of the collagen fibrils decreased considerably upon hydration. Scanning the cantilever tip in an aqueous medium at a contact force of 90-280 nN enabled us to probe subunit arrangement in the bulk region of the collagen fibril. The results indicate that the molecular assembly in the hydrated fibril is akin to that in the intact form. The image resolution was improved by stabilizing the collagen molecules through crosslinking with glutaraldehyde, which served to resolve microfibril-like structure on the fibril surface.

  7. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  8. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces.

    PubMed

    Liyana-Arachchi, Thilanga P; Zhang, Zenghui; Ehrenhauser, Franz S; Avij, Paria; Valsaraj, Kalliat T; Hung, Francisco R

    2014-01-01

    Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water

  9. Investigations on the on-line determination of metals in air flows by capacitively coupled microwave plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Seelig, M.; Broekaert, J. A. C.

    2001-09-01

    Plasma optical emission spectrometry with a capacitively coupled microwave plasma (CMP) operated with air has been investigated with respect to its possibilities for real-time environmental monitoring of combustion processes. The unique feature is the possibility to operate the CMP with air as working gas, as is usually the case in exhaust gases of combustion processes. The CMP also is shown to be stable in the presence of large amounts of water and CO 2, which makes this source ideally suitable for this purpose. The detection limits obtained for the environmentally relevant elements Cd, Co, Cr, Fe, Mg, Ni and Pb show the possibility to monitor directly heavy metals in air in an on-line mode and down to the 2-160-μg m -3 level. These detection limits are generally lower than the threshold limit values of the 'Federal Law for Immission Protection' in Germany in the gaseous effluents of industrial plants. In order to investigate the influence of the water loading (32-222 g m -3) on the detection limits a comparison of results obtained with three different nebulizers (Légère nebulizer, hydraulic high-pressure nebulizer and ultrasonic nebulizer) was made, with which aerosols with different water loading are entered into the plasma. For the hydraulic high-pressure nebulizer and the ultrasonic nebulizer no desolvation unit was found to be necessary. It was shown that especially for elements with lines having high excitation energy (Cd) or for which ion lines are used (Mg II) the increase in water loading deteriorates the detection limits. The rotational temperatures ( Trot) and excitation temperatures ( Texe) in the case of different amounts of water are of the order of 3700-4900 K and 4700-7100 K, respectively. The temperatures show that changes in the geometry and temperature distribution in the case of Trot but also the values of Texe themselves are responsible for this increase in detection limits. Furthermore, different amounts of CO 2 mixed to the working gas (3

  10. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  11. Soybean oil and methyl oleate adsorption onto a steel surface investigated using a quartz crystal microbalance with dissipation monitoring and atomic force microscopy**1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States’ 2010 annual production of soybean oil exceeded 8 million metric tons, making a significant vegetable oil surplus available for new uses, particularly as a lubricant. Investigation of soybean oil and methyl oleate adsorption onto steel using a quartz crystal microbalance with diss...

  12. Proceedings of the 1998 oil heat technology conference

    SciTech Connect

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  13. Improved Atomizer Resists Clogging

    NASA Technical Reports Server (NTRS)

    Dea, J. Y.

    1983-01-01

    Improved constant-output atomizer has conical orifice that permits air to sweep out all liquid thoroughly and prevent any buildup of liquid or dissolved solids. Capillary groove guides liquid to gas jet. Simple new design eliminates clogging.

  14. Changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) during storage as influenced by temperature and air oxygen.

    PubMed

    Goffman, F D; Möllers, C

    2000-05-01

    The changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) were studied during a storage period of 24 weeks at different incubation temperatures and exposure to air oxygen (open and closed flasks). In the extracted oil, total tocopherol content remained unaltered at 5 and 20 degrees C throughout the 24 weeks of storage. At 40 degrees C, a beginning degradation was observed already after 4 weeks in both open and closed flasks; the alpha-tocopherol content was affected most, followed by gamma-tocopherol and plastochromanol-8. After 16 weeks at 40 degrees C, the total tocopherol content in the oil was reduced by more than 90%. In intact seeds, no tocopherol degradation was observed; only the seeds incubated at 40 degrees C and in open flasks showed slightly lower tocopherol contents. However, the analysis of the tocopherol composition in the stored seeds showed a decrease in the alpha-tocopherol content and an increase in the gamma-tocopherol content, which resulted in a decreasing alpha-/gamma-tocopherol ratio. This trend was most apparent at 40 degrees C and after 24 weeks of storage. A reduction of plastochromanol-8 occurred only at 40 degrees C and was more pronounced in open flasks. At 40 degrees C and in closed flasks a gradual increase in the content of alpha-tocotrienol was observed, a compound normally not accumulated in rapeseed.

  15. System for Continuous Deaeration of Hydraulic Oil

    NASA Technical Reports Server (NTRS)

    Anderson, Christopher W.

    2006-01-01

    vacuum against the vacuum pump. 3) The tank must be strong enough to withstand atmospheric pressure against the vacuum inside and must have sufficient volume to enable exposure of a sufficiently large amount of sprayed oil to the vacuum. 4) The spray nozzles must be sized to atomize the oil and to ensure that the rate of flow of sprayed oil does not exceed the rate at which the venturi action can empty the tank. 5) The vacuum pump must produce a hard vacuum against the venturi tube and continue to work when it ingests some oil and water. 6) Fittings must be made vacuum tight (by use of O-rings) to prevent leakage of air into the system. The system is fully automatic, and can be allowed to remain in operation with very little monitoring. It is capable of reducing the air content of the oil from 11 to less than 1 volume percent in about 4 hours and to keep the water content below 100 parts per million.

  16. The AirWaterGas Teacher Professional Development Program: Lessons Learned by Pairing Scientists and Teachers to Develop Curriculum on Global Climate Change and Regional Unconventional Oil and Gas Development

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.

    2015-12-01

    The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.

  17. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Wang, Shibo; Tokunaga, Tetsu K.; Wan, Jiamin; Dong, Wenming; Kim, Yongman

    2016-08-01

    Capillary pressure (Pc)-saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, 17 sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23°C) and reservoir (12.0 MPa, 45°C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw_r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snw_r, CO2 > Snw_r, decane > Snw_r, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  18. Using Epiphytic Lichens to Elucidate the Sources and Spatial Distribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Landis, M.; Graney, J. R.; Pancras, P.; Krupa, S.; Edgerton, E.; Puckett, K.; Percy, K.

    2013-12-01

    The Wood Buffalo Environmental Association (WBEA) conducted studies to document the geographic patterns of atmospheric deposition of sulfur (S) and nitrogen (N) in the Athabasca Oil Sands Region (AOSR) using epiphytic lichens as bioindicators of atmospheric pollution. Epiphytic lichen samples (Hypogymnia physodes) were collected from 44 locations in 2002, 359 locations in 2008, and 21 locations in 2011 within the AOSR. A subset of samples from 2002 (15) and 2008 (121); and all the samples from 2011 were microwave extracted and analyzed for a comprehensive suite of trace elements using DRC-ICPMS. In addition, source profiles were developed for samples from a variety of available process stacks, heavy duty diesel fleet vehicles, bulk materials representing the various stages of oil sands processing operations, and forest fires. The lichen monitoring and source profile information were integrated into a receptor modeling framework to elucidate the relative importance of natural and anthropogenic sources to the observed atmospheric deposition of S and N in the AOSR. U.S. EPA implemented statistical receptor models utilized included Positive Matrix Factorization (PMF), Unmix, and Chemical Mass Balance (CMB). The sources uniquely identified that significantly contributed to concentrations of elements in the lichen tissue include: fugitive dust from haul roads, tailing sand, and oil sand mining; oil sand processing; combustion processes; and a general urban regional source. The spatial patterns of CMB, PMF, and Unmix receptor model estimated source impacts on the Hypogymnia physodes tissue concentrations from the oil sand processing and fugitive dust sources had a significant association with the distance from the primary oil sands surface mining operations and related production facilities. The spatial extent of the fugitive dust impact was limited to an approximately 20 km radius around the major mining and oil production facilities, indicative of ground level coarse

  19. Non-CO2 gaseous emissions from upstream oil and gas operations in Nigeria.

    PubMed

    Obioh, I B; Oluwole, A F; Akeredolu, F A

    1994-05-01

    The Nigerian crude oil is formed in association with natural gas. The associated gas has mostly been flared in the process of crude oil exploitation. Current estimates are that approximately 70% of produced natural gas is flared. Carbon monoxide, volatile organic compounds and nitrogen oxides emissions from oil and gas exploitation activities are presented for major combustion activities: gas flares and power generation at oil fields for oil and gas gathering systems. The emissions rates and combustion efficiency for a newly tested modified flaring system with enhanced air supply and liquid aspiration system for the atomization of the condensate phases of the flared gas was found to be capable of improving combustion efficiency by 20% or more in comparison with the conventional flare-type currently in vogue. Flare emissions for CO and NOx are an order of magnitude higher than other sources in the oil and gas sector.

  20. 76 FR 23768 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial- Commercial-Institutional, and Small Industrial... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for...

  1. A Direct Measurement Study of Air Emissions from Oil & Natural Gas Production Pads in the Denver-Julesburg Basin

    EPA Science Inventory

    EPA and industry cooperators conducted a one-week emission measurement study of 23 oil and natural gas well pads in the Denver-Julesburg Basin in July, 2011. The purpose of the study was to characterize emissions from individual production components and to evaluate the performa...

  2. A Direct Measurement Study of Air Emissions from Oil & Natural Gas Production Pads in the DJ Basin

    EPA Science Inventory

    EPA and industry cooperators conducted a one-week emission measurement study of 23 oil and natural gas well pads in the Denver-Julesburg Basin in July, 2011. The purpose of the study was to characterize emissions from individual production components and to evaluate the performa...

  3. Assessment of Air Emissions from Oil and Natural Gas Well Pads Using Mobile Remote and Onsite Direct Measurements

    EPA Science Inventory

    An enhanced ability to efficiently detect large maintenance related emissions is required to ensure sustainable oil and gas development. To help achieve this goal, a new remote inspection method, Other Test Method (OTM) 33A, was developed and utilized to quantify short-term metha...

  4. Oil and Natural Gas Production Facilities & Natural Gas Transmission and Storage Facilities Final Air Toxics Rules Fact Sheet

    EPA Pesticide Factsheets

    This page contains a May 1999 fact sheet for the final National Emission Standards for Hazardous Air Pollutants (NESHAP) for Petroleum Refineries. This document provides a summary of the 1999 final rule.

  5. OH-radical specific addition to the antioxidant glutathione S-atom at the air-water interface - Relevance to the redox balance of the lung epithelial lining fluid and the causality of adverse health effects induced by air pollution

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2015-12-01

    Inhalation of oxidant pollutants upsets the redox balance (RB) of the lung epithelial lining fluid (ELF) by triggering the formation of reactive OH-radicals therein. RB is deemed to be controlled by the equilibrium between the most abundant ELF protective antioxidant glutathione (GSH) and its putative disulfide GSSG oxidation product. The actual species produced from the oxidation of GSH initiated by ·OH in ELF interfacial layers exposed to air, i.e., under realistic ELF conditions, however, were never identified. Here we report the online electrospray mass spectrometric detection of sulfenate (GSO-), sulfinate (GSO2-) and sulfonate (GSO3-) on the surface of aqueous GSH solutions collided with ·OH(g). We show that these products arise from ·OH specific additions to S-atoms, rather than via H-abstraction from GS-H. The remarkable specificity of ·OH in interfacial water vis-a-vis its lack of selectivity in bulk water implicates an unprecedented steering process during ·OH-GSH encounters at water interfaces. A non-specific systemic immune response to inhaled oxidants should be expected if they were initially converted into a common ·OH intermediate on the ELF (e.g., via fast Fenton chemistry) and oxidative stress signaled by the [GSH]/[GSOH] ratio.

  6. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  7. Will technological modernization for power generation at an oil refinery diminish the risks from air pollution to the Atlantic Rainforest in Cubatão, SE Brazil?

    PubMed

    Nakazato, Ricardo K; Rinaldi, Mirian C S; Domingos, Marisa

    2015-01-01

    We assessed the level of atmospheric contamination by S, N and metals before, during and after the installation of a new thermoelectric plant that provides power to an oil refinery in Cubatão, SE Brazil. We measured the foliar accumulation in Lolium multiflorum "Lema" with the aim of evaluating risks to the Atlantic Rainforest that grows in the region. Al, Co, Cr, Cu, K, N, Ni, S, V and Zn were appropriate markers of the new air contamination profile associated with the modern technology. With the exception of V, the leaf contents of these elements significantly increased between the pre-operation to post-operation phases (Al, Co, N, K, S), or only during the transition phase (Zn, Cu, Cr, Ni), and returned to the previous levels after the total shutdown of the old system. Therefore, the expected environmental gain was not achieved with the installation of the new technology.

  8. A Tunneling Microscope for Operation in Air or Fluids.

    DTIC Science & Technology

    1985-10-01

    between IBM Zurich designs and squeezable tunnel junctions has been operated in air, oil, and liquid nitro - gen. Key design goals were 1) maximum...from 10 Hz to 20kHz. The inner shield (a coffee can) provides electrical screening and shuts out light. Not shown is approximately 150kg of lead that was...image individual atoms in a close-packed, unreconstructed layer is obtainable with submersion in liquid nitro - o gen. This implies lateral resolution

  9. Characterization of the Aldehydes and Their Transformations Induced by UV Irradiation and Air Exposure of White Guanxi Honey Pummelo (Citrus Grandis (L.) Osbeck) Essential Oil.

    PubMed

    Li, Li Jun; Hong, Peng; Chen, Feng; Sun, Hao; Yang, Yuan Fan; Yu, Xiang; Huang, Gao Ling; Wu, Li Ming; Ni, Hui

    2016-06-22

    Aldehydes are key aroma contributors of citrus essential oils. White Guanxi honey pummelo essential oil (WPEO) was investigated in its aldehyde constituents and their transformations induced by UV irradiation and air exposure by GC-MS, GC-O, and sensory evaluation. Nine aldehydes, i.e., octanal, nonanal, citronellal, decanal, trans-citral, cis-citral, perilla aldehyde, dodecanal, and dodecenal, were detected in WPEO. After treatment, the content of citronellal increased, but the concentrations of other aldehydes decreased. The aliphatic aldehydes were transformed to organic acids. Citral was transformed to neric acid, geranic acid, and cyclocitral. Aldehyde transformation caused a remarkable decrease in the minty, herbaceous, and lemon notes of WPEO. In fresh WPEO, β-myrcene, d-limonene, octanal, decanal, cis-citral, trans-citral, and dodecenal had the highest odor dilution folds. After the treatment, the dilution folds of decanal, cis-citral, trans-citral, and dodecenal decreased dramatically. This result provides information for the production and storage of aldehyde-containing products.

  10. High-speed Oil Engines for Vehicles. Part II

    NASA Technical Reports Server (NTRS)

    Hausfelder, Ludwig

    1927-01-01

    Further progress toward the satisfactory solution of the difficult problem of the distribution and atomization of the injected fuel was made by extensive experimentation with various fuel valves, nozzles, and atomizing devices. Valuable information was also obtained through numerous experimental researches on the combustion of oils and the manner of introducing the combustion air into the cylinder, as well as on the physical processes of atomization, the determination of the size of drops, etc. These researches led to the conclusion that it is possible, even without producing great turbulence in the combustion chamber and at moderate pump pressure, if the degree of atomization and the penetrative power of the fuel jet are adapted to the shape of the combustion chamber and to the dimensions of the cylinder.

  11. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  12. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  13. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  14. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  15. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  16. The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection.

    PubMed

    Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y

    1999-04-01

    An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.

  17. Improved extraction method for the determination of iron, copper, and nickel in new varieties of sunflower oil by atomic absorption spectroscopy.

    PubMed

    Ansari, Rehana; Kazi, Tasneem G; Jamali, Mohammad K; Arain, Mohammad B; Sherazi, Syed T; Jalbani, Nusrat; Afridi, Hassan I

    2008-01-01

    A simple and fast procedure is proposed for the extraction of iron (Fe), copper (Cu), and nickel (Ni) in 16 varieties of sunflower seed oil samples using an ultrasonic bath. The experimental parameters of the ultrasonic-assisted extraction (UAE) method were optimized to improve the sensitivity and detect the metals at trace levels in minimum time. Conventional wet acid digestion method was used for comparative purposes. The optimum recovery of all 3 metals was obtained by UAE for 7 min, while the separation of aqueous and organic phases after extraction using centrifugation (UAE-2) required 3 min, as compared to the conventional equilibration method (UAE-1) that required 90 min. The respective recoveries of Cu, Fe, and Ni obtained with UAE-2 were in the range of 95.8-97.5, 93.5-98.3, and 95.6-98.2%, respectively, for different varieties of sunflower oil samples. Accuracy was determined by the standard addition method. Under the optimum operating conditions, the limits of detection obtained from the standard addition curves were 21.7, 20.4, and 35.6 ng/mL for Fe, Cu, and Ni, respectively. The fact that all varieties of sunflower oil contain significant amounts of Fe, Cu, and Ni indicates the deterioration of sunflower oil quality immediately after extraction from seeds, which poses a threat to oil quality and human health.

  18. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  19. Influence of emulsion composition and spray-drying conditions on microencapsulation of tilapia oil.

    PubMed

    Huang, Hui; Hao, Shuxian; Li, Laihao; Yang, Xianqing; Cen, Jianwei; Lin, Wanling; Wei, Ya

    2014-09-01

    The influence of processing conditions on the microencapsulation of tilapia oil by spray drying was studied. Trehalose, gelatin, sucrose and xanthan were used as emulsion composition. The experimental parameters of spray drying such as inlet air temperature, solid content, drying air flow rate and atomizing pressure were optimized using a central composite design. Encapsulation efficiency and lipid oxidation were determined. Bulk density, powder morphology and particle size were also analyzed. Trehalose improved the glass transition temperature of wall material significantly and prevented the oxidation of the fish oil. Encapsulation efficiency reached a maximum of 90 % under optimum conditions with an inlet air temperature of 121 °C, a drying air flow rate of 0.65 m(3)/min and a spray pressure of 100 kPa.

  20. Application of the extraction induced by emulsion breaking for the determination of Cu, Fe and Mn in used lubricating oils by flame atomic absorption spectrometry.

    PubMed

    Caldas, Luiz Fernando S; Brum, Daniel M; de Paula, Carlos Eduardo R; Cassella, Ricardo J

    2013-06-15

    A novel approach is proposed for the sample preparation of used lubricating oils to determine Cu, Fe and Mn by FAAS. The method is based on the extraction induced by emulsion breaking, in which the elements of interest are transferred to an aqueous phase before the measurement by FAAS. In the method, each sample of used lubricating oil was diluted with toluene (20% v/v) and the resulting solution was emulsified with a Triton X-114 solution containing HNO3. Further, the water-in-oil emulsion was broken by centrifugation for 30 min at 3500 rpm, originating a system with two well-separated phases: (i) the upper phase, containing the used lubricating oil diluted in toluene and (ii) the lower aqueous phase, containing the analytes that were extracted from oil. The lower phase was collected, diluted with water and the analytes were determined by FAAS. The optimization of the methodology was performed by studying the influence of different parameters that could affect the extraction efficiency such as the nature and concentration of the solvent used for sample dilution, the concentrations of HNO3 and Triton X-114 in the solution employed for emulsification and the operational conditions for extraction (extraction, centrifugation and sampling times). The limits of quantification for Cu, Fe and Mn were 2.9, 77 and 8.2 ng g(-1), respectively. The accuracy of the method was evaluated by comparison with the reference method based on the total digestion of the samples in a closed-vessel microwave oven. There were no statistical differences between the results obtained with the proposed method and the reference one, except for Fe in the cases where its concentration was higher than 80 µg g(-1).

  1. Oil Spills Research

    EPA Pesticide Factsheets

    EPA monitors impacts and mitigates the effects of spilled oil, which threatens public health and safety, contaminates drinking water, causes fire and explosion, diminishes air and water quality, harms ecosystems, and more.

  2. Oil/gas pre-treatment plants and air quality hazards: PM1 measurements in Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, S.; Caggiano, R.; Sabia, S.

    2014-04-01

    A PM1 (i.e., aerosol particles with aerodynamic diameter less 1.0 μm) short term monitoring campaign was carried out in Agri Valley (southern Italy) in September 2012. This area is of international concern since it houses the largest European on-shore reservoir and the largest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri - COVA) within an anthropized context. PM1 measurements were performed in Viggiano, the nearest town to the COVA plant and one of the most populated town of the Agri Valley. During the study period, the PM1 daily concentrations ranged from 1.2 to 8.4 μg m-3 with a mean value of 4.6 μg m-3. Regarding the PM1 chemical composition, it can be observed that S and typical crustal elements were the most abundant constituents of the PM1 collected. By applying the Principal Component Analysis, it was pointed out that crustal soil, biomass and wood burning, secondary atmospheric reactions involving COVA plant emissions and local soil particles, and traffic were the main sources contributing to the PM1 measured in the area under study. Moreover, a possible contribution of the long-range transport of African dust was observed.

  3. Emission sources sensitivity study for ground-level ozone and PM2.5 due to oil sands development using air quality modeling system: Part I- model evaluation for current year base case simulation

    NASA Astrophysics Data System (ADS)

    Cho, Sunny; McEachern, Preston; Morris, Ralph; Shah, Tejas; Johnson, Jeremiah; Nopmongcol, Uarporn

    2012-08-01

    The Community Multiscale Air Quality (CMAQ) and the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling systems were used to simulate emissions and air quality in North Eastern Alberta where a rapid rise in oil sands development has caused air quality concerns over the last decade. The models were run on a 36/12/4 km domain for the four month period of May through August 2002. A model performance evaluation was conducted by comparing the CMAQ model estimates against ambient air quality measurements. In the Alberta oil sands region, the model tended to achieve or nearly achieve ozone model performance goals, albeit with an underestimation bias. The magnitudes of the observed PM2.5 concentrations were matched by the modeling system, except when the observed PM2.5 concentrations were influenced by emissions from forest fires in which case the model underestimated the observed PM2.5 concentrations. The CMAQ-estimated 4th highest daily maximum 8-hour ozone concentrations in the oil sands region were below the 65 ppb Canada Wide Standard (CWS) as well as the 58 ppb Alberta Management Plan Trigger Level. The highest estimated ozone concentrations occurred near the oil sands development area just north of Fort McMurray with values approaching, but below, the 58 ppb Management Plan Trigger Level; estimated ozone concentrations are much lower in the farther northern portions of the oil sands region. The acute (i.e., maximum 3-day value) SUM60 vegetative ozone exposure metric was mostly less than 100 ppb h, which is below the threshold of concern for crops. However, just north of Fort McMurray there were small areas where the acute SUM60 metric exceeded the 500-700 ppb h threshold of concern for crops with maximum values in plumes from sources in the oil sands mine area of ˜900 ppb h. The maximum chronic (three-month average) SUM60 ozone exposure metric was below the thresholds of concern. The CMAQ-estimated maximum 98th percentile 24-hour average PM2.5 concentration

  4. Burning crude oil without pollution

    NASA Technical Reports Server (NTRS)

    Houseman, J.

    1979-01-01

    Crude oil can be burned at drilling sites by two-stage combustion process without producing pollution. Process allows easier conformance to strict federal or state clean air standards without installation of costly pollution removal equipment. Secondary oil recovery can be accomplished with injection of steam heating by burning oil.

  5. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  6. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  7. Recovery of a Charred Painting Using Atomic Oxygen Treatment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.

    1999-01-01

    A noncontact method is described which uses atomic oxygen to remove soot and char from the surface of a painting. The atomic oxygen was generated by the dissociation of oxygen in low pressure air using radio frequency energy. The treatment, which is an oxidation process, allows control of the amount of material to be removed. The effectiveness of char removal from half of a fire-damaged oil painting was studied using reflected light measurements from selected areas of the painting and by visual and photographic observation. The atomic oxygen was able to effectively remove char and soot from the treated half of the painting. The remaining loosely bound pigment was lightly sprayed with a mist to replace the binder and then varnish was reapplied. Caution should he used when treating an untested paint medium using atomic oxygen. A representative edge or corner should he tested first in order to determine if the process would be safe for the pigments present. As more testing occurs, a greater knowledge base will be developed as to what types of paints and varnishes can or cannot be treated using this technique. With the proper precautions, atomic oxygen treatment does appear to be a technique with great potential for allowing very charred, previously unrestorable art to be salvaged.

  8. Fragmentation of Newtonian and viscoelastic liquids during rotary atomization

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; Moore, John; Houze, Eric; Koerner, Michael; McKinley, Gareth; MIT Collaboration; Axalta Coating Systems Collaboration

    2015-11-01

    Animals drying their wet fur by rapidly shaking their body and rotary atomization in paint coating are just a few examples in which centripetal acceleration is used to disintegrate liquid films into smaller fragments. Narrower size distributions and well-defined geometrical fluid pathlines (similar to the involute of a circle) are the main advantages of this type of atomization as compared to air-assisted atomization. Despite these inherent advantages there is a paucity of fundamental knowledge about the roles of fluid rheology in this process. We study the effects of viscosity by performing rotary atomization tests on silicone oils with a wide range of viscosities (1-1000 mPa.s). Viscoelastic effects are also probed by spraying solutions of polyethylene oxide (PEO) dissolved in water at different concentrations. Our results show that understanding the effects of liquid properties on the instabilities that control rotary atomization (primarily Rayleigh-Taylor instability during the ligament formation followed by Rayleigh-Plateau instability during droplet pinch-off) can help us understand the resulting fragment size distributions.

  9. Oil recovery from tar sands

    SciTech Connect

    Boesiger, D.D.; Siefkin, J.M.

    1983-01-11

    A process for recovering oil from oil wet and particularly from oil-wet, acidic tar sands is described in which these sands are subjected to vigorous fluidization in the presence of water, air and a surfactant but in the absence of an extraneous hydrocarbon solvent. This step produces a multiphase mixture including an oil containing froth enabling gravity separation, E.G. In hydrocyclone.

  10. Conformation evolution of oil contaminants onto aluminum oxide surface in aqueous solution: The effect of surface coverage

    NASA Astrophysics Data System (ADS)

    Xie, Wenkun; Liu, Haitao; Sun, Yazhou; Fu, Hongya; Liang, Yingchun

    2017-01-01

    The microscopic conformational change process of oil contaminants adhered onto perfect α-Al2O3 (0001) surface in aqueous solution was investigated by using all-atom classic molecular dynamics simulations. The change in removal mechanism of oil contaminants induced by surface coverage (surface area per molecule) was emphatically explored. Our simulation results strongly reveal that the increase in oil surface coverage induces an evident difference in microscopic detachment processes of oil contaminants. At a low surface coverage, oil contaminants can be thoroughly detached from solid surface. The whole detachment process could be divided into multi stages, including conformational change of oil contaminants on solid surface, dynamic motion of those in bulk solution and rapid migration of those from bulk solution to air/water interface. With surface coverage increasing, water diffusion becomes the key to induce conformational change and promote the detachment of oil contaminants. When oil surface coverage exceeds a threshold value, oil contaminants also undertake an evident conformational change process exhibiting typical characteristics but an incomplete detachment process occurs. All findings of the present study are helpful for the interpretation of the removal mechanism of oil contaminants on solid surface.

  11. Extraction and preconcentration of copper from water, soils, lubricating oils and plant materials and its subsequent determination by atomic-absorption spectrophotometry.

    PubMed

    Ejaz, M; Shamus-Zuha; Dil, W; Akhtar, A; Chaudhri, S A

    1981-07-01

    The extraction and preconcentration of the cupric thiocyanate complex with 4-(5-nonyl)pyridine in benzene is possible from neutral or up to 2M HCl, 0.5M HNO(3) or 0.25M H(2)SO(4) solutions. The method has considerable advantages over previously recommended extraction procedures because of selectivity, completeness of extraction in a single operation, short contact period, minimum amount of complexing agents needed and wide tolerance to various solution parameters. The complex formed from as little as 1 mug of copper can be extracted quantitatively into 1 ml of the organic phase from 500 ml of natural water. An extraction method is described which in combination with AAS can be used to determine copper in water, soils, fresh and used lubricating oils and plant-ash solutions down to the ng/ml or ng/g level.

  12. Design procedure for effervescent atomizers

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Lefebvre, A. H.

    1995-04-01

    A methodology for the design of effervescent atomizers is described. The objective is to achieve sprays of minimum mean drop size for any stipulated values of liquid flow rate, air supply pressure, and air/liquid ratio. Application of the method leads to optimum values for all the key atomizer dimensions, including the number and size of the air injection holes, and the diameters of the mixing chamber and discharge orifice. It also enables optimum dimensions to be determined for a convergent-divergent nozzle should such a device be fitted to the nozzle exit to improve atomization performance. Examples are provided to demonstrate the application of the recommended design procedure and to illustrate the relative importance of various flow and geometric parameters in regard to their effects on atomization quality.

  13. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  14. Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: pilot-scale investigation for estuarine and near shore applications.

    PubMed

    Tansel, Berrin; Pascual, Beth

    2011-11-01

    In coastal areas, estuaries, and inland waters, dispersant use after oil spills is not allowed due to sensitivity of the ecosystems. The purpose of this study was to investigate the removal of emulsified fuel oils from brackish and pond water by dissolved air flotation (DAF) with and without use of coagulants. Experiments were conducted with a 60L DAF system. Fuel oil-water emulsions were prepared with regular unleaded gasoline, jet fuel, and diesel fuel mixed at 1:1:1 (v/v/v) ratio. Batch and continuous runs were conducted at air pressurization of 354.6kPa. During both batch and continuous modes, significant petroleum hydrocarbon (PHC) removal was achieved within 10 min. Coagulant addition initially increased the PHC removal by about 5-15%. However, effectiveness of the coagulant was not significant after 20 min due to breakage of the aggregates. In general, the pond water had higher PHC removal than the brackish water. With longer run times, PHC removal improved slightly and the effluent contained increasing fractions of higher molecular weight compounds indicating that PHC removal was due to both DAF and stripping processes. Results indicate that DAF process can be effective both with and without the use of coagulants for removing PHCs from brackish and pond waters.

  15. Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air.

    PubMed

    Hu, Hang; Dong, Binghai; Hu, Huating; Chen, Fengxiang; Kong, Mengqin; Zhang, Qiuping; Luo, Tianyue; Zhao, Li; Guo, Zhiguang; Li, Jing; Xu, Zuxun; Wang, Shimin; Eder, Dominik; Wan, Li

    2016-07-20

    In this study we design and construct high-efficiency, low-cost, highly stable, hole-conductor-free, solid-state perovskite solar cells, with TiO2 as the electron transport layer (ETL) and carbon as the hole collection layer, in ambient air. First, uniform, pinhole-free TiO2 films of various thicknesses were deposited on fluorine-doped tin oxide (FTO) electrodes by atomic layer deposition (ALD) technology. Based on these TiO2 films, a series of hole-conductor-free perovskite solar cells (PSCs) with carbon as the counter electrode were fabricated in ambient air, and the effect of thickness of TiO2 compact film on the device performance was investigated in detail. It was found that the performance of PSCs depends on the thickness of the compact layer due to the difference in surface roughness, transmittance, charge transport resistance, electron-hole recombination rate, and the charge lifetime. The best-performance devices based on optimized TiO2 compact film (by 2000 cycles ALD) can achieve power conversion efficiencies (PCEs) of as high as 7.82%. Furthermore, they can maintain over 96% of their initial PCE after 651 h (about 1 month) storage in ambient air, thus exhibiting excellent long-term stability.

  16. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    NASA Astrophysics Data System (ADS)

    Umemura, Kazuo; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA-SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA-SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA-SWNT hybrids. The morphology of the SSB-ssDNA-SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB-ssDNA-SWNT hybrids showed much larger variance than the ssDNA-SWNT hybrids.

  17. Residential oil burners with low input and two stages firing

    SciTech Connect

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  18. Effectiveness of Vegetation Index Transformation for Land Use Identifying and Mapping in the Area of Oil palm Plantation based on SPOT-6 Imagery (Case Study: PT.Tunggal Perkasa Plantations, Air Molek, Indragiri Hulu)

    NASA Astrophysics Data System (ADS)

    Setyowati, H. A.; S, S. H. Murti B.; Sukentyas, E. S.

    2016-11-01

    The reflection of land surface, atmosphere and vegetation conditions affect the reflectance value of the object is recorded on remote sensing image so that it can affect the outcome of information extraction from remote sensing imagery one multispectral classification. This study aims to assess the ability of the transformation of generic vegetation index (Wide Dynamic Range Vegetation Index), the vegetation index transformation that is capable reducing the influence of the atmosphere (Atmospherically Resistant Vegetation Index), and the transformation of vegetation index that is capable of reducing the influence of the background soil (Second Modified Soil Adjusted Vegetation Index) for the identification and mapping of land use in the oil palm plantation area based on SPOT-6 archived on June 13, 2013 from LAPAN. The study area selected oil palm plantations PT. Tunggal Perkasa Plantations, Air Molek, Indragiri Hulu, Riau Province. The method is using the transformation of the vegetation index ARVI, MSAVI2, and WDRVI. Sample selection method used was stratified random sampling. The test method used mapping accuracy of the confusion matrix. The results showed that the best transformation of the vegetation index for the identification and mapping of land use in the plantation area is ARVI transformation with a total of accuracy is 96%. Accuracy of mapping land use settlements 100%, replanting 82.35%, 81.25% young oil palm, old oil palm 99.46%, 100% bush, body of water 100%, and 100% bare-soil.

  19. Velocity-modulation atomization of liquid jets

    NASA Technical Reports Server (NTRS)

    Dressler, John L.

    1994-01-01

    A novel atomizer based on high-amplitude velocity atomization has been developed. Presently, the most common methods of atomization can use only the Rayleigh instability of a liquid cylinder and the Kelvin-Helmholtz instability of a liquid sheet. Our atomizer is capable of atomizing liquid jets by the excitation and destabilization of many other higher-order modes of surface deformation. The potential benefits of this sprayer are more uniform fuel air mixtures, faster fuel-air mixing, extended flow ranges for commercial nozzles, and the reduction of nozzle plugging by producing small drops from large nozzles.

  20. Understanding Emissions from Control-Related Equipment used in Oil and Gas Production Operations to Support EPA’s Air Quality Modeling of Ozone Non-attainment Areas

    EPA Science Inventory

    Oil and gas production has increased significantly in the United States over the past ten years. Improperly maintained and controlled oil and gas extraction and production (E&P) processes have the potential to emit significant amounts of pollutants that can impact human health an...

  1. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  2. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  3. Lubricating oil composition

    SciTech Connect

    Malec, R.E.

    1980-01-29

    The reaction product of (A) high molecular weight hydrocarbon-substituted phenols, (B) aldehydes, (C) ammonia or amines having a reactive hydrogen atom, and (D) alkylene oxides are effective dispersants for lubricating oil and impart detergent properties to liquid hydrocarbon fuels such as gasoline.

  4. Physical and chemical characterization of residential oil boiler emissions.

    PubMed

    Hays, Michael D; Beck, Lee; Barfield, Pamela; Lavrich, Richard J; Dong, Yuanji; Vander Wal, Randy L

    2008-04-01

    The toxicity of emissions from the combustion of home heating oil coupled with the regional proximity and seasonal use of residential oil boilers (ROB) is an important public health concern. Yet scant physical and chemical information about the emissions from this source is available for climate and air quality modeling and for improving our understanding of aerosol-related human health effects. The gas- and particle-phase emissions from an active ROB firing distillate fuel oil (commonly known as diesel fuel) were evaluated to address this deficiency. Ion chromatography of impactor samples showed that the ultrafine ROB aerosol emissions were approximately 45% (w/w) sulfate. Gas chromatography-mass spectrometry detected various n-alkanes at trace levels, sometimes in accumulation mode particles, and out of phase with the size distributions of aerosol mass and sulfate. The carbonaceous matter in the ROB aerosol was primarily light-adsorbing elemental carbon. Gas chromatography-atomic emission spectroscopy measured a previously unrecognized organosulfur compound group in the ROB aerosol emissions. High-resolution transmission electron microscopy of ROB soot indicated the presence of a highly ordered primary particle nanostructure embedded in larger aggregates. Organic gas emissions were measured using EPA Methods TO-15 and TO-11A. The ROB emitted volatile oxygenates (8 mg/(kg of oil burned)) and olefins (5 mg/(kg of oil burned)) mostly unrelated to the base fuel composition. In the final analysis, the ROB tested was a source of numerous hazardous air pollutants as defined in the Clean Air Act Amendments. Approximations conducted using emissions data from the ROB tests show relatively low contributions to a regional-level anthropogenic emissions inventory for volitile organic compounds, PM2.5, and SO2 mass.

  5. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits.

    PubMed

    Zhang, Jialu; Wang, Chuan; Fu, Yue; Che, Yuchi; Zhou, Chongwu

    2011-04-26

    Due to extraordinary electrical properties, preseparated, high purity semiconducting carbon nanotubes hold great potential for thin-film transistors (TFTs) and integrated circuit applications. One of the main challenges it still faces is the fabrication of air-stable n-type nanotube TFTs with industry-compatible techniques. Here in this paper, we report a novel and highly reliable method of converting the as-made p-type TFTs using preseparated semiconducting nanotubes into air-stable n-type transistors by adding a high-κ oxide passivation layer using atomic layer deposition (ALD). The n-type devices exhibit symmetric electrical performance compared with the p-type devices in terms of on-current, on/off ratio, and device mobility. Various factors affecting the conversion process, including ALD temperature, metal contact material, and channel length, have also been systematically studied by a series of designed experiments. A complementary metal-oxide-semiconductor (CMOS) inverter with rail-to-rail output, symmetric input/output behavior, and large noise margin has been further demonstrated. The excellent performance gives us the feasibility of cascading multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.

  6. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  7. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction.

  8. 18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED BY LINCOLN AC MOTORS ON THE RIGHT AND TURBINE AIR DRY APPARATUS ON THE LEFT, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  9. Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; P, Kumaran; M, Jayakumar

    2013-06-01

    One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

  10. The BNL fan-atomized burner system prototype

    SciTech Connect

    Butcher, T.A.; Celebi, Y.

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  11. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  12. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  13. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.

    PubMed

    Nahavandi, Amir; Korayem, Moharam Habibnejad

    2015-10-01

    The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.

  14. Injection, atomization, ignition and combustion of liquid fuels in high-speed air streams. Annual scientific report 1 December 81-31 December 82

    SciTech Connect

    Schetz, J.A.

    1983-01-01

    A simulation approach to studying hot flow subsonic cross-stream fuel injection problems in a less complex and costly cold flow facility was developed. A typical ramjet combustion chamber fuel injection problem was posed where ambient temperature fuel (Kerosene) is injected into a hot airstream. This case was transformed through two new similarity parameters involving injection and freestream properties to a simulated case where a chilled injectant is injected into an ambient temperature airstream. Experiments for the simulated case using chilled Freon-12 injected into the Va. Tech 23 x 23 cm. blow-down wind tunnel at a freestream Mach number of 0.44 were run. The freestream stagnation pressure and temperature were held at 2.5 atm. and 300 degrees K respectively. Results showed a clear picture of the mechanisms of jet decomposition in the presence of rapid vaporization. Immediately after injection a vapor cloud was formed in the jet plume, which dissipated downstream leaving droplets on the order of 8 to 10 microns in diameter for the conditions examined. This represents a substantial reduction compared to baseline tests run at the same conditions with water which had little vaporization. The desirability of using slurry fuels for aerospace application has long been recognized, but the problems of slurry combustion have delayed their use. The present work is an experimental and numerical investigation into the break-up and droplet formation of laminar slurry jets issuing into quiescent air.

  15. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J.; Lerner, B.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-05-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas wells using dry-gas collection, which means dehydration happens at the well, were clearly associated with higher mixing ratios than other wells. Another large source was the flowback pond near a recently hydraulically re-fractured gas well. The comparison of the VOC composition of the emissions from the oil and natural gas wells showed that wet gas collection wells compared well with the majority of the data at Horse Pool and that oil wells compared well with the rest of the ground site data. Oil wells on average emit heavier compounds than gas wells. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  16. Analysis of metal cations and inorganic anions in olive oil mill waste waters by atomic absorption spectroscopy and ion chromatography. Detection of metals bound mainly to the organic polymeric fraction.

    PubMed

    Arienzo, M; Capasso, R

    2000-04-01

    Metal cations were quantitatively detected by atomic absorption spectrometry in samples of olive oil mill waste waters obtained by a pressure process (omww(1)) (K, 17.1; Mg, 2.72; Ca, 2.24; Na, 0.40; Fe, 0.123; Zn, 0.0630; Mn, 0.0147; Cu, 0.00860 g L(-)(1)) and a centrifugation process (omww(2)) (K, 9.80; Mg, 1.65; Ca, 1.35; Na, 0. 162; Fe, 0.0330; Zn, 0.0301; Mn, 0.00910; Cu, 0.00980 g L(-)(1)). The inorganic anions, determined in the same samples by ion chromatography, proved to be Cl(-), H(2)PO(4)(-), F(-), SO(4)(2)(-), and NO(3)(-) (1.61, 1.05, 0.66, 0.52, and 0.023 g L(-)(1), respectively, in omww(1) and 0.61, 0.40, 0.25, 0.20, and 0.0090 g L(-)(1), respectively, in omww(2)). Most of the metal cations were revealed to be bound to the omww organic polymeric fraction (opf), composed of polysaccharides, phenol polymers, and proteins. Opf relative molecular weight was substantially estimated in the range between 1000 and 30000 Da for approximately 75% and in the range from 30000 to 100000 Da for approximately 25%. The free residual cations pool proved to be neutralized by the inorganic counteranions. Finally, the possible exploitation of this material in agriculture and in environmental biotechnology processes is also discussed in the light of its chemical and biochemical oxygen demand parameters.

  17. Oil residue contamination of continental shelf sediments of the Gulf of Mexico.

    PubMed

    Harding, V; Camp, J; Morgan, L J; Gryko, J

    2016-12-15

    We have investigated the distribution of a heavy oil residue in the coastal sediments of the Gulf of Mexico. The amount of the contamination was determined by high-temperature pyrolysis coupled with the Gas Chromatography-Mass Spectrometry (GCMS) of air-dried sediments. The pyrolysis products contain straight-chain saturated and unsaturated hydrocarbons, such as dodecane and 1-dodecene, resulting in a very characteristic pattern of double peaks in the GCMS. Hydrocarbons containing 8 to 23 carbon atoms were detected in the pyrolysis products. Using thermal pyrolysis we have found that the sediment samples collected along Texas, Louisiana, and Mississippi shores contain no detectable traces of oil residue, but most of the samples collected along Alabama and Florida shores contain ~200ppm of heavy oil residue.

  18. Breathing air purification; Desiccant vs. refrigerated

    SciTech Connect

    McKay, K.L.; Swanson, A.L. )

    1986-07-01

    Carbon monoxide (CO) is a common contaminant of ambient air - levels as high as 200 ppm are not uncommon in urban, industrial, or high automotive-traffic areas. Carbon monoxide may also be produced by the oxidation of lubricating oil in overheated compressors. Air from an oil-lubricated compressor, even when an aftercooler is used, often contains significant quantities of oil mist and vapor. Even where a breathing air (non-oil-lubricated) compressor is used , oil. levels in the air taken into the compressor can still exceed Grade D standards, especially in industrial environments. Other contaminants (gaseous hydrocarbons, particulate matter, and odors), while not addressed by the Grade D criteria, are also present in harmful or objectionable levels in industrial environments; therefore, they must be taken into account in the design of the air purification systems. This paper discusses two basic types of breathing air purifiers: desiccant and refrigerated purifiers.

  19. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  20. Oil Spills

    MedlinePlus

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil spills ...

  1. Oil Spills

    MedlinePlus

    ... the Deepwater Horizon/BP oil spill in 2010. (NOAA) Oil Spills During an oil spill in coastal ... Shoreline Assessment Manual , and the FOSC 's Guide to NOAA Scientific Support . Response Tools To better prepare response ...

  2. METHODOLOGIES FOR ESTIMATING AIR EMISSIONS FROM THREE NON-TRADITIONAL SOURCE CATEGORIES: OIL SPILLS, PETROLEUM VESSEL LOADING & UNLOADING, AND COOLING TOWERS

    EPA Science Inventory

    The report discusses part of EPA's program to identify and characterize emissions sources not currently accounted for by either the existing Aerometric Information Retrieval System (AIRS) or State Implementation Plan (sip) area source methodologies and to develop appropriate emis...

  3. Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance

    NASA Astrophysics Data System (ADS)

    Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander

    2016-11-01

    Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.

  4. The Atom and the Ocean, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hull, E. W. Seabrook

    Included is a brief description of the characteristics of the ocean, its role as a resource for food and minerals, its composition and its interactions with land and air. The role of atomic physics in oceanographic exploration is illustrated by the use of nuclear reactors to power surface and submarine research vessels and the design and use of…

  5. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  6. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  7. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  8. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  9. Transmission Electron Microscopy and Atomic Force Microscopy Observation of Air-Processed GdBa2Cu3O7-δ Superconductors Doped with Metal Oxide Nanoparticles (Metal = Zr, Zn, and Sn)

    NASA Astrophysics Data System (ADS)

    Xu, Caixuan; Hu, Anming; Ichihara, Masaki; Izumi, Mitsuru; Xu, Yan; Sakai, Naomichi; Hirabayashi, Izumi

    2009-02-01

    Single-domain, c-axis-oriented 30-mm-diameter GdBa2Cu3O7-δ (Gd123) melt-textured bulk superconductors have been successfully grown by the top-seeded melt growth method from precursors of Gd123, Gd2BaCuO5, and Ag2O in air with doping of nanosized ZrO2, ZnO, or SnO2. Transmission electron microscopy (TEM) unveils a large amount of BaZrO3 or BaSnO3 particles with an average diameter of approximately 50 nm respectively embedded in ZrO2 or SnO2 doped samples, while no Zn-rich nanoparticles are observed in the ZnO-doped samples. The critical temperature Tc is almost unchanged up to a doping amount of 10 mol % for ZrO2- or SnO2-doped Gd123 melt-textured bulks, while ZnO-doped Gd123 becomes non-superconductive at this doping level. By atomic force microscopy (AFM), nanostripes with a wavelength of 15 nm are observed in the ZnO-doped Gd123 sample. Nanoscale particles in the grown Gd123 single domain, together with the micro-defects induced by nanoparticle doping, can account for the enhanced superconducting properties.

  10. 75 FR 40726 - Revisions to the California State Implementation Plan, Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Quality Management District and South Coast Air Quality Management District AGENCY: Environmental... revisions to the Sacramento Metropolitan Air Quality Management District (SMAQMD) and South Coast Air... Reference. (A) South Coast Air Quality Management District. ] (1) Rule 1144, ``Vanishing Oils and...

  11. Injury to deep benthos. Subtidal study number 2b (air/water study number 2). Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Feder, H.M.

    1995-06-01

    This study was designed to assess the possible injury by petroleum, derived from the Exxon Valdez oil spill to benthic infaunal resources within Prince William Sound in water deeper than 20 m. Analyses of benthic biological data collected from 14 bays in Prince William Sound in 1990 at 40, 100 and > 100 m, by univariate and multivariate techniques, demonstrated no obvious disturbance effects on the benthic biota 16 months after the oil spill. In all multivariate analyses, the major environmental variables related to the composition of benthic assemblages were sediment parameters such as percent silt, clay, mud, percent water and amount of nitrogen and carbon in sediment. Although limited amounts of petroleum hydrocarbons and presence of hydrocarbon degrading bacteria were detected at some sites at 40 and 100 m in 1989 and 1990, minor or no impact was sustained by benthic fauna of the deep benthos within the Sound.

  12. Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Narducci, Frank; Braje, Danielle; Davis, Jon; Adler, Charles

    2013-05-01

    We theoretically and experimentally study a magnetically sensitive atom interferometer. Using a stationary atom cloud, a time-domain interferometer is formed on magnetically sensitive states of 85Rb. We show that the temporal spacing of a Raman pulse sequence controls the frequency of the magnetic field detected by the interferometer, thereby potentially eliminating unwanted noise and optimizing detection in frequency bands of interest. We focus on a standard π / 2 - π - π / 2 sequence and explore the utility of multiple π pulses. The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government. This work at NavAir was supported by the Office of Naval Research and by the NavAir Chief Technology Office.

  13. Environmental Assessment Construction of Antenna Parts Storage Facility and Demolition of Hazardous Materials Storage Shed and Oil Change Pit, Jordan Lake Air Force Space Surveillance Station, Alabama

    DTIC Science & Technology

    2013-01-03

    meet Class A standards to house the function for which it is currently designated. However, from necessity it must be continued in use for a short...dura- tion or until a suitable facility can be obtained. Class A standards mean the facility is adequate and can house the function for which it is...shed cannot be raised to meet Class A standards to house the function for which it was designated. The oil change pit is no longer used by

  14. Final Environmental Impact Statement for the Mineral Resource Management Plan. Potential Exploration, Development, and Production of Oil and Gas Resources; Vandenberg Air Force Base, California

    DTIC Science & Technology

    1987-12-01

    seasonal patterns. However, very limited portions of San Antonio Creek are supported by groundwater inflows; therefore, these segments would not be...characterized as intermittent. All other stream segments are intermittent as noted in the comment. RMD-46 The region of influence evaluated for water...water resources would therefore not appreciably differ bctween the alternat;ves in regard to the geograp !hic locations of oil and gas development. RMD

  15. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  16. Atomic Resolution Images of Solid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Giambattista, Brian; McNairy, W. W.; Slough, C. G.; Johnson, A.; Bell, L. D.; Coleman, R. V.; Schneir, J.; Sonnenfeld, R.; Drake, B.; Hansma, P. K.

    1987-07-01

    A scanning tunneling microscope (STM) can provide atomic-resolution images of solids covered with a variety of liquids, including cryogenic fluids, both polar and nonpolar solvents, conductive aqueous solutions, oils, and even greases. This short overview includes images of solids covered with liquid nitrogen, liquid helium, paraffin oil, silicone oil, microscope immersion oil, silicone vacuum grease, fluorocarbon grease, glycerol, and salt water. These images show atoms, charge-density waves, grains in an evaporated metal film, and even corrosion processes as they occur in real time. The future includes not only basic research in surface science but also applied research in lithography, lubrication, catalysis, corrosion, electrochemistry, and perhaps even biology.

  17. Tall oil as additive in gas drive hydrocarbon oil recovery

    SciTech Connect

    Djabbarah, N.F.

    1988-04-12

    A miscible displacement process for recovering oil from a subterranean, oil-containing formation penetrated by at least one injection well and at least one spaced-apart production well and having fluid communication between the injection and the production wells is described comprising: (a) injecting a slug of til oil into the formation through the injection well; (b) injecting a slug of a displacing fluid into the formation through the injection well, the displacing fluid being selected from the group consisting of carbon monoxide, carbon dioxide, methane, nitrogen, air, flue gas, combustion gas and mixtures thereof, the injection of the tall oil lowering the minimum miscibility pressure of the displacing fluid in the formation oil; and (c) recovering the oil through the production well.

  18. Oil Spill!

    ERIC Educational Resources Information Center

    Ansberry, Karen Rohrich; Morgan, Emily

    2005-01-01

    An oil spill occurs somewhere in the world almost every day of the year, and the consequences can be devastating. In this month's column, students explore the effects of oil spills on plants, animals, and the environment and investigate oil spill clean-up methods through a simulated oil spill. The activities described in this article give students…

  19. NOON EDT: EPA's Office of Air and Radiation to Hold Media Call on Proposed Methane Standards for Oil and Gas Industry

    EPA Pesticide Factsheets

    WASHINGTON- -Today at noon EDT, U.S. Environmental Protection Agency (EPA) Acting Assistant Administrator for the Office of Air and Radiation Janet McCabe will hold a press call on methane. At the direction of President Obama, the EPA is propos

  20. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  1. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  2. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  3. Atomic Databases

    NASA Astrophysics Data System (ADS)

    Mendoza, Claudio

    2000-10-01

    Atomic and molecular data are required in a variety of fields ranging from the traditional astronomy, atmospherics and fusion research to fast growing technologies such as lasers, lighting, low-temperature plasmas, plasma assisted etching and radiotherapy. In this context, there are some research groups, both theoretical and experimental, scattered round the world that attend to most of this data demand, but the implementation of atomic databases has grown independently out of sheer necessity. In some cases the latter has been associated with the data production process or with data centers involved in data collection and evaluation; but sometimes it has been the result of individual initiatives that have been quite successful. In any case, the development and maintenance of atomic databases call for a number of skills and an entrepreneurial spirit that are not usually associated with most physics researchers. In the present report we present some of the highlights in this area in the past five years and discuss what we think are some of the main issues that have to be addressed.

  4. All About Oils

    MedlinePlus

    ... corn oil, cottonseed oil, olive oil, safflower oil, soybean oil, and sunflower oil. Some oils are used ... such as canola, corn, cottonseed, olive, peanut, safflower, soybean, and sunflower) 1 Tbsp 3 tsp/14 g ...

  5. Influence of spray equipment and water volume on coverage of citrus and control of citricola scale, Coccus pseudomagnoliarum (Hemiptera: Coccidae) with mineral oil.

    PubMed

    Chueca, P; Grafton-Cardwell, E E; Moltó, E

    2009-02-01

    A trial was conducted in a commercial Citrus sinensis L. variety 'Washington' navel orange orchard to compare the coverage and efficacy against citricola scale Coccus pseudomagnoliarum (Kuwana) (Hemiptera: Coccidae) of 45.5 liters/ha of an nC24 agricultural mineral oil treatment applied by two different methods: a conventional air blast sprayer and a rotary atomizer. Three water volumes (2,340, 4,680, and 7,020 liters/ha) were applied with the air blast sprayer to determine the optimal spray volume for that equipment. A single volume (2,340 liters/ha) was applied with the rotary atomizer to compare its effectiveness with that of the air blast sprayer at this same volume. Results demonstrated that all treatments reduced citricola scale densities. Moreover, all treatments conducted with the air blast sprayer provided significantly greater coverage and significantly reduced citricola scale densities compared with the treatment made with the rotary atomizer. Larger water volume applications with the air blast sprayer did not significantly reduce citricola scale densities, although significantly better coverage was attained in the interior of the tree when spraying with 4,680 and 7,020 liters/ha. As a consequence, this study demonstrated that the increased coverage obtained by applying higher water volume with the air blast sprayer was not required for an optimal treatment in August, when the citricola scale population consisted of nymphs inhabiting the outside leaves of the tree.

  6. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  7. 35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON LEFT, FUEL OIL PUMP BEHIND ON LEFT, FUEL OIL HEATERS AND PUMPS IN BACKGROUND WITH DRAIN SYSTEM - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA

  8. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  9. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  10. Molecular Articulation in Response to Interactive Atomic Forces in Docker

    DTIC Science & Technology

    1996-12-01

    MOLECULAR ARTICULATION IN RESPONSE TO INTERACTIVE ATOMIC FORCES IN DOCKER THESIS Todd R. Kellett, Captain, USAF < AFIT/GCS/ENG/96D- 15 IDb~tzkac Unkg...ARTICULATION IN RESPONSE TO INTERACTIVE ATOMIC FORCES IN DOCKER THESIS Todd R. Kellett, Captain, USAF AFIT/GCS/ENG/96D- 15 Approved for public...INTERACTIVE ATOMIC FORCES IN DOCKER THESIS Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air

  11. Coconut Oil

    MedlinePlus

    ... oil comes from the nut (fruit) of the coconut palm. The oil of the nut is used to ... Gras de Noix de Coco, Coconut Fatty Acid, Coconut Palm, Coco Palm, Coconut, Cocos nucifera, Cocotier, Cold Pressed ...

  12. SYNTHETIC OIL,

    DTIC Science & Technology

    The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

  13. Petroleum Oils

    EPA Pesticide Factsheets

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  14. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  15. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  16. High Atom Number in Microsized Atom Traps

    DTIC Science & Technology

    2015-12-14

    cooling of some atoms in atomic beam. We have reconfigured the apparatus for applying bichromatic forces transverse to the atomic beam, as it will be...apparatus for applying bichromatic forces transverse to the atomic beam, as it will be easier to extend this to two dimensions. Research to develop

  17. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins.

    PubMed

    Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter

    2014-04-01

    Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.

  18. Mineral oils

    NASA Technical Reports Server (NTRS)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  19. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  20. Extraction of oil from oil sands using thermoresponsive polymeric surfactants.

    PubMed

    Yang, Bingqing; Duhamel, Jean

    2015-03-18

    Several thermoresponsive block copolymers constituted of a poly(ethylene glycol) (PEG) and a poly(2-(2-methoxyethoxy) ethyl methacrylate) (PMEO2MA) block were prepared by atom transfer radical polymerization (ATRP) and their ability to extract oil from oil sands was evaluated. The chemical composition of the PEG113-b-PMEO2MAX block copolymers was determined by (1)H NMR and gel permeation chromatography (GPC) with X-values ranging between 48 and 80. Aqueous solutions of block copolymers showed a cloud point of 34 ± 1 °C as determined by turbidimetry and dynamic light scattering (DLS) measurements. DLS experiments indicated that these polymers formed stable block copolymer micelles due to association of the PMEO2MA blocks at temperatures greater than 45 °C with a unimodal distribution of hydrodynamic diameters. Since characterization of the block copolymer solutions as a function of temperature indicated the formation of hydrophobic domains in water for T > 45 °C, extractions of oil from oil sands with the block copolymers were conducted at T = 45 and 50 °C. At these temperatures, 15 mL of a 1 mg/mL PEG113-b-PMEO2MA77 aqueous solution extracted 100% of the oil trapped in 1 g of oil sand if 60 mg of toluene was added to the mixture. When the extraction was conducted under the same experimental conditions without block copolymer, a poor oil recovery of less than 30% was achieved. Starting with a 1 mg/mL block copolymer concentration, the block copolymer aqueous solution could be recycled up to five successive extractions while maintaining satisfying oil recovery. Each extraction cycle led to a 22% mass loss of block copolymer, certainly due to association with the toluene, oil, and sand particles. Together these experiments demonstrate that thermoresponsive block copolymers can be powerful aids to enhance the oil recovery of oil sands.

  1. Air Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  2. Air Monitoring Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  3. Preservative effect of combined treatment with electrolyzed NaCl solutions and essential oil compounds on carp fillets during convectional air-drying.

    PubMed

    Mahmoud, Barakat S M; Yamazaki, Koji; Miyashita, Kazuo; Kawai, Yuji; Shin, Il-Shik; Suzuki, Tetsuya

    2006-02-15

    The antimicrobial and antioxidant effects on carp fillet samples of treatments with alkaline electrolyzed NaCl solution EW (-) prior to treatment with acidic electrolyzed NaCl solution EW (+) and 1% solutions of the essential oils consisting of 0.5% carvacrol and 0.5% thymol (1% Cv+Ty) were tested. First carp fillet samples were treated with EW (-), then EW (+), followed by 1% (C+T), represented as [EW (-)/EW (+)/1% (Cv+Ty)] for 15 min, during drying at 45 degrees C. Samples were subsequently evaluated by microbiological, chemical and sensory analyses. Microbiological analyses indicated that the initial total microbial counts of samples treated with EW (-)/EW (+), 1% (Cv+Ty) or EW (-)/EW (+)/1% (Cv+Ty) were significantly (p< or =0.05) reduced, compared with the control sample. Treatment with EW (-)/EW (+)/1% (Cv+Ty) gave the strongest overall inhibition of microbial growth when compared to all of the other treatments. The volatile basic nitrogen (VBN) value of samples treated with EW (-)/EW (+)/1% (Cv+Ty) was kept at low level (18.46+/-0.45) until the end of drying period (5 days), compared with control samples (40.33+/-0.58). Treatment with EW (-)/EW (+)/1% (Cv+Ty) during drying significantly reduced the peroxide values (PV) and thiobarbituric acid values (TBA). Sensory evaluation indicated that there were significant differences (p< or =0.05) in the color, odor, taste, flavor and texture, on the end of the 5-day drying period between samples treated with EW (-)/EW (+)/1% (Cv+Ty), as compared to all of the other treatments. We conclude that treatment with EW (-)/EW (+)/1% (Cv+Ty) had stronger antimicrobial and antioxidant effects than all of the other treatments on carp fillets during drying, and could be a good alternative to artificial preservatives in food industry.

  4. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  5. Some Misunderstandings about Millikan's Oil Drop Experiment.

    ERIC Educational Resources Information Center

    Castellion, Mary E.; Bailar, John C., Jr.

    1982-01-01

    Clarifies misunderstanding of Millikan's experiment measuring charge on electrons. Most books describing the experiment indicate ionization of air in the apparatus caused liberation of electrons, and that these electrons were picked up by oil droplets. However, in Millikan's discussion, it is stated clearly that ions were attached to oil droplets.…

  6. 77 FR 59391 - Delta Air Lines, Inc., Continental Airlines, Inc., JetBlue Airways Corporation, United Air Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ...] Delta Air Lines, Inc., Continental Airlines, Inc., JetBlue Airways Corporation, United Air Lines, Inc...'s Procedural Rules Applicable to Oil Pipeline Proceedings, 18 CFR 343.1(a) and 343.2(c); Delta...

  7. Initial field trials of the site characterization and analysis penetrometer system (SCAPS). Reconnaissance of Jacksonville Naval Air Station waste oil and solvents disposal site. Final report

    SciTech Connect

    Cooper, S.S.; Douglas, D.H.; Sharp, M.K.; Olsen, R.A.; Comes, G.D.

    1993-12-01

    At the request of the Naval Facilities Engineering Command (NAVFAC), Southern Division, Charleston, SC, the U.S. Army Engineer Waterways Experiment Station (WES) conducted the initial field trial of the Site Characterization and Analysis Penetrometer System (SCAPS) at Jacksonville Naval Air Station (NAS), Jacksonville FL. This work was carried out by a field crew consisting of personnel from WES and the Naval Ocean Systems Center during the period of 16 July 1990 to 14 August 1990. The SCAPS investigation at the Jacksonville NAS has two primary objectives: (a) to provide data that could be useful in formulating remediation plans for the facility and (b) to provide for the initial field trial of the SCAPS currently under development by WES for the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), now the U.S. Army Environmental Center. The original concepts for the SCAPS was to develop an integrated site screening characterization system whose capabilities would include (a) surface mapping, (b) geophysical surveys using magnetic, induced electromagnetic, and radar instruments, (c) measurements of soil strength, soil electrical resistivity, and laser-induced soil fluorometry Cone penetrometer, Site Characterization and Analysis Laser Induced Fluorescence(LIF), Penetrometer System(SCAPS) POL Contamination, using screening instrumentation mounted in a soil penetrometer, (d) soil and fluid samplers, and (e) computerized data acquisition, interpretation, and visualization. The goal of the SCAPS program is to provide detailed, rapid, and cost-effective surface and subsurface data for input to site assessment/remediation efforts.

  8. The atomic orbitals of the topological atom.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  9. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  10. Modeling of oil mist and oil vapor concentration in the shale shaker area on offshore drilling installations.

    PubMed

    Bråtveit, Magne; Steinsvåg, Kjersti; Lie, Stein Atle; Moen, Bente E

    2009-11-01

    The objective of this study was to develop regression models to predict concentrations of oil mist and oil vapor in the workplace atmosphere in the shale shaker area of offshore drilling installations. Collection of monitoring reports of oil mist and oil vapor in the mud handling areas of offshore drilling installations was done during visits to eight oil companies and five drilling contractors. A questionnaire was sent to the rig owners requesting information about technical design of the shaker area. Linear mixed-effects models were developed using concentration of oil mist or oil vapor measured by stationary sampling as dependent variables, drilling installation as random effect, and potential determinants related to process technical parameters and technical design of the shale shaker area as fixed effects. The dataset comprised stationary measurements of oil mist (n = 464) and oil vapor (n = 462) from the period 1998 to 2004. The arithmetic mean concentrations of oil mist and oil vapor were 3.89 mg/m(3) and 39.7 mg/m(3), respectively. The air concentration models including significant determinants such as viscosity of base oil, mud temperature, well section, type of rig, localization of shaker, mechanical air supply, air grids in outer wall, air curtain in front of shakers, and season explained 35% and 17% of the total variance in oil vapor and oil mist, respectively. The developed models could be used to indicate what impact differences in technical design and changes in process parameters have on air concentrations of oil mist and oil vapor. Thus, the models will be helpful in planning control measures to reduce the potential for occupational exposure.

  11. The toxicity of commercial jet oils.

    PubMed

    Winder, Chris; Balouet, Jean-Christophe

    2002-06-01

    Jet oils are specialized synthetic oils used in high-performance jet engines. They have an appreciable hazard due to toxic ingredients, but are safe in use provided that maintenance personnel follow appropriate safety precautions and the oil stays in the engine. Aircraft engines that leak oil may expose others to the oils through uncontrolled exposure. Airplanes that use engines as a source of bleed air for cabin pressurization may have this source contaminated by the oil if an engine leaks. Examination of the ingredients of the oil indicates that at least two ingredients are hazardous: N-phenyl-1-naphthylamine (a skin sensitizer) and tricresyl phosphate (a neurotoxicant, if ortho-cresyl isomers are present). Publicly available information such as labels and MSDS understates the hazards of such ingredients and in the case of ortho-cresyl phosphates by several orders of magnitude.

  12. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  13. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  14. Combuston method of oil shale retorting

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1977-08-16

    A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

  15. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  16. Olive Oil Tracer Particle Size Analysis for Optical Flow Investigations in a Gas Medium

    NASA Astrophysics Data System (ADS)

    Harris, Shaun; Smith, Barton

    2014-11-01

    Seed tracer particles must be large enough to scatter sufficient light while being sufficiently small to follow the flow. These requirements motivate a desire for control over the particle size. For gas measurements, it is common to use atomized oil droplets as tracer particles. A Laskin nozzle is a device for generating oil droplets in air by directing high-pressure air through small holes under an oil surface. The droplet diameter frequency distribution can be varied by altering the hole diameter, the number of holes, or the inlet pressure. We will present a systematic study of the effect of these three parameters on the resultant particle distribution as it leaves the Laskin nozzle. The study was repeated for cases where the particles moved through a typical jet facility before their size was measured. While the jet facility resulted in an elimination of larger particles, the average particle diameter could be varied by a factor of two at both the seeder exit and downstream of the jet facility.

  17. Barley Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare) is an ancient grain that has was domesticated for use as a food. Currently only about 2% is used for food, about two thirds is used for animal feed and one third for malting. Because the oil content of most barley cultivars is low (<2%), obtaining oil from whole barley gra...

  18. REPORT ON ATOMIZATION TESTS FOR PROJECT TITLED - BIODIESEL BLENDS IN MICROTURBINE.

    SciTech Connect

    KRISHNA,C.R.

    2007-01-01

    The injectors for the Capstone turbine have the general design shown in figure 1 below. It consists of an airblast atomizer with a cylindrical fuel nozzle and an annular air passage surrounding it. The airblast atomizer is surrounded by a 'mixing tube' with circular holes just downstream of the atomizer outlet and swirler holes further downstream. During operation, these holes bring 'hot' air/gases to help vaporize and provide premixed fuel and air for combustion downstream of the 'mixing' tube.

  19. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Ukigai, T.; Yamada, J.

    1985-08-27

    A micellar slug for use in the recovery of oil is described, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as an essential component an alpha-olefin sulfonate having 10 to 26 carbon atoms and containing 0.1% to 15% by weight by weight of a disulfonate. This micellar slug has an excellent salinity tolerance and hard-water resistance. Furthermore, the micellar slugs of the present invention are capable of forming micro-emulsions having a sufficiently low interfacial tension and, therefore, can improve oil recovery efficiency.

  20. Offshore oil - growing optimism with gas

    SciTech Connect

    Pagano, S.S.

    1994-01-01

    The gas-rich Gulf of Mexico is on the rebound and there's growing optimism business conditions will continue to improve in 1994. Environmental regulations, such as the Clean Air Act and the Oil Pollution Act of 1990, are having a significant impact on oil an gas drilling and production. The Clean Air Act has increased the use of natural gas, which is helping bolster gas consumption from the Gulf of Mexico's reserves. In late December 1993, the Clinton administration unveiled its long-awaited gas and oil initiative aimed at boosting markets for domestic natural gas and oil while developing a long-term strategy to reduce the nation's dependence on imported energy. This article examines the political and economic issues of concern to the oil and gas industry, and how international competition affects development in the Gulf.

  1. 40 CFR 63.137 - Process wastewater provisions-oil-water separators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-oil-water... wastewater provisions—oil-water separators. (a) For each oil-water separator that receives, manages, or... air pollutants vapors vented from the oil-water separator to a control device. The fixed roof,...

  2. Interaction forces in bitumen extraction from oil sands.

    PubMed

    Liu, Jianjun; Xu, Zhenghe; Masliyah, Jacob

    2005-07-15

    Water-based extraction process (WBEP) has been successfully applied to bitumen recovery from Athabasca oil sand ore deposits in Alberta. In this process, two essential steps are involved. The bitumen first needs to be "liberated" from sand grains, followed by "aeration" with air bubbles. Bitumen "liberation" from the sand grains is controlled by the interaction between the bitumen and sand grains. Bitumen "aeration" is dependent, among other mechanical and hydrodynamic variables, on the hydrophobicity of the bitumen surface, which is controlled by water chemistry and interactions between bitumen and fine solids. In this paper, the interaction force measured with an atomic force microscope (AFM) between bitumen-bitumen, bitumen-silica, bitumen-clays and bitumen-fines is summarized. The measured interaction force barrier coupled with the contacted adhesion force allows us to predict the coagulative state of colloidal systems. Zeta potential distribution measurements, in terms of heterocoagulation, confirmed the prediction of the measured force profiles using AFM. The results show that solution pH and calcium addition can significantly affect the colloidal interactions of various components in oil sand extraction systems. The strong attachment of fines from a poor processing ore on bitumen is responsible for the corresponding low bitumen flotation recovery. The identification of the dominant non-contact forces by fitting with the classical DLVO or extended DLVO theory provides guidance for controlling the interaction behavior of the oil sand components through monitoring the factors that could affect the non-contact forces. The findings provide insights into megascale industrial operations of oil sand extraction.

  3. Occupational exposure to airborne contaminants during offshore oil drilling.

    PubMed

    Kirkhus, Niels E; Thomassen, Yngvar; Ulvestad, Bente; Woldbæk, Torill; Ellingsen, Dag G

    2015-07-01

    The aim was to study exposure to airborne contaminants in oil drillers during ordinary work. Personal samples were collected among 65 drill floor workers on four stationary and six moveable rigs in the Norwegian offshore sector. Air concentrations of drilling mud were determined based on measurements of the non-volatile mud components Ca and Fe. The median air concentration of mud was 140 μg m(-3). Median air concentrations of oil mist (180 μg m(-3)), oil vapour (14 mg m(-3)) and organic carbon (46 μg m(-3)) were also measured. All contaminants were detected in all work areas (drill floor, shaker area, mud pits, pump room, other areas). The highest air concentrations were measured in the shaker area, but the differences in air concentrations between working areas were moderate. Oil mist and oil vapour concentrations were statistically higher on moveable rigs than on stationary rigs, but after adjusting for differences in mud temperature the differences between rig types were no longer of statistical significance. Statistically significant positive associations were found between mud temperature and the concentrations of oil mist (Spearman's R = 0.46) and oil vapour (0.39), and between viscosity of base oil and oil mist concentrations. Use of pressure washers was associated with higher air concentrations of mud. A series of 18 parallel stationary samples showed a high and statistically significant association between concentrations of organic carbon and oil mist (r = 0.98). This study shows that workers are exposed to airborne non-volatilized mud components. Air concentrations of volatile mud components like oil mist and oil vapour were low, but were present in all the studied working areas.

  4. From ACTS (Air Corps Tactical School) to COBRA: Evolution of Close Air Support Doctrine in World War Two.

    DTIC Science & Technology

    1988-04-01

    cooperated and coordinated their activities in absolute precision cieated by total nental telepathy . Although XIX Tactice.1 Air Coeeand and Third Aray did...capture of the Romanian oil fields and increased production of synthetic oil, Germany produced enough oil to meet her military needs. By 1944, the

  5. Environmental assessment of used oil management methods.

    PubMed

    Boughton, Bob; Horvath, Arpad

    2004-01-15

    The 1 billion gal of used oil generated in the U.S. each year are managed in three primary ways: rerefined into base oil for reuse, distilled into marine diesel oil fuel, and marketed as untreated fuel oil. Management of used oil has local, regional and global impacts. Because of the globally distributed nature of fuel markets, used oil as fuel has localized and regional impacts in many areas. In this paper, the human health and environmental tradeoffs of the management options are quantified and characterized. The goal of this study was to assess and compare the environmental impacts and benefits of each management method in a product end-of-life scenario using a life-cycle assessment (LCA) approach. A life-cycle inventory showed that 800 mg of zinc and 30 mg of lead air emissions may result from the combustion of 1 L of used oil as fuel (50-100 times that of crude-derived fuel oils). As an example, up to 136 Mg of zinc and 5 Mg of lead air emissions may be generated from combustion of over 50 M gal of California-generated used oil each year. While occurring elsewhere, these levels are significant (of the same magnitude as reported total stationary source emissions in California). An impact assessment showed that heavy metals-related toxicity dominates the comparison of management methods. Zinc and lead emissions were the primary contributors to the terrestrial and human toxicity impact potentials that were calculated to be 150 and 5 times higher, respectively, for used oil combusted as fuel than for rerefining or distillation. Low profits and weak markets increasingly drive the used oil management method selection toward the untreated fuel oil market. Instead, both the rerefining and distillation methods and associated product markets should be strongly supported because they are environmentally preferable to the combustion of unprocessed used oil as fuel.

  6. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Ukigai, T.; Yamada, J.

    1985-10-29

    A micellar slug for use in the recovery of oil, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as an essential component an internal olefin sulfonate or sulfonates having 10 to 30 carbon atoms and an alpha-olefin sulfonate or sulfonates having 10 to 30 carbon atoms. This micellar slug has a sufficiently low interfacial tension, good salinity tolerance, hard-water resistance, ability to maintain the micro-emulsion against change in the composition of the micro-emulsion, and mobility controlled viscosity.

  7. Measurement of Emissions from Produced Water Ponds: Upstream Oil and Gas Study #1; Final Report

    EPA Science Inventory

    Significant uncertainty exists regarding air pollutant emissions from upstream oil and gas production operations. Oil and gas operations present unique and challenging emission testing issues due to the large variety and quantity of potential emissions sources. This report summ...

  8. 78 FR 45167 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan; National... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The EPA and the... protection, Air pollution control, Chemicals, Hazardous waste, Hazardous substances,...

  9. Prediction of Human Blood: Air Partition Coefficient: A Comparison of Structure-Based and Property-Based Methods

    DTIC Science & Technology

    2007-11-02

    models developed using experimental properties, including saline;air partition coefficient (longP saline;air) and olive oil ;air partition coefficient...logP olive oil ;air), as independent variables, indicating that the structure-property correlations are comparable to the property-property

  10. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  11. Oil Recovery System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A Downhole Steam Generation System brings oil up from deep reservoirs. The system, developed by Foster-Miller Associates consists of a steam generator, a "packer" that keeps the steam from leaking up the wellbore, and tube string that supplies air, fuel, water and hydraulics to the generator and packer; all are encased in a standard seven-inch well casing. Downhole means that the steam generator is located far down the well casing rather than on the surface. This design is more efficient than surface generated steam. A COSMIC (Computer Software Management and Information Center) program aided in the design.

  12. OIL BOND®

    EPA Pesticide Factsheets

    Technical product bulletin: this miscellaneous oil spill control agent is a solidifier used in cleanups. It absorbs and solidifies hydrocarbon spills on freshwater and saltwater or land applications. Ring spill with booms or pillows before treatment.

  13. Peanut Oil

    MedlinePlus

    ... are pregnant or breast-feeding. Allergy to peanuts, soybeans, and related plants: Peanut oil can cause serious ... reactions in people who are allergic to peanuts, soybeans, and other members of the Fabaceae plant family.

  14. Palm Oil

    MedlinePlus

    ... treating malaria, high blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss ... to decrease symptoms of malaria. High blood pressure. Cyanide poisoning. Weight loss agent. Cancer. Anti-aging. Brain ...

  15. Gulf War Air Power Survey.

    DTIC Science & Technology

    1993-01-01

    16 Coalition Strikes against Nuclear, Biological and Chemical Targets ........................ 80 vi p 17 Daily Scud Launches during Desert Storm...against Saudi Arabia and Israel. Since Iraq was known to possess chemical munitions and was believed to have biological weapons, these threats raised...systems; key nuclear, biological , chemical, electrical, military, and oil production facilities; bridges, railroads, and port infrastructure; and air

  16. Mutual Neutralization of Atomic Rare-Gas Cations (Ne+, Ar+, Kr+, Xe+) with Atomic Halide Anions (Cl-, Br-, I-)

    DTIC Science & Technology

    2015-01-07

    Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVBXT/Dr. Albert Viggiano 1 cy... AFRL -RV-PS- TP-2015-0001 AFRL -RV-PS- TP-2015-0001 MUTUAL NEUTRALIZATION OF ATOMIC RARE- GAS CATIONS (Ne+, Ar+, Kr+, Xe+) WITH ATOMIC HALIDE...RESEARCH LABORATORY Space Vehicles Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 REPORT

  17. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  18. Deep atomic force microscopy

    SciTech Connect

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K.

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  19. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  20. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor…

  1. Liquid atomization in supersonic flows

    NASA Astrophysics Data System (ADS)

    Missoum, Azzedine

    An experimental investigation of the atomization of a round liquid jet by coaxial, costream injection into a supersonic, Mach 1.5 air flow is reported. Extensive flow visualization was conducted using schlieren/shadowgraph, flash photography, and short duration (ns) laser imaging. The finer details of the jet were revealed when viewed under high magnification with the help of a microscope. The liquid and air pressures were varied individually. Photographic evidence indicates the presence of three regions within the liquid jet: a primary region enclosed by the first shock cell where the primary breakup occurs, a secondary region in which the jet is totally broken because of its interaction with the supersonic wave structure, and a third, subsonic region further downstream. It was found that the breakup mechanism of liquid jets in supersonic airstreams is quite complex. The breakup seems to be initiated by the growth of the turbulent structure on the liquid surface and the subsequent detachment of the three-dimensional structure as fine droplets by the intense shear at the liquid-gas interface. This seems to confirm the boundary layer stripping mechanism. The liquid jet expands into a bubble like formation as it interacts with the first set of waves. Higher liquid injection pressures resulted in higher initial spray angles. The liquid jet displayed a geometry strongly dependent on the pressure distribution resulting from the wave structure present in the supersonic jet. Droplet size and velocity distributions were measured by the P/DPA (Phase/Doppler Particle Analyzer) system. The Sauter Mean Diameter (SMD) was measured at several axial and radial locations at various liquid and air pressures. The SMD shows a decrease with increase in both the air-to-liquid mass flow ratio and the Weber number. The drop size decreased towards the outer edges of the jet. The results lead one to conclude that the coaxial, coflowing configuration is very attractive for atomizing

  2. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries, Pathway #2: Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    SciTech Connect

    Bhatt, Arpit; Zhang, Yimin; Heath, Garvin; Thomas, Mae; Renzaglia, Jason

    2017-01-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the fast pyrolysis biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the fast pyrolysis biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the fast pyrolysis biorefinery to understand the air permitting requirements.

  3. The Mechanism of Atomization Accompanying Solid Injection

    NASA Technical Reports Server (NTRS)

    Castleman, R A , Jr

    1933-01-01

    A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.

  4. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  5. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  6. HYDROGEN ATOM THERMAL PARAMETERS.

    PubMed

    JENSEN, L H; SUNDARALINGAM, M

    1964-09-11

    Isotropic hydrogen atom thermal parameters for N,N'- hexamethylenebispropionamide have been determined. They show a definite trend and vary from approximately the same as the mean thermal parameters for atoms other than hydrogen near the center of the molecule to appreciably greater for atoms near the end. The indicated trend for this compound, along with other results, provides the basis for a possible explanation of the anomolous values that have been obtained for hydrogen atom thermal parameters.

  7. Atomizing nozzle and process

    DOEpatents

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  8. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  9. Preventing rotary compressor oil carryover

    SciTech Connect

    Perry, W. . Quincy Compressor Div.)

    1995-01-09

    Design of the air end, discharge piping, separator reservoir, and lubricant chemistry in a compressed air system should minimize the amount of lubricant reaching the separator element. A separator element must trap liquids and aerosols at anticipated air velocities and return trapped liquid to a reservoir. These actions produce minimal oil carryover during typical plant operating conditions, which usually means full-load volume at design operating pressure and normal indoor ambient conditions. Several factors must be examined when operating conditions deviate from this typical point. These factors are pressure, temperature and relative humidity of air drawn into the compressor, and compressor controls. These are discussed and several solutions to the carryover problem are given.

  10. Myristica oil poisoning

    MedlinePlus

    Nutmeg oil; Myristicin ... Myristica oil ( Myristica fragrans ) can be harmful. It comes from the seed of a nutmeg. ... Myristica oil is found in: Aromatherapy products Mace Nutmeg Other products may also contain myristica oil.

  11. Weathered Oil and Tar Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  12. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  13. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  14. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  15. Wind driven air pump

    SciTech Connect

    Beisel, V.A.

    1983-05-31

    An improved pump for lifting water from an underground source utilizes a wind motor for driving an oil-less air compressor eliminating oil contamination of ground water which is forced to the surface. The wind motor is movable to face the wind by means of a novel swivel assembly which also eliminates the formation and freezing of condensate within the airline from the compressor. The propeller blades of the wind motor and the tail section are formed from a pair of opposed convex air foil shaped surfaces which provide the propeller blades and the tail section with fast sensitivity to slight changes in wind direction and speed. A novel well tower for supporting the wind motor and compressor and for lifting the water from the underground source is an optional modification which requires no welding and eliminates the problem of condensate freezing in the airline going to the well. The wind driven air pump disclosed is lightweight, can be easily installed, is relatively inexpensive to produce and is virtually maintenance-free and capable of operating in winds exceeding 100 miles per hour.

  16. Prevention of air pollution from ships: Characterization and assessment of diesel particulate emission reduction via lube-oil-consumption control. Final report, 1 April 1995-96 July 1931

    SciTech Connect

    Wong, V.W.; Brown, A.J.

    1997-03-01

    Strategies to allevuate particulate emissions from diesel engines on board vessels operating in coastal waters are being investigates. The approach is to determine the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. The research objectives are: (a) establish the baseline characteristics of reducing engine lube-oil consumption, and (b) investigate the effects of engine component-design and operating-condition on these characteristics. In this study, simultaneous lube-oil consumption and particulate emission data were collected on a single-cylinder diesel engine for various speeds and loads using three ring and intake pressure configurations. Lube-oil contribution to particulates was determined using chromatography.

  17. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  18. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  19. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  20. Science: Oil Slick.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    Presents a science experiment about oil spills and oil pollution for 7th- and 8th-grade science students. This variation on a method used by pollution control experts to clean up oil spills shows students how oil is collected after an oil spill, explaining that with this method, much of the damage from an oil spill can be averted. (SM)

  1. Mechanical Failure Prognosis Through Oil Debris Monitoring

    DTIC Science & Technology

    1975-01-01

    AD/A-006 19U MECHANICAL FAILURE PROGNOSIS THROUGH OIL DEBRIS MONITORING Alan Beex"bower Exxon Research and Engineering Company Prepared...PERIOD COVERED Final Report 18 June 1973 to 1 August 197A 4. TITLE (•«id Subl/rl«) MECHANICAL FAILURE PROGNOSIS THROUGH OIL DEBRIS ...Company project entitled "Mechanical Failure Prognosis through Debris Analysis." This study was conducted for the Eustis Directorate, U.S. Army Air

  2. The Breath of Life. The Problem of Poisoned Air.

    ERIC Educational Resources Information Center

    Carr, Donald E.

    The origins and nature of air pollution, from earliest days to the present, are examined in this book. Although air pollution has been with us since the discovery of fire, it is proffered that the major culprit now is the burning of gasoline and low-grade heating oil. All other sources of air pollution are negligible. The main thesis is that only…

  3. Single atom electrochemical and atomic analytics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  4. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  5. Reviews Book: Sustainable Energy—Without the Hot Air Equipment: Doppler Effect Unit Book: The Physics of Rugby Book: Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Equipment: Brunel Eyecam Equipment: 200x Digital Microscope Book: The Atom and the Apple: Twelve Tales from Contemporary Physics Book: Physics 2 for OCR Web Watch

    NASA Astrophysics Data System (ADS)

    2009-09-01

    WE RECOMMEND Sustainable Energy—Without the Hot Air This excellent book makes sense of energy facts and figures Doppler Effect Unit Another simple, effective piece of kit from SEP Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Intriguing and unique write-up of an intellectual fraud case Brunel Eyecam An affordable digital eyepiece for your microscope 200x Digital Microscope An adjustable digital flexcam for classroom use The Atom and the Apple: Twelve Tales from Contemporary Physics A fascinating round-up of the recent history of physics WORTH A LOOK The Physics of Rugby Book uses sport analogy and context to teach physics concepts Physics 2 for OCR Essential textbook for the course but otherwise pointless WEB WATCH Some free teaching materials are better than those you'd pay for

  6. Rust inhibitor and oil composition containing same

    SciTech Connect

    Bialy, J.J.; Cullen, W.P.; Dorn, P.; Nebzydoski, J.W.; Sung, R.L.

    1981-04-21

    A rust inhibitor comprising the reaction product of a hydrocarbylsuccinic anhydride in which the hydrocarbyl radical has from about 6 to 30 carbon atoms and an aminotriazole is provided. The rust inhibitor is effective in motor fuel and lubricating oil compositions.

  7. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-03-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  8. Constant-output atomizer. [Inhalation therapy and aerosol research

    NASA Technical Reports Server (NTRS)

    Dea, J. Y. (Inventor)

    1983-01-01

    A constant-output atomizer includes a body which has a generally frustoconical expansion nozzle for producing an air jet when a supply of pressurized air is connected to the nozzle upstream of the throat of the nozzle. A liquid feed line supplies liquid to be atomized by the air jet, and the body includes a groove which opens into the diffuser section of the nozzle downstream of the throat for conducting liquid from the feed line to the nozzle. The groove which extends in a direction perpendicular to the axis of the nozzle, and radially with respect to it, has a depth approximately equal to half the axial length of the nozzle. Liquid, conducted by capillary action in the groove to the nozzle, is atomized into a fine mist by the air jet in the nozzle; and the groove eliminates fluctuations in spray order.

  9. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  10. Air Pollution

    MedlinePlus

    ... of Climate Change on Children's Health: Session Two: Air Quality Impacts MODERATOR: Susan Anenberg, EPA Meredith McCormack, Johns ... University • Effects of Climate Change on Children’s Health: Air Quality Impacts Frederica Perera, Columbia University • Air quality Impacts ...

  11. Vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is a technically competitive alternative to petroleum-derived diesel fuel. It can be obtained from commodity oils and fats such as soybean, sunflower, canola or tallow. However, the available amounts of these biodiesel feedstocks do not suffice to satisfy the long-term need for biodiesel...

  12. Analyzing the effect of the forces exerted on cantilever probe tip of atomic force microscope with tapering-shaped geometry and double piezoelectric extended layers in the air and liquid environments

    NASA Astrophysics Data System (ADS)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-01-01

    The aim of the present study is to assess the force vibrational performance of tapering-shaped cantilevers, using Euler-Bernoulli theory. Tapering-shaped cantilevers have plan-view geometry consisting of a rectangular section at the clamped end and a triangular section at the tip. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. In this model, a micro cantilever, which is covered by two piezoelectric layers at the top and the bottom, is modeled at angle α. Both of these layers are subjected to similar AC and DC voltages. This paper attempts to determine the effect of the capillary force exerted on the cantilever probe tip of an atomic force microscope. The capillary force emerges due to the contact between thin water films with a thickness of hc which have accumulated on the sample and the probe. In addition, an attempt is made to develop the capillary force between the tip and the sample surface with respect to the geometry obtained. The smoothness or the roughness of the surfaces as well as the geometry of the cantilever tip have significant effects on the modeling of forces applied to the probe tip. In this article, the Van der Waals and the repulsive forces are considered to be the same in all of the simulations, and only is the capillary force altered in order to evaluate the role of this force in the atomic force microscope based modeling. We also indicate that the tip shape and the radial distance of the meniscus greatly influence the capillary force. The other objective of our study is to draw a comparison between tapering-and rectangular-shaped cantilevers. Furthermore, the equation for converting the tip of a tapering-shaped cantilever into a rectangular cantilever is provided. Moreover, the modal analysis method is employed to solve the motion equation. The mode shape function for the two tapering-shaped sections of the first

  13. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  14. Oil shale oxidation at subretorting temperatures

    SciTech Connect

    Jacobson, I.A. Jr.

    1980-06-01

    Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

  15. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. AFM study of mineral wettability with reservoir oils.

    PubMed

    Kumar, K; Dao, E; Mohanty, K K

    2005-09-01

    Wettability plays a key role in determining fluid distributions and consequently the multiphase flow and transport in petroleum reservoirs. Many crude oils have polar organic components that collect at oil-water interfaces and can adsorb onto the mineral surface if the brine film breaks, rendering the medium oil-wet or mixed-wet. Mica and silica surfaces have been aged with brine and crude oils to induce oil component adsorption. Bulk oil is eventually replaced by water in these experiments by washing with common solvents without ever drying the mineral surface. The organic deposit on the mineral surface is studied by atomic force microscopy in the tapping mode under water. Drying the surface during the removal of bulk oil induces artifacts; it is essential to keep the surface wet at all times before atomic force microscopy or contact angle measurement. As the mean thickness of the organic deposit increases, the oil-water contact angle increases. The organic deposits left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion with a probe sphere for minerals aged with just the asphaltene fraction is similar to that of the whole oil. The force of adhesion for the minerals aged with just the resin fraction is the highest of all SARA (saturates, aromatics, resins, and asphaltenes) fractions.

  17. Antimicrobial activity of two essential oils.

    PubMed

    Mickienė, Rūta; Bakutis, Bronius; Baliukonienė, Violeta

    2011-01-01

    The aim of the study was to evaluate the antimicrobial activity of essential oils in vitro for possible application to reduce the content of microorganisms in the air of animal houses. The essential oils of Cymbopogon citrarus L. and Malaleuca alternifolia L. were screened against bacteria Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and yeast Candida albicans. The minimal inhibitory concentration of the active essential oils was tested using broth dilution assay. The essential oils concentrations ranged from 0.1-50.0%. The combined effects of essential oils were tested for Malaleuca alternifolia L. and Cymbopogon citrarus L. concentrations ranged from 0.005-50.0%. The oils showed a wide spectrum of antibacterial activity. Concentrations of 0.1-0.5% of Cymbopogon citrarus L. and Malaleuca alternifolia L. reduced total microorganisms count of Proteus mirabilis and Candida albicans. High antibacterial activity was also revealed for Cymbopogon citrarus L. with bactericidal concentrations of 0.8% for Escherichia coli, 5.0% for Enterococcus faecium, 5.0% for Pseudomonas aeruginosa and 8.0% for Staphylococcus aureus. Bactericidal concentrations of Malaleuca alternifolia L. were 5.0% for Pseudomonas aeruginosa and Enterococcus faecium, and 8.0% for Staphylococcus aureus. The essential oils of Cymbopogon citrarus and Malaleuca alternifolia may be a promising alternative of air disinfection in animal houses.

  18. Emissions, transport, and chemistry downwind of oil extraction facilities in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Ryerson, T. B.; Peischl, J. W.; Nowak, J. B.; Holloway, J.; Brioude, J.; Cooper, O. R.; Neuman, J.; Trainer, M.; Brock, C. A.; Roberts, J. M.; Warneke, C.; Schwarz, J. P.; Tans, P. P.; Dlugokencky, E. J.; Novelli, P. C.; Montzka, S. A.; Pierce, R.; Weinheimer, A. J.; Vay, S. A.; Diskin, G. S.; Blake, D. R.; Huey, L. G.; Wennberg, P. O.; Stohl, A.; Jimenez, J. L.; Sodemann, H.; Spackman, J. R.

    2009-12-01

    Analysis of recent trace gas and aerosol data taken downwind of oil extraction facilities on the Alaskan North Slope, including Prudhoe Bay, provides new insights into the chemistry and fate of anthropogenic industrial emissions at high latitudes, and can better constrain the anticipated impact of new emissions on air quality and climate in the Arctic. Three different analyses have been carried out using airborne data from the NOAA WP-3D and the NASA DC-8 instrumented aircraft during April 2008, the long-term data set from the NOAA GMD observatory at Barrow, and the FLEXPART transport model. These analyses include: 1. a determination of NOx oxidation rates and OH sources downwind of the Prudhoe Bay, AK oil extraction facilities, and a comparison to observations in well-mixed continental plumes at lower latitudes. 2. a new signature of halogen atom chemistry in the alkane-rich Prudhoe Bay plume. Coupled with transport model age spectra, this analysis provides a new and unique constraint on the time scales of halogen-catalyzed ozone depletion in the Arctic. 3. a direct quantification of greenhouse gas source strengths from oil extraction facilities at Prudhoe Bay in the Alaskan Arctic, and a comparison to existing global inventories.

  19. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that contain adequate oxygen to support life. (b) Non-powered air-purifying particulate respirators are... includes oil-based liquid particulates. (c) Non-powered air-purifying particulate respirators...

  20. THE INFLUENCE OF PARTICULATE AIR POLLUTANTS ON ALLERGIC SENSITIZATION IN ANIMAL MODELS

    EPA Science Inventory

    Air pollution has long been associated with detrimental health risks in susceptible populations including asthmatics. Experimental evidence in rodents indicates that inhaled or instilled air pollutants such as diesel exhaust particles (DEPs), residual oil fly ash or its constitu...

  1. Volatilization, leaching, and degradation of petroleum oils in sand and oil systems

    SciTech Connect

    Yang, W.F.

    1981-01-01

    Land disposal is considered to be a promising way to treat highly concentrated oily wastes because of the assimilation capability created by the natural system. In this study, diesel oil, crude oil, and lubricating oil were used in the experiments of volatilization, adsorption, uv irradiation, biodegradation, and percolation in the sand or soil system. The basic phenomenon of solution of oil in water was also demonstrated to show its role in the fate of oil in the natural environment. Based on the data obtained, among the three tested oils, diesel oil is the most easily volatilized or degraded. Lubricating oil is the most stable substance and hardly volatilized at all. Environmental factors affecting evaporation are, in order of magnitude, temperature, air movement, relative humidity, and agitation. uv irradiation has little effect on volatilization. Sand or soil particles have a great capacity for oil adsorption. Whenever a sand or soil system is used for oily waste treatment, the soil pH should be taken into consideration in order to prevent the possible oil leaching that may cause groundwater pollution.

  2. Examples of oil cavitation erosion in positive displacement pumps

    NASA Technical Reports Server (NTRS)

    Halat, J. A.; Ellis, G. O.

    1974-01-01

    The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.

  3. Impact of Small Raindrops on Crude Oil Slicks

    NASA Astrophysics Data System (ADS)

    Morra, David; Almashan, Nourah; Murphy, David; Katz, Joseph

    2014-11-01

    The impact of millimeter size water droplets falling near terminal velocity (e.g. rainfall) on a pool is known to produce air bubbles at the bottom of the splash cavity. These bubbles produce noise and contribute to marine aerosol production. Layers of crude oil resulting from oil spills alter air-sea interfacial properties. Our high speed observations examine the effect of oil layer thickness on the entrainment of air and oil as small raindrops impact the surface. They reveal that layers in the 10-400 μm range suppress bubble entrainment, likely due to the reduction of air-liquid surface tension (from 72 to 28 mN/m). For ``low energy'' impacts (droplets <2 mm and speed <2.5 m/s) and <200 μm layers, rupture of the film in less than 1 ms causes rapid retraction of the oil layer across the subsurface cavity and formation of oil droplets on the cavity side. Subsequently, as the cavity collapses, a vortex ring develops at the bottom of this cavity and forces these droplets downward. Impact on thicker oil layers results initially in accumulation of the drop fluid at the cavity base. When the drop subsequently penetrates the layer, it creates multiphase vesicles, i.e. drops of freshwater coated by a thin oil film, which migrate down into the bulk seawater. Sponsored by Gulf of Mexico Research Initiative (GoMRI).

  4. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  5. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  6. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  7. Electrochemical Atomic Layer Processing

    DTIC Science & Technology

    1994-06-25

    where an atomic layer of an element is deposited , or removed, in a surface limited reaction. The potentials used are referred to as underpotentials in...the electrochemical literature. The atomic layer deposition process is referred to as underpotential deposition (UPD). 14. SUBJECT TERMS 15, NUMBER OF...reaction. The potentials used are referred to as underpotentials in the electrochemical literature. The atomic layer deposition process is referred to as

  8. The Software Atom

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha

    2017-03-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  9. Atomicity in Electronic Commerce,

    DTIC Science & Technology

    1996-01-01

    tremendous demand for the ability to electronically buy and sell goods over networks. Electronic commerce has inspired a large variety of work... commerce . It then briefly surveys some major types of electronic commerce pointing out flaws in atomicity. We pay special attention to the atomicity...problems of proposals for digital cash. The paper presents two examples of highly atomic electronic commerce systems: NetBill and Cryptographic Postage Indicia.

  10. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  11. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  12. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  13. Liquid atomization by coaxial rocket injectors

    NASA Technical Reports Server (NTRS)

    Sankar, S. V.; Brena De La Rosa, A.; Isakovic, A.; Bachalo, W. D.

    1991-01-01

    The atomization characteristics of a scaled-down version of a coaxial rocket injector was investigated using a phase Doppler particle analyzer (PDPA). The injector was operated in the conventional mode with liquid being injected through its inner orifice and gas being injected through its outer annulus. The shearing action occurring at the liquid-gas interface causes the liquid jet to atomize. In this study, two different liquid-air systems, namely a water-air system and a liquid nitrogen-gaseous nitrogen system, were chosen for detailed investigation. This paper discusses the performance characteristics of the coaxial injector under different flow and geometric conditions. Specifically, the effects of injection gas pressure and the injector cavity size on variables such as the mean particle diameter, Sauter mean diameter, number density, volume flux, and velocity have been presented.

  14. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  15. Cyber Physical Intelligence for Oil Spills (CPI)

    NASA Astrophysics Data System (ADS)

    Lary, D. J.

    2015-12-01

    The National Academy of Sciences estimate 1.7 to 8.8 million tons of oil are released into global waters every year. The effects of these spills include dead wildlife, oil covered marshlands and contaminated water. Deepwater horizon cost approximately $50 billion and severely challenged response capabilities. In such large spills optimizing a coordinated response is a particular challenge. This challenge can be met in a revolutionary new way by using an objectively optimized Cyber Physical Decision Making System (CPS) for rapid response products and a framework for objectively optimized decision-making in an uncertain environment. The CPS utilizes machine learning for the processing of the massive real-time streams of Big Data from comprehensive hyperspectral remote sensing acquired by a team of low-cost robotic aerial vehicles, providing a real-time aerial view and stream of hyperspectral imagery from the near UV to the thermal infrared, and a characterization of oil thickness, oil type and oil weathering. The objective decision making paradigm is modeled on the human brain and provides the optimal course trajectory for response vessels to achieve the most expeditious cleanup of oil spills using the available resources. In addition, oil spill cleanups often involve surface oil burns that can lead to air quality issues. The aerial vehicles comprehensively characterize air quality in real-time, streaming location, temperature, pressure, humidity, the abundance of 6 criterion pollutants (O3, CO, NO, NO2, SO2, and H2S) and the full size distribution of airborne particulates. This CPS can be readily applied to other systems in agriculture, water conversation, monitoring of stream quality, air quality, diagnosing risk of wild fires, etc..

  16. Oil damage

    SciTech Connect

    Helm, R.C.

    1995-03-31

    This book presents the results of a series of studies designed to determine the extent and magnitude of the effects of the Exxon Valdez oil spill on marine mammals, particularly sea otters. A third of the book focuses on studies that quantify population-level impacts, with much of the remainder focusing on behavioral, pathologic, or toxicologic studies designed to understand how petroleum hydrocarbons negatively affect free ranging marine animals.

  17. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping

    SciTech Connect

    Jones, John; Xiong, Haifeng; DelaRiva, Andrew; Peterson, Eric J.; Pham, Hien; Challa, Sivakumar R.; Qi, Gongshin; Oh, Se H.; Wiebenga, Michelle H.; Pereira Hernandez, Xavier I.; Wang, Yong; Datye, Abhaya K.

    2016-07-08

    Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoring the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.

  18. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping.

    PubMed

    Jones, John; Xiong, Haifeng; DeLaRiva, Andrew T; Peterson, Eric J; Pham, Hien; Challa, Sivakumar R; Qi, Gongshin; Oh, Se; Wiebenga, Michelle H; Pereira Hernández, Xavier Isidro; Wang, Yong; Datye, Abhaya K

    2016-07-08

    Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoring the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.

  19. Comparison Between Oil-mist and Oil-jet Lubrication of High-speed, Small-bore, Angular-contact Ball Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    2001-01-01

    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  20. Comparison Between Oil-Mist and Oil-Jet Lubrication of High-Speed, Small-Bore, Angular-Contact Ball Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    2001-01-01

    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5x10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5x10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7% was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  1. Photocopy of drawing (original drawing of PaintOil & Dope Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Paint-Oil & Dope Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) PLAN AND ELEVATIONS - MacDill Air Force Base, Paint, Oil & Dope Building, 7716 Hanger Loop Drive, Tampa, Hillsborough County, FL

  2. Photocopy of drawing (original drawing of PaintOil & Dope Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Paint-Oil & Dope Building in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) DETAILS - MacDill Air Force Base, Paint, Oil & Dope Building, 7716 Hanger Loop Drive, Tampa, Hillsborough County, FL

  3. Photocopy of drawing (original drawing of Q.M. Gas & Oil ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Q.M. Gas & Oil House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS AND DETAILS - MacDill Air Force Base, Quartermaster Gas & Oil House, 8103 Hanger Loop Drive, Tampa, Hillsborough County, FL

  4. 75 FR 39934 - Oil and Natural Gas Sector-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... AGENCY Oil and Natural Gas Sector--Notice of Public Meeting AGENCY: Environmental Protection Agency (EPA... opportunity for public involvement during EPA's review of air regulations affecting the oil and natural gas industry. The review in progress covers oil and natural gas exploration and production, as well as...

  5. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for...

  6. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for...

  7. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for...

  8. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for...

  9. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for...

  10. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  11. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  12. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  13. Electron - Atom Bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Kim, Longhuan

    In this work we study the features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point Coulomb potential and screened potentials are obtained using a classical numerical method. The results agree with exact quantum mechanical partial wave results for low incident electron energies in both the point Coulomb and screened potentials. In the screened potential the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. We also studied the scaling properties of bremsstrahlung spectra and energy losses. It is found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T(,1)/Z('2). This scaling is exact in the case of the point Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. We also studied bremsstrahlung from atoms in hot dense plasmas, describing the atomic potentials by the temperature-and-density dependent Thomas - Fermi model. Gaunt factors are obtained with the relativistic partial wave method for atoms in plasmas of various densities and temperatures. Features of the bremsstrahlung from atoms in such environments are discussed. The dependence of predicted bremsstrahlung spectra on the choice of potential from various average atom potential models for strongly coupled plasmas are also studied. For the energy range and plasma densities were considered, the choice of potential model among the elaborate atomic potentials is less important than the choice of the method of calculation. The use of a detailed configuration accounting method for bremsstrahlung processes in dense plasmas is less important than for some other atomic processes. We justify the usefulness

  14. Air Policing

    DTIC Science & Technology

    2009-05-01

    Iraq. To provide a background for understanding why Britain commenced the policy of air policing, this paper begins with a review of contemporary...7 Omissi, Air Power, XV. 8 policing actions or the pushing home of advantages gained by the air.” Within the context of this paper , the...control operations, and therefore within the context of this paper , the term coercive airpower refers to the threat of harming a population or the threat

  15. A study on the oil flow characteristics in the inverter rotary compressor

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Kim, Y. J.

    2013-12-01

    In order to secure the reliability of the oil in the inverter rotary compressor used in the system multi-air conditioners in heating and cooling modes, it is necessary to study the oil flow characteristics which affect to the compressor efficiency. In this study, sight glasses were installed at the compressor and accumulator for oil flow measurements, and various experiments were performed to measure the amount of discharged oil for different refrigerant pipe lengths. On the basis of the experimental measurements, we compared the OCR (Oil Circulation Rate) results of the system multi-air conditioner for various operating conditions. The results are graphically depicted.

  16. In situ oil shale retort system

    SciTech Connect

    Hutchins, N.M.; Kvapil, R.; Ricketts, T.E.; Studebaker, I.G.

    1984-04-10

    In situ oil shale retorts are formed in spaced apart rows, with adjacent rows of such retorts being separated by load-bearing barrier pillars of unfragmented formation sufficiently strong for preventing substantial subsidence at the ground surface. Each retort contains a fragmented permeable mass of formation particles containing oil shale. Separate air level drifts are excavated on an upper level of the retorts within alternating barrier pillars, and separate production level drifts are excavated at a lower production level of the retorts within intervening barrier pillars between the barrier pillars having the air level drifts. Each air level drift extends between a pair of adjacent rows of retorts adjacent upper edges of the retorts in the adjacent rows, and each production level drift extends between a pair of adjacent rows of retorts adjacent lower edges of the retorts on sides of the retorts opposite the air level drifts. During retorting operations, air is introduced along the upper edge of each retort through lateral air inlet passages extending from the adjacent air level drift. Off gas and liquid products are withdrawn from each retort through one or more lateral production level passages extending from the lower edge of the retort to the adjacent production level drift. Withdrawal of off gas along the lower edge of each retort opposite the upper edge where air is introduced causes a generally diagonal flow pattern of combustion gas through the fragmented mass from one upper edge toward the opposite lower edge of the retort.

  17. Atomic Power Safety.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: What is Atomic Power?; What Does Safety Depend On?; Control of Radioactive Material During Operation; Accident Prevention; Containment in the Event of an Accident; Licensing and…

  18. When Atoms Want

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  19. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  20. Atom Interferometer Modeling Tool

    DTIC Science & Technology

    2011-08-08

    a specific value at each timestep . LiveAtom will reflect the specified current sources in the visualization through a plot that is brighter at 6...Carlo (DSMC) modeling feature, users can simulate the behavior of cold, thermal atoms in a dynamic magnetic potential. This could be used, for example

  1. Greek Atomic Theory.

    ERIC Educational Resources Information Center

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  2. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  3. Modified Embedded Atom Method

    SciTech Connect

    Rudd, R. E.

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  4. Atom Recombination on Surface

    NASA Astrophysics Data System (ADS)

    Kim, Young Chai

    Upon high speed re-entry of the Space Shuttle Orbiter (SSO) through the earth's atmosphere, oxygen and nitrogen atoms produced in the shock wave in front of the SSO recombine on the surface of the SSO, releasing heat. To minimize the rise of surface temperature due to the reaction, surface material of the SSO should have a low recombination probability, gamma, of atoms impinging on it. To design such material, it is necessary to understand the mechanism of atom recombination. With this in mind, gamma values were measured for recombination of O, N, and H atoms in a diffusion tube reactor between 700 and 1250 K (HT), 300 and 700 K (MT), and at 194 K (LT) on silica. The rate of recombination was first order with respect to the atom concentration from LT to HT. The Arrhenius plots, gamma vs. 1/T, were very complex. All observations are explained by assuming a surface with a small fraction of active sites that irreversibly bind chemisorbed atoms. Everything happens as if the active sites were surrounded by collection zones within which all atoms striking the surface are adsorbed reversibly with an assumed sticking probability of unity. These atoms then diffuse on the surface. Some of them reach the active sites where they can recombine with the chemisorbed atoms. At LT, all atoms striking the surface reach the active sites. As a result of desorption at MT, the collection zones shrink with increasing temperature. At HT, only atoms striking active sites directly from the gas phase lead to recombination. An analytical solution of the diffusion-reaction problem obtained for a model where the active sites are distributed uniformly fits with the experimental data from LT to HT. The two novel features of this work are the identification of the active sites on silica for recombination of H on silica at HT as surface OH groups and the suggestion that another kind of active site is responsible for recombination of O and N atoms at HT as well as for H atoms at LT and MT. Although

  5. Interior, looking northeast Beale Air Force Base, Perimeter Acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, looking northeast - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Clean Lubrication Oil Storage Tank & Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  6. Exterior, looking west Beale Air Force Base, Perimeter Acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior, looking west - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Clean Lubrication Oil Storage Tank & Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  7. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  8. Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method.

    PubMed

    Oliveira, Mariana B; Kossover, Olga; Mano, João F; Seliktar, Dror

    2015-02-01

    A new methodology is reported for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photoreactive poly(ethylene glycol) (PEG)-fibrinogen (PF) polymer was transported through a transparent injector exposed to light irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data revealed the crosslinking kinetics of the PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture just prior to atomization. The partially polymerized drops of PF/cells fell into a gelation bath for further crosslinking until fully polymerized hydrogel microparticles were formed. As the drops of solution exited the air-in-jet nozzle, their viscosity was designed to be sufficiently high so as to prevent rapid mixing and/or dilution in the gelation bath, but without undergoing complete gelation in the nozzle. Several parameters of this system were varied to control the size and polydispersity of the microparticles, including the cell density, the flow rate and the air pressure in the nozzle. The system was capable of producing cell-laden microparticles with an average diameter of between 88.1 to 347.1 μm, and a dispersity of between 1.1 and 2.4, depending on the parameters chosen. Varying the precursor flow rate and/or cell density was beneficial in controlling the size and polydispersity of the microparticles; all microparticles exhibited very high cell viability, which was not affected by these parameters. In conclusion, this dropwise photopolymerization methodology for preparing cell-laden microparticles is an attractive alternative to existing techniques that use harsh solvents/oils and offer limited control over particle size and polydispersity.

  9. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    to remove airborne pathogens from room air depends on several factors, including the airflow rate through the unit’s filter and the airflow patterns in the room. Tested under a variety of conditions, in-room air cleaners, including portable or ceiling mounted units with either a HEPA or a non-HEPA filter, portable units with UVGI lights only, or ceiling mounted units with combined HEPA filtration and UVGI lights, have been estimated to be between 30% and 90%, 99% and 12% and 80% effective, respectively. However, and although their effectiveness is variable, the United States Centers for Disease Control and Prevention has acknowledged in-room air cleaners as alternative technology for increasing room ventilation when this cannot be achieved by the building’s HVAC system with preference given to fixed recirculating systems over portable ones. Importantly, the use of an in-room air cleaner does not preclude either the need for health care workers and visitors to use personal protective equipment (N95 mask or equivalent) when entering AII rooms or health care facilities from meeting current regulatory requirements for airflow rates (ventilation rates) in buildings and airflow differentials for effective negative-pressure rooms. The Plasmacluster ion technology, developed in 2000, is an air purification technology. Its manufacturer, Sharp Electronics Corporation, says that it can disable airborne microorganisms through the generation of both positive and negative ions. (1) The functional unit is the hydroxyl, which is a molecule comprised of one oxygen molecule and one hydrogen atom. Plasmacluster ion air purifier uses a multilayer filter system composed of a prefilter, a carbon filter, an antibacterial filter, and a HEPA filter, combined with an ion generator to purify the air. The ion generator uses an alternating plasma discharge to split water molecules into positively and negatively charged ions. When these ions are emitted into the air, they are surrounded by

  10. Coast Guard's Response to Spilled Oil

    ERIC Educational Resources Information Center

    Ard, R. W., Jr.

    1976-01-01

    The Coast Guard utilizes a number of monitoring detectors, sensors, and techniques to find, recover and identify oil spills. Discussed in this article are in-situ and airborne sensors, systems developed to provide clean-up capability such as air deployable anti-pollution transfer system (ADAPTS), and techniques which will determine the source of a…

  11. Space satellite to aid arctic oil development

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project which utilizes the Nimbus-6 weather satellite and air-dropable data collection platforms for observation of Arctic ice movement is described. The information gained from the project could be valuable for planning oil recovery operations in the area.

  12. Clerget 100 hp heavy-oil engine

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  13. Turpentine oil poisoning

    MedlinePlus

    Turpentine oil comes from a substance in pine trees. Turpentine oil poisoning occurs when someone swallows turpentine oil or breathes in the fumes. Breathing these fumes on purpose is sometimes called " ...

  14. Exploring Oil Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)

  15. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  16. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  17. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  18. Comparison of Oxidation Stability and Quenchant Cooling Curve Performance of Soybean Oil and Palm Oil

    NASA Astrophysics Data System (ADS)

    Said, Diego; Belinato, Gabriela; Sarmiento, Gustavo S.; Otero, Rosa L. Simencio; Totten, George E.; Gastón, Analía; Canale, Lauralice C. F.

    2013-07-01

    The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.

  19. [Determination of lead in microemulsified rapeseed oil and bio-diesel oil by GFAAS].

    PubMed

    Li, Sheng-qing; He, Xiao-min; Du, Ping; Wang, Min; Chen, Hao; Wu, Mou-cheng

    2008-10-01

    Bio-diesel oil has attracted much attention as a substitutable energy sources for its renewable and eco-friendly property. However, problems of lead contamination in fuel are also emphasized increasingly at present. So it was of quite significance to determine the contents of lead in bio-diesel oil and its raw material rapeseed oil. An effective method was developed for the rapid determination of lead in rapeseed oil and bio-diesel oil by graphite furnace atomic absorption spectrometry (GFAAS) after their stabilization as microemulsions. In this research work, polyethyleneglycol octyl phenyl ether and n-butanol were used for emulsifier and auxiliary emulsifying agent, respectively. For Pb, efficient thermal stabilization was obtained using NH4H2PO4 as matrix modifier. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization and the influence of the microemulsion composition on the GFAAS response were observed by mixing different organic solvents. The ashing and atomization temperature and ramp rate influenced the sensitivity obtained for Ph. Take this into account, the optimum conditions of the graphite furnace atomic absorption spectrometric determination of Pb in rapeseed oil and bio-diesel oil samples were investigated. The results showed that the microemulsion was quite stable when the value of V(20% polyethyleneglycol octyl phenyl ether), V(n-butanol), V(oil) and V(water) was 0.1: 8.9: 0.5: 0.5, without matrix interference effect. The determination limit of the proposed method was 126.2 microg x L(-1) for Pb, comfortably below the values found in the analyzed samples. The recoveries were from 81.8% to 109.0%, which performed using the addition of different concentrations of lead to bio-diesel oil, rapeseed oil and petrochemical diesel samples. The relative standard deviation of determination was 5.84%. This work showed the great efficiency of the microemulsion

  20. [Preliminary study concerning emissions of the volatile organic compounds from cooking oils].

    PubMed

    He, Wan-Qing; Tian, Gang; Nie, Lei; Qu, Song; Li, Jing; Wang, Min-Yan

    2012-09-01

    Cooking oil fume is one of the important sources of atmospheric volatile organic compounds (VOCs), which are the key precursors of ozone and secondary organic aerosols in air. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the VOCs emission characteristics. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. The results showed that the emission of VOCs increased with the increase of the heating temperature for all the investigated cooking oils, and at a given temperature, the blend oil emitted the lowest amount of VOCs. The VOCs emission intensity at different heating temperatures fitted well with binomial equations and ranged from 1.6-11.1 mg x (kg x min)(-1).

  1. Ultrasonic atomization of liquids in drop-chain acoustic fountains.

    PubMed

    Simon, Julianna C; Sapozhnikov, Oleg A; Khokhlova, Vera A; Crum, Lawrence A; Bailey, Michael R

    2015-03-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain.

  2. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  3. Pressure sensitivity of the vapor-cell atomic clock.

    PubMed

    Iyanu, Gebriel; Wang, He; Camparo, James

    2009-06-01

    Although atomic clocks have very low levels of frequency instability, they are nonetheless sensitive (albeit slightly) to various environmental parameters, including temperature, power supply voltage, and dc magnetic fields. In the terrestrial environment, however, atmospheric pressure (i.e., the air's molecular density) is not generally included in this list, because the air's density variations near the surface of the earth will typically have a negligible effect on the clock's performance. The situation is different, however, for clocks onboard satellites like Galileo, where manufacturing and testing are done at atmospheric pressure, while operation is in vacuum. The pressure sensitivity of atomic clocks, in particular vapor-cell atomic clocks, can therefore be of significance. Here, we discuss some of the ways in which changes in atmospheric pressure affect vapor-cell atomic clocks, and we demonstrate that, for one device, the pressure-sensitivity traces back to a pressure-induced change in the temperature of the clock's filter and resonance cells.

  4. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  5. Probing Effect of Salinity and pH on Surface Interactions between Air Bubbles and Hydrophobic Solids: Implications on Colloidal Assembly at Air/Water Interface.

    PubMed

    Cui, Xin; Shi, Chen; Zhang, Shuo; Xie, Lei; Liu, Jing; Jiang, Dazhi; Zeng, Hongbo

    2017-04-05

    In this work, bubble probe atomic force microscope (AFM) was employed to quantify the interactions between two air bubbles and between an air bubble and an octadecyltrichlorosilane (OTS)-hydrophobized mica under various aqueous conditions. The key parameters (e.g. surface potentials, decay length of hydrophobic attraction) were obtained by analyzing the measured forces through a theoretical model based on Reynolds lubrication theory and augmented Young-Laplace equation by including effect of disjoining pressure. The bubble-OTS hydrophobic attraction with a decay length of 1.0 nm was found to be independent of solution pH and salinity. These parameters were further used to predict the attachment of OTS-hydrophobized particles onto air/water interface, demonstrating that particle attachment driven by hydrophobic attraction could be facilitated by suppressing electrical double-layer repulsion at low pH or high salinity condition. This facile methodology can be readily extended to quantify interactions of many other colloidal particles with gas/water and oil/water interfaces, with implications on colloidal assembly at different interfaces in many engineering applications.

  6. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic Electric Company... Power Company (Maine Yankee), Connecticut Yankee Atomic Power Company (Connecticut Yankee), and the Yankee Atomic Electric Company (Yankee Atomic) (together, ``licensees'' or ``the Yankee Companies'')...

  7. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    PubMed

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.

  8. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils.

    PubMed

    Bozan, Berrin; Temelli, Feral

    2008-09-01

    Three seeds of Turkish origin, flax, poppy and safflower were analyzed for their proximate, fatty acids, tocols (tocopherols and tocotrienols) and total phenolic composition, and oxidative stability of their oil. The major fatty acid in the flax oil was alpha-linolenic acid, comprising 58.3% of total fatty acids, whereas poppy and safflower oils were rich in linoleic acid at 74.5% and 70.5% level, respectively. The amount of total tocols was 14.6 mg/100g flax, 11.0mg/100g poppy and 12.1mg/100g safflower seed. Flax and poppy oil were rich in gamma-tocopherol as 79.4 mg/100g oil and 30.9 mg/100g oil, respectively, while alpha-tocopherol (44.1g/100g oil) was dominant in safflower oil. Only alpha- and gamma-tocotrienol were found in the oils. Oxidative stability of oils was measured at 110 degrees C at the rate of 20 L/h air flow rate, and poppy oil (5.56 h) was most stabile oil followed by safflower oil (2.87 h) and flax oil (1.57). There were no correlation between oxidative stability and unsaturation degree of fatty acids and tocol levels of the oils. All of the seeds investigated provide a healthy oil profile and may have potential as a source of specialty oils on a commercial scale.

  9. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  10. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  11. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  12. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  13. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  14. Stabilisation of liquid-air surfaces by particles of low surface energy.

    PubMed

    Binks, Bernard P; Rocher, Anaïs

    2010-08-28

    We describe the stabilisation of liquid-air surfaces by microparticles of a low surface energy solid. By varying the surface tension of the liquid, various particle-stabilised materials from oil dispersions to air-in-oil foams to dry water can be prepared.

  15. Imaging the Kramers–Henneberger atom

    PubMed Central

    Morales, Felipe; Richter, Maria; Patchkovskii, Serguei; Smirnova, Olga

    2011-01-01

    Today laser pulses with electric fields comparable to or higher than the electrostatic forces binding valence electrons in atoms and molecules have become a routine tool with applications in laser acceleration of electrons and ions, generation of short wavelength emission from plasmas and clusters, laser fusion, etc. Intense fields are also naturally created during laser filamentation in the air or due to local field enhancements in the vicinity of metal nanoparticles. One would expect that very intense fields would always lead to fast ionization of atoms or molecules. However, recently observed acceleration of neutral atoms [Eichmann et al. (2009) Nature 461:1261–1264] at the rate of 1015 m/s2 when exposed to very intense IR laser pulses demonstrated that substantial fraction of atoms remained stable during the pulse. Here we show that the electronic structure of these stable “laser-dressed” atoms can be directly imaged by photoelectron spectroscopy. Our findings open the way to visualizing and controlling bound electron dynamics in strong laser fields and reexamining its role in various strong-field processes, including microscopic description of high order Kerr nonlinearities and their role in laser filamentation [Béjot et al. (2010) Phys Rev Lett 104:103903]. PMID:21930945

  16. Epitaxy: Programmable Atom Equivalents Versus Atoms.

    PubMed

    Wang, Mary X; Seo, Soyoung E; Gabrys, Paul A; Fleischman, Dagny; Lee, Byeongdu; Kim, Youngeun; Atwater, Harry A; Macfarlane, Robert J; Mirkin, Chad A

    2017-01-24

    The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle (NP) superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of NP thin films. Both surface morphology and internal thin film structure are examined to provide an understanding of particle attachment and reorganization during growth. Under equilibrium conditions, single crystalline, multilayer thin films can be synthesized over 500 × 500 μm(2) areas on lithographically patterned templates, whereas deposition under kinetic conditions leads to the rapid growth of glassy films. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in atomic thin film deposition, allowing these processes to be understood in the context of well-studied atomic epitaxy and enabling a nanoscale model to study fundamental crystallization processes. Through understanding the role of epitaxy as a driving force for NP assembly, we are able to realize 3D architectures of arbitrary domain geometry and size.

  17. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  18. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  19. Petroleum hydrocarbons in near-surface seawater of Prince William Sound, Alaska, following the Exxon Valdez oil spill II: Analysis of caged mussels. Air/water study number 3. Subtidal study number 3a. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Short, J.W.; Harris, P.M.

    1995-07-01

    Mussels (Mytilus trossulus) were deployed at 22 locations inside Prince William Sound and 16 locations outside the Sound at depths of 1, 5 and 25 m for 2 to 8 weeks to determine the biological availability and persistence of petroleum-derived hydrocarbons from the Exxon Valdez Oil (EVO) spill. Four successive deployments were made in 1989, and two each in 1990 and 1991. Mussels were analyzed for 27 alkane and 43 polynuclear aromatic hydrocarbon (PAH) analytes. PAH concentrations derived from EVO in mussels decreased with depth, time, and distance from heavily oiled beaches. Hydrocarbon accumulation derived from EVO by deployed mussels indicates petroleum hydrocarbons were available to subsurface marine fauna the summer following the spill, which may be a route of oil ingestion exposure by fauna at high trophic levels.

  20. Particle-Stabilized Powdered Water-in-Oil Emulsions.

    PubMed

    Binks, Bernard P; Tyowua, Andrew T

    2016-04-05

    The preparation of powdered water-in-oil (w/o) emulsions by gentle aeration of w/o emulsions stabilized by hydrophobic fumed silica particles in the presence of oleophobic fluorinated clay particles is reported for an alkane and a triglyceride oil. The resultant powders consist of water drops dispersed in oil globules themselves dispersed in air (w/o/a). They contain ∼80 wt % of the precursor w/o emulsion and were stable to phase separation for over 1 year but release oil and water when sheared on a substrate. Above a certain ratio of w/o emulsion:fluorinated clay particles, the powdered emulsions partially invert to an emulsion paste, composed of air bubbles and water droplets dispersed in oil. The tap density and angle of repose of the powdered emulsions were measured and compared with those of the corresponding powdered oils making up the continuous phase of the precursor emulsions. The contact angles of water droplets under oil on glass slides spin coated with silica particles and oil drops and w/o emulsion droplets in air on compressed disks of fluorinated clay particles are consistent with the stabilization of w/o emulsions and powdered emulsions, respectively.