Science.gov

Sample records for air bearing spindle

  1. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    DOEpatents

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  2. The crack effect on instability in a machine tool spindle with gas bearings

    NASA Astrophysics Data System (ADS)

    Huang, Bo-Wun

    2005-09-01

    Gas-bearing spindles are required for increased spindle speed in precise machining. Due to manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle systems. Cracks markedly affect the dynamic characteristics of rotating machinery. Hence, in this study, high-speed spindles with gas bearings and the crack effect on the instability dynamics are considered. Most investigations on dynamic characteristics of the spindle system were confined to ball-bearing-type spindles. This work examines the dynamic instability in a cracked rotating spindle system with gas bearings. A round Euler-Bernoulli beam is used to approximate the spindle. The Hamilton principle is applied to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and provided air pressure on the dynamic instability of a rotating spindle system are studied

  3. Adaptive Spindle Balancing Using Magnetically Levitated Bearings

    SciTech Connect

    BARNEY,PATRICK S.; LAUFFER,JAMES P.; PETTEYS,REBECCA; REDMOND,JAMES M.; SULLIVAN,WILLIAM N.

    1999-09-20

    A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller.

  4. Linear kinematic air bearing

    NASA Technical Reports Server (NTRS)

    Mayall, S. D.

    1974-01-01

    Bearing provides continuous, smooth movement of the cat's-eye mirror, eliminating wear and deterioration of bearing surface and resulting oscillation effects in servo system. Design features self-aligning configuration; single-point, pivotal pad mounting, having air passage through it; and design of pads that allows for precise control of discharge path of air from pads.

  5. Disturbance Rejection Control of an Electromagnetic Bearing Spindle

    SciTech Connect

    PETTEYS,REBECCA; PARKER,GORDON

    2000-08-31

    The force exerted on the rotor by an active magnetic bearing (AMB) is determined by the current flow in the magnet coils. This force can be controlled very precisely, making magnetic bearings a potential benefit for grinding, where cutting forces act as external disturbances on the shaft, resulting in degraded part finish. It is possible to achieve precise shaft positioning, reduce vibration of the shaft caused by external disturbances, and even damp out resonant modes. Adaptive control is an appealing approach for these systems because the controller can tune itself to account for an unknown periodic disturbance, such as cutting or grinding forces, injected into the system. In this paper the authors show how one adaptive control algorithm can be applied to an AMB system with a periodic disturbance applied to the rotor. An adaptive algorithm was developed and implemented in both simulation and hardware, yielding significant reductions in rotor displacement in the presence of an external excitation. Ultimately, this type of algorithm could be applied to a magnetic bearing grinder to reduce unwanted motion of the spindle which leads to poor part finish and chatter.

  6. Spindle

    2013-04-04

    Spindle is software infrastructure that solves file system scalabiltiy problems associated with starting dynamically linked applications in HPC environments. When an HPC applications starts up thousands of pricesses at once, and those processes simultaneously access a shared file system to look for shared libraries, it can cause significant performance problems for both the application and other users. Spindle scalably coordinates the distribution of shared libraries to an application to avoid hammering the shared file system.

  7. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  8. Pressure measurements of a three wave journal air bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Addy, Harold E., Jr.

    1994-01-01

    In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.

  9. Method for vibration response simulation and sensor placement optimization of a machine tool spindle system with a bearing defect.

    PubMed

    Cao, Hongrui; Niu, Linkai; He, Zhengjia

    2012-01-01

    Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response.

  10. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    PubMed Central

    Cao, Hongrui; Niu, Linkai; He, Zhengjia

    2012-01-01

    Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514

  11. An approach based on wavelet packet decomposition and Hilbert-Huang transform (WPD-HHT) for spindle bearings condition monitoring

    NASA Astrophysics Data System (ADS)

    Law, Leh-Sung; Kim, Jong Hyun; Liew, Willey Y. H.; Lee, Sun-Kyu

    2012-11-01

    In order to prevent possible damages to the spindle systems, reliable monitoring techniques are required to provide valuable information on the condition of the spindle condition. A technique is proposed for monitoring spindle bearings conditions via the use of acoustic emission (AE) signals, which implements Hilbert-Huang transform (HHT) analysis to extract the crucial characteristic from the measured data to correlate spindle running condition. The HHT becomes a promising technique in extracting the properties of nonlinear and non-stationary signal. However, the original HHT has several deficiencies, which eventually lead to misinterpretation to the final results. The improved version of HHT is proposed and used to overcome the weakness of the original HHT. The simulation and experimental results are used to verify the effectiveness of the WPD-HHT and therefore Hilbert marginal spectral, compared to traditional Fourier transform. Experimental results are presented to examine and explore the effectiveness of AE for monitoring spindle bearings conditions. It is concluded that good correlation existed between the results obtained by AE data and the increase in the preload, and change in the dimensions and geometry of the spindle bearings and their housings as the temperature increases. In support of this finding, vibration and acceleration data are also used to assess the amount changes in the antistrophic stiffness and radial error motion.

  12. Horizontal Air Bearing Experiment Number 1

    SciTech Connect

    Clauson, T.L.

    1999-08-31

    The Horizontal Air Bearing Experiment No.1 is a series of tests intended to further the understanding of rotational dynamics. A simple experimental assembly is rotated using the Horizontal Air Bearing and allowed to spin freely as the internal rotational damping is measured. The low friction of the bearing effectively isolates the test assembly, allowing the internal damping of the test object to be evaluated. The experimental assembly is composed of an aluminum ball within a spherical cavity. A flanged pipe section and an auxiliary adapter plate secure the assembly to the Air Bearing interface plate. Three aluminum balls are interchanged to vary test parameters. The aluminum balls are free to move independently as the entire assembly rotates. The aluminum balls vary in diameter and/or surface finish. While the diameter and surface finish is varied, the space between the ball and socket is dry. To examine the effect of viscosity, the space is filled with a lubricant while the ball diameter and surface finish is held constant.

  13. Comparison of rotational speeds and torque properties between air-bearing and ball-bearing air-turbine handpieces.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1989-06-01

    We examined the effects of air pressure on the free-running speed of air-bearing and torque-type ball-bearing air-turbine handpieces. The air pressure for the former should be kept at a certain high level to maintain the stable super-thin air-bearing film and to provide the quasi-constant speed of around 420,000 to 480,000 rpm. On the other hand, the air pressure for the latter could be adjusted to provide some varieties of speeds, ranging from about 150,000 to 320,000 rpm. Subsequently, to compare torque properties and cutting effectiveness between these two handpieces, weight-load cutting tests were conducted, using a glass-ceramic workpiece and a commercial diamond point. It was confirmed that the air-bearing handpiece had the lower torque power but exhibited better cutting effectiveness, compared with its counterpart.

  14. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 1: Journal bearing performance

    NASA Technical Reports Server (NTRS)

    Ruscitto, D.; Mccormick, J.; Gray, S.

    1978-01-01

    A 38.1 mm (1.5 inch) diameter Hydresil Compliant Surface Air Lubricated Journal Bearing was designed and tested to obtain bearing performance characteristics at both room temperature and 315 C (600 F). Testing was performed at various speeds up to 60,000 rpm with varying loads. Rotating sensors provided an opportunity to examine the film characteristics of the compliant surface bearing. In addition to providing minimum film thickness values and profiles, many other insights into bearing operation were gained such as the influence of bearing fabrication accuracy and the influence of smooth foil deflection between the bumps.

  15. Next generation spindles for micromilling.

    SciTech Connect

    Pathak, Jay P.; Payne, Scott W. T.; Gill, David Dennis; Ziegert, John C.; Jokiel, Bernhard, Jr.

    2004-12-01

    There exists a wide variety of important applications for micro- and meso-scale mechanical systems in the commercial and defense sectors, which require high-strength materials and complex geometries that cannot be produced using current MEMS fabrication technologies. Micromilling has great potential to fill this void in MEMS technology by adding the capability of free form machining of complex 3D shapes from a wide variety and combination of traditional, well-understood engineering alloys, glasses and ceramics. Inefficiencies in micromilling result from the relationships between a cutting tool's breaking strength, the applied cutting force, and the metal removal rate. Because machining times in mesofeatures scale inversely to the part size, a feature 1/10th as large will take 10 times as long to machine. Also, required chip sizes of 1 m or less are cut with tools having edge radius of 2-3 m, the cutting edge effectively has a highly negative rake angle, cutting forces are increased significantly causing chip loads to be further reduced and the machining takes even longer than predicted above. However, cutting forces do not increase with cutting speed, so faster spindles with reduced tool runout are the path to achieve efficient mesoscale milling. This research explored the development of new ultra-high speed micromilling spindles. A novel air-bearing spindle design is discussed that will run at very high speeds (450,000 rpm) and provide very minimal runout allowing the best use of micromilling cutters and reducing overall machining time drastically. Two generations of this spindle design were completed; one with an air bearing supported tool shaft and one with a novel rolling element bearing supported tool shaft. Both designs utilized friction-drive systems that relied on diameter differences between the drive wheel (operating at speeds up to 90,000 rpm) and the tool shaft to achieve high rotational tool speeds. Runout, stiffness, and machining tests were conducted

  16. Air-bearing spin facility for measuring energy dissipation

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.

    1976-01-01

    The air-bearing spin facility was developed to determine experimentally the effect of energy dissipation upon the motion of spinning spacecraft. The facility consists of an air-bearing spin table, a telemetry system, a command system, and a ground control station. The air-bearing spin table was designed to operate in a vacuum chamber. Tests were run on spacecraft components such as fuel tanks, nutation dampers, reaction wheels, and active nutation damper systems. Each of these items affected the attitude of a spinning spacecraft. An experimental approach to determine these effects was required because the dissipation of these components could not be adequately analyzed. The results of these experiments have been used, with excellent results, to predict spacecraft motion.

  17. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  18. An air bearing system for small high speed gas turbines

    NASA Astrophysics Data System (ADS)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  19. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  20. Transient hemorheology in an air-bearing viscosimeter.

    PubMed

    Ravey, J C; Ikimoto, S; Stoltz, J F

    1984-01-01

    Blood suspensions have been studied by using an air-bearing viscosimeter which is driven by a rotating magnetic induction. Each transient motion (rise, relaxation with zero or intermittent field) can be considered as a quasi-static motion, from which the curve viscosity-shear gradient can be obtained. Combining several transient motions allows an easier determination of the parameters describing a non newtonian fluid like blood. PMID:6592001

  1. Low-friction coatings for air bearings in fuel cell air compressors

    SciTech Connect

    Ajayi, O. O.; Fenske, G. R.; Erdemir, A.; Woodford, J.; Sitts, J.; Elshot, K.; Griffey, K.

    2000-01-06

    In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.

  2. Parameter estimation of an air-bearing suspended test table

    NASA Astrophysics Data System (ADS)

    Fu, Zhenxian; Lin, Yurong; Liu, Yang; Chen, Xinglin; Chen, Fang

    2015-02-01

    A parameter estimation approach is proposed for parameter determination of a 3-axis air-bearing suspended test table. The table is to provide a balanced and frictionless environment for spacecraft ground test. To balance the suspension, the mechanical parameters of the table, including its angular inertias and centroid deviation from its rotating center, have to be determined first. Then sliding masses on the table can be adjusted by stepper motors to relocate the centroid of the table to its rotating center. Using the angular momentum theorem and the coriolis theorem, dynamic equations are derived describing the rotation of the table under the influence of gravity imbalance torque and activating torques. To generate the actuating torques, use of momentum wheels is proposed, whose virtue is that no active control is required to the momentum wheels, which merely have to spin at constant rates, thus avoiding the singularity problem and the difficulty of precisely adjusting the output torques, issues associated with control moment gyros. The gyroscopic torques generated by the momentum wheels, as they are forced by the table to precess, are sufficient to activate the table for parameter estimation. Then least-square estimation is be employed to calculate the desired parameters. The effectiveness of the method is validated by simulation.

  3. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  4. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  5. Theoretical Analysis and Optimum Design of High Speed Air Film Thrust Bearings

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiromu; Ochiai, Masayuki; Nanba, Tadashi

    Hydrodynamic air film thrust bearings are widely used for very high speed, lightly loaded rotating machinery such as gas expander, compressor, gyroscope and business machines, etc. In the design of hydrodynamic air film thrust bearings, it is of cardinal importance to enhance the friction and stability capacities of air films for keeping the minimum friction loss within a particular level and for minimizing the vibration due to external excitations. Among various types of hydrodynamic air film thrust bearings, spiral and herring bone types of grooved bearings have an advantage of high stability and load carrying capacity, but the characteristics of the bearings depend on many design parameters. Therefore, when these parameters are designed suitably, it is expected to improve considerably the friction and stability characteristics of the bearings. In this paper, the optimum design methodology is presented to minimize the friction torque and also to maximize the stiffness of air film for spiral and herring bone types of grooved air film thrust bearings, and the applicability of the methodology is verified experimentally.

  6. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  7. The SOFIA telescope mounting on a large segment air-bearing

    NASA Astrophysics Data System (ADS)

    Kaercher, Hans J.; Lautner, H.

    1990-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope concepts are briefly discussed, and a new air-bearing design philosophy is presented. The telescope mounting system inside the hull of a Boeing 747 SP aircraft encompasses a large spherical air-bearing which supports the telescope in the rear bulkhead of the aircraft cavity in order to make it independent of the rotary movements of the airplane and to isolate it from aircraft vibrations through an additional vibration isolation system.

  8. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  9. Changes in Hardware in Order to Accommodate Compliant Foil Air Bearings of a Larger Size

    NASA Technical Reports Server (NTRS)

    Zeszotek, Michelle

    2004-01-01

    Compliant foil air bearings are at the forefront of the Oil-Free turbomachinery revolution of supporting gas turbine engines with air lubricated hydrodynamic bearings. Foil air bearings have existed for almost fifty years, yet their commercialization has been confined to relatively small, high-speed systems characterized by low temperatures and loads, such as in air cycle machines, turbocompressors and micro-turbines. Recent breakthroughs in foil air bearing design and solid lubricant coating technology, have caused a resurgence of research towards applying Oil-Free technology to more demanding applications on the scale of small and mid range aircraft gas turbine engines. In order to foster the transition of Oil-Free technology into gas turbine engines, in-house experiments need to be performed on foil air bearings to further the understanding of their complex operating principles. During my internship at NASA Glenn in the summer of 2003, a series of tests were performed to determine the internal temperature profile in a compliant bump- type foil journal air bearing operating at room temperature under various speeds and load conditions. From these tests, a temperature profile was compiled, indicating that the circumferential thermal gradients were negligible. The tests further indicated that both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. As a result of the findings from the tests done during the summer of 2003, it was decided that further testing would need to be done, but with a bearing of a larger diameter. The bearing diameter would now be increased from two inches to three inches. All of the currently used testing apparatus was designed specifically for a bearing that was two inches in diameter. Thus, my project for the summer of 2004 was to focus specifically on the scatter shield put around the testing rig while running the bearings. Essentially

  10. Combination spindle-drive system for high precision machining

    DOEpatents

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  11. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  12. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  13. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  14. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  15. Magnetic bearings for a high-performance optical disk buffer

    NASA Technical Reports Server (NTRS)

    Hockney, Richard; Hawkey, Timothy

    1993-01-01

    An optical disk buffer concept can provide gigabit-per-second data rates and terabit capacity through the use of arrays of solid state lasers applied to a stack of erasable/reusable optical disks. The RCA optical disk buffer has evoked interest by NASA for space applications. The porous graphite air bearings in the rotary spindle as well as those used in the linear translation of the read/write head would be replaced by magnetic bearings or mechanical (ball or roller) bearings. Based upon past experience, roller or ball bearings for the translation stages are not feasible. Unsatisfactory, although limited experience exists with ball bearing spindles also. Magnetic bearings, however, appear ideally suited for both applications. The use of magnetic bearings is advantageous in the optical disk buffer because of the absence of physical contact between the rotating and stationary members. This frictionless operation leads to extended life and reduced drag. The manufacturing tolerances that are required to fabricate magnetic bearings would also be relaxed from those required for precision ball and gas bearings. Since magnetic bearings require no lubricant, they are inherently compatible with a space (vacuum) environment. Magnetic bearings also allow the dynamics of the rotor/bearing system to be altered through the use of active control. This provides the potential for reduced vibration, extended regions of stable operation, and more precise control of position.

  16. Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters

    NASA Astrophysics Data System (ADS)

    Rybus, Tomasz; Seweryn, Karol

    2016-03-01

    All devices designed to be used in space must be thoroughly tested in relevant conditions. For several classes of devices the reduced gravity conditions are the key factor. In early stages of development and later due to financial reasons, the tests need to be done on Earth. However, in Earth conditions it is impossible to obtain a different gravity field independent on all linear and rotational spatial coordinates. Therefore, various test-bed systems are used, with their design driven by the device's specific needs. One of such test-beds are planar air-bearing microgravity simulators. In such an approach, the tested objects (e.g., manipulators intended for on-orbit operations or vehicles simulating satellites in a close formation flight) are mounted on planar air-bearings that allow almost frictionless motion on a flat surface, thus simulating microgravity conditions in two dimensions. In this paper we present a comprehensive review of research activities related to planar air-bearing microgravity simulators, demonstrating achievements of the most active research groups and describing newest trends and ideas, such as tests of landing gears for low-g bodies. Major design parameters of air-bearing test-beds are also reviewed and a list of notable existing test-beds is presented.

  17. A New Foil Air Bearing Test Rig for Use to 700 C and 70,000 rpm

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1997-01-01

    A new test rig has been developed for evaluating foil air bearings at high temperatures and speeds. These bearings are self acting hydrodynamic air bearings which have been successfully applied to a variety of turbomachinery operating up to 650 C. This unique test rig is capable of measuring bearing torque during start-up, shut-down and high speed operation. Load capacity and general performance characteristics, such as durability, can be measured at temperatures to 700 C and speeds to 70,000 rpm. This paper describes the new test rig and demonstrates its capabilities through the preliminary characterization of several bearings. The bearing performance data from this facility can be used to develop advanced turbomachinery incorporating high temperature oil-free air bearing technology.

  18. System Being Developed to Measure the Rotordynamic Characteristics of Air Foil Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    Because of the many possible advantages of oil-free engine operation, interest in using air lubricated foil-bearing technology in advanced oil-free engine concepts has recently increased. The Oil-Free Turbomachinery Program at the NASA Glenn Research Center at Lewis Field has partially driven this recent push for oil-free technology. The program's goal of developing an innovative, practical, oil-free gas turbine engine for aeropropulsion began with the development of NASA's high-temperature solid-lubricant coating, PS304. This coating virtually eliminates the life-limiting wear that occurs during the startup and shutdown of the bearings. With practically unlimited life, foil air bearings are now very attractive to rotating machinery designers for use in turbomachinery. Unfortunately, the current knowledge base of these types of bearings is limited. In particular, the understanding of how these types of bearings contribute to the rotordynamic stability of turbomachinery is insufficient for designers to design with confidence. Recent work in oil-free turbomachinery has concentrated on advancing the understanding of foil bearings. A high-temperature fiber-optic displacement probe system and measurement method were developed to study the effects of speed, load, temperature, and other environmental issues on the stiffness characteristics of air foil bearings. Since high temperature data are to be collected in future testing, the testing method was intentionally simplified to minimize the need for expensive test hardware. The method measures the displacement induced upon a bearing in response to an applied perturbation load. The early results of these studies, which are shown in the accompanying figure, indicate trends in steady state stiffness that suggest stiffness increases with load and decreases with speed. It can be seen, even from these data, that stiffness is not expected to change by orders of magnitude over the normal operating range of most turbomachinery; a

  19. Performance and Durability of High Temperature Foil Air Bearing for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    1999-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304, is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  20. Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Lukaszewicz, V.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    2000-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304 is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  1. Progress report on air bearing slumping of thin glass mirrors for x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Schattenburg, Mark L.; Chalifoux, Brandon; DeTienne, Michael D.; Heilmann, Ralf K.; Zuo, Heng

    2015-09-01

    The successful NuSTAR telescope was fabricated with thin glass mirrors formed into conic shapes by thermal slumping of thin glass sheets onto high precision mandrels. While mirrors generated by this process have very good figure, the best mirrors to date have a resolution limited to ~7 arc sec, due primarily to mid-range scale spatial frequency errors. These mid-range errors are believed to be due to clumping and particulates in the anti-stick coatings used to prevent sticking between mandrel and mirrors. We have developed a new slumping process which avoids sticking and surface-induced mid-range error by floating hot glass substrates between a pair of porous air bearing mandrels through which compressed nitrogen is forced. We report on the design and testing of an improved air bearing slumping tool and show results of short and long slumping cycles.

  2. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    NASA Technical Reports Server (NTRS)

    Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

    1992-01-01

    A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  3. The system integration and verification testing of an orbital maneuvering vehicle for an air bearing floor

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Martin, M. F.; Paulukaitis, K. R.; Haslam, J. W., Jr.; Henderson, D. E.

    1986-01-01

    The teleoperator and Robotics Evaluation Facility (TOREF) is composed of a 4,000 square foot precision air bearing floor, the Teleoperator Motion Base, the Target Motion and Support Simulator, the mock-ups of the Hubble Space Telescope, Multi-mission Modular Spacecraft, and the Orbital Maneuvering Vehicle (OMV). The TOREF and its general capabilities to support the OMV and other remote system simulations; the facility operating procedures and requirements; and the results of generic OMV investigations are summarized.

  4. Start-stop testing of two self-acting air-lubricated spiral groove thrust bearing coatings

    NASA Technical Reports Server (NTRS)

    Dunfee, J. D.; Shapiro, W.

    1974-01-01

    Start-stop tests were conducted on air-lubricated spiral-groove thrust bearings. Application of a matrix-bonded molybdenum disulfide (MoS2) coating over a porous chrome oxide coating resulted in significantly lower friction, compared to bearings coated with chrome oxide only. The MoS2 coated bearing sustained 15,000 start-stop cycles at a maximum of 3600 rpm. Each cycle was 15 seconds on, 30 seconds off. The chrome oxide coated bearing failed by local welding after 2030 cycles. Both types of coatings exhibited early failures under higher thrust loads when operating films were insufficient to sustain the load without overheating.

  5. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  6. Tracking Phragmites Australis Expansion in Bear River Migratory Bird Refuge using AggieAir Aircraft Data

    NASA Astrophysics Data System (ADS)

    Zaman, B.; McKee, M.

    2010-12-01

    This research examines the use of unmanned air vehicles (UAV), a cutting edge technology developed at the Utah Water research lab for acquiring airborne imagery using drones for the assessment of abundance of an invasive species Phragmites australis in a wetland vegetation setup. These UAV’s acquire multispectral data in the visible and near-infrared bands with a spatial resolution of 0.5 meters. The study area is the Bear River Migratory Bird Refuge (MBR) which lies in northern Utah, where the Bear River flows into the northeast arm of the Great Salt Lake. The Refuge protects the marshes found at the mouth of the Bear River; these marshes are the largest freshwater component of the Great Salt Lake ecosystem. A common reed, Phragmites australis, is a tall (1.5-4.0 m) coarse perennial grass found primarily in brackish and freshwater wetlands, growing at or above mean high water. The methodology is to build Bayesian statistical supervised classification model using relevance vector machine (RVM) employing the inexpensive and readily available UAV data. The UAV images of the bird refuge are processed to obtain calibrated reflectance imagery. Thereafter, the isodata clustering algorithm is applied to classify the multispectral imagery into different classes. Using ground sampling of the species, pixels containing the Phragmites australis are deduced. The training set for the supervised RVM classification model is prepared using the deduced pixel values. A separate set of ground sampling points containing the Phragmites australis are kept aside for validation. The distribution of Phragmites australis in the study area as obtained from RVM classification model is compared to the validation set. The RVM model results for tracking of Phragmites are encouraging and the new technique has promising real-time implementation for similar applications.

  7. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  8. Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.; von Osmanski, Sebastian

    2016-10-01

    High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.

  9. Mechanisms of Mitotic Spindle Assembly

    PubMed Central

    Petry, Sabine

    2016-01-01

    Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ~200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes. PMID:27145846

  10. On the nonlinear steady-state response of rigid rotors supported by air foil bearings-Theory and experiments

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.

    2015-06-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.

  11. Contact sheet recording with a self-acting negative air bearing

    NASA Technical Reports Server (NTRS)

    Muftu , Sinan (Inventor); Hinteregger, Hans F (Inventor)

    2000-01-01

    A flat head and a tape transport arrangement impart a wrap angle to the tape at the upstream corner of the head. The wrap angle, corner sharpness and tape stiffness are sufficient to cause a moving tape to form a hollow bump at the upstream corner, thereby creating a hollow into which entrained air can expand, causing a subambient pressure within and downstream of the bump. This pressure keeps the tape in contact with the head. It is created without the need for a groove or complex pressure relief slot(s). No contact pressure arises at the signal exchange site due to media wrap. The highest contact pressures are developed at a wrapped upstream corner. For a tape drive, traveling in both forward and reverse, the wrap can be at both the upstream and downstream (which is the reverse upstream) corners. Heads that are not flat can also be used, if the wrap angle relative to a main surface is sufficient and not too large. The wrapped head can also be used with rotating media, such as disks (floppy and hard) and rotating heads, such as helical wound heads for video recording. Multiple flat tape bearing surfaces can be separated by grooves and/or angles. Each flat can carry heads along one or more gap lines. Multiple adjacent narrow tracks can thus be written for extreme high track density recording.

  12. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  13. Spatial signals link exit from mitosis to spindle position

    PubMed Central

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-01-01

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position. DOI: http://dx.doi.org/10.7554/eLife.14036.001 PMID:27166637

  14. Human muscle spindle sensitivity reflects the balance of activity between antagonistic muscles.

    PubMed

    Dimitriou, Michael

    2014-10-01

    Muscle spindles are commonly considered as stretch receptors encoding movement, but the functional consequence of their efferent control has remained unclear. The "α-γ coactivation" hypothesis states that activity in a muscle is positively related to the output of its spindle afferents. However, in addition to the above, possible reciprocal inhibition of spindle controllers entails a negative relationship between contractile activity in one muscle and spindle afferent output from its antagonist. By recording spindle afferent responses from alert humans using microneurography, I show that spindle output does reflect antagonistic muscle balance. Specifically, regardless of identical kinematic profiles across active finger movements, stretch of the loaded antagonist muscle (i.e., extensor) was accompanied by increased afferent firing rates from this muscle compared with the baseline case of no constant external load. In contrast, spindle firing rates from the stretching antagonist were lowest when the agonist muscle powering movement (i.e., flexor) acted against an additional resistive load. Stepwise regressions confirmed that instantaneous velocity, extensor, and flexor muscle activity had a significant effect on spindle afferent responses, with flexor activity having a negative effect. Therefore, the results indicate that, as consequence of their efferent control, spindle sensitivity (gain) to muscle stretch reflects the balance of activity between antagonistic muscles rather than only the activity of the spindle-bearing muscle.

  15. Theory of Mitotic Spindle Oscillations

    NASA Astrophysics Data System (ADS)

    Grill, Stephan W.; Kruse, Karsten; Jülicher, Frank

    2005-03-01

    During unequal cell division the mitotic spindle is positioned away from the center of the cell before cell cleavage. In many biological systems this repositioning is accompanied by oscillatory movements of the spindle. We present a theoretical description for mitotic spindle oscillations. We show that the cooperative attachment and detachment of cortical force generators to astral microtubules leads to spontaneous oscillations beyond a critical number of force generators. This mechanism can quantitatively describe the spindle oscillations observed during unequal division of the one cell stage Caenorhabditis elegans embryo.

  16. Development of magnetically preloaded air bearings for a linear slide: active compensation of three degrees of freedom motion errors.

    PubMed

    Ro, Seung-Kook; Kim, Soohyun; Kwak, Yoonkeun; Park, Chun-Hong

    2008-03-01

    This article describes a linear air-bearing stage that uses active control to compensate for its motion errors. The active control is based on preloads generated by magnetic actuators, which were designed to generate nominal preloads for the air bearings using permanent magnets to maintain the desired stiffness while changing the air-bearing clearance by varying the magnetic flux generated by the current in electromagnetic coils. A single-axis linear stage with a linear motor and 240 mm of travel range was built to verify this design concept and used to test its performance. The motion of the table in three directions was controlled with four magnetic actuators driven by current amplifiers and a DSP (Digital Signal Processor)-based digital controller. The motion errors were measured using a laser interferometer combined with a two-probe method, and had 0.085 microm of repeatability for the straightness error. As a result of feed-forward active compensation, the errors were reduced from 1.09 to 0.11 microm for the vertical motion, from 9.42 to 0.18 arcsec for the pitch motion, and from 2.42 to 0.18 arcsec for the roll motion. PMID:18377049

  17. Testing a Low-Influence Spindle Drive Motor

    SciTech Connect

    Hale, L; Wulff, T; Sedgewick, J

    2003-11-05

    Precision spindles used for diamond turning and other applications requiring low error motion generally require a drive system that ideally applies a pure torque to the rotating spindle. Frequently a frameless motor, that is, one without its own bearings, is directly coupled to the spindle to make a compact and simple system having high resonant frequencies. Although in addition to delivering drive torque, asymmetries in the motor cause it to generate disturbance loads (forces and moments) which influence the spindle error motion of the directly coupled system. This paper describes the tests and results for a particular frameless, brushless DC motor that was originally developed for military and space applications requiring very low torque ripple. Because the construction of the motor should also lead to very low disturbance loads, it was selected for use on a new diamond turning and grinding machine under developed at Lawrence Livermore National Laboratory. The level of influence for this motor-spindle combination is expected to be of order one nanometer for radial and axial error motion.

  18. Preliminary Investigation of Molybdenum Disulfide-air-mist Lubrication for Roller Bearings Operating to DN Values of 1 x 10(exp 6) and Ball Bearings Operating to Temperatures of 1000 F

    NASA Technical Reports Server (NTRS)

    Macks, E F; Nemeth, Z N; Anderson, W J

    1951-01-01

    The effectiveness of molybdenum disulfide MoS2 as a bearing lubricant was determined at high temperature and at high speeds. A 1-inch-bore ball bearing operated at temperatures to 1000 F, a speed of 1725 rpm, and a thrust load of 20 pounds when lubricated only with MoS2-air mist. A 75-millimeter-bore cageless roller bearing, provided with a MoS2-syrup coating before operation, operated at DN values to 1 x 10(exp 6) with a load of 368 pounds.

  19. The elegans of spindle assembly

    PubMed Central

    Greenan, Garrett; O’Toole, Eileen

    2010-01-01

    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly. PMID:20339898

  20. Biophysical Aspects of Spindle Evolution

    NASA Astrophysics Data System (ADS)

    Farhadifar, Reza; Baer, Charlie; Needleman, Daniel

    2011-03-01

    The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.

  1. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and

  2. Evaluation of chromium oxide and molybdenum disulfide coatings in self-acting stops of an air-lubricated Rayleigh step thrust bearing

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1974-01-01

    Two coatings for a Rayleigh step thrust bearing were tested when coasting down and stopping under self-acting operation in air. The thrust bearing had an outside diameter of 8.9 cm (3.5 in.), an inside diameter of 5.4 cm (2.1 in.), and nine sectors. The load was 73 N (16.4 lbf). The load pressure was 19.1 kN/per square meter (2.77 lbf/per square inch) on the total thrust bearing area. The chromium oxide coating was good to 150 stops without bearing deterioration, and the molybdenum disulfide coating was good for only four stops before bearing deterioration. The molybdenum disulfide coated bearing failed after nine stops.

  3. Caenorhabditis elegans Aurora A kinase is required for the formation of spindle microtubules in female meiosis

    PubMed Central

    Sumiyoshi, Eisuke; Fukata, Yuma; Namai, Satoshi; Sugimoto, Asako

    2015-01-01

    In many animals, female meiotic spindles are assembled in the absence of centrosomes, the major microtubule (MT)-organizing centers. How MTs are formed and organized into meiotic spindles is poorly understood. Here we report that, in Caenorhabditis elegans, Aurora A kinase/AIR-1 is required for the formation of spindle microtubules during female meiosis. When AIR-1 was depleted or its kinase activity was inhibited in C. elegans oocytes, although MTs were formed around chromosomes at germinal vesicle breakdown (GVBD), they were decreased during meiotic prometaphase and failed to form a bipolar spindle, and chromosomes were not separated into two masses. Whereas AIR-1 protein was detected on and around meiotic spindles, its kinase-active form was concentrated on chromosomes at prometaphase and on interchromosomal MTs during late anaphase and telophase. We also found that AIR-1 is involved in the assembly of short, dynamic MTs in the meiotic cytoplasm, and these short MTs were actively incorporated into meiotic spindles. Collectively our results suggest that, after GVBD, the kinase activity of AIR-1 is continuously required for the assembly and/or stabilization of female meiotic spindle MTs. PMID:26378257

  4. Caenorhabditis elegans Aurora A kinase is required for the formation of spindle microtubules in female meiosis.

    PubMed

    Sumiyoshi, Eisuke; Fukata, Yuma; Namai, Satoshi; Sugimoto, Asako

    2015-11-15

    In many animals, female meiotic spindles are assembled in the absence of centrosomes, the major microtubule (MT)-organizing centers. How MTs are formed and organized into meiotic spindles is poorly understood. Here we report that, in Caenorhabditis elegans, Aurora A kinase/AIR-1 is required for the formation of spindle microtubules during female meiosis. When AIR-1 was depleted or its kinase activity was inhibited in C. elegans oocytes, although MTs were formed around chromosomes at germinal vesicle breakdown (GVBD), they were decreased during meiotic prometaphase and failed to form a bipolar spindle, and chromosomes were not separated into two masses. Whereas AIR-1 protein was detected on and around meiotic spindles, its kinase-active form was concentrated on chromosomes at prometaphase and on interchromosomal MTs during late anaphase and telophase. We also found that AIR-1 is involved in the assembly of short, dynamic MTs in the meiotic cytoplasm, and these short MTs were actively incorporated into meiotic spindles. Collectively our results suggest that, after GVBD, the kinase activity of AIR-1 is continuously required for the assembly and/or stabilization of female meiotic spindle MTs.

  5. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    SciTech Connect

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y.; Zhu, Y.

    2013-12-15

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  6. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing.

    PubMed

    Yang, Z; Hong, J; Zhang, J; Wang, M Y; Zhu, Y

    2013-12-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  7. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y.; Zhu, Y.

    2013-12-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  8. Design for H type co-planar precision stage based on closed air bearing guideway with vacuum attraction force

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Shi, Zhaoyao; Lin, Jiachun; Zhang, Hua

    2011-12-01

    The accuracy of traditional two-dimensional precision stage is limited not only by the accuracy of each guideway but also by the configuration of the stage. It is not easy to calculate and compensate the total accuracy of the stage due to the complicated influence caused by the different position of the slides. An air bearing guideways with vacuum attraction forces has been designed with closed slide structure to enhance the stiffness and avoid the deformation caused by the weight of slide and workpieces. An H style two-dimension ultra-precision stage with co-planar structure has been developed based on the air bearing guideways to avoid the multi-influence by the axes. Driven by linear motors, the position of the workpiece is encoded by length scales with resolution of 50nm and thermal expansion of 0.6 μm/m/°C (0 °C to 30 °C). The travel span of the stage is 320x320mm, during which each axis has a positioning accuracy of +/-1μm, a repeatability of +/-0.3μm and a straightness of +/-0.5μm. The stage can be applied in precision manufacturing and measurement.

  9. Evaluation of Advanced Solid Lubricant Coatings for Foil Air Bearings Operating at 25 and 500 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Fellenstein, James A.; Benoy, Patricia A.

    1998-01-01

    The tribological properties of one chrome oxide and one chrome carbide based solid lubricant coating were evaluated in a partial-arc foil bearing at 25 and 500 C. Start/stop bearing operation up to 20,000 cycles were run under 10 kPa (1.5 psi) static deadweight load. Bearing friction (torque) was measured during the test. Specimen wear and SEM/EDS surface analyses were conducted after testing to understand and elucidate the tribological characteristics observed. The chrome oxide coating which contains both (Ag) and (BaF2/CaF2) for low and high temperature lubrication, exhibited low friction in sliding against Al2O3 coated foils at 25 and 500 C. The chrome carbide coating, which lacked a low temperature lubricant but contained BaF2/CaF2 as a high temperature lubricant, exhibited high friction at 25 C and low friction at 500 C against both bare and Al2O3 coated superalloy foil surfaces. Post test surface analyses suggest that improved tribological performance is exhibited when a lubricant film from the coating transfers to the foil surface.

  10. Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells.

    PubMed

    Kotak, Sachin; Afshar, Katayon; Busso, Coralie; Gönczy, Pierre

    2016-08-01

    Accurate spindle positioning is essential for error-free cell division. The one-cell Caenorhabditis elegans embryo has proven instrumental for dissecting mechanisms governing spindle positioning. Despite important progress, how the cortical forces that act on astral microtubules to properly position the spindle are modulated is incompletely understood. Here, we report that the PP6 phosphatase PPH-6 and its associated subunit SAPS-1, which positively regulate pulling forces acting on spindle poles, associate with the Aurora A kinase AIR-1 in C. elegans embryos. We show that acute inactivation of AIR-1 during mitosis results in excess pulling forces on astral microtubules. Furthermore, we uncover that AIR-1 acts downstream of PPH-6-SAPS-1 in modulating spindle positioning, and that PPH-6-SAPS-1 negatively regulates AIR-1 localization at the cell cortex. Moreover, we show that Aurora A and the PP6 phosphatase subunit PPP6C are also necessary for spindle positioning in human cells. There, Aurora A is needed for the cortical localization of NuMA and dynein during mitosis. Overall, our work demonstrates that Aurora A kinases and PP6 phosphatases have an ancient function in modulating spindle positioning, thus contributing to faithful cell division. PMID:27335426

  11. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    NASA Technical Reports Server (NTRS)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  12. Performance Testing of a Magnetically Suspended Double Gimbal Control Moment Gyro Based on the Single Axis Air Bearing Table

    PubMed Central

    Cui, Peiling; Zhang, Huijuan; Yan, Ning; Fang, Jiancheng

    2012-01-01

    Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG), a magnetically suspended DGCMG (MSDGCMG) is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the response bandwidth limit of the gimbal, a special MSDGCMG steering law is proposed subject to the limits of gimbal angle rate and angle acceleration. Finally, multiple experiments are carried out, with different MSDGCMG angular momenta as well as different desired attitude angles. The experimental results indicate that the MSDGCMG has a good gimbal angle rate and output torque tracking capabilities, and that the attitude stability with MSDGCMG as actuator is superior to 10−3°/s. The MSDGCMG performance testing in this paper, carried out under moving-base condition, will offer a technique base for the future research and application of MSDGCMGs. PMID:23012536

  13. Nap sleep spindle correlates of intelligence

    PubMed Central

    Ujma, Péter P.; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N.; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-01-01

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed. PMID:26607963

  14. Nap sleep spindle correlates of intelligence.

    PubMed

    Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-11-26

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.

  15. A comparison between the dimensions of positive transtibial residual limb molds prepared by air pressure casting and weight-bearing casting methods

    PubMed Central

    Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam

    2016-01-01

    Background: Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Methods: Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Results: Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). Conclusion: The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements. PMID:27390711

  16. Synchronization and Propagation of Global Sleep Spindles

    PubMed Central

    de Souza, Rafael Toledo Fernandes; Gerhardt, Günther Johannes Lewczuk; Schönwald, Suzana Veiga; Rybarczyk-Filho, José Luiz; Lemke, Ney

    2016-01-01

    Sleep spindles occur thousands of times during normal sleep and can be easily detected by visual inspection of EEG signals. These characteristics make spindles one of the most studied EEG structures in mammalian sleep. In this work we considered global spindles, which are spindles that are observed simultaneously in all EEG channels. We propose a methodology that investigates both the signal envelope and phase/frequency of each global spindle. By analysing the global spindle phase we showed that 90% of spindles synchronize with an average latency time of 0.1 s. We also measured the frequency modulation (chirp) of global spindles and found that global spindle chirp and synchronization are not correlated. By investigating the signal envelopes and implementing a homogeneous and isotropic propagation model, we could estimate both the signal origin and velocity in global spindles. Our results indicate that this simple and non-invasive approach could determine with reasonable precision the spindle origin, and allowed us to estimate a signal speed of 0.12 m/s. Finally, we consider whether synchronization might be useful as a non-invasive diagnostic tool. PMID:26963102

  17. Spindle Bursts in Neonatal Rat Cerebral Cortex

    PubMed Central

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J.

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  18. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    PubMed

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.

  19. Sympathetic innervation of human muscle spindles

    PubMed Central

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-01-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes. PMID:25994126

  20. Phase Transitions of Spindle-Associated Protein Regulate Spindle Apparatus Assembly

    PubMed Central

    Jiang, Hao; Wang, Shusheng; Huang, Yuejia; He, Xiaonan; Cui, Honggang; Zhu, Xueliang; Zheng, Yixian

    2015-01-01

    Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks. PMID:26388440

  1. The Case of the Disappearing Spindle Burst

    PubMed Central

    Tiriac, Alexandre; Blumberg, Mark S.

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  2. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  3. Design, development and evaluation of a precision air bearing rotary table with large diameter through-hole

    SciTech Connect

    Accatino, M.R.

    1991-11-01

    A large diameter precision air bearing rotary table with a 16.0 inch diameter through-hole was designed, fabricated and tested in the course of this research. The rotary table will be used in conjunction with a specialized, computer controlled precision inspection machine being designed for the Department of Energy`s (DOE) Nuclear Weapons Complex (NWC). The design process included a complete engineering analysis to predict the final performance of the rotary table, and to ensure that the rotary table meets the required accuracy of 4.0 microinches of total radial (3.5 microinches average radial) and 4.0 microinches total axial (3.5 microinches average axial) errors. The engineering analysis included structural deformation, thermal sensitivity and dynamic analyses using finite element methods in some cases, as well as other analytic solutions. Comparisons are made between predicted and tested values, which are listed in the rotary table error budget. The rotary table performed as predicted with measured axial and radial stiffnesses of 1.1E06 lbf/inch and 2.9E06 lbf/inch, respectively, as well as average radial, axial and tilt errors of 2.5 microinches, 1.5 microinches, and less than 0.05 arcseconds, respectively.

  4. Foil bearings

    NASA Astrophysics Data System (ADS)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  5. Foil bearings

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  6. Mechanical design principles of a mitotic spindle.

    PubMed

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-12-18

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.

  7. Mechanical design principles of a mitotic spindle

    PubMed Central

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-01-01

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This ‘pushing’ mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length. DOI: http://dx.doi.org/10.7554/eLife.03398.001 PMID:25521247

  8. Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint.

    PubMed

    Chen, Jing; Liu, Jian

    2016-09-01

    Chromosome segregation during mitosis hinges on proper assembly of the microtubule spindle that establishes bipolar attachment to each chromosome. Experiments demonstrate allometry of mitotic spindles and a universal scaling relationship between spindle size and cell size across metazoans, which indicates a conserved principle of spindle assembly at play during evolution. However, the nature of this principle is currently unknown. Researchers have focused on deriving the mechanistic underpinning of the size scaling from the mechanical aspects of the spindle assembly process. In this work we take a different standpoint and ask: What is the size scaling for? We address this question from the functional perspectives of spindle assembly checkpoint (SAC). SAC is the critical surveillance mechanism that prevents premature chromosome segregation in the presence of unattached or misattached chromosomes. The SAC signal gets silenced after and only after the last chromosome-spindle attachment in mitosis. We previously established a model that explains the robustness of SAC silencing based on spindle-mediated spatiotemporal regulation of SAC proteins. Here, we refine the previous model, and find that robust and timely SAC silencing entails proper size scaling of mitotic spindle. This finding provides, to our knowledge, a novel, function-oriented angle toward understanding the observed spindle allometry, and the universal scaling relationship between spindle size and cell size in metazoans. In a broad sense, the functional requirement of robust SAC silencing could have helped shape the spindle assembly mechanism in evolution. PMID:27602734

  9. Numerical Simulation of the Slider Air Bearing Problem of Hard Disk Drives by Two Multidimensional Upwind Residual Distribution Schemes over Unstructured Triangular Meshes

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Bogy, D. B.

    2001-09-01

    In this paper we present two multigrid numerical schemes over unstructured triangular meshes that solve the slider air bearing problem of hard disk drives. For each fixed slider attitude, the air bearing pressure is obtained by solving the generalized Reynolds equation. The convection part of the equation is modeled in one scheme by the PSI multidimensional upwind residual distribution approach and in the other scheme by the SUPG finite element approach cast in residual distribution form. In both schemes, a linear Galerkin method is used to discretize the diffusion terms. In addition, a non-nested multigrid iteration technique is used to speed up the convergence rate. Finally, the balanced steady state flying attitude of the slider subject to pre-applied suspension force and torques is obtained by a Quasi-Newton iteration method (Broyden's method), and the results of the numerical solutions are compared to each other and to experimental data.

  10. Ionic effects on spindle adaptation

    PubMed Central

    Husmark, I.; Ottoson, D.

    1971-01-01

    1. Effects of changes in ionic environment on the receptor potential were studied in isolated frog spindle. Particular attention was focused on the action of potassium removal on the early adaptive decline of the response. 2. Removal of potassium caused a reduction and final disappearance of the dynamic overshoot of the receptor potential. The static phase of the response was also reduced although to less extent. The repolarization phase of the response following release of phasic or maintained stretch was greatly prolonged. 3. Increased potassium concentration caused a reduction of the response, but did not change its general time course. The amount of reduction was related to the potassium concentration. 4. Removal of sodium caused a marked diminution of the response, the static phase being in general more affected than the dynamic phase. 5. It is suggested that the effects of potassium removal are caused by a delay in sodium inactivation and a partial depolarization of the endings. It is concluded that the greater part of the early adaptation of the spindle proper may be attributed to ionic mechanisms in the transducer membrane. PMID:4256546

  11. CDK-1 inhibits meiotic spindle shortening and dynein-dependent spindle rotation in C. elegans.

    PubMed

    Ellefson, Marina L; McNally, Francis J

    2011-06-27

    In animals, the female meiotic spindle is positioned at the egg cortex in a perpendicular orientation to facilitate the disposal of half of the chromosomes into a polar body. In Caenorhabditis elegans, the metaphase spindle lies parallel to the cortex, dynein is dispersed on the spindle, and the dynein activators ASPM-1 and LIN-5 are concentrated at spindle poles. Anaphase-promoting complex (APC) activation results in dynein accumulation at spindle poles and dynein-dependent rotation of one spindle pole to the cortex, resulting in perpendicular orientation. To test whether the APC initiates spindle rotation through cyclin B-CDK-1 inactivation, separase activation, or degradation of an unknown dynein inhibitor, CDK-1 was inhibited with purvalanol A in metaphase-I-arrested, APC-depleted embryos. CDK-1 inhibition resulted in the accumulation of dynein at spindle poles and dynein-dependent spindle rotation without chromosome separation. These results suggest that CDK-1 blocks rotation by inhibiting dynein association with microtubules and with LIN-5-ASPM-1 at meiotic spindle poles and that the APC promotes spindle rotation by inhibiting CDK-1.

  12. Chromosome misalignments induce spindle-positioning defects.

    PubMed

    Tame, Mihoko A; Raaijmakers, Jonne A; Afanasyev, Pavel; Medema, René H

    2016-03-01

    Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus-end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein-dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP-170 or CENP-E depletion or by noscapine treatment are similarly accompanied by severe spindle-positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re-establishes proper spindle orientation. Hence, KT-enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis. PMID:26882550

  13. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  14. Bending fatigue of electron-beam-welded foils. Application to a hydrodynamic air bearing in the Chrysler/DOE upgraded automotive gas tubine engine

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1984-01-01

    A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).

  15. A single internal telomere tract ensures meiotic spindle formation

    PubMed Central

    Tomita, Kazunori; Bez, Cécile; Fennell, Alex; Cooper, Julia Promisel

    2013-01-01

    Contact between telomeres and the fission yeast spindle pole body during meiotic prophase is crucial for subsequent spindle assembly, but the feature of telomeres that confers their ability to promote spindle formation remains mysterious. Here we show that while strains harbouring circular chromosomes devoid of telomere repeat tracts undergo aberrant meiosis with defective spindles, the insertion of a single internal telomere repeat stretch rescues the spindle defects. Moreover, the telomeric overhang-binding protein Pot1 is dispensable for rescue of spindle formation. Hence, an inherent feature of the double-strand telomeric region endows telomeres with the capacity to promote spindle formation. PMID:23295325

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. [Spindle-shaped hemangioma: an unusual location].

    PubMed

    Nasreddine, Fatima Zahra; Baghad, Bouchra; Chiheb, Soumiya

    2016-01-01

    Spindle cell hemangioma, formerly known as spindle cell hemangioendothelioma, was described by Weiss and Enzinger in 1986. Since the advent of immunohistochemical studies it is no longer considered as low grade angiosarcoma. It is a benign vascular tumor It almost exclusively affects the dermis at the distal ends. We report the first case of a patient with spindle cell hemangioma located in the scapular, breast, thighs and mandibular area. According to the literature, only 9 cases located in the head and neck were reported. We report a new case of this rare and poorly understood entity that can be confused with malignant tumors. Our patient suffered from spindle cell hemangioma located in the scapular, breast, thighs and mandibular area. He underwent excisional biopsy. The evolution was favorable with 6-month follow up, without relapse. PMID:27642429

  18. A newly conceived cylinder measuring machine and methods that eliminate the spindle errors

    NASA Astrophysics Data System (ADS)

    Vissiere, A.; Nouira, H.; Damak, M.; Gibaru, O.; David, J.-M.

    2012-09-01

    Advanced manufacturing processes require improving dimensional metrology applications to reach a nanometric accuracy level. Such measurements may be carried out using conventional highly accurate roundness measuring machines. On these machines, the metrology loop goes through the probing and the mechanical guiding elements. Hence, external forces, strain and thermal expansion are transmitted to the metrological structure through the supporting structure, thereby reducing measurement quality. The obtained measurement also combines both the motion error of the guiding system and the form error of the artifact. Detailed uncertainty budgeting might be improved, using error separation methods (multi-step, reversal and multi-probe error separation methods, etc), enabling identification of the systematic (synchronous or repeatable) guiding system motion errors as well as form error of the artifact. Nevertheless, the performance of this kind of machine is limited by the repeatability level of the mechanical guiding elements, which usually exceeds 25 nm (in the case of an air bearing spindle and a linear bearing). In order to guarantee a 5 nm measurement uncertainty level, LNE is currently developing an original machine dedicated to form measurement on cylindrical and spherical artifacts with an ultra-high level of accuracy. The architecture of this machine is based on the ‘dissociated metrological technique’ principle and contains reference probes and cylinder. The form errors of both cylindrical artifact and reference cylinder are obtained after a mathematical combination between the information given by the probe sensing the artifact and the information given by the probe sensing the reference cylinder by applying the modified multi-step separation method.

  19. Lipoma of the Thumb: Spindle Cell Subtype

    PubMed Central

    El Rayes, Johnny; Bou Sader, Roula; Saliba, Elie

    2016-01-01

    We report hereby the case of a 61-year-old man who presented with a soft-tissue swelling on the palmar aspect of the thumb. A detailed clinical examination followed by ultrasonography and excisional biopsy confirmed a spindle cell lipoma. Lipomas are rare in the hand and exceptional in the fingers, and we report, to our knowledge, the first spindle cell lipoma in the thumb to help in the differential diagnosis of a similar swelling. PMID:27088022

  20. Tipping the spindle into the right position.

    PubMed

    Akhmanova, Anna; van den Heuvel, Sander

    2016-05-01

    The position of the mitotic spindle determines the cleavage plane in animal cells, but what controls spindle positioning? Kern et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201510117) demonstrate that the microtubule plus end-associated SKAP/Astrin complex participates in this process, possibly by affecting dynein-dependent pulling forces exerted on the tips of astral microtubules. PMID:27138251

  1. Mitotic spindle studied using picosecond laser scissors

    NASA Astrophysics Data System (ADS)

    Baker, N. M.; Botvinick, E. L.; Shi, Linda; Berns, M. B.; Wu, George

    2006-08-01

    In previous studies we have shown that the second harmonic 532 nm, from a picosecond frequency doubled Nd:YAG laser, can cleanly and selectively disrupt spindle fiber microtubules in live cells (Botvinick et al 2004, Biophys. J. 87:4303-4212). In the present study we have ablated different locations and amounts of the metaphase mitotic spindle, and followed the cells in order to observe the fate of the irradiated spindle and the ability of the cell to continue through mitosis. Cells of the rat kangaroo line (PTK2) were stably transfected by ECFP-tubulin and, using fluorescent microscopy and the automated RoboLase microscope, (Botvinick and Berns, 2005, Micros. Res. Tech. 68:65-74) brightly fluorescent individual cells in metaphase were irradiated with 0.2447 nJ/micropulse corresponding to an irradiance of 1.4496*10^7 J/(ps*cm^2) . Upon irradiation the exposed part of the mitotic spindle immediately lost fluorescence and the following events were observed in the cells over time: (1) immediate contraction of the spindle pole towards the cut, (2) recovery of connection between pole and cut microtubule, (3) completion of mitosis. This system should be very useful in studying internal cellular dynamics of the mitotic spindle.

  2. Mechanical stability of bipolar spindle assembly

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Muhuri, Sudipto

    2016-07-01

    Assembly and stability of mitotic spindle are governed by the interplay of various intra-cellular forces, e.g. the forces generated by motor proteins by sliding overlapping anti-parallel microtubules (MTs) polymerized from the opposite centrosomes, the interaction of kinetochores with MTs, and the interaction of MTs with the chromosome arms. We study the mechanical behavior and stability of spindle assembly within the framework of a minimal model which includes all these effects. For this model, we derive a closed-form analytical expression for the force acting between the centrosomes as a function of their separation distance and we show that an effective potential can be associated with the interactions at play. We obtain the stability diagram of spindle formation in terms of parameters characterizing the strength of motor sliding, repulsive forces generated by polymerizing MTs, and the forces arising out of the interaction of MTs with kinetochores. The stability diagram helps in quantifying the relative effects of the different interactions and elucidates the role of motor proteins in formation and inhibition of spindle structures during mitotic cell division. We also predict a regime of bistability for a certain parameter range, wherein the spindle structure can be stable for two different finite separation distances between centrosomes. This occurrence of bistability also suggests the mechanical versatility of such self-assembled spindle structures.

  3. Rotordynamic Influence on Rolling ELement Bearing Selection and Operation

    NASA Technical Reports Server (NTRS)

    Queitzsch, Gilbert K., Jr.; Fleming, David P.

    2001-01-01

    Three case studies are presented that illustrate the importance of dynamic considerations in the design of machinery supported by rolling element bearings. The first case concerns a milling spindle that experienced internal rubs and high bearing loads, and required retrofit of an additional . damped bearing. The second case deals with a small high-speed generator that suffered high vibration due to flexible mounting. The third case is a propulsion fan simulator rig whose bearings failed catastrophically due to improper bearing installation (which resulted in inadequate dynamic bearing stiffness) and lack of health monitoring instrumentation.

  4. Mitosis: spindle evolution and the matrix model.

    PubMed

    Pickett-Heaps, Jeremy; Forer, Art

    2009-03-01

    Current spindle models explain "anaphase A" (movement of chromosomes to the poles) in terms of a motility system based solely on microtubules (MTs) and that functions in a manner unique to mitosis. We find both these propositions unlikely. An evolutionary perspective suggests that when the spindle evolved, it should have come to share not only components (e.g., microtubules) of the interphase cell but also the primitive motility systems available, including those using actin and myosin. Other systems also came to be involved in the additional types of motility that now accompany mitosis in extant spindles. The resultant functional redundancy built reliability into this critical and complex process. Such multiple mechanisms are also confusing to those who seek to understand how chromosomes move. Narrowing this commentary down to just anaphase A, we argue that the spindle matrix participates with MTs in anaphase A and that this matrix may contain actin and myosin. The diatom spindle illustrates how such a system could function. This matrix may be motile and work in association with the MT cytoskeleton, as it does with the actin cytoskeleton during cell ruffling and amoeboid movement. Instead of pulling the chromosome polewards, the kinetochore fibre's role might be to slow polewards movement to allow correct chromosome attachment to the spindle. Perhaps the earliest eukaryotic cell was a cytoplast organised around a radial MT cytoskeleton. For cell division, it separated into two cytoplasts via a spindle of overlapping MTs. Cytokinesis was actin-based cleavage. As chromosomes evolved into individual entities, their interaction with the dividing cytoplast developed into attachment of the kinetochore to radial (cytoplast) MTs. We believe it most likely that cytoplasmic motility systems participated in these events. PMID:19255823

  5. Purification of fluorescently labeled Saccharomyces cerevisiae Spindle Pole Bodies

    PubMed Central

    Davis, Trisha N.

    2016-01-01

    Centrosomes are components of the mitotic spindle responsible for organizing microtubules and establishing a bipolar spindle for accurate chromosome segregation. In budding yeast, Saccharomyces cerevisiae, the centrosome is called the spindle pole body, a highly organized tri-laminar structure embedded in the nuclear envelope. Here we describe a detailed protocol for the purification of fluorescently labeled spindle pole bodes from S. cerevisiae. Spindle pole bodies are purified from yeast using a TAP-tag purification followed by velocity sedimentation. This highly reproducible TAP-tag purification method improves upon previous techniques and expands the scope of in vitro characterization of yeast spindle pole bodies. The genetic flexibility of this technique allows for the study of spindle pole body mutants as well as the study of spindle pole bodies during different stages of the cell cycle. The ease and reproducibility of the technique makes it possible to study spindle pole bodies using a variety of biochemical, biophysical, and microscopic techniques. PMID:27193850

  6. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  7. Fluid-film foil bearings control engine heat

    NASA Astrophysics Data System (ADS)

    O'Connor, Leo

    1993-05-01

    The state-of-the-art of fluid-film foil bearings and their current and prospective applications are briefly reviewed. In particular, attention is given to the general design of fluid-film foil bearings, the materials used, and bearing performance. The applications discussed include launch vehicle turbopumps, turbines used to cool aircraft cabins, and turbocompressors and turboexpanders used in the processing of cryogenic fluids. Future applications may include turbochargers, textile spindles, cryocoolers, motor blowers, heat pumps, and solar chillers.

  8. Sleep Spindles as Facilitators of Memory Formation and Learning

    PubMed Central

    Ulrich, Daniel

    2016-01-01

    Over the past decades important progress has been made in understanding the mechanisms of sleep spindle generation. At the same time a physiological role of sleep spindles is starting to be revealed. Behavioural studies in humans and animals have found significant correlations between the recall performance in different learning tasks and the amount of sleep spindles in the intervening sleep. Concomitant neurophysiological experiments showed a close relationship between sleep spindles and other sleep related EEG rhythms as well as a relationship between sleep spindles and synaptic plasticity. Together, there is growing evidence from several disciplines in neuroscience for a participation of sleep spindles in memory formation and learning. PMID:27119026

  9. Do All Dinoflagellates have an Extranuclear Spindle?

    PubMed

    Moon, Eunyoung; Nam, Seung Won; Shin, Woongghi; Park, Myung Gil; Coats, D Wayne

    2015-11-01

    The syndinean dinoflagellates are a diverse assemblage of alveolate endoparasites that branch basal to the core dinoflagellates. Because of their phylogenetic position, the syndineans are considered key model microorganisms in understanding early evolution in the dinoflagellates. Closed mitosis with an extranuclear spindle that traverses the nucleus in cytoplasmic grooves or tunnels is viewed as one of the morphological features shared by syndinean and core dinoflagellates. Here we describe nuclear morphology and mitosis in the syndinean dinoflagellate Amoebophrya sp. from Akashiwo sanguinea, a member of the A. ceratii complex, as revealed by protargol silver impregnation, DNA specific fluorochromes, and transmission electron microscopy. Our observations show that not all species classified as dinoflagellates have an extranuclear spindle. In Amoebophrya sp. from A. sanguinea, an extranuclear microtubule cylinder located in a depression in the nuclear surface during interphase moves into the nucleoplasm via sequential membrane fusion events and develops into an entirely intranuclear spindle. Results suggest that the intranuclear spindle of Amoebophrya spp. may have evolved from an ancestral extranuclear spindle and indicate the need for taxonomic revision of the Amoebophryidae. PMID:26491972

  10. Muscle spindle and fusimotor activity in locomotion.

    PubMed

    Ellaway, Peter H; Taylor, Anthony; Durbaba, Rade

    2015-08-01

    Mammals may exhibit different forms of locomotion even within a species. A particular form of locomotion (e.g. walk, run, bound) appears to be selected by supraspinal commands, but the precise pattern, i.e. phasing of limbs and muscles, is generated within the spinal cord by so-called central pattern generators. Peripheral sense organs, particularly the muscle spindle, play a crucial role in modulating the central pattern generator output. In turn, the feedback from muscle spindles is itself modulated by static and dynamic fusimotor (gamma) neurons. The activity of muscle spindle afferents and fusimotor neurons during locomotion in the cat is reviewed here. There is evidence for some alpha-gamma co-activation during locomotion involving static gamma motoneurons. However, both static and dynamic gamma motoneurons show patterns of modulation that are distinct from alpha motoneuron activity. It has been proposed that static gamma activity may drive muscle spindle secondary endings to signal the intended movement to the central nervous system. Dynamic gamma motoneuron drive appears to prime muscle spindle primary endings to signal transitions in phase of the locomotor cycle. These findings come largely from reduced animal preparations (decerebrate) and require confirmation in freely moving intact animals. PMID:26047022

  11. Muscle spindle and fusimotor activity in locomotion.

    PubMed

    Ellaway, Peter H; Taylor, Anthony; Durbaba, Rade

    2015-08-01

    Mammals may exhibit different forms of locomotion even within a species. A particular form of locomotion (e.g. walk, run, bound) appears to be selected by supraspinal commands, but the precise pattern, i.e. phasing of limbs and muscles, is generated within the spinal cord by so-called central pattern generators. Peripheral sense organs, particularly the muscle spindle, play a crucial role in modulating the central pattern generator output. In turn, the feedback from muscle spindles is itself modulated by static and dynamic fusimotor (gamma) neurons. The activity of muscle spindle afferents and fusimotor neurons during locomotion in the cat is reviewed here. There is evidence for some alpha-gamma co-activation during locomotion involving static gamma motoneurons. However, both static and dynamic gamma motoneurons show patterns of modulation that are distinct from alpha motoneuron activity. It has been proposed that static gamma activity may drive muscle spindle secondary endings to signal the intended movement to the central nervous system. Dynamic gamma motoneuron drive appears to prime muscle spindle primary endings to signal transitions in phase of the locomotor cycle. These findings come largely from reduced animal preparations (decerebrate) and require confirmation in freely moving intact animals.

  12. Spindle Assembly and Chromosome Segregation Requires Central Spindle Proteins in Drosophila Oocytes.

    PubMed

    Das, Arunika; Shah, Shital J; Fan, Bensen; Paik, Daniel; DiSanto, Daniel J; Hinman, Anna Maria; Cesario, Jeffry M; Battaglia, Rachel A; Demos, Nicole; McKim, Kim S

    2016-01-01

    Oocytes segregate chromosomes in the absence of centrosomes. In this situation, the chromosomes direct spindle assembly. It is still unclear in this system which factors are required for homologous chromosome bi-orientation and spindle assembly. The Drosophila kinesin-6 protein Subito, although nonessential for mitotic spindle assembly, is required to organize a bipolar meiotic spindle and chromosome bi-orientation in oocytes. Along with the chromosomal passenger complex (CPC), Subito is an important part of the metaphase I central spindle. In this study we have conducted genetic screens to identify genes that interact with subito or the CPC component Incenp. In addition, the meiotic mutant phenotype for some of the genes identified in these screens were characterized. We show, in part through the use of a heat-shock-inducible system, that the Centralspindlin component RacGAP50C and downstream regulators of cytokinesis Rho1, Sticky, and RhoGEF2 are required for homologous chromosome bi-orientation in metaphase I oocytes. This suggests a novel function for proteins normally involved in mitotic cell division in the regulation of microtubule-chromosome interactions. We also show that the kinetochore protein, Polo kinase, is required for maintaining chromosome alignment and spindle organization in metaphase I oocytes. In combination our results support a model where the meiotic central spindle and associated proteins are essential for acentrosomal chromosome segregation.

  13. A unique set of centrosome proteins requires Pericentrin for spindle-pole localization and spindle orientation

    PubMed Central

    Farkas, Debby; Zheng, Guoqiang; Redick, Sambra D.; Hung, Hui-Fang; Samtani, Rajeev; Jurczyk, Agata; Akbarian, Schahram; Wise, Carol; Jackson, Andrew; Bober, Michael; Guo, Yin

    2014-01-01

    SUMMARY Majewski Osteodysplastic Primordial Dwarfism type II (MOPDII) is caused by mutations in the centrosome gene pericentrin (PCNT) which lead to severe pre- and post-natal growth retardation[1]. As in MOPDII patients, disruption of pericentrin (Pcnt) in mice caused a number of abnormalities including microcephaly, aberrant hemodynamics analyzed by in utero echocardiography and cardiovascular anomalies; the latter being associated with mortality, as in the human condition[1]. To identify the mechanisms underlying these defects, we tested for changes in cell and molecular function. All Pcnt−/− mouse tissues and cells examined showed spindle misorientation. This mouse phenotype was associated with misdirected ventricular septal growth in the heart, decreased proliferative symmetric divisions in brain neural progenitors and increased misoriented divisions in fibroblasts; the same phenotype was seen in fibroblasts from three MOPDII individuals. Misoriented spindles were associated with disrupted astral microtubules and near complete loss of a unique set of centrosome proteins from spindle poles (ninein, Cep215, centriolin). All these proteins appear to be crucial for microtubule anchoring and all interacted with Pcnt, suggesting that Pcnt serves as a molecular scaffold for this functionally-linked set of spindle pole proteins. Importantly, Pcnt disruption had no detectable effect on localization of proteins involved in the cortical polarity pathway (NuMA, p150glued, aPKC). Not only do these data reveal a spindle-pole-localized complex for spindle orientation, but they identify key spindle symmetry proteins involved in the pathogenesis of MOPDII. PMID:25220058

  14. A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation.

    PubMed

    Chen, Chun-Ting; Hehnly, Heidi; Yu, Qing; Farkas, Debby; Zheng, Guoqiang; Redick, Sambra D; Hung, Hui-Fang; Samtani, Rajeev; Jurczyk, Agata; Akbarian, Schahram; Wise, Carol; Jackson, Andrew; Bober, Michael; Guo, Yin; Lo, Cecilia; Doxsey, Stephen

    2014-10-01

    Majewski osteodysplastic primordial dwarfism type II (MOPDII) is caused by mutations in the centrosome gene pericentrin (PCNT) that lead to severe pre- and postnatal growth retardation. As in MOPDII patients, disruption of pericentrin (Pcnt) in mice caused a number of abnormalities including microcephaly, aberrant hemodynamics analyzed by in utero echocardiography, and cardiovascular anomalies; the latter being associated with mortality, as in the human condition. To identify the mechanisms underlying these defects, we tested for changes in cell and molecular function. All Pcnt(-/-) mouse tissues and cells examined showed spindle misorientation. This mouse phenotype was associated with misdirected ventricular septal growth in the heart, decreased proliferative symmetric divisions in brain neural progenitors, and increased misoriented divisions in fibroblasts; the same phenotype was seen in fibroblasts from three MOPDII individuals. Misoriented spindles were associated with disrupted astral microtubules and near complete loss of a unique set of centrosome proteins from spindle poles (ninein, Cep215, centriolin). All these proteins appear to be crucial for microtubule anchoring and all interacted with Pcnt, suggesting that Pcnt serves as a molecular scaffold for this functionally linked set of spindle pole proteins. Importantly, Pcnt disruption had no detectable effect on localization of proteins involved in the cortical polarity pathway (NuMA, p150(glued), aPKC). Not only do these data reveal a spindle-pole-localized complex for spindle orientation, but they identify key spindle symmetry proteins involved in the pathogenesis of MOPDII. PMID:25220058

  15. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    PubMed

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.

  16. The microtubules dance and the spindle poles swing.

    PubMed

    Munro, Edwin

    2007-05-01

    Using live imaging and computer simulation, Kozlowski et al. (2007) show that an interplay between spindle pole movements, microtubule dynamics, and microtubule bending contribute to asymmetric spindle placement in the C. elegans embryo. PMID:17482539

  17. Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans.

    PubMed

    Crowder, Marina E; Flynn, Jonathan R; McNally, Karen P; Cortes, Daniel B; Price, Kari L; Kuehnert, Paul A; Panzica, Michelle T; Andaya, Armann; Leary, Julie A; McNally, Francis J

    2015-09-01

    Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin.

  18. Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans

    PubMed Central

    Crowder, Marina E.; Flynn, Jonathan R.; McNally, Karen P.; Cortes, Daniel B.; Price, Kari L.; Kuehnert, Paul A.; Panzica, Michelle T.; Andaya, Armann; Leary, Julie A.; McNally, Francis J.

    2015-01-01

    Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin. PMID:26133383

  19. High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1980-01-01

    coating combinations were developed for compliant surface bearings and journals to be used in an automotive gas turbine engine. The coatings were able to withstand the sliding start/stops during rotor liftoff and touchdown and occasional short time, high speed rubs under representative loading of the engine. Some dozen coating variations of CdO-graphite, Cr2O3 (by sputtering) and CaF2 (plasma sprayed) were identified. The coatings were optimized and they were examined for stoichiometry, metallurgical condition, and adhesion. Sputtered Cr2O3 was most adherent when optimum parameters were used and it was applied on an annealed (soft) substrate. Metallic binders and interlayers were used to improve the ductility and the adherence.

  20. Sustaining the spindle assembly checkpoint to improve cancer therapy.

    PubMed

    Visconti, Roberta; Della Monica, Rosa; Grieco, Domenico

    2016-01-01

    To prevent chromosome segregation errors, the spindle assembly checkpoint (SAC) delays mitosis exit until proper spindle assembly. We found that the FCP1 phosphatase and its downstream target WEE1 kinase oppose the SAC, promoting mitosis exit despite malformed spindles. We further showed that targeting this pathway might be useful for cancer therapy. PMID:27308561

  1. Spindle Cell Sarcoma Presenting as Pancoast Syndrome.

    PubMed

    Badshah, Aliena; Khan, Salman; Saeed, Usman

    2016-07-01

    This report describes a patient who presented with pancoast syndrome, secondary to spindle cell sarcoma of the lung. A 56-year man presented with dyspnea, engorged neck veins and bilateral upper limb pitting edema. The patient also had ptosis and miosis in the right eye. Right ulnar nerve palsy with atrophy of hand muscles was seen. His chest X-ray showed bilateral pleural effusion with an opacity involving the apex of the right lung along with mediastinal widening. Echocardiography revealed a pericardial effusion which was drained. The patient's CTscan of chest strongly suspected a malignant mass in right upper lobe with extensive mediastinal lymphadenopathy, pleural metastases and pericardial involvement. He was started on oxygen inhalation, dexamethasone, and clopidogrel. Bronchoscopic biopsy confirmed the diagnosis of spindle cell sarcoma. Meanwhile, he was advised radiotherapy. The tumour was not amenable to surgery. Spindle cell sarcoma is a rare connective tissue tumor that replicates rapidly. To the best of the authors' knowledge, it is hereby reported the first case of spindle cell sarcoma of the lung presenting as Pancoast syndrome. PMID:27504558

  2. Spinning Wool with a Hand Spindle.

    ERIC Educational Resources Information Center

    Kren, Margo

    1982-01-01

    Describes an eight-week program in which 8- to 14-year-olds learned to spin raw wool into yarn. Students observed wool shearing at a sheep farm, learned to prepare wool for spinning, and spun their own yarn. Detail directions for carding and use of hand spindles are included. (AM)

  3. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

    SciTech Connect

    Spurck, T.P.; Stonington, O.G.; Snyder, J.A.; Pickett-Heaps, J.D.; Bajer, A.; Mole-Bajer, J. )

    1990-10-01

    Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.

  4. Oxidation Behavior of Germanium- and/or Silicon-Bearing Near-α Titanium Alloys in Air

    NASA Astrophysics Data System (ADS)

    Kitashima, Tomonori; Yamabe-Mitarai, Yoko

    2015-06-01

    The effect of germanium (Ge) and/or silicon (Si) addition on the oxidation behavior of the near-α alloy Ti-5Al-2Sn-4Zr-2Mo was investigated in air at 973 K (700 °C). Ge addition decreased the oxidation resistance because of the formation of a Ge-rich layer in the substrate at the TiO2/substrate interface, enhancing Sn segregation at the interface. In addition, a small amount of Ge dissolved in the external Al2O3 layer. These results reduced the aluminum activity at the interface, suppressed the formation of Al2O3, and increased the diffusivity of oxygen in the oxide scales. The addition of 0.2 and 0.9 wt pct Si was beneficial for improving oxidation resistance. The effect of germanide and silicide precipitates in the matrix on the oxide growth process was also discussed.

  5. The kinesinlike protein Subito contributes to central spindle assembly and organization of the meiotic spindle in Drosophila oocytes.

    PubMed

    Jang, J K; Rahman, T; McKim, K S

    2005-10-01

    In the oocytes of many species, bipolar spindles form in the absence of centrosomes. Drosophila melanogaster oocyte chromosomes have a major role in nucleating microtubules, which precedes the bundling and assembly of these microtubules into a bipolar spindle. Here we present evidence that a region similar to the anaphase central spindle functions to organize acentrosomal spindles. Subito mutants are characterized by the formation of tripolar or monopolar spindles and nondisjunction of homologous chromosomes at meiosis I. Subito encodes a kinesinlike protein and associates with the meiotic central spindle, consistent with its classification in the Kinesin 6/MKLP1 family. This class of proteins is known to be required for cytokinesis, but our results suggest a new function in spindle formation. The meiotic central spindle appears during prometaphase and includes passenger complex proteins such as AurB and Incenp. Unlike mitotic cells, the passenger proteins do not associate with centromeres before anaphase. In the absence of Subito, central spindle formation is defective and AurB and Incenp fail to properly localize. We propose that Subito is required for establishing and/or maintaining the central spindle in Drosophila oocytes, and this substitutes for the role of centrosomes in organizing the bipolar spindle. PMID:16055508

  6. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  7. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  8. Kinase signaling in the spindle checkpoint.

    PubMed

    Kang, Jungseog; Yu, Hongtao

    2009-06-01

    The spindle checkpoint is a cell cycle surveillance system that ensures the fidelity of chromosome segregation. In mitosis, it elicits the "wait anaphase" signal to inhibit the anaphase-promoting complex or cyclosome until all chromosomes achieve bipolar microtubule attachment and align at the metaphase plate. Because a single kinetochore unattached to microtubules activates the checkpoint, the wait anaphase signal is thought to be generated by this kinetochore and is then amplified and distributed throughout the cell to inhibit the anaphase-promoting complex/cyclosome. Several spindle checkpoint kinases participate in the generation and amplification of this signal. Recent studies have begun to reveal the activation mechanisms of these checkpoint kinases. Increasing evidence also indicates that the checkpoint kinases not only help to generate the wait anaphase signal but also actively correct kinetochore-microtubule attachment defects. PMID:19228686

  9. Simplified Dynamic Analysis of Grinders Spindle Node

    NASA Astrophysics Data System (ADS)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  10. A Balance between Nuclear and Cytoplasmic Volumes Controls Spindle Length

    PubMed Central

    Novakova, Lucia; Kovacovicova, Kristina; Dang-Nguyen, Thanh Quang; Sodek, Martin; Skultety, Michal; Anger, Martin

    2016-01-01

    Proper assembly of the spindle apparatus is crucially important for faithful chromosome segregation during anaphase. Thanks to the effort over the last decades, we have very detailed information about many events leading to spindle assembly and chromosome segregation, however we still do not understand certain aspects, including, for example, spindle length control. When tight regulation of spindle size is lost, chromosome segregation errors emerge. Currently, there are several hypotheses trying to explain the molecular mechanism of spindle length control. The number of kinetochores, activity of molecular rulers, intracellular gradients, cell size, limiting spindle components, and the balance of the spindle forces seem to contribute to spindle size regulation, however some of these mechanisms are likely specific to a particular cell type. In search for a general regulatory mechanism, in our study we focused on the role of cell size and nuclear to cytoplasmic ratio in this process. To this end, we used relatively large cells isolated from 2-cell mouse embryos. Our results showed that the spindle size upper limit is not reached in these cells and suggest that accurate control of spindle length requires balanced ratio between nuclear and cytoplasmic volumes. PMID:26886125

  11. Physical Description of Mitotic Spindle Orientation During Cell Division

    NASA Astrophysics Data System (ADS)

    Jiménez-Dalmaroni, Andrea; Théry, Manuel; Racine, Victor; Bornens, Michel; Jülicher, Frank

    2009-03-01

    During cell division, the duplicated chromosomes are physically separated by the action of the mitotic spindle. The spindle is a dynamic structure of the cytoskeleton, which consists of two microtubule asters. Its orientation defines the axis along which the cell divides. Recent experiments show that the spindle orientation depends on the spatial distribution of cell adhesion sites. Here we show that the experimentally observed spindle orientation can be understood as the result of the action of cortical force generators acting on the spindle. We assume that the local activity of force generators is controlled by the spatial distribution of cell adhesion sites determined by the particular geometry of the adhesive substrate. We develop a simple physical description of the spindle mechanics, which allows us to calculate the torque acting on the spindle, as well as the energy profile and the angular distribution of spindle orientation. Our model accounts for the preferred spindle orientation, as well as the full shape of the angular distributions of spindle orientation observed in a large variety of pattern geometries. M. Th'ery, A. Jim'enez-Dalmaroni, et al., Nature 447, 493 (2007).

  12. Sleep spindles and intelligence: evidence for a sexual dimorphism.

    PubMed

    Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin

    2014-12-01

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males. PMID:25471574

  13. Sleep spindles and intelligence: evidence for a sexual dimorphism.

    PubMed

    Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin

    2014-12-01

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males.

  14. Journal bearing

    DOEpatents

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  15. The muscle spindle as a feedback element in muscle control

    NASA Technical Reports Server (NTRS)

    Andrews, L. T.; Iannone, A. M.; Ewing, D. J.

    1973-01-01

    The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.

  16. The spindle checkpoint and chromosome segregation in meiosis.

    PubMed

    Gorbsky, Gary J

    2015-07-01

    The spindle checkpoint is a key regulator of chromosome segregation in mitosis and meiosis. Its function is to prevent precocious anaphase onset before chromosomes have achieved bipolar attachment to the spindle. The spindle checkpoint comprises a complex set of signaling pathways that integrate microtubule dynamics, biomechanical forces at the kinetochores, and intricate regulation of protein interactions and post-translational modifications. Historically, many key observations that gave rise to the initial concepts of the spindle checkpoint were made in meiotic systems. In contrast with mitosis, the two distinct chromosome segregation events of meiosis present a special challenge for the regulation of checkpoint signaling. Preservation of fidelity in chromosome segregation in meiosis, controlled by the spindle checkpoint, also has a significant impact in human health. This review highlights the contributions from meiotic systems in understanding the spindle checkpoint as well as the role of checkpoint signaling in controlling the complex divisions of meiosis.

  17. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  18. The spindle checkpoint and chromosome segregation in meiosis

    PubMed Central

    Gorbsky, Gary J.

    2014-01-01

    The spindle checkpoint is a key regulator of chromosome segregation in mitosis and meiosis. Its function is to prevent precocious anaphase onset before chromosomes have achieved bipolar attachment to the spindle. The spindle checkpoint comprises a complex set of signaling pathways that integrate microtubule dynamics, biomechanical forces at the kinetochores, and intricate regulation of protein interactions and post-translational modifications. Historically, many key observations that gave rise to the initial concepts of the spindle checkpoint were carried out in meiotic systems. In contrast with mitosis, the two distinct chromosome segregation events of meiosis present a special challenge for the regulation of checkpoint signaling. Preservation of fidelity in chromosome segregation in meiosis, controlled by the spindle checkpoint, also has significant impact in human health. This review highlights the contributions from meiotic systems in understanding the spindle checkpoint as well as the role of checkpoint signaling in controlling the complex divisions of meiosis. PMID:25470754

  19. Self-Organization and Forces in the Mitotic Spindle.

    PubMed

    Pavin, Nenad; Tolić, Iva M

    2016-07-01

    At the onset of division, the cell forms a spindle, a precise self-constructed micromachine composed of microtubules and the associated proteins, which divides the chromosomes between the two nascent daughter cells. The spindle arises from self-organization of microtubules and chromosomes, whose different types of motion help them explore the space and eventually approach and interact with each other. Once the interactions between the chromosomes and the microtubules have been established, the chromosomes are moved to the equatorial plane of the spindle and ultimately toward the opposite spindle poles. These transport processes rely on directed forces that are precisely regulated in space and time. In this review, we discuss how microtubule dynamics and their rotational movement drive spindle self-organization, as well as how the forces acting in the spindle are generated, balanced, and regulated. PMID:27145873

  20. Rapid measurement of mitotic spindle orientation in cultured mammalian cells

    PubMed Central

    Decarreau, Justin; Driver, Jonathan; Asbury, Charles; Wordeman, Linda

    2014-01-01

    Summary Factors that influence the orientation of the mitotic spindle are important for the maintenance of stem cell populations and in cancer development. However, screening for these factors requires rapid quantification of alterations of the angle of the mitotic spindle in cultured cell lines. Here we describe a method to image mitotic cells and rapidly score the angle of the mitotic spindle using a simple MATLAB application to analyze a stack of Z-images. PMID:24633791

  1. Form and Function of Sleep Spindles across the Lifespan

    PubMed Central

    Clawson, Brittany C.; Durkin, Jaclyn; Aton, Sara J.

    2016-01-01

    Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function. PMID:27190654

  2. Grizzly bear

    USGS Publications Warehouse

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  3. Spindle Cell Lipoma of the Soft Palate

    PubMed Central

    Hançer, Ahmet; Özbay, Can; Karaarslan, Serap; Balaban, Muzaffer

    2015-01-01

    Intraoral spindle cell lipomas (SCL) are very rare and comprise ranging between 1.4%–9.8% of all intraoral lipomas. To our knowledge, no case of a SCL located on the soft palate has been reported in the English-language literature. A 31-year-old female was admitted with a swelling in her soft palate. On examination, a 3 cm sessile, nontender swelling was observed on her soft palate. After surgical excision, it was diagnosed as a SCL. PMID:25878917

  4. Targeting Alp7/TACC to the spindle pole body is essential for mitotic spindle assembly in fission yeast.

    PubMed

    Tang, Ngang Heok; Okada, Naoyuki; Fong, Chii Shyang; Arai, Kunio; Sato, Masamitsu; Toda, Takashi

    2014-08-25

    The conserved TACC protein family localises to the centrosome (the spindle pole body, SPB in fungi) and mitotic spindles, thereby playing a crucial role in bipolar spindle assembly. However, it remains elusive how TACC proteins are recruited to the centrosome/SPB. Here, using fission yeast Alp7/TACC, we have determined clustered five amino acid residues within the TACC domain required for SPB localisation. Critically, these sequences are essential for the functions of Alp7, including proper spindle formation and mitotic progression. Moreover, we have identified pericentrin-like Pcp1 as a loading factor to the mitotic SPB, although Pcp1 is not a sole platform.

  5. Targeting Alp7/TACC to the spindle pole body is essential for mitotic spindle assembly in fission yeast

    PubMed Central

    Tang, Ngang Heok; Okada, Naoyuki; Fong, Chii Shyang; Arai, Kunio; Sato, Masamitsu; Toda, Takashi

    2014-01-01

    The conserved TACC protein family localises to the centrosome (the spindle pole body, SPB in fungi) and mitotic spindles, thereby playing a crucial role in bipolar spindle assembly. However, it remains elusive how TACC proteins are recruited to the centrosome/SPB. Here, using fission yeast Alp7/TACC, we have determined clustered five amino acid residues within the TACC domain required for SPB localisation. Critically, these sequences are essential for the functions of Alp7, including proper spindle formation and mitotic progression. Moreover, we have identified pericentrin-like Pcp1 as a loading factor to the mitotic SPB, although Pcp1 is not a sole platform. PMID:24937146

  6. Heterogeneity of spindle units in the cat tenuissimus muscle.

    PubMed

    Kucera, J; Walro, J M

    1987-03-01

    Three tandem spindles and their nerve supplies, reconstructed by light microscopy of serial transverse sections of the cat tenuissimus muscle, were compared to single spindle units. Each tandem spindle consisted of one large unit containing a dynamic bag1, a static bag2, and several static chain fibers (b1b2c unit) linked by the bag2 fiber to a small unit containing only a bag2 and chain fibers (b2c unit). Most features of primary afferents, secondary afferents, and motor neurons were qualitatively and quantitatively similar in both single and tandem b1b2c units. However, b1b2c units of tandem spindles had a lower density of skeletofusimotor innervation than did single b1b2c spindles. The b2c spindle units differed greatly from single or tandem b1b2c units. The b2c spindle units had fewer intrafusal fibers and incoming axons than either the tandem or single b1b2c units. The motor innervation of b2c units was typified by nonselective gamma axons that coinnervated both bag2 and chain fibers, in contrast to the regular occurrence of both selective and nonselective motor axons in b1b2c spindle units. The afferent located at the equator of b2c units differed in size, branching pattern, and intrafusal distribution of its ending from both the primary and secondary sensory axons of b1b2c units and, therefore, might represent a third category of spindle afferent. Thus, cat tenuissimus muscles contain three types of spindle units that differ in the number and organization of muscular and neural elements. These differences in structure and neural organization among tenuissimus spindle units may be a source for generation of different sensory signals in response to common mechanical or fusimotor stimuli.

  7. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  8. Estimation of the in-plane vibrations of a rotating spindle, using out-of-plane laser vibrometry measurements

    NASA Astrophysics Data System (ADS)

    Tatar, Kourosh; Gren, Per

    2016-05-01

    A method for estimating the in-plane vibrations of a rotating spindle using out-of-plane laser vibrometry measurements is described. This method enables the possibility to obtain the two orthogonal radial vibration components of a rotating spindle. The method uses the fact that the laser vibrometer signal is a total surface velocity of the measurement point in the laser direction. Measurements are conducted on a rotating milling machine spindle. The spindle is excited in a controlled manner by an active magnetic bearing and the response is measured by laser vibrometer in one of the two orthogonal directions and inductive displacement sensors in two orthogonal directions simultaneously. The work shows how the laser vibrometry crosstalk can be used for resolving the in-plane vibration component, that is the vibrations in the laser vibrometer cross direction. The result is compared to independent measurement signals from the displacement sensors. The measurement method can be used for vibration measurements on rotating parts, for example, where there is lack of space for orthogonal measurements.

  9. Spindle assembly checkpoint: the third decade

    PubMed Central

    Musacchio, Andrea

    2011-01-01

    The spindle assembly checkpoint controls cell cycle progression during mitosis, synchronizing it with the attachment of chromosomes to spindle microtubules. After the discovery of the mitotic arrest deficient (MAD) and budding uninhibited by benzymidazole (BUB) genes as crucial checkpoint components in 1991, the second decade of checkpoint studies (2001–2010) witnessed crucial advances in the elucidation of the mechanism through which the checkpoint effector, the mitotic checkpoint complex, targets the anaphase-promoting complex (APC/C) to prevent progression into anaphase. Concomitantly, the discovery that the Ndc80 complex and other components of the microtubule-binding interface of kinetochores are essential for the checkpoint response finally asserted that kinetochores are crucial for the checkpoint response. Nevertheless, the relationship between kinetochores and checkpoint control remains poorly understood. Crucial advances in this area in the third decade of checkpoint studies (2011–2020) are likely to be brought about by the characterization of the mechanism of kinetochore recruitment, activation and inactivation of checkpoint proteins, which remains elusive for the majority of checkpoint components. Here, we take a molecular view on the main challenges hampering this task. PMID:22084386

  10. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A magnetic bearing for passively suspending a rotatable element subjected to axial and radial thrust forces is disclosed. The magnetic bearing employs a taut wire stretched along the longitudinal axis of the bearing between opposed end pieces and an intermediate magnetic section. The intermediate section is segmented to provide oppositely directed magnetic flux paths between the end pieces and may include either an axially polarized magnets interposed between the segments. The end pieces, separated from the intermediate section by air gaps, control distribution of magnetic flux between the intermediate section segments. Coaxial alignment of the end pieces with the intermediate section minimizes magnetic reluctance in the flux paths endowing the bearing with self-centering characteristics when subjected to radial loads. In an alternative embodiment, pairs of oppositely wound armature coils are concentrically interposed between segments of the intermediate section in concentric arcs adjacent to radially polarized magnets to equip a magnetic bearing as a torsion drive motor. The magnetic suspension bearing disclosed provides long term reliability without maintenance with application to long term space missions such as the VISSR/VAS scanning mirror instrument in the GOES program.

  11. Correlations between adolescent processing speed and specific spindle frequencies

    PubMed Central

    Nader, Rebecca S.; Smith, Carlyle T.

    2015-01-01

    Sleep spindles are waxing and waning thalamocortical oscillations with accepted frequencies of between 11 and 16 Hz and a minimum duration of 0.5 s. Our research has suggested that there is spindle activity in all of the sleep stages, and thus for the present analysis we examined the link between spindle activity (Stage 2, rapid eye movement (REM) and slow wave sleep (SWS)) and waking cognitive abilities in 32 healthy adolescents. After software was used to filter frequencies outside the desired range, slow spindles (11.00–13.50 Hz), fast spindles (13.51–16.00 Hz) and spindle-like activity (16.01–18.50 Hz) were observed in Stage 2, SWS and REM sleep. Our analysis suggests that these specific EEG frequencies were significantly related to processing speed, which is one of the subscales of the intelligence score, in adolescents. The relationship was prominent in SWS and REM sleep. Further, the spindle-like activity (16.01–18.50 Hz) that occurred during SWS was strongly related to processing speed. Results suggest that the ability of adolescents to respond to tasks in an accurate, efficient and timely manner is related to their sleep quality. These findings support earlier research reporting relationships between learning, learning potential and sleep spindle activity in adults and adolescents. PMID:25709575

  12. Towards a quantitative understanding of mitotic spindle assembly and mechanics

    PubMed Central

    Mogilner, Alex; Craig, Erin

    2010-01-01

    The ‘simple’ view of the mitotic spindle is that it self-assembles as a result of microtubules (MTs) randomly searching for chromosomes, after which the spindle length is maintained by a balance of outward tension exerted by molecular motors on the MTs connecting centrosomes and chromosomes, and compression generated by other motors on the MTs connecting the spindle poles. This picture is being challenged now by mounting evidence indicating that spindle assembly and maintenance rely on much more complex interconnected networks of microtubules, molecular motors, chromosomes and regulatory proteins. From an engineering point of view, three design principles of this molecular machine are especially important: the spindle assembles quickly, it assembles accurately, and it is mechanically robust – yet malleable. How is this design achieved with randomly interacting and impermanent molecular parts? Here, we review recent interdisciplinary studies that have started to shed light on this question. We discuss cooperative mechanisms of spindle self-assembly, error correction and maintenance of its mechanical properties, speculate on analogy between spindle and lamellipodial dynamics, and highlight the role of quantitative approaches in understanding the mitotic spindle design. PMID:20930139

  13. Kinetochore components are required for central spindle assembly

    PubMed Central

    Maton, Gilliane; Edwards, Frances; Lacroix, Benjamin; Stefanutti, Marine; Laband, Kimberley; Lieury, Tiffany; Kim, Taekyung; Espeut, Julien; Canman, Julie C.; Dumont, Julien

    2015-01-01

    A critical structure poised to coordinate chromosome segregation with division plane specification is the central spindle that forms between separating chromosomes after anaphase onset1, 2. The central spindle acts as a signaling center that concentrates proteins essential for division plane specification and contractile ring constriction3. However, the molecular mechanisms that control the initial stages of central spindle assembly remain elusive. Using Caenorhabditis elegans zygotes, we found that the microtubule bundling protein SPD-1PRC1 and the motor ZEN-4MKLP-1 are required for proper central spindle structure during its elongation4-9. By contrast, we found that the kinetochore controls the initiation of central spindle assembly. Specifically, central spindle microtubule assembly is dependent upon kinetochore recruitment of the scaffold protein KNL-1, as well as downstream partners BUB-1, HCP-1/2CENP-F, and CLS-2CLASP; and is negatively regulated by kinetochore-associated protein phosphatase 1 (PP1) activity. This in turn promotes central spindle localization of CLS-2CLASP and initial central spindle microtubule assembly through its microtubule polymerase activity. Together, our results reveal an unexpected role for a conserved kinetochore protein network in coupling two critical events of cell division: chromosome segregation and cytokinesis. PMID:25866924

  14. A new design for a high speed spindle

    SciTech Connect

    Weck, M.; Fischer, S.; Holster, P.; Carlisle, K.; Chen, Y.

    1996-12-31

    Precision grinding and micromachining both impose high demands on the machine behavior, since the achievable workpiece accuracy is determined not only by the technological parameters but also by the characteristics of the applicated machine components. Ultraprecision surface quality and the mechanical fabrication of structures in the micron range can only be achieved by using machine tools which have appropriate spindles. Structures cannot be manufactured using spindle types of which the radial error motion is greater than the level of contour accuracy or surface roughness required. In addition, the spindle speed is an important value. Not only a certain cutting speed is needed from the technological point of view, but also the machining time required for microstructuring surfaces is reduced by deploying a high frequency spindle, thereby increasing the economic efficiency of the technique. Hence, the main purpose of the project was to develop a high speed spindle with properties concerning accuracy, speed and stiffness beyond commercially available ones.

  15. Centrosomes and spindles in ascidian embryos and eggs.

    PubMed

    McDougall, Alex; Chenevert, Janet; Pruliere, Gerard; Costache, Vlad; Hebras, Celine; Salez, Gregory; Dumollard, Remi

    2015-01-01

    During embryonic development and maternal meiotic maturation, positioning of the mitotic/meiotic spindle is subject to control mechanisms that meet the needs of the particular cell type. Here we review the methods, molecular tools, and the ascidian model we use to study three different ways in which centrosomes or spindles are positioned in three different cellular contexts. First, we review unequal cleavage in the ascidian germ lineage. In the germ cell precursors, a large macromolecular structure termed the centrosome-attracting body causes three successive rounds of unequal cleavage from the 8- to the 64-cell stage. Next, we discuss spindle positioning underlying the invariant cleavage pattern. Ascidian embryos display an invariant cleavage pattern whereby the mitotic spindle aligns in a predetermined orientation in every blastomere up to the gastrula stage (composed of 112 cells). Finally, we review methods and approaches to study meiotic spindle positioning in eggs. PMID:26175446

  16. First observation of a muscle spindle in fish.

    PubMed

    Maeda, N; Miyoshi, S; Toh, H

    1983-03-01

    In many groups of vertebrates, the muscle spindle is a specialized sensory organ for the detection of muscle stretching. The structure of the spindle varies among vertebrate classes. Moreover, Barker has asserted that Amphibia are the most primitive vertebrates to possess muscle spindles. Extensive studies, made mainly on the locomotor myotome, seem to show that the muscle receptors of fish are less specialized than those of more advanced animals, and that muscle spindles are absent. However, little attention has been paid to the jaw-closing muscle. We report here our finding of a very simple muscle spindle with a single intrafusal fibre in the well-developed jaw-closing muscle, adductor mandibulae, in a primitive teleostean, Oncorhynchus masou (Brevoort).

  17. Cell Size Modulates Oscillation, Positioning and Length of Mitotic Spindles

    PubMed Central

    Jiang, Hongyuan

    2015-01-01

    Mitotic spindle is the main subcellular structure that accomplishes the chromosome segregation between daughter cells during cell division. However, how mitotic spindles sense and control their size, position and movement inside the cell still remains unclear. In this paper, we focus on the size effects of mitotic spindles, i.e., how cell size controls various interesting phenomena in the metaphase, such as oscillation, positioning and size limit of mitotic spindles. We systematically studied the frequency doubling phenomenon during chromosome oscillation and found that cell size can regulate the period and amplitude of chromosome oscillation. We found that the relaxation time of the positioning process increases exponentially with cell size. We also showed that the stabler microtubule-kinetochore attachments alone can directly lead to an upper limit of spindle size. Our work not only explains the existing experimental observations, but also provides some interesting predictions that can be verified or rejected by further experiments. PMID:26015263

  18. Atypical spindle cell lipoma: a clinicopathologic, immunohistochemical, and molecular study emphasizing its relationship to classical spindle cell lipoma.

    PubMed

    Creytens, David; van Gorp, Joost; Savola, Suvi; Ferdinande, Liesbeth; Mentzel, Thomas; Libbrecht, Louis

    2014-07-01

    We studied a series of spindle cell lipomas arising in atypical sites and showing unusual morphologic features (which we called atypical spindle cell lipoma) to assess if these lesions have the same chromosomal alterations as classical spindle cell lipoma but different from those found in atypical lipomatous tumor/well-differentiated liposarcoma. We investigated alterations of different genes in the 13q14 region and the amplification status of the MDM2 and CDK4 genes at 12q14-15 by multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH) analysis. In the atypical spindle cell lipomas, MLPA revealed deletions in the two nearest flanking genes of RB1 (ITM2B and RCBTB2) and in multiple important exons of RB1. In contrast, in classical spindle cell lipomas, a less complex loss of RB1 exons was found but no deletion of ITM2B and RCBTB2. Moreover, MLPA identified a deletion of the DLEU1 gene, a finding which has not been reported earlier. We propose an immunohistochemical panel for lipomatous tumors which comprises of MDM2, CDK4, p16, Rb, which we have found useful in discriminating between atypical or classical spindle cell lipomas and other adipocytic neoplasms, especially atypical lipomatous tumor/well-differentiated liposarcoma. Our findings strengthen the link between atypical spindle cell lipoma and classical spindle cell lipoma, and differentiate them from atypical lipomatous tumor/well-differentiated liposarcoma.

  19. Atypical spindle cell lipoma: a clinicopathologic, immunohistochemical, and molecular study emphasizing its relationship to classical spindle cell lipoma.

    PubMed

    Creytens, David; van Gorp, Joost; Savola, Suvi; Ferdinande, Liesbeth; Mentzel, Thomas; Libbrecht, Louis

    2014-07-01

    We studied a series of spindle cell lipomas arising in atypical sites and showing unusual morphologic features (which we called atypical spindle cell lipoma) to assess if these lesions have the same chromosomal alterations as classical spindle cell lipoma but different from those found in atypical lipomatous tumor/well-differentiated liposarcoma. We investigated alterations of different genes in the 13q14 region and the amplification status of the MDM2 and CDK4 genes at 12q14-15 by multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH) analysis. In the atypical spindle cell lipomas, MLPA revealed deletions in the two nearest flanking genes of RB1 (ITM2B and RCBTB2) and in multiple important exons of RB1. In contrast, in classical spindle cell lipomas, a less complex loss of RB1 exons was found but no deletion of ITM2B and RCBTB2. Moreover, MLPA identified a deletion of the DLEU1 gene, a finding which has not been reported earlier. We propose an immunohistochemical panel for lipomatous tumors which comprises of MDM2, CDK4, p16, Rb, which we have found useful in discriminating between atypical or classical spindle cell lipomas and other adipocytic neoplasms, especially atypical lipomatous tumor/well-differentiated liposarcoma. Our findings strengthen the link between atypical spindle cell lipoma and classical spindle cell lipoma, and differentiate them from atypical lipomatous tumor/well-differentiated liposarcoma. PMID:24659226

  20. Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  1. High Performance Magnetic Bearings for Aero Applications

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Knospe, C. R.; Williams, R. D.; Lewis, D. W.; Barrett, L. E.; Maslen, E. H.; Humphris, R. R.

    1997-01-01

    Several previous annual reports were written and numerous papers published on the topics for this grant. That work is not repeated here in this final report. Only the work completed in the final year of the grant is presented in this final report. This final year effort concentrated on power loss measurements in magnetic bearing rotors. The effect of rotor power losses in magnetic bearings are very important for many applications. In some cases, these losses must be minimized to maximize the length of time the rotating machine can operate on a fixed energy or power supply. Examples include aircraft gas turbine engines, space devices, or energy storage flywheels. In other applications, the heating caused by the magnetic bearing must be removed. Excessive heating can be a significant problem in machines as diverse as large compressors, electric motors, textile spindles, and artificial heart pumps.

  2. Releasing the spindle assembly checkpoint without tension.

    PubMed

    McEwen, Bruce F; Dong, Yimin

    2009-02-01

    Eukaryotic cells have evolved a spindle assembly checkpoint (SAC) that facilitates accurate genomic segregation during mitosis by delaying anaphase onset in response to errors in kinetochore microtubule attachment. In contrast to the well-studied molecular mechanism by which the SAC blocks anaphase onset, the events triggering SAC release are poorly understood. Papers in this issue by Uchida et al. (Uchida, K.S.K., K. Takagaki, K. Kumada, Y. Hirayama, T. Noda, and T. Hirota. 2009. J. Cell Biol. 184:383-390) and Maresca and Salmon (Maresca, T.J., and E.D. Salmon. 2009. J. Cell Biol. 184:373-381) make an important advance by demonstrating that SAC release depends on molecular rearrangements within the kinetochore rather than tension-produced stretch between sister kinetochores.

  3. Rare Occurrence of Lip Spindle Cell Lipoma

    PubMed Central

    Girgis, Sandra; Cheng, Leo

    2015-01-01

    Spindle cell lipoma (SCL) is a rare distinct variant of lipoma, which presents as a painless, circumscribed, slow-growing, superficial lesion on the lip and can mimic a minor salivary gland tumour. We present a slow growing lower lip lesion and its management. Case Report. A 38-year-old female gave an eight-year history of a slow-growing mass on her lower lip with intermittent change in size. She presented with a submucosal nodule and thin overlying mucosa adjacent to the vermilion border. Surgical excision was carried as the diagnostic and therapeutic approach. Conclusion. Lip SCL is rare, and surgical excision is advocated in order to exclude underlying pathology and minor salivary gland tumours. PMID:25815220

  4. Identification of water-bearing zones by the use of geophysical logs and borehole television surveys, collected February to September 1997, at the Former Naval Air Warfare Center, Warminster, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Between February 1997 and September 1997, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center, Warminster, Bucks County, Pa., to monitor water levels and sample ground-water contaminants in the shallow, intermediate, and deep water-bearing zones. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected contaminant sources. Four wells were drilled north of the property adjacent to Area A, three wells along strike located on Lewis Drive, and three wells directly down dip on Ivyland Road. Well depths range from 69 feet to 300 feet below land surface. Borehole-geophysical logging and television surveys were used to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Borehole television surveys were obtained at the four monitor wells adjacent to Area A. Caliper and borehole television surveys were used to locate fractures, inflections on fluidtemperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and heatpulse- flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, borehole television surveys, and driller?s logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing zones in each borehole.

  5. Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.

    PubMed

    Werts, Adam D; Roh-Johnson, Minna; Goldstein, Bob

    2011-10-01

    Cell divisions are sometimes oriented by extrinsic signals, by mechanisms that are poorly understood. Proteins containing TPR and GoLoco-domains (C. elegans GPR-1/2, Drosophila Pins, vertebrate LGN and AGS3) are candidates for mediating mitotic spindle orientation by extrinsic signals, but the mechanisms by which TPR-GoLoco proteins may localize in response to extrinsic cues are not well defined. The C. elegans TPR-GoLoco protein pair GPR-1/2 is enriched at a site of contact between two cells - the endomesodermal precursor EMS and the germline precursor P(2) - and both cells align their divisions toward this shared cell-cell contact. To determine whether GPR-1/2 is enriched at this site within both cells, we generated mosaic embryos with GPR-1/2 bearing a different fluorescent tag in different cells. We were surprised to find that GPR-1/2 distribution is symmetric in EMS, where GPR-1/2 had been proposed to function as an asymmetric cue for spindle orientation. Instead, GPR-1/2 is asymmetrically distributed only in P(2). We demonstrate a role for normal GPR-1/2 localization in P(2) division orientation. We show that MES-1/Src signaling plays an instructive role in P(2) for asymmetric GPR-1/2 localization and normal spindle orientation. We ruled out a model in which signaling localizes GPR-1/2 by locally inhibiting LET-99, a GPR-1/2 antagonist. Instead, asymmetric GPR-1/2 distribution is established by destabilization at one cell contact, diffusion, and trapping at another cell contact. Once the mitotic spindle of P(2) is oriented normally, microtubule-dependent removal of GPR-1/2 prevented excess accumulation, in an apparent negative-feedback loop. These results highlight the role of dynamic TPR-GoLoco protein localization as a key mediator of mitotic spindle alignment in response to instructive, external cues.

  6. Reconstitution of Basic Mitotic Spindles in Spherical Emulsion Droplets.

    PubMed

    Vleugel, Mathijs; Roth, Sophie; Groenendijk, Celebrity F; Dogterom, Marileen

    2016-01-01

    Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule shrinkage into pulling forces, when attached, for example, to cortical dynein or chromosomes. In addition, motor proteins and diffusible cross-linkers within the spindle contribute to spindle architecture by connecting and sliding anti-parallel microtubules. In vivo, it has proven difficult to unravel the relative contribution of individual players to the overall balance of forces. Here we present the methods that we recently developed in our efforts to reconstitute basic mitotic spindles bottom-up in vitro. Using microfluidic techniques, centrosomes and tubulin are encapsulated in water-in-oil emulsion droplets, leading to the formation of geometrically confined (double) microtubule asters. By additionally introducing cortically anchored dynein, plus-end directed microtubule motors and diffusible cross-linkers, this system is used to reconstitute spindle-like structures. The methods presented here provide a starting point for reconstitution of more complete mitotic spindles, allowing for a detailed study of the contribution of each individual component, and for obtaining an integrated quantitative view of the force-balance within the mitotic spindle. PMID:27584979

  7. Axin-1 Regulates Meiotic Spindle Organization in Mouse Oocytes

    PubMed Central

    Liu, Rui; Liu, Yu; Zhang, Fei; Zhang, Zhen; Shen, Yu-Ting; Xu, Lin; Chen, Ming-Huang; Wang, Ya-Long; Xu, Bai-Hui; Yang, Xiang-Jun; Wang, Hai-Long

    2016-01-01

    Axin-1, a negative regulator of Wnt signaling, is a versatile scaffold protein involved in centrosome separation and spindle assembly in mitosis, but its function in mammalian oogenesis remains unknown. Here we examined the localization and function of Axin-1 during meiotic maturation in mouse oocytes. Immunofluorescence analysis showed that Axin-1 was localized around the spindle. Knockdown of the Axin1 gene by microinjection of specific short interfering (si)RNA into the oocyte cytoplasm resulted in severely defective spindles, misaligned chromosomes, failure of first polar body (PB1) extrusion, and impaired pronuclear formation. However, supplementing the culture medium with the Wnt pathway activator LiCl improved spindle morphology and pronuclear formation. Downregulation of Axin1 gene expression also impaired the spindle pole localization of γ-tubulin/Nek9 and resulted in retention of the spindle assembly checkpoint protein BubR1 at kinetochores after 8.5 h of culture. Our results suggest that Axin-1 is critical for spindle organization and cell cycle progression during meiotic maturation in mouse oocytes. PMID:27284927

  8. Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells.

    PubMed

    Cinar, Ozgur; Semiz, Olcay; Can, Alp

    2015-04-01

    Although many countries banned of its usage, carbofuran (CF) is still one of the most commonly used carbamate derivative insecticides against insects and nematodes in agriculture and household, threatening the human and animal health by contaminating air, water, and food. Our goal was to evaluate the potential toxic effects of CF on mammalian oocytes besides mitotic cells. Caspase-dependent apoptotic pathway was assessed by immunofluorescence and western blot techniques. Alterations in the meiotic spindle formation after CF exposure throughout the in vitro maturation of mice oocyte-cumulus complexes (COCs) were analyzed by using a 3D confocal laser microscope. Maturation efficiency and kinetics were assessed by direct observation of the COCs. Results indicated that the number of TUNEL-positive cells increased in CF-exposed groups, particularly higher doses (>250 µM) in a dose-dependent fashion. The ratio of anticleaved caspase-3 labeled cells in those groups positively correlated with TUNEL-positivity. Western blot analysis confirmed a significant increase in active caspase-3 activity. CF caused a dose-dependent accumulation of oocytes at prometaphase-I (PM-I) of meiosis. Partial loss of spindle microtubules (MTs) was noted, which consequently gave rise to a diamond shape spindle. Aberrant pericentrin foci were noted particularly in PM-I and metaphase-I (M-I) stages. Conclusively, CF (1) induces programmed cell death in a dose-dependent manner, and (2) alters spindle morphology most likely through a mechanism that interacts with MT assembly and/or disorientation of pericentriolar proteins. Overall, data suggest that CF could give rise to aneuploidy or cell death in higher doses, therefore reduce fertilization and implantation rates.

  9. A comparative analysis of spindle morphometrics across metazoans

    PubMed Central

    Crowder, Marina E.; Strzelecka, Magdalena; Wilbur, Jeremy D.; Good, Matthew C.; von Dassow, George; Heald, Rebecca

    2015-01-01

    Summary Cell division in all eukaryotes depends on function of the spindle, a microtubule-based structure that segregates chromosomes to generate daughter cells in mitosis or haploid gametes in meiosis. Spindle size adapts to changes in cell size and shape, which vary dramatically across species and within a multicellular organism, but the nature of scaling events and their underlying mechanisms are poorly understood. Cell size variations are most pronounced in early animal development, as egg diameters range from tens of microns up to millimeters across animal phyla, and decrease several orders of magnitude during rapid reductive divisions. During early embryogenesis in the model organisms X. laevis and C. elegans, the spindle scales with cell size [1,2], a phenomenon regulated by molecules that modulate microtubule dynamics [3–6], as well as by limiting cytoplasmic volume [7,8]. However, it is not known to what extent spindle scaling is conserved across organisms and among different cell types. Here we show that in a range of metazoan phyla, mitotic spindle length decreased with cell size across a ~30 fold difference in zygote size. Maximum spindle length varied, but linear spindle scaling occurred similarly in all species once embryonic cell diameter reduced to 140 μm. In contrast, we find that the female meiotic spindle does not scale as closely to egg size, adopting a more uniform size across species that likely reflects its specialized function. Our analysis reveals that spindle morphometrics change abruptly, within one cell cycle, at the transition from meiosis to mitosis in most animals. PMID:26004761

  10. Seismic bearing

    NASA Astrophysics Data System (ADS)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  11. X-43A Rudder Spindle Fatigue Life Estimate and Testing

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Dawicke, David S.; Johnston, William M.; James, Mark A.; Simonsen, Micah; Mason, Brian H.

    2005-01-01

    Fatigue life analyses were performed using a standard strain-life approach and a linear cumulative damage parameter to assess the effect of a single accidental overload on the fatigue life of the Haynes 230 nickel-base superalloy X-43A rudder spindle. Because of a limited amount of information available about the Haynes 230 material, a series of tests were conducted to replicate the overload and in-service conditions for the spindle and corroborate the analysis. Both the analytical and experimental results suggest that the spindle will survive the anticipated flight loads.

  12. Csi1p recruits alp7p/TACC to the spindle pole bodies for bipolar spindle formation

    PubMed Central

    Zheng, Fan; Li, Tianpeng; Jin, Dong-yan; Syrovatkina, Viktoriya; Scheffler, Kathleen; Tran, Phong T.; Fu, Chuanhai

    2014-01-01

    Accurate chromosome segregation requires timely bipolar spindle formation during mitosis. The transforming acidic coiled-coil (TACC) family proteins and the ch-TOG family proteins are key players in bipolar spindle formation. They form a complex to stabilize spindle microtubules, mainly dependent on their localization to the centrosome (the spindle pole body [SPB] in yeast). The molecular mechanism underlying the targeting of the TACC–ch-TOG complex to the centrosome remains unclear. Here we show that the fission yeast Schizosaccharomyces pombe TACC orthologue alp7p is recruited to the SPB by csi1p. The csi1p-interacting region lies within the conserved TACC domain of alp7p, and the carboxyl-terminal domain of csi1p is responsible for interacting with alp7p. Compromised interaction between csi1p and alp7p impairs the localization of alp7p to the SPB during mitosis, thus delaying bipolar spindle formation and leading to anaphase B lagging chromosomes. Hence our study establishes that csi1p serves as a linking molecule tethering spindle-stabilizing factors to the SPB for promoting bipolar spindle assembly. PMID:25057016

  13. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    PubMed

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  14. Spindle extraction method for ISAR image based on Radon transform

    NASA Astrophysics Data System (ADS)

    Wei, Xia; Zheng, Sheng; Zeng, Xiangyun; Zhu, Daoyuan; Xu, Gaogui

    2015-12-01

    In this paper, a method of spindle extraction of target in inverse synthetic aperture radar (ISAR) image is proposed which depends on Radon Transform. Firstly, utilizing Radon Transform to detect all straight lines which are collinear with these line segments in image. Then, using Sobel operator to detect image contour. Finally, finding all intersections of each straight line and image contour, the two intersections which have maximum distance between them is the two ends of this line segment and the longest line segment of all line segments is spindle of target. According to the proposed spindle extraction method, one hundred simulated ISAR images which are respectively rotated 0 degrees, 10 degrees, 20 degrees, 30 degrees and 40 degrees in counterclockwise are used to do experiment and the proposed method and the detection results are more close to the real spindle of target than the method based on Hough Transform .

  15. Cell adhesion molecule control of planar spindle orientation.

    PubMed

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  16. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes

    PubMed Central

    Shao, Hua; Ma, Chunqi; Zhang, Xuan; Li, Ruizhen; Miller, Ann L.; Bement, William M.; Liu, X. Johné

    2012-01-01

    Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine122 is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity. PMID:22751439

  17. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  18. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  19. Relative contributions of chromatin and kinetochores to mitotic spindle assembly

    PubMed Central

    Lončarek, Jadranka; Kaláb, Petr; Khodjakov, Alexey

    2009-01-01

    During mitosis and meiosis in animal cells, chromosomes actively participate in spindle assembly by generating a gradient of Ran guanosine triphosphate (RanGTP). A high concentration of RanGTP promotes microtubule nucleation and stabilization in the vicinity of chromatin. However, the relative contributions of chromosome arms and centromeres/kinetochores in this process are not known. In this study, we address this issue using cells undergoing mitosis with unreplicated genomes (MUG). During MUG, chromatin is rapidly separated from the forming spindle, and both centrosomal and noncentrosomal spindle assembly pathways are active. MUG chromatin is coated with RCC1 and establishes a RanGTP gradient. However, a robust spindle forms around kinetochores/centromeres outside of the gradient peak. When stable kinetochore microtubule attachment is prevented by Nuf2 depletion in both MUG and normal mitosis, chromatin attracts astral microtubules but cannot induce spindle assembly. These results support a model in which kinetochores play the dominant role in the chromosome-mediated pathway of mitotic spindle assembly. PMID:19805628

  20. Regulation of mitotic spindle orientation: an integrated view.

    PubMed

    di Pietro, Florencia; Echard, Arnaud; Morin, Xavier

    2016-08-01

    Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation. PMID:27432284

  1. Spindle microtubules and their mechanical associations after micromanipulation in anaphase.

    PubMed

    Nicklas, R B; Kubai, D F; Hays, T S

    1982-10-01

    Micromanipulation of living grasshopper spermatocytes in anaphase has been combined with electron microscopy to reveal otherwise obscure features of spindle organization. A chromosome is pushed laterally outside the spindle and stretched, and the cell is fixed with a novel, agar-treated glutaraldehyde solution. Two- and three-dimensional reconstructions from serial sections of seven cells show that kinetochore microtubules of the manipulated chromosome are shifted outside the confusing thicket of spindle microtubules and mechanical associations among microtubules are revealed by bent or shifted microtubules. These are the chief results: (a) The disposition of microtubules invariably is consistent with a skeletal role for spindle microtubules. (b) The kinetochore microtubule bundle is composed of short and long microtubules, with weak but recognizable mechanical associations among them. Some kinetochore microtubules are more tightly linked to one other microtubule within the bundle. (c) Microtubules of the kinetochore microtubule bundle are firmly connected to other spindle microtubules only near the pole, although some nonkinetochore microtubules of uncertain significance enter the bundle nearer to the kinetochore. (d) The kinetochore microtubules of adjacent chromosomes are mechanically linked, which provides an explanation for interdependent chromosome movement in "hinge anaphases." In the region of the spindle open to analysis after chromosome micromanipulation, microtubules may be linked mechanically by embedment in a gel, rather than by dynein or other specific, cross-bridging molecules.

  2. [A case of spindle cell carcinoma of the breast].

    PubMed

    Oshida, Sayuri; Hayashi, Keiko; Habiro, Takeyoshi; Nemoto, Kazuhiko; Sengoku, Norihiko; Watanabe, Masahiko

    2014-11-01

    The patient was a 53-year-old woman in whom ultrasonography of the breast revealed a lobular mass, 14 mm in diameter, in the right AB region. Spindle cells were obtained on fine-needle aspiration biopsy, but it was not possible to diagnose whether the tumor was benign or malignant. Contrast-enhanced magnetic resonance imaging showed a mass with a cystic component that was darkly stained in the early phase. Needle biopsy showed a dense proliferation of atypical spindle cells with no distinct epithelial-like arrangement. The differential diagnosis included mesenchymal malignant tumors such as fibrosarcoma, some phyllodes tumors, and epithelial tumors with sarcomatoid differentiation. Immunostaining revealed that the tumor was cytokeratin (AE1/AE3)-negative, partially CAM 5.2-positive, p63-positive, S100-negative, SMA-positive, partially vimentin-positive, with a Ki-67 index of 80% and negativity for ER, PgR, and HER2. Spindle-cell carcinoma was thus diagnosed. A partial right mastectomy with sentinel lymph-node biopsy was performed. Immunostaining of the resected specimen confirmed spindle cell carcinoma. The General Rules for Clinical and Pathological Recording of Breast Cancer classify spindle cell carcinoma as a special type of invasive cancer with a sarcomatoid structure, consisting of spindle-shaped cancer cells. This type of carcinoma is extremely rare, accounting for less than 1% of all breast cancers. PMID:25731380

  3. Selective detection of Escherichia coli DNA using fluorescent carbon spindles.

    PubMed

    Roy, Anurag; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-04-28

    We investigate the interaction of hydrophilic blue emitting carbon spindles with various deoxyribonucleic acids (DNA) having different base pair compositions, such as Herring testes (HT), calf thymus (CT), Escherichia coli (EC) and Micrococcus lysodeikticus (ML) DNA, to understand the mode of interaction. Interestingly, the fluorescent carbon spindles selectively interacted with E. coli DNA resulting in enhanced fluorescence of the former. Interaction of the same carbon with other DNAs exhibited insignificant changes in fluorescence. In addition, in the presence of EC DNA, the D band in the Raman spectrum attributed to the defect state completely disappeared, resulting in enhanced crystallinity. Microscopy images confirmed the wrapping of DNA on the carbon spindles leading to the assembly of spindles in the form of flowers. Dissociation of double-stranded DNA occurred upon interaction with carbon spindles, resulting in selective E. coli DNA interaction. The carbon spindles also exhibited a similar fluorescence enhancement upon treating with E. coli bacteria. These results confirm the possibility of E. coli detection in water and other liquid foods using such fluorescent carbon. PMID:27081680

  4. The spindle assembly checkpoint: More than just keeping track of the spindle

    PubMed Central

    Lawrence, Katherine S.; Engebrecht, JoAnne

    2016-01-01

    Genome stability is essential for cell proliferation and survival. Consequently, genome integrity is monitored by two major checkpoints, the DNA damage response (DDR) and the spindle assembly checkpoint (SAC). The DDR monitors DNA lesions in G1, S, and G2 stages of the cell cycle and the SAC ensures proper chromosome segregation in M phase. There have been extensive studies characterizing the roles of these checkpoints in response to the processes for which they are named; however, emerging evidence suggests significant crosstalk between the checkpoints. Here we review recent findings demonstrating overlapping roles for the SAC and DDR in metaphase, and in response to DNA damage throughout the cell cycle.

  5. Wave Journal Bearing. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  6. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos

    PubMed Central

    Bembenek, Joshua N.; Verbrugghe, Koen J.C.; Khanikar, Jayshree; Csankovszki, Györgyi; Chan, Raymond C.

    2013-01-01

    Summary Background During cell division, chromosomes must clear the path of the cleavage furrow before the onset of cytokinesis. The abscission checkpoint in mammalian cells stabilizes the cleavage furrow in the presence of a chromatin obstruction. This provides time to resolve the obstruction before the cleavage furrow regresses or breaks the chromosomes, preventing aneuploidy or DNA damage. Two unanswered questions in the proposed mechanistic pathway of the abscission checkpoint concern factors involved in 1) resolving the obstructions, and 2) coordinating obstruction resolution with the delay in cytokinesis. Results We found that the 1-cell and 2-cell C. elegans embryos suppress furrow regression following depletion of essential chromosome segregation factors: topoisomerase IITOP-2, CENP-AHCP-3, cohesin, and to a lesser degree, condensin. Chromatin obstructions activated Aurora BAIR-2 at the spindle midzone, which is needed for the abscission checkpoint in other systems. Condensin I, but not condensin II, localizes to the spindle midzone in anaphase and to the midbody during normal cytokinesis. Interestingly, condensin I is enriched on chromatin bridges and near the midzone/midbody in an AIR-2 dependent manner. Disruption of AIR-2, the spindle midzone or condensin leads to cytokinesis failure in a chromatin-obstruction-dependent manner. Examination of the condensin-deficient embryos uncovered defects in both the resolution of the chromatin obstructions and the maintenance of the stable cleavage furrow. Conclusions We postulate that condensin I is recruited by Aurora BAIR-2 to aid in the resolution of chromatin obstructions and also helps generate a signal to maintain the delay in cytokinesis. PMID:23684975

  7. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle.

    PubMed

    Ito, Ami; Goshima, Gohta

    2015-12-01

    Depletion of Drosophila melanogaster Asp, an orthologue of microcephaly protein ASPM, causes spindle pole unfocusing during mitosis. However, it remains unclear how Asp contributes to pole focusing, a process that also requires the kinesin-14 motor Ncd. We show that Asp localizes to the minus ends of spindle microtubule (MT) bundles and focuses them to make the pole independent of Ncd. We identified a critical domain in Asp exhibiting MT cross-linking activity in vitro. Asp was also localized to, and focuses the minus ends of, intraspindle MTs that were nucleated in an augmin-dependent manner and translocated toward the poles by spindle MT flux. Ncd, in contrast, functioned as a global spindle coalescence factor not limited to MT ends. We propose a revised molecular model for spindle pole focusing in which Asp at the minus ends cross-links MTs at the pole and within the spindle. Additionally, this study provides new insight into the dynamics of intraspindle MTs by using Asp as a minus end marker.

  8. CUSHIONED BEARING

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping device effective to dampen vibrations occurring at the several critical speeds encountered in the operation of a high-speed centrifuge is described. A self-centering bearing mechanism is used to protect both the centrifuge shaft and the damping mechanism. The damping mechanism comprises spaced-apant, movable, and stationary sleeve members arranged concentrically of a rotating shaft with a fluid maintained between the members. The movable sleeve member is connected to the shaft for radial movement therewith.

  9. The innervation of tandem muscle spindles in the cat neck.

    PubMed

    Richmond, F J; Bakker, G J; Bakker, D A; Stacey, M J

    1986-03-22

    Patterns of innervation were examined in tandem muscle spindles teased from silver-stained muscles of the cat neck. Each tandem spindle was composed of two or more encapsulated receptors linked in series by a shared bag2 fiber. In most tandem spindles, two different types of encapsulation were identified according to differences in their intrafusal fiber content. One type, the b1b2c unit, contained typical bag1, bag2, and chain fibers and was structurally similar to single spindles described in other cat muscles. Each b1b2c unit contained a single primary sensory ending and 1-6 secondary endings. Fusimotor innervation was supplied by many axons. Some fusimotor axons ended in trail ramifications on bag2 and chain fibers, others ended in plates on the bag1 or long chain fiber. The other type of tandem encapsulation, the b2c unit, had only bag2 and chain fibers in its intrafusal fiber bundle. The b2c unit was usually supplied by only one sensory axon that ended on the nucleated part of the intrafusal fiber bundle. This single ending had a more variable terminal morphology than the primary ending in b1b2c units. A few b2c units (3/49) were also supplied by a secondary ending. The fusimotor innervation of the b2c unit was relatively simple. A single pole of the b2c unit was usually supplied by only one to three axons, all ending in trail ramifications. No plate endings were found in b2c units. These morphological specializations suggest that b1b2c and b2c units in tandem spindles differ in both their transductive and fusimotor mechanisms. Thus, the tandem spindle is a specialized structure that may provide additional proprioceptive information beyond that available from single muscle spindles.

  10. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  11. Tooling Converts Stock Bearings To Custom Bearings

    NASA Technical Reports Server (NTRS)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  12. Myosin-10 and actin filaments are essential for mitotic spindle function

    PubMed Central

    Woolner, Sarah; O'Brien, Lori L.; Wiese, Christiane; Bement, William M.

    2008-01-01

    Mitotic spindles are microtubule-based structures responsible for chromosome partitioning during cell division. Although the roles of microtubules and microtubule-based motors in mitotic spindles are well established, whether or not actin filaments (F-actin) and F-actin–based motors (myosins) are required components of mitotic spindles has long been controversial. Based on the demonstration that myosin-10 (Myo10) is important for assembly of meiotic spindles, we assessed the role of this unconventional myosin, as well as F-actin, in mitotic spindles. We find that Myo10 localizes to mitotic spindle poles and is essential for proper spindle anchoring, normal spindle length, spindle pole integrity, and progression through metaphase. Furthermore, we show that F-actin localizes to mitotic spindles in dynamic cables that surround the spindle and extend between the spindle and the cortex. Remarkably, although proper anchoring depends on both F-actin and Myo10, the requirement for Myo10 in spindle pole integrity is F-actin independent, whereas F-actin and Myo10 actually play antagonistic roles in maintenance of spindle length. PMID:18606852

  13. Sleep spindling and fluid intelligence across adolescent development: sex matters.

    PubMed

    Bódizs, Róbert; Gombos, Ferenc; Ujma, Péter P; Kovács, Ilona

    2014-01-01

    Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15-22 years (mean: 18 years) and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps

  14. Spindle neurons of the human anterior cingulate cortex

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  15. Spindle Activity Orchestrates Plasticity during Development and Sleep

    PubMed Central

    Lindemann, Christoph; Ahlbeck, Joachim; Bitzenhofer, Sebastian H.; Hanganu-Opatz, Ileana L.

    2016-01-01

    Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research. PMID:27293903

  16. Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs

    PubMed Central

    Field, Christine M.; Groen, Aaron C.; Nguyen, Phuong A.; Mitchison, Timothy J.

    2015-01-01

    Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow. PMID:26310438

  17. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle.

    PubMed

    Sheykhani, Rozhan; Baker, Norman; Gomez-Godinez, Veronica; Liaw, Lih-Huei; Shah, Jagesh; Berns, Michael W; Forer, Arthur

    2013-05-01

    This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and unirradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and monophosphorylated myosin are associated with spindle fibers and showed that some actin and monophosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the unirradiated pole to move toward the equator until a balanced length is obtained. PMID:23475753

  18. A Passive Magnetic Bearing Flywheel

    NASA Technical Reports Server (NTRS)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  19. Bearing strength of the lunar soil

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1972-01-01

    A discussion is presented on the bearing strength and bearing load-penetration relations in lunar soil. These were measured in air as a function of bulk density. It was found that the relation between bulk density and the logarithm of the bearing capacity is about linear. Shapes of the load vs penetration curves were observed to be similar to those obtained with particulate material of terrestrial origin.

  20. Human Nek7-interactor RGS2 is required for mitotic spindle organization

    PubMed Central

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. PMID:25664600

  1. Human Nek7-interactor RGS2 is required for mitotic spindle organization.

    PubMed

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.

  2. Human Nek7-interactor RGS2 is required for mitotic spindle organization.

    PubMed

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. PMID:25664600

  3. Spindle cell carcinoma of the mandible: Clinicopathological and immunohistochemical characteristics.

    PubMed

    Al-Bayaty, Haytham; Balkaran, Ramaa L

    2016-01-01

    Spindle cell carcinoma, a rare variant of squamous cell carcinoma, has propensity to occur in the upper aero digestive tract, including the oral mucosa. In this oral pathology communication, we report the occurrence of this neoplasm in the left mandible as a large fleshy growth with destruction of bone in a 73-year-old Afro-Trinidadian female. The distinction of this tumor from other malignant spindle cell mesenchymal tumors is important. Selective sampling of this specimen for possible transitional areas of squamous and spindle cell appearance, immunohistochemical staining for cytokeratin, vimentin, and S-100 protein are helpful in establishing the diagnosis. According to the patient's insistence, debulking of the tumor was performed under general anesthesia. Eight months later the patient succumbed to the disease.

  4. CDK5RAP2 is required for spindle checkpoint function.

    PubMed

    Zhang, Xiaoying; Liu, Dongyun; Lv, Shuang; Wang, Haibo; Zhong, Xueyan; Liu, Bo; Wang, Bo; Liao, Ji; Li, Jing; Pfeifer, Gerd P; Xu, Xingzhi

    2009-04-15

    The combination of paclitaxel and doxorubicin is among the most successful chemotherapy regimens in cancer treatment. CDK5RAP2, when mutated, causes primary microcephaly. We show here that inhibition of CDK5RAP2 expression causes chromosome mis-segregation, fails to maintain the spindle checkpoint, and is associated with reduced expression of the spindle checkpoint proteins BUBR1 and MAD2 and an increase in chromatin-associated CDC20. CDK5RAP2 resides on the BUBR1 and MAD2 promoters and regulates their transcription. Furthermore, CDK5RAP2-knockdown cells have increased resistance to paclitaxel and doxorubicin, and this resistance is partially rescued upon restoration of CDK5RAP2 expression. Cancer cells cultured in the presence of paclitaxel or doxorubicin exhibit dramatically decreased CDK5RAP2 levels. These results suggest that CDK5RAP2 is required for spindle checkpoint function and is a common target in paclitaxel and doxorubicin resistance. PMID:19282672

  5. Xenopus oocyte meiosis lacks spindle assembly checkpoint control

    PubMed Central

    Shao, Hua; Ma, Chunqi; Chen, Eric

    2013-01-01

    The spindle assembly checkpoint (SAC) functions as a surveillance mechanism to detect chromosome misalignment and to delay anaphase until the errors are corrected. The SAC is thought to control mitosis and meiosis, including meiosis in mammalian eggs. However, it remains unknown if meiosis in the eggs of nonmammalian vertebrate species is also regulated by SAC. Using a novel karyotyping technique, we demonstrate that complete disruption of spindle microtubules in Xenopus laevis oocytes did not affect the bivalent-to-dyad transition at the time oocytes are undergoing anaphase I. These oocytes also acquired the ability to respond to parthenogenetic activation, which indicates proper metaphase II arrest. Similarly, oocytes exhibiting monopolar spindles, via inhibition of aurora B or Eg5 kinesin, underwent monopolar anaphase on time and without additional intervention. Therefore, the metaphase-to-anaphase transition in frog oocytes is not regulated by SAC. PMID:23569212

  6. Anaphase A Chromosome Movement and Poleward Spindle Microtubule Flux Occur At Similar Rates in Xenopus Extract Spindles

    PubMed Central

    Desai, Arshad; Maddox, Paul S.; Mitchison, Timothy J.; Salmon, E.D.

    1998-01-01

    We have used local fluorescence photoactivation to mark the lattice of spindle microtubules during anaphase A in Xenopus extract spindles. We find that both poleward spindle microtubule flux and anaphase A chromosome movement occur at similar rates (∼2 μm/min). This result suggests that poleward microtubule flux, coupled to microtubule depolymerization near the spindle poles, is the predominant mechanism for anaphase A in Xenopus egg extracts. In contrast, in vertebrate somatic cells a “Pacman” kinetochore mechanism, coupled to microtubule depolymerization near the kinetochore, predominates during anaphase A. Consistent with the conclusion from fluorescence photoactivation analysis, both anaphase A chromosome movement and poleward spindle microtubule flux respond similarly to pharmacological perturbations in Xenopus extracts. Furthermore, the pharmacological profile of anaphase A in Xenopus extracts differs from the previously established profile for anaphase A in vertebrate somatic cells. The difference between these profiles is consistent with poleward microtubule flux playing the predominant role in anaphase chromosome movement in Xenopus extracts, but not in vertebrate somatic cells. We discuss the possible biological implications of the existence of two distinct anaphase A mechanisms and their differential contributions to poleward chromosome movement in different cell types. PMID:9566970

  7. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  8. Fallacious Carcinoma- Spindle Cell Variant of Squamous Cell Carcinoma.

    PubMed

    Bavle, Radhika M; Govinda, Girish; Venkataramanaiah, Padmalatha Gundappanayakanahalli; Muniswamappa, Sudhakara; Venugopal, Reshma

    2016-07-01

    Spindle cell carcinoma is a unique, rare and peculiar biphasic tumour of head and neck which is not frequently observed in the oral cavity. This variant of squamous cell carcinoma although of monophasic epithelial origin, simulates a sarcoma and is an aggressive carcinoma with high frequency of recurrence and metastasis. A correct and timely diagnosis is of paramount importance. Most of the tumours require an Immunohistochemistry (IHC) panel for confirmation or diagnosis. We report a case of spindle cell carcinoma with varied histopathological morphology and clinical presentation in a middle aged female with a brief review of literature. PMID:27630965

  9. Microtubule attachment and spindle assembly checkpoint signaling at the kinetochore

    PubMed Central

    Foley, Emily A.; Kapoor, Tarun M.

    2013-01-01

    In eukaryotes, chromosome segregation during cell division is facilitated by the kinetochore, an assembly of proteins built on centromeric DNA. The kinetochore attaches chromosomes to spindle microtubules, modulates the stability of these attachments, and relays microtubule-binding status to the spindle assembly checkpoint, a cell cycle surveillance pathway that delays chromosome segregation in response to unattached kinetochores. Here, we discuss recent results that guide current thinking on how each of these kinetochore-centered processes is achieved, and how their integration ensures faithful chromosome segregation, focusing on the essential roles of kinase-phosphatase signaling and the microtubule-binding KMN protein network. PMID:23258294

  10. The Distribution of Active Force Generators Controls Mitotic Spindle Position

    NASA Astrophysics Data System (ADS)

    Grill, Stephan W.; Howard, Jonathon; Schäffer, Erik; Stelzer, Ernst H. K.; Hyman, Anthony A.

    2003-07-01

    During unequal cell divisions a mitotic spindle is eccentrically positioned before cell cleavage. To determine the basis of the net force imbalance that causes spindle displacement in one-cell Caenorhabditis elegans embryos, we fragmented centrosomes with an ultraviolet laser. Analysis of the mean and variance of fragment speeds suggests that the force imbalance is due to a larger number of force generators pulling on astral microtubules of the posterior aster relative to the anterior aster. Moreover, activation of heterotrimeric guanine nucleotide-binding protein (G protein) α subunits is required to generate these astral forces.

  11. Fallacious Carcinoma- Spindle Cell Variant of Squamous Cell Carcinoma

    PubMed Central

    Bavle, Radhika M; Govinda, Girish; Muniswamappa, Sudhakara; Venugopal, Reshma

    2016-01-01

    Spindle cell carcinoma is a unique, rare and peculiar biphasic tumour of head and neck which is not frequently observed in the oral cavity. This variant of squamous cell carcinoma although of monophasic epithelial origin, simulates a sarcoma and is an aggressive carcinoma with high frequency of recurrence and metastasis. A correct and timely diagnosis is of paramount importance. Most of the tumours require an Immunohistochemistry (IHC) panel for confirmation or diagnosis. We report a case of spindle cell carcinoma with varied histopathological morphology and clinical presentation in a middle aged female with a brief review of literature.

  12. Fallacious Carcinoma- Spindle Cell Variant of Squamous Cell Carcinoma

    PubMed Central

    Bavle, Radhika M; Govinda, Girish; Muniswamappa, Sudhakara; Venugopal, Reshma

    2016-01-01

    Spindle cell carcinoma is a unique, rare and peculiar biphasic tumour of head and neck which is not frequently observed in the oral cavity. This variant of squamous cell carcinoma although of monophasic epithelial origin, simulates a sarcoma and is an aggressive carcinoma with high frequency of recurrence and metastasis. A correct and timely diagnosis is of paramount importance. Most of the tumours require an Immunohistochemistry (IHC) panel for confirmation or diagnosis. We report a case of spindle cell carcinoma with varied histopathological morphology and clinical presentation in a middle aged female with a brief review of literature. PMID:27630965

  13. Turbocharger bearing retention and lubrication system

    SciTech Connect

    Gutknecht, D.A.

    1991-12-31

    This patent describes exhausts gas driven turbocharger. It comprises a housing, a shaft within the housing having a longitudinal axis of rotation and a pair of ends, a compressor wheel mounted within the housing on one end of the shaft for rotation therewith, a turbine wheel mounted within the housing on the other end of the shaft for rotation therewith, means for communicating air to the compressor wheel, means for communicating exhaust gas to the turbine wheel to cause the latter to rotate the shaft and the compressor wheel mounted thereon to compress the air communicated to the compressor wheel, and bearing means mounting the shaft for rotation relative to the housing, the bearing means including a bearing outer ring, a bearing inner ring, and ball bearing elements supporting the bearing outer ring on the bearing inner ring, a bearing locating aperture in the bearing outer ring, and an elongated bearing location pin having a longitudinal axis of symmetry extending transversely to the longitudinal axis of the shaft.

  14. Human impacts on bear habitat use

    USGS Publications Warehouse

    Mattson, David J.

    1990-01-01

    : Human effects on bear habitat use are mediated through food biomass changes, bear tolerance of humans and their impacts, and human tolerance of bears. Large-scale changes in bear food biomass have been caused by conversion of wildlands and waterways to intensive human use, and by the introduction of exotic pathogens. Bears consume virtually all human foods that have been established in former wildlands, but bear use has been limited by access. Air pollution has also affected bear food biomass on a small scale and is likely to have major future impacts on bear habitat through climatic warming. Major changes in disturbance cycles and landscape mosaics wrought by humans have further altered temporal and spatial pulses of bear food production. These changes have brought short-term benefits in places, but have also added long-term stresses to most bear populations. Although bears tend to avoid humans, they will also use exotic and native foods in close proximity to humans. Subadult males and adult females are more often impelled to forage closer to humans because of their energetic predicament and because more secure sites are often preempted by adult males. Although male bears are typically responsible for most livestock predation, adult females and subadult males are more likely to be habituated to humans because they tend to forage closer to humans. Elimination of human-habituated bears predictably reduces effective carrying capacity and is more likely to be a factor in preserving bear populations where humans are present in moderate-to-high densities. If humans desire to preserve viable bear populations, they will either have to accept increased risk of injury associated with preserving habituated animals, or continue to crop habituated bears while at the same time preserving large tracts of wildlands free from significant human intrusion.

  15. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis.

    PubMed

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L; Yang, Jingyi; Yin, Yuxin; Shen, Wen H

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  16. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis

    PubMed Central

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L.; Yang, Jingyi; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  17. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis.

    PubMed

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L; Yang, Jingyi; Yin, Yuxin; Shen, Wen H

    2016-08-05

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission.

  18. Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle

    NASA Astrophysics Data System (ADS)

    Lee, Kian-Yong; Esmaeili, Behrooz; Zealley, Ben; Mishima, Masanori

    2015-06-01

    During animal cell division, the central spindle, an anti-parallel microtubule bundle structure formed between segregating chromosomes during anaphase, cooperates with astral microtubules to position the cleavage furrow. Because the central spindle is the only structure linking the two halves of the mitotic spindle, it is under mechanical tension from dynein-generated cortical pulling forces, which determine spindle positioning and drive chromosome segregation through spindle elongation. The central spindle should be flexible enough for efficient chromosome segregation while maintaining its structural integrity for reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly understood. Here, we demonstrate that the central spindle in C. elegans embryos has a resilient mechanism for recovery from perturbations by excess tension derived from cortical pulling forces. This mechanism involves the direct interaction of two different types of conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and centralspindlin.

  19. Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle

    PubMed Central

    Lee, Kian-Yong; Esmaeili, Behrooz; Zealley, Ben; Mishima, Masanori

    2015-01-01

    During animal cell division, the central spindle, an anti-parallel microtubule bundle structure formed between segregating chromosomes during anaphase, cooperates with astral microtubules to position the cleavage furrow. Because the central spindle is the only structure linking the two halves of the mitotic spindle, it is under mechanical tension from dynein-generated cortical pulling forces, which determine spindle positioning and drive chromosome segregation through spindle elongation. The central spindle should be flexible enough for efficient chromosome segregation while maintaining its structural integrity for reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly understood. Here, we demonstrate that the central spindle in C. elegans embryos has a resilient mechanism for recovery from perturbations by excess tension derived from cortical pulling forces. This mechanism involves the direct interaction of two different types of conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and centralspindlin. PMID:26088160

  20. Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle.

    PubMed

    Lee, Kian-Yong; Esmaeili, Behrooz; Zealley, Ben; Mishima, Masanori

    2015-01-01

    During animal cell division, the central spindle, an anti-parallel microtubule bundle structure formed between segregating chromosomes during anaphase, cooperates with astral microtubules to position the cleavage furrow. Because the central spindle is the only structure linking the two halves of the mitotic spindle, it is under mechanical tension from dynein-generated cortical pulling forces, which determine spindle positioning and drive chromosome segregation through spindle elongation. The central spindle should be flexible enough for efficient chromosome segregation while maintaining its structural integrity for reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly understood. Here, we demonstrate that the central spindle in C. elegans embryos has a resilient mechanism for recovery from perturbations by excess tension derived from cortical pulling forces. This mechanism involves the direct interaction of two different types of conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and centralspindlin. PMID:26088160

  1. Fluid lubricated bearing construction

    DOEpatents

    Dunning, John R.; Boorse, Henry A.; Boeker, Gilbert F.

    1976-01-01

    1. A fluid lubricated thrust bearing assembly comprising, in combination, a first bearing member having a plain bearing surface, a second bearing member having a bearing surface confronting the bearing surface of said first bearing member and provided with at least one spiral groove extending inwardly from the periphery of said second bearing member, one of said bearing members having an axial fluid-tight well, a source of fluid lubricant adjacent to the periphery of said second bearing member, and means for relatively rotating said bearing members to cause said lubricant to be drawn through said groove and to flow between said bearing surfaces, whereby a sufficient pressure is built up between said bearing surfaces and in said well to tend to separate said bearing surfaces.

  2. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    ERIC Educational Resources Information Center

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  3. Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment

    PubMed Central

    Gorgoni, Maurizio; Lauri, Giulia; Truglia, Ilaria; Cordone, Susanna; Sarasso, Simone; Scarpelli, Serena; Mangiaruga, Anastasia; D'Atri, Aurora; Tempesta, Daniela; Ferrara, Michele; Marra, Camillo; Rossini, Paolo Maria; De Gennaro, Luigi

    2016-01-01

    Several studies have identified two types of sleep spindles: fast (13–15 Hz) centroparietal and slow (11–13 Hz) frontal spindles. Alterations in spindle activity have been observed in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Only few studies have separately assessed fast and slow spindles in these patients showing a reduction of fast spindle count, but the possible local specificity of this phenomenon and its relation to cognitive decline severity are not clear. Moreover, fast and slow spindle density have never been assessed in AD/MCI. We have assessed fast and slow spindles in 15 AD patients, 15 amnesic MCI patients, and 15 healthy elderly controls (HC). Participants underwent baseline polysomnographic recording (19 cortical derivations). Spindles during nonrapid eye movements sleep were automatically detected, and spindle densities of the three groups were compared in the derivations where fast and slow spindles exhibited their maximum expression (parietal and frontal, resp.). AD and MCI patients showed a significant parietal fast spindle density decrease, positively correlated with Minimental State Examination scores. Our results suggest that AD-related changes in spindle density are specific for frequency and location, are related to cognitive decline severity, and may have an early onset in the pathology development. PMID:27066274

  4. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum

    PubMed Central

    Lázaro-Diéguez, Francisco; Ispolatov, Iaroslav; Müsch, Anne

    2015-01-01

    All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning. PMID:25657320

  5. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum.

    PubMed

    Lázaro-Diéguez, Francisco; Ispolatov, Iaroslav; Müsch, Anne

    2015-04-01

    All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule-mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning. PMID:25657320

  6. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood.

    PubMed

    McClain, Ian J; Lustenberger, Caroline; Achermann, Peter; Lassonde, Jonathan M; Kurth, Salome; LeBourgeois, Monique K

    2016-01-01

    Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10-16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05). We also found a developmental decrease in mean spindle frequency (p < 0.05) but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation. PMID:27110405

  7. Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.

  8. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle

    PubMed Central

    1995-01-01

    The three dimensional organization of microtubules in mitotic spindles of the yeast Saccharomyces cerevisiae has been determined by computer- aided reconstruction from electron micrographs of serially cross- sectioned spindles. Fifteen spindles ranging in length from 0.6-9.4 microns have been analyzed. Ordered microtubule packing is absent in spindles up to 0.8 micron, but the total number of microtubules is sufficient to allow one microtubule per kinetochore with a few additional microtubules that may form an interpolar spindle. An obvious bundle of about eight interpolar microtubules was found in spindles 1.3- 1.6 microns long, and we suggest that the approximately 32 remaining microtubules act as kinetochore fibers. The relative lengths of the microtubules in these spindles suggest that they may be in an early stage of anaphase, even though these spindles are all situated in the mother cell, not in the isthmus between mother and bud. None of the reconstructed spindles exhibited the uniform populations of kinetochore microtubules characteristic of metaphase. Long spindles (2.7-9.4 microns), presumably in anaphase B, contained short remnants of a few presumed kinetochore microtubules clustered near the poles and a few long microtubules extending from each pole toward the spindle midplane, where they interdigitated with their counterparts from the other pole. Interpretation of these reconstructed spindles offers some insights into the mechanisms of mitosis in this yeast. PMID:7790357

  9. Permanent Magnetic Bearing for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  10. Technical Development Path for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2008-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  11. Teaching Reading--Vision vs. the Muscle Spindles (The Proprioceptors).

    ERIC Educational Resources Information Center

    Caukins, Sivan Eugene, Jr.

    Literature is reviewed which discusses the role of proprioceptors in basic perceptual and motoric functions. The author cites research on the functions of the muscle spindles in controlling muscles which in turn provide energy, stimulation, and activation of the central nervous system. Research on the relation of motor functions to language…

  12. Modelling muscle spindle dynamics for a proprioceptive prosthesis.

    PubMed

    Williams, Ian; Constandinou, Timothy G

    2013-01-01

    Muscle spindles are found throughout our skeletal muscle tissue and continuously provide us with a sense of our limbs' position and motion (proprioception). This paper advances a model for generating artificial muscle spindle signals for a prosthetic limb, with the aim of one day providing amputees with a sense of feeling in their artificial limb. By utilising the Opensim biomechanical modelling package the relationship between a joint's angle and the length of surrounding muscles is estimated for a prosthetic limb. This is then applied to the established Mileusnic model to determine the associated muscle spindle firing pattern. This complete system model is then reduced to allow for a computationally efficient hardware implementation. This reduction is achieved with minimal impact on accuracy by selecting key mono-articular muscles and fitting equations to relate joint angle to muscle length. Parameter values fitting the Mileusnic model to human spindles are then proposed and validated against previously published human neural recordings. Finally, a model for fusimotor signals is also proposed based on data previously recorded from reduced animal experiments.

  13. Spindle Oscillations in Sleep Disorders: A Systematic Review.

    PubMed

    Weiner, Oren M; Dang-Vu, Thien Thanh

    2016-01-01

    Measurement of sleep microarchitecture and neural oscillations is an increasingly popular technique for quantifying EEG sleep activity. Many studies have examined sleep spindle oscillations in sleep-disordered adults; however reviews of this literature are scarce. As such, our overarching aim was to critically review experimental studies examining sleep spindle activity between adults with and without different sleep disorders. Articles were obtained using a systematic methodology with a priori criteria. Thirty-seven studies meeting final inclusion criteria were reviewed, with studies grouped across three categories: insomnia, hypersomnias, and sleep-related movement disorders (including parasomnias). Studies of patients with insomnia and sleep-disordered breathing were more abundant relative to other diagnoses. All studies were cross-sectional. Studies were largely inconsistent regarding spindle activity differences between clinical and nonclinical groups, with some reporting greater or less activity, while many others reported no group differences. Stark inconsistencies in sample characteristics (e.g., age range and diagnostic criteria) and methods of analysis (e.g., spindle bandwidth selection, visual detection versus digital filtering, absolute versus relative spectral power, and NREM2 versus NREM3) suggest a need for greater use of event-based detection methods and increased research standardization. Hypotheses regarding the clinical and empirical implications of these findings, and suggestions for potential future studies, are also discussed. PMID:27034850

  14. Potato spindle tuber viroid: the simplicity paradox resolved?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Taxonomy: Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid, family Pospiviroidae. An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae. ...

  15. Spindle Oscillations in Sleep Disorders: A Systematic Review

    PubMed Central

    Weiner, Oren M.

    2016-01-01

    Measurement of sleep microarchitecture and neural oscillations is an increasingly popular technique for quantifying EEG sleep activity. Many studies have examined sleep spindle oscillations in sleep-disordered adults; however reviews of this literature are scarce. As such, our overarching aim was to critically review experimental studies examining sleep spindle activity between adults with and without different sleep disorders. Articles were obtained using a systematic methodology with a priori criteria. Thirty-seven studies meeting final inclusion criteria were reviewed, with studies grouped across three categories: insomnia, hypersomnias, and sleep-related movement disorders (including parasomnias). Studies of patients with insomnia and sleep-disordered breathing were more abundant relative to other diagnoses. All studies were cross-sectional. Studies were largely inconsistent regarding spindle activity differences between clinical and nonclinical groups, with some reporting greater or less activity, while many others reported no group differences. Stark inconsistencies in sample characteristics (e.g., age range and diagnostic criteria) and methods of analysis (e.g., spindle bandwidth selection, visual detection versus digital filtering, absolute versus relative spectral power, and NREM2 versus NREM3) suggest a need for greater use of event-based detection methods and increased research standardization. Hypotheses regarding the clinical and empirical implications of these findings, and suggestions for potential future studies, are also discussed. PMID:27034850

  16. Stages in the development of cat muscle spindles.

    PubMed

    Milburn, A

    1984-08-01

    The structure of developing spindles has been examined in cat peroneal muscles by light and electron microscopy, beginning at the 34- to 38-day foetal stage. By this stage alpha motoneurons have formed end-plates on primary myotubes. Secondary extrafusal myotubes then develop beneath the basal lamina of primary myotubes, and are innervated by motor axons early in their assembly. First-series secondary myotubes separate from primary myotubes prior to the development of subsequent series. The assembly of extrafusal fibres is completed by birth. Intrafusal fibres assemble in a similar manner. At the 34- to 38-day foetal stage developing spindles consist of a single primary myotube containing a small accumulation of myonuclei beneath the terminals of the Ia afferent axon. Simple motor nerve terminals also innervate this myotube, which will ultimately become the bag2 fibre of the mature spindle. Secondary intrafusal myotubes then assemble beneath the basal lamina of the primary bag2 myotube, in the order presumptive bag1, long-chain, intermediate-chain and typical-chain fibres. Their assembly begins at the equator, beneath the sensory terminals, and spreads to the poles. The bag1 and long-chain myotubes separate from the bag2 in the spindle pole prior to the development of the other chain fibres. The assembly of intrafusal fibres is completed by birth. The periaxial space begins to develop in the first postnatal week. The development of tandem spindles containing b2c units is described. The role of sensory and motor innervation in the assembly and differentiation of mammalian intrafusal fibres is discussed.

  17. Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles

    PubMed Central

    McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.

    2015-01-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to

  18. Self-organization mechanisms in the assembly and maintenance of bipolar spindles

    NASA Astrophysics Data System (ADS)

    Burbank, Kendra Stewart

    Anastral, meiotic spindles are thought to be organized differently from astral, mitotic spindles, but the field has lacked basic structural information required to describe and model them, including the location of microtubule nucleating sites and minus ends. How the various components of spindles act together to establish and maintain the dynamic bipolar structure of spindles is not understood. We measure the distributions of oriented microtubules (MTs) in metaphase anastral spindles in Xenopus extracts by fluorescence speckle microscopy and cross-correlation analysis. We localized plus ends by tubulin incorporation and combined this with the orientation data to infer the localization of minus ends. We find that minus ends are localized throughout the spindle, sparsely at the equator and at higher concentrations near the poles. This dads to the surprising conclusion that spindles contained many short MTs, not connected to the spindle poles. Based on these data, we propose a slide-and-cluster model based on four known molecular activities: MT nucleation near chromosomes, the sliding of MTs by a plus-enddirected motor, the clustering of their minus ends by a minus-end-directed motor, and the loss of MTs by dynamic instability. This work demonstrates how the interplay between two types of motors together with continual nucleation of MTs by chromosomes could organize the MTs into spindles. Our model applies to overlapping, nonkinetochore MTs in anastral spindles, and perhaps also to interpolar MTs in astral spindles. We show mathematically that the slide-and-cluster mechanism robustly forms bipolar spindles a stable steady-state length, sometimes with sharp poles. This model accounts for several experimental observations that were difficult to explain with existing models, and is the first self contained model for anastral spindle assembly, MT sliding (known as poleward flux), and spindle bistability. Our experimental results support the slide-and-cluster scenario

  19. Mitotic spindle assembly on chromatin patterns made with deep UV photochemistry.

    PubMed

    Tarnawska, Katarzyna; Pugieux, Céline; Nédélec, François

    2014-01-01

    We provide a detailed method to generate arrays of mitotic spindles in vitro. Spindles are formed in extract prepared from unfertilized Xenopus laevis eggs, which contain all the molecular ingredients of mitotic spindles. The method is based on using deep UV photochemistry to attach chromatin-coated beads on a glass surface according to a pattern of interest. The immobilized beads act as artificial chromosomes, and induce the formation of mitotic spindles in their immediate vicinity. To perform the experiment, a chamber is assembled over the chromatin pattern, Xenopus egg extract is flowed in and after incubation the spindles are imaged with a confocal microscope. PMID:24484654

  20. Mitotic spindle assembly on chromatin patterns made with deep UV photochemistry.

    PubMed

    Tarnawska, Katarzyna; Pugieux, Céline; Nédélec, François

    2014-01-01

    We provide a detailed method to generate arrays of mitotic spindles in vitro. Spindles are formed in extract prepared from unfertilized Xenopus laevis eggs, which contain all the molecular ingredients of mitotic spindles. The method is based on using deep UV photochemistry to attach chromatin-coated beads on a glass surface according to a pattern of interest. The immobilized beads act as artificial chromosomes, and induce the formation of mitotic spindles in their immediate vicinity. To perform the experiment, a chamber is assembled over the chromatin pattern, Xenopus egg extract is flowed in and after incubation the spindles are imaged with a confocal microscope.

  1. Identification of microtubule-associated proteins in the meiotic spindle of surf clam oocytes

    PubMed Central

    1980-01-01

    Meiotic spindles isolated from surf clam oocytes to morphological purity are biochemically complex, consisting of many polypeptides. These proteins fall into two classes: (a) polypeptides that are apparently cytoplasmic proteins and are not specifically associated with the spindle; and (b) polypeptides that are specifically associated with the spindle. A subset of the spindle-associated proteins, including a 250,000 mol wt component, remain with spindle tubulin through cycles of cold depolymerization and warm polymerization, showing that they are microtubule-associated proteins. PMID:7189754

  2. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization.

    PubMed

    Higgins, David M; Nannas, Natalie J; Dawe, R Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation. PMID:27610117

  3. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization

    PubMed Central

    Higgins, David M.; Nannas, Natalie J.; Dawe, R. Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation. PMID:27610117

  4. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization

    PubMed Central

    Higgins, David M.; Nannas, Natalie J.; Dawe, R. Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation.

  5. Rolling bearing stiffness in arbitrary direction

    NASA Astrophysics Data System (ADS)

    Luo, Zhusan; Sun, Xinde; Wu, Linfeng

    1992-06-01

    This paper presents a new concept of rolling bearing stiffness in arbitrary direction, which is necessary to the investigation of rotor-bearing dynamics. It includes the axial stiffness and the arbitrary radial stiffness of the rolling bearing. Based on elasticity theory and the geometrical parameters of the bearing, the approximate formulas of the axial stiffness, the arbitrary radial stiffness, and the inner ring displacements are derived. Furthermore, the paper also discusses the effects of the loads, the radial clearance, and the load distribution parameters on the rolling bearing stiffness. In order to verify the model and the computer program, an example of a ball bearing is analyzed in detail. It shows that the model and the program are reliable and the results are consistent with the data supplied by the U.S. Air Force Aeropropulsion Laboratory.

  6. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  7. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods

    PubMed Central

    Maquet, Pierre

    2016-01-01

    Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation) and individual characteristics (intellectual quotient). Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way. PMID:27478649

  8. Kinesin-5 Contributes to Spindle-length Scaling in the Evolution of Cancer toward Metastasis

    PubMed Central

    Yang, Ching-Feng; Tsai, Wan-Yu; Chen, Wei-An; Liang, Kai-Wen; Pan, Cheng-Ju; Lai, Pei-Lun; Yang, Pan-Chyr; Huang, Hsiao-Chun

    2016-01-01

    During natural evolution, the spindles often scale with cell sizes to orchestrate accurate chromosome segregation. Whether in cancer evolution, when the constraints on genome integrity are relaxed, cancer cells may evolve the spindle to confer other advantages has not been investigated. Using invasion as a selective pressure in vitro, we found that a highly metastatic cancer clone displays a lengthened metaphase spindle, with faster spindle elongation that correlates with transiently elevated speed of cell migration. We found that kinesin-5 is upregulated in this malignant clone, and weak inhibition of kinesin-5 activity could revert the spindle to a smaller aspect ratio, decrease the speed of spindle pole separation, and suppress post-mitotic cell migration. A correlation was found between high aspect ratio and strong metastatic potential in cancers that evolved and were selected in vivo, implicating that the spindle aspect ratio could serve as a promising cellular biomarker for metastatic cancer clones. PMID:27767194

  9. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods.

    PubMed

    Wallant, Dorothée Coppieters 't; Maquet, Pierre; Phillips, Christophe

    2016-01-01

    Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation) and individual characteristics (intellectual quotient). Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way. PMID:27478649

  10. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly

    PubMed Central

    Lucena, Rafael; Dephoure, Noah; Gygi, Steve P.; Kellogg, Douglas R.; Tallada, Victor A.

    2015-01-01

    During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast. PMID:25963819

  11. Primary Spindle Cell Malignant Melanoma of Esophagus: An Unusual Finding.

    PubMed

    Rawandale, Nirmalkumar A; Suryawanshi, Kishor H

    2016-02-01

    Malignant melanoma of esophagus is usually a metastatic tumour rather than a primary tumour. Primary malignant melanoma accounts for less than 0.2% of all esophageal neoplasm. We report a case of primary spindle cell malignant melanoma of esophagus in a 69-year-old male who presented with history of dysphagia since 1 month. Radiological examinations revealed polypoidal growth at lateral aspect of esophagus. Biopsy was reported as grade III squamous cell carcinoma. Video assisted thoracoscopic esophagectomy was performed. Histopathological examination along with immunohistochemistry gave confirmed diagnosis of primary spindle cell malignant melanoma of esophagus. Though a rare entity, due to its aggressive nature and poor prognosis primary malignant melanoma should be one of the differential diagnoses in a patient with polypoidal esophageal mass lesion. Despite radical surgical treatment prognosis is extremely poor. PMID:27042502

  12. Regulation of mitotic progression by the spindle assembly checkpoint

    PubMed Central

    Lischetti, Tiziana; Nilsson, Jakob

    2015-01-01

    Equal segregation of sister chromatids during mitosis requires that pairs of kinetochores establish proper attachment to microtubules emanating from opposite poles of the mitotic spindle. The spindle assembly checkpoint (SAC) protects against errors in segregation by delaying sister separation in response to improper kinetochore–microtubule interactions, and certain checkpoint proteins help to establish proper attachments. Anaphase entry is inhibited by the checkpoint through assembly of the mitotic checkpoint complex (MCC) composed of the 2 checkpoint proteins, Mad2 and BubR1, bound to Cdc20. The outer kinetochore acts as a catalyst for MCC production through the recruitment and proper positioning of checkpoint proteins and recently there has been remarkable progress in understanding how this is achieved. Here, we highlight recent advances in our understanding of kinetochore–checkpoint protein interactions and inhibition of the anaphase promoting complex by the MCC. PMID:27308407

  13. Attachment issues: kinetochore transformations and spindle checkpoint silencing.

    PubMed

    Etemad, Banafsheh; Kops, Geert J P L

    2016-04-01

    Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the kinetochores of all chromosomes are established. The anaphase inhibitor is generated at unattached kinetochores and inhibitor production is prevented when microtubules are captured. Understanding the molecular changes in the kinetochore that are evoked by microtubule attachments is crucial for understanding the mechanisms of SAC signaling and silencing. Here, we highlight the most recent findings on these events, pinpoint some remaining mysteries, and argue for incorporating holistic views of kinetochore dynamics in order to understand SAC silencing. PMID:26947988

  14. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  15. A spindle-cell myoepithelioma of the lacrimal gland.

    PubMed

    Heathcote, J G; Hurwitz, J J; Dardick, I

    1990-08-01

    A middle-aged woman developed unilateral, painless proptosis that increased slowly over 1 year. A clinical diagnosis of pleomorphic adenoma of the lacrimal gland was supported by computed tomographic scanning and the tumor was excised. On histological examination the tumor proved to be a benign, myxoid myoepithelioma of spindle-cell type. Although occasionally seen in the salivary glands, to our knowledge, this tumor has not previously been described in the lacrimal gland.

  16. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  17. Metaphase spindles rotate in the neuroepithelium of rat cerebral cortex.

    PubMed

    Adams, R J

    1996-12-01

    Time-lapse confocal microscopy has been used to image cells in mitosis at the apical surface of neuroepithelium from the rat cerebral cortex during the period of neurogenesis. Staining with vital chromatin dyes reveals that mitotic spindles that are aligned parallel to the surface of the tissue are highly motile, rotating within the plane of the epithelium throughout metaphase, and come to rest only as anaphase begins. Spindles may make several complete turns, parallel to the epithelium, but only rarely tumble into an orientation perpendicular to the epithelial sheet. Analysis shows that spindles do not rotate randomly; rather, they spend most of their time aligned parallel or antiparallel to the direction in which they will later enter anaphase and undergo cell division. This conclusion is strongly supported by statistical analyses of the data. Stereotyped movements of this kind show that the direction of division is determined early in mitosis. This suggests the existence of intracellular and perhaps intercellular signals that define the polarity of the cell both in the apico-basal direction and within the plane of the epithelium. Such mechanisms may be important for maintaining the structure of the epithelium and cell-cell communication during development and may also provide a mechanism for the precise distribution of cytoplasmic determinants that might influence the fate of the daughter cells at a time when neuronal fate is being determined.

  18. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly

    PubMed Central

    Magidson, Valentin; Paul, Raja; Yang, Nachen; Ault, Jeffrey G.; O’Connell, Christopher B.; Tikhonenko, Irina; McEwen, Bruce F.; Mogilner, Alex; Khodjakov, Alexey

    2015-01-01

    Mitotic spindle formation relies on the stochastic capture of microtubules at kinetochores. Kinetochore architecture affects the efficiency and fidelity of this process with large kinetochores expected to accelerate assembly at the expense of accuracy, and smaller kinetochores to suppress errors at the expense of efficiency. We demonstrate that upon mitotic entry, kinetochores in cultured human cells form large crescents that subsequently compact into discrete structures on opposite sides of the centromere. This compaction occurs only after the formation of end-on microtubule attachments. Live-cell microscopy reveals that centromere rotation mediated by lateral kinetochore-microtubule interactions precedes formation of end-on attachments and kinetochore compaction. Computational analyses of kinetochore expansion-compaction in the context of lateral interactions correctly predict experimentally-observed spindle assembly times with reasonable error rates. The computational model suggests that larger kinetochores reduce both errors and assembly times, which can explain the robustness of spindle assembly and the functional significance of enlarged kinetochores. PMID:26258631

  19. Chapter 24: Computational modeling of self-organized spindle formation.

    PubMed

    Schaffner, Stuart C; José, Jorge V

    2008-01-01

    In this chapter, we provide a derivation and computational details of a biophysical model we introduced to describe the self-organized mitotic spindle formation properties in the chromosome dominated pathway studied in Xenopus meiotic extracts. The mitotic spindle is a biological structure composed of microtubules. This structure forms the scaffold on which mitosis and cytokinesis occurs. Despite the seeming mechanical simplicity of the spindle itself, its formation and the way in which it is used in mitosis and cytokinesis is complex and not fully understood. Biophysical modeling of a system as complex as mitosis requires contributions from biologists, biochemists, mathematicians, physicists, and software engineers. This chapter is written for biologists and biochemists who wish to understand how biophysical modeling can complement a program of biological experimentation. It is also written for a physicist, computer scientist, or mathematician unfamiliar with this class of biological physics model. We will describe how we built such a mathematical model and its numerical simulator to obtain results that agree with many of the results found experimentally. The components of this system are large enough to be described in terms of coarse-grained approximations. We will discuss how to properly model such systems and will suggest effective tradeoffs between reliability, simulation speed, and accuracy. At all times we have in mind the realistic biophysical properties of the system we are trying to model. PMID:19118693

  20. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  1. Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis.

    PubMed

    Bucciarelli, Elisabetta; Giansanti, Maria Grazia; Bonaccorsi, Silvia; Gatti, Maurizio

    2003-03-31

    A large body of work indicates that chromosomes play a key role in the assembly of both a centrosomal and centrosome-containing spindles. In animal systems, the absence of chromosomes either prevents spindle formation or allows the assembly of a metaphase-like spindle that fails to evolve into an ana-telophase spindle. Here, we show that Drosophila secondary spermatocytes can assemble morphologically normal spindles in the absence of chromosomes. The Drosophila mutants fusolo and solofuso are severely defective in chromosome segregation and produce secondary spermatocytes that are devoid of chromosomes. The centrosomes of these anucleated cells form robust asters that give rise to bipolar spindles that undergo the same ana-telophase morphological transformations that characterize normal spindles. The cells containing chromosome-free spindles are also able to assemble regular cytokinetic structures and cleave normally. In addition, chromosome-free spindles normally accumulate the Aurora B kinase at their midzones. This suggests that the association of Aurora B with chromosomes is not a prerequisite for its accumulation at the central spindle, or for its function during cytokinesis.

  2. The Microtubule-Associated Protein ASPM Regulates Spindle Assembly and Meiotic Progression in Mouse Oocytes

    PubMed Central

    Xu, Xiao-Ling; Ma, Wei; Zhu, Yu-Bo; Wang, Chao; Wang, Bing-Yuan; An, Na; An, Lei; Liu, Yan; Wu, Zhong-Hong; Tian, Jian-Hui

    2012-01-01

    The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes. PMID:23152892

  3. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly

    PubMed Central

    Ohta, Shinya; Wood, Laura; Toramoto, Iyo; Yagyu, Ken-Ichi; Fukagawa, Tatsuo; Earnshaw, William C.

    2015-01-01

    Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle. PMID:25657325

  4. MCAK and Paclitaxel Have Differential Effects on Spindle Microtubule Organization and Dynamics

    PubMed Central

    Rizk, Rania S.; Bohannon, Kevin P.; Wetzel, Laura A.; Powers, James; Shaw, Sidney L.

    2009-01-01

    Within the mitotic spindle, there are multiple populations of microtubules with different turnover dynamics, but how these different dynamics are maintained is not fully understood. MCAK is a member of the kinesin-13 family of microtubule-destabilizing enzymes that is required for proper establishment and maintenance of the spindle. Using quantitative immunofluorescence and fluorescence recovery after photobleaching, we compared the differences in spindle organization caused by global suppression of microtubule dynamics, by treating cells with low levels of paclitaxel, versus specific perturbation of spindle microtubule subsets by MCAK inhibition. Paclitaxel treatment caused a disruption in spindle microtubule organization marked by a significant increase in microtubules near the poles and a reduction in K-fiber fluorescence intensity. This was correlated with a faster t1/2 of both spindle and K-fiber microtubules. In contrast, MCAK inhibition caused a dramatic reorganization of spindle microtubules with a significant increase in astral microtubules and reduction in K-fiber fluorescence intensity, which correlated with a slower t1/2 of K-fibers but no change in the t1/2 of spindle microtubules. Our data support the model that MCAK perturbs spindle organization by acting preferentially on a subset of microtubules, and they support the overall hypothesis that microtubule dynamics is differentially regulated in the spindle. PMID:19158381

  5. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    PubMed

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  6. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly.

    PubMed

    Ohta, Shinya; Wood, Laura; Toramoto, Iyo; Yagyu, Ken-Ichi; Fukagawa, Tatsuo; Earnshaw, William C

    2015-04-01

    Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle. PMID:25657325

  7. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform

    PubMed Central

    Adamczyk, Marek; Genzel, Lisa; Dresler, Martin; Steiger, Axel; Friess, Elisabeth

    2015-01-01

    Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle frequency ranges. Eighteen nap recordings of ten subjects were used for algorithm validation. Our method was compared with both a human scorer and a commercially available SIESTA spindle detector. For the validation set, mean agreement between our detector and human scorer measured during sleep stage 2 using kappa coefficient was 0.45, whereas mean agreement between our detector and SIESTA algorithm was 0.62. Our algorithm was also applied to sleep-related memory consolidation data previously analyzed with a SIESTA detector and confirmed previous findings of significant correlation between spindle density and declarative memory consolidation. We then applied our method to a study in monozygotic (MZ) and dizygotic (DZ) twins, examining the genetic component of slow and fast sleep spindle parameters. Our analysis revealed strong genetic influence on variance of all slow spindle parameters, weaker genetic effect on fast spindles, and no effects on fast spindle density and number during stage 2 sleep. PMID:26635577

  8. Introduction to ball bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    The purpose of a ball bearing is to provide a relative positioning and rotational freedom while transmitting a load between two structures, usually a shaft and a housing. For high rotational speeds (e.g., in gyroscope ball bearings) the purpose can be expanded to include rotational freedom with practically no wear in the bearing. This condition can be achieved by separating the bearing parts with a coherent film of fluid known as an elastohydrodynamic film. This film can be maintained not only when the bearing carries the load on a shaft, but also when the bearing is preloaded to position the shaft to within micro- or nano-inch accuracy and stability. Background information on ball bearings is provided, different types of ball bearings and their geometry and kinematics are defined, bearing materials, manufacturing processes, and separators are discussed. It is assumed, for the purposes of analysis, that the bearing carries no load.

  9. Skeletor, a Novel Chromosomal Protein That Redistributes during Mitosis Provides Evidence for the Formation of a Spindle Matrix

    PubMed Central

    Walker, Diana L.; Wang, Dong; Jin, Ye; Rath, Uttama; Wang, Yanming; Johansen, Jørgen; Johansen, Kristen M.

    2000-01-01

    A spindle matrix has been proposed to help organize and stabilize the microtubule spindle during mitosis, though molecular evidence corroborating its existence has been elusive. In Drosophila, we have cloned and characterized a novel nuclear protein, skeletor, that we propose is part of a macromolecular complex forming such a spindle matrix. Skeletor antibody staining shows that skeletor is associated with the chromosomes at interphase, but redistributes into a true fusiform spindle structure at prophase, which precedes microtubule spindle formation. During metaphase, the spindle, defined by skeletor antibody labeling, and the microtubule spindles are coaligned. We find that the skeletor-defined spindle maintains its fusiform spindle structure from end to end across the metaphase plate during anaphase when the chromosomes segregate. Consequently, the properties of the skeletor-defined spindle make it an ideal substrate for providing structural support stabilizing microtubules and counterbalancing force production. Furthermore, skeletor metaphase spindles persist in the absence of microtubule spindles, strongly implying that the existence of the skeletor-defined spindle does not require polymerized microtubules. Thus, the identification and characterization of skeletor represents the first direct molecular evidence for the existence of a complete spindle matrix that forms within the nucleus before microtubule spindle formation. PMID:11134070

  10. CENP-W Plays a Role in Maintaining Bipolar Spindle Structure

    PubMed Central

    Kaczmarczyk, Agnieszka; Sullivan, Kevin F.

    2014-01-01

    The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted

  11. The Structure of the Mitotic Spindle and Nucleolus during Mitosis in the Amebo-Flagellate Naegleria

    PubMed Central

    Walsh, Charles J.

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division. PMID:22493714

  12. Asymmetry of the Budding Yeast Tem1 GTPase at Spindle Poles Is Required for Spindle Positioning But Not for Mitotic Exit

    PubMed Central

    Scarfone, Ilaria; Venturetti, Marianna; Hotz, Manuel; Lengefeld, Jette; Barral, Yves; Piatti, Simonetta

    2015-01-01

    The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is

  13. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  14. Cutaneous CD34+ spindle cell neoplasms: Histopathologic features distinguish spindle cell lipoma, solitary fibrous tumor, and dermatofibrosarcoma protuberans.

    PubMed

    Wood, Lance; Fountaine, Thomas J; Rosamilia, Lorraine; Helm, Klaus F; Clarke, Loren E

    2010-12-01

    Spindle cell lipoma (SCL), dermatofibrosarcoma protuberans (DFSP), and solitary fibrous tumors (SFT) are cutaneous CD34+ spindle cell tumors that may exhibit histopathologic and immunophenotypic overlap. We sought ways to reliably distinguish among these lesions even in small or superficial biopsies. Ten morphologic characteristics were analyzed in a group of 5 SCLs, 6 cutaneous SFTs, and 12 DFSPs. SFT and DFSP exhibited extensive histopathologic overlap in small or partial biopsies. However, adnexal entrapment, defined as diffuse proliferation of tumor cells around pilosebaceous and eccrine structures with minimal disruption or expansion of the dermis, was a feature seen in 10 of the 12 DFSPs and in none of the SFTs or SCLs. Even when only superficial portions of a lesion were present, this feature was identifiable. Spindle cell lipomas posed little diagnostic difficulty, in part because excisional biopsies were performed in all cases of SCL. The number of samples included in the study is relatively small, in part due to the rarity of cutaneous solitary fibrous tumors. We conclude that careful attention to these histopathologic features enables reliable distinction among these tumors.

  15. An astral simulacrum of the central spindle accounts for normal, spindle-less, and anucleate cytokinesis in echinoderm embryos

    PubMed Central

    Su, Kuan-Chung; Bement, William M.; Petronczki, Mark; von Dassow, George

    2014-01-01

    Cytokinesis in animal cells depends on spindle-derived spatial cues that culminate in Rho activation, and thereby actomyosin assembly, in a narrow equatorial band. Although the nature, origin, and variety of such cues have long been obscure, one component is certainly the Rho activator Ect2. Here we describe the behavior and function of Ect2 in echinoderm embryos, showing that Ect2 migrates from spindle midzone to astral microtubules in anaphase and that Ect2 shapes the pattern of Rho activation in incipient furrows. Our key finding is that Ect2 and its binding partner Cyk4 accumulate not only at normal furrows, but also at furrows that form in the absence of associated spindle, midzone, or chromosomes. In all these cases, the cell assembles essentially the same cytokinetic signaling ensemble—opposed astral microtubules decorated with Ect2 and Cyk4. We conclude that if multiple signals contribute to furrow induction in echinoderm embryos, they likely converge on the same signaling ensemble on an analogous cytoskeletal scaffold. PMID:25298401

  16. An astral simulacrum of the central spindle accounts for normal, spindle-less, and anucleate cytokinesis in echinoderm embryos.

    PubMed

    Su, Kuan-Chung; Bement, William M; Petronczki, Mark; von Dassow, George

    2014-12-15

    Cytokinesis in animal cells depends on spindle-derived spatial cues that culminate in Rho activation, and thereby actomyosin assembly, in a narrow equatorial band. Although the nature, origin, and variety of such cues have long been obscure, one component is certainly the Rho activator Ect2. Here we describe the behavior and function of Ect2 in echinoderm embryos, showing that Ect2 migrates from spindle midzone to astral microtubules in anaphase and that Ect2 shapes the pattern of Rho activation in incipient furrows. Our key finding is that Ect2 and its binding partner Cyk4 accumulate not only at normal furrows, but also at furrows that form in the absence of associated spindle, midzone, or chromosomes. In all these cases, the cell assembles essentially the same cytokinetic signaling ensemble—opposed astral microtubules decorated with Ect2 and Cyk4. We conclude that if multiple signals contribute to furrow induction in echinoderm embryos, they likely converge on the same signaling ensemble on an analogous cytoskeletal scaffold. PMID:25298401

  17. Physiological and ultrastructural analysis of elongating mitotic spindles reactivated in vitro

    PubMed Central

    1986-01-01

    We have developed a simple procedure for isolating mitotic spindles from the diatom Stephanopyxis turris and have shown that they undergo anaphase spindle elongation in vitro upon addition of ATP. The isolated central spindle is a barrel-shaped structure with a prominent zone of microtubule overlap. After ATP addition greater than 75% of the spindle population undergoes distinct structural rearrangements: the spindles on average are longer and the two half-spindles are separated by a distinct gap traversed by only a small number of microtubules, the phase-dense material in the overlap zone is gone, and the peripheral microtubule arrays have depolymerized. At the ultrastructural level, we examined serial cross-sections of spindles after 1-, 5-, and 10-min incubations in reactivation medium. Microtubule depolymerization distal to the poles is confirmed by the increased number of incomplete, i.e., c-microtubule profiles specifically located in the region of overlap. After 10 min we see areas of reduced microtubule number which correspond to the gaps seen in the light microscope and an overall reduction in the number of half-spindle microtubules to about one-third the original number. The changes in spindle structure are highly specific for ATP, are dose-dependent, and do not occur with nonhydrolyzable nucleotide analogues. Spindle elongation and gap formation are blocked by 10 microM vanadate, equimolar mixtures of ATP and AMPPNP, and by sulfhydryl reagents. This process is not affected by nocodazole, erythro-9-[3-(2-hydroxynonyl)]adenine, cytochalasin D, and phalloidin. In the presence of taxol, the extent of spindle elongation is increased; however, distinct gaps still form between the two half- spindles. These results show that the response of isolated spindles to ATP is a complex process consisting of several discrete steps including initiation events, spindle elongation mechanochemistry, controlled central spindle microtubule plus-end depolymerization, and loss

  18. Spindle Formation in the Mouse Embryo Requires Plk4 in the Absence of Centrioles

    PubMed Central

    Coelho, Paula A.; Bury, Leah; Sharif, Bedra; Riparbelli, Maria G.; Fu, Jingyan; Callaini, Giuliano; Glover, David M.; Zernicka-Goetz, Magdalena

    2013-01-01

    Summary During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles. PMID:24268700

  19. Surface shape control of the workpiece in a double-spindle triple-workstation wafer grinder

    NASA Astrophysics Data System (ADS)

    Xianglong, Zhu; Renke, Kang; Zhigang, Dong; Guang, Feng

    2011-10-01

    Double-spindle triple-workstation (DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter (>= 300 mm) silicon wafers for integrated circuits. It is important, but insufficiently studied, to control the wafer shape ground on a DSTW grinder by adjusting the inclination angles of the spindles and work tables. In this paper, the requirements of the inclination angle adjustment of the grinding spindles and work tables in DSTW wafer grinders are analyzed. A reasonable configuration of the grinding spindles and work tables in DSTW wafer grinders are proposed. Based on the proposed configuration, an adjustment method of the inclination angle of grinding spindles and work tables for DSTW wafer grinders is put forward. The mathematical models of wafer shape with the adjustment amount of inclination angles for both fine and rough grinding spindles are derived. The proposed grinder configuration and adjustment method will provide helpful instruction for DSTW wafer grinder design.

  20. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    NASA Astrophysics Data System (ADS)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  1. The STARD9/Kif16a kinesin associates with mitotic microtubules and regulates spindle pole assembly.

    PubMed

    Torres, Jorge Z; Summers, Matthew K; Peterson, David; Brauer, Matthew J; Lee, James; Senese, Silvia; Gholkar, Ankur A; Lo, Yu-Chen; Lei, Xingye; Jung, Kenneth; Anderson, David C; Davis, David P; Belmont, Lisa; Jackson, Peter K

    2011-12-01

    During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential antimitotic target.

  2. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability.

    PubMed

    Sutradhar, S; Basu, S; Paul, R

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed. PMID:26565279

  3. Reduced Sleep Spindles in Schizophrenia: A Treatable Endophenotype That Links Risk Genes to Impaired Cognition?

    PubMed

    Manoach, Dara S; Pan, Jen Q; Purcell, Shaun M; Stickgold, Robert

    2016-10-15

    Although schizophrenia (SZ) is defined by waking phenomena, abnormal sleep is a common feature. In particular, there is accumulating evidence of a sleep spindle deficit. Sleep spindles, a defining thalamocortical oscillation of non-rapid eye movement stage 2 sleep, correlate with IQ and are thought to promote long-term potentiation and enhance memory consolidation. We review evidence that reduced spindle activity in SZ is an endophenotype that impairs sleep-dependent memory consolidation, contributes to symptoms, and is a novel treatment biomarker. Studies showing that spindles can be pharmacologically enhanced in SZ and that increasing spindles improves memory in healthy individuals suggest that treating spindle deficits in patients with SZ may improve cognition. Spindle activity is highly heritable, and recent large-scale genome-wide association studies have identified SZ risk genes that may contribute to spindle deficits and illuminate their mechanisms. For example, the SZ risk gene CACNA1I encodes a calcium channel that is abundantly expressed in the thalamic spindle generator and plays a critical role in spindle activity based on a mouse knockout. Future genetic studies of animals and humans can delineate the role of this and other genes in spindles. Such cross-disciplinary research, by forging empirical links in causal chains from risk genes to proteins and cellular functions to endophenotypes, cognitive impairments, symptoms, and diagnosis, has the potential to advance the mechanistic understanding, treatment, and prevention of SZ. This review highlights the importance of deficient sleep-dependent memory consolidation among the cognitive deficits of SZ and implicates reduced sleep spindles as a potentially treatable mechanism.

  4. Large Tailed Spindle Viruses of Archaea: a New Way of Doing Viral Business.

    PubMed

    Hochstein, Rebecca; Bollschweiler, Daniel; Engelhardt, Harald; Lawrence, C Martin; Young, Mark

    2015-09-01

    Viruses of Archaea continue to surprise us. Archaeal viruses have revealed new morphologies, protein folds, and gene content. This is especially true for large spindle viruses, which infect only Archaea. We present a comparison of particle morphologies, major coat protein structures, and gene content among the five characterized large spindle viruses to elucidate defining characteristics. Structural similarities and a core set of genes support the grouping of the large spindle viruses into a new superfamily.

  5. Individual differences in multiple-bag spindles of cat superficial lumbrical muscles.

    PubMed Central

    Decorte, L; Emonet-Dénand, F; Harker, D W; Laporte, Y

    1990-01-01

    A total of 791 spindle poles was analysed with regard to intrafusal fibre composition in the first and second superficial lumbrical muscles from the right and left hindfeet of 9 male and 5 female adult cats. Bag and chain muscle fibres were identified by their myofibrillar ATPase staining profile in the B region, after either acid or alkaline preincubation. A high proportion of the spindle pole population (43.2%) was observed to contain three or more (up to 5) bag fibres; those poles were classified as multiple-bag spindle poles. In the 334 muscle spindles in which both poles were studied, 42 bag fibres (12.6%) were found to be of the 'mixed' type, that is a fibre in which the two poles differ in their ATPase staining profile (either bag1/bag2 or bag/chain). The variability of the intrafusal fibre content observed in spindles of these muscles has been studied in relation to individual characteristics such as sex, weight and side of the animal. In general, multiple-bag spindles are more frequent in male than in female cats and in right as compared to left side muscles. Nearly all 'mixed' bag intrafusal fibres (38 out of 42) were observed in spindles containing 3 or more bag fibres. In 3-bag spindles the proportion of 'mixed' bag spindles is approximately the same in male and female cats. The ratio of 'dynamic' (mean polar bag1 content) to 'static' (mean polar bag2 plus chain fibre content) intrafusal effectors per muscle tends to increase in spindles of right side muscles and to decrease in the heaviest animals. The quantitative and qualitative differences in fibre content of spindles observed in first lumbrical muscles of different animals suggest that the spindle fibre composition, especially that of the 'dynamic' bag1 fibre, may be related to individual predetermined and/or acquired factors. Images Fig. 5 PMID:2143502

  6. Physiological properties of tandem muscle spindles in neck and hind-limb muscles.

    PubMed

    Price, R F; Dutia, M B

    1989-01-01

    Although tandem muscle spindle complexes are found in small but significant numbers in most muscles, experimental investigation of their properties has been problematic because of the difficulty of distinguishing their afferents from those of "normal" single spindles. Of particular interest are the afferents from b2c capsules of tandem spindles, which unlike normal spindles contain only a static b2 nuclear bag fibre and some nuclear chain fibres. The absence of a dynamic b1 nuclear bag fibre from b2c spindles has engendered much speculation as to their response properties and their possible role in motor control. We have recently developed a method for the identification of afferents from b2c spindles in electrophysiological experiments, using infusion or topical application of succinylcholine (SCh). SCh causes the contraction of the dynamic b1 and static b2 nuclear bag intrafusal fibres, and paralyses the nuclear chain fibres. Afferents from b2c spindles are characterized by a strong "biasing" of their discharge rate to about 100 impulses per second (i.p.s.) when activated by SCh (reflecting the contraction of the static b2 fibre), while primary afferents from normal b1b2c spindles show a large increase in dynamic sensitivity as well as "biasing" (reflecting the contraction of both dynamic b1 and static b2 bag fibres). Histological examination of tenuissimus spindles activated by SCh has confirmed this relationship between the pattern of activation by SCh and the number of intrafusal nuclear bag fibres in the spindle. In this paper we review the value of SCh as a means of testing spindle afferents for functional inputs from sensory terminals on the nuclear bag fibres, and discuss the properties of b2c afferents from tandem spindles in the context of their possible function.

  7. Microeconomic analysis of military aircraft bearing restoration

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1976-01-01

    The risk and cost of a bearing restoration by grinding program was analyzed. A microeconomic impact analysis was performed. The annual cost savings to U.S. Army aviation is approximately $950,000.00 for three engines and three transmissions. The capital value over an indefinite life is approximately ten million dollars. The annual cost savings for U.S. Air Force engines is approximately $313,000.00 with a capital value of approximately 3.1 million dollars. The program will result in the government obtaining bearings at lower costs at equivalent reliability. The bearing industry can recover lost profits during a period of reduced demand and higher costs.

  8. Thirty years of search and capture: The complex simplicity of mitotic spindle assembly.

    PubMed

    Heald, Rebecca; Khodjakov, Alexey

    2015-12-21

    Cell division is enacted by a microtubule-based, self-assembling macromolecular machine known as the mitotic spindle. In 1986, Kirschner and Mitchison proposed that by undergoing dynamic cycles of growth and disassembly, microtubules search for chromosomes. Capture of microtubules by the kinetochores progressively connects chromosomes to the bipolar spindle. 30 years later, "search and capture" remains the cornerstone of spindle assembly. However, a variety of facilitating mechanisms such as regulation of microtubule dynamics by diffusible gradients, spatially selective motor activities, and adaptive changes in chromosome architecture have been discovered. We discuss how these mechanisms ensure that the spindle assembles rapidly and with a minimal number of errors. PMID:26668328

  9. TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis.

    PubMed

    Jeon, Hyuk-Joon; You, Seung Yeop; Park, Yong Seok; Chang, Jong Wook; Kim, Jae-Sung; Oh, Jeong Su

    2016-04-01

    Dynamic changes in spindle structure and function are essential for maintaining genomic integrity during the cell cycle. Spindle dynamics are highly dependent on several microtubule-associated proteins that coordinate the dynamic behavior of microtubules, including microtubule assembly, stability and organization. Here, we show that translationally controlled tumor protein (TCTP) is a novel microtubule-associated protein that regulates spindle dynamics during meiotic maturation. TCTP was expressed and widely distributed in the cytoplasm with strong enrichment at the spindle microtubules during meiosis. TCTP was found to be phosphorylated during meiotic maturation, and was exclusively localized to the spindle poles. Knockdown of TCTP impaired spindle organization without affecting chromosome alignment. These spindle defects were mostly due to the destabilization of the polar microtubules. However, the stability of kinetochore microtubules attached to chromosomes was not affected by TCTP knockdown. Overexpression of a nonphosphorylable mutant of TCTP disturbed meiotic maturation, stabilizing the spindle microtubules. In addition, Plk1 was decreased by TCTP knockdown. Taken together, our results demonstrate that TCTP is a microtubule-associating protein required to regulate spindle microtubule dynamics during meiotic maturation in mouse oocytes.

  10. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  11. The Chromosomal Passenger Complex Is Required for Meiotic Acentrosomal Spindle Assembly and Chromosome Biorientation

    PubMed Central

    Radford, Sarah J.; Jang, Janet K.; McKim, Kim S.

    2012-01-01

    DURING meiosis in the females of many species, spindle assembly occurs in the absence of the microtubule-organizing centers called centrosomes. In the absence of centrosomes, the nature of the chromosome-based signal that recruits microtubules to promote spindle assembly as well as how spindle bipolarity is established and the chromosomes orient correctly toward the poles is not known. To address these questions, we focused on the chromosomal passenger complex (CPC). We have found that the CPC localizes in a ring around the meiotic chromosomes that is aligned with the axis of the spindle at all stages. Using new methods that dramatically increase the effectiveness of RNA interference in the germline, we show that the CPC interacts with Drosophila oocyte chromosomes and is required for the assembly of spindle microtubules. Furthermore, chromosome biorientation and the localization of the central spindle kinesin-6 protein Subito, which is required for spindle bipolarity, depend on the CPC components Aurora B and Incenp. Based on these data we propose that the ring of CPC around the chromosomes regulates multiple aspects of meiotic cell division including spindle assembly, the establishment of bipolarity, the recruitment of important spindle organization factors, and the biorientation of homologous chromosomes. PMID:22865736

  12. Regulation of Mitotic Spindle Disassembly by an Environmental Stress-Sensing Pathway in Budding Yeast

    PubMed Central

    Pigula, Adrianne; Drubin, David G.; Barnes, Georjana

    2014-01-01

    Timely spindle disassembly is essential for coordination of mitotic exit with cytokinesis. In the budding yeast Saccharomyces cerevisiae, the microtubule-associated protein She1 functions in one of at least three parallel pathways that promote spindle disassembly. She1 phosphorylation by the Aurora kinase Ipl1 facilitates a role for She1 in late anaphase, when She1 contributes to microtubule depolymerization and shrinkage of spindle halves. By examining the genetic interactions of known spindle disassembly genes, we identified three genes in the environmental stress-sensing HOG (high-osmolarity glycerol response) pathway, SHO1, PBS2, and HOG1, and found they are necessary for proper localization of She1 to the anaphase spindle and for proper spindle disassembly. HOG pathway mutants exhibited spindle disassembly defects, as well as mislocalization of anillin-related proteins Boi1 and Boi2 from the bud neck. Moreover, Boi2, but not Boi1, plays a role in spindle disassembly that places Boi2 in a pathway with Sho1, Pbs2, and Hog1. Together, our data identify a process by which cells monitor events at the spindle and bud neck and describe a novel role for the HOG pathway in mitotic signaling. PMID:25213170

  13. Ongoing Network State Controls the Length of Sleep Spindles via Inhibitory Activity

    PubMed Central

    Barthó, Péter; Slézia, Andrea; Mátyás, Ferenc; Faradzs-Zade, Lejla; Ulbert, István; Harris, Kenneth D.; Acsády, László

    2014-01-01

    Summary Sleep spindles are major transient oscillations of the mammalian brain. Spindles are generated in the thalamus; however, what determines their duration is presently unclear. Here, we measured somatic activity of excitatory thalamocortical (TC) cells together with axonal activity of reciprocally coupled inhibitory reticular thalamic cells (nRTs) and quantified cycle-by-cycle alterations in their firing in vivo. We found that spindles with different durations were paralleled by distinct nRT activity, and nRT firing sharply dropped before the termination of all spindles. Both initial nRT and TC activity was correlated with spindle length, but nRT correlation was more robust. Analysis of spindles evoked by optogenetic activation of nRT showed that spindle probability, but not spindle length, was determined by the strength of the light stimulus. Our data indicate that during natural sleep a dynamically fluctuating thalamocortical network controls the duration of sleep spindles via the major inhibitory element of the circuits, the nRT. PMID:24945776

  14. Spindle Cell Carcinoma of the Mandibular Gingiva – A Case Report

    PubMed Central

    Patankar, Sangeeta R.; Bhandare, Prachi R.; Tripathi, Nidhi; Sridharan, Gokul

    2016-01-01

    Spindle cell carcinoma is a malignancy of epithelial origin often mimicking its mesenchymal counterpart thus posing a diagnostic challenge. It is a rare biphasic malignant tumour mostly encountered in the upper aerodigestive tract. The chief differential diagnoses of spindle cell carcinoma are true superficial sarcomas and they especially need to be differentiated from fibrosarcoma. This presentation reports a spindle cell carcinoma of the gingiva and highlights the difficulties encountered in the diagnosis. It also emphasizes the importance of accurate and thorough diagnosis of malignant spindle cell lesions to determine the appropriate therapeutic modality. PMID:27042594

  15. Spindle Cell Lipoma Occurring in the Buccal Mucosa: An Unusual Location of This Benign Lipomatous Neoplasm

    PubMed Central

    Milhan, Noala Vicensoto Moreira; Cavalcante, Ana Sueli Rodrigues; Marques, Yonara Maria Freire Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-01-01

    Spindle cell lipoma is a benign lipomatous neoplasm, which rarely occurs in the oral cavity. The aims of this paper are to report a case of spindle cell lipoma located in buccal mucosa and discuss the main clinical, histological, and immunohistochemical findings of this entity. Thus, we report a 4-year history of an asymptomatic smooth surface nodule in an elderly Caucasian man with clinical hypothesis of fibroma. The histopathological examination showed spindle cells, mature adipose tissue, and many mast cells in a stroma of connective tissue presenting ropey collagen fibers bundles. After immunohistochemical analysis, the final diagnosis was spindle cell lipoma. PMID:26491592

  16. Spindle cell melanocytic lesions--part I: an approach to compound naevoidal pattern lesions with spindle cell morphology and Spitzoid pattern lesions.

    PubMed

    Sade, Shachar; Al Habeeb, Ayman; Ghazarian, Danny

    2010-04-01

    Melanocytic lesions show great morphological diversity in their architecture and the cytomorphological appearance of their composite cells. Whereas functional melanocytes reveal a dendritic cytomorphology and territorial isolation, lesional naevomelanocytes and melanoma cells typically show epithelioid, spindled or mixed cytomorphologies and a range of architectural arrangements. Spindling is common to melanocytic lesions, and may be either a characteristic feature or a divergent appearance. The presence of spindle cells may mask the melanocytic nature of a lesion, and is often disconcerting, either because of its infrequent appearance in a particular lesion or its interpretation as a dedifferentiated phenotype. Spindle cell melanocytic lesions follow the full spectrum of potential biological outcomes, and difficulty may be experienced judging the nature of a lesion because of a lack of consistently reliable features to predict biological behaviour. Over time, recognition of numerous histomorphological features that may portend a more aggressive lesion have been identified. However, the translation of these features into a diagnostic entity requires a gestalt approach. Although most spindle cell melanocytic lesions can reliably be resolved with this standard approach, problem areas do exist and cause no end of grief to the surgical pathologist or dermatopathologist. In this review, the authors present their algorithmic approach to spindle cell melanocytic lesions and discuss each entity in turn, in order to (1) model a systematic approach to such lesions, and (2) provide familiarity with those melanocytic lesions that either typically or occasionally display a spindled cytomorphology.

  17. Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly

    PubMed Central

    Masuda, Hirohisa; Toda, Takashi

    2016-01-01

    In fission yeast, γ-tubulin ring complex (γTuRC)–specific components Gfh1GCP4, Mod21GCP5, and Alp16GCP6 are nonessential for cell growth. Of these deletion mutants, only alp16Δ shows synthetic lethality with temperature-sensitive mutants of Mzt1MOZART1, a component of the γTuRC required for recruitment of the complex to microtubule-organizing centers. γ-Tubulin small complex levels at mitotic spindle pole bodies (SPBs, the centrosome equivalent in fungi) and microtubule levels for preanaphase spindles are significantly reduced in alp16Δ cells but not in gfh1Δ or mod21Δ cells. Furthermore, alp16Δ cells often form monopolar spindles and frequently lose a minichromosome when the spindle assembly checkpoint is inactivated. Alp16GCP6 promotes Mzt1-dependent γTuRC recruitment to mitotic SPBs and enhances spindle microtubule assembly in a manner dependent on its expression levels. Gfh1GCP4 and Mod21GCP5 are not required for Alp16GCP6-dependent γTuRC recruitment. Mzt1 has an additional role in the activation of the γTuRC for spindle microtubule assembly. The ratio of Mzt1 to γTuRC levels for preanaphase spindles is higher than at other stages of the cell cycle. Mzt1 overproduction enhances spindle microtubule assembly without affecting γTuRC levels at mitotic SPBs. We propose that Alp16GCP6 and Mzt1 act synergistically for efficient bipolar spindle assembly to ensure faithful chromosome segregation. PMID:27053664

  18. Experiments with needle bearings

    NASA Technical Reports Server (NTRS)

    Ferretti, Pericle

    1933-01-01

    Experiments and results are presented in testing needle bearings, especially in comparison with roller bearings. Reduction in coefficient of friction is discussed as well as experimental methods and recording devices.

  19. [Receptor adaptation of muscle spindles treated in different ways].

    PubMed

    Zalkind, V I; Rokotova, N A

    1978-11-01

    Comparison of the grades of 60 sensitive muscle spindle terminals on two actions: gradual stretch of the muscle and short intensive tetanization of the muscle nerve, showed that, irrespective of the mode of action, the character of adaptation remains the smae in majority of units. The speed of receptors adaptation depends not on the specific of testing precedures, but, apparently, on the means of connection of the sensitive terminals with different types of intrafusal muscle fibers with different elasticviscous properties. The possible reason for speedy adaptation of muscle receptors of elementary dynamic type, is discussed.

  20. Spindle cell hemangioma: Unusual presentation of an uncommon tumor.

    PubMed

    Gbolahan, Olalere Omoyosola; Fasina, Oluyemi; Adisa, Akinyele Olumuyiwa; Fasola, Olubayo A

    2015-01-01

    Spindle cell hemangioma (SCH) is an uncommon tumor that usually presents as subcutaneous or deep dermal nodule affecting the extremities and is typically <2 cm in size. A few cases have been reported in the head and neck region. To the best of the authors' knowledge, there are no previous reports of SCH occurring in the orbit in the English literature. We, therefore, report the case of a large SCH involving the right orbit of a healthy 9-year-old Nigerian girl. PMID:26980977

  1. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  2. Bearing puller facilitates removal and replacement of bearing assemblies

    NASA Technical Reports Server (NTRS)

    Schaus, R. B.

    1966-01-01

    Bearing puller removes ball bearing assemblies, which carry the rotor, from turbine type flowmeters. It matches the bearing configuration to facilitate removal of the bearing assemblies from the support members.

  3. Disseminated pleomorphic myofibrosarcoma in a grizzly bear (Ursus arctos horribilis).

    PubMed

    Mete, A; Woods, L; Famini, D; Anderson, M

    2012-01-01

    The pathological and diagnostic features of a widely disseminated pleomorphic high-grade myofibroblastic sarcoma are described in a 23-year-old male brown bear (Ursus arctos horribilis). Firm, solid, white to tan neoplastic nodules, often with cavitated or soft grey-red necrotic centres, were observed throughout most internal organs, subcutaneous tissues and skeletal muscles on gross examination. Microscopically, the tumour consisted of pleomorphic spindle cells forming interlacing fascicles with a focal storiform pattern with large numbers of bizarre polygonal multinucleate cells, frequently within a collagenous stroma. Immunohistochemistry, Masson's trichrome stain and transmission electron microscopy designated the myofibroblast as the cell of origin. This is the first case of a high-grade myofibrosarcoma in a grizzly bear.

  4. Disseminated pleomorphic myofibrosarcoma in a grizzly bear (Ursus arctos horribilis).

    PubMed

    Mete, A; Woods, L; Famini, D; Anderson, M

    2012-01-01

    The pathological and diagnostic features of a widely disseminated pleomorphic high-grade myofibroblastic sarcoma are described in a 23-year-old male brown bear (Ursus arctos horribilis). Firm, solid, white to tan neoplastic nodules, often with cavitated or soft grey-red necrotic centres, were observed throughout most internal organs, subcutaneous tissues and skeletal muscles on gross examination. Microscopically, the tumour consisted of pleomorphic spindle cells forming interlacing fascicles with a focal storiform pattern with large numbers of bizarre polygonal multinucleate cells, frequently within a collagenous stroma. Immunohistochemistry, Masson's trichrome stain and transmission electron microscopy designated the myofibroblast as the cell of origin. This is the first case of a high-grade myofibrosarcoma in a grizzly bear. PMID:22297075

  5. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  6. Novel ATP-competitive kinesin spindle protein inhibitors.

    PubMed

    Parrish, Cynthia A; Adams, Nicholas D; Auger, Kurt R; Burgess, Joelle L; Carson, Jeffrey D; Chaudhari, Amita M; Copeland, Robert A; Diamond, Melody A; Donatelli, Carla A; Duffy, Kevin J; Faucette, Leo F; Finer, Jeffrey T; Huffman, William F; Hugger, Erin D; Jackson, Jeffrey R; Knight, Steven D; Luo, Lusong; Moore, Michael L; Newlander, Ken A; Ridgers, Lance H; Sakowicz, Roman; Shaw, Antony N; Sung, Chiu-Mei M; Sutton, David; Wood, Kenneth W; Zhang, Shu-Yun; Zimmerman, Michael N; Dhanak, Dashyant

    2007-10-01

    Kinesin spindle protein (KSP), an ATPase responsible for spindle pole separation during mitosis that is present only in proliferating cells, has become a novel and attractive anticancer target with potential for reduced side effects compared to currently available therapies. We report herein the discovery of the first known ATP-competitive inhibitors of KSP, which display a unique activity profile as compared to the known loop 5 (L5) allosteric KSP inhibitors that are currently under clinical evaluation. Optimization of this series led to the identification of biphenyl sulfamide 20, a potent KSP inhibitor with in vitro antiproliferative activity against human cells with either wild-type KSP (HCT116) or mutant KSP (HCT116 D130V). In a murine xenograft model with HCT116 D130V tumors, 20 showed significant antitumor activity following intraperitoneal dosing, providing in vivo proof-of-principle of the efficacy of an ATP-competitive KSP inhibitor versus tumors that are resistant to the other known KSP inhibitors. PMID:17725339

  7. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception.

    PubMed

    Normand, Marie-Pier; St-Hilaire, Patrick; Bastien, Célyne H

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study's objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Seventeen individuals with paradoxical insomnia (PARA-I), 24 individuals with psychophysiological insomnia (PSY-I), and 29 GS completed four consecutive polysomnographic nights in laboratory. Sleep spindles were detected automatically during stage 2 and SWS (3-4) on night 3. Number, density, duration, frequency, and amplitude of sleep spindles were calculated. A misperception index was used to determine the degree of discrepancy between subjective and objective total sleep times. Kruskal-Wallis H tests and post hoc tests revealed that PARA-I had significantly shorter sleep spindles than GS but that PSY-I and GS did not differ on spindles length. A standard multiple regression model revealed that neither sleep spindles characteristics nor objective sleep measures were predictive of sleep misperception. A longer duration of spindles could reflect a higher gating process but this hypothesis still needs to be confirmed in replication studies. PMID:27478648

  8. Novel insights into the mechanisms of mitotic spindle assembly by NEK kinases

    PubMed Central

    Prosser, Suzanna L.; O'Regan, Laura; Fry, Andrew M.

    2016-01-01

    ABSTRACT The mitotic spindle is the apparatus upon which chromosomes are segregated during cell division. We have discovered new roles for two members of the NIMA-related kinase (NEK) family in different molecular processes of spindle assembly. Moreover, loss of these proteins leads to segregation errors that drive cancer progression. PMID:27314078

  9. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception

    PubMed Central

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study's objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Seventeen individuals with paradoxical insomnia (PARA-I), 24 individuals with psychophysiological insomnia (PSY-I), and 29 GS completed four consecutive polysomnographic nights in laboratory. Sleep spindles were detected automatically during stage 2 and SWS (3-4) on night 3. Number, density, duration, frequency, and amplitude of sleep spindles were calculated. A misperception index was used to determine the degree of discrepancy between subjective and objective total sleep times. Kruskal-Wallis H tests and post hoc tests revealed that PARA-I had significantly shorter sleep spindles than GS but that PSY-I and GS did not differ on spindles length. A standard multiple regression model revealed that neither sleep spindles characteristics nor objective sleep measures were predictive of sleep misperception. A longer duration of spindles could reflect a higher gating process but this hypothesis still needs to be confirmed in replication studies. PMID:27478648

  10. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region.

    PubMed

    Schweizer, Nina; Pawar, Nisha; Weiss, Matthias; Maiato, Helder

    2015-08-31

    The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous "spindle envelope" confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function.

  11. Spindle-shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Walsh, Maud M.; Sugitani, Kenichiro; House, Christopher H.

    2014-01-01

    Spindle-shaped, organic microstructures ("spindles") are now known from Archean cherts in three localities (Figs. 1-4): The 3 Ga Farrel Quartzite from the Pilbara of Australia [1]; the older, 3.3-3.4 Ga Strelley Pool Formation, also from the Pilbara of Australia [2]; and the 3.4 Ga Kromberg Formation of the Barberton Mountain Land of South Africa [3]. Though the spindles were previously speculated to be pseudofossils or epigenetic organic contaminants, a growing body of data suggests that these structures are bona fide microfossils and further, that they are syngenetic with the Archean cherts in which they occur [1-2, 4-10]. As such, the spindles are among some of the oldest-known organically preserved microfossils on Earth. Moreover, recent delta C-13 study of individual spindles from the Farrel Quartzite (using Secondary Ion Mass Spectrometry [SIMS]) suggests that the spindles may have been planktonic (living in open water), as opposed to benthic (living as bottom dwellers in contact with muds or sediments) [9]. Since most Precambrian microbiotas have been described from benthic, matforming communities, a planktonic lifestyle for the spindles suggests that these structures could represent a segment of the Archean biosphere that is poorly known. Here we synthesize the recent work on the spindles, and we add new observations regarding their geographic distribution, robustness, planktonic habit, and long-lived success. We then discuss their potential evolutionary and astrobiological significance.

  12. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit

    PubMed Central

    Onishi, Masayuki; Yeong, Foong May

    2016-01-01

    Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488

  13. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region

    PubMed Central

    Schweizer, Nina; Pawar, Nisha; Weiss, Matthias

    2015-01-01

    The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous “spindle envelope” confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function. PMID:26304726

  14. Giant meiotic spindles in males from Drosophila species with giant sperm tails.

    PubMed

    Lattao, Ramona; Bonaccorsi, Silvia; Gatti, Maurizio

    2012-02-01

    The spindle is a highly dynamic molecular machine that mediates precise chromosome segregation during cell division. Spindle size can vary dramatically, not only between species but also between different cells of the same organism. However, the reasons for spindle size variability are largely unknown. Here we show that variations in spindle size can be linked to a precise developmental requirement. Drosophila species have dramatically different sperm flagella that range in length from 0.3 mm in D. persimilis to 58.3 mm in D. bifurca. We found that males of different species exhibit striking variations in meiotic spindle size, which positively correlate with sperm length, with D. bifurca showing 30-fold larger spindles than D. persimilis. This suggests that primary spermatocytes of Drosophila species manufacture and store amounts of tubulin that are proportional to the axoneme length and use these tubulin pools for spindle assembly. These findings highlight an unsuspected plasticity of the meiotic spindle in response to the selective forces controlling sperm length.

  15. Follicular thyroid adenoma dominated by spindle cells: report of two unusual cases and literature review

    PubMed Central

    Abbas, Agaimy; Thomas, Hahn; Josef, Schroeder; Afaf, Elhag

    2012-01-01

    Primary spindle cell neoplasms of the thyroid gland are quite rare. They encompass a heterogeneous group of benign and malignant lesions of mesenchymal and epithelial origin. We herein describe two unusual follicular thyroid adenomas dominated by spindle cells with occasional areas of colloid-forming follicular differentiation. The tumors affected a 77-year woman and a 70-year old man; both had a long-history of monoclonal gammopathy of unknown significance (MGUS). One tumor presented as a large cold thyroid nodule and the other was an autopsy finding. The tumors were predominantly composed of fibroblast-like spindled cells. One case showed prominent meningioma-like concentric perivascular arrangement and contained cytoplasmic melanin-like pigment. Stromal hyalinization was a prominent feature of both. By immunohistochemistry, the spindled cells expressed vimentin, pankeratin (KL1), thyroglobulin and TTF1 consistent with a follicular differentiation. They did not stain with calcitonin, CEA and other lineage-specific mesenchymal, neuroendocrine and melanocytic markers. There was no evidence of metastasis at autopsy (case 2) or at last follow-up 2 years after surgery (case 1). These cases demonstrate the diversity of follicular thyroid neoplasms and the unusual occurrence of extensive spindle cell metaplasia. These uncommon lesions need to be distinguished from spindle cell medullary carcinoma, paucicellular spindle cell anaplastic carcinoma, spindle cell foci in papillary and follicular carcinoma, solitary fibrous tumor and other rare benign and malignant mesenchymal lesions. PMID:22400075

  16. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Chen, H.; Yu, T.; Li, B.

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  17. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.

    PubMed

    Yang, Z; Chen, H; Yu, T; Li, B

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage. PMID:27587158

  18. Effects of in-vitro or in-vivo matured ooplasm and spindle-chromosome complex on the development of spindle-transferred oocytes.

    PubMed

    Ding, Chenhui; Li, Tao; Zeng, Yanhong; Hong, Pingping; Xu, Yanwen; Zhou, Canquan

    2014-12-01

    To study the effects of in-vitro matured ooplasm and spindle-chromosome complex (SCC) on the development of spindle-transferred oocytes, reciprocal spindle transfer was conducted between in-vivo and in-vitro matured oocytes. The reconstructed oocytes were divided into four groups according to their different ooplasm sources and SCC, artificially activated and cultured to the blastocyst stage. Oocyte survival, activation and embryo development after spindle transfer manipulation were compared between groups. Survival, activation, and cleavage rates of reconstructed oocytes after spindle transfer manipulation did not differ significantly among the four groups. The eight-cell stage embryo formation rates on day 3 and the blastocyst formation rate on day 6 were not significantly different between the in-vitro and in-vivo matured SCC groups when they were transplanted into in-vivo matured ooplasm. The rate of eight-cell stage embryo formation with in-vitro matured ooplasm was significantly lower (P < 0.05) than that of embryos with in-vivo matured ooplasm, and none of the embryos developed to the blastocyst stage. Therefore, SCC matured in vitro effectively supported the in-vitro development of reconstructed oocytes. Ooplasm matured in vitro, however, could not support the development of reconstructed oocytes, and may not be an appropriate source of ooplasm donation for spindle transfer.

  19. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  20. A force-generating machinery maintains the spindle at the cell center during mitosis.

    PubMed

    Garzon-Coral, Carlos; Fantana, Horatiu A; Howard, Jonathon

    2016-05-27

    The position and orientation of the mitotic spindle is precisely regulated to ensure the accurate partition of the cytoplasm between daughter cells and the correct localization of the daughters within growing tissue. Using magnetic tweezers to perturb the position of the spindle in intact cells, we discovered a force-generating machinery that maintains the spindle at the cell center during metaphase and anaphase in one- and two-cell Caenorhabditis elegans embryos. The forces increase with the number of microtubules and are larger in smaller cells. The machinery is rigid enough to suppress thermal fluctuations to ensure precise localization of the mitotic spindle, yet compliant enough to allow molecular force generators to fine-tune the position of the mitotic spindle to facilitate asymmetric division. PMID:27230381

  1. Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways

    SciTech Connect

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2008-04-15

    Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.

  2. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  3. Evaluating the use of line length for automatic sleep spindle detection.

    PubMed

    Imtiaz, Syed Anas; Rodriguez-Villegas, Esther

    2014-01-01

    Sleep spindles are transient waveforms observed on the electroencephalogram (EEG) during the N2 stage of sleep. In this paper we evaluate the use of line length, an efficient and low-complexity time domain feature, for automatic detection of sleep spindles. We use this feature with a simple algorithm to detect spindles achieving sensitivity of 83.6% and specificity of 87.9%. We also present a comparison of these results with other spindle detection methods evaluated on the same dataset. Further, we implemented the algorithm on a MSP430 microcontroller achieving a power consumption of 56.7 μW. The overall detection performance, combined with the low power consumption show that line length could be a useful feature for detecting sleep spindles in wearable and resource-constrained systems. PMID:25571121

  4. Synergy between Multiple Microtubule-Generating Pathways Confers Robustness to Centrosome-Driven Mitotic Spindle Formation

    PubMed Central

    Hayward, Daniel; Metz, Jeremy; Pellacani, Claudia; Wakefield, James G.

    2014-01-01

    Summary The mitotic spindle is defined by its organized, bipolar mass of microtubules, which drive chromosome alignment and segregation. Although different cells have been shown to use different molecular pathways to generate the microtubules required for spindle formation, how these pathways are coordinated within a single cell is poorly understood. We have tested the limits within which the Drosophila embryonic spindle forms, disrupting the inherent temporal control that overlays mitotic microtubule generation, interfering with the molecular mechanism that generates new microtubules from preexisting ones, and disrupting the spatial relationship between microtubule nucleation and the usually dominant centrosome. Our work uncovers the possible routes to spindle formation in embryos and establishes the central role of Augmin in all microtubule-generating pathways. It also demonstrates that the contributions of each pathway to spindle formation are integrated, highlighting the remarkable flexibility with which cells can respond to perturbations that limit their capacity to generate microtubules. PMID:24389063

  5. Canoe binds RanGTP to promote Pins(TPR)/Mud-mediated spindle orientation.

    PubMed

    Wee, Brett; Johnston, Christopher A; Prehoda, Kenneth E; Doe, Chris Q

    2011-10-31

    Regulated spindle orientation maintains epithelial tissue integrity and stem cell asymmetric cell division. In Drosophila melanogaster neural stem cells (neuroblasts), the scaffolding protein Canoe (Afadin/Af-6 in mammals) regulates spindle orientation, but its protein interaction partners and mechanism of action are unknown. In this paper, we use our recently developed induced cell polarity system to dissect the molecular mechanism of Canoe-mediated spindle orientation. We show that a previously uncharacterized portion of Canoe directly binds the Partner of Inscuteable (Pins) tetratricopeptide repeat (TPR) domain. The Canoe-Pins(TPR) interaction recruits Canoe to the cell cortex and is required for activation of the Pins(TPR)-Mud (nuclear mitotic apparatus in mammals) spindle orientation pathway. We show that the Canoe Ras-association (RA) domains directly bind RanGTP and that both the Canoe(RA) domains and RanGTP are required to recruit Mud to the cortex and activate the Pins/Mud/dynein spindle orientation pathway.

  6. Kinesin-5 in Drosophila Embryo Mitosis: Sliding Filament or Spindle Matrix Mechanism?

    PubMed Central

    Scholey, Jonathan M.

    2009-01-01

    The Drosophila syncytial embryo uses multiple astral mitotic spindles that are specialized for rapid mitosis. The homotetrameric kinesin-5, KLP61F contributes to various aspects of mitosis in this system, all of which are consistent with it exerting outward forces on spindle poles. In principle, kinesin-5 could accomplish this by (i) sliding microtubules (MTs), minus end leading, relative to a static spindle matrix or (ii) crosslinking and sliding apart adjacent pairs of antiparallel interpolar (ip) MTs. Here, I critically review data on the biochemistry of purified KLP61F, its localization and dynamic properties within spindles, and quantitative modeling of KLP61F function. While a matrix-based mechanism may operate in some systems, the work tends to support the latter “sliding filament” mechanism for KLP61F action in Drosophila embryo spindles. PMID:19291760

  7. Dlg1 controls planar spindle orientation in the neuroepithelium through direct interaction with LGN

    PubMed Central

    Saadaoui, Mehdi; Machicoane, Mickaël; di Pietro, Florencia; Etoc, Fred; Echard, Arnaud

    2014-01-01

    Oriented cell divisions are necessary for the development of epithelial structures. Mitotic spindle orientation requires the precise localization of force generators at the cell cortex via the evolutionarily conserved LGN complex. However, polarity cues acting upstream of this complex in vivo in the vertebrate epithelia remain unknown. In this paper, we show that Dlg1 is localized at the basolateral cell cortex during mitosis and is necessary for planar spindle orientation in the chick neuroepithelium. Live imaging revealed that Dlg1 is required for directed spindle movements during metaphase. Mechanistically, we show that direct interaction between Dlg1 and LGN promotes cortical localization of the LGN complex. Furthermore, in human cells dividing on adhesive micropatterns, homogenously localized Dlg1 recruited LGN to the mitotic cortex and was also necessary for proper spindle orientation. We propose that Dlg1 acts primarily to recruit LGN to the cortex and that Dlg1 localization may additionally provide instructive cues for spindle orientation. PMID:25202028

  8. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    PubMed

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-01-01

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis. PMID:24996848

  9. A force-generating machinery maintains the spindle at the cell center during mitosis.

    PubMed

    Garzon-Coral, Carlos; Fantana, Horatiu A; Howard, Jonathon

    2016-05-27

    The position and orientation of the mitotic spindle is precisely regulated to ensure the accurate partition of the cytoplasm between daughter cells and the correct localization of the daughters within growing tissue. Using magnetic tweezers to perturb the position of the spindle in intact cells, we discovered a force-generating machinery that maintains the spindle at the cell center during metaphase and anaphase in one- and two-cell Caenorhabditis elegans embryos. The forces increase with the number of microtubules and are larger in smaller cells. The machinery is rigid enough to suppress thermal fluctuations to ensure precise localization of the mitotic spindle, yet compliant enough to allow molecular force generators to fine-tune the position of the mitotic spindle to facilitate asymmetric division.

  10. Nonequilibrium fluctuations in metaphase spindles: polarized light microscopy, image registration, and correlation functions

    NASA Astrophysics Data System (ADS)

    Brugués, Jan; Needleman, Daniel J.

    2010-02-01

    Metaphase spindles are highly dynamic, nonequilibrium, steady-state structures. We study the internal fluctuations of spindles by computing spatio-temporal correlation functions of movies obtained from quantitative polarized light microscopy. These correlation functions are only physically meaningful if corrections are made for the net motion of the spindle. We describe our image registration algorithm in detail and we explore its robustness. Finally, we discuss the expression used for the estimation of the correlation function in terms of the nematic order of the microtubules which make up the spindle. Ultimately, studying the form of these correlation functions will provide a quantitative test of the validity of coarse-grained models of spindle structure inspired from liquid crystal physics.

  11. A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size.

    PubMed

    Xia, Xiaoyu; Gholkar, Ankur; Senese, Silvia; Torres, Jorge Z

    2015-01-01

    Leucine carboxyl methyltransferase-1 (LCMT1) and protein phosphatase methylesterase-1 (PME-1) are essential enzymes that regulate the methylation of the protein phosphatase 2A catalytic subunit (PP2AC). LCMT1 and PME-1 have been linked to the regulation of cell growth and proliferation, but the underlying mechanisms have remained elusive. We show here an important role for an LCMT1-PME-1 methylation equilibrium in controlling mitotic spindle size. Depletion of LCMT1 or overexpression of PME-1 led to long spindles. In contrast, depletion of PME-1, pharmacological inhibition of PME-1 or overexpression of LCMT1 led to short spindles. Furthermore, perturbation of the LCMT1-PME-1 methylation equilibrium led to mitotic arrest, spindle assembly checkpoint activation, defective cell divisions, induction of apoptosis and reduced cell viability. Thus, we propose that the LCMT1-PME-1 methylation equilibrium is critical for regulating mitotic spindle size and thereby proper cell division.

  12. A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size

    PubMed Central

    Xia, Xiaoyu; Gholkar, Ankur; Senese, Silvia; Torres, Jorge Z

    2015-01-01

    Leucine carboxyl methyltransferase-1 (LCMT1) and protein phosphatase methylesterase-1 (PME-1) are essential enzymes that regulate the methylation of the protein phosphatase 2A catalytic subunit (PP2AC). LCMT1 and PME-1 have been linked to the regulation of cell growth and proliferation, but the underlying mechanisms have remained elusive. We show here an important role for an LCMT1-PME-1 methylation equilibrium in controlling mitotic spindle size. Depletion of LCMT1 or overexpression of PME-1 led to long spindles. In contrast, depletion of PME-1, pharmacological inhibition of PME-1 or overexpression of LCMT1 led to short spindles. Furthermore, perturbation of the LCMT1-PME-1 methylation equilibrium led to mitotic arrest, spindle assembly checkpoint activation, defective cell divisions, induction of apoptosis and reduced cell viability. Thus, we propose that the LCMT1-PME-1 methylation equilibrium is critical for regulating mitotic spindle size and thereby proper cell division. PMID:25839665

  13. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    PubMed Central

    Ray, Laura B.; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M.; Doyon, Julien; Fogel, Stuart M.

    2015-01-01

    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11–16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles. PMID:26441604

  14. Eddy-Current Inspection of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Bankston, B.

    1985-01-01

    Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.

  15. Ceramic bearings. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1995-05-01

    The bibliography contains citations concerning the design, fabrication, and evaluation of ceramic bearings. Citations discuss roller, ball, fuel-lubricated, and dry-lubricated bearings. Applications in machinery, automobiles, rails, and air transport are examined. References to surface hardness, wear, and fatigue tests are presented. (Contains a minimum of 125 citations and includes a subject term index and title list.)

  16. Bearings: Technology and needs

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1982-01-01

    A brief status report on bearing technology and present and near-term future problems that warrant research support is presented. For rolling element bearings a material with improved fracture toughness, life data in the low Lambda region, a comprehensive failure theory verified by life data and incorporated into dynamic analyses, and an improved corrosion resistant alloy are perceived as important needs. For hydrodynamic bearings better definition of cavitation boundaries and pressure distributions for squeeze film dampers, and geometry optimization for minimum power loss in turbulent film bearings are needed. For gas film bearings, foil bearing geometries that form more nearly optimum film shapes for maximum load capacity, and more effective surface protective coatings for high temperature operation are needed.

  17. Comparison of predicted and experimental thermal performance of angular-contact ball bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1984-01-01

    Predicted bearing heat generation and bearing temperature were verified by experimental data for ball bearings over a range of sizes, shaft speeds, and lubricant flow rates. The computer program Shaberth requires, as input, a factor which describes the air-oil mixture in the bearing cavity for calculation of the ball drag contribution to bearing heat generation. An equation for this lubricant percent volume in the bearing cavity was derived and appears to be valid over the range of test conditions including bearing bore sizes from 35 to 167 mm and shaft speeds from 1.0 to 3.0 million DN.

  18. Bearing strength of lunar soil.

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1971-01-01

    Bearing load vs penetration curves have been measured on a 1.3 g sample of lunar soil from the scoop of the Surveyor 3 soil mechanics surface sampler, using a circular indentor 2 mm in diameter. Measurements were made in an Earth laboratory, in air. This sample provided a unique opportunity to evaluate earlier, remotely controlled, in-situ measurements of lunar surface bearing properties. Bearing capacity, measured at a penetration equal to the indentor diameter, varied from 0.02-0.04 N/sq cm at bulk densities of 1.15 g/cu cm to 30-100 N/sq cm at 1.9 g/cu cm. Deformation was by compression directly below the indentor at bulk densities below 1.61 g/cu cm, by outward displacement at bulk densities over 1.62 g/cu cm. Preliminary comparison of in-situ remote measurements with those on returned material indicates good agreement if the lunar regolith at Surveyor 3 has a bulk density of 1.6 g/cu cm at 2.5 cm depth.

  19. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  20. Primary pulmonary spindle cell tumour (haemangiopericytoma) in a dog.

    PubMed

    Vignoli, M; Buchholz, J; Morandi, F; Laddaga, E; Brunetti, B; Rossi, F; Terragni, R; Sarli, G

    2008-10-01

    Haemangiopericytoma is a soft tissue sarcoma believed to originate from pericytes. These tumours are commonly located on the skin and subcutaneous tissue of dogs and are most commonly found on the limbs. To the authors' knowledge, primary lung haemangiopericytomas have not been previously described in dogs. This case report describes the diagnostic evaluation and treatment of a primary haemangiopericytoma of the lung in a 10-year-old male, neutered, Siberian husky dog. Staging of the tumour was performed using a computed tomography scan of the thorax and a computed tomography-guided fine-needle aspiration biopsy of the lesion. Treatment was a right caudal lobectomy from a right lateral approach. No regional lymph node changes were noted on computed tomography or intraoperative assessments. Histopathology confirmed a spindle cell tumour that stained positive for vimentin and negative for desmin and S-100.

  1. Efavirenz modulation of sleep spindles and sleep spectral profile.

    PubMed

    Simen, Arthur A; Ma, Junshui; Svetnik, Vladimir; Mayleben, David; Maynard, James; Roth, Adam; Mixson, Lori; Mogg, Robin; Shera, David; George, Laura; Mast, T Chris; Beals, Chan; Stoch, Aubrey; Struyk, Arie; Shire, Norah; Fraser, Iain

    2015-02-01

    Non-nucleoside reverse transcriptase inhibitors are important antiretroviral agents for the treatment of human immunodeficiency virus. Some non-nucleoside reverse transcriptase inhibitors, in particular efavirenz, have prominent effects on sleep, cognition and psychiatric variables that limit their tolerability. To avoid confounds due to drug-drug and drug-disease interactions, we assessed the effects of efavirenz in healthy volunteers on sleep, cognition and psychological endpoints during the first week of treatment. Forty healthy male subjects were randomized to receive placebo or efavirenz 600 mg nightly for 7 days after completion of a 3-day placebo run-in period. Treatment with efavirenz was associated with reduced time to sleep onset in the Maintenance of Wakefulness Test, an increase in non-rapid eye movement sleep, a large exposure-related decrease in sigma band spectral density and sleep spindle density during non-rapid eye movement sleep, and reduced performance on an attention switching task. Because efavirenz has been shown to have serotonin 2A receptor partial-agonist properties, we reasoned that antagonism of serotonin 2A receptor signalling in the thalamic reticular nucleus, which generates sleep spindles and promotes attention, may be responsible. Consistent with predictions, treatment of healthy volunteers with a single dose of a serotonin 2A receptor antagonist was found to significantly suppress sigma band spectral density in an exposure-related manner and modulated the overall spectral profile in a manner highly similar to that observed with efavirenz, consistent with the notion that efavirenz exhibits serotonin 2A receptor partial-agonist pharmacology in humans.

  2. Linear magnetic bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.

  3. Bearing restoration by grinding

    NASA Technical Reports Server (NTRS)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  4. Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods

    PubMed Central

    Hochstein, Rebecca A.; Amenabar, Maximiliano J.; Munson-McGee, Jacob H.; Boyd, Eric S.

    2016-01-01

    ABSTRACT The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In

  5. Spatial regulation of kinetochore microtubule attachments by destabilization at spindle poles in meiosis I

    PubMed Central

    Chmátal, Lukáš; Yang, Karren; Schultz, Richard M.; Lampson, Michael A.

    2015-01-01

    Summary To ensure accurate chromosome segregation in cell division, erroneous kinetochore-microtubule (MT) attachments are recognized and destabilized [1]. Improper attachments typically lack tension between kinetochores and are positioned off-center on the spindle. Low tension is a widely accepted mechanism for recognizing errors [2], but whether chromosome position regulates MT attachments has been difficult to test. We exploited a meiotic system in which kinetochores attached to opposite spindle poles differ in their interactions with microtubules, and therefore position and tension can be uncoupled. In this system homologous chromosomes are positioned off-center on the spindle in oocytes in meiosis I, while under normal tension, as a result of crossing mouse strains with different centromere strengths, manifested by unequal kinetochore protein levels [3]. We show that proximity to spindle poles destabilizes kinetochore-MTs, and that stable attachments are restored by inhibiting Aurora A kinase at spindle poles. During the correction of attachment errors, kinetochore MTs detach near spindle poles to allow formation of correct attachments. We propose that chromosome position on the spindle provides spatial cues for the fidelity of cell division. PMID:26166779

  6. Aurora A Phosphorylates MCAK to Control Ran-dependent Spindle Bipolarity

    PubMed Central

    Zhang, Xin; Ems-McClung, Stephanie C.

    2008-01-01

    During mitosis, mitotic centromere-associated kinesin (MCAK) localizes to chromatin/kinetochores, a cytoplasmic pool, and spindle poles. Its localization and activity in the chromatin region are regulated by Aurora B kinase; however, how the cytoplasmic- and pole-localized MCAK are regulated is currently not clear. In this study, we used Xenopus egg extracts to form spindles in the absence of chromatin and centrosomes and found that MCAK localization and activity are tightly regulated by Aurora A. This regulation is important to focus microtubules at aster centers and to facilitate the transition from asters to bipolar spindles. In particular, we found that MCAK colocalized with NuMA and XMAP215 at the center of Ran asters where its activity is regulated by Aurora A-dependent phosphorylation of S196, which contributes to proper pole focusing. In addition, we found that MCAK localization at spindle poles was regulated through another Aurora A phosphorylation site (S719), which positively enhances bipolar spindle formation. This is the first study that clearly defines a role for MCAK at the spindle poles as well as identifies another key Aurora A substrate that contributes to spindle bipolarity. PMID:18434591

  7. Alpha spindles as neurophysiological correlates indicating attentional shift in a simulated driving task.

    PubMed

    Sonnleitner, Andreas; Simon, Michael; Kincses, Wilhelm E; Buchner, Axel; Schrauf, Michael

    2012-01-01

    The intention of this paper is to describe neurophysiological correlates of driver distraction with highly robust parameters in the EEG (i.e. alpha spindles). In a simulated driving task with two different secondary tasks (i.e. visuomotor, auditory), N=28 participants had to perform full stop brakes reacting to appearing stop signs and red traffic lights. Alpha spindle rate was significantly higher during an auditory secondary task and significantly lower during a visuomotor secondary task as compared to driving only. Alpha spindle duration was significantly shortened during a visuomotor secondary task. The results are consistent with the assumption that alpha spindles indicate active inhibition of visual information processing. Effects on the alpha spindles while performing secondary tasks on top of the driving task indicate attentional shift according to the task modality. As compared to alpha band power, both the measures of alpha spindle rate and alpha spindle duration were less vulnerable to artifacts and the effect sizes were larger, allowing for a more accurate description of the current driver state.

  8. A new method to measure circular runout of end-milling spindle based on cutting mark

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlai; Liu, Shuchun

    2008-12-01

    A practical method is introduced to measure the circular runout of a end-milling spindle system at high speed rotations without the need of a reference sphere. A workpiece is held on a linear slide which moves along the axial direction of the spindle. The spindle is then programmed to run at a specific speed. A very sharp edge cutter must be used and the depth of cut will be very shallow in order to keep the cutting force very small. The workpiece is then fed into the end mill in order to make a cutting mark of teens μm in depth. The cutting marks are circular, and their diameters are related to the circular runout of the spindle system. The cutting mark that is generated at a specific speed is expected to contain information about the spindle circular runout at this speed. In practice the cutting marks are not perfectly circular. Therefore, a best-fit circle of a cutting mark is needed to determine its diameter. A high-resolution edge detector machine is used for this purpose. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. It is demonstrated that this technique for the measurement of spindle circular runout is an effective tool in verifying the actual running accuracy of spindles at their actual operating speeds and can be accomplished without the need for a reference sphere.

  9. DDA3 targets Cep290 into the centrosome to regulate spindle positioning.

    PubMed

    Song, Haiyu; Park, Ji Eun; Jang, Chang-Young

    The centrosome is an important cellular organelle which nucleates microtubules (MTs) to form the cytoskeleton during interphase and the mitotic spindle during mitosis. The Cep290 is one of the centrosomal proteins and functions in cilia formation. Even-though it is in the centrosome, the function of Cep290 in mitosis had not yet been evaluated. In this study, we report a novel function of Cep290 that is involved in spindle positioning. Cep290 was identified as an interacting partner of DDA3, and we confirmed that Cep290 specifically localizes in the mitotic centrosome. Depletion of Cep290 caused a reduction of the astral spindle, leading to misorientation of the mitotic spindle. MT polymerization also decreased in Cep290-depleted cells, suggesting that Cep290 is involved in spindle nucleation. Furthermore, DDA3 stabilizes and transports Cep290 to the centrosome. Therefore, we concluded that DDA3 controls astral spindle formation and spindle positioning by targeting Cep290 to the centrosome. PMID:25998387

  10. Spindle cell melanocytic lesions: part II--an approach to intradermal proliferations and horizontally oriented lesions.

    PubMed

    Sade, Shachar; Al Habeeb, Ayman; Ghazarian, Danny

    2010-05-01

    Melanocytic lesions show great morphological diversity in their architecture and the cytomorphological appearance of their composite cells. Whereas functional melanocytes show a dendritic cytomorphology and territorial isolation, lesional nevomelanocytes and melanoma cells typically show epithelioid, spindled or mixed cytomorphologies, and a range of architectural arrangements. Spindling is common to melanocytic lesions, and may either be a characteristic feature or a divergent appearance. The presence of spindle cells may mask the melanocytic nature of a lesion, and is often disconcerting, either due to its infrequent appearance in a particular lesion or its interpretation as a dedifferentiated phenotype. Spindle cell melanocytic lesions follow the full spectrum of potential biological outcomes, and difficulty may be experienced judging the nature of a lesion due to a lack of consistently reliable features to predict biological behaviour. Over time, recognition of numerous histomorphological features that may portend a more aggressive lesion have been identified; however, the translation of these features into a diagnostic entity requires a gestalt approach. Although most spindle cell melanocytic lesions may reliably be resolved through this standard approach, problem areas do exist for the surgical pathologist or dermatopathologist. With this review (part II of II), we complete our discussion of spindle cell melanocytic lesions, in order to: (1) model a systematic approach to such lesions; and (2) provide familiarity with those melanocytic lesions which either typically or occasionally display a spindled cytomorphology.

  11. ASK1 controls spindle orientation and positioning by phosphorylating EB1 and stabilizing astral microtubules

    PubMed Central

    Luo, Youguang; Ran, Jie; Xie, Songbo; Yang, Yunfan; Chen, Jie; Li, Shanshan; Shui, Wenqing; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Orientation and positioning of the mitotic spindle are involved in dictating cell division axis and cleavage site, and play important roles in cell fate determination and tissue morphogenesis. However, how spindle movement is controlled to achieve a defined alignment within the dividing cell is not fully understood. Here, we describe an unexpected role for apoptosis signal-regulating kinase 1 (ASK1) in regulating spindle behavior. We find that ASK1 is required for proper mitotic progression and daughter cell adhesion to the substratum. ASK1 interacts with end-binding protein 1 (EB1) and phosphorylates EB1 at serine 40, threonine 154 and threonine 206, enhancing its binding to the plus ends of astral microtubules. Consequently, astral microtubules are stabilized and therefore capable of mediating spindle interaction with the cell cortex, a requirement for spindle movement. These findings reveal a previously undiscovered function of ASK1 in cell division by regulating spindle orientation and positioning, and point to the importance of protein phosphorylation in the regulation of spindle behavior. PMID:27721984

  12. 50 ways to build a spindle: the complexity of microtubule generation during mitosis.

    PubMed

    Duncan, Tommy; Wakefield, James G

    2011-04-01

    The accurate segregation of duplicated chromosomes, essential for the development and viability of a eukaryotic organism, requires the formation of a robust microtubule (MT)-based spindle apparatus. Entry into mitosis or meiosis precipitates a cascade of signalling events which result in the activation of pathways responsible for a dramatic reorganisation of the MT cytoskeleton: through changes in the properties of MT-associated proteins, local concentrations of free tubulin dimer and through enhanced MT nucleation. The latter is generally thought to be driven by localisation and activation of γ-tubulin-containing complexes (γ-TuSC and γ-TuRC) at specific subcellular locations. For example, upon entering mitosis, animal cells concentrate γ-tubulin at centrosomes to tenfold the normal level during interphase, resulting in an aster-driven search and capture of chromosomes and bipolar mitotic spindle formation. Thus, in these cells, centrosomes have traditionally been perceived as the primary microtubule organising centre during spindle formation. However, studies in meiotic cells, plants and cell-free extracts have revealed the existence of complementary mechanisms of spindle formation, mitotic chromatin, kinetochores and nucleation from existing MTs or the cytoplasm can all contribute to a bipolar spindle apparatus. Here, we outline the individual known mechanisms responsible for spindle formation and formulate ideas regarding the relationship between them in assembling a functional spindle apparatus. PMID:21484448

  13. Initial Testing (Stage 1) of the Kinesin Spindle Protein Inhibitor Ispinesib by the Pediatric Preclinical Testing Program

    PubMed Central

    Carol, Hernan; Lock, Richard; Houghton, Peter J.; Morton, Christopher L.; Kolb, E. Anders; Gorlick, Richard; Reynolds, C. Patrick; Maris, John M.; Keir, Stephen T.; Billups, Catherine A.; Smith, Malcolm A.

    2009-01-01

    Background Ispinesib is a highly specific inhibitor of kinesin spindle protein (KSP, HsEg5), a mitotic kinesin required for separation of the spindle poles. Here we report the activity of ispinesib against the in vitro and in vivo panels of the Pediatric Preclinical Testing Program (PPTP). Procedures Ispinesib was tested against the PPTP in vitro panel cell lines at concentrations from 0.1 nM to 1 μM and against the in vivo tumor panel xenografts by intraperitoneal administration (5 or 10 mg/kg) every 4 days for 3 doses repeated at day 21. Results Ispinesib was highly potent against the PPTP’s in vitro cell lines with a median IC50 of 4.1 nM. Ispinesib (10 mg/kg) induced unexplained toxicity in mice bearing osteosarcoma xenografts and exceeded the MTD in 12 of 40 non-osteosarcoma xenografts. Ispinesib induced significant tumor growth delay in 88% (23/26) of evaluable xenografts. Using a time to event measure of efficacy, ispinesib had intermediate and high levels of activity against 4 (21%) and 5 (26%) of the 19 evaluable solid tumor xenografts, respectively. Ispinesib induced maintained complete responses (CR) in a rhabdoid tumor, a Wilms tumor and a Ewing sarcoma xenograft. Ispinesib (5 mg/kg) produced 2 complete and 2 partial responses among 6 evaluable xenografts in the ALL panel. The in vivo pattern of activity was distinctive from that previously reported for vincristine. Conclusions Ispinesib demonstrated broad in vivo antitumor activity, including maintained complete responses for several xenografts, although with high toxicity rates at the doses studied. PMID:19554570

  14. 212Pb-radioimmunotherapy potentiates paclitaxel-induced cell killing efficacy by perturbing the mitotic spindle checkpoint

    PubMed Central

    Yong, K J; Milenic, D E; Baidoo, K E; Brechbiel, M W

    2013-01-01

    Background: Paclitaxel has recently been reported by this laboratory to potentiate the high-LET radiation therapeutic 212Pb-TCMC-trastuzumab, which targets HER2. To elucidate mechanisms associated with this therapy, targeted α-particle radiation therapeutic 212Pb-TCMC-trastuzumab together with paclitaxel was investigated for the treatment of disseminated peritoneal cancers. Methods: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pre-treated with paclitaxel, followed by treatment with 212Pb-TCMC-trastuzumab and compared with groups treated with paclitaxel alone, 212Pb-TCMC-HuIgG, 212Pb-TCMC-trastuzumab and 212Pb-TCMC-HuIgG after paclitaxel pre-treatment. Results: 212Pb-TCMC-trastuzumab with paclitaxel given 24 h earlier induced increased mitotic catastrophe and apoptosis. The combined modality of paclitaxel and 212Pb-TCMC-trastuzumab markedly reduced DNA content in the S-phase of the cell cycle with a concomitant increase observed in the G2/M-phase. This treatment regimen also diminished phosphorylation of histone H3, accompanied by an increase in multi-micronuclei, or mitotic catastrophe in nuclear profiles and positively stained γH2AX foci. The data suggests, possible effects on the mitotic spindle checkpoint by the paclitaxel and 212Pb-TCMC-trastuzumab treatment. Consistent with this hypothesis, 212Pb-TCMC-trastuzumab treatment in response to paclitaxel reduced expression and phosphorylation of BubR1, which is likely attributable to disruption of a functional Aurora B, leading to impairment of the mitotic spindle checkpoint. In addition, the reduction of BubR1 expression may be mediated by the association of a repressive transcription factor, E2F4, on the promoter region of BubR1 gene. Conclusion: These findings suggest that the sensitisation to therapy of 212Pb-TCMC-trastuzumab by paclitaxel may be associated with perturbation of the mitotic spindle checkpoint, leading to increased mitotic catastrophe and cell death. PMID:23632482

  15. Compliance analysis of a 3-DOF spindle head by considering gravitational effects

    NASA Astrophysics Data System (ADS)

    Li, Qi; Wang, Manxin; Huang, Tian; Chetwynd, Derek G.

    2015-01-01

    The compliance modeling is one of the most significant issues in the stage of preliminary design for parallel kinematic machine(PKM). The gravity ignored in traditional compliance analysis has a significant effect on pose accuracy of tool center point(TCP) when a PKM is horizontally placed. By taking gravity into account, this paper presents a semi-analytical approach for compliance analysis of a 3-DOF spindle head named the A3 head. The architecture behind the A3 head is a 3-R PS parallel mechanism having one translational and two rotational movement capabilities, which can be employed to form the main body of a 5-DOF hybrid kinematic machine especially designed for high-speed machining of large aircraft components. The force analysis is carried out by considering both the externally applied wrench imposed upon the platform as well as gravity of all moving components. Then, the deflection analysis is investigated to establish the relationship between the deflection twist and compliances of all joints and links using semi-analytical method. The merits of this approach lie in that platform deflection twist throughout the entire task workspace can be evaluated in a very efficient manner. The effectiveness of the proposed approach is verified by the FEA and experiment at different configurations and the results show that the discrepancy of the compliances is less than 0.04 μm/N-1 and that of the deformations is less than 10μm. The computational and experimental results show that the deflection twist induced by gravity forces of the moving components has significant bearings on pose accuracy of the platform, providing an informative guidance for the improvement of the current design. The proposed approach can be easily applied to the compliance analysis of PKM by considering gravitational effects and to evaluate the deformation caused by gravity throughout the entire workspace.

  16. p21-activated kinase 4 regulates mitotic spindle positioning and orientation.

    PubMed

    Bompard, Guillaume; Morin, Nathalie

    2012-01-01

    During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will specify the two daughter cells. Spindle positioning requires regulation of MT dynamics, involving depolymerase activities together with cortical and kinetochore-mediated pushing and pulling forces acting on astral MTs and kinetochore fibres. These forces rely on MT motor activities. Cortical pulling forces exerted on astral MTs depend upon dynein/dynactin complexes and are essential in both symmetric and asymmetric cell division. A well-established spindle positioning pathway regulating the cortical targeting of dynein/dynactin involves the conserved LGN (Leu-Gly-Asn repeat-enriched-protein) and NuMA (microtubule binding nuclear mitotic apparatus protein) complex. Spindle orientation is also regulated by integrin-mediated cell adhesion and actin retraction fibres that respond to mechanical stress and are influenced by the microenvironment of the dividing cell. Altering the capture of astral MTs or modulating pulling forces affects spindle position, which can impair cell division, differentiation and embryogenesis. In this general scheme, the activity of mitotic kinases such as Auroras and Plk1 (Polo-like kinase 1) is crucial. Recently, the p21-activated kinases (PAKs) emerged as novel important players in mitotic progression. In our recent article, we demonstrated that PAK4 regulates spindle positioning in symmetric cell division. In this commentary, and in light of recent published studies, we discuss how PAK4 could participate in the regulation of mechanisms involved in spindle positioning and orientation. PMID:22960742

  17. p21-activated kinase 4 regulates mitotic spindle positioning and orientation.

    PubMed

    Bompard, Guillaume; Morin, Nathalie

    2012-01-01

    During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will specify the two daughter cells. Spindle positioning requires regulation of MT dynamics, involving depolymerase activities together with cortical and kinetochore-mediated pushing and pulling forces acting on astral MTs and kinetochore fibres. These forces rely on MT motor activities. Cortical pulling forces exerted on astral MTs depend upon dynein/dynactin complexes and are essential in both symmetric and asymmetric cell division. A well-established spindle positioning pathway regulating the cortical targeting of dynein/dynactin involves the conserved LGN (Leu-Gly-Asn repeat-enriched-protein) and NuMA (microtubule binding nuclear mitotic apparatus protein) complex. Spindle orientation is also regulated by integrin-mediated cell adhesion and actin retraction fibres that respond to mechanical stress and are influenced by the microenvironment of the dividing cell. Altering the capture of astral MTs or modulating pulling forces affects spindle position, which can impair cell division, differentiation and embryogenesis. In this general scheme, the activity of mitotic kinases such as Auroras and Plk1 (Polo-like kinase 1) is crucial. Recently, the p21-activated kinases (PAKs) emerged as novel important players in mitotic progression. In our recent article, we demonstrated that PAK4 regulates spindle positioning in symmetric cell division. In this commentary, and in light of recent published studies, we discuss how PAK4 could participate in the regulation of mechanisms involved in spindle positioning and orientation.

  18. DSK1, a novel kinesin-related protein from the diatom Cylindrotheca fusiformis that is involved in anaphase spindle elongation

    PubMed Central

    1996-01-01

    We have identified an 80-kD protein that is involved in mitotic spindle elongation in the diatom Cylindrotheca fusiformis. DSK1 (Diatom Spindle Kinesin 1) was isolated using a peptide antibody raised against a conserved region in the motor domain of the kinesin superfamily. By sequence homology, DSK1 belongs to the central motor family of kinesin- related proteins. Immunoblots using an antibody raised against a non- conserved region of DSK1 show that DSK1 is greatly enriched in mitotic spindle preparations. Anti-DSK1 stains in diatom central spindle with a bias toward the midzone, and staining is retained in the spindle midzone during spindle elongation in vitro. Furthermore, preincubation with anti-DSK1 blocks function in an in vitro spindle elongation assay. This inhibition of spindle elongation can be rescued by preincubating concurrently with the fusion protein against which anti-DSK1 was raised. We conclude that DSK1 is involved in spindle elongation and is likely to be responsible for pushing hal-spindles apart in the spindle midzone. PMID:8636234

  19. Posttraumatic spindle cell nodule of the buccal mucosa. Report of a case.

    PubMed

    Zellers, R A; Bicket, W J; Parker, M G

    1992-08-01

    A benign posttraumatic spindle cell proliferation arising at a site of laceration in the buccal mucosa of a 19-year old man is described. This lesion, which histologically mimicked a leiomyosarcoma, appears to represent a reactive process similar to that described as postoperative spindle cell nodules of the genitourinary tract. Reexcision of the area 1 month after biopsy revealed only scar formation and mild chronic inflammation. Recognition of this type of benign spindle cell proliferation at traumatized sites in the oral cavity is important if misdiagnosis and subsequent aggressive therapy is to be avoided.

  20. Arcturus and the Bears

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    2009-08-01

    Arcturus is the brightest star in Bootes. The ancient Greek name Arktouros means Bear Guard. The star, however, is not close to Ursa Maior (Big She-Bear) and Ursa Minor (Little She-Bear), as the name would suggest. This curious discrepancy could be explained by the star proper motion, assuming the name Bear Guard is a remote cultural heritage. The proper motion analysis could allow us to get an insight also into an ancient myth regarding Ursa Maior. Though we cannot explain scientifically such a myth, some interesting suggestions can be obtained about its possible origin, in the context of the present knowledge of the importance of the cult of the bear both during the Palaeolithic times and for several primitive populations of modern times, as shown by the ethnological studies.

  1. Permeability of stylolite-bearing chalk

    SciTech Connect

    Lind, I.; Nykjaer, O.; Priisholm, S. ); Springer, N.

    1994-11-01

    Permeabilities were measured on core plugs from stylolite-bearing chalk of the Gorm field in the Danish North Sea. Air and liquid permeabilities were measured in directions parallel to and perpendicular to the stylolite surface. Permeability was measured with sleeve pressure equal to in-situ reservoir stress. Permeabilities of plugs with stylolites but without stylolite-associated fractures were equal in the two directions. The permeability is equal to the matrix permeability of non-stylolite-bearing chalk. In contrast, when fractures were associated with the stylolites, permeability was enhanced. The enhancement was most significant in the horizontal direction parallel to the stylolites.

  2. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation.

    PubMed

    Lancaster, Oscar M; Le Berre, Maël; Dimitracopoulos, Andrea; Bonazzi, Daria; Zlotek-Zlotkiewicz, Ewa; Picone, Remigio; Duke, Thomas; Piel, Matthieu; Baum, Buzz

    2013-05-13

    Accurate animal cell division requires precise coordination of changes in the structure of the microtubule-based spindle and the actin-based cell cortex. Here, we use a series of perturbation experiments to dissect the relative roles of actin, cortical mechanics, and cell shape in spindle formation. We find that, whereas the actin cortex is largely dispensable for rounding and timely mitotic progression in isolated cells, it is needed to drive rounding to enable unperturbed spindle morphogenesis under conditions of confinement. Using different methods to limit mitotic cell height, we show that a failure to round up causes defects in spindle assembly, pole splitting, and a delay in mitotic progression. These defects can be rescued by increasing microtubule lengths and therefore appear to be a direct consequence of the limited reach of mitotic centrosome-nucleated microtubules. These findings help to explain why most animal cells round up as they enter mitosis.

  3. Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array.

    PubMed

    Takagi, Jun; Itabashi, Takeshi; Suzuki, Kazuya; Ishiwata, Shin'ichi

    2013-09-30

    The chromosome alignment is mediated by polar ejection and poleward forces acting on the chromosome arm and kinetochores, respectively. Although components of the motile machinery such as chromokinesin have been characterized, their dynamics within the spindle is poorly understood. Here we show that a quantum dot (Qdot) binding up to four Xenopus chromokinesin (Xkid) molecules behaved like a nanosize chromosome arm in the meiotic spindle, which is self-organized in cytoplasmic egg extracts. Xkid-Qdots travelled long distances along microtubules by changing several tracks, resulting in their accumulation toward and distribution around the metaphase plate. The analysis indicated that the direction of motion and velocity depend on the distribution of microtubule polarity within the spindle. Thus, this mechanism is governed by chromokinesin motors, which is dependent on symmetrical microtubule orientation that may allow chromosomes to maintain their position around the spindle equator until correct microtubule-kinetochore attachment is established.

  4. F-actin mechanics control spindle centring in the mouse zygote

    PubMed Central

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  5. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    PubMed Central

    Carvalhal, Sara; Ribeiro, Susana Abreu; Arocena, Miguel; Kasciukovic, Taciana; Temme, Achim; Koehler, Katrin; Huebner, Angela; Griffis, Eric R.

    2015-01-01

    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome. PMID:26246606

  6. F-actin mechanics control spindle centring in the mouse zygote

    NASA Astrophysics Data System (ADS)

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  7. F-actin mechanics control spindle centring in the mouse zygote.

    PubMed

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  8. RAB-11 Permissively Regulates Spindle Alignment by Modulating Metaphase Microtubule Dynamics in Caenorhabditis elegans Early Embryos

    PubMed Central

    Zhang, Haining; Squirrell, Jayne M.

    2008-01-01

    Alignment of the mitotic spindle along a preformed axis of polarity is crucial for generating cell diversity in many organisms, yet little is known about the role of the endomembrane system in this process. RAB-11 is a small GTPase enriched in recycling endosomes. When we depleted RAB-11 by RNAi in Caenorhabditis elegans, the spindle of the one-cell embryo failed to align along the axis of polarity in metaphase and underwent violent movements in anaphase. The distance between astral microtubules ends and the anterior cortex was significantly increased in rab-11(RNAi) embryos specifically during metaphase, possibly accounting for the observed spindle alignment defects. Additionally, we found that normal ER morphology requires functional RAB-11, particularly during metaphase. We hypothesize that RAB-11, in conjunction with the ER, acts to regulate cell cycle–specific changes in astral microtubule length to ensure proper spindle alignment in Caenorhabditis elegans early embryos. PMID:18385514

  9. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation

    PubMed Central

    Petridou, Nicoletta I.; Skourides, Paris A.

    2016-01-01

    Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli. PMID:26952307

  10. Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole

    PubMed Central

    Wong, Richard W.; Blobel, Günter

    2008-01-01

    Accurate mitotic chromosome segregation depends on the formation of a microtubule-based bipolar spindle apparatus. We report that the cohesin subunit structural maintenance of chromosomes subunit 1 (SMC1) is recruited to microtubule-bound RNA export factor 1 (Rae1) at the mitotic spindle pole. We locate the Rae1-binding site to a 21-residue-long region, SMC1947-967 and provide several lines of evidence that phosphorylation of Ser957 and Ser966 of SMC1 stimulates binding to Rae1. Imbalances in these assembly pathways caused formation of multipolar spindles. Our data suggest that cohesin's known bundling function for chromatids in mitotic and interphase cells extends to microtubules at the spindle pole. PMID:18832153

  11. Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array.

    PubMed

    Takagi, Jun; Itabashi, Takeshi; Suzuki, Kazuya; Ishiwata, Shin'ichi

    2013-01-01

    The chromosome alignment is mediated by polar ejection and poleward forces acting on the chromosome arm and kinetochores, respectively. Although components of the motile machinery such as chromokinesin have been characterized, their dynamics within the spindle is poorly understood. Here we show that a quantum dot (Qdot) binding up to four Xenopus chromokinesin (Xkid) molecules behaved like a nanosize chromosome arm in the meiotic spindle, which is self-organized in cytoplasmic egg extracts. Xkid-Qdots travelled long distances along microtubules by changing several tracks, resulting in their accumulation toward and distribution around the metaphase plate. The analysis indicated that the direction of motion and velocity depend on the distribution of microtubule polarity within the spindle. Thus, this mechanism is governed by chromokinesin motors, which is dependent on symmetrical microtubule orientation that may allow chromosomes to maintain their position around the spindle equator until correct microtubule-kinetochore attachment is established. PMID:24077015

  12. Manipulating sleep spindles--expanding views on sleep, memory, and disease.

    PubMed

    Astori, Simone; Wimmer, Ralf D; Lüthi, Anita

    2013-12-01

    Sleep spindles are distinctive electroencephalographic (EEG) oscillations emerging during non-rapid-eye-movement sleep (NREMS) that have been implicated in multiple brain functions, including sleep quality, sensory gating, learning, and memory. Despite considerable knowledge about the mechanisms underlying these neuronal rhythms, their function remains poorly understood and current views are largely based on correlational evidence. Here, we review recent studies in humans and rodents that have begun to broaden our understanding of the role of spindles in the normal and disordered brain. We show that newly identified molecular substrates of spindle oscillations, in combination with evolving technological progress, offer novel targets and tools to selectively manipulate spindles and dissect their role in sleep-dependent processes.

  13. Cooling system for a bearing of a turbine rotor

    DOEpatents

    Schmidt, Mark Christopher

    2002-01-01

    In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

  14. Good bearings reduce downtime

    SciTech Connect

    Kinney, J.; Foster, J.

    1982-12-01

    Points out that a poorly maintained $100 bearing can hold up the operation of a $1-million conveyor. Of all the moving parts in a coal conveyor system, few cost less or last longer than anti-friction bearings. Most modern conveyor systems are equipped with 2 types of bearings: troughing idlers, spaced at regular intervals to support the conveyor belt as it travels throughout the system, and the adaptermounted spherical roller bearing pillow blocks that are used in the head, tail, bend and takeup pulleys that drive, alter the direction of, or regulate tension in the belt to allow for repairs or splicing. Explains how pillow blocks should handle radial or axial loads, how to mount bearings correctly, and how rings prevent infiltration. Concludes that by making certain that the proper bearing types are built into the system initially, or used as replacements in case of failures, paying close attention to installation procedures and devoting adequate time to maintenance, conveyor system bearings can provide decades of problem-free service.

  15. Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles.

    PubMed

    Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam

    2012-11-01

    Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.

  16. Vibration Transmission through Bearings with Application to Gearboxes

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    2007-01-01

    Cabin noise has become a major concern to manufacturers and users of helicopters. Gear noise is the largest part of this unwanted sound. The crucial noise path is generally considered to be from the gears through the gear-supporting shafts and bearings into the gearbox case, and from there either through the gearbox mounts or the surrounding air to the helicopter cabin. If the noise, that is, the gear and shaft vibration, can be prevented from traveling through the gearbox bearings, then the noise cannot make its way into the helicopter cabin. Thus the vibration-transmitting properties of bearings are of paramount importance. This paper surveys the literature concerning evaluation of properties for the types of bearings used in helicopter gearboxes. A simple model is proposed to evaluate vibration transmission, using measured or calculated bearing stiffness and damping. Less-commonly used types of gearbox bearings (e.g., fluid film) are evaluated for their potential in reducing vibration transmission.

  17. Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells.

    PubMed

    Moutinho-Pereira, Sara; Stuurman, Nico; Afonso, Olga; Hornsveld, Marten; Aguiar, Paulo; Goshima, Gohta; Vale, Ronald D; Maiato, Helder

    2013-12-01

    Animal mitotic spindle assembly relies on centrosome-dependent and centrosome-independent mechanisms, but their relative contributions remain unknown. Here, we investigated the molecular basis of the centrosome-independent spindle assembly pathway by performing a whole-genome RNAi screen in Drosophila S2 cells lacking functional centrosomes. This screen identified 197 genes involved in acentrosomal spindle assembly, eight of which had no previously described mitotic phenotypes and produced defective and/or short spindles. All 197 genes also produced RNAi phenotypes when centrosomes were present, indicating that none were entirely selective for the acentrosomal pathway. However, a subset of genes produced a selective defect in pole focusing when centrosomes were absent, suggesting that centrosomes compensate for this shape defect. Another subset of genes was specifically associated with the formation of multipolar spindles only when centrosomes were present. We further show that the chromosomal passenger complex orchestrates multiple centrosome-independent processes required for mitotic spindle assembly/maintenance. On the other hand, despite the formation of a chromosome-enriched RanGTP gradient, S2 cells depleted of RCC1, the guanine-nucleotide exchange factor for Ran on chromosomes, established functional bipolar spindles. Finally, we show that cells without functional centrosomes have a delay in chromosome congression and anaphase onset, which can be explained by the lack of polar ejection forces. Overall, these findings establish the constitutive nature of a centrosome-independent spindle assembly program and how this program is adapted to the presence/absence of centrosomes in animal somatic cells.

  18. Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation.

    PubMed

    Joukov, Vladimir; Walter, Johannes C; De Nicolo, Arcangela

    2016-01-01

    Faithful chromosome segregation during cell division requires proper bipolar spindle assembly and critically depends on spindle pole integrity. In most animal cells, spindle poles form as the result of the concerted action of various factors operating in two independent pathways of microtubule assembly mediated by chromatin/RanGTP and by centrosomes. Mutation or deregulation of a number of spindle pole-organizing proteins has been linked to human diseases, including cancer and microcephaly. Our knowledge on how the spindle pole-organizing factors function at the molecular level and cooperate with one another is still quite limited. As the list of these factors expands, so does the need for the development of experimental approaches to study their function. Cell-free extracts from Xenopus laevis eggs have played an instrumental role in the dissection of the mechanisms of bipolar spindle assembly and have recently allowed the reconstitution of the key steps of the centrosome-driven microtubule nucleation pathway (Joukov et al., Mol Cell 55:578-591, 2014). Here we describe assays to study both centrosome-dependent and centrosome-independent spindle pole formation in Xenopus egg extracts. We also provide experimental procedures for the use of artificial centrosomes, such as microbeads coated with an anti-Aurora A antibody or a recombinant fragment of the Cep192 protein, to model and study centrosome maturation in egg extract. In addition, we detail the protocol for a microtubule regrowth assay that allows assessment of the centrosome-driven spindle microtubule assembly in mammalian cells. PMID:27193852

  19. Rae1 interaction with NuMA is required for bipolar spindle formation

    PubMed Central

    Wong, Richard W.; Blobel, Günter; Coutavas, Elias

    2006-01-01

    In eukaryotic cells, the faithful segregation of daughter chromosomes during cell division depends on formation of a microtubule (MT)-based bipolar spindle apparatus. The Nuclear Mitotic Apparatus protein (NuMA) is recruited from interphase nuclei to spindle MTs during mitosis. The carboxy terminal domain of NuMA binds MTs, allowing a NuMA dimer to function as a “divalent” crosslinker that bundles MTs. The messenger RNA export factor, Rae1, also binds to MTs. Lowering Rae1 or increasing NuMA levels in cells results in spindle abnormalities. We have identified a mitotic-specific interaction between Rae1 and NuMA and have explored the relationship between Rae1 and NuMA in spindle formation. We have mapped a specific binding site for Rae1 on NuMA that would convert a NuMA dimer to a “tetravalent” crosslinker of MTs. In mitosis, reducing Rae1 or increasing NuMA concentration would be expected to alter the valency of NuMA toward MTs; the “density” of NuMA-MT crosslinks in these conditions would be diminished, even though a threshold number of crosslinks sufficient to stabilize aberrant multipolar spindles may form. Consistent with this interpretation, we found that coupling NuMA overexpression to Rae1 overexpression or coupling Rae1 depletion to NuMA depletion prevented the formation of aberrant spindles. Likewise, we found that overexpression of the specific Rae1-binding domain of NuMA in HeLa cells led to aberrant spindle formation. These data point to the Rae1–NuMA interaction as a critical element for normal spindle formation in mitosis. PMID:17172455

  20. Ball Bearing Mechanics

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Load-deflection relationships for different types of elliptical contacts such as those found in a ball bearing are developed. Simplified expressions that allow quick calculations of deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented. Ball bearings subjected to radial, thrust and combined ball loads are analyzed. A design criterion for fatigue life of ball bearings is developed. The section of a satisfactory lubricant, as well as describing systems that provide a constant flow of lubricant to the contact, is considered.

  1. Magnetic bearing update

    SciTech Connect

    Fowler, T.K.

    1995-05-25

    Stabilization of whirl instability by floppy, viscous bearing mounts is discussed and required material properties are estimated for the new tilt-whirl mode in eddy-current stabilized magnetic bearings. A relatively low Young`s modules Y {approximately} 10{sup 5} and high viscosity {zeta} {approximately} 10{sup 7} are required (both in MKS units), suggesting the need for careful mounting design. New information on periodic bearings shows that, thus far, Earshaw`s Theorem cannot be defeated by periodicity, despite the author`s earlier claims.

  2. Arkansas black bear hunter survey

    USGS Publications Warehouse

    Pharris, Larry D.; Clark, Joseph D.

    1987-01-01

    Questionnaires were mailed to black bear (Ursus americanus) hunters in Arkansas following the 1980-84 bear seasons to determine participation, hunter success, and number of bears observed by hunters. Man-days of hunting to harvest a bear ranged from 148 to 671 and hunter success ranged from 0.4% to 2.2%. With the exception of 1980, number of permits issued, man-days of bear hunting, and bears harvested appear affected by hunting permit cost. 

  3. A curved edge diffraction-utilized displacement sensor for spindle metrology.

    PubMed

    Lee, ChaBum; Mahajan, Satish M; Zhao, Rui; Jeon, Seongkyul

    2016-07-01

    This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surface of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner. PMID:27475601

  4. The mitotic spindle and associated membranes in the closed mitosis of trichomonads.

    PubMed

    Ribeiro, Karla Consort; Pereira-Neves, Antonio; Benchimol, Marlene

    2002-06-01

    In the present work, we followed the several phases of Tritrichomonas foetus and Trichomonas vaginalis cell cycles using immunofluorescence, serial thin sections, three-dimensional (3D) reconstruction, and transmission electron microscopy. In motile trichomonad cells or in pseudocyst forms, the nuclear envelope persists throughout mitosis, and the spindle is extranuclear. We found three types of spindle microtubules: pole-to-nucleus microtubules which are attached to the nuclear envelope, pole-to-pole microtubules forming a cylindrical, cytoplasmic groove on the nuclear compartment in pseudocysts of T. foetus cells, and pole-to-cytosol microtubules which extend freely into the cytoplasm. We demonstrated that: (1) in T. foetus, the spindle is assembled from an MTOC located at the base of the costa, underneath one of the basal bodies; (2) the spindle presents an unusual arc shape during the initial phases of mitosis in motile trophozoites; (3) the spindle microtubules are glutamylated, but not acetylated; (4) several membranes similar to those of the endoplasmic reticulum follow the spindle microtubules; (5) finger-like projections extend from the nucleus towards the cell poles in pseudocysts and multinucleated cells; and (6) vesicles formed in between the two nuclear membranes are seen in the course of mitosis in both trophozoite and pseudocyst forms. PMID:12206655

  5. The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1

    PubMed Central

    Shimi, Takeshi

    2010-01-01

    The nucleoporin Nup153 is known to play pivotal roles in nuclear import and export in interphase cells and as the cell transitions into mitosis, Nup153 is involved in nuclear envelope breakdown. In this study, we demonstrate that the interaction of Nup153 with the spindle assembly checkpoint protein Mad1 is important in the regulation of the spindle checkpoint. Overexpression of human Nup153 in HeLa cells leads to the appearance of multinucleated cells and induces the formation of multipolar spindles. Importantly, it causes inactivation of the spindle checkpoint due to hypophosphorylation of Mad1. Depletion of Nup153 using RNA interference results in the decline of Mad1 at nuclear pores during interphase and more significantly causes a delayed dissociation of Mad1 from kinetochores in metaphase and an increase in the number of unresolved midbodies. In the absence of Nup153 the spindle checkpoint remains active. In vitro studies indicate direct binding of Mad1 to the N-terminal domain of Nup153. Importantly, Nup153 binding to Mad1 affects Mad1's phosphorylation status, but not its ability to interact with Mad2. Our data suggest that Nup153 levels regulate the localization of Mad1 during the metaphase/anaphase transition thereby affecting its phoshorylation status and in turn spindle checkpoint activity and mitotic exit. PMID:21327106

  6. Density of muscle spindles in prosimian shoulder muscles reflects locomotor adaptation.

    PubMed

    Higurashi, Yasuo; Taniguchi, Yuki; Kumakura, Hiroo

    2006-01-01

    We examined the correlation between the density of muscle spindles in shoulder muscles and the locomotor mode in three species of prosimian primates: the slow loris (Nycticebus coucang), Garnett's galago (Otolemur garnettii), and the ring-tailed lemur (Lemur catta). The shoulder muscles (supraspinatus, infraspinatus, teres major, teres minor, and subscapularis) were embedded in celloidin and cut into transverse serial thin sections (40 microm); then, every tenth section was stained using the Azan staining technique. The relative muscle weights and the density of the muscle spindles were determined. The slow loris muscles were heavier and had sparser muscle spindles, as compared to Garnett's galago. These features suggest that the shoulder muscles of the slow loris are more adapted to generating propulsive force and stabilizing the shoulder joint during locomotion and play a less controlling role in forelimb movements. In contrast, Garnett's galago possessed smaller shoulder muscles with denser spindles that are suitable for the control of more rapid locomotor movements. The mean relative weight and the mean spindle density in the shoulder muscles of the ring-tailed lemur were between those of the other primates, suggesting that the spindle density is not simply a consequence of taxonomic status. PMID:17361082

  7. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition

    PubMed Central

    Wise, Merrill S.

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646

  8. Density of muscle spindles in prosimian shoulder muscles reflects locomotor adaptation.

    PubMed

    Higurashi, Yasuo; Taniguchi, Yuki; Kumakura, Hiroo

    2006-01-01

    We examined the correlation between the density of muscle spindles in shoulder muscles and the locomotor mode in three species of prosimian primates: the slow loris (Nycticebus coucang), Garnett's galago (Otolemur garnettii), and the ring-tailed lemur (Lemur catta). The shoulder muscles (supraspinatus, infraspinatus, teres major, teres minor, and subscapularis) were embedded in celloidin and cut into transverse serial thin sections (40 microm); then, every tenth section was stained using the Azan staining technique. The relative muscle weights and the density of the muscle spindles were determined. The slow loris muscles were heavier and had sparser muscle spindles, as compared to Garnett's galago. These features suggest that the shoulder muscles of the slow loris are more adapted to generating propulsive force and stabilizing the shoulder joint during locomotion and play a less controlling role in forelimb movements. In contrast, Garnett's galago possessed smaller shoulder muscles with denser spindles that are suitable for the control of more rapid locomotor movements. The mean relative weight and the mean spindle density in the shoulder muscles of the ring-tailed lemur were between those of the other primates, suggesting that the spindle density is not simply a consequence of taxonomic status.

  9. Dual roles of Incenp crucial to the assembly of the acentrosomal metaphase spindle in female meiosis

    PubMed Central

    Colombié, Nathalie; Cullen, C. Fiona; Brittle, Amy L.; Jang, Janet K.; Earnshaw, William C.; Carmena, Mar; McKim, Kim; Ohkura, Hiroyuki

    2008-01-01

    SUMMARY Spindle formation in female meiosis differs from mitosis in many animals, as it takes place independently from centrosomes, and the molecular requirements of this pathway remain to be understood. Here we report two crucial roles of Incenp, an essential subunit of the chromosomal passenger complex (the Aurora B complex), in centrosome-independent spindle formation in Drosophila female meiosis. Firstly, the initial assembly of spindle microtubules is drastically delayed in an incenp mutant. This clearly demonstrates, for the first time, a crucial role for Incenp in chromosome-driven spindle microtubule assembly in living oocytes. Additionally, Incenp is necessary to stabilise the equatorial region of the metaphase I spindle, in contrast to mitosis, where the equivalent function becomes prominent after anaphase onset. Our analysis suggests that Subito, a kinesin-6 protein, cooperates with Incenp for this latter function, but not microtubule assembly. We propose that the two functions of Incenp are part of the mechanisms that compensate for the lack of centrosomes during meiotic spindle formation. PMID:18755775

  10. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    PubMed

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  11. A curved edge diffraction-utilized displacement sensor for spindle metrology

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Mahajan, Satish M.; Zhao, Rui; Jeon, Seongkyul

    2016-07-01

    This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surface of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner.

  12. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  13. Cep55 regulates spindle organization and cell cycle progression in meiotic oocyte

    PubMed Central

    Xu, Zhao-Yang; Ma, Xue-Shan; Qi, Shu-Tao; Wang, Zhen-Bo; Guo, Lei; Schatten, Heide; Sun, Qing-Yuan; Sun, Ying-Pu

    2015-01-01

    Cep55 is a relatively novel member of the centrosomal protein family. Here, we show that Cep55 is expressed in mouse oocytes from the germinal vesicle (GV) to metaphase II (MII) stages. Immuostaining and confocal microscopy as well as time lapse live imaging after injection of mRNA encoding fusion protein of Cep55 and GFP identified that Cep55 was localized to the meiotic spindle, especially to the spindle poles at metaphase, while it was concentrated at the midbody in telophase in meiotic oocytes. Knockdown of Cep55 by specific siRNA injection caused the dissociation of γ-tubulin from the spindle poles, resulting in severely defective spindles and misaligned chromosomes, leading to metaphase I arrest and failure of first polar body (PB1) extrusion. Correspondingly, cyclin B accumulation and spindle assembly checkpoint (SAC) activation were observed in Cep55 knockdown oocytes. Our results suggest that Cep55 may act as an MTOC-associated protein regulating spindle organization, and thus cell cycle progression during mouse oocyte meiotic maturation. PMID:26582107

  14. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis

    PubMed Central

    Yan, Maomao; Chu, Lingluo; Qin, Bo; Wang, Zhikai; Liu, Xing; Jin, Changjiang; Zhang, Guanglan; Gomez, Marta; Hergovich, Alexander; Chen, Zhengjun; He, Ping; Gao, Xinjiao; Yao, Xuebiao

    2015-01-01

    Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids which depends on correct position of mitotic spindle relative to membrane cortex. Although recent work has identified the role of PLK1 in spindle orientation, the mechanisms underlying PLK1 signaling in spindle positioning and orientation have not been fully illustrated. Here, we identified a conserved signaling axis in which NDR1 kinase activity is regulated by PLK1 in mitosis. PLK1 phosphorylates NDR1 at three putative threonine residues (T7, T183 and T407) at mitotic entry, which elicits PLK1-dependent suppression of NDR1 activity and ensures correct spindle orientation in mitosis. Importantly, persistent expression of non-phosphorylatable NDR1 mutant perturbs spindle orientation. Mechanistically, PLK1-mediated phosphorylation protects the binding of Mob1 to NDR1 and subsequent NDR1 activation. These findings define a conserved signaling axis that integrates dynamic kinetochore-microtubule interaction and spindle orientation control to genomic stability maintenance. PMID:26057687

  15. Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation

    PubMed Central

    Fennell, Alex; Fernández-Álvarez, Alfonso; Tomita, Kazunori

    2015-01-01

    Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks. PMID:25688135

  16. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  17. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells

    PubMed Central

    Yan, Kaowen; Li, Li; Wang, Xiaojian; Hong, Ruisha; Zhang, Ying; Yang, Hua; Lin, Ming; Zhang, Sha; He, Qihua; Zheng, Duo; Tang, Jun; Yin, Yuxin

    2015-01-01

    Deubiquitinating enzymes (DUBs) negatively regulate protein ubiquitination and play an important role in diverse physiological processes, including mitotic division. The BRCC36 isopeptidase complex (BRISC) is a DUB that is specific for lysine 63–linked ubiquitin hydrolysis; however, its biological function remains largely undefined. Here, we identify a critical role for BRISC in the control of mitotic spindle assembly in cultured mammalian cells. BRISC is a microtubule (MT)-associated protein complex that predominantly localizes to the minus ends of K-fibers and spindle poles and directly binds to MTs; importantly, BRISC promotes the assembly of functional bipolar spindle by deubiquitinating the essential spindle assembly factor nuclear mitotic apparatus (NuMA). The deubiquitination of NuMA regulates its interaction with dynein and importin-β, which are required for its function in spindle assembly. Collectively, these results uncover BRISC as an important regulator of the mitotic spindle assembly and cell division, and have important implications for the development of anticancer drugs targeting BRISC. PMID:26195665

  18. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles

    PubMed Central

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S.

    2016-01-01

    Sleep spindles arise from the interaction of thalamic and cortical neurons. Neurons in the thalamic reticular nucleus (TRN) inhibit thalamocortical neurons, which in turn excite the TRN and cortical neurons. A fundamental principle of anatomical organization of the thalamocortical projections is the presence of two pathways: the diffuse matrix pathway and the spatially selective core pathway. Cortical layers are differentially targeted by these two pathways with matrix projections synapsing in superficial layers and core projections impinging on middle layers. Based on this anatomical observation, we propose that spindles can be classified into two classes, those arising from the core pathway and those arising from the matrix pathway, although this does not exclude the fact that some spindles might combine both pathways at the same time. We find evidence for this hypothesis in EEG/MEG studies, intracranial recordings, and computational models that incorporate this difference. This distinction will prove useful in accounting for the multiple functions attributed to spindles, in that spindles of different types might act on local and widespread spatial scales. Because spindle mechanisms are often hijacked in epilepsy and schizophrenia, the classification proposed in this review might provide valuable information in defining which pathways have gone awry in these neurological disorders. PMID:27144033

  19. The far C-terminus of MCAK regulates its conformation and spindle pole focusing

    PubMed Central

    Zong, Hailing; Carnes, Stephanie K.; Moe, Christina; Walczak, Claire E.; Ems-McClung, Stephanie C.

    2016-01-01

    To ensure proper spindle assembly, microtubule (MT) dynamics needs to be spatially regulated within the cell. The kinesin-13 MCAK is a potent MT depolymerase with a complex subcellular localization, yet how MCAK spatial regulation contributes to spindle assembly is not understood. Here we show that the far C-terminus of MCAK plays a critical role in regulating MCAK conformation, subspindle localization, and spindle assembly in Xenopus egg extracts. Alteration of MCAK conformation by the point mutation E715A/E716A in the far C-terminus increased MCAK targeting to the poles and reduced MT lifetimes, which induced spindles with unfocused poles. These effects were phenocopied by the Aurora A phosphomimetic mutation, S719E. Furthermore, addition of the kinesin-14 XCTK2 to spindle assembly reactions rescued the unfocused-pole phenotype. Collectively our work shows how the regional targeting of MCAK regulates MT dynamics, highlighting the idea that multiple phosphorylation pathways of MCAK cooperate to spatially control MT dynamics to maintain spindle architecture. PMID:26941326

  20. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    PubMed

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. PMID:26406118

  1. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis.

    PubMed

    Yan, Maomao; Chu, Lingluo; Qin, Bo; Wang, Zhikai; Liu, Xing; Jin, Changjiang; Zhang, Guanglan; Gomez, Marta; Hergovich, Alexander; Chen, Zhengjun; He, Ping; Gao, Xinjiao; Yao, Xuebiao

    2015-06-09

    Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids which depends on correct position of mitotic spindle relative to membrane cortex. Although recent work has identified the role of PLK1 in spindle orientation, the mechanisms underlying PLK1 signaling in spindle positioning and orientation have not been fully illustrated. Here, we identified a conserved signaling axis in which NDR1 kinase activity is regulated by PLK1 in mitosis. PLK1 phosphorylates NDR1 at three putative threonine residues (T7, T183 and T407) at mitotic entry, which elicits PLK1-dependent suppression of NDR1 activity and ensures correct spindle orientation in mitosis. Importantly, persistent expression of non-phosphorylatable NDR1 mutant perturbs spindle orientation. Mechanistically, PLK1-mediated phosphorylation protects the binding of Mob1 to NDR1 and subsequent NDR1 activation. These findings define a conserved signaling axis that integrates dynamic kinetochore-microtubule interaction and spindle orientation control to genomic stability maintenance.

  2. Mitotic spindle asymmetry in rodents and primates: 2D vs. 3D measurement methodologies

    PubMed Central

    Delaunay, Delphine; Robini, Marc C.; Dehay, Colette

    2015-01-01

    Recent data have uncovered that spindle size asymmetry (SSA) is a key component of asymmetric cell division (ACD) in the mouse cerebral cortex (Delaunay et al., 2014). In the present study we show that SSA is independent of spindle orientation and also occurs during cortical progenitor divisions in the ventricular zone (VZ) of the macaque cerebral cortex, pointing to a conserved mechanism in the mammalian lineage. Because SSA magnitude is smaller in cortical precursors than in invertebrate neuroblasts, the unambiguous demonstration of volume differences between the two half spindles is considered to require 3D reconstruction of the mitotic spindle (Delaunay et al., 2014). Although straightforward, the 3D analysis of SSA is time consuming, which is likely to hinder SSA identification and prevent further explorations of SSA related mechanisms in generating ACD. We therefore set out to develop an alternative method for accurately measuring spindle asymmetry. Based on the mathematically demonstrated linear relationship between 2D and 3D analysis, we show that 2D assessment of spindle size in metaphase cells is as accurate and reliable as 3D reconstruction provided a specific procedure is applied. We have examined the experimental accuracy of the two methods by applying them to different sets of in vivo and in vitro biological data, including mouse and primate cortical precursors. Linear regression analysis demonstrates that the results from 2D and 3D reconstructions are equally powerful. We therefore provide a reliable and efficient technique to measure SSA in mammalian cells. PMID:25709568

  3. Thoracolumbar fascia does not influence proprioceptive signaling from lumbar paraspinal muscle spindles in the cat

    PubMed Central

    Cao, Dong-Yuan; Pickar, Joel G

    2009-01-01

    The thoracolumbar fascia attaches to the lumbar spinous processes and encloses the paraspinal muscles to form a muscle compartment. Because muscle spindles can respond to transverse forces applied at a muscle’s surface, we were interested in the mechanical effects this fascia may have on proprioceptive signaling from lumbar paraspinal muscles during vertebral movement. The discharge of paraspinal muscle spindles at rest and in response to muscle history were investigated in the presence and absence of the thoracolumbar fascia in anesthetized cats. Muscle-history was induced by positioning the L6 vertebra in conditioning directions that lengthened and shortened the paraspinal muscles. The vertebra was then returned to an intermediate position for testing the spindles. Neither resting discharge (P= 0.49) nor the effects of muscle history (P>0.30) was significantly different with the fascia intact vs. removed. Our data showed that the thoracolumbar fascia did not influence proprioceptive signaling from lumbar paraspinal muscles spindles during small passive vertebral movements in cats. In addition, comparison of the transverse threshold pressures needed to stimulate our sample of muscle spindles in the cat with the thoracolumbar fascia compartmental pressures measured in humans during previous studies suggests that the thoracolumbar fascia likely does not affect proprioceptive signaling from lumbar paraspinal muscle spindles in humans. PMID:19627391

  4. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition.

    PubMed

    Gruber, Reut; Wise, Merrill S

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and "off-line" processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646

  5. The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study

    PubMed Central

    Mednick, Sara C.; McDevitt, Elizabeth A.; Walsh, James K.; Wamsley, Erin; Paulus, Martin; Kanady, Jennifer C.; Drummond, Sean P.A.

    2013-01-01

    An important function of sleep is the consolidation of memories, and features of sleep, such as rapid eye movement (REM) or sleep spindles, have been shown to correlate with improvements in discrete memory domains. Because of the methodological difficulties in modulating sleep, however, a causal link between specific sleep features and human memory consolidation is lacking. Here, we experimentally manipulated specific sleep features during a daytime nap via direct pharmacological intervention. Using zolpidem (ambien), a short-acting GABAA agonist hypnotic, we show increased sleep spindle density and decreased REM sleep, compared to placebo and sodium oxybate (xyrem). Naps with increased spindles produced significantly better verbal memory and significantly worse perceptual learning, but did not affect motor learning. The experimental spindles were similar to control spindles in amplitude and frequency suggesting that the experimental intervention enhanced normal sleep processes. Furthermore, using statistical methods, we demonstrate for the first time a critical role of spindles in human hippocampal memory performance. The gains in memory consolidation exceed sleep alone or control conditions, and demonstrate the potential for targeted, exceptional memory enhancement in healthy adults with pharmacologically modified sleep. PMID:23467365

  6. Katanin maintains meiotic metaphase chromosome alignment and spindle structure in vivo and has multiple effects on microtubules in vitro.

    PubMed

    McNally, Karen; Berg, Evan; Cortes, Daniel B; Hernandez, Veronica; Mains, Paul E; McNally, Francis J

    2014-04-01

    Assembly of Caenorhabditis elegans female meiotic spindles requires both MEI-1 and MEI-2 subunits of the microtubule-severing ATPase katanin. Strong loss-of-function mutants assemble apolar intersecting microtubule arrays, whereas weaker mutants assemble bipolar meiotic spindles that are longer than wild type. To determine whether katanin is also required for spindle maintenance, we monitored metaphase I spindles after a fast-acting mei-1(ts) mutant was shifted to a nonpermissive temperature. Within 4 min of temperature shift, bivalents moved off the metaphase plate, and microtubule bundles within the spindle lengthened and developed a high degree of curvature. Spindles eventually lost bipolar structure. Immunofluorescence of embryos fixed at increasing temperature indicated that MEI-1 was lost from spindle microtubules before loss of ASPM-1, indicating that MEI-1 and ASPM-1 act independently at spindle poles. We quantified the microtubule-severing activity of purified MEI-1/MEI-2 complexes corresponding to six different point mutations and found a linear relationship between microtubule disassembly rate and meiotic spindle length. Previous work showed that katanin is required for severing at points where two microtubules intersect in vivo. We show that purified MEI-1/MEI-2 complexes preferentially sever at intersections between two microtubules and directly bundle microtubules in vitro. These activities could promote parallel/antiparallel microtubule organization in meiotic spindles. PMID:24501424

  7. Age-related changes in sleep spindles characteristics during daytime recovery following a 25-hour sleep deprivation

    PubMed Central

    Rosinvil, T.; Lafortune, M.; Sekerovic, Z.; Bouchard, M.; Dubé, J.; Latulipe-Loiselle, A.; Martin, N.; Lina, J. M.; Carrier, J.

    2015-01-01

    Objectives: The mechanisms underlying sleep spindles (~11–15 Hz; >0.5 s) help to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a challenging time (e.g., daytime), even after sleep loss. This study compared spindle characteristics during daytime recovery and nocturnal sleep in young and middle-aged adults. In addition, we explored whether spindles characteristics in baseline nocturnal sleep were associated with the ability to maintain sleep during daytime recovery periods in both age groups. Methods: Twenty-nine young (15 women and 14 men; 27.3 y ± 5.0) and 31 middle-aged (19 women and 13 men; 51.6 y ± 5.1) healthy subjects participated in a baseline nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation. Spindles were detected on artifact-free Non-rapid eye movement (NREM) sleep epochs. Spindle density (nb/min), amplitude (μV), frequency (Hz), and duration (s) were analyzed on parasagittal (linked-ears) derivations. Results: In young subjects, spindle frequency increased during daytime recovery sleep as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects showed spindle frequency enhancement only in the prefrontal derivation. No other significant interaction between age group and sleep condition was observed. Spindle density for all derivations and centro-occipital spindle amplitude decreased whereas prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both age groups. Finally, no significant correlation was found between spindle characteristics during baseline nocturnal sleep and the marked reduction in sleep efficiency during daytime recovery sleep in both young and middle-aged subjects. Conclusion: These results suggest that the interaction between homeostatic and circadian pressure modulates spindle frequency differently in aging. Spindle characteristics do not seem to be linked with the ability to maintain daytime recovery sleep. PMID

  8. Comparison of a Four-Section Spindle and Stomacher for Efficacy of Detaching Microorganisms from Fresh Vegetables.

    PubMed

    Kim, Do-Kyun; Kim, Soo-Ji; Kang, Dong-Hyun

    2015-07-01

    This study was undertaken to compare the effect of the spindle and stomacher for detaching microorganisms from fresh vegetables. The spindle is an apparatus for detaching microorganisms from food surfaces, which was developed in our laboratory. When processed with the spindle, food samples were barely disrupted, the original shape was maintained, and the diluent was clear, facilitating further detection analysis more easily than with stomacher treatment. The four-section spindle consists of four sample bag containers (A, B, C, and D) to economize time and effort by simultaneously processing four samples. The aerobic plate counts (APC) of 50 fresh vegetable samples were measured following spindle and stomacher treatment. Correlations between the two methods for each section of the spindle and stomacher were very high (R(2) = 0.9828 [spindle compartment A; Sp A], 0.9855 [Sp B], 0.9848 [Sp C], and 0.9851 [Sp D]). One-tenth milliliter of foodborne pathogens suspensions was inoculated onto surfaces of food samples, and ratios of spindle-to-stomacher enumerations were close to 1.00 log CFU/g between every section of the spindle and stomacher. One of the greatest features of the spindle is that it can treat large-sized samples that exceed 200 g. Uncut whole apples, green peppers, potatoes, and tomatoes were processed by the spindle and by hand massaging by 2 min. Large-sized samples were also assayed for aerobic plate count and recovery of the three foodborne pathogens, and the difference between each section of the spindle and hand massaging was not significant (P > 0.05). This study demonstrated that the spindle apparatus can be an alternative device for detaching microorganisms from all fresh vegetable samples for microbiological analysis by the food processing industry.

  9. Axin localizes to mitotic spindles and centrosomes in mitotic cells

    SciTech Connect

    Kim, Shi-Mun; Choi, Eun-Jin; Song, Ki-Joon; Kim, Sewoon; Seo, Eunjeong; Jho, Eek-Hoon; Kee, Sun-Ho

    2009-04-01

    Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3{beta}) without producing any notable changes in cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3{beta} in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor.

  10. The Saccharomyces cerevisiae Spindle Pole Body Is a Dynamic Structure

    PubMed Central

    Yoder, Tennessee J.; Pearson, Chad G.; Bloom, Kerry; Davis, Trisha N.

    2003-01-01

    During spindle pole body (SPB) duplication, the new SPB is assembled at a distinct site adjacent to the old SPB. Using quantitative fluorescence methods, we studied the assembly and dynamics of the core structural SPB component Spc110p. The SPB core exhibits both exchange and growth in a cell cycle-dependent manner. During G1/S phase, the old SPB exchanges ∼50% of old Spc110p for new Spc110p. In G2 little Spc110p is exchangeable. Thus, Spc110p is dynamic during G1/S and becomes stable during G2. The SPB incorporates additional Spc110p in late G2 and M phases; this growth is followed by reduction in the next G1. Spc110p addition to the SPBs (growth) also occurs in response to G2 and mitotic arrests but not during a G1 arrest. Our results reveal several dynamic features of the SPB core: cell cycle-dependent growth and reduction, growth in response to cell cycle arrests, and exchange of Spc110p during SPB duplication. Moreover, rather than being considered a conservative or dispersive process, the assembly of Spc110p into the SPB is more readily considered in terms of growth and exchange. PMID:12925780

  11. Robust control of mitotic spindle orientation in the developing epidermis

    PubMed Central

    Poulson, Nicholas D.

    2010-01-01

    Progenitor cells must balance self-amplification and production of differentiated progeny during development and homeostasis. In the epidermis, progenitors divide symmetrically to increase surface area and asymmetrically to promote stratification. In this study, we show that individual epidermal cells can undergo both types of division, and therefore, the balance is provided by the sum of individual cells’ choices. In addition, we define two control points for determining a cell’s mode of division. First is the expression of the mouse Inscuteable gene, which is sufficient to drive asymmetric cell division (ACD). However, there is robust control of division orientation as excessive ACDs are prevented by a change in the localization of NuMA, an effector of spindle orientation. Finally, we show that p63, a transcriptional regulator of stratification, does not control either of these processes. These data have uncovered two important regulatory points controlling ACD in the epidermis and allow a framework for analysis of how external cues control this important choice. PMID:21098114

  12. Sleep spindles in midday naps enhance learning in preschool children.

    PubMed

    Kurdziel, Laura; Duclos, Kasey; Spencer, Rebecca M C

    2013-10-22

    Despite the fact that midday naps are characteristic of early childhood, very little is understood about the structure and function of these sleep bouts. Given that sleep benefits memory in young adults, it is possible that naps serve a similar function for young children. However, children transition from biphasic to monophasic sleep patterns in early childhood, eliminating the nap from their daily sleep schedule. As such, naps may contain mostly light sleep stages and serve little function for learning and memory during this transitional age. Lacking scientific understanding of the function of naps in early childhood, policy makers may eliminate preschool classroom nap opportunities due to increasing curriculum demands. Here we show evidence that classroom naps support learning in preschool children by enhancing memories acquired earlier in the day compared with equivalent intervals spent awake. This nap benefit is greatest for children who nap habitually, regardless of age. Performance losses when nap-deprived are not recovered during subsequent overnight sleep. Physiological recordings of naps support a role of sleep spindles in memory performance. These results suggest that distributed sleep is critical in early learning; when short-term memory stores are limited, memory consolidation must take place frequently. PMID:24062429

  13. Sleep spindles in midday naps enhance learning in preschool children

    PubMed Central

    Kurdziel, Laura; Duclos, Kasey; Spencer, Rebecca M. C.

    2013-01-01

    Despite the fact that midday naps are characteristic of early childhood, very little is understood about the structure and function of these sleep bouts. Given that sleep benefits memory in young adults, it is possible that naps serve a similar function for young children. However, children transition from biphasic to monophasic sleep patterns in early childhood, eliminating the nap from their daily sleep schedule. As such, naps may contain mostly light sleep stages and serve little function for learning and memory during this transitional age. Lacking scientific understanding of the function of naps in early childhood, policy makers may eliminate preschool classroom nap opportunities due to increasing curriculum demands. Here we show evidence that classroom naps support learning in preschool children by enhancing memories acquired earlier in the day compared with equivalent intervals spent awake. This nap benefit is greatest for children who nap habitually, regardless of age. Performance losses when nap-deprived are not recovered during subsequent overnight sleep. Physiological recordings of naps support a role of sleep spindles in memory performance. These results suggest that distributed sleep is critical in early learning; when short-term memory stores are limited, memory consolidation must take place frequently. PMID:24062429

  14. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    PubMed

    Diril, M Kasim; Bisteau, Xavier; Kitagawa, Mayumi; Caldez, Matias J; Wee, Sheena; Gunaratne, Jayantha; Lee, Sang Hyun; Kaldis, Philipp

    2016-09-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. PMID:27631493

  15. Centrin: Another target of monastrol, an inhibitor of mitotic spindle

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Wang, Tong-Qing; Bian, Wei; Liu, Wen; Sun, Yue; Yang, Bin-Sheng

    2015-02-01

    Monastrol, a cell-permeable inhibitor, considered to specifically inhibit kinesin Eg5, can cause mitotic arrest and monopolar spindle formation, thus exhibiting antitumor properties. Centrin, a ubiquitous protein associated with centrosome, plays a critical role in centrosome duplication. Moreover, a correlation between centrosome amplification and cancer has been reported. In this study, it is proposed for the first time that centrin may be another target of the anticancer drug monastrol since monastrol can effectively inhibit not only the growth of the transformed Escherichia coli cells in vivo, but also the Lu3+-dependent self-assembly of EoCen in vitro. The two closely related compounds (Compounds 1 and 2) could not take the same effect. Fluorescence titration experiments suggest that four monastrols per protein is the optimum binding pattern, and the binding constants at different temperatures were obtained. Detailed thermodynamic analysis indicates that hydrophobic force is the main acting force between monastrol and centrin, and the extent of monastrol inhibition of centrin self-assembly is highly dependent upon the hydrophobic region of the protein, which is largely exposed by the binding of metal ions.

  16. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint

    PubMed Central

    Kitagawa, Mayumi; Caldez, Matias J.; Gunaratne, Jayantha; Lee, Sang Hyun

    2016-01-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. PMID:27631493

  17. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  18. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  19. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  20. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  1. High speed hybrid bearing comprising a fluid bearing and a rolling bearing convected in series

    NASA Technical Reports Server (NTRS)

    Anderson, W. J. (Inventor)

    1973-01-01

    A description is given of an antifriction bearing and a process by which its fatigue life may be extended. The method involves a rotating shaft supported by a fluid bearing and a rolling element bearing coupled in series. Each bearing turns at a fraction of the rotational speed of the shaft. The fluid bearing is preferably conical, thereby providing thrust and radial load support in a single bearing structure.

  2. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  3. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  4. Medroxyprogesterone acetate is associated with increased sleep spindles during non-rapid eye movement sleep in women referred for polysomnography.

    PubMed

    Plante, David T; Goldstein, Michael R

    2013-12-01

    Sleep spindles are characteristic electroencephalographic waveforms that may play functionally significant roles in sleep-dependent memory consolidation, cortical development, and neuropsychiatric disorders. Circumstantial evidence has connected endogenous progesterone and its metabolites to the production of sleep spindles; however, the effects of exogenous progestins on sleep spindles have not been described in women. We examined differences in sleep spindle frequency and morphology in a clinical sample of women (n=21) referred for polysomnography taking depot medroxyprogesterone acetate (MPA), relative to a matched comparison group. Consistent with our hypotheses, women taking MPA demonstrated significantly higher sleep spindle density and maximal amplitude relative to comparison patients. Our results suggest that progestins potentiate the generation of sleep spindles, which may have significant implications for research that examines the role of these waveforms in learning, development, and mental illness.

  5. Medroxyprogesterone acetate is associated with increased sleep spindles during non-rapid eye movement sleep in women referred for polysomnography

    PubMed Central

    Plante, David T.; Goldstein, Michael R.

    2013-01-01

    Sleep spindles are characteristic electroencephalographic waveforms that may play functionally significant roles in sleep-dependent memory consolidation, cortical development, and neuropsychiatric disorders. Circumstantial evidence has connected endogenous progesterone and its metabolites to the production of sleep spindles, however, the effects of exogenous progestins on sleep spindles have not been described in women. We examined differences in sleep spindle frequency and morphology in a clinical sample of women (n=21) referred for polysomnography taking depot medroxyprogesterone acetate (MPA), relative to a matched comparison group. Consistent with our hypotheses, women taking MPA demonstrated significantly higher sleep spindle density and maximal amplitude relative to comparison patients. Our results suggest that progestins potentiate the generation of sleep spindles, which may have significant implications for research that examines the role of these waveforms in learning, development, and mental illness. PMID:24054762

  6. Microeconomic analysis of military aircraft bearing restoration

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1976-01-01

    The risk and cost of a bearing restoration by grinding program was analyzed. A microeconomic impact analysis was performed. The annual cost savings to U.S. Army aviation is approximately $950,000.00 for three engines and three transmissions. The capital value over an indefinite life is approximately ten million dollars. The annual cost savings for U.S. Air Force engines are approximately $313,000.00 with a capital value of approximately 3.1 million dollars.

  7. Climate Drives Polar Bear Origins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  8. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  9. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs

    PubMed Central

    Peyrache, Adrien; Battaglia, Francesco P.; Destexhe, Alain

    2011-01-01

    During light slow-wave sleep, the thalamo-cortical network oscillates in waxing-and-waning patterns at about 7 to 14 Hz and lasting for 500 ms to 3 s, called spindles, with the thalamus rhythmically sending strong excitatory volleys to the cortex. Concurrently, the hippocampal activity is characterized by transient and strong excitatory events, Sharp-Waves-Ripples (SPWRs), directly affecting neocortical activity—in particular the medial prefrontal cortex (mPFC)—which receives monosynaptic fibers from the ventral hippocampus and subiculum. Both spindles and SPWRs have been shown to be strongly involved in memory consolidation. However, the dynamics of the cortical network during natural sleep spindles and how prefrontal circuits simultaneously process hippocampal and thalamo-cortical activity remain largely undetermined. Using multisite neuronal recordings in rat mPFC, we show that during sleep spindles, oscillatory responses of cortical cells are different for different cell types and cortical layers. Superficial neurons are more phase-locked and tonically recruited during spindle episodes. Moreover, in a given layer, interneurons were always more modulated than pyramidal cells, both in firing rate and phase, suggesting that the dynamics are dominated by inhibition. In the deep layers, where most of the hippocampal fibers make contacts, pyramidal cells respond phasically to SPWRs, but not during spindles. Similar observations were obtained when analyzing γ-oscillation modulation in the mPFC. These results demonstrate that during sleep spindles, the cortex is functionnaly “deafferented” from its hippocampal inputs, based on processes of cortical origin, and presumably mediated by the strong recruitment of inhibitory interneurons. The interplay between hippocampal and thalamic inputs may underlie a global mechanism involved in the consolidation of recently formed memory traces. PMID:21949372

  10. Rolling-element bearings. [contact sliding friction study of solid bodies

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1980-01-01

    In contrast to hydrodynamic bearings, which depend for low-friction characteristics on a fluid film between the journal and the bearing surfaces, roller-element bearings employ a number of balls or rollers that roll in an annular space. The paper briefly outlines the advantages and disadvantages of roller-element bearings as compared to hydrodynamic bearings. The discussion covers bearing types, rolling friction, friction losses in rolling bearings, contact stresses, deformations, kinematics (normal and high speeds), bearing dynamics including elastohydrodynamics, load distribution, lubrication (grease, solid oil, oil-air mist), specific dynamic capacity and life, specific static capacity, and fatigue or wearout (elastohydrodynamics, wear). Rolling bearing wear factor as a function of operating environment is plotted and discussed.

  11. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  12. Fluid lubricated bearing assembly

    DOEpatents

    Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.

    1976-01-01

    1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.

  13. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1

    PubMed Central

    Scarfone, Ilaria; Piatti, Simonetta

    2015-01-01

    The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning. PMID:26507466

  14. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures

    PubMed Central

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568

  15. The GTPase Gem and its partner Kif9 are required for chromosome alignment, spindle length control, and mitotic progression.

    PubMed

    Andrieu, Guillaume; Quaranta, Muriel; Leprince, Corinne; Hatzoglou, Anastassia

    2012-12-01

    Within the Ras superfamily, Gem is a small GTP-binding protein that plays a role in regulating Ca(2+) channels and cytoskeletal remodeling in interphase cells. Here, we report for the first time that Gem is a spindle-associated protein and is required for proper mitotic progression. Functionally, loss of Gem leads to misaligned chromosomes and prometaphase delay. On the basis of different experimental approaches, we demonstrate that loss of Gem by RNA interference induces spindle elongation, while its enforced expression results in spindle shortening. The spindle length phenotype is generated through deregulation of spindle dynamics on Gem depletion and requires the expression of its downstream effector, the kinesin Kif9. Loss of Kif9 induces spindle abnormalities similar to those observed when Gem expression is repressed by siRNA. We further identify Kif9 as a new regulator of spindle dynamics. Kif9 depletion increases the steady-state levels of spindle α-tubulin by increasing the rate of microtubule polymerization. Overall, this study demonstrates a novel mechanism by which Gem contributes to the mitotic progression by maintaining correct spindle length through the kinesin Kif9.

  16. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures.

    PubMed

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA's MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. PMID:26765568

  17. Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy.

    PubMed

    Sitnikova, Evgenia; Hramov, Alexander E; Grubov, Vadim; Koronovsky, Alexey A

    2014-01-16

    In rat models of absence epilepsy, epileptic spike-wave discharges appeared in EEG spontaneously, and the incidence of epileptic activity increases with age. Spike-wave discharges and sleep spindles are known to share common thalamo-cortical mechanism, suggesting that absence seizures might affect some intrinsic properties of sleep spindles. This paper examines time-frequency EEG characteristics of anterior sleep spindles in non-epileptic Wistar and epileptic WAG/Rij rats at the age of 7 and 9 months. Considering non-stationary features of sleep spindles, EEG analysis was performed using Morlet-based continuous wavelet transform. It was found, first, that the average frequency of sleep spindles in non-epileptic Wistar rats was higher than in WAG/Rij (13.2 vs 11.2 Hz). Second, the instantaneous frequency ascended during a spindle event in Wistar rats, but it was constant in WAG/Rij. Third, in WAG/Rij rats, the number and duration of epileptic discharges increased in a period between 7 and 9 months of age, but duration and mean value of intra-spindle frequency did not change. In general, age-dependent aggravation of absence seizures in WAG/Rij rats did not affect EEG properties of sleep spindles; it was suggested that pro-epileptic changes in thalamo-cortical network in WAG/Rij rats might prevent dynamic changes of sleep spindles that were detected in Wistar.

  18. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation.

    PubMed

    Lustenberger, Caroline; Boyle, Michael R; Alagapan, Sankaraleengam; Mellin, Juliann M; Vaughn, Bradley V; Fröhlich, Flavio

    2016-08-22

    Transient episodes of brain oscillations are a common feature of both the waking and the sleeping brain. Sleep spindles represent a prominent example of a poorly understood transient brain oscillation that is impaired in disorders such as Alzheimer's disease and schizophrenia. However, the causal role of these bouts of thalamo-cortical oscillations remains unknown. Demonstrating a functional role of sleep spindles in cognitive processes has, so far, been hindered by the lack of a tool to target transient brain oscillations in real time. Here, we show, for the first time, selective enhancement of sleep spindles with non-invasive brain stimulation in humans. We developed a system that detects sleep spindles in real time and applies oscillatory stimulation. Our stimulation selectively enhanced spindle activity as determined by increased sigma activity after transcranial alternating current stimulation (tACS) application. This targeted modulation caused significant enhancement of motor memory consolidation that correlated with the stimulation-induced change in fast spindle activity. Strikingly, we found a similar correlation between motor memory and spindle characteristics during the sham night for the same spindle frequencies and electrode locations. Therefore, our results directly demonstrate a functional relationship between oscillatory spindle activity and cognition. PMID:27476602

  19. Large deflection analysis of a tension-foil bearing

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1996-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are as follows: rolling or sliding contact within the bearing has life-limiting consequences; and REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's. CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contacts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exist for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. Recently, a new tension-foil bearing configuration has been proposed for turbomachinery applications.

  20. Cytochalasin J affects chromosome congression and spindle microtubule organization in PtK1 cells.

    PubMed

    Snyder, J A; Cohen, L

    1995-01-01

    PtK1 cells were treated with 10 micrograms/ml cytochalasin J (CJ) for 15 min at various stages of mitosis. When applied at nuclear envelope breakdown (NEB) chromosome congression was blocked or substantially slowed, and chromosomes failed to show organization patterns typical of prometaphase. Spindle microtubule (MT) numbers appeared unaffected as judged by the pattern of birefringent retardation. However, ultrastructural analysis showed MTs to be reorganized within the spindle domain with some exhibiting fragmentation and others failing to interact with poorly defined kinetochore laminae. The spindle domain took on a curved, almost banana-like shape, as related to the position of the centrosomes and lack of orientation of chromosomes. Serial section analysis of kinetochore regions showed reduced contour length and maturation of the kinetochore plate with few MTs associated with this structure. Cells similarly treated with 10 micrograms/ml CJ at NEB for 15 min and then released into conditioned medium for 15 min showed the most chromosomes resumed congression to the metaphase plate. Ultrastructural analysis revealed a more normal organization of spindle MTs, but kinetochore structure remained affected. CJ treatment of cells in prometaphase slightly affected chromosomes congression with most chromosomes aligning at the metaphase plate after 10-15 min of treatment. Ultrastructural analysis showed that astral MTs were disrupted and spindle MTs were fragmented; few MTs coursed from kinetochore to pole. Kinetochore structure was also affected with only small numbers of short MTs seen associated with kinetochores. Application of CJ at anaphase onset had little effect on anaphase A and B, but cytokinesis failed to occur. Anti-tubulin staining of a monolayer of cells treated with 10 micrograms/ml CJ for 15 min showed that over 60% of mitotic figures exhibited changes in MT organization. Cells showing the greatest effect of treatment had several foci of bundles of MTs, as

  1. Magnetic bearings for spacecraft

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1972-01-01

    Magnetic bearings have been successfully applied to motorized rotor systems in the multi-kilogram range, at speeds up to 1200 radians per second. These engineering models also indicated the need for continued development in specific areas to make them feasible for spacecraft applications. Significant power reductions have recently been attained. A unique magnetic circuit, combining permanent magnets with electromagnetic control, has a bidirectional forcing capability with improved current sensitivity. The multi-dimensional nature of contact-free rotor support is discussed. Stable continuous radial suspension is provided by a rotationally symmetric permanent magnet circuit. Two bearings, on a common shaft, counteract the normal instability perpendicular to the rotational axis. The axial direction is servoed to prevent contact. A new bearing technology and a new field of application for magnetics is foreseen.

  2. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  3. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  4. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.

    PubMed

    An, Shuming; Kilb, Werner; Luhmann, Heiko J

    2014-08-13

    Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.

  5. Changes in muscle spindle firing in response to length changes of neighboring muscles.

    PubMed

    Smilde, Hiltsje A; Vincent, Jake A; Baan, Guus C; Nardelli, Paul; Lodder, Johannes C; Mansvelder, Huibert D; Cope, Tim C; Maas, Huub

    2016-06-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.

  6. Potentiation of electroencephalographic spindles by ibotenate microinjections into nucleus reticularis thalami of cats.

    PubMed

    Marini, G; Macchi, G; Mancia, M

    1992-12-01

    It is well known that the electroencephalogram of the cat in the early stages of slow wave sleep is mainly characterized by rhythmic wave activity at 7-14 Hz, termed spindles, which recur periodically with a slow rhythm of 0.1-0.2 Hz. From early stimulation, decortication and transection studies (see Ref. 14), spindle oscillations were thought to originate in the thalamus. The search for the anatomical substrate of thalamic spindling, however, moved from medial (intralaminar nuclei) to lateral thalamic nuclei, and recently focused on the extreme shell-shaped collection of GABA-ergic cells, the nucleus reticularis thalami. This proposition was based on its structural, hodological, and physiological aspects. There is accumulating evidence that the nucleus reticularis may act as a conditional pacemaker, synchronizing the activity of cortically projecting thalamic neurons. The introduction of glutamate analogues with excitotoxic properties such as ibotenic acid provided the opportunity of studying the immediate effects of chemical excitation of this nucleus on synchronized electroencephalographic activity. We found that, in cats, spindle density was dramatically increased following infusion of ibotenic acid into the rostral pole of the nucleus, supporting the role of this sector in spindle-related rhythmicity. PMID:1488120

  7. Review of the touch preparation cytology of spindle epithelial tumor with thymus-like differentiation

    PubMed Central

    Yi, Kijong; Rehman, Abdul; Jang, Se Min; Paik, Seung Sam

    2016-01-01

    We experienced a case of spindle epithelial tumor with thymus-like differentiation (SETTLE) with touch preparation cytology performed during the intraoperative frozen section diagnosis in a 22-year-old woman. The tumor was partially encapsulated by fibrous capsule. It was a highly cellular biphasic tumor characterized by fasciculated spindle cells with streaming pattern and tubulopapillary epithelial component. The tumor cells were positive for cytokeratin, vimentin, c-kit, epithelial membrane antigen (EMA), and thyroid transcription factor-1 (TTF-1). However, the tumor cells were negative for thyroglobulin, calcitonin, CD99, S-100 protein, CD34, smooth muscle actin, HBME-1, and galectin-3. The reviewed touch smears showed tight clusters with high cellularity. Most cellular clusters showed papillary configuration. However, some clusters showed spindle cells with streaming pattern. The spindle tumor cells showed elongated and cigar-shaped nuclei. Although the incidence is very rare, SETLLE should be included in the differential diagnosis when a spindle cell neoplasm is encountered in touch preparation cytology in young patients with a thyroid mass. PMID:27011438

  8. Direct kinetochore–spindle pole connections are not required for chromosome segregation

    PubMed Central

    Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B.; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G.; McEwen, Bruce F.; Chen, James K.; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M.

    2014-01-01

    Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes′ kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells. PMID:25023516

  9. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells. PMID:22696268

  10. TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux

    PubMed Central

    Fu, Jingyan; Bian, Minglei; Xin, Guangwei; Deng, Zhaoxuan; Luo, Jia; Guo, Xiao; Chen, Hao; Wang, Yao; Jiang, Qing

    2015-01-01

    A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux. PMID:26240182

  11. Sleep spindles predict neural and behavioral changes in motor sequence consolidation.

    PubMed

    Barakat, Marc; Carrier, Julie; Debas, Karen; Lungu, Ovidiu; Fogel, Stuart; Vandewalle, Gilles; Hoge, Richard D; Bellec, Pierre; Karni, Avi; Ungerleider, Leslie G; Benali, Habib; Doyon, Julien

    2013-11-01

    The purpose of this study was to investigate the predictive function of sleep spindles in motor sequence consolidation. BOLD responses were acquired in 10 young healthy subjects who were trained on an explicitly known 5-item sequence using their left nondominant hand, scanned at 9:00 pm while performing that same task and then were retested and scanned 12 h later after a night of sleep during which polysomnographic measures were recorded. An automatic algorithm was used to detect sleep spindles and to quantify their characteristics (i.e., density, amplitude, and duration). Analyses revealed significant positive correlations between gains in performance and the amplitude of spindles. Moreover, significant increases in BOLD signal were observed in several motor-related areas, most of which were localized in the right hemisphere, particularly in the right cortico-striatal system. Such increases in BOLD signal also correlated positively with the amplitude of spindles at several derivations. Taken together, our results show that sleep spindles predict neural and behavioral changes in overnight motor sequence consolidation.

  12. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1.

    PubMed

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1-LGN-NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  13. Pins is not required for spindle orientation in the Drosophila wing disc

    PubMed Central

    Lovegrove, Holly E.; Kujawiak, Izabela; Dawney, Nicole S.; Zhu, Jinwei; Cooper, Samantha; Zhang, Rongguang

    2016-01-01

    In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle orientation, whereas in epithelial cells Dlg recruits Pins laterally to orient the spindle horizontally. Here we investigate division orientation in the Drosophila imaginal wing disc epithelium. Live imaging reveals that spindle angles vary widely during prometaphase and metaphase, and therefore do not reliably predict division orientation. This finding prompted us to re-examine mutants that have been reported to disrupt division orientation in this tissue. Loss of Mud misorients divisions, but Inscuteable expression and aPKC, dlg and pins mutants have no effect. Furthermore, Mud localizes to the apical-lateral cortex of the wing epithelium independently of both Pins and cell cycle stage. Thus, Pins is not required in the wing disc because there are parallel mechanisms for Mud localization and hence spindle orientation, making it a more robust system than in other epithelia. PMID:27287805

  14. Changes in muscle spindle firing in response to length changes of neighboring muscles.

    PubMed

    Smilde, Hiltsje A; Vincent, Jake A; Baan, Guus C; Nardelli, Paul; Lodder, Johannes C; Mansvelder, Huibert D; Cope, Tim C; Maas, Huub

    2016-06-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles. PMID:27075540

  15. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle.

    PubMed

    Hochegger, Helfrid; Hégarat, Nadia; Pereira-Leal, Jose B

    2013-03-20

    The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.

  16. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1

    PubMed Central

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1–LGN–NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  17. Pins is not required for spindle orientation in the Drosophila wing disc.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; Kujawiak, Izabela; Dawney, Nicole S; Zhu, Jinwei; Cooper, Samantha; Zhang, Rongguang; St Johnston, Daniel

    2016-07-15

    In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle orientation, whereas in epithelial cells Dlg recruits Pins laterally to orient the spindle horizontally. Here we investigate division orientation in the Drosophila imaginal wing disc epithelium. Live imaging reveals that spindle angles vary widely during prometaphase and metaphase, and therefore do not reliably predict division orientation. This finding prompted us to re-examine mutants that have been reported to disrupt division orientation in this tissue. Loss of Mud misorients divisions, but Inscuteable expression and aPKC, dlg and pins mutants have no effect. Furthermore, Mud localizes to the apical-lateral cortex of the wing epithelium independently of both Pins and cell cycle stage. Thus, Pins is not required in the wing disc because there are parallel mechanisms for Mud localization and hence spindle orientation, making it a more robust system than in other epithelia.

  18. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle.

    PubMed

    Hochegger, Helfrid; Hégarat, Nadia; Pereira-Leal, Jose B

    2013-03-01

    The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules. PMID:23516109

  19. Pins is not required for spindle orientation in the Drosophila wing disc.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; Kujawiak, Izabela; Dawney, Nicole S; Zhu, Jinwei; Cooper, Samantha; Zhang, Rongguang; St Johnston, Daniel

    2016-07-15

    In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle orientation, whereas in epithelial cells Dlg recruits Pins laterally to orient the spindle horizontally. Here we investigate division orientation in the Drosophila imaginal wing disc epithelium. Live imaging reveals that spindle angles vary widely during prometaphase and metaphase, and therefore do not reliably predict division orientation. This finding prompted us to re-examine mutants that have been reported to disrupt division orientation in this tissue. Loss of Mud misorients divisions, but Inscuteable expression and aPKC, dlg and pins mutants have no effect. Furthermore, Mud localizes to the apical-lateral cortex of the wing epithelium independently of both Pins and cell cycle stage. Thus, Pins is not required in the wing disc because there are parallel mechanisms for Mud localization and hence spindle orientation, making it a more robust system than in other epithelia. PMID:27287805

  20. Regulation of a Spindle Positioning Factor at Kinetochores by SUMO-Targeted Ubiquitin Ligases.

    PubMed

    Schweiggert, Jörg; Stevermann, Lea; Panigada, Davide; Kammerer, Daniel; Liakopoulos, Dimitris

    2016-02-22

    Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins. PMID:26906737

  1. Properties of cat neck muscle spindles and their excitation by succinylcholine.

    PubMed

    Price, R F; Dutia, M B

    1987-01-01

    The sensitivity to sinusoidal stretching and small-amplitude vibration, and the variability of the resting discharge rate of de-efferented muscle spindles in the neck extensor muscle biventer cervicis (b.c.) of the cat have been studied. The effects of intra-arterial infusion of succinylcholine (SCh) on the response of the receptors to ramp stretches of the muscle were also determined. When activated by SCh, one group of afferents showed only a slow facilitation of their discharge rate, similar to that of spindle secondary sensory endings in hind-limb muscles. A second group of afferents developed a large dynamic response and a marked increase in their static discharge rate and were presumed to originate in "normal" b1b2 c spindles in the b.c. muscle. A third group of afferents developed only a marked increase in static discharge, without potentiation of the dynamic response, suggesting an origin in the b2c units of tandem spindles which are relatively common in the neck muscles. On the basis of their passive characteristics alone, afferents from b1b2c units could not be readily distinguished from those from b2c units. The characteristics of these receptors, and their differences from the well-studied hind-limb spindle afferents, are discussed.

  2. Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation.

    PubMed

    Chen, Chun-Ti; Kelly, Megan; Leon, Jessica de; Nwagbara, Belinda; Ebbert, Patrick; Ferguson, David J P; Lowery, Laura Anne; Morrissette, Naomi; Gubbels, Marc-Jan

    2015-12-15

    Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) are first assembled when the centrosome moves to the basal side and become extensively acetylated after the duplicated centrosomes reposition to the apical side. We also tracked the spindle MTs using the MT plus end-binding protein TgEB1. Endowed by a C-terminal NLS, TgEB1 resides in the nucleoplasm in interphase and associates with the spindle MTs during mitosis. TgEB1 also associates with the subpellicular MTs at the growing end of daughter buds toward the completion of karyokinesis. Depletion of TgEB1 results in escalated disintegration of kinetochore clustering. Furthermore, we show that TgEB1's MT association in Toxoplasma and in a heterologous system (Xenopus) is based on the same principles. Finally, overexpression of a high-MT-affinity TgEB1 mutant promotes the formation of overstabilized MT bundles, resulting in avulsion of otherwise tightly clustered kinetochores. Overall we conclude that centrosome position controls spindle activity and that TgEB1 is critical for mitotic integrity. PMID:26466679

  3. Chromosome segregation and spindle structure in crane fly spermatocytes following Colcemid treatment.

    PubMed

    LaFountain, J R

    1985-01-01

    Chromosome segregation in primary spermatocytes of the crane fly Nephrotoma suturalis was studied after exposure to Colcemid at doses that did not completely inhibit spindle formation. Colcemid was added either to the medium in which larvae were cultured or to Tricine buffer in which isolated testes were incubated. Patterns of chromosome segregation were analyzed in fixed, Feulgen-stained smears of testes from Colcemid-treated larvae and in living cell preparations. Anomalies observed during the first meiotic division at higher than normal frequencies in Colcemid-treated spermatocytes included anaphase lagging of autosomes, chromosomal strands, tripolar and tetrapolar divisions, and unequal distribution of chromosomes to secondary cells. Following those doses of Colcemid that induced the above anomalies, the length of the birefringent spindle in primary spermatocytes was shorter than normal. This effect on spindle length also was apparent in Giemsa-stained preparations of fixed cells, in which the two centrosomes at the spindle poles were differentiated from the rest of the cytoplasm. The results indicate a correlation between the inhibition of spindle formation and the induction of anomalous patterns of chromosome segregation.

  4. Sleep spindle detection: crowdsourcing and evaluating performance of experts, non-experts, and automated methods

    PubMed Central

    Warby, Simon C.; Wendt, Sabrina L.; Welinder, Peter; Munk, Emil G.S.; Carrillo, Oscar; Sorensen, Helge B.D.; Jennum, Poul; Peppard, Paul E.; Perona, Pietro; Mignot, Emmanuel

    2014-01-01

    Sleep spindles are discrete, intermittent patterns of brain activity that arise as a result of interactions of several circuits in the brain. Increasingly, these oscillations are of biological and clinical interest because of their role in development, learning, and neurological disorders. We used an internet interface to ‘crowdsource’ spindle identification from human experts and non-experts, and compared performance with 6 automated detection algorithms in middle-to-older aged subjects from the general population. We also developed a method for forming group consensus, and refined methods of evaluating the performance of event detectors in physiological data such as polysomnography. Compared to the gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. Crowdsourcing the scoring of sleep data is an efficient method to collect large datasets, even for difficult tasks such as spindle identification. Further refinements to automated sleep spindle algorithms are needed for middle-to-older aged subjects. PMID:24562424

  5. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle

    PubMed Central

    Hochegger, Helfrid; Hégarat, Nadia; Pereira-Leal, Jose B.

    2013-01-01

    The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules. PMID:23516109

  6. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring.

    PubMed

    Bompard, G; Rabeharivelo, G; Cau, J; Abrieu, A; Delsert, C; Morin, N

    2013-02-14

    The oncogenic kinase PAK4 was recently found to be involved in the regulation of the G1 phase and the G2/M transition of the cell cycle. We have also identified that PAK4 regulates Ran GTPase activity during mitosis. Here, we show that after entering mitosis, PAK4-depleted cells maintain a prolonged metaphase-like state. In these cells, chromosome congression to the metaphase plate occurs with normal kinetics but is followed by an extended period during which membrane blebbing and spindle rotation are observed. These bipolar PAK4-depleted metaphase-like spindles have a defective astral microtubule (MT) network and are not centered in the cell but are in close contact with the cell cortex. As the metaphase-like state persists, centrosome fragmentation occurs, chromosomes scatter from the metaphase plate and move toward the spindle poles with an active spindle assembly checkpoint, a phenotype that is reminiscent of cohesion fatigue. PAK4 also regulates the acto-myosin cytoskeleton and we report that PAK4 depletion results in the induction of cortical membrane blebbing during prometaphase arrest. However, we show that membrane blebs, which are strongly enriched in phospho-cofilin, are not responsible for the poor anchoring of the spindle. As PAK4 depletion interferes with the localization of components of the dynein/dynactin complexes at the kinetochores and on the astral MTs, we propose that loss of PAK4 could induce a change in the activities of motor proteins. PMID:22450748

  7. Fine-needle aspiration of spindle cell and mesenchymal lesions of the salivary glands.

    PubMed

    Chhieng, D C; Cohen, J M; Cangiarella, J F

    2000-10-01

    Fine-needle aspiration (FNA) biopsy can accurately diagnose epithelial lesions of the salivary gland. Its role in the evaluation of salivary gland lesions containing a significant spindle cell component is less clear. We describe the cytologic features of 25 spindle cell lesions of the salivary gland and discuss the differential diagnosis and potential diagnostic pitfalls. Twenty-five aspiration smears (3.0%) containing a significant spindle cell or mesenchymal component were identified out of 844 salivary gland FNAs performed over a 5-year period. These aspiration smears were from 25 patients. The smears were classified into three categories: 1) reactive or inflammatory conditions, including one granulation tissue and four granulomatous sialoadenitis; 2) benign neoplasms, including one schwannoma, one fibromatosis, four lipomas, and nine pleomorphic adenomas; 3) malignant neoplasms, including one recurrent malignant fibrous histiocytoma (MFH), two metastatic melanomas, and two metastatic osteosarcomas. There was one false-negative biopsy. The metastatic desmoplastic malignant melanoma was initially interpreted as a reactive lymph node with fibrosis. A specific diagnosis was rendered in 21 (84%) cases. The schwannoma was diagnosed cytologically as benign spindle cell lesion, not otherwise specified (NOS), fibromatosis as an atypical cellular proliferation, and MFH as poorly differentiated malignant neoplasm. Salivary gland lesions with a significant spindle cell component are rarely encountered on FNA and constitute a heterogeneous group. A specific diagnosis can be rendered in the majority of cases by correlating clinical and cytologic findings.

  8. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  9. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene.

    PubMed

    Huang, S K; Martin, F J; Jay, G; Vogel, J; Papahadjopoulos, D; Friend, D S

    1993-07-01

    Transgenic mice bearing the HIV tat gene develop dermal lesions resembling a common malignant tumor in AIDS, Kaposi's sarcoma (KS). To evaluate the permeability characteristics of these lesions and the therapeutic potential of drug-carrying liposomes, we have studied the localization of sterically stabilized liposomes, which show long circulation time in blood and increased accumulation in tumors. Liposomes encapsulating colloidal gold were injected intravenously into transgenic mice bearing KS lesions, and tissues were processed 24 hours later for both electron microscopy and for light microscopy with silver enhancement. Liposomes and silver marker were detected predominantly in the dermis surrounding the early and mature KS lesions, which were characterized by a proliferation of fibroblast-like spindle cells and abnormal blood vessels close to the epidermis. The silver-enhanced gold marker often surrounded vascular channels and scattered erythrocytes. As determined by electron microscopy, some spindle cells and macrophages had ingested intact liposomes. Transendothelial transport of liposomes was observed both through open channels between endothelial cells and also through endothelial cells lining intact vessels. Both extravasation and transcytosis of liposomes through irregular endothelium were much higher in KS lesions than in the adjacent normal skin. The high accumulation of sterically stabilized liposomes in KS lesions and their intracellular uptake by some spindle cells enhances their potential as carriers of chemotherapeutic agents against this neoplasm. PMID:8317543

  10. Primary histiocytic sarcoma arising in the head and neck with predominant spindle cell component

    PubMed Central

    Alexiev, Borislav A; Sailey, Charles J; McClure, Shawn A; Ord, Robert A; Zhao, XF; Papadimitriou, John C

    2007-01-01

    This is the first case report of Histiocytic Sarcoma (HS) with predominant spindle cell component occurring in the head and neck region of a 41-year-old man. The tumor was composed of sheets of large round to oval cells with pleomorphic vesicular nuclei, prominent nucleoli and abundant eosinophilic cytoplasm. Multinucleated forms, numerous mitoses, and tumor necrosis were also noted. Sheets, fascicles, and whorls of spindle cells with spindled to ovoid vesicular nuclei, small to medium-sized distinct nucleoli, and eosinophilic cytoplasm were frequently observed. Immunohistochemical staining in the tumor cells was positive for CD163, CD68, lysozyme, CD45, and NSE. Focal expression of CD4 and S-100 was also noted. Electron microscopy demonstrated an abundance of lysosomes in the cytoplasm of tumor cells. Chromosome study revealed a 57–80 hyperdiploid [7]/46, XY [13] karyotype, including 3 to 4 copies of various chromosomes. The immunohistochemical and ultrastructural findings confirmed the diagnosis of HS. PMID:17324277

  11. Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint

    PubMed Central

    London, Nitobe; Biggins, Sue

    2014-01-01

    The spindle checkpoint is a conserved signaling pathway that ensures genomic integrity by preventing cell division when chromosomes are not correctly attached to the spindle. Checkpoint activation depends on the hierarchical recruitment of checkpoint proteins to generate a catalytic platform at the kinetochore. Although Mad1 kinetochore localization is the key regulatory downstream event in this cascade, its receptor and mechanism of recruitment have not been conclusively identified. Here, we demonstrate that Mad1 kinetochore association in budding yeast is mediated by phosphorylation of a region within the Bub1 checkpoint protein by the conserved protein kinase Mps1. Tethering this region of Bub1 to kinetochores bypasses the checkpoint requirement for Mps1-mediated kinetochore recruitment of upstream checkpoint proteins. The Mad1 interaction with Bub1 and kinetochores can be reconstituted in the presence of Mps1 and Mad2. Together, this work reveals a critical mechanism that determines kinetochore activation of the spindle checkpoint. PMID:24402315

  12. Sleep spindle detection using deep learning: A validation study based on crowdsourcing.

    PubMed

    Dakun Tan; Rui Zhao; Jinbo Sun; Wei Qin

    2015-08-01

    Sleep spindles are significant transient oscillations observed on the electroencephalogram (EEG) in stage 2 of non-rapid eye movement sleep. Deep belief network (DBN) gaining great successes in images and speech is still a novel method to develop sleep spindle detection system. In this paper, crowdsourcing replacing gold standard was applied to generate three different labeled samples and constructed three classes of datasets with a combination of these samples. An F1-score measure was estimated to compare the performance of DBN to other three classifiers on classifying these samples, with the DBN obtaining an result of 92.78%. Then a comparison of two feature extraction methods based on power spectrum density was made on same dataset using DBN. In addition, the DBN trained in dataset was applied to detect sleep spindle from raw EEG recordings and performed a comparable capacity to expert group consensus. PMID:26736880

  13. EB1 enables spindle microtubules to regulate centromeric recruitment of Aurora B

    PubMed Central

    Banerjee, Budhaditya; Kestner, Cortney A.

    2014-01-01

    The Aurora B kinase coordinates kinetochore–microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end–tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase. PMID:24616220

  14. Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint.

    PubMed

    Wu, Juan; Huang, Yu-Fan; Zhou, Xin-Ke; Zhang, Wei; Lian, Yi-Fan; Lv, Xiao-Bin; Gao, Xiu-Rong; Lin, Hui-Kuan; Zeng, Yi-Xin; Huang, Jian-Qing

    2015-01-01

    The Aurora B kinase plays a critical role in cell mitosis and spindle checkpoint. Here, we showed that the ubiquitin E3-ligase protein Skp2, also as a cell-cycle regulatory protein, was required for the activation of Aurora B and its downstream protein. When we restored Skp2 knockdown Hela cells with Skp2 and Skp2-LRR E3 ligase dead mutant we found that Skp2 could rescue the defect in the activation of Aurora B, but the mutant failed to do so. Furthermore, we discovered that Skp2 could interact with Aurora B and trigger Aurora B Lysine (K) 63-linked ubiquitination. Finally, we demonstrated the essential role of Skp2 in cell mitosis progression and spindle checkpoint, which was Aurora B dependent. Our results identified a novel ubiquitinated substrate of Skp2, and also indicated that Aurora B ubiquitination might serve as an important event for Aurora B activation in cell mitosis and spindle checkpoint.

  15. Spindle Cell Lipoma of the Neck: Review of the Literature and Case Report

    PubMed Central

    Machol, Jacques A.; Cusic, Jenna G.; O'Connor, Elizabeth A.; Sanger, James R.

    2015-01-01

    Summary: Spindle cell lipomas (SCL) are benign, slow growing tumors arising most frequently in the subcutaneous tissue of the upper back, posterior neck, and shoulders in males aged 40–70 years. Local excision is generally curative. Classification of lipomatous tumors has progressed recently, and tumors of similar morphology and unusual presentation are increasingly reported, thereby making correct diagnosis even more vital. SCL require pathologic differentiation from liposarcoma, other spindle cell neoplasms, and myxoid lesions for treatment purposes. Cytology, histology, and cytogenetics, in conjunction with clinical presentation, are paramount in arriving at the correct diagnosis of spindle cell lipoma. We present a case report with characteristics typical of an SCL along with a literature review to further elucidate the diagnosis and surgical treatment of this soft tissue tumor. PMID:26893975

  16. [Relationship between simulated weightlessness-induced muscle spindle change and muscle atrophy].

    PubMed

    Zhao, Xue-Hong; Fan, Xiao-Li

    2013-02-25

    One of the most important and urgent issues in the field of space medicine is to reveal the potential mechanism underlying the disused muscle atrophy during the weightlessness or microgravity environment. It will conduce to find out effective methods for the prevention and treatment of muscle atrophy during a long-term space flight. Increasing data show that muscle spindle discharges are significantly altered following the hindlimb unloading, suggesting a vital role in the progress of muscle atrophy. In the last decades, we have made a series of studies on changes in the morphological structure and function of muscle spindle following simulated weightlessness. This review will discuss our main results and related researches for understanding of muscle spindle activities during microgravity environment, which may provide a theoretic basis for effective prevention and treatment of muscle atrophy induced by weightlessness. PMID:23426520

  17. Low-grade fibromatosis-like spindle cell carcinoma of the breast.

    PubMed

    Dwyer, Jessica B; Clark, Beth Z

    2015-04-01

    Low-grade fibromatosis-like spindle cell carcinoma is a rare tumor in the breast, and represents a variant of the very heterogeneous group of metaplastic carcinomas of the breast. These tumors warrant distinction because of their resemblance to pure fibromatosis, their propensity for local recurrence, and their favorable prognosis among the metaplastic carcinomas of the breast. The diagnosis is potentially challenging, particularly on core needle biopsies, because of the morphologic overlap with other low-grade spindle cell lesions. Recognition of a proliferation of cytologically bland spindle cells with areas of epithelial differentiation in combination with immunohistochemistry using antibodies against cytokeratins and myoepithelial markers should aid in producing a definitive diagnosis. These tumors can be locally aggressive with an increased incidence of local recurrence, but the potential for lymph node or distant metastasis is low. Complete excision with adequate margins is considered curative in the majority of cases.

  18. Spindle cell lipoma masquerading as lipomatous pleomorphic adenoma: A diagnostic dilemma on fine needle aspiration cytology.

    PubMed

    Agarwal, S; Nangia, A; Jyotsna, P Lalita; Pujani, M

    2013-01-01

    Spindle cell lipoma is a relatively uncommon benign adipocytic tumor that usually presents in subcutaneous fat of adult men. These are a rare form of lipoma, accounting for 1.5% of all lipomatous tumors, with a low rate of local recurrence and no risk of malignant behavior/dedifferentiation. Although few studies addressing the histological findings of spindle cell lipoma have been described, only a few descriptions of fine needle aspiration cytology (FNAC) findings have been documented in literature. We present a case of a 55-year-old male with a nodular swelling over left cheek (in the parotid region), which due to its location as well as prominent myxoid background prompted us to include the lipomatous salivary gland lesions in differential diagnosis. Our objective is to document and delineate the characteristic cytological features of spindle cell lipoma, which may permit a confident diagnosis on FNAC smears.

  19. Composite Bear Canister

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Jara, Steve; Suffel, Susan

    2003-01-01

    To many national park campers and mountain climbers saving their foods in a safe and unbreakable storage container without worrying being attacked by a bear is a challenging task. In some parks, the park rangers have mandated that park visitors rent a bear canister for their food storage. Commercially available bear canisters are made of ABS plastic, weigh 2.8 pounds, and have a 180 cubic inch capacity for food storage. A new design with similar capacity was conducted in this study to reduce its weight and make it a stiffer and stronger canister. Two prototypes incorporating carbon prepreg with and without honeycomb constructions were manufactured using hand lay-up and vacuum bag forming techniques. A 6061-T6-aluminum ring was machined to dimensions in order to reinforce the opening area of the canister. Physical properties (weight and volume) along with mechanical properties (flexural strength and specific allowable moment) of the newly fabricated canisters are compared against the commercial ones. The composite canister weighs only 56% of the ABS one can withstand 9 times of the force greater. The advantages and limitations of using composite bear canisters will be discussed in the presentation.

  20. Hybrid superconductor magnet bearings

    SciTech Connect

    Chu, W.

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB`s) utilize high temperature superconductors (HTS`s) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS`s, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, the authors present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  1. Magnetic Bearings For Turbopumps

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Mendez, Antonio J.

    1995-01-01

    Report presents study of feasibility of magnetic bearings in turbopumps. Liquid-oxygen turbopump in space shuttle main engine selected for study. Other potential applications include manned and unmanned spacecraft, gas turbines for commercial and military aircraft, turbomachinery for petro-chemical and gas operations, suspension systems for precise machinery, and precise pointing and tracking systems.

  2. History of ball bearings

    NASA Technical Reports Server (NTRS)

    Dowson, D.; Hamrock, B. J.

    1981-01-01

    The familiar precision rolling-element bearings of the twentieth century are products of exacting technology and sophisticated science. Their very effectiveness and basic simplicity of form may discourage further interest in their history and development. Yet the full story covers a large portion of recorded history and surprising evidence of an early recognition of the advantages of rolling motion over sliding action and progress toward the development of rolling-element bearings. The development of rolling-element bearings is followed from the earliest civilizations to the end of the eighteenth century. The influence of general technological developments, particularly those concerned with the movement of large building blocks, road transportation, instruments, water-raising equipment, and windmills are discussed, together with the emergence of studies of the nature of rolling friction and the impact of economic factors. By 1800 the essential features of ball and rolling-element bearings had emerged and it only remained for precision manufacture and mass production to confirm the value of these fascinating machine elements.

  3. The Teddy Bears' Disc.

    ERIC Educational Resources Information Center

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  4. Hybrid superconductor magnet bearings

    NASA Technical Reports Server (NTRS)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  5. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  6. Optimal Synchronizability of Bearings

    NASA Astrophysics Data System (ADS)

    Araújo, N. A. M.; Seybold, H.; Baram, R. M.; Herrmann, H. J.; Andrade, J. S., Jr.

    2013-02-01

    Bearings are mechanical dissipative systems that, when perturbed, relax toward a synchronized (bearing) state. Here we find that bearings can be perceived as physical realizations of complex networks of oscillators with asymmetrically weighted couplings. Accordingly, these networks can exhibit optimal synchronization properties through fine-tuning of the local interaction strength as a function of node degree [Motter, Zhou, and Kurths, Phys. Rev. E 71, 016116 (2005)PLEEE81539-3755]. We show that, in analogy, the synchronizability of bearings can be maximized by counterbalancing the number of contacts and the inertia of their constituting rotor disks through the mass-radius relation, m˜rα, with an optimal exponent α=α× which converges to unity for a large number of rotors. Under this condition, and regardless of the presence of a long-tailed distribution of disk radii composing the mechanical system, the average participation per disk is maximized and the energy dissipation rate is homogeneously distributed among elementary rotors.

  7. Magnetic-Bearing Test Fixture

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Poole, William L.

    1991-01-01

    Microcomputer-controlled magnetic-bearing test fixture used to develop approaches to design of controls for magnetic bearing actuators designed and constructed. Includes load cells connected to bar, in turn, connected through screw positioners to geared drive motors. Position of equivalent suspended element sensed by position sensors and controlled by drive motors. Provides control of gap in magnetic bearing and of current in electromagnet coil. Measurements made include magnetic-bearing gaps, magnetic flux in bearing gaps, and bearing forces. Approaches to linearization and control developed by use of fixture applicable to wide range of small-gap suspension systems.

  8. Lubricant effects on bearing life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1986-01-01

    Lubricant considerations for rolling-element bearings have within the last two decades taken on added importance in the design and operation of mechanical systems. The phenomenon which limits the useful life of bearings is rolling-element or surface pitting fatigue. The elastohydrodynamic (EHD) film thickness which separates the ball or roller surface from those of the raceways of the bearing directly affects bearing life. Chemical additives added to the lubricant can also significantly affect bearings life and reliability. The interaction of these physical and chemical effects is important to the design engineer and user of these systems. Design methods and lubricant selection for rolling-element bearings are presented and discussed.

  9. Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans

    PubMed Central

    Portegijs, Vincent; van Mourik, Tim; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2016-01-01

    During cell division, the mitotic spindle segregates replicated chromosomes to opposite poles of the cell, while the position of the spindle determines the plane of cleavage. Spindle positioning and chromosome segregation depend on pulling forces on microtubules extending from the centrosomes to the cell cortex. Critical in pulling force generation is the cortical anchoring of cytoplasmic dynein by a conserved ternary complex of Gα, GPR-1/2, and LIN-5 proteins in C. elegans (Gα–LGN–NuMA in mammals). Previously, we showed that the polarity kinase PKC-3 phosphorylates LIN-5 to control spindle positioning in early C. elegans embryos. Here, we investigate whether additional LIN-5 phosphorylations regulate cortical pulling forces, making use of targeted alteration of in vivo phosphorylated residues by CRISPR/Cas9-mediated genetic engineering. Four distinct in vivo phosphorylated LIN-5 residues were found to have critical functions in spindle positioning. Two of these residues form part of a 30 amino acid binding site for GPR-1, which we identified by reverse two-hybrid screening. We provide evidence for a dual-kinase mechanism, involving GSK3 phosphorylation of S659 followed by phosphorylation of S662 by casein kinase 1. These LIN-5 phosphorylations promote LIN-5–GPR-1/2 interaction and contribute to cortical pulling forces. The other two critical residues, T168 and T181, form part of a cyclin-dependent kinase consensus site and are phosphorylated by CDK1-cyclin B in vitro. We applied a novel strategy to characterize early embryonic defects in lethal T168,T181 knockin substitution mutants, and provide evidence for sequential LIN-5 N-terminal phosphorylation and dephosphorylation in dynein recruitment. Our data support that phosphorylation of multiple LIN-5 domains by different kinases contributes to a mechanism for spatiotemporal control of spindle positioning and chromosome segregation. PMID:27711157

  10. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells.

    PubMed

    Wang, X M; Zhai, Y; Ferrell, J E

    1997-04-21

    The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole-the chromosomes decondensed and the nuclear envelope re-formed-whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.

  11. Intranuclear membranes and the formation of the first meiotic spindle in Xenos peckii (Acroschismus wheeleri) oocytes

    PubMed Central

    1983-01-01

    The ultrastructure of spindle formation during the first meiotic division in oocytes of the Strepsipteran insect Xenos peckii Kirby (Acroschismus wheeleri Pierce) was examined in serial thick (0.25- micron) and thin sections. During late prophase the nuclear envelope became extremely convoluted and fenestrated. At this time vesicular and tubular membrane elements permeated the nucleoplasm and formed a thin fusiform sheath, 5-7 micron in length, around each of the randomly oriented and condensing tetrads. These membrane elements appeared to arise from the nuclear envelope and/or in association with annulate lamellae in the nuclear region. All of the individual tetrads and their associated fusiform sheaths became aligned within the nucleus subsequent to the breakdown of the nuclear envelope. Microtubules (MTs) were found associated with membranes of the meiotic apparatus only after the nuclear envelope had broken down. Kinetochores, with associated MTs, were first recognizable as electron-opaque patches on the chromosomes at this time. The fully formed metaphase arrested Xenos oocyte meiotic apparatus contained an abundance of membranes and had diffuse poles that lacked distinct polar MT organizing centers. From these observations we conclude that the apparent individual chromosomal spindles--seen in the light microscope to form around each Xenos tetrad during "intranuclear prometaphase" (Hughes-Schrader, S., 1924, J. Morphol. 39:157-197)--actually form during late prophase, lack MTs, and are therefore not complete miniature bipolar spindles, as had been commonly assumed. Thus, the unique mode of spindle formation in Xenos oocytes cannot be used to support the hypothesis that chromosomes (kinetochores) induce the polymerization of their associated MTs. Our observation that MTs appeared in association with and parallel to tubular membrane components of the Xenos meiotic apparatus after these membranes became oriented with respect to the tetrads, is consistent with the

  12. Radmis, a Novel Mitotic Spindle Protein that Functions in Cell Division of Neural Progenitors

    PubMed Central

    Yumoto, Takahito; Nakadate, Kazuhiko; Nakamura, Yuki; Sugitani, Yoshinobu; Sugitani-Yoshida, Reiko; Ueda, Shuichi; Sakakibara, Shin-ichi

    2013-01-01

    Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs. PMID:24260314

  13. Mycobacterial spindle cell pseudotumour of the brain in a patient with sarcoidosis.

    PubMed

    Ismail, Iyad; Carey, Martyn; Trotter, Simon; Kunst, Heinke

    2015-01-01

    Mycobacterial spindle cell pseudotumours (MSP) are benign lesions characterised by local proliferation of spindle-shaped histiocytes caused by mycobacterial infections. Cerebral MSP due to Mycobacterium avium intracellulare (MAI) infection is rare, and is often misdiagnosed clinically and radiologically as a brain tumour. We present a case with underlying sarcoidosis and known pulmonary MAI infection presenting with partial seizures and headaches. Imaging of the brain revealed a solitary extra axial tumour within the right temporal area. Biopsy of the tumour showed evidence of MPS due to MAI infection. Prolonged treatment with antituberculous therapy showed complete resolution of the cerebral lesion.

  14. Unification of the Globally Distributed Spindle-Shaped Viruses of the Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Bamford, Dennis H.; Forterre, Patrick

    2014-01-01

    Viruses with spindle-shaped virions are abundant in diverse environments. Over the years, such viruses have been isolated from a wide range of archaeal hosts. Evolutionary relationships between them remained enigmatic, however. Here, using structural proteins as markers, we define familial ties among these “dark horses” of the virosphere and segregate all spindle-shaped viruses into two distinct evolutionary lineages, corresponding to Bicaudaviridae and Fuselloviridae. Our results illuminate the utility of structure-based virus classification and bring additional order to the virosphere. PMID:24335300

  15. Detecting alpha spindle events in EEG time series using adaptive autoregressive models

    PubMed Central

    2013-01-01

    Background Rhythmic oscillatory activity is widely observed during a variety of subject behaviors and is believed to play a central role in information processing and control. A classic example of rhythmic activity is alpha spindles, which consist of short (0.5-2 s) bursts of high frequency alpha activity. Recent research has shown that alpha spindles in the parietal/occipital area are statistically related to fatigue and drowsiness. These spindles constitute sharp changes in the underlying statistical properties of the signal. Our hypothesis is that change point detection models can be used to identify the onset and duration of spindles in EEG. In this work we develop an algorithm that accurately identifies sudden bursts of narrowband oscillatory activity in EEG using techniques derived from change point analysis. Our motivating example is detection of alpha spindles in the parietal/occipital areas of the brain. Our goal is to develop an algorithm that can be applied to any type of rhythmic oscillatory activity of interest for accurate online detection. Methods In this work we propose modeling the alpha band EEG time series using discounted autoregressive (DAR) modeling. The DAR model uses a discounting rate to weigh points measured further in the past less heavily than points more recently observed. This model is used together with predictive loss scoring to identify periods of EEG data that are statistically significant. Results Our algorithm accurately captures changes in the statistical properties of the alpha frequency band. These statistical changes are highly correlated with alpha spindle occurrences and form a reliable measure for detecting alpha spindles in EEG. We achieve approximately 95% accuracy in detecting alpha spindles, with timing precision to within approximately 150 ms, for two datasets from an experiment of prolonged simulated driving, as well as in simulated EEG. Sensitivity and specificity values are above 0.9, and in many cases are above

  16. Characterization of Ring-Like F-Actin Structure as a Mechanical Partner for Spindle Positioning in Mitosis

    PubMed Central

    Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  17. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    PubMed

    Lu, Huan; Zhao, Qun; Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  18. Magnetic bearing. [for supplying magnetic fluxes

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1975-01-01

    A magnetic bearing is described which includes a pair of coaxial, toroidal, and permanent magnets having axially directed poles. Like poles of the permanent magnets are adjacent to each other, whereby the permanent magnets have a tendency to be urged apart along the common axis. An electromagnet is wound coaxially with the permanent magnets in such a manner that the poles are axially directed. Between the poles of each permanent magnet there is a low magnetic reluctance circuit including two series air gaps. Between the poles of the electromagnet a low reluctance path including only one air gap of each of the low magnetic reluctance circuits is provided. The low reluctance path for the electromagnet includes a ring axially translatable relative to the permanent magnets. The ring forms opposite faces of the air gaps in the magnetic circuits for each permanent magnet.

  19. Vygotsky and the Three Bears

    ERIC Educational Resources Information Center

    Kulczewski, Peggy

    2004-01-01

    Peggy Kulczewski, a kindergarten classroom teacher, remembers the day when students enjoyed a story she told them from the book "The Three Bears". The students' discussion about comparison of the bears was very helpful to the whole group.

  20. Magnetic bearings grow more attractive

    NASA Astrophysics Data System (ADS)

    1993-10-01

    Advances in materials and electronics have enabled designers to devise simpler, smaller magnetic bearings. As a result, costs have dropped, widening the applications for these very-low-friction devices. Avcon (Advanced Controls Technology) has patented a permanent-magnet bias actively controlled bearing. Here high-energy rare earth permanent-magnet materials supply the basic bearing load levitation, while servo-driven electromagnets generate stabilization and centering forces for motion contol. Previous heavy-duty magnetic bearings used electromagnets entirely for suspension and control, which led to large bearings and control systems with higher power requirements. Avcon has developed several types of permanent-magnet bias bearings. The simplest is the radial repulsion bearing. Avcon's homopolar permanent-magnet bias active bearing is the most versatile of the company's designs.